WO2017145854A1 - エレクトロスラグ溶接用Ni基溶接材料 - Google Patents

エレクトロスラグ溶接用Ni基溶接材料 Download PDF

Info

Publication number
WO2017145854A1
WO2017145854A1 PCT/JP2017/005234 JP2017005234W WO2017145854A1 WO 2017145854 A1 WO2017145854 A1 WO 2017145854A1 JP 2017005234 W JP2017005234 W JP 2017005234W WO 2017145854 A1 WO2017145854 A1 WO 2017145854A1
Authority
WO
WIPO (PCT)
Prior art keywords
less
wire
welding
flux
electroslag welding
Prior art date
Application number
PCT/JP2017/005234
Other languages
English (en)
French (fr)
Inventor
秀徳 名古
喜臣 岡崎
正樹 島本
朋子 杉村
倚旻 袁
圭人 石崎
Original Assignee
株式会社神戸製鋼所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2016223613A external-priority patent/JP2017148863A/ja
Application filed by 株式会社神戸製鋼所 filed Critical 株式会社神戸製鋼所
Publication of WO2017145854A1 publication Critical patent/WO2017145854A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/24Selection of soldering or welding materials proper
    • B23K35/30Selection of soldering or welding materials proper with the principal constituent melting at less than 1550 degrees C
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/36Selection of non-metallic compositions, e.g. coatings, fluxes; Selection of soldering or welding materials, conjoint with selection of non-metallic compositions, both selections being of interest
    • B23K35/362Selection of compositions of fluxes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/36Selection of non-metallic compositions, e.g. coatings, fluxes; Selection of soldering or welding materials, conjoint with selection of non-metallic compositions, both selections being of interest
    • B23K35/368Selection of non-metallic compositions of core materials either alone or conjoint with selection of soldering or welding materials
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/03Alloys based on nickel or cobalt based on nickel
    • C22C19/05Alloys based on nickel or cobalt based on nickel with chromium

Definitions

  • the present invention relates to a wire used for electroslag welding, an input flux, and a welded joint obtained using these welding materials.
  • 9% Ni steel has high strength and excellent cryogenic toughness of about liquid nitrogen temperature (-196 ° C). Therefore, 9% Ni steel is widely used as a base material for manufacturing a storage tank stored at a low temperature such as liquefied natural gas (Liquid Natural Gas, LNG) by welding. These storage tanks are required to have excellent cryogenic toughness in a temperature range of ⁇ 162 ° C. or lower, which is a temperature range of a liquid such as LNG. Therefore, the weld metal (welded joint) of a welded joint formed by welding 9% Ni steel is similarly required to have excellent cryogenic toughness.
  • LNG liquefied natural gas
  • Patent Document 1 has a tensile strength of 690 MPa or more and a yield strength of 400 MPa or more even when a welded joint is manufactured by high heat input welding with a heat input of 4.0 kJ / mm or more.
  • a welded joint having an excellent low temperature toughness with an average Charpy absorbed energy of 55 J or more and a welding material for obtaining such a welded joint is described.
  • Patent Document 1 the amount of heat input applied in Patent Document 1 is 11.52 kJ / mm at the maximum, which is still insufficient.
  • the present invention has been made in view of the above circumstances, and its purpose is to provide strength and cryogenic toughness even when high heat input with a heat input of, for example, about 13 kJ / mm or more is performed using a Ni-based welding material. It is an object of the present invention to provide a welding technique capable of obtaining an excellent weld joint.
  • the first electroslag welding wire of the present invention capable of solving the above-mentioned problems is, in mass%, C: 0% or more, 0.300% or less, Si: 0% or more, 3.0% or less, Mn: 1 20% to 4.2%, Ni: 49.0% to 70%, Cr: 9% to 18.5%, Mo: 0% to 24.0%, Al: 0 %: 0.1% or less, W: 1.0% or more, 14.0% or less, Fe: 0% or more, 6.0% or less, Mg: 0% or more, 1% or less, Nb: 0% or more 4.0% or less, N: 0% or more, 0.2% or less, and Zr: 0% or more, 0.05% or less.
  • the first electroslag welding wire contains mass% and further contains rare earth elements: 0% or more and 1.0% or less.
  • the first electroslag welding wire is plated with Cu.
  • the first electroslag welding wire is a solid wire or a metal-based flux-cored wire.
  • the first electroslag welding wire is a slag flux-cored wire.
  • the flux contains more than 0% and 20% or less of a slag forming agent with respect to the total mass of the slag flux-cored wire.
  • the first electroslag welding wire is used for electroslag welding in one vertical pass.
  • the second electroslag welding wire of the present invention that can solve the above-mentioned problems is, in mass%, C: 0% or more, 0.300% or less, Si: 0% or more, 3.0% or less, Mn: 1 20% to 4.2%, Ni: 49.0% to 70%, Cr: 9% to 18.5%, Mo: 0% to 24.0%, Al: 0 %: 0.13% or less, W: 4.6% or more, 14.0% or less, Fe: 0% or more, 6.0% or less, Mg: 0% or more, 1% or less, Nb: 0% or more 0.50% or less, N: 0% or more, 0.2% or less, Zr: 0% or more, 0.05% or less, and rare earth elements: more than 0%, 1.0% or less .
  • the second electroslag welding wire is subjected to Cu plating.
  • the second electroslag welding wire is a solid wire or a metal flux-cored wire.
  • the second electroslag welding wire is a slag flux-cored wire.
  • the flux contains more than 0% and 20% or less of a slag forming agent with respect to the total mass of the slag flux-cored wire.
  • the second electroslag welding wire is used for electroslag welding in one vertical pass.
  • the charged flux of the present invention capable of solving the above-mentioned problems is a charged flux used for electroslag welding together with the first and second electroslag welding wires described in any of the above, and is in mass%.
  • SiO 2 15% or more, 50% or less
  • CaO 10% or more, 40% or less
  • CaF 2 5% or more, 15% or less
  • MgO 0% or more, 12% or less
  • Al 2 O 3 0% or more 14% or less
  • MnO 0% or more, 25% or less
  • TiO 2 0% or more, 10% or less
  • ZrO 2 0% or more and 10% or less.
  • the 1st welded joint of this invention which can solve the said subject uses electroslag welding using the said 1st electroslag welding wire in any one of the above, and the said throwing flux for electroslag welding.
  • a welded joint to be manufactured wherein the weld metal is in mass%, C: 0% or more, 0.260% or less, Si: 0% or more, 3.0% or less, Mn: 1.0% or more, 4 0.000% or less, Ni: 40.0% or more, 70.0% or less, Cr: 7% or more, 15.0% or less, Mo: 0% or more, 20.0% or less, W: 0.50% or more 13.0% or less, Fe: 0% or more, 32% or less, Nb: 0% or more, 2.5% or less, N: 0.01% or more, 0.11% or less, and O: 0% or more, It has a gist in that it contains 0.055% or less.
  • the weld metal contains O: 0% or more and 0.025% or less in mass%.
  • the first welded joint uses a steel plate containing 5% or more and 10% or less of Ni as a base material.
  • the 2nd welded joint of this invention which can solve the said subject is the electroslag welding by using the said 2nd electroslag welding wire in any one of the above, and the said throwing flux for electroslag welding.
  • a welded joint to be produced wherein the weld metal is, in mass%, C: 0% or more, 0.260% or less, Si: 0% or more, 3.0% or less, Mn: 1.0% or more, 4.00% or less, Ni: 40.0% or more, 70.0% or less, Cr: 7% or more, 15.0% or less, Mo: 0% or more, 20.0% or less, W: 4.50% 13.0% or less, Fe: 0% or more, 32% or less, Nb: 0% or more, 0.30% or less, N: 0.01% or more, 0.11% or less, and O: 0% or more , 0.025% or less, 3500 intermetallic compounds in the weld metal / mm 2 or less.
  • the second welded joint uses a steel plate containing 5% or more and 10% or less of Ni as a base material.
  • a welded joint having a weld metal having excellent strength and cryogenic toughness even during high heat input welding with a heat input of, for example, about 13 kJ / mm or more.
  • FIG. 1 is a diagram illustrating an example of a schematic configuration of an electroslag welding apparatus in the invention of the prior application.
  • FIG. 2 is a view of the electroslag welding apparatus shown in FIG. 1 as viewed from the T direction.
  • FIG. 3A is a diagram showing a correlation among the depth of the molten slag bath, the length of the welding wire, the welding current, and the penetration width in the prior invention.
  • FIG. 3-2 is a diagram showing a correlation among the depth of the molten slag bath, the length of the welding wire, the welding current, and the penetration width in the prior application invention.
  • FIG. 3A is a diagram showing a correlation among the depth of the molten slag bath, the length of the welding wire, the welding current, and the penetration width in the prior application invention.
  • FIG. 3-2 is a diagram showing a correlation among the depth of the molten slag bath, the length of the welding wire, the welding current, and the penetration width in the prior application invention.
  • FIG. 3C is a diagram showing a correlation among the depth of the molten slag bath, the length of the welding wire, the welding current, and the penetration width in the prior invention.
  • FIG. 4 is a diagram illustrating a configuration example of a molten slag bath detector in the invention of the prior application.
  • FIG. 5 is a diagram showing an example of a welding voltage distribution on the surface of the molten slag bath in the prior invention.
  • FIG. 6A is a diagram showing an example of a welding voltage distribution on the surface of the molten slag bath when the welding torch is swung in the plate thickness direction in the prior application invention.
  • FIG. 6-2 is a diagram showing an example of a welding voltage distribution on the surface of the molten slag bath when the welding torch is swung in the plate thickness direction in the prior application invention.
  • FIG. 6-3 is a diagram showing an example of a welding voltage distribution on the surface of the molten slag bath when the welding torch is swung in the plate thickness direction in the prior invention.
  • FIG. 7 is a diagram illustrating a configuration example in which a filter circuit is provided in the molten slag bath detection device illustrated in FIG. 4.
  • FIG. 8 is a diagram showing an example of a welding voltage waveform when there is no filter circuit in the prior application invention.
  • FIG. 9 is a diagram showing an example of a welding voltage waveform through a filter circuit in the prior application invention.
  • FIG. 10 is a diagram for explaining an example of a configuration in which the detection terminal is connected to the welding torch in the prior application invention.
  • FIG. 11 is a diagram showing another configuration example of the molten slag bath detector in the prior application invention.
  • FIG. 12 is a diagram showing another configuration example of the molten slag bath detector in the prior invention.
  • FIG. 13A is a diagram illustrating a configuration example of a flux supply device in the invention of the prior application.
  • FIG. 13-2 is a diagram illustrating a configuration example of a flux supply device in the invention of the prior application.
  • FIG. 14 is a diagram showing another configuration example of the flux supply device in the prior application invention.
  • FIG. 15 is a schematic diagram showing the groove shape of the weld base material used in the examples.
  • the present inventors have examined electroslag welding, which has not been conventionally studied, as a large heat input welding method using a Ni-based welding material. As a result, if a welding material whose components are appropriately adjusted is used, a welded joint having a weld metal with excellent strength and cryogenic toughness even during large heat input welding with a heat input of, for example, about 13 kJ / mm or more can be obtained. As a result, the present invention was completed.
  • electroslag welding is a method in which a welding wire is put in a molten slag bath, and the base material and the welding wire are mainly melted using Joule heat of the molten slag as a heat source for welding.
  • electroslag welding it is possible to perform upright welding of a structure having a large plate thickness in one pass, such as in shipbuilding and industrial machinery fields. Upright welding of the above structure has been performed by electrogas arc welding so far, but there have been problems in the work environment such as arc radiation heat, fume, and sputtering for the welding operator.
  • the shield deteriorates and the mechanical performance of the welded portion deteriorates.
  • patent document 1 also discloses a welded joint manufactured using electrogas arc welding from the same viewpoint as the present invention.
  • a heat input of 11.52 kJ / mm is performed at the maximum, which is still insufficient.
  • the wire of Patent Document 1 has a remarkably large amount of Al in the wire as compared with the present invention, it is considered that the cryogenic toughness is greatly lowered when the high heat input welding as in the present invention is performed.
  • the Al content of the wire is defined as 1.2 to 3.0%, whereas in the present invention, the Al content is 0.13% or less, compared with Patent Document 1. Remarkably few. According to the results of the study by the present inventors, about 0.18% of the wire whose Al amount slightly exceeded the upper limit (0.13%) of the present invention and has a heat input larger than that of Patent Document 1.
  • Cu is an essential component for improving the strength of weld metal like Al, and contains 0.5% or more of Cu for ensuring the strength, whereas in the present invention, Cu is substantially contained. Not contained in.
  • a flux-cored wire is preferably used, and the flux-cored wire is often applied by Cu plating, but Cu derived from Cu plating may be mixed in the wire. It is not in the range of Cu amount specified in Patent Document 1.
  • a predetermined amount of REM is contained in the wire, and the oxygen (O) concentration in the weld metal is remarkably lowered by the deoxidation action of REM, and as a result, the cryogenic toughness is greatly improved.
  • Patent Document 1 there is no disclosure of a configuration in which a predetermined amount of REM is added to the wire and a remarkable improvement effect of the cryogenic toughness by the above configuration.
  • an electroslag welding wire may be simply referred to as a wire.
  • % means “% by mass” unless otherwise specified.
  • the electroslag welding wire according to the present invention can be roughly classified into a first electroslag welding wire and a second electroslag welding wire.
  • the second electroslag welding wire contains a rare earth element as an essential component of the first electroslag welding wire, and the lower limit of the W amount is as high as 4.6% or more, and the upper limit of the Nb amount is high. It is controlled as low as 0.50% or less.
  • the first electroslag welding wire and the second electroslag welding wire may be simply abbreviated as the first and second wires.
  • a flux-cored wire is preferably used.
  • the components of the first and second electroslag welding wires are components included in the flux-cored wire (hoop + flux). Is defined as a ratio to the total mass of the flux-cored wire.
  • the components of the first electroslag welding wire according to the present invention are as follows. That is, C: 0% or more, 0.300% or less, Si: 0% or more, 3.0% or less, Mn: 1.20% or more, 4.2% or less, Ni: 49.0% or more, 70% Hereinafter, Cr: 9% or more, 18.5% or less, Mo: 0% or more, 24.0% or less, Al: 0% or more, 0.13% or less, W: 1.0% or more, 14.0% Fe: 0% or more, 6.0% or less, Mg: 0% or more, 1% or less, Nb: 0% or more, 4.0% or less, N: 0% or more, 0.2% or less, and Zr : Contains 0% or more and 0.05% or less.
  • C 0% or more and 0.300% or less
  • C is an element that contributes to solid solution strengthening and ensuring strength by forming a compound.
  • the C content is preferably 0.005% or more.
  • the amount of C is 0.300% or less. To do.
  • the amount of C is preferably 0.05% or less, and more preferably 0.040% or less.
  • Si 0% or more and 3.0% or less Si is a deoxidizing element and has an effect of improving cryogenic toughness by lowering the oxygen concentration in the weld metal.
  • the Si content is preferably 0.015% or more, and more preferably 0.020% or more.
  • the Si content is 3.0% or less.
  • the amount of Si is preferably 1.5% or less, and more preferably 1.0% or less.
  • Mn 1.20% or more and 4.2% or less Mn is an element contributing to securing strength by solid solution strengthening.
  • the amount of Mn is preferably 1.6% or more, and more preferably 1.8% or more.
  • the amount of Mn is preferably 3.8% or less, and more preferably 3.5% or less.
  • Ni 49.0% or more and 70% or less
  • Ni is an element essential for ensuring low temperature toughness, and the amount of Ni is 49.0% or more.
  • the amount of Ni is preferably 57% or more, and more preferably 58% or more.
  • the Ni content is 70% or less.
  • the amount of Ni is preferably 68% or less, and more preferably 65% or less.
  • Cr 9% or more and 18.5% or less Cr is an element contributing to securing strength by solid solution strengthening and compound formation. If the Cr amount is insufficient, a predetermined strength cannot be obtained, so the Cr amount is set to 9% or more.
  • the amount of Cr is preferably 10% or more, and more preferably 11% or more. However, excessive addition of Cr causes an excessive increase in strength and decreases the cryogenic toughness, so the Cr content is made 18.5% or less.
  • the amount of Cr is preferably 18% or less, and more preferably 16% or less.
  • Mo 0% or more and 24.0% or less
  • Mo is an element that contributes to securing strength by solid solution strengthening and compound formation. If the Mo amount is insufficient, a predetermined strength cannot be obtained. Therefore, the Mo amount is preferably 5% or more, and more preferably 8% or more. However, excessive addition of Mo leads to an increase in the number of compound particles, and the compound particles act as a starting point of void formation during the Charpy test and the cryogenic toughness is lowered. Therefore, the amount of Mo is set to 24.0% or less. The amount of Mo is preferably 20% or less, and more preferably 18% or less.
  • Al 0% or more and 0.13% or less
  • Al is a deoxidizing element, and has an effect of improving cryogenic toughness by lowering the oxygen concentration in the weld metal.
  • the Al content is preferably 0.010% or more.
  • the Al amount is set to 0.13% or less.
  • the Al content is preferably 0.10% or less, and more preferably 0.08% or less.
  • W 1.0% or more and 14.0% or less W is an element that contributes to securing strength by solid solution strengthening. If the added amount of W is insufficient, a predetermined strength cannot be obtained, so the W amount is set to 1.0% or more.
  • the amount of W is preferably 1.2% or more, and more preferably 1.5% or more. However, excessive addition of W causes an excessive increase in strength and decreases the cryogenic toughness, so the W amount is made 14.0% or less.
  • the amount of W is preferably 12% or less, and more preferably 11% or less.
  • Fe 0% or more and 6.0% or less Fe is an element that decreases the strength, and excessive addition of Fe causes a decrease in strength. Therefore, the amount of Fe is set to 6.0% or less.
  • the amount of Fe is preferably 5.5% or less, and more preferably 5.0% or less.
  • Mg 0% or more, 1% or less Mg is a deoxidizing element and has the effect of improving cryogenic toughness by lowering the oxygen concentration in the weld metal.
  • the amount of Mg is preferably 0.01% or more, and more preferably 0.04% or more.
  • the Mg content is made 1% or less.
  • the amount of Mg is preferably 0.7% or less, and more preferably 0.6% or less.
  • Nb 0% or more and 4.0% or less
  • Nb is an element that contributes to strength improvement by forming a solid solution strengthening and a compound.
  • the Nb amount is preferably 0.5% or more, and more preferably 0.7% or more.
  • the Nb content is 4.0% or less.
  • the amount of Nb is preferably 3% or less, and more preferably 2.5% or less.
  • N 0% or more and 0.2% or less N is an element contributing to securing strength by solid solution strengthening. If the N amount is insufficient, a predetermined strength cannot be obtained. Therefore, the N amount is preferably 0.0010% or more, and more preferably 0.0015% or more. However, when N is added excessively, workability is significantly lowered, so 0.2% or less is preferable. The N amount is preferably 0.15% or less, and more preferably 0.10% or less.
  • Zr 0% or more and 0.05% or less
  • Zr is a deoxidizing element and has an effect of improving cryogenic toughness by lowering the oxygen concentration in the weld metal.
  • the Zr content is preferably 0.005% or more, and more preferably 0.010% or more.
  • the amount of Zr is preferably 0.015% or less, and more preferably 0.012% or less.
  • the composition of the first electroslag welding wire according to the present invention is as described above, and the balance is inevitable impurities.
  • inevitable impurities include P, S, As, Sb, Sn, and Bi.
  • the first electroslag welding wire of the present invention can contain the following selective components.
  • Rare earth element more than 0%, 1.0% or less
  • Rare earth metal is an element having a strong deoxidizing action and contributes to improvement of cryogenic toughness. Specifically, the oxygen concentration in the weld metal is remarkably lowered by the deoxidation action of REM, and the number of oxide particles that adversely affect the improvement of the cryogenic toughness is reduced, so that the cryogenic toughness is remarkably improved.
  • the REM amount is preferably 0.01% or more, more preferably 0.1% or more, and further preferably 0.2% or more.
  • the amount of REM is preferably 1.0% or less.
  • the amount of REM is preferably 0.8% or less, and more preferably 0.7% or less.
  • REM means all elements having atomic numbers 57 to 71.
  • REM may contain the said element independently, and may contain 2 or more types.
  • the REM amount is the content when it is contained alone, and the total amount when two or more elements are contained.
  • elements such as O, F, Na, K, Ca, Ti, Cu, Ta, Co, and B may be added as selective components as long as the action of the present invention is not inhibited.
  • the total content of these elements is preferably about 0 to 3%.
  • the strength exceeds 600 MPa even during high heat input welding where the heat input is, for example, about 13 kJ / mm or more.
  • the heat input is, for example, about 13 kJ / mm or more.
  • the second electroslag welding wire according to the present invention will be described. Further examination by the present inventors revealed that the second electroslag welding wire includes a rare earth element as an essential element, the Nb content is further reduced, and the W content is further increased. If an electroslag welding wire is used, the strength is higher than 700 MPa and the absorbed energy IV is 60 J or more, which is excellent in cryogenic toughness even when the heat input is large heat input welding of, for example, about 13 kJ / mm or more. It became clear that a weld metal can be provided. The reason for this is that the number density of intermetallic compounds (and oxides) in the weld metal could be reduced by using the second wire.
  • the Charpy impact test fracture surface of the Ni-base weld metal exhibits a 100% ductile fracture surface, and intermetallic compounds and oxide particles are observed at the bottom of the dimple (sometimes referred to as a dent pattern).
  • these particles act as dimple starting points, ductile fracture during the Charpy impact test is promoted, and the absorbed energy decreases. Therefore, in order to increase the absorbed energy and improve the cryogenic toughness, it is effective to reduce the number (number density) of particles such as intermetallic compounds contained in the Ni-base weld metal.
  • the intermetallic compound contains Nb as a main component.
  • the metal in the weld metal is used. It was found that the intermetallic compounds can be reduced. Moreover, since rare earth elements have a strong deoxidizing action, the use of wires containing rare earth elements can reduce oxides in the weld metal.
  • W is not a main component of the intermetallic compound, but as described in the first wire column, it is an element that contributes to strength improvement by solid solution strengthening, and when a wire containing 4.6% or more of W is used. The strength of the weld metal is improved. Therefore, by using the second wire in which the contents of Nb, rare earth element, and W are appropriately controlled, a weld metal having excellent strength and excellent cryogenic toughness can be obtained.
  • the rare earth element is an element having a strong deoxidizing action, and the oxygen concentration in the weld metal is lowered, which contributes to the reduction in the number density of oxides which adversely affects the improvement of the cryogenic toughness. Therefore, in the second electroslag welding wire, the rare earth element which is a selective component in the first electroslag welding wire is contained as an essential component in the range of more than 0% and 1.0% or less. A preferable range of the rare earth element amount is the same as that of the first electroslag welding wire.
  • Nb is 0.50% or less in the second electroslag welding wire in order to reduce the number density of intermetallic compounds that adversely affect the improvement of cryogenic toughness.
  • the Nb amount is preferably 0.20% or less, more preferably 0.15% or less.
  • Nb is preferably reduced as much as possible, and most preferably 0%.
  • W is an element that contributes to securing the strength by solid solution strengthening, and in order to compensate for the strength decrease due to the reduction in the amount of Nb, it is necessary to contain 4.6% or more of W.
  • the W amount is preferably 5.0% or more, and more preferably 5.3% or more. However, if the amount of W is excessively increased, the strength is excessively increased and the cryogenic toughness is lowered. Therefore, the amount of W is set to 14.0% or less.
  • the amount of W is preferably 12% or less, and more preferably 11% or less.
  • the strength of 700 MPa and the absorbed energy IV are 60 J or more even when the heat input is large heat input welding of, for example, about 13 kJ / mm or more.
  • a weld joint having a weld metal having excellent cryogenic toughness can be provided.
  • the surface of the electroslag welding wire of the present invention is preferably plated with Cu in order to enhance the electrical conductivity.
  • the amount of Cu in the entire electroslag welding wire is preferably 0.005% or more, and more preferably 0.01% or more.
  • the amount of Cu in the entire electroslag welding wire is preferably 0.25% or less, and more preferably 0.20% or less.
  • the wire for electroslag welding of the present invention includes both a solid wire and a flux-cored wire.
  • Flux-cored wires are classified into slag-based flux-cored wires that do not include a slag-based forming agent and do not include a slag-based forming agent and that contain a metal component and a slag-based forming agent.
  • the flux-cored wire is one in which the outer shell (hoop) is filled with the flux, the component design is easy, and the welding speed and welding efficiency are excellent.
  • a flux-cored wire is generally used.
  • composition of the hoop is not particularly limited as long as the composition of the flux-cored welding wire is in the above range, and may be any of mild steel, stainless steel, or nickel-base alloy. However, stainless steel and nickel-based alloys are preferred from the viewpoint of imparting corrosion resistance to the flux-cored welding wire itself and preventing rust.
  • the above-mentioned flux is roughly classified into an oxide type and a metal type, but a metal type flux is preferably used in consideration of oxygen concentration reduction in the weld metal.
  • the metal-based flux cored wire is sometimes called a metal cored wire.
  • the composition of the flux is not particularly limited as long as the composition of the flux-cored welding wire is in the above range.
  • the flux filling rate of the flux-cored wire is preferably about 5 to 33%. Outside these ranges, workability deteriorates.
  • the flux filling rate defines the filling rate of the flux filled in the hoop as a ratio with respect to the total mass of the wire (hoop + flux).
  • the flux-cored wire preferably contains a slag-forming agent in the flux.
  • a slag-based (oxide-based) flux-cored wire mainly composed of an oxide-based component is more preferred.
  • examples of the slag forming agent include TiO 2 , SiO 2 , ZrO 2 , and Al 2 O 3 .
  • the content of the slag forming agent with respect to the total mass of the slag-based (oxide-based) flux-cored wire is preferably 0.5% or more, and preferably 1% or more. Is more preferable, and it is still more preferable that it is 3% or more.
  • the content of the slag forming agent with respect to the total mass of the flux-cored wire is preferably 20% or less. More preferably, it is 15% or less, More preferably, it is 13% or less.
  • the manufacturing method of the flux-cored welding wire is not particularly limited, and may be manufactured by a general process.
  • a hoop of mild steel or stainless steel is molded into a U-shape, and the U-shaped molded hoop is filled with flux, then molded into a cylindrical mold filled with the flux, and drawn to the desired diameter.
  • the input flux used for electroslag welding is common to both the first electroslag welding wire and the second electroslag welding wire.
  • a flux is additionally charged in order to compensate for the molten slag that decreases as welding progresses. This flux is referred to as flux in this specification.
  • the molten metal is cooled to become a weld metal, and part of the molten slag bath becomes a molten slag layer, but as the welding proceeds, the molten slag layer is cooled to become solidified slag Molten slag is consumed. In order to compensate for this decrease in the molten slag bath, an input flux is used.
  • the input flux is roughly classified into a melt type flux and a bond type (fired type) flux.
  • the melt-type flux is produced by melting and pulverizing various raw materials in an electric furnace or the like.
  • the calcining flux is produced by combining various raw materials with a binder such as alkali silicate, granulating, and calcining.
  • the fired flux has problems such as the appearance of the bead and the deterioration of the bead shape, while the melted flux is preferably used because it has less segregation.
  • composition of the input flux used in the present invention is as follows.
  • SiO 2 15% or more, 50% or less SiO 2 is an acidic component, and is an effective component for adjusting the viscosity and melting point of molten slag.
  • the amount of SiO 2 is preferably 22% or more, and more preferably 25% or more.
  • the amount of SiO 2 is preferably 45% or less, and more preferably 40% or less.
  • CaO 10% or more and 40% or less CaO is a basic component, and is an effective component for adjusting the viscosity and melting point of molten slag and has a high effect of reducing the oxygen content of the weld metal.
  • the amount of CaO is set to 10% or more.
  • the CaO amount is preferably 15% or more, and more preferably 17% or more.
  • the CaO amount is set to 40% or less.
  • the amount of CaO is preferably 35% or less, and more preferably 32% or less.
  • CaF 2 5% or more, 15% or less CaF 2 is also a basic component, and is an effective component for adjusting the viscosity and melting point of molten slag.
  • the amount of CaF 2 is preferably 8.5% or more, and more preferably 9% or more.
  • the amount of CaF 2 is preferably 13% or less, and more preferably 12% or less.
  • MgO 0% or more and 12% or less MgO is also a basic component, and is an effective component for adjusting the viscosity and melting point of molten slag. When it does not contain MgO, the viscosity of the molten slag is insufficient, resulting in a convex bead and the bead appearance is deteriorated.
  • the amount of MgO is preferably 1% or more, and more preferably 3% or more. However, if the MgO amount exceeds 12%, the viscosity of the molten slag increases and poor penetration occurs, so the MgO amount is set to 12% or less.
  • the MgO amount is preferably 8% or less.
  • Al 2 O 3 0% or more and 14% or less
  • Al 2 O 3 is also a basic component, and is an effective component for adjusting the viscosity and melting point of molten slag. When it does not contain Al 2 O 3 , the viscosity of the molten slag is insufficient, resulting in a convex bead and the bead appearance is deteriorated.
  • the amount of Al 2 O 3 is preferably 1% or more. On the other hand, when the amount of Al 2 O 3 exceeds 14%, the viscosity of the molten slag becomes high and poor penetration occurs.
  • the amount of Al 2 O 3 is preferably 5% or less.
  • MnO 0% or more and 25% or less MnO is an effective component for adjusting the viscosity and melting point of molten slag.
  • MnO is not contained, the viscosity of the molten slag is insufficient, resulting in a convex bead and the bead appearance is deteriorated.
  • the amount of MnO is preferably 3% or more, and more preferably 10% or more.
  • the amount of MnO exceeds 25%, the slag peelability is lowered and the bead appearance is deteriorated.
  • the amount of MnO is preferably 22% or less.
  • TiO 2 0% or more and 10% or less TiO 2 is an effective component for adjusting the melting point of the molten slag.
  • the amount of TiO 2 is preferably 1% or more, and more preferably 3% or more.
  • the amount of TiO 2 is set to 10% or less.
  • the amount of TiO 2 is preferably 8% or less.
  • ZrO 2 0% or more and 10% or less ZrO 2 is an effective component for adjusting the melting point of the molten slag.
  • the amount of ZrO 2 is preferably 1% or more, and more preferably 3% or more. However, if the amount of ZrO 2 exceeds 10%, the viscosity increases rapidly in the vicinity of the melting point, so that slag entrainment is likely to occur.
  • the amount of ZrO 2 is preferably 8% or less.
  • composition of the charged flux according to the present invention is as described above, and the balance is FeO.
  • the first welded joint of the present invention is produced by electroslag welding using the first electroslag welding wire and the charged flux.
  • the second welded joint of the present invention is produced by electroslag welding using the second electroslag welding wire and the charged flux.
  • the composition of the weld metal in the first weld joint is as follows. In the following description, the operation of the component overlapping with the first electrogas welding wire described above is omitted to avoid duplication of description, and only a preferable range is described.
  • the first electroslag welding wire described above and the weld metal in the first welded joint have different compositions, and Al, Mg, Zr, and REM contained in the first wire are in the process of welding. In most cases, oxides and the like are formed to escape as slag, so that the content in the weld metal is extremely low.
  • Si 0% to 3.0% Preferred upper limit: 0.5%, more preferred upper limit: 0.30% Preferred lower limit: 0.08%, more preferred lower limit: 0.1%
  • Mn 1.0% or more, 4.00% or less Preferred upper limit: 3.5%, more preferred upper limit: 3.0% Preferred lower limit: 1.6%, more preferred lower limit: 1.8%
  • Mo 0% or more, 20.0% or less Preferred upper limit: 19%, more preferred upper limit: 15% Preferred lower limit: 8%, more preferred lower limit: 8.5%
  • W 0.50% or more, 13.0% or less Preferred upper limit: 12%, more preferred upper limit: 11% Preferred lower limit: 1%, more preferred lower limit: 1.2%
  • Fe 0% or more, 32% or less Preferred upper limit: 30%, more preferred upper limit: 28% Preferred lower limit: 4%, more preferred lower limit: 10%
  • Nb 0% or more, 2.5% or less Preferred upper limit: 2.2%, more preferred upper limit: 2.0% Preferred lower limit: 0.1%, more preferred lower limit: 0.3%
  • N 0.01% or more, 0.11% or less Preferred upper limit: 0.08%, more preferred upper limit: 0.07% Preferred lower limit: 0.02%, more preferred lower limit: 0.025%
  • the amount of O is set to 0.055% or less. Preferably it is 0.05% or less, More preferably, it is 0.045% or less.
  • the amount of O is preferably 0.025% or less, more preferably 0.022% or less, and further preferably 0.020% or less.
  • the basic composition of the weld metal according to the present invention is as described above, and the balance is inevitable impurities.
  • unavoidable impurities include P, S, As, Sb, Sn, Bi, and the like.
  • the weld metal of the present invention may contain, for example, Al, Mg, Ca, Ti, Cu, Zr, Ta, Co, B, REM, etc. as long as the action of the present invention is not hindered.
  • the total content of these elements is preferably about 0 to 10%.
  • the weld metal in the second welded joint contains W: 4.50% to 13.0%, Nb: 0% to 0.30%, O: 0% to 0.025%. Therefore, the component composition other than W, Nb, and O is the same as the component composition of the weld metal in the first weld joint described above.
  • W 4.50% to 13.0%
  • Nb 0% to 0.30%
  • O 0% to 0.025%. Therefore, the component composition other than W, Nb, and O is the same as the component composition of the weld metal in the first weld joint described above.
  • W 4.50% or more, 13.0% or less Preferred upper limit: 12%, more preferred upper limit: 11% Preferred lower limit: 4.8%, more preferred lower limit: 5.0%
  • Nb 0% or more, 0.30% or less Preferred upper limit: 0.12%, more preferred upper limit: 0.05%
  • the intermetallic compound in the weld metal is reduced to 3500 pieces / mm 2 or less, and as a result, the cryogenic toughness is improved.
  • the number density of the intermetallic compound is preferably 3000 pieces / mm 2 or less, more preferably 2500 pieces / mm 2 or less.
  • the intermetallic compound means a compound in which two or more kinds of metals are bonded and contains Nb or Mo as a main component.
  • the main component means a metal having the largest content among metals constituting the intermetallic compound.
  • the intermetallic compound includes Ni, but Ni is not a main component and contains more Nb or Mo than Ni.
  • the intermetallic compound may contain W, Cr, Fe or the like derived from a wire component in addition to the Nb, Mo, and Ni.
  • the intermetallic compound may further contain a nonmetal such as nitrogen or oxygen. Note that the above-described Al oxide and REM oxide do not correspond to intermetallic compounds.
  • the number density of the intermetallic compound was determined by photographing a cross section perpendicular to the welding direction of the weld metal using a field emission scanning electron microscope, and performing visual image analysis without using image analysis software. All of those indicated by the contrast are extracted as intermetallic compounds, and the number of these is calculated.
  • the intermetallic compound observed with a white contrast is an intermetallic compound containing Mo as a main component, for example, 42.7% Mo-11.2% Cr-13.4% Fe-2.6% W. -30.1% Ni is exemplified.
  • an intermetallic compound observed with a gray contrast is an intermetallic compound containing Nb as a main component, such as 93.7% Nb-2.5% Cr-1.2% Fe-2.6% Ni. Is exemplified.
  • the base material used for the production of the first and second welded joints is preferably a steel plate containing 5 to 10% Ni by mass. If the Ni content is less than 5%, the cryogenic toughness cannot be secured.
  • the amount of Ni is more preferably 5.2% or more, and still more preferably 6.5% or more. However, if the Ni content exceeds 10%, the steel material cost increases, so the Ni content is preferably 10% or less.
  • the amount of Ni is more preferably 9.6% or less, still more preferably 9.4% or less.
  • the composition other than Ni is not particularly limited.
  • preferable chemical components are as follows.
  • the balance of the base material is iron and inevitable impurities.
  • Cu Over 0%, 1.0% or less
  • Cr Over 0%, 1.5% or less
  • Mo Over 0%, 0.6% or less
  • electroslag welding preferably used in the present invention will be described.
  • the electrogas welding method and electrogas welding apparatus hereinafter sometimes referred to as the prior invention
  • welding is performed while maintaining the slag bath depth at a predetermined depth, ensuring sound penetration and mechanically welding metal. Property deterioration can be prevented.
  • the flux is supplied so that the length of the welding wire from the tip of the contact tip to the slag bath becomes a predetermined length, and the welding current has a predetermined relationship with respect to the reference current value.
  • This is an electroslag welding method in which welding is performed while adjusting the traveling speed of a traveling carriage equipped with a welding torch and a sliding pad so that the slag bath depth is maintained at a predetermined depth.
  • the invention of the prior application includes a welding torch having a contact tip for supplying power to a welding wire, a sliding contact, a traveling carriage equipped with a welding torch and a sliding application, a traveling carriage controller, and a slag bath detection
  • a slag bath detector that detects a slag bath when the slag bath rises to a position of a predetermined length from the tip of the contact tip, and a flux slag detector.
  • the supply control device stops supplying the flux so that the length of the welding wire from the tip of the contact tip to the slag bath becomes a predetermined length.
  • the flux supply device is controlled so as to supply the flux, and the traveling carriage control device responds to the wire feed speed.
  • An electroslag welding apparatus that controls the traveling speed of the traveling carriage so that the welding current has a predetermined relationship with a predetermined reference current value, and performs welding while maintaining the slag bath depth at a predetermined depth. is there. Further, as a predetermined relationship, the traveling carriage control device increases the traveling speed of the traveling carriage when the welding current becomes larger than the reference current value, and decreases the traveling speed of the traveling carriage when the welding current becomes smaller than the reference current value. It can be characterized by controlling to.
  • the slag bath detector can detect the slag bath by detecting the welding voltage when the detection terminal of the slag bath detector comes into contact with the slag bath.
  • the slag bath detector processes the detected welding voltage with a filter having a time constant of 1/2 to 2 times the weaving cycle, and determines whether or not a slag bath has been detected. can do.
  • the detection terminal may be connected to a welding torch.
  • the slag bath detector applies a voltage from a DC power supply to the detection terminal of the slag bath detector through a resistor, and when the detection terminal comes into contact with the slag bath, the slag bath detector detects the slag bath by reducing the voltage of the detection terminal. Can be characterized.
  • a slag bath detector has a photo sensor, can detect the light of a slag bath, and can be characterized by detecting a slag bath.
  • the flux supply device may be characterized in that the flux is supplied by a valve driven by a solenoid. Further, the flux supply device may be characterized in that the flux is supplied by a screw driven by a motor.
  • FIG. 1 is a diagram illustrating an example of a schematic configuration of an electroslag welding apparatus 100 according to the present embodiment.
  • the direction indicated by arrow Z is the upward direction in the vertical direction (up and down direction)
  • the direction indicated by arrow X is the right direction in the plate thickness direction (left and right direction)
  • the surface from the back surface is perpendicular to the paper surface.
  • the direction toward is the front side of the horizontal horizontal direction Y.
  • 2 is a view of the electroslag welding apparatus 100 shown in FIG. That is, FIG. 2 is a view of the electroslag welding apparatus 100 as viewed from above.
  • a welding torch 4 a flux supply device 14, a flux supply control device 15, a traveling carriage 16, a traveling carriage control device 17, and the like which will be described later are omitted.
  • the “flux” in the prior application invention is the input flux in the present invention.
  • the electroslag welding apparatus 100 includes a fixed copper plating 1 and a sliding copper plating 2, a welding torch 4, a molten slag bath detector 13, a flux A supply device 14, a flux supply control device 15, a traveling cart 16, and a traveling cart control device 17 are provided.
  • a fixed copper brazing metal 1 is disposed on the back side of the groove, and a sliding copper brazing metal 2 is disposed on the front side of the groove.
  • a backing material made of heat-resistant ceramics may be used in place of the back-side copper plating 1.
  • the front-side sliding copper plating 2 is a copper plating that slides in the vertical direction and is water-cooled. However, instead of copper, the sliding copper plating 2 may be used.
  • the welding torch 4 feeds the welding wire 6 with a welding current 8 supplied from a welding power source (not shown) to weld the welding base material 3.
  • the welding torch 4 has a contact tip 5 that guides the welding wire 6 and supplies a welding current 8 to the welding wire 6.
  • the molten slag bath detector 13 detects the position of the molten slag bath 7.
  • the flux supply device 14 throws the flux 12 into the molten slag bath 7. Since the flux 12 is melted to form molten slag, the amount of the molten slag bath 7 is increased by introducing the flux 12.
  • the flux supply control device 15 controls the operation of the flux supply device 14 and adjusts the amount of the flux 12 put into the molten slag bath 7.
  • the traveling cart 16 is equipped with a sliding copper brazing metal 2, a welding torch 4, a molten slag bath detector 13, a flux supply device 14, a flux supply control device 15, and a traveling cart control device 17, and is directed upward (arrows). move in the direction indicated by z).
  • the traveling carriage 16 moves together with the sliding copper plating 2, the welding torch 4, the molten slag bath detector 13, the flux supply device 14, the flux supply control device 15, and the traveling carriage control device 17. The relative positional relationship between them does not change. As the traveling carriage 16 rises, welding is performed along the upward direction.
  • the traveling cart control device 17 controls the operation of the traveling cart 16 by increasing or decreasing the traveling speed of the traveling cart 16.
  • the welding wire 6 is fed from the contact tip 5 of the welding torch 4 into the groove surrounded by the welding base material 3, the copper plating 1, and the sliding copper plating 2, and is formed in the groove.
  • the welding current 8 flows from the welding wire 6 through the molten slag bath 7 to the molten metal 9. At this time, Joule heat is generated by the welding current 8 flowing through the molten slag bath 7 and the resistance of the molten slag bath 7, and welding proceeds while melting the welding wire 6 and the welding base material 3.
  • the molten metal 9 is cooled to become the weld metal 10, and a part of the molten slag bath 7 is between the copper metal 1 and the weld metal 10 and between the sliding copper metal 2 and the weld metal.
  • the molten slag layer is formed between the molten slag layer 10 and the molten slag layer is cooled to become the solidified slag 11.
  • the molten slag bath 7 becomes a solidified slag 11 that partially covers the bead surface, so that the molten slag bath 7 is consumed as the welding progresses, and the depth Ls of the molten slag bath 7 decreases.
  • the amount of solidified slag 11 covering the bead surface varies depending on the bead width and the width of the weld groove. Further, the amount of the solidified slag 11 varies depending on the adhesion degree of the copper plating 1 and the sliding copper plating 2 and the cooling state. Therefore, the amount of the solidified slag 11 is not constant, and the amount of the flux 12 to be input needs to be changed in order to keep the depth Ls of the molten slag bath 7 constant. However, since the depth Ls of the molten slag bath 7 is not known, the depth Ls of the molten slag bath 7 varies when the amount of the flux 12 is not appropriate.
  • control is performed to keep the depth Ls of the molten slag bath 7 constant.
  • Constant is not limited to the case where the depth Ls of the molten slag bath 7 is always one value, and the depth Ls of the molten slag bath 7 shows a value within a certain range in consideration of errors. Is also included. That is, the depth Ls of the molten slag bath 7 is controlled so as to maintain a predetermined depth.
  • the first requirement for making the depth Ls of the molten slag bath 7 constant is that the welding wire length Ld from the tip of the contact tip 5 to the upper surface of the molten slag bath 7 (hereinafter referred to as dry extension Ld). Control is made to have a predetermined length.
  • the second requirement for making the depth Ls of the molten slag bath 7 constant is the relationship in which the welding current 8 is predetermined with respect to the reference current value determined according to the wire feed speed, that is, the reference
  • the traveling carriage control device 17 controls the traveling speed of the traveling carriage 16 so that the current value and the welding current 8 are equal.
  • the flux supply device 14 When it is in contact with the upper surface of the slag bath 7, the flux supply device 14 is controlled so as to stop the introduction of the flux 12. In this way, the flux supply device 14 inputs the flux 12 so that the molten slag bath detector 13 detects the molten slag bath 7, and adjusts the depth Ls of the molten slag bath 7.
  • the welding torch 4, the sliding copper pad 2, and the molten slag bath detector 13 are all mounted on the traveling carriage 16, and even if the traveling carriage 16 moves, the relative positional relationship does not change. Therefore, the distance between the tip of the contact tip 5 and the molten slag bath detector 13 does not change.
  • the molten slag bath detector 13 rises to a position of a predetermined length from the tip of the contact tip 5 (that is, the position of the molten slag bath detector 13)
  • the molten slag bath detector 13 is connected to the molten slag bath 7 Is detected.
  • the flux supply control device 15 controls the amount of the flux 12 so that the molten slag bath detector 13 detects the molten slag bath 7, so that the distance from the tip of the contact tip 5 to the upper surface of the molten slag bath 7, that is, the dry
  • the extension Ld is controlled to have a predetermined length.
  • FIGS. 3A to 3C are diagrams showing the correlation among the depth of the molten slag bath 7, the length of the welding wire 6, the welding current 8, and the penetration width.
  • the depth Ls of the molten slag bath 7 changes as Ls1> Ls2> Ls3 in a state where the dry extension Ld is controlled to a predetermined length.
  • wet extension Lw the length in which the welding wire 6 is immersed in the molten slag bath 7
  • Lw3 the penetration width Lm is Lm1 ⁇ Lm2. ⁇ Lm3 changes.
  • Equation 1 K1 to K4 are constants determined by the diameter, structure and material of the welding wire 6.
  • Formula 1 is expressed as the following Formula 2.
  • the welding current Iw changes in inverse proportion to the wet extension Lw, and when the wet extension Lw increases, the welding current Iw decreases.
  • the welding current Iw at the appropriate depth Ls2 of the molten slag bath 7 is set as the reference current value Iw2. Keep it.
  • the traveling carriage control device 17 increases the traveling speed of the traveling carriage 16.
  • the traveling speed of the traveling carriage 16 When the traveling speed of the traveling carriage 16 is increased, the wire protrusion length (Ld + Lw) is increased, and the welding current Iw is decreased to the reference current value Iw2. On the other hand, when the welding current Iw becomes smaller than the reference current value Iw2, it is determined that the depth Ls of the molten slag bath 7 is larger than Ls2 and the penetration width Lm is smaller than Lm2, and the traveling vehicle controller 17 Decreases the traveling speed of the traveling carriage 16.
  • the depth Ls of the molten slag bath 7 is adjusted to Ls2 as a predetermined depth, and welding is started. Further, the traveling speed of the traveling carriage 16 is determined in accordance with the magnitude of the welding current Iw. As the welding progresses, a part of the molten slag bath 7 becomes the solidified slag 11 and is consumed, so the depth Ls of the molten slag bath 7 decreases.
  • the flux supply control device 15 supplies the flux 12 so that the flux 12 is introduced. The device 14 is controlled.
  • the flux supply device 14 is controlled so as to stop the charging of the flux 12.
  • the distance from the tip of the contact tip 5 to the upper surface of the molten slag bath 7, that is, the dry extension Ld is controlled to be a predetermined length.
  • the traveling vehicle controller 17 controls the traveling speed of the traveling vehicle 16 so that the welding current Iw becomes equal to the reference current value Iw2, so that the depth Ls of the molten slag bath 7 is an appropriate depth Ls2.
  • an appropriate penetration width Lm2 can be obtained.
  • a weld metal having stable mechanical properties can be obtained.
  • the dry extension Ld is controlled to a predetermined length. Is done.
  • welding current Iw when the optimum penetration width Lm2 is obtained is determined as the reference current value Iw2 of the wire feed speed Vw.
  • the wire feed speed Vw is changed to obtain the optimum reference current value Iw2 in the same manner.
  • the reference current value Iw2 can be obtained as a function of the wire feed speed Vw.
  • This function (function indicating the relationship between the reference current value Iw2 and the wire feed speed Vw) is stored in the traveling carriage control device 17, and the output of the wire feed speed setter or the detected value of the wire feed speed is obtained. If the control is performed to set the reference current value Iw2, the reference current value Iw2 is set according to the wire feed speed Vw.
  • the reference current value Iw2 is automatically changed according to the changed wire feed speed Vw. Then, welding can be automatically performed with the wet extension Lw (or the depth Ls of the molten slag bath 7) that automatically obtains the optimum penetration.
  • the reference current value Iw2 corresponding to the wire feed speed Vw can be obtained for the various welding wires 6 as well.
  • the reference current value Iw2 is obtained as a function of the wire feed speed Vw for each type of the welding wire 6 such as the diameter, structure, and material of the welding wire 6, for example.
  • the function of the wire feed speed Vw is determined according to the type of the welding wire 6, and the reference current value Iw2 is obtained by a function for each type of the welding wire 6.
  • FIG. 4 is a diagram illustrating a configuration example of the molten slag bath detector 13.
  • the molten slag bath detector 13 includes a detection terminal 18, a differential amplifier 19, a contact determination reference signal setting device 20, and a comparator 21, and the detection terminal 18 is conductive. It is made of copper, which is a conductive metal, and is generally water-cooled. When the detection terminal 18 contacts the molten slag bath 7, it detects a part of the welding voltage.
  • the differential amplifier 19 receives the voltage of the detection terminal 18 and the voltage of the sliding copper pad 2 and outputs the difference between the two voltages. Since the sliding copper plating 2 is in contact with the weld base material 3, the voltage of the sliding copper plating 2 is the base material voltage.
  • the contact determination reference signal setting unit 20 outputs a voltage that is about half of the voltage detected when the detection terminal 18 contacts the molten slag bath 7 as a reference signal.
  • FIG. 5 shows an example of the welding voltage distribution on the surface of the molten slag bath 7, but the detection terminal 18 normally detects a welding voltage of about 6 volts (unit of voltage: V). Half of the voltage is set to about 3V.
  • V unit of voltage
  • the comparator 21 receives the output signal of the differential amplifier 19 and the reference signal of the contact determination reference signal setting unit 20, and the output signal of the differential amplifier 19 is larger than the reference signal of the contact determination reference signal setting unit 20. At this time, a signal determined that the detection terminal 18 and the molten slag bath 7 are in contact with each other is created.
  • the generated signal is sent to the flux supply control device 15, and the flux 12 is supplied and stopped by the flux supply device 14, and the upper surface of the molten slag bath 7 is positioned at a predetermined length from the tip of the contact tip 5.
  • the dry extension Ld is maintained at a predetermined length.
  • FIGS. 6A to 6C are diagrams showing an example of the welding voltage distribution on the surface of the molten slag bath 7 when the welding torch 4 is swung in the plate thickness direction.
  • the welding voltage distribution shown in FIG. 6B is obtained when the welding wire 6 is in the center of the plate thickness, and the welding voltage detected by the detection terminal 18 is about 6V. Therefore, when the welding torch 4 is swung in order to make the penetration in the plate thickness direction uniform and the welding torch 4 is in the vicinity of the copper plating 1, it is arranged in the vicinity of the sliding copper plating 2.
  • the voltage detected by the detection terminal 18 is reduced to about 3V, which is half of 6V.
  • the welding voltage detected by the detection terminal 18 becomes as high as about 12V.
  • the molten slag bath detection device 13 has a filter circuit 22 installed after the differential amplifier 19 and has detected the molten slag bath 7 based on the welding voltage processed by the filter circuit 22. It may be determined whether or not.
  • FIG. 7 is a diagram illustrating a configuration example in which a filter circuit 22 is provided in the molten slag bath detection device 13 illustrated in FIG. 4.
  • the filter circuit 22 is preferably a filter circuit 22 having a time constant that is about the oscillation period of the welding torch 4, that is, about 1/2 to twice the period.
  • FIG. 8 is a diagram illustrating an example of a welding voltage waveform when the filter circuit 22 is not provided
  • FIG. 9 is a diagram illustrating an example of a welding voltage waveform when the filter circuit 22 is interposed.
  • the waveform shown in FIG. 8 is a welding voltage waveform detected without a filter having a sampling period of 250 ms.
  • the waveform shown in FIG. 9 is a welding voltage waveform of a moving average of 27 data, that is, a moving average of a section of 6.75 seconds (6750 ms).
  • one scale on the vertical axis indicates 3.000 V
  • one scale on the horizontal axis indicates 1 second (sec).
  • the oscillation cycle of the welding torch 4 is 8 seconds, so that the welding voltage waveform is equivalent to the oscillation cycle of the welding torch 4.
  • FIG. 10 is a diagram for explaining an example of a configuration in which the detection terminal 18 is connected to the welding torch 4.
  • the configurations of the differential amplifier 19, the contact determination reference signal setting unit 20, the comparator 21, and the filter circuit 22 are the same as those shown in FIG. 7, but the detection terminal 18 is connected to the welding torch 4. It is connected.
  • the detection terminal 18 also swings with the welding torch 4, so that the detection terminal 18 is always located in the vicinity of the welding wire 6. Therefore, referring to the welding voltage distribution shown in FIGS.
  • the molten slag bath detector 13 includes a detection terminal 18, a DC power supply 23, a resistor 24, a differential amplifier 19, a filter circuit 22, a contact determination reference signal setting device 20, and a comparator 21.
  • the DC power source 23 is a power source of about 100 V to 200 V, for example, and the output of the DC power source 23 is connected to the detection terminal 18 through a resistor 24.
  • the value of the resistor 24 is, for example, 20 k ⁇ to 500 k ⁇ .
  • the voltage of the detection terminal 18 when the detection terminal 18 and the molten slag bath 7 are not in contact is 100 V to 200 V, whereas the detection terminal 18 and the molten slag bath 7 are in contact with each other.
  • the voltage of the detection terminal 18 is 3V to 12V, and since the difference between the two voltages is large, a reliable operation is expected.
  • the molten slag bath detector 13 is a photosensor that receives light emitted from the surface of the molten slag bath 7 and the light amount of the light receiver 25 is at a certain level.
  • a light reception determination unit 26 for determining when The determination level of the light amount is determined in advance, and the angle of the light receiver 25 is adjusted so that the dry extension Ld has a target predetermined length. The determination result is sent to the flux supply control device 15, and the flux 12 is supplied so that the dry extension Ld is constant.
  • the light reception determination unit 26 determines that the light amount of the light receiver 25 has reached a certain level, the molten slag bath 7 has risen from the tip of the contact tip 5 to a position of a predetermined length. . In this case, since the dry extension Ld is equal to or shorter than a predetermined length, the flux supply control device 15 performs control so as to stop the introduction of the flux 12.
  • the light reception determining unit 26 determines that the light amount of the light receiving unit 25 has not reached a certain level, the molten slag bath 7 has not risen from the tip of the contact tip 5 to a position of a predetermined length. . In this case, the dry extension Ld is larger than a predetermined length, and the flux supply control device 15 performs control so that the flux 12 is introduced.
  • FIGS. 13A and 13B are diagrams illustrating a configuration example of the flux supply device 14.
  • the solenoid 30 reciprocates as indicated by an arrow 28, so that the valve 30 is indicated as indicated by an arrow 31 around the rotating shaft 29. It rotates and the flux supply nozzle 32 opens and closes.
  • the flux 12 of the flux hopper 33 is supplied to the molten slag bath 7.
  • FIG. 13A shows a state in which the flux supply nozzle 32 is closed.
  • FIG. 13-2 shows a state in which the flux supply nozzle 32 is open.
  • the flux 12 of the flux hopper 33 is transferred to the molten slag bath 7 via the flux supply nozzle 32. Supplied.
  • FIG. 14 is a diagram illustrating another configuration example of the flux supply device 14.
  • the flux 12 is pushed out from the flux hopper 33 by the rotation of the screw 35 driven by the motor 34, and supplied to the molten slag bath 7 through a path not shown. Is done.
  • Example 1 In this example, an experiment was performed using the first wire. Specifically, using the electroslag welding apparatus of FIG. 1 described in the invention of the prior application, using the 9% Ni steel plate (manufactured by Kobe Steel) as the base material and the welding materials shown in Tables 1 to 4, the following welding conditions The weld metals shown in Table 5-1 and Table 5-2 were prepared. The wire numbers in Table 3-1 and Table 3-2 below. 1 to 45 correspond to the first electroslag welding wire. In addition, the experiment Nos. In Table 5-1 and Table 5-2 below. 1 to 45 correspond to the weld metal in the first weld joint. In this example, a Si—REM—Ca—Fe alloy containing 12 to 15% Ce and 4 to 8% La was used for REM addition.
  • the flux-cored wires of Table 3-1 or Table 3-2 in which the respective hoops described in Table 1 are filled with the respective fluxes described in Table 2-1 or Table 2-2 (the balance). Is an unavoidable impurity (wire diameter 1.6 mm), and the input flux shown in Table 4 (the balance is FeO). All the flux-cored wires are not plated with Cu.
  • Each flux-cored wire in Table 3-1 or Table 3-2 includes the hoop number in Table 1 used, the flux number in Table 2-1 or Table 2-2, and the total mass of the flux-cored wire (hoop + flux).
  • the flux filling rate is described, and based on these, the component amount of each flux-cored wire is determined.
  • the amount of C in Table 1 is the Hoop No. in Table 1-1.
  • a hoop (A amount 0.006%) and Flux No. in Table 2-1.
  • flux cored wire No. C amount of 1 (0.006% ⁇ 0.75) + (0.017% ⁇ 0.25) ⁇ 0.009%
  • Tables 2-1 and 2-2 show the content (%) of the slag forming agent contained in the flux
  • Tables 3-1 and 3-2 show the content of the slag forming agent with respect to the flux-cored wire. (%) Is shown respectively.
  • FIG. 1 shows the flux No. in Table 2-1. 1 (the slag forming agent in the flux is 12.7%), and the flux filling rate is 25%. Therefore, the content of the slag forming agent with respect to the flux-cored wire is 12.7%. ⁇ 0.25 ⁇ 3%
  • the width of the groove surrounded by the copper plating 1 (back side of the groove) and the sliding copper plating 2 (front side of the groove) is 10 mm, and the opening is 20 ° V. Pre-welding was performed.
  • the copper plating 1 and the sliding copper plating 2 both used what was water-cooled.
  • compositions of the weld metal thus obtained are shown in Tables 5-1 and 5-2.
  • the weld metal was evaluated for strength, cryogenic toughness, and bead appearance.
  • Nos. 41 to 44 are examples in which a predetermined amount of REM is added to the wire. Since the oxygen content in the weld metal is further reduced compared to 1 to 31, the cryogenic toughness is higher than that of an example having the same degree of strength despite the relatively high strength of about 645 to 693 MPa. Remarkably improved.
  • No. 33 is a wire No. 33 in Table 3-2 with a large amount of Ni and a small amount of Cr. This is an example using 33 wires, and the strength decreased because the amount of Ni in the weld metal was large and the amount of Cr was also small.
  • 40 is a wire No. in Table 3-2 having a large amount of Si and Nb.
  • 40 wires were used, and the amount of Si and Nb in the weld metal was large, so that the cryogenic toughness was lowered.
  • Example 2 In this example, an experiment was performed using the second wire in the same manner as in Example 1 described above. Specifically, similarly to Example 1 above, weld metals shown in Table 8 were produced using the welding materials shown in Tables 1, 4, 6, and 7 under the following welding conditions. Wire No. in Table 7 below. 46 to 51 correspond to the second electroslag welding wire. In addition, in Experiment 8 of Table 8 below, 46 to 51 correspond to the weld metal in the second weld joint. Also in this example, a Si—REM—Ca—Fe alloy containing 12 to 15% Ce and 4 to 8% La was used for REM addition.
  • each hoop shown in Table 1 is filled with each flux shown in Table 6, and the flux-cored wire shown in Table 7 (the remainder is an unavoidable impurity; wire diameter 1.6 mm), and No. 4 flux (the balance was FeO) was used. All the flux-cored wires are not plated with Cu.
  • Example 8 shows the composition of the obtained weld metal (the balance is iron and inevitable impurities).
  • the weld metal was evaluated for strength, cryogenic toughness, and bead appearance in the same manner as in Example 1.
  • Example 2 the number density of intermetallic compounds in the weld metal was further measured.
  • Example 1 a part of the weld metal obtained by using the first wire in which the Nb amount exceeds 0.50% in the above-described Example 1 (Experiment Nos. 1, 2, and 5 in Table 5-1).
  • the number density of the intermetallic compound was 9351 pieces / mm 2 (Experiment No. 1) because the Nb content contained in the weld metal exceeded 0.30%. ), 8270 / mm 2 (Experiment No. 2), 3568 / mm 2 (Experiment No. 5). Cryogenic toughness as high as 46 to 51 was not obtained.
  • the present invention is useful for high heat input welding of about 13 kJ / mm or more, for example, upright welding of thick plate structures such as shipbuilding and industrial machinery fields.

Abstract

本発明のエレクトロスラグ溶接用ワイヤは、質量%で、C:0~0.300%、Si:0~3.0%、Mn:1.20~4.2%、Ni:49.0~70%、Cr:9~18.5%、Mo:0~24.0%、Al:0~0.13%、W:1.0~14.0%、Fe:0~6.0%、Mg:0~1%、Nb:0~4.0%、N:0~0.2%、Zr:0~0.05%を含有する。

Description

エレクトロスラグ溶接用Ni基溶接材料
 本発明は、エレクトロスラグ溶接に用いられるワイヤおよび投入れフラックス、並びにこれらの溶接材料を用いて得られる溶接継手に関する。
 9%Ni鋼は、高い強度と、液体窒素温度(-196℃)程度の優れた極低温靱性を有している。そのため、9%Ni鋼は、液化天然ガス(Liquefied Natural Gas、LNG)などのように低温で貯蔵される貯蔵タンクを溶接により製造するための母材として汎用されている。これらの貯蔵タンクでは、LNGなどの液体の温度域である-162℃以下の温度域での極低温靭性に優れることが要求される。そのため、9%Ni鋼を溶接して形成される溶接継手の溶接金属(溶接接合部)においても、同様に、優れた極低温靭性を有していることが要求される。
 従来、9%Ni鋼の溶接に際し、Ni基溶接材料を用いた被覆アーク溶接、サブマージアーク溶接、自動TIG(Tungsten Inert Gas)溶接などの溶接方法が適用されてきた。これらの溶接方法で得られた溶接金属は極低温靭性に優れるものの、溶接の入熱量が低く、施工効率に劣るという問題がある。そのため、大入熱溶接が可能なNi基溶接材料の開発が進められている。
 例えば特許文献1には、入熱量が4.0kJ/mm以上の大入熱溶接で溶接継手を製造した場合でも、690MPa以上の引張強さと400MPa以上の降伏強さを兼ね備え、さらに、-196℃におけるシャルピー吸収エネルギーが平均値で55J以上という優れた低温靭性を有する溶接継手およびそのような溶接継手を得るための溶接材料が開示されている。具体的には、Ni-Mo系合金を基本とする溶接材料を用い、マグ溶接またはエレクトロガスアーク溶接を施して溶接継手を製造する方法が記載されている。
日本国特開2010-274268号公報
 しかしながら、上記特許文献1で適用される入熱量は最大でも11.52kJ/mmであり、未だ不十分である。
 本発明は上記事情に鑑みてなされたものであり、その目的は、Ni基溶接材料を用いて、入熱量が例えば約13kJ/mm以上の大入熱溶接を施しても、強度および極低温靭性に優れた溶接継手を得ることが可能な溶接技術を提供することにある。
 上記課題を解決し得る本発明の第1のエレクトロスラグ溶接用ワイヤは、質量%で、C:0%以上、0.300%以下、Si:0%以上、3.0%以下、Mn:1.20%以上、4.2%以下、Ni:49.0%以上、70%以下、Cr:9%以上、18.5%以下、Mo:0%以上、24.0%以下、Al:0%以上、0.13%以下、W:1.0%以上、14.0%以下、Fe:0%以上、6.0%以下、Mg:0%以上、1%以下、Nb:0%以上、4.0%以下、N:0%以上、0.2%以下、およびZr:0%以上、0.05%以下を含有する点に要旨を有する。
 本発明の好ましい実施形態において、前記第1のエレクトロスラグ溶接用ワイヤは、質量%で、更に希土類元素:0%以上、1.0%以下を含有する。
 本発明の好ましい実施形態において、前記第1のエレクトロスラグ溶接用ワイヤはCuめっきが施されたものである。
 本発明の好ましい実施形態において、前記第1のエレクトロスラグ溶接用ワイヤは、ソリッドワイヤまたはメタル系フラックス入りワイヤである。
 本発明の好ましい実施形態において、前記第1のエレクトロスラグ溶接用ワイヤはスラグ系フラックス入りワイヤである。
 本発明の好ましい実施形態において、前記フラックス中に、前記スラグ系フラックス入りワイヤ全質量に対し、スラグ形成剤を0%超、20%以下含むものである。
 本発明の好ましい実施形態において、前記第1のエレクトロスラグ溶接用ワイヤは立向き1パスでのエレクトロスラグ溶接に用いられるものである。
 上記課題を解決し得る本発明の第2のエレクトロスラグ溶接用ワイヤは、質量%で、C:0%以上、0.300%以下、Si:0%以上、3.0%以下、Mn:1.20%以上、4.2%以下、Ni:49.0%以上、70%以下、Cr:9%以上、18.5%以下、Mo:0%以上、24.0%以下、Al:0%以上、0.13%以下、W:4.6%以上、14.0%以下、Fe:0%以上、6.0%以下、Mg:0%以上、1%以下、Nb:0%以上、0.50%以下、N:0%以上、0.2%以下、Zr:0%以上、0.05%以下、および希土類元素:0%超、1.0%以下を含有するものである。
 本発明の好ましい実施形態において、前記第2のエレクトロスラグ溶接用ワイヤはCuめっきが施されたものである。
 本発明の好ましい実施形態において、前記第2のエレクトロスラグ溶接用ワイヤは、ソリッドワイヤまたはメタル系フラックス入りワイヤである。
 本発明の好ましい実施形態において、前記第2のエレクトロスラグ溶接用ワイヤはスラグ系フラックス入りワイヤである。
 本発明の好ましい実施形態において、前記フラックス中に、前記スラグ系フラックス入りワイヤ全質量に対し、スラグ形成剤を0%超、20%以下含むものである。
 本発明の好ましい実施形態において、前記第2のエレクトロスラグ溶接用ワイヤは立向き1パスでのエレクトロスラグ溶接に用いられるものである。
 上記課題を解決し得る本発明の投入れフラックスは、上記のいずれかに記載の第1、第2のエレクトロスラグ溶接用ワイヤと共にエレクトロスラグ溶接に用いられる投入れフラックスであって、質量%で、SiO:15%以上、50%以下、CaO:10%以上、40%以下、CaF:5%以上、15%以下、MgO:0%以上、12%以下、Al:0%以上、14%以下、MnO:0%以上、25%以下、TiO:0%以上、10%以下、およびZrO:0%以上、10%以下を含有する点に要旨を有する。
 また、上記課題を解決し得る本発明の第1の溶接継手は、上記のいずれかに記載の第1のエレクトロスラグ溶接用ワイヤ、および前記エレクトロスラグ溶接用投入れフラックスを用い、エレクトロスラグ溶接により作製される溶接継手であって、溶接金属は、質量%で、C:0%以上、0.260%以下、Si:0%以上、3.0%以下、Mn:1.0%以上、4.00%以下、Ni:40.0%以上、70.0%以下、Cr:7%以上、15.0%以下、Mo:0%以上、20.0%以下、W:0.50%以上、13.0%以下、Fe:0%以上、32%以下、Nb:0%以上、2.5%以下、N:0.01%以上、0.11%以下、およびO:0%以上、0.055%以下を含有する点に要旨を有する。
 本発明の好ましい実施形態において、前記溶接金属は、質量%で、O:0%以上、0.025%以下を含有する。
 前記第1の溶接継手は、母材として質量%で5%以上、10%以下のNiを含有する鋼板を用いるものである。
 また、上記課題を解決し得る本発明の第2の溶接継手は、上記のいずれかに記載の第2のエレクトロスラグ溶接用ワイヤ、および前記エレクトロスラグ溶接用投入れフラックスを用い、エレクトロスラグ溶接により作製される溶接継手であって、前記溶接金属が、質量%で、C:0%以上、0.260%以下、Si:0%以上、3.0%以下、Mn:1.0%以上、4.00%以下、Ni:40.0%以上、70.0%以下、Cr:7%以上、15.0%以下、Mo:0%以上、20.0%以下、W:4.50%以上、13.0%以下、Fe:0%以上、32%以下、Nb:0%以上、0.30%以下、N:0.01%以上、0.11%以下、およびO:0%以上、0.025%以下を含有し、溶接金属中の金属間化合物が3500個/mm以下である。
 前記第2の溶接継手は、母材として質量%で5%以上、10%以下のNiを含有する鋼板を用いるものである。
 本発明によれば、入熱量が例えば約13kJ/mm以上の大入熱溶接時であっても強度および極低温靭性に優れた溶接金属を有する溶接継手を提供することができる。
図1は、先願発明において、エレクトロスラグ溶接装置の概略構成の一例を示す図である。 図2は、図1に示すエレクトロスラグ溶接装置をT方向から見た図である。 図3-1は、先願発明において、溶融スラグ浴の深さ、溶接ワイヤの長さ、溶接電流、溶込み幅の相関関係を示す図である。 図3-2は、先願発明において、溶融スラグ浴の深さ、溶接ワイヤの長さ、溶接電流、溶込み幅の相関関係を示す図である。 図3-3は、先願発明において、溶融スラグ浴の深さ、溶接ワイヤの長さ、溶接電流、溶込み幅の相関関係を示す図である。 図4は、先願発明において、溶融スラグ浴検出器の構成例を示す図である。 図5は、先願発明において、溶融スラグ浴表面の溶接電圧分布の一例を示す図である。 図6-1は、先願発明において、溶接トーチを板厚方向に揺動させた場合の溶融スラグ浴表面の溶接電圧分布の一例を示す図である。 図6-2は、先願発明において、溶接トーチを板厚方向に揺動させた場合の溶融スラグ浴表面の溶接電圧分布の一例を示す図である。 図6-3は、先願発明において、溶接トーチを板厚方向に揺動させた場合の溶融スラグ浴表面の溶接電圧分布の一例を示す図である。 図7は、図4に示す溶融スラグ浴検出装置にフィルタ回路を設けた構成例を示す図である。 図8は、先願発明において、フィルタ回路がない場合の溶接電圧波形の一例を示す図である。 図9は、先願発明において、フィルタ回路を介した場合の溶接電圧波形の一例を示す図である。 図10は、先願発明において、検出端子を溶接トーチに連結させた構成の一例を説明するための図である。 図11は、先願発明において、溶融スラグ浴検出器の他の構成例を示す図である。 図12は、先願発明において、溶融スラグ浴検出器の他の構成例を示す図である。 図13-1は、先願発明において、フラックス供給装置の構成例を示す図である。 図13-2は、先願発明において、フラックス供給装置の構成例を示す図である。 図14は、先願発明において、フラックス供給装置の他の構成例を示す図である。 図15は、実施例で用いた溶接母材の開先形状を示す模式図である。
 本発明者らは、上記課題を解決するため、Ni基溶接材料を用いた大入熱溶接法として、従来検討されていなかったエレクトロスラグ溶接を適用して検討を行なった。その結果、成分が適切に調整された溶接材料を用いれば、入熱量が例えば約13kJ/mm以上の大入熱溶接時であっても強度および極低温靭性に優れた溶接金属を有する溶接継手が得られることを見出し、本発明を完成した。
 ここでエレクトロスラグ溶接は、溶融したスラグ浴の中に溶接ワイヤを入れ、主に溶融スラグのジュール熱を熱源として母材と溶接ワイヤを溶融させて溶接する方法である。エレクトロスラグ溶接によれば、造船や産業機械分野などのように板厚が大きい構造物の立向き溶接を1パスで行なうことが可能である。上記構造物の立向き溶接は、これまでエレクトロガスアーク溶接で行なわれてきたが、溶接作業者にとってアーク放射熱、ヒューム、スパッタ等の作業環境上の問題があった。さらに板厚が増すとシールドが劣化し、溶接部の機械的性能が劣化するなどの問題もある。これに対し、エレクトロスラグ溶接では、エレクトロガスアーク溶接のように露出したアークではなく溶融スラグ内で熱が発生してワイヤ及び母材を溶融するので、アーク放射熱が発生せず、またヒューム、スパッタの発生も少なく、作業環境が改善される。また溶融スラグで溶接金属を大気から遮蔽するのでシールドガスが不要であり、板厚が大きくなってもシールド効果が劣化することがなく、大気に存在する窒素などの溶融金属内への侵入を板厚に関係なく効果的に防止できるので、溶接金属の機械的な劣化も発生しない。
 なお、前述した特許文献1にも本願発明と同様の観点から、エレクトロガスアーク溶接を用いて作製された溶接継手が開示されている。しかしながら、前述したとおり、上記特許文献1の実施例では、最大でも11.52kJ/mmの入熱しか行なっておらず、未だ不十分である。
 また、特許文献1のワイヤは本発明に比べてワイヤ中のAl量が著しく多いため、本発明のような大入熱溶接を行なうと極低温靭性が大きく低下すると考えられる。具体的には特許文献1ではワイヤのAl量を1.2~3.0%と規定しているのに対し、本発明におけるAl量は0.13%以下であり、特許文献1に比べて著しく少ない。本発明者らの検討結果によれば、Al量が本発明の上限(0.13%)をほんの僅かに超えた0.138%のワイヤを用いて、特許文献1よりも入熱量の大きい約17kJ/mmの大入熱溶接を行なうと、溶接金属の極低温靭性が著しく低下することが判明した(後記する実施例の表5-2のNo.35を参照)。Alは酸化物を形成し易い元素であり、本発明のように入熱量の大きい大入熱溶接を行なうと、高温下に長時間曝されるため、Al酸化物の凝集・合体により当該酸化物は益々粗大化する。そのため、極低温靭性が著しく低下すると考えられる。このような大入熱溶接下でのAl酸化物の超粗大化に伴う極低温靭性の著しい低下は、特許文献1のように、せいぜい、約11kJ/mm程度の入熱しか行なっていないときには予想されなかった事項である。また、本発明で規定するAl量の範囲は、溶接金属の強度向上のためにAlを1.2%以上含有することしか教示していない特許文献1の技術から決して得られるものではない。
 更に両者は、Cu量も相違している。特許文献1においてCuは、Alと同様、溶接金属の強度向上に必須の成分であり、強度確保のためにCuを0.5%以上含有しているのに対し、本発明ではCuは実質的に含有していない。本発明では後述するとおり、好ましくはフラックス入りワイヤを用いており、当該フラックス入りワイヤはCuめっきで施されていることが多いが、Cuめっき由来のCuがワイヤ中に混入することはあっても特許文献1で規定するCu量の範囲にはならない。
 更に本発明の好ましい態様ではワイヤ中に所定量のREMを含有しており、REMの脱酸作用により溶接金属中の酸素(O)濃度が著しく低下して結果的に極低温靭性が大きく向上するが、上記特許文献1では、ワイヤ中に所定量のREMを添加するという構成、および上記構成による極低温靭性の著しい向上作用について何ら開示されていない。
 本明細書では、エレクトロスラグ溶接用ワイヤを単にワイヤと呼ぶ場合がある。
 以下、本発明について詳しく説明する。以下、%は特に断りのない限り、質量%を意味する。
(エレクトロスラグ溶接用ワイヤ)
 本発明に係るエレクトロスラグ溶接用ワイヤは、第1のエレクトロスラグ溶接用ワイヤと第2のエレクトロスラグ溶接用ワイヤに大別できる。第2のエレクトロスラグ溶接用ワイヤは、第1のエレクトロスラグ溶接用ワイヤのうち、希土類元素を必須成分として含有し、且つ、W量の下限が4.6%以上と高く、Nb量の上限が0.50%以下と低く制御されたものである。本明細書では、上記第1のエレクトロスラグ溶接用ワイヤ、第2のエレクトロスラグ溶接用ワイヤを、単に第1、第2のワイヤと略記する場合がある。
 なお、本発明では、後述するようにフラックス入りワイヤが好ましく用いられるが、その場合における第1、第2のエレクトロスラグ溶接用ワイヤの成分は、フラックス入りワイヤ(フープ+フラックス)に含まれる各成分の質量%を当該フラックス入りワイヤの全質量に対する割合で規定したものである。
 まず、本発明に係る第1のエレクトロスラグ溶接用ワイヤについて説明する。本発明に係る第1のエレクトロスラグ溶接用ワイヤの成分は以下のとおりである。即ち、C:0%以上、0.300%以下、Si:0%以上、3.0%以下、Mn:1.20%以上、4.2%以下、Ni:49.0%以上、70%以下、Cr:9%以上、18.5%以下、Mo:0%以上、24.0%以下、Al:0%以上、0.13%以下、W:1.0%以上、14.0%以下、Fe:0%以上、6.0%以下、Mg:0%以上、1%以下、Nb:0%以上、4.0%以下、N:0%以上、0.2%以下、およびZr:0%以上、0.05%以下を含有するものである。
C:0%以上、0.300%以下
 Cは、固溶強化および化合物を形成して強度確保に寄与する元素である。上記作用を有効に発揮させるため、C量は0.005%以上であることが好ましい。但し、C量を過剰に添加すると化合物粒子数の増加を招き、当該化合物粒子がシャルピー試験時のボイド形成の起点として作用して極低温靭性が低下するため、C量を0.300%以下とする。C量は、0.05%以下であることが好ましく、0.040%以下であることがより好ましい。
Si:0%以上、3.0%以下
 Siは脱酸元素であり、溶接金属中の酸素濃度を低下させることで極低温靭性の向上作用を有する。上記作用を有効に発揮させるため、Si量は0.015%以上であることが好ましく、0.020%以上であることがより好ましい。但し、Siの過剰添加は強度の過大な上昇を招き、極低温靭性が低下するため、Si量を3.0%以下とする。Si量は、1.5%以下であることが好ましく、1.0%以下であることがより好ましい。
Mn:1.20%以上、4.2%以下
 Mnは、固溶強化により強度確保に寄与する元素である。Mn量が不足すると、所定の強度が得られないため、Mn量を1.20%以上とする。Mn量は1.6%以上であることが好ましく、1.8%以上であることがより好ましい。但し、Mnの過剰添加は強度の過大な上昇を招き、極低温靭性が低下するため、Mn量を4.2%以下とする。Mn量は、3.8%以下であることが好ましく、3.5%以下であることがより好ましい。
Ni:49.0%以上、70%以下
 Niは、低温靭性の確保に必須の元素であり、Ni量を49.0%以上とする。Ni量は57%以上であることが好ましく、58%以上であることがより好ましい。但し、Niの過剰添加は強度の低下を招くため、Ni量を70%以下とする。Ni量は、68%以下であることが好ましく、65%以下であることがより好ましい。
Cr:9%以上、18.5%以下
 Crは、固溶強化および化合物形成により強度確保に寄与する元素である。Cr量が不足すると、所定の強度が得られないため、Cr量を9%以上とする。Cr量は10%以上であることが好ましく、11%以上であることがより好ましい。但し、Crの過剰添加は強度の過大な上昇を招き、極低温靭性が低下するため、Cr量を18.5%以下とする。Cr量は、18%以下であることが好ましく、16%以下であることがより好ましい。
Mo:0%以上、24.0%以下
 Moは、固溶強化および化合物形成により強度確保に寄与する元素である。Mo量が不足すると、所定の強度が得られないため、Mo量は、5%以上であることが好ましく、8%以上であることがより好ましい。但し、Moの過剰添加は化合物粒子数の増加を招き、当該化合物粒子がシャルピー試験時のボイド形成の起点として作用して極低温靭性が低下するため、Mo量を24.0%以下とする。Mo量は、20%以下であることが好ましく、18%以下であることがより好ましい。
Al:0%以上、0.13%以下
 Alは脱酸元素であり、溶接金属中の酸素濃度を低下させて極低温靭性の改善作用を有する。このような作用を有効に発揮させるため、Al量は0.010%以上であることが好ましい。しかしながら、本発明のように入熱量の大きい大入熱施工を対象とする場合、前述したように溶接後の冷却速度が低いため、酸化物の凝集・合体による粗大化が進行しやすい。そのため、Alを過剰に添加すると溶接金属中の粗大酸化物が増加し、所定の極低温靭性が確保できない。よって、Al量を0.13%以下とする。Al量は、0.10%以下であることが好ましく、0.08%以下であることがより好ましい。
W:1.0%以上、14.0%以下
 Wは、固溶強化により強度確保に寄与する元素である。Wの添加量が不足すると所定の強度が得られないため、W量を1.0%以上とする。W量は、1.2%以上であることが好ましく、1.5%以上であることがより好ましい。但し、Wの過剰添加は強度の過大な上昇を招いて極低温靭性が低下するため、W量を14.0%以下とする。W量は、12%以下であることが好ましく、11%以下であることがより好ましい。
Fe:0%以上、6.0%以下
 Feは強度を低下させる元素であり、Feの過剰添加は強度低下を招くため、Fe量を6.0%以下とする。Fe量は、5.5%以下であることが好ましく、5.0%以下であることがより好ましい。
Mg:0%以上、1%以下
 Mgは脱酸元素であり、溶接金属中の酸素濃度を低下させることで極低温靭性を改善する作用を有する。このような作用を有効に発揮させるためには、Mg量は0.01%以上であることが好ましく、0.04%以上であることがより好ましい。但し、Mgの過剰添加は強度の過大な上昇を招いて極低温靭性が低下するため、Mg量を1%以下とする。Mg量は、0.7%以下であることが好ましく、0.6%以下であることがより好ましい。
Nb:0%以上、4.0%以下
 Nbは、固溶強化および化合物を形成して強度向上に寄与する元素である。このような作用を有効に発揮させるためには、Nb量は0.5%以上であることが好ましく、0.7%以上であることがより好ましい。但し、Nbの過剰添加は化合物粒子数の増加を招き、当該化合物粒子がシャルピー試験時のボイド形成の起点として作用して極低温靭性が低下するため、Nb量を4.0%以下とする。Nb量は、3%以下であることが好ましく、2.5%以下であることがより好ましい。
N:0%以上、0.2%以下
 Nは、固溶強化により強度確保に寄与する元素である。N量が不足すると、所定の強度が得られないため、N量は0.0010%以上であることが好ましく、0.0015%以上であることが好ましい。但し、Nを過剰に添加すると作業性の著しい低下を招くため、0.2%以下であることが好ましい。N量は、0.15%以下であることが好ましく、0.10%以下であることがより好ましい。
Zr:0%以上、0.05%以下
 Zrは脱酸元素であり、溶接金属中の酸素濃度を低下させることで極低温靭性を改善する作用を有する。このような作用を有効に発揮させるためには、Zr量は0.005%以上であることが好ましく、0.010%以上であることがより好ましい。但し、Zrの過剰添加は強度の過大な上昇を招いて極低温靭性が低下するため、Zr量を0.05%以下とする。Zr量は、0.015%以下であることが好ましく、0.012%以下であることがより好ましい。
 本発明に係る第1のエレクトロスラグ溶接用ワイヤの組成は上記のとおりであり、残部:不可避的不純物である。不可避的不純物として、例えばP、S、As、Sb、Sn、Biなどが挙げられる。
 更に本発明の第1のエレクトロスラグ溶接用ワイヤは、以下の選択成分を含有することができる。
希土類元素:0%超、1.0%以下
 希土類元素(Rare earth metal;REM)は強い脱酸作用を有する元素であり、極低温靭性の向上に寄与する。詳細には、REMの脱酸作用により溶接金属中の酸素濃度が著しく低下して、極低温靭性の向上に悪影響を及ぼす酸化物粒子の個数が減少することにより極低温靭性が顕著に向上する。このような作用を有効に発揮させるため、REM量は0.01%以上であることが好ましく、0.1%以上であることがより好ましく、0.2%以上であることが更に好ましい。但し、REMの過剰添加は、溶接金属の溶け込み不足を招くため、REM量は1.0%以下であることが好ましい。REM量は、0.8%以下であることが好ましく、0.7%以下であることがより好ましい。
 本発明においてREMとは、原子番号57~71の全ての元素を意味する。REMは上記元素を単独で含んでいても良いし、二種以上を含んでいても良い。上記REM量とは、単独で含むときはその含有量であり、二種以上の元素を含むときはそれらの合計量である。
 或は、本発明の作用を阻害しない範囲で、例えばO、F、Na、K、Ca、Ti、Cu、Ta、Co、Bなどの元素を選択成分として添加しても良い。これら元素の合計含有量は、おおむね、0~3%であることが好ましい。
 上記成分を満足する本発明に係る第1のエレクトロスラグ溶接用ワイヤを用いてエレクトロスラグ溶接を行えば、入熱量が例えば約13kJ/mm以上の大入熱溶接時であっても強度が600MPa超で、吸収エネルギーIVが40J以上の極低温靭性に優れた溶接金属を有する溶接継手を提供できる。
 次に、本発明に係る第2のエレクトロスラグ溶接用ワイヤについて説明する。本発明者らが更に検討したところ、上記第1のエレクトロスラグ溶接用ワイヤのうち、必須元素として希土類元素を含有したうえで、Nb量を一段と低減し、W量を一段と増加させた第2のエレクトロスラグ溶接用ワイヤを用いれば、入熱量が例えば約13kJ/mm以上の大入熱溶接時であっても、強度が700MPa超と一層高く、吸収エネルギーIVが60J以上と極低温靭性に一層優れた溶接金属を提供できることが明らかとなった。その理由としては、上記第2のワイヤを用いることにより溶接金属中の金属間化合物(更には酸化物)の個数密度を低減できたことが挙げられる。即ち、Ni基溶接金属のシャルピー衝撃試験破面は100%の延性破面を呈し、ディンプル(くぼみ模様と呼ばれることがある)の底には金属間化合物や酸化物の粒子が観察される。これらの粒子がディンプルの起点として作用することで、シャルピー衝撃試験時の延性破壊が助長され、吸収エネルギーが低下する。よって、吸収エネルギーを高めて極低温靭性を改善するためには、Ni基溶接金属に含まれる金属間化合物などの粒子数(個数密度)を低減することが有効である。後述するように金属間化合物はNbを主成分として含有するが、本発明者らの検討結果によれば、Nbの量が0.50%以下に低減されたワイヤを用いると溶接金属中の金属間化合物を低減できることが判明した。また、希土類元素は強い脱酸作用を有するため、希土類元素を含むワイヤを用いると溶接金属中の酸化物を低減できる。なお、Wは金属間化合物の主成分ではないが、第1のワイヤの欄で述べたように固溶強化により強度向上に寄与する元素であり、Wを4.6%以上含むワイヤを用いると溶接金属の強度が向上する。よって、Nb、希土類元素、Wの各含有量が適切に制御された上記第2のワイヤを用いることにより、良好な強度と極低温靭性に優れた溶接金属が得られる。
 以下、第2のワイヤを特徴付ける希土類元素、Nb、Wについて詳述する。
 希土類元素は、前述したように強い脱酸作用を有する元素であり、溶接金属中の酸素濃度が低下し、極低温靭性の向上に悪影響を及ぼす酸化物の個数密度低減に寄与する。そのため、上記第2のエレクトロスラグ溶接用ワイヤにおいては、上記第1のエレクトロスラグ溶接用ワイヤでは選択成分としていた希土類元素を必須成分として0%超、1.0%以下の範囲で含有する。希土類元素量の好ましい範囲は、上記第1のエレクトロスラグ溶接用ワイヤと同じである。
 Nbは、極低温靭性の向上に悪影響を及ぼす金属間化合物の個数密度低減のために、上記第2のエレクトロスラグ溶接用ワイヤにおいて0.50%以下とする。Nb量は、好ましくは0.20%以下、より好ましくは0.15%以下である。Nbはできるだけ低減することが好ましく、最も好ましくは0%である。
 Wは、固溶強化により強度確保に寄与する元素であり、Nb量低減による強度低下分を補うために、Wを4.6%以上含有させる必要がある。W量は、5.0%以上であることが好ましく、5.3%以上であることがより好ましい。但し、W量が多くなり過ぎると強度の過大な上昇を招いて極低温靭性が低下するため、W量を14.0%以下とする。W量は、12%以下であることが好ましく、11%以下であることがより好ましい。
 上記以外の他の成分(例えば、C、Si、Mn、Ni、Cr、Mo、Al、Fe、Mg、N、Zrなど)は、上述した第1のエレクトロスラグ溶接用ワイヤの成分組成と同じである。
 上記第2のエレクトロスラグ溶接用ワイヤを用いてエレクトロスラグ溶接を行えば、入熱量が例えば約13kJ/mm以上の大入熱溶接時であっても700MPa超の強度および吸収エネルギーIVが60J以上の極低温靭性に優れた溶接金属を有する溶接継手を提供できる。
 次に、第1のエレクトロスラグ溶接用ワイヤ、第2のエレクトロスラグ溶接用ワイヤの共通事項について説明する。
 本発明のエレクトロスラグ溶接用ワイヤは、通電性を高めるため、表面にCuめっきが施されていることが好ましい。上記作用を有効に発揮させるため、エレクトロスラグ溶接用ワイヤ全体に占めるCu量は0.005%以上であることが好ましく、0.01%以上であることがより好ましい。但し、Cu量が過剰にあると、ワイヤ送給性が低下するなどの問題がある。エレクトロスラグ溶接用ワイヤ全体に占めるCu量は、0.25%以下であることが好ましく、0.20%以下であることがより好ましい。
 本発明のエレクトロスラグ溶接用ワイヤは、ソリッドワイヤまたはフラックス入りワイヤの両方を含む。フラックス入りワイヤは、スラグ系形成剤の有無により、スラグ系形成剤を含まず金属成分を主体とするメタル系とスラグ系形成剤を含むスラグ系のフラックス入りワイヤに分類される。このうちフラックス入りワイヤは、外皮(フープ)にフラックスが充填されたものであり、成分設計がし易く、また溶着速度および溶着効率などにも優れている。本発明で対象とするエレクトロスラグ溶接では、一般的にフラックス入りワイヤが使用されている。
 上記フープの組成は、フラックス入り溶接ワイヤの組成が上記範囲であれば特に限定されず、軟鋼、ステンレス鋼やニッケル基合金のいずれであっても良い。但し、フラックス入り溶接ワイヤ自体に耐食性を付与して錆を防止する観点から、ステンレス鋼やニッケル基合金が好ましい。
 上記フラックスは酸化物系および金属系に大別されるが、溶接金属における酸素濃度低減などを考慮すると、金属系フラックスが好ましく用いられる。金属系フラックス入りワイヤは特に、メタルコアドワイヤと呼ばれることがある。上記フラックスの組成は、フラックス入り溶接ワイヤの組成が上記範囲であれば特に限定されない。
 フラックス入りワイヤのフラックス充填率は、約5~33%であることが好ましい。これらの範囲を外れると、作業性が劣化する。ここで上記フラックス充填率は、フープ内に充填されるフラックスの充填率を、ワイヤ(フープ+フラックス)の全質量に対する割合で規定したものである。
 上記フラックス入りワイヤは、作業性の観点からはフラックス中にスラグ形成剤が配合されていることが好ましく、特に酸化物系成分をフラックスの主体とするスラグ系(酸化物系)フラックス入りワイヤがより好ましい。ここでスラグ形成剤としては、例えばTiO、SiO、ZrO、Al等が挙げられる。スラグ形成剤の使用により、エレクトロスラグ溶接時に当該スラグ形成剤が溶融してスラグ化し、スラグがビード表面と当金との間に介在することで当金の円滑な摺動を保証すると共に、ビード外観が良好に保たれる。スラグ形成剤による上記作用を有効に発揮させるため、スラグ系(酸化物系)フラックス入りワイヤ全質量に対するスラグ形成剤の含有量は0.5%以上であることが好ましく、1%以上であることがより好ましく、3%以上であることが更に好ましい。但し、過剰に添加すると溶接金属中の酸素濃度が過剰となるため、フラックス入りワイヤ全質量に対するスラグ形成剤の含有量は20%以下であることが好ましい。より好ましくは15%以下であり、更に好ましくは13%以下である。
 フラックス入り溶接ワイヤの製造方法は特に限定されず、一般的な工程で製造すれば良い。例えば、軟鋼またはステンレスのフープをU字状に成型し、U字状成型フープにフラックスを充填した後、フラックスを内部に充填した筒状型に成型し、目的の径まで伸線して製造される。
(投入れフラックス)
 エレクトロスラグ溶接に用いられる投入れフラックスは、上記第1のエレクトロスラグ溶接用ワイヤ、第2のエレクトロスラグ溶接用ワイヤ共に共通である。エレクトロスラグ溶接では、溶接が進むにつれて減少する溶融スラグを補うためにフラックスが追加投入されるが、このフラックスを本明細書では投入れフラックスという。エレクトロスラグ溶接では、溶接が進行するにつれて溶融金属は冷却されて溶接金属となり、溶融スラグ浴の一部は溶融スラグ層となるが、溶接の進行につれて溶融スラグ層が冷却されて固化スラグとなって溶融スラグが消費する。この溶融スラグ浴の減少を補うため、投入れフラックスが用いられる。投入れフラックスは、溶融型フラックスとボンド型(焼成型)フラックスに大別される。溶融型フラックスは、種々の原料を電気炉などで溶解し、粉砕することにより製造される。一方、焼成型フラックスは、種々の原料をケイ酸アルカリなどのバインダーにより結合し、造粒した後、焼成することにより製造される。これらのうち、焼成型フラックスはビード外観やビード形状の劣化などの問題があるのに対し、溶融型フラックスは偏析が少ないため、好ましく用いられる。
 本発明に用いられる投入れフラックスの組成は以下のとおりである。
SiO:15%以上、50%以下
 SiOは酸性成分であり、溶融スラグの粘性及び融点を調整するために有効な成分である。SiO量が15%未満の場合、溶融スラグの粘性が不足して、凸ビードとなり、ビード外観が悪化するため、SiO量を15%以上とする。SiO量は22%以上であることが好ましく、25%以上であることがより好ましい。但し、SiO量が50%を超えると、溶融スラグの粘性が高くなり、溶込み不良が生じるため、SiO量を50%以下とする。SiO量は45%以下であることが好ましく、40%以下であることがより好ましい。
CaO:10%以上、40%以下
 CaOは塩基性成分であり、溶融スラグの粘性及び融点を調節するために有効な成分であると共に、溶接金属の酸素量を低減させる効果が高い。CaO量が10%未満の場合、溶融スラグの粘性が不足して、凸ビードとなり、ビード外観が悪化するため、CaO量を10%以上とする。CaO量は15%以上であることが好ましく、17%以上であることがより好ましい。但し、CaO量が40%を超えると、アンダーカット及びスラグ巻き込みが発生するため、CaO量を40%以下とする。CaO量は35%以下であることが好ましく、32%以下であることがより好ましい。
CaF:5%以上、15%以下
 CaFも塩基性成分であり、溶融スラグの粘性及び融点を調節するために有効な成分である。CaF量が5%未満の場合、溶融スラグの粘性が不足して、凸ビードとなり、ビード外観が悪化するため、CaF量を5%以上とする。CaF量は8.5%以上であることが好ましく、9%以上であることがより好ましい。但し、CaF量が15%を超えると、アンダーカット及びスラグ巻き込みが発生し易くなると共に、スラグ剥離性が劣化するため、CaF量を15%以下とする。CaF量は13%以下であることが好ましく、12%以下であることがより好ましい。
MgO:0%以上、12%以下
 MgOも塩基性成分であり、溶融スラグの粘性及び融点を調整するために有効な成分である。MgOを含有しない場合、溶融スラグの粘性が不足して、凸ビードとなり、ビード外観が悪化する。MgO量は1%以上であることが好ましく、3%以上であることがより好ましい。但し、MgO量が12%を超えると、溶融スラグの粘性が高くなり、溶込み不良が生じるため、MgO量を12%以下とする。MgO量は8%以下であることが好ましい。
Al:0%以上、14%以下
 Alも塩基性成分であり、溶融スラグの粘性及び融点を調整するために有効な成分である。Alを含有しない場合、溶融スラグの粘性が不足して、凸ビードとなり、ビード外観が悪化する。Al量は1%以上であることが好ましい。一方、Al量が14%を超えると、溶融スラグの粘性が高くなり、溶込み不良が生じる。Al量は5%以下であることが好ましい。
MnO:0%以上、25%以下
 MnOは、溶融スラグの粘性及び融点を調整するために有効な成分である。MnOを含有しない場合、溶融スラグの粘性が不足して、凸ビードとなり、ビード外観が悪化する。MnO量は3%以上であることが好ましく、10%以上であることがより好ましい。一方、MnO量が25%を超えると、スラグ剥離性が低下し、ビード外観が悪化するため、25%以下とする。MnO量は22%以下であることが好ましい。
TiO:0%以上、10%以下
 TiOは、溶融スラグの融点を調整するために有効な成分である。このような作用を有効に発揮させるため、TiO量は1%以上であることが好ましく、3%以上であることがより好ましい。但し、TiO量が10%を超えると、融点付近で粘度が急激に高くなるため、スラグ巻込みが発生しやすくなる。そのため、TiO量を10%以下とする。TiO量は8%以下であることが好ましい。
ZrO:0%以上、10%以下
 ZrOは、溶融スラグの融点を調整するために有効な成分である。このような作用を有効に発揮させるため、ZrO量は1%以上であることが好ましく、3%以上であることがより好ましい。但し、ZrO量が10%を超えると、融点付近で粘度が急激に高くなるため、スラグ巻込みが発生しやすくなるため、10%以下とする。ZrO量は8%以下であることが好ましい。
 本発明に係る投入れフラックスの組成は上記のとおりであり、残部:FeOである。
(溶接継手)
 本発明の第1の溶接継手は、上記第1のエレクトロスラグ溶接用ワイヤおよび投入れフラックスを用い、エレクトロスラグ溶接により作製される。一方、本発明の第2の溶接継手は、上記第2のエレクトロスラグ溶接用ワイヤおよび投入れフラックスを用い、エレクトロスラグ溶接により作製される。
 まず、第1の溶接継手について説明する。上記第1の溶接継手における溶接金属の組成は以下のとおりである。以下の記載において、前述した第1のエレクトロガス溶接用ワイヤと重複する成分の作用は、説明の重複を避けるため省略して、好ましい範囲のみ記載する。
 なお、上述した第1のエレクトロスラグ溶接用ワイヤと第1の溶接継手における溶接金属とは組成が相違しており、第1のワイヤに含まれるAl、Mg、Zr、およびREMは、溶接の過程で大部分が酸化物などを形成してスラグとして抜けていくため、溶接金属での含有量は極めて少なくなる。
C:0%以上、0.260%以下
 好ましい上限:0.12%、より好ましい上限:0.06%
 好ましい下限:0.003%、より好ましい下限:0.005%
Si:0%以上、3.0%以下
 好ましい上限:0.5%、より好ましい上限:0.30%
 好ましい下限:0.08%、より好ましい下限:0.1%
Mn:1.0%以上、4.00%以下
 好ましい上限:3.5%、より好ましい上限:3.0%
 好ましい下限:1.6%、より好ましい下限:1.8%
Ni:40.0%以上、70.0%以下
 好ましい上限:65%、より好ましい上限:60%
 好ましい下限:42%、より好ましい下限:44%
Cr:7%以上、15.0%以下
 好ましい上限:13%、より好ましい上限:12%
 好ましい下限:8%、より好ましい下限:9%
Mo:0%以上、20.0%以下
 好ましい上限:19%、より好ましい上限:15%
 好ましい下限:8%、より好ましい下限:8.5%
W:0.50%以上、13.0%以下
 好ましい上限:12%、より好ましい上限:11%
 好ましい下限:1%、より好ましい下限:1.2%
Fe:0%以上、32%以下
 好ましい上限:30%、より好ましい上限:28%
 好ましい下限:4%、より好ましい下限:10%
Nb:0%以上、2.5%以下
 好ましい上限:2.2%、より好ましい上限:2.0%
 好ましい下限:0.1%、より好ましい下限:0.3%
N:0.01%以上、0.11%以下
 好ましい上限:0.08%、より好ましい上限:0.07%
 好ましい下限:0.02%、より好ましい下限:0.025%
O:
 第1のワイヤ中にREMを含有しないときは0%以上、0.055%以下
 第1のワイヤ中に好ましくは所定量のREMを含有するときは0%以上、0.025%以下
 Oは酸化物を形成し、当該酸化物がシャルピー試験時のボイド形成の起点として作用するため、極低温靭性が低下する。そのため、第1のワイヤ中にREMを含まないときは、O量を0.055%以下とする。好ましくは0.05%以下であり、より好ましくは0.045%以下である。一方、第1のワイヤ中に所定量のREMを含むときは、O量は好ましくは0.025%以下であり、より好ましくは0.022%以下、更に好ましくは0.020%以下である。
 本発明に係る溶接金属の基本組成は上記のとおりであり、残部:不可避的不純物である。不可避的不純物として、例えばP、S、As、Sb、Sn、Bi等が挙げられる。
 本発明の溶接金属は、本発明の作用を阻害しない範囲で、例えば、Al、Mg、Ca、Ti、Cu、Zr、Ta、Co、B、REMなどを含有しても良い。これら元素の合計含有量は、おおむね、0~10%であることが好ましい。
 次に、第2の溶接継手について説明する。上記第2の溶接継手における溶接金属は、W:4.50%以上、13.0%以下、Nb:0%以上、0.30%以下、O:0%以上、0.025%以下を含有するところに特徴があり、W、Nb、O以外の成分組成は、上述した第1の溶接継手における溶接金属の成分組成と同じである。以下の記載において、前述した第1のエレクトロガス溶接用ワイヤと重複する成分の作用は、説明の重複を避けるため省略し、W、Nb、およびOの好ましい範囲のみ記載する。
W:4.50%以上、13.0%以下
 好ましい上限:12%、より好ましい上限:11%
 好ましい下限:4.8%、より好ましい下限:5.0%
Nb:0%以上、0.30%以下
 好ましい上限:0.12%、より好ましい上限:0.05%
O:0%以上、0.025%以下
 好ましい上限:0.022%以下、より好ましい上限:0.020%以下
 上記第2の溶接継手は、溶接金属中の金属間化合物が3500個/mm以下に低減されており、その結果、極低温靭性が向上する。上記金属間化合物の個数密度は、好ましくは3000個/mm以下、より好ましくは2500個/mm以下である。
 本発明において上記金属間化合物とは、二種類以上の金属が結合した化合物であって、NbまたはMoを主成分として含有する化合物を意味する。ここで主成分とは、金属間化合物を構成する金属のうち含有量が最も多い金属を意味する。上記金属間化合物にはNiも含まれるが、Niは主成分ではなく、NiよりもNbまたはMoがより多く含まれる。上記金属間化合物には、上記Nb、Mo、Niの他に、ワイヤ成分などに由来するW、Cr、Fe等が含まれていても良い。上記金属間化合物は、更に窒素、酸素などの非金属が含まれていても良い。なお、前述したAl酸化物、REM酸化物は、金属間化合物に該当しない。
 上記金属間化合物の個数密度は、該溶接金属の溶接方向に垂直な断面を電界放出型走査電子顕微鏡を用いて撮影し、画像解析ソフトは使用せずに目視で画像分析した結果、白色または灰色のコントラストで示されるものを全て金属間化合物として抽出し、これらの個数を測定することにより算出する。ここで、白色のコントラストで観察される金属間化合物はMoを主成分とする金属間化合物であり、例えば42.7%Mo-11.2%Cr-13.4%Fe-2.6%W-30.1%Niなどが例示される。一方、灰色のコントラストで観察される金属間化合物はNbを主成分とする金属間化合物であり、例えば93.7%Nb-2.5%Cr-1.2%Fe-2.6%Niなどが例示される。
 上記第1、第2の溶接継手の作製に用いられる母材は、質量%で5~10%のNiを含有する鋼板を用いることが好ましい。Ni量が5%未満では、極低温靭性が確保できない。Ni量は、より好ましくは5.2%以上であり、更に好ましくは6.5%以上である。但し、Ni量が10%を超えると鋼材コストが上昇するため、Ni量は10%以下であることが好ましい。Ni量は、より好ましくは9.6%以下であり、更に好ましくは9.4%以下である。
 上記母材において、Ni以外の組成は特に限定されないが、例えば、好ましい化学成分は以下のとおりである。なお、上記母材の残部は、鉄および不可避的不純物である。
 C:0.02%以上、0.09%以下
 Si:0.05%以上、0.30%以下
 Mn:0.4%以上、1.4%以下
 P:0%超、0.020%以下
 S:0%超、0.020%以下
 Al:0%超、0.050%以下
 Cu:0%超、1.0%以下
 Cr:0%超、1.5%以下
 Mo:0%超、0.6%以下
 以下、本発明で好ましく用いられるエレクトロスラグ溶接について説明する。本発明では、日本国特願2015-100415号に記載のエレクトロガス溶接方法およびエレクトロガス溶接装置(以下、先願発明と呼ぶ場合がある。)を用いることが好ましい。先願発明によれば、摺動式当て金を用いたエレクトロスラグ溶接において、スラグ浴深さを予め定めた深さに保ちながら溶接を行い、健全な溶込みを確保して溶接金属の機械的性質の劣化を防止することができる。
 以下、先願発明について詳しく説明する。
 先願発明は、エレクトロスラグ溶接において、コンタクトチップ先端からスラグ浴までの溶接ワイヤの長さが予め定めた長さとなるようにフラックスを供給し、基準電流値に対して溶接電流が予め定めた関係となるように溶接トーチと摺動式当て金とを搭載した走行台車の走行速度を調整し、スラグ浴深さを予め定めた深さに保ちつつ溶接を行うエレクトロスラグ溶接方法である。
 上記先願発明は、溶接ワイヤに給電するコンタクトチップを有する溶接トーチと、摺動式当て金と、溶接トーチ及び摺動式当て金を搭載した走行台車と、走行台車制御装置と、スラグ浴検出器と、フラックス供給装置と、フラックス供給制御装置とを備え、スラグ浴検出器は、コンタクトチップの先端から予め定めた長さの位置にスラグ浴が上昇してきた場合にスラグ浴を検出し、フラックス供給制御装置は、コンタクトチップの先端からスラグ浴までの溶接ワイヤの長さが予め定めた長さとなるように、スラグ浴検出器がスラグ浴を検出した場合にはフラックスの供給を停止し、スラグ浴検出器がスラグ浴を検出していない場合にはフラックスの供給を行うようにフラックス供給装置を制御し、走行台車制御装置は、ワイヤ送給速度に応じて定められた基準電流値に対して溶接電流が予め定めた関係となるように走行台車の走行速度を制御し、スラグ浴深さを予め定めた深さに保ちつつ溶接を行うエレクトロスラグ溶接装置である。
 また、走行台車制御装置は、予め定めた関係として、溶接電流が基準電流値より大きくなると走行台車の走行速度を増大させ、溶接電流が基準電流値より小さくなると走行台車の走行速度を減少させるように制御することを特徴とすることができる。
 さらに、スラグ浴検出器は、スラグ浴検出器の検出端子がスラグ浴と接触したときに溶接電圧を検知して、スラグ浴を検出することを特徴とすることができる。
 そして、スラグ浴検出器は、検知した溶接電圧を、ウィービング周期の1/2~2倍を時定数とするフィルタで処理して、スラグ浴を検出したか否かの判定を行うことを特徴とすることができる。
 また、検出端子は、溶接トーチと連結されていることを特徴とすることができる。
 さらに、スラグ浴検出器は、スラグ浴検出器の検出端子に直流電源から抵抗を通して電圧を印加し、検出端子がスラグ浴と接触したとき、検出端子の電圧が低下することによりスラグ浴を検出することを特徴とすることができる。
 そして、スラグ浴検出器は、フォトセンサーを有し、スラグ浴の光を検出して、スラグ浴を検出することを特徴とすることができる。
 また、フラックス供給装置は、ソレノイドにより駆動される弁によりフラックスを供給することを特徴とすることができる。
 さらに、フラックス供給装置は、モータによって駆動されるスクリューによりフラックスを供給することを特徴とすることができる。
 そして、基準電流値は、ワイヤ送給速度を変更した場合、ワイヤ送給速度と基準電流値との関係を示す予め定められた関数をもとに、自動的に変更されることを特徴とすることができる。
 また、基準電流値は、溶接ワイヤの種別に応じて定められる関数により種別ごとに求められることを特徴とすることができる。
 以下、添付図面を参照して、先願発明の実施の形態について詳細に説明する。
<溶接装置の構成>
 まず、本実施の形態に係るエレクトロスラグ溶接装置100について説明する。図1は、本実施の形態に係るエレクトロスラグ溶接装置100の概略構成の一例を示す図である。図1において、矢印Zの示す方向を垂直方向(上下方向)の上方向とし、矢印Xの示す方向を板厚方向(左右方向)の右方向とするとともに、紙面に対して垂直に裏面より表面に向かう方向を水平横方向Yの手前方向とする。また、図2は、図1に示すエレクトロスラグ溶接装置100を矢印Tから見た図である。すなわち、図2は、エレクトロスラグ溶接装置100を上方より見下ろした図である。ただし、図2では、後述する溶接トーチ4、フラックス供給装置14、フラックス供給制御装置15、走行台車16、走行台車制御装置17等を省略している。先願発明における「フラックス」は、本発明における投入れフラックスである。
 図1に示すように、本実施の形態に係るエレクトロスラグ溶接装置100は、固定の銅当て金1及び摺動式銅当て金2と、溶接トーチ4と、溶融スラグ浴検出器13と、フラックス供給装置14と、フラックス供給制御装置15と、走行台車16と、走行台車制御装置17とを備える。
 エレクトロスラグ溶接装置100において、開先の裏側には固定の銅当て金1が配置されており、開先の表側には摺動式銅当て金2が配置される。ここで、裏側の銅当て金1の代わりに、耐熱性のセラミックスから構成される裏当て材を用いても良い。また、表側の摺動式銅当て金2は、上下方向に摺動する銅当て金であり、水冷されている。ただし、摺動式銅当て金2として、銅の代わりのものを用いても良い。
 溶接トーチ4は、溶接電源(不図示)から供給される溶接電流8により溶接ワイヤ6を給電して溶接母材3を溶接する。また、溶接トーチ4は、コンタクトチップ5を有しており、コンタクトチップ5は、溶接ワイヤ6を案内するとともに溶接ワイヤ6に溶接電流8を供給する。
 溶融スラグ浴検出器13は、溶融スラグ浴7の位置を検出する。
 フラックス供給装置14は、溶融スラグ浴7にフラックス12を投入する。フラックス12は溶融して溶融スラグになるため、フラックス12を投入することにより、溶融スラグ浴7の量が増えることとなる。
 フラックス供給制御装置15は、フラックス供給装置14の動作を制御し、溶融スラグ浴7に投入されるフラックス12の量を調整する。
 走行台車16は、摺動式銅当て金2、溶接トーチ4、溶融スラグ浴検出器13、フラックス供給装置14、フラックス供給制御装置15、走行台車制御装置17を搭載しており、上方向(矢印zの示す方向)に移動する。すなわち、走行台車16は、摺動式銅当て金2、溶接トーチ4、溶融スラグ浴検出器13、フラックス供給装置14、フラックス供給制御装置15、走行台車制御装置17と一体となって移動するため、それぞれの相対的な位置関係は変わらない。走行台車16が上昇することにより、上方向に沿って溶接が行われる。
 走行台車制御装置17は、走行台車16の走行速度を増大させたり減少させたりして、走行台車16の動作を制御する。
 そして、溶接母材3、銅当て金1及び摺動式銅当て金2に囲まれた開先内に、溶接トーチ4のコンタクトチップ5から溶接ワイヤ6が送給され、開先内に形成された溶融スラグ浴7内に送り込まれる。溶接電流8は、溶接ワイヤ6から溶融スラグ浴7を通して溶融金属9に流れる。このとき、溶融スラグ浴7を流れる溶接電流8及び溶融スラグ浴7の抵抗により、ジュール熱が発生し、溶接ワイヤ6及び溶接母材3を溶融しながら溶接が進行する。
 溶接が進行するにつれて、溶融金属9は冷却されて溶接金属10となり、溶融スラグ浴7の一部は、銅当て金1と溶接金属10との間、及び摺動式銅当て金2と溶接金属10との間に形成された溶融スラグ層となり、この溶融スラグ層が冷却されて固化スラグ11となる。このようにして、溶融スラグ浴7は、その一部がビード表面を覆う固化スラグ11となるので、溶接の進行につれて消費され、溶融スラグ浴7の深さLsが減少していくことになる。この溶融スラグ浴7の減少を補うためには、溶融して溶融スラグ浴7となるフラックス12を追加投入する必要がある。
 ビード表面を覆う固化スラグ11の量は、ビード幅や溶接開先の幅によって変動する。また、固化スラグ11の量は、銅当て金1及び摺動式銅当て金2の密着度合や冷却状態によっても変動する。そのため、固化スラグ11の量は一定ではなく、溶融スラグ浴7の深さLsを一定に保つためには投入するフラックス12の量も変化させる必要がある。しかしながら、溶融スラグ浴7の深さLsがわからないために、フラックス12の投入量が適切でない場合には、溶融スラグ浴7の深さLsが変動することになる。
 そこで、本実施の形態では、溶融スラグ浴7の深さLsを一定にするための制御を行う。ここで、一定とは、溶融スラグ浴7の深さLsが常に1つの値になる場合に限られず、誤差を考慮して溶融スラグ浴7の深さLsが一定の範囲内の値を示す場合も含まれる。すなわち、溶融スラグ浴7の深さLsは、予め定めた深さに保つように制御される。
 そして、溶融スラグ浴7の深さLsを一定にするための第1の要件は、コンタクトチップ5の先端から溶融スラグ浴7の上面までの溶接ワイヤ長Ld(以下、ドライエクステンションLdと称する)が予め定めた長さになるように制御することである。また、溶融スラグ浴7の深さLsを一定にするための第2の要件は、ワイヤ送給速度に応じて定められた基準電流値に対して溶接電流8が予め定めた関係、すなわち、基準電流値と溶接電流8とが等しくなるように、走行台車制御装置17が走行台車16の走行速度を制御することである。
<溶融スラグ浴の深さを一定にする要件>
 まず、溶融スラグ浴7の深さLsを一定にするための第1の要件について説明する。フラックス供給制御装置15は、溶融スラグ浴検出器13が溶融スラグ浴7を検出していない場合、すなわち、摺動式銅当て金2の上部に設置された溶融スラグ浴検出器13が溶融スラグ浴7の上面に接触していない場合には、フラックス12を投入するようにフラックス供給装置14を制御する。一方、フラックス供給制御装置15は、溶融スラグ浴検出器13が溶融スラグ浴7を検出している場合、すなわち、摺動式銅当て金2の上部に設置された溶融スラグ浴検出器13が溶融スラグ浴7の上面に接触している場合には、フラックス12の投入を停止するようにフラックス供給装置14を制御する。このように、フラックス供給装置14は、溶融スラグ浴検出器13が溶融スラグ浴7を検出するようにフラックス12を投入し、溶融スラグ浴7の深さLsを調整する。
 ここで、溶接トーチ4、摺動式銅当て金2、溶融スラグ浴検出器13は全て走行台車16に搭載されており、走行台車16が移動しても、相対的な位置関係は変わらない。そのため、コンタクトチップ5の先端と溶融スラグ浴検出器13との間の距離も変わらない。そして、コンタクトチップ5の先端から予め定めた長さの位置(すなわち、溶融スラグ浴検出器13の位置)に溶融スラグ浴7が上昇してきた場合に、溶融スラグ浴検出器13は溶融スラグ浴7を検出する。フラックス供給制御装置15は、溶融スラグ浴検出器13が溶融スラグ浴7を検出するようにフラックス12の投入量を制御するため、コンタクトチップ5先端から溶融スラグ浴7の上面までの距離、すなわちドライエクステンションLdは、予め定めた長さになるように制御される。
 次に、溶融スラグ浴7の深さLsを一定にするための第2の要件について説明する。図3-1~図3-3は、溶融スラグ浴7の深さ、溶接ワイヤ6の長さ、溶接電流8、溶込み幅の相関関係を示す図である。ここで、図3-1~図3-3に示すように、ドライエクステンションLdが予め定めた長さに制御された状態において、溶融スラグ浴7の深さLsが、Ls1>Ls2>Ls3と変化すると、溶接ワイヤ6が溶融スラグ浴7に浸漬している長さ(以下、ウェットエクステンションLwと称する)は、ほぼ比例してLw1>Lw2>Lw3と変化し、溶込み幅Lmは、Lm1<Lm2<Lm3と変化する。一方、溶接電流8の値をIwとすると、溶接電流Iwとワイヤ送給速度Vwとの関係は、次の数1式のように表される。
Figure JPOXMLDOC01-appb-M000001
 数1式において、K1~K4は溶接ワイヤ6の径、構造及び材質により定まる定数である。
 さらに、ワイヤ送給速度Vwを一定にして溶接している状態で、上述の第1の要件で示したようにフラックス供給制御装置15によりドライエクステンションLdが予め定めた長さに制御される条件下では、数1式は、次の数2式のように表される。
Figure JPOXMLDOC01-appb-M000002
 すなわち、数2式より、溶接電流Iwは、ウェットエクステンションLwに逆比例して変化し、ウェットエクステンションLwが大きくなると、溶接電流Iwは小さくなる。また、上述したように、溶融スラグ浴7の深さLsは、ウェットエクステンションLwに比例することから、適切な溶融スラグ浴7の深さLs2のときの溶接電流Iwを基準電流値Iw2として設定しておく。そして、溶接の進行に伴って、溶接電流Iwが基準電流値Iw2より大きくなった場合は、溶融スラグ浴7の深さLsがLs2より小さくなり、溶込み幅LmがLm2より大きくなったと判断して、走行台車制御装置17は走行台車16の走行速度を増大させる。走行台車16の走行速度が増大することにより、ワイヤ突き出し長(Ld+Lw)が大きくなり、溶接電流Iwが小さくなって基準電流値Iw2になるように制御される。一方、溶接電流Iwが基準電流値Iw2より小さくなった場合は、溶融スラグ浴7の深さLsがLs2より大きくなり、溶込み幅LmがLm2より小さくなったと判断して、走行台車制御装置17は走行台車16の走行速度を減少させる。
 付言すると、初めに、溶融スラグ浴7の深さLsは、予め定めた深さとしてLs2に調整されて、溶接が開始される。また、走行台車16の走行速度は、溶接電流Iwの大きさに合わせて決定される。そして、溶接の進行に伴い、溶融スラグ浴7の一部は固化スラグ11となり消費されるため、溶融スラグ浴7の深さLsは減少する。摺動式銅当て金2の上部に設置された溶融スラグ浴検出器13が溶融スラグ浴7の上面に接触しない程度まで減少すると、フラックス供給制御装置15は、フラックス12を投入するようにフラックス供給装置14を制御する。しばらく投入し、フラックス供給制御装置15は、溶融スラグ浴検出器13が溶融スラグ浴7を検出する場合、すなわち、摺動式銅当て金2の上部に設置された溶融スラグ浴検出器13が溶融スラグ浴7の上面に接触すると、フラックス12の投入を停止するようにフラックス供給装置14を制御する。このように、コンタクトチップ5先端から溶融スラグ浴7の上面までの距離、すなわちドライエクステンションLdは、予め定めた長さになるように制御される。一方、適切な溶融スラグ浴深さの場合の溶接電流Iwが基準電流値Iw2として設定されているため、ドライエクステンションLdが上記の制御で一定となれば、ウェットエクステンションLwも一定となり、スラグ浴深さも一定となる。
 このように、走行台車制御装置17は、溶接電流Iwが基準電流値Iw2と等しくなるように走行台車16の走行速度を制御することにより、溶融スラグ浴7の深さLsが適切な深さLs2で一定になるように制御され、適切な溶込み幅Lm2を得ることができる。また、安定した機械的性質を有する溶接金属を得ることができる。
 また、基準電流値Iw2を決定するにあたり、まず、エレクトロスラグ溶接装置100において、ある溶接ワイヤ6を用いて、ワイヤ送給速度Vwを固定として溶接すると、ドライエクステンションLdは予め定めた長さに制御される。ここで何種類かの溶接電流Iwを用いて溶接を行うと、それぞれ異なったウェットエクステンションLw及び溶込み幅Lmの溶接が行われる。このとき最適な溶込み幅Lm2が得られたときの溶接電流Iwが、ワイヤ送給速度Vwの基準電流値Iw2として決定される。
 次に、ワイヤ送給速度Vwを変更して、同様に最適な基準電流値Iw2を求める。これを繰り返して、基準電流値Iw2をワイヤ送給速度Vwの関数として得ることができる。この関数(基準電流値Iw2とワイヤ送給速度Vwとの関係を示す関数)を走行台車制御装置17に記憶させておき、ワイヤ送給速度設定器の出力、あるいはワイヤ送給速度の検出値を用いて、基準電流値Iw2を設定するように制御すれば、ワイヤ送給速度Vwに応じて基準電流値Iw2が設定される。ワイヤ送給速度Vwを変更した場合には、変更後のワイヤ送給速度Vwに合わせて自動的に基準電流値Iw2も変更される。そして、自動的に最適な溶込みの得られるウェットエクステンションLw(または溶融スラグ浴7の深さLs)で溶接することができる。
 また、溶接ワイヤ6を変更して、上記手順を行うことで、各種溶接ワイヤ6についても、ワイヤ送給速度Vwに応じた基準電流値Iw2を求めることができる。ここで、基準電流値Iw2は、例えば、溶接ワイヤ6の径、構造及び材質などの溶接ワイヤ6の種別ごとに、ワイヤ送給速度Vwの関数で求められることとなる。付言すると、ワイヤ送給速度Vwの関数は、溶接ワイヤ6の種別に応じて定められ、基準電流値Iw2は、溶接ワイヤ6の種別ごとの関数により求められる。
<溶融スラグ浴検出器の構成>
 次に、溶融スラグ浴検出器13の構成について詳細に説明する。図4は、溶融スラグ浴検出器13の構成例を示す図である。図4に示すように、本実施の形態に係る溶融スラグ浴検出器13は、検出端子18、差動増幅器19、接触判定基準信号設定器20、比較器21を有し、検出端子18は導電性金属である銅からなり、一般には水冷されている。検出端子18は、溶融スラグ浴7に接触すると溶接電圧の一部の電圧を検出する。
 差動増幅器19は、検出端子18の電圧と、摺動式銅当て金2の電圧とを入力として、両電圧の差を出力する。摺動式銅当て金2は溶接母材3と接触しているので、摺動式銅当て金2の電圧は母材電圧である。
 接触判定基準信号設定器20は、検出端子18が溶融スラグ浴7に接触したときに検出する電圧の半分程度の電圧を、基準信号として出力する。例えば、図5に溶融スラグ浴7表面の溶接電圧分布の一例を示すが、検出端子18は通常6ボルト(電圧の単位:V)程度の溶接電圧を検出するので、例えば、基準信号としてはその半分の約3Vの電圧に設定される。検出端子18が溶融スラグ浴7に接触していないときは、溶接電圧が検出端子18にかからないので、検出端子18の電圧は0Vである。
 比較器21は、差動増幅器19の出力信号と接触判定基準信号設定器20の基準信号とを入力として、差動増幅器19の出力信号が接触判定基準信号設定器20の基準信号より大きくなったとき、検出端子18と溶融スラグ浴7とが接触したと判断した信号を作成する。作成された信号は、フラックス供給制御装置15に送られ、フラックス供給装置14によりフラックス12の供給及び停止が行われ、溶融スラグ浴7の上面がコンタクトチップ5の先端から予め定めた長さに位置するように制御され、ドライエクステンションLdが予め定めた長さに保たれる。
 また、図6-1~図6-3は、溶接トーチ4を板厚方向に揺動させた場合の溶融スラグ浴7表面の溶接電圧分布の一例を示す図である。まず、図6-2に示す溶接電圧分布は、溶接ワイヤ6が板厚中央にいるときのものであり、検出端子18が検出する溶接電圧は6V程度である。そこで、板厚方向の溶込みを均一化するために溶接トーチ4を揺動させ、溶接トーチ4が銅当て金1の近傍にいるときは、摺動式銅当て金2の近傍に配置されている検出端子18の検出する電圧は、図6-1に示すように、6Vの半分の3V程度に低下する。逆に、図6-3に示すように、溶接トーチ4が摺動式銅当て金2の近傍に来たときには、検出端子18の検出する溶接電圧は、12V程度と高くなる。
 ここで、接触判定基準信号設定器20の基準信号の電圧を1.5V程度に設定すれば、比較器21は溶融スラグ浴7と検出端子18とが接触していることを正しく判断できるが、基準信号の値が小さいため、溶接の状態あるいは外部ノイズ等で正しい判断ができない可能性もある。この誤検知を防止するため、溶融スラグ浴検出装置13は、差動増幅器19の後にフィルタ回路22が設置され、フィルタ回路22により処理をした溶接電圧をもとに溶融スラグ浴7を検出したか否かの判定を行うこととしても良い。図7は、図4に示す溶融スラグ浴検出装置13にフィルタ回路22を設けた構成例を示す図である。フィルタ回路22は、溶接トーチ4の揺動周期程度、すなわち周期の1/2から2倍程度の時定数をもったフィルタ回路22とすることが望ましい。
 図8は、フィルタ回路22がない場合の溶接電圧波形の一例を示す図であり、図9は、フィルタ回路22を介した場合の溶接電圧波形の一例を示す図である。具体的には、図8に示す波形は、サンプリング周期250msのフィルタのない場合に検出された溶接電圧波形である。また、図9に示す波形は、27データの移動平均、すなわち6.75秒(6750ms)の区間の移動平均の溶接電圧波形である。ここで、縦軸の1目盛りは3.000Vを示し、横軸の1目盛りは1秒(sec)を示している。また、図8及び図9に示す例では溶接トーチ4の揺動周期が8秒であるので、溶接電圧波形は溶接トーチ4の揺動周期と同等である。
 これらの溶接電圧波形から明らかなように、フィルタがない場合には、溶接トーチ4が銅当て金1の近傍にあるときは、検出端子18が検出する電圧は3V程度まで低下し、溶接トーチ4が摺動式銅当て金2の近傍にあるときは、12V程度の検出電圧となる。また、検出された溶接電圧は大きな変動をもっている。これに対して、フィルタを介した溶接電圧波形は、9Vから12Vの範囲に平均化されている。そのため、フィルタ回路22を用いた場合には、接触判定の基準信号を3V~6Vとすることができ、誤判定のリスクは大きく減少する。ここでは、揺動周期とほぼ同等な時定数を用いた例を示したが、揺動周期の1/2から2倍程度の時定数を用いたフィルタでも効果が確認された。
 また、検出端子18は、溶接トーチ4と連結させることとしても良い。図10は、検出端子18を溶接トーチ4に連結させた構成の一例を説明するための図である。図10に示す例では、差動増幅器19、接触判定基準信号設定器20、比較器21、フィルタ回路22の構成は、図7に示す構成と同様であるが、検出端子18は溶接トーチ4と連結されている。そして、溶接トーチ4が揺動したときは、検出端子18も溶接トーチ4とともに揺動するため、検出端子18は、常に溶接ワイヤ6の近傍に位置する。このため、図6-1~図6-3に示す溶接電圧分布を参照すると、検出端子18が溶融スラグ浴7と接触したときには、24V程度の溶接電圧を検出することができ、かつ溶接トーチ4の揺動にかかわらず、略一定の電圧を検出することができる。したがって、ノイズ等の影響を受けるリスクが減少する。
<溶融スラグ浴検出器の他の構成例>
 次に、溶融スラグ浴検出器13の他の構成例について説明する。図11及び図12は、溶融スラグ浴検出器13の他の構成例を示す図である。図11に示す例では、溶融スラグ浴検出器13は、検出端子18、直流電源23、抵抗24、差動増幅器19、フィルタ回路22、接触判定基準信号設定器20、比較器21を有している。直流電源23は、例えば100V~200V程度の電源であり、この直流電源23の出力は、抵抗24を通して検出端子18に接続される。ここで抵抗24の値は、例えば20kΩ~500kΩである。
 検出端子18が溶融スラグ浴7に接触していない場合には、電流が流れないので、ほぼ直流電源23の電圧が検出端子18に印加される。一方、検出端子18が溶融スラグ浴7と接触すると、検出端子18から溶融スラグ浴7を通して摺動式銅当て金2に電流が流れるので、直流電源23の電圧が抵抗24によりドロップして、検出端子18の電圧は溶接電圧の一部、すなわち3V~12V程度まで低下する。この変化を差動増幅器19、フィルタ回路22、接触判定基準信号設定器20、比較器21で判定して、溶融スラグ浴7を検出する。これらの動作については、前述の方法と同様であるので説明を省略する。この方法によれば、検出端子18と溶融スラグ浴7とが接触していないときの検出端子18の電圧は100V~200Vであるのに対して、検出端子18と溶融スラグ浴7とが接触しているときの検出端子18の電圧は3V~12Vとなり、両電圧の差が大きいので、信頼性のある動作が期待される。
 また、図12に示す例では、溶融スラグ浴検出器13は、フォトセンサーとして、溶融スラグ浴7の表面から放たれる光を受光する受光器25と、受光器25の光量があるレベルになったときを判定する受光判定器26とを有する。光量の判定レベルはあらかじめ決められたものとし、受光器25の角度等を調整して、ドライエクステンションLdが目標とする予め定めた長さとなるように調整する。また、この判定結果は、フラックス供給制御装置15に送られ、ドライエクステンションLdが一定になるようにフラックス12が供給される。
 付言すると、受光判定器26が受光器25の光量があるレベルに達していると判定した場合、溶融スラグ浴7がコンタクトチップ5の先端から予め定めた長さの位置まで上昇してきたこととなる。この場合、ドライエクステンションLdは予め定めた長さ以下になるため、フラックス供給制御装置15はフラックス12の投入を停止するように制御する。一方、受光判定器26が受光器25の光量があるレベルに達していないと判定した場合、溶融スラグ浴7はコンタクトチップ5の先端から予め定めた長さの位置まで上昇していないこととなる。この場合、ドライエクステンションLdは予め定めた長さより大きい状態であり、フラックス供給制御装置15はフラックス12を投入するように制御する。
<フラックス供給装置の構成>
 次に、フラックス供給装置14の構成について詳細に説明する。図13-1及び図13-2は、フラックス供給装置14の構成例を示す図である。図13-1に示すように、本実施の形態に係るフラックス供給装置14は、ソレノイド27が矢印28のように往復動することにより、回転軸29を中心として、弁30が矢印31のように回転し、フラックス供給ノズル32が開閉する。この動作により、フラックスホッパー33のフラックス12が溶融スラグ浴7に供給される。ここで、図13-1は、フラックス供給ノズル32が閉じている状態を示している。一方、図13-2は、フラックス供給ノズル32が開いている状態を示しており、フラックス供給ノズル32が開くことにより、フラックスホッパー33のフラックス12がフラックス供給ノズル32を介して溶融スラグ浴7に供給される。
<フラックス供給装置の他の構成例>
 次に、フラックス供給装置14の他の構成例について説明する。図14は、フラックス供給装置14の他の構成例を示す図である。図14に示す例では、フラックス供給装置14において、モータ34によって駆動されるスクリュー35の回転により、フラックスホッパー33からフラックス12が押し出され、図示していない経路を経て、溶融スラグ浴7へと供給される。
 以下、実施例を挙げて本発明をより具体的に説明するが、本発明は下記実施例によって制限されず、前・後記の趣旨に適合し得る範囲で変更を加えて実施することも可能であり、それらはいずれも本発明の技術的範囲に包含される。
実施例1
 本実施例では、第1のワイヤを用いて実験を行った。詳細には、先願発明に記載された図1のエレクトロスラグ溶接装置を用い、母材として9%Ni鋼板(神戸製鋼所製)、および表1~4の溶接材料を用いて下記の溶接条件にて表5-1および表5-2に示す溶接金属を作製した。下記表3-1および表3-2のワイヤNo.1~45は、上記第1のエレクトロスラグ溶接用ワイヤに該当する。また、下記表5-1および表5-2の実験No.1~45は、上記第1の溶接継手における溶接金属に該当する。本実施例ではREM添加に際し、12~15%のCe、4~8%のLaを含むSi-REM-Ca-Fe合金を用いた。
 より詳細には溶接材料として、表1に記載の各フープに、表2-1または表2-2に記載の各フラックスが充填された表3-1または表3-2のフラックス入りワイヤ(残部は不可避的不純物。ワイヤ径1.6mm)、および表4の投入れフラックス(残部はFeO)を用いた。フラックス入りワイヤは全て、表面にCuめっきが施されていない。
 表3-1または表3-2の各フラックス入りワイヤには、使用した表1のフープ番号と、表2-1または表2-2のフラックス番号と、フラックス入りワイヤ(フープ+フラックス)全質量に対するフラックスの充填率を記載しており、これらに基づいて各フラックス入りワイヤの成分量が決定される。例えば表3-1のフラックス入りワイヤNo.1のC量は、表1-1のフープNo.Aのフープ(C量=0.006%)と表2-1のフラックスNo.1のフラックス(C量=0.017%)を用いた例であり、フラックスの充填率は25%であるため、下記の計算式により0.009%となる。
 表3-1のフラックス入りワイヤNo.1のC量
 =(0.006%×0.75)+(0.017%×0.25)
 ≒0.009%
 また、表2-1および表2-2にはフラックス中に含まれるスラグ形成剤の含有率(%)を、表3-1および表3-2にはフラックス入りワイヤに対するスラグ形成剤の含有率(%)をそれぞれ示している。例えば表3-1のフラックス入りワイヤNo.1は、表2-1のフラックスNo.1のフラックス(フラックス中のスラグ形成剤は12.7%)を用いた例であり、フラックスの充填率は25%であるため、フラックス入りワイヤに対するスラグ形成剤の含有率は、12.7%×0.25≒3%となる。
 また、図15に示すように、銅当て金1(開先の裏側)及び摺動式銅当て金2(開先の表側)に囲まれた開先の幅は10mmであり、20°V開先溶接を行った。なお、銅当て金1及び摺動式銅当て金2はいずれも、水冷されたものを用いた。
溶接方法:エレクトロスラグ溶接
溶接条件:
 母材の板厚:30mm
 開先形状:図15を参照
 ワイヤ送給速度15.4m/min
 チップ母材距離を45mm
 スラグ浴深さ25mmで溶接を開始
 ワイヤ:フラックス入りワイヤ(FCW、表3-1および表3-2を参照)
 ワイヤ径=1.6mm
 入熱条件:約17kJ/mm(溶接電流340~360A-溶接電圧44V、溶接速度5.4cm/min)
 溶接姿勢:立向き1パス
 このようにして得られた溶接金属の組成(残部は鉄および不可避的不純物)を表5-1および表5-2に示す。上記溶接金属について、強度、極低温靭性、ビード外観を評価した。
(強度)
 溶接金属の中央部より、溶接線方向に平行にJIS Z2202に記載の方法で引張り試験片を採取して、JIS Z2241に記載の方法で引張り試験を行った。本実施例では、引張り強度TS>600MPaの溶接金属を合格とした。
(極低温靭性)
 上記のようにして得られた溶接金属の板厚中央部より、溶接線方向に垂直にシャルピー衝撃試験片(JIS Z3111 4号Vノッチ試験片)を採取し、JIS Z2242に記載の方法で-196℃でのシャルピー衝撃試験を実施した。同様の試験を3回行い、その平均値を算出したとき、吸収エネルギーIVが40J以上の溶接金属を極低温靭性に優れると評価した。
(ビード外観)
 ビード外観は目視にて行い、下記基準で評価した。
 合格:ビードの際が揃って直線性に優れているもの
 不合格:ビードが大きく蛇行しているもの、またはアンダーカットが発生したもの
 これらの結果を表5-1および表5-2に併記する。
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000010
 表5-1および表5-2の結果より、以下のように考察することができる。
 まず、表5-1または表5-2の実験No.1~31、45は、本発明の要件を満足する表3-1または表3-2のワイヤNo.1~31、45のワイヤを用いた例であり、約17kJ/mmの大入熱溶接を施したにもかかわらず、極低温靭性IVおよび強度TSの両方に優れた溶接金属が得られた。
 更に表5-2の実験No.41~44は、ワイヤ中に所定量のREMを添加した例であり、上記実験No.1~31に比べて溶接金属中の酸素含有量が一層低減されているため、強度が約645~693MPaと比較的高いにもかかわらず、同程度の強度を有する例に比べて極低温靭性が著しく向上した。
 これらのうち、投入れフラックスとして本発明の組成を満足する表4のa~gを用いた表5-1または表5-2の実験No.1~3、9~30、41~45は、ビード外観も良好であった。
 これに対し、表5-2の実験No.32~40は、本発明の要件を満足しない表3-2のワイヤNo.32~40のワイヤを用いた例であり、以下の不具合を有している。
 まず、表5-2の実験No.32は、Mn量およびCr量が多い表3-2のワイヤNo.32のワイヤを用いた例であり、溶接金属中のMn量およびCr量も多いため、極低温靭性が低下した。
 表5-2の実験No.33は、Ni量が多くCr量が少ない表3-2のワイヤNo.33のワイヤを用いた例であり、溶接金属中のNi量が多くCr量も少ないため、強度が低下した。
 表5-2の実験No.34は、Ni量が少ない表3-2のワイヤNo.34のワイヤを用いた例であり、溶接金属中のNi量も少ないため、極低温靭性が低下した。
 表5-2の実験No.35は、Al量が多い表3-2のワイヤNo.35のワイヤを用いた例であり、極低温靭性が低下した。
 表5-2の実験No.36は、W量が多い表3-2のワイヤNo.36のワイヤを用いた例であり、溶接金属中のW量も多いため、極低温靭性が低下した。
 表5-2の実験No.37は、Mo量が多い表3-2のワイヤNo.37のワイヤを用いた例であり、溶接金属中のMo量も多いため、極低温靭性が低下した。
 表5-2の実験No.38は、W量が少なくFe量が多い表3-2のワイヤNo.38のワイヤを用いた例であり、溶接金属中のW量が少なくFe量が多いため、強度が低下した。
 表5-2の実験No.39は、Mn量が少ない表3-2のワイヤNo.39のワイヤを用いた例であり、溶接金属中のMn量が少なため、強度が低下した。
 表5-2の実験No.40は、Si量およびNb量が多い表3-2のワイヤNo.40のワイヤを用いた例であり、溶接金属中のSi量およびNb量も多いため、極低温靭性が低下した。
実施例2
 本実施例では、第2のワイヤを用いて前述した実施例1と同様にして実験を行なった。詳細には、上記実施例1と同様に、表1、表4、表6、表7の溶接材料を用いて下記の溶接条件にて表8に示す溶接金属を作製した。下記表7のワイヤNo.46~51は、上記第2のエレクトロスラグ溶接用ワイヤに該当する。また、下記表8の実験No.46~51は、上記第2の溶接継手における溶接金属に該当する。本実施例においてもREM添加に際し、12~15%のCe、4~8%のLaを含むSi-REM-Ca-Fe合金を用いた。
 より詳細には溶接材料として、表1に記載の各フープに、表6に記載の各フラックスが充填された表7のフラックス入りワイヤ(残部は不可避的不純物。ワイヤ径1.6mm)、および表4の投入れフラックス(残部はFeO)を用いた。フラックス入りワイヤは全て、表面にCuめっきが施されていない。
 溶接は、上記実施例1と同じ条件で行った。得られた溶接金属の組成(残部は鉄および不可避的不純物)を表8に示す。上記溶接金属について、上記実施例1と同様、強度、極低温靭性、ビード外観を評価した。また、実施例2においては、更に溶接金属中の金属間化合物の個数密度を測定した。
(金属間化合物の個数密度)
 前述した方法で金属間化合物の個数密度を求めた。具体的には、日本電子株式会社製の電界放出型走査電子顕微鏡「JSM-7001F(FE-SEM)」を用い、加速電圧:15kV、観察倍率:1500倍の条件で反射電子像を各試料につき4視野撮影した。白色または灰色のコントラストで示される金属間化合物の個数を測定し、4視野の合計面積=0.0185mmで除することで、金属間化合物の個数密度を算出した。
 これらの結果を表8に併記する。
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000013
 表8から以下のように考察できる。
 表8の実験No.46~51は、本発明の要件を満足する表7のワイヤNo.46~51のワイヤを用いた例であり、溶接金属中の金属間化合物が3500個/mm以下に抑えられている。そのため、第1のワイヤを用いた前記実施例1に比べて、引張り強度TSが700MPa超、吸収エネルギーIVが60J以上と、強度および極低温靭性の両方が向上した。
 これに対し、前述した実施例1においてNb量が0.50%を超える第1のワイヤを用いて得られた溶接金属の一部(表5-1の実験No.1、2、5)について金属間化合物の個数密度を測定したところ、いずれも溶接金属に含まれるNb量が0.30%を超えているため、金属間化合物の個数密度はそれぞれ、9351個/mm(実験No.1)、8270個/mm(実験No.2)、3568個/mm(実験No.5)と多くなり、前記実験No.46~51並の高い極低温靭性は得られなかった。
 本発明を詳細にまた特定の実施態様を参照して説明したが、本発明の精神と範囲を逸脱することなく様々な変更や修正を加えることができることは当業者にとって明らかである。
 本出願は、2016年2月25日出願の日本特許出願(特願2016-034710)、2016年11月16日出願の日本特許出願(特願2016-223613)に基づくものであり、その内容はここに参照として取り込まれる。
 本発明は、約13kJ/mm以上の大入熱溶接、例えば造船や産業機械分野等の厚板の構造物の立向き溶接に有用となる。
1 銅当て金
2 摺動式銅当て金
3 溶接母材
4 溶接トーチ
5 コンタクトチップ
6 溶接ワイヤ
7 溶融スラグ浴
8 溶接電流
9 溶融金属
10 溶接金属
11 固化スラグ
12 フラックス(投入れフラックス)
13 溶融スラグ浴検出器
14 フラックス供給装置
15 フラックス供給制御装置
16 走行台車
17 走行台車制御装置
18 検出端子
19 差動増幅器
20 接触判定基準信号設定器
21 比較器
22 フィルタ回路
23 直流電源
24 抵抗
25 受光器
26 受光判定器
27 ソレノイド
28 矢印
29 回転軸
30 弁
31 矢印
32 フラックス供給ノズル
33 フラックスホッパー
34 モータ
35 スクリュー
100 エレクトロスラグ溶接装置

Claims (20)

  1.  質量%で、
    C :0%以上、0.300%以下、
    Si:0%以上、3.0%以下、
    Mn:1.20%以上、4.2%以下、
    Ni:49.0%以上、70%以下、
    Cr:9%以上、18.5%以下、
    Mo:0%以上、24.0%以下、
    Al:0%以上、0.13%以下、
    W :1.0%以上、14.0%以下、
    Fe:0%以上、6.0%以下、
    Mg:0%以上、1%以下、
    Nb:0%以上、4.0%以下、
    N :0%以上、0.2%以下、および
    Zr:0%以上、0.05%以下
    を含有することを特徴とするエレクトロスラグ溶接用ワイヤ。
  2.  更に、質量%で
     希土類元素:0%超、1.0%以下を含有する請求項1に記載のエレクトロスラグ溶接用ワイヤ。
  3.  前記ワイヤにCuめっきが施されたものである請求項1に記載のエレクトロスラグ溶接用ワイヤ。
  4.  前記ワイヤは、ソリッドワイヤまたはメタル系フラックス入りワイヤである請求項1に記載のエレクトロスラグ溶接用ワイヤ。
  5.  前記ワイヤはスラグ系フラックス入りワイヤである請求項1に記載のエレクトロスラグ溶接用ワイヤ。
  6.  前記フラックス中に、前記スラグ系フラックス入りワイヤ全質量に対し、スラグ形成剤を0%超、20%以下含む請求項5に記載のエレクトロスラグ溶接用ワイヤ。
  7.  立向き1パスでのエレクトロスラグ溶接に用いられるものである請求項1~6のいずれかに記載のエレクトロスラグ溶接用ワイヤ。
  8.  質量%で、
    C :0%以上、0.300%以下、
    Si:0%以上、3.0%以下、
    Mn:1.20%以上、4.2%以下、
    Ni:49.0%以上、70%以下、
    Cr:9%以上、18.5%以下、
    Mo:0%以上、24.0%以下、
    Al:0%以上、0.13%以下、
    W :4.6%以上、14.0%以下、
    Fe:0%以上、6.0%以下、
    Mg:0%以上、1%以下、
    Nb:0%以上、0.50%以下、
    N :0%以上、0.2%以下、
    Zr:0%以上、0.05%以下、および
    希土類元素:0%超、1.0%以下
    を含有することを特徴とするエレクトロスラグ溶接用ワイヤ。
  9.  前記ワイヤにCuめっきが施されたものである請求項8に記載のエレクトロスラグ溶接用ワイヤ。
  10.  前記ワイヤは、ソリッドワイヤまたはメタル系フラックス入りワイヤである請求項8に記載のエレクトロスラグ溶接用ワイヤ。
  11.  前記ワイヤは、スラグ系フラックス入りワイヤである請求項8に記載のエレクトロスラグ溶接用ワイヤ。
  12.  前記フラックス中に、前記スラグ系フラックス入りワイヤ全質量に対し、スラグ形成剤を0%超、20%以下含む請求項11に記載のエレクトロスラグ溶接用ワイヤ。
  13.  立向き1パスでのエレクトロスラグ溶接に用いられるものである請求項8~12のいずれかに記載のエレクトロスラグ溶接用ワイヤ。
  14.  請求項8に記載のエレクトロスラグ溶接用ワイヤと共にエレクトロスラグ溶接に用いられる投入れフラックスであって、
     前記投入れフラックスは、質量%で、
    SiO:15%以上、50%以下、
    CaO:10%以上、40%以下、
    CaF:5%以上、15%以下、
    MgO:0%以上、12%以下、
    Al:0%以上、14%以下、
    MnO:0%以上、25%以下、
    TiO:0%以上、10%以下、および
    ZrO:0%以上、10%以下
    を含有することを特徴とするエレクトロスラグ溶接用投入れフラックス。
  15.  請求項8に記載のエレクトロスラグ溶接用ワイヤと共にエレクトロスラグ溶接に用いられる投入れフラックスであって、
     前記投入れフラックスは、質量%で、
    SiO:15%以上、50%以下、
    CaO:10%以上、40%以下、
    CaF:5%以上、15%以下、
    MgO:0%以上、12%以下、
    Al:0%以上、14%以下、
    MnO:0%以上、25%以下、
    TiO:0%以上、10%以下、および
    ZrO:0%以上、10%以下
    を含有することを特徴とするエレクトロスラグ溶接用投入れフラックス。
  16.  請求項5または6に記載のエレクトロスラグ溶接用ワイヤ、および請求項14に記載のエレクトロスラグ溶接用投入れフラックスを用い、エレクトロスラグ溶接により作製される溶接継手であって、
     溶接金属は、質量%で、
    C :0%以上、0.260%以下、
    Si:0%以上、3.0%以下、
    Mn:1.0%以上、4.00%以下、
    Ni:40.0%以上、70.0%以下、
    Cr:7%以上、15.0%以下、
    Mo:0%以上、20.0%以下、
    W :0.50%以上、13.0%以下、
    Fe:0%以上、32%以下、
    Nb:0%以上、2.5%以下、
    N :0.01%以上、0.11%以下、および
    O :0%以上、0.055%以下
    を含有することを特徴とする溶接継手。
  17.  前記溶接金属は、質量%で、O:0%以上、0.025%以下を含有する請求項16に記載の溶接継手。
  18.  母材として、質量%で5%以上、10%以下のNiを含有する鋼板を用いるものである請求項16に記載の溶接継手。
  19.  請求項11または12に記載のエレクトロスラグ溶接用ワイヤ、および請求項15に記載のエレクトロスラグ溶接用投入れフラックスを用い、エレクトロスラグ溶接により作製される溶接継手であって、
     前記溶接金属は、質量%で、
    C :0%以上、0.260%以下、
    Si:0%以上、3.0%以下、
    Mn:1.0%以上、4.00%以下、
    Ni:40.0%以上、70.0%以下、
    Cr:7%以上、15.0%以下、
    Mo:0%以上、20.0%以下、
    W :4.50%以上、13.0%以下、
    Fe:0%以上、32%以下、
    Nb:0%以上、0.30%以下、
    N :0.01%以上、0.11%以下、および
    O :0%以上、0.025%以下
    を含有し、
     溶接金属中の金属間化合物が3500個/mm以下であることを特徴とする溶接継手。
  20.  母材として、質量%で5%以上、10%以下のNiを含有する鋼板を用いるものである請求項19に記載の溶接継手。
PCT/JP2017/005234 2016-02-25 2017-02-14 エレクトロスラグ溶接用Ni基溶接材料 WO2017145854A1 (ja)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2016034710 2016-02-25
JP2016-034710 2016-02-25
JP2016-223613 2016-11-16
JP2016223613A JP2017148863A (ja) 2016-02-25 2016-11-16 エレクトロスラグ溶接用Ni基溶接材料

Publications (1)

Publication Number Publication Date
WO2017145854A1 true WO2017145854A1 (ja) 2017-08-31

Family

ID=59685202

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/005234 WO2017145854A1 (ja) 2016-02-25 2017-02-14 エレクトロスラグ溶接用Ni基溶接材料

Country Status (1)

Country Link
WO (1) WO2017145854A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112813307A (zh) * 2020-12-31 2021-05-18 江苏国镍新材料科技有限公司 一种耐高温镍合金及其制备方法
CN115255718A (zh) * 2022-09-06 2022-11-01 兰州理工大学 一种镍基合金焊丝及其制备方法和应用

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5740896B2 (ja) * 1976-12-02 1982-08-31
JP2005059077A (ja) * 2003-08-18 2005-03-10 Kobe Steel Ltd Ni基合金フラックス入りワイヤ
JP2010500178A (ja) * 2006-08-08 2010-01-07 ハンチントン、アロイス、コーポレーション 溶接に使用するための溶接合金および製品、溶接物ならびに溶接物の製造方法
JP2013237064A (ja) * 2012-05-15 2013-11-28 Kobe Steel Ltd Ni基合金溶接金属、帯状電極及び溶接方法
US20150076130A1 (en) * 2013-09-16 2015-03-19 Lincoln Global, Inc. Flux cored welding electrode for 5-9% nickel steel

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5740896B2 (ja) * 1976-12-02 1982-08-31
JP2005059077A (ja) * 2003-08-18 2005-03-10 Kobe Steel Ltd Ni基合金フラックス入りワイヤ
JP2010500178A (ja) * 2006-08-08 2010-01-07 ハンチントン、アロイス、コーポレーション 溶接に使用するための溶接合金および製品、溶接物ならびに溶接物の製造方法
JP2013237064A (ja) * 2012-05-15 2013-11-28 Kobe Steel Ltd Ni基合金溶接金属、帯状電極及び溶接方法
US20150076130A1 (en) * 2013-09-16 2015-03-19 Lincoln Global, Inc. Flux cored welding electrode for 5-9% nickel steel

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112813307A (zh) * 2020-12-31 2021-05-18 江苏国镍新材料科技有限公司 一种耐高温镍合金及其制备方法
CN115255718A (zh) * 2022-09-06 2022-11-01 兰州理工大学 一种镍基合金焊丝及其制备方法和应用
CN115255718B (zh) * 2022-09-06 2023-08-18 兰州理工大学 一种镍基合金焊丝及其制备方法和应用

Similar Documents

Publication Publication Date Title
JP5411820B2 (ja) フラックス入り溶接ワイヤ及びこれを用いた肉盛溶接のアーク溶接方法
JP5205115B2 (ja) 純Arシールドガス溶接用MIGフラックス入りワイヤ及びMIGアーク溶接方法
EP2343149B1 (en) Flux-cored nickel-based alloy wire
RU2600466C2 (ru) Решение для сварки корневого прохода
JP4886440B2 (ja) 低温靭性に優れた高強度溶接金属
WO2018051823A1 (ja) エレクトロスラグ溶接用ワイヤ、エレクトロスラグ溶接用フラックス及び溶接継手
US11318567B2 (en) Flux-cored wire
JP6810019B2 (ja) ガスシールドアーク溶接ワイヤ及びガスシールドアーク溶接方法
KR102208029B1 (ko) 일렉트로슬래그 용접용 와이어, 일렉트로슬래그 용접용 플럭스 및 용접 이음
EP3170607B1 (en) Tandem submerged arc welding method of high cr csef steel
KR101153572B1 (ko) 플럭스 내장 와이어
JP2008149341A (ja) ガスシールドアーク溶接用フラックス入りワイヤ
JP2019025524A (ja) ガスシールドアーク溶接用フラックス入りワイヤ、及び溶接継手の製造方法
JP2017148863A (ja) エレクトロスラグ溶接用Ni基溶接材料
CN109396688A (zh) 用于形成奥氏体钢和双相钢焊接金属的电极
WO2017145854A1 (ja) エレクトロスラグ溶接用Ni基溶接材料
KR101910216B1 (ko) 니켈 함량이 높은 강철의 용접용 플럭스-코어드 와이어
JP2008000808A (ja) 低温靭性、耐低温割れ性、および全姿勢溶接時のビード形状が良好な高強度溶接金属
EP3974097A2 (en) Covered electrode for arc welding high strength steel background
JP2017074602A (ja) 球状黒鉛鋳鉄同士あるいは球状黒鉛鋳鉄と鋼の溶接部、および、当該溶接に用いる溶接材料と溶接部の熱処理方法
JP6726008B2 (ja) ガスシールドアーク溶接用フラックス入りワイヤ
JP7252051B2 (ja) エレクトロスラグ溶接用ソリッドワイヤ及び溶接継手
JP2524774B2 (ja) ステンレス鋼の潜弧溶接方法
JP7231499B2 (ja) フラックス入りワイヤ及び溶接方法
WO2019221284A1 (ja) エレクトロスラグ溶接用ソリッドワイヤ及び溶接継手

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17756295

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17756295

Country of ref document: EP

Kind code of ref document: A1