WO2020246498A1 - Al含有亜包晶鋼の連続鋳造用モールドパウダー及び連続鋳造方法 - Google Patents

Al含有亜包晶鋼の連続鋳造用モールドパウダー及び連続鋳造方法 Download PDF

Info

Publication number
WO2020246498A1
WO2020246498A1 PCT/JP2020/021918 JP2020021918W WO2020246498A1 WO 2020246498 A1 WO2020246498 A1 WO 2020246498A1 JP 2020021918 W JP2020021918 W JP 2020021918W WO 2020246498 A1 WO2020246498 A1 WO 2020246498A1
Authority
WO
WIPO (PCT)
Prior art keywords
mass
content
mold powder
mold
less
Prior art date
Application number
PCT/JP2020/021918
Other languages
English (en)
French (fr)
Inventor
健二 鼓
秀弥 正木
Original Assignee
Jfeスチール株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jfeスチール株式会社 filed Critical Jfeスチール株式会社
Priority to CN202080041035.3A priority Critical patent/CN113939376B/zh
Priority to US17/616,525 priority patent/US11945028B2/en
Priority to KR1020217038814A priority patent/KR102629377B1/ko
Priority to EP20818855.7A priority patent/EP3964304A4/en
Priority to JP2021524875A priority patent/JP7014335B2/ja
Publication of WO2020246498A1 publication Critical patent/WO2020246498A1/ja
Priority to JP2022007001A priority patent/JP7272477B2/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/07Lubricating the moulds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/16Controlling or regulating processes or operations
    • B22D11/165Controlling or regulating processes or operations for the supply of casting powder
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/001Continuous casting of metals, i.e. casting in indefinite lengths of specific alloys
    • B22D11/003Aluminium alloys
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/10Supplying or treating molten metal
    • B22D11/108Feeding additives, powders, or the like
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/10Supplying or treating molten metal
    • B22D11/11Treating the molten metal
    • B22D11/111Treating the molten metal by using protecting powders
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/16Controlling or regulating processes or operations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D21/00Casting non-ferrous metals or metallic compounds so far as their metallurgical properties are of importance for the casting procedure; Selection of compositions therefor
    • B22D21/002Castings of light metals
    • B22D21/007Castings of light metals with low melting point, e.g. Al 659 degrees C, Mg 650 degrees C
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/14Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silica
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/22Ferrous alloys, e.g. steel alloys containing chromium with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/38Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of manganese
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Definitions

  • the present invention relates to a mold powder for continuous casting capable of preventing lateral cracking, corner cracking, and dented shape. Further, the present invention relates to a method for continuously casting Al-containing subclave steel using this mold powder.
  • the solidified shell In continuous steel casting, when subcapsular steel with a carbon content in the subcapsular region is solidified, the solidified shell is distorted due to the rapid volume change of the solid phase accompanying the ⁇ ⁇ ⁇ peritectic transformation, and the solidified shell Concavo-convex shape is likely to occur on the surface of.
  • the carbon content of the subcapsular region varies depending on the alloy composition, but generally, the carbon content is in the range of 0.08 to 0.17% by mass.
  • the recesses of the solidification shell are separated from the mold to delay solidification, and the thickness is locally thinned. It is generally known that thermal strain, transformation strain, slab pulling force, and the like are concentrated on this thinned portion, and surface cracking occurs in the continuously cast slab.
  • the mold powder When the mold powder is added onto the molten steel surface in the continuous casting mold, it melts by receiving heat from the molten steel, spreads over the entire molten steel surface in the mold, and then forms from the boundary between the mold and the solidified shell. / Flows between solidification shells and acts as a lubricant, antioxidant and insulation.
  • the molten mold powder that has flowed between the mold and the solidified shell is cooled by the mold and crystallized (a phenomenon in which crystals precipitate in the liquid phase), and then solidifies.
  • a component that precipitates an appropriate crystal species heat transfer between the mold and the solidified shell is greatly hindered, and the slow cooling effect is improved.
  • Kasupidain as the crystal seed (Cuspidine; 2SiO 2 ⁇ 3CaO ⁇ CaF 2) have been utilized.
  • Patent Document 1 states that the crystallization temperature (the temperature at which crystals precipitate in the liquid phase) is set to 1150 while maintaining lubricity in order to suppress cracking on the surface of slabs of medium carbon steel (sub-crystal steel). Mold powders that have been heated to ⁇ 1250 ° C. to promote crystallization have been proposed. According to Patent Document 1, the use of the mold powder prevents cracks on the surface of slabs of medium carbon steel. According to Patent Document 1, when the crystallization temperature of the mold powder is higher than 1250 ° C., the lubricity of the mold powder is lowered, which hinders the uniform inflow of the mold powder between the mold and the solidified shell. , It is stated that the solidified shell burned into the mold and a breakout occurred.
  • the crystallization temperature the temperature at which crystals precipitate in the liquid phase
  • the conventional slow-cooling mold powder for subpackaged steel as in Patent Document 1 and the continuous casting method using this mold powder have an Al content of 0.2% by mass or more. Not suitable for continuous casting. This is due to the following reasons.
  • the characteristics of the mold powder are significantly changed, and the casting stability is significantly lowered. This is because the characteristics of the mold powder change significantly, which causes a restrictive breakout due to the coarsening of the slug bear and the insufficient inflow of the mold powder between the mold and the solidified shell, and the cooling conditions in the mold. This is because vertical cracks are induced on the surface of the slab due to the variation.
  • Patent Document 2 describes CaO, SiO 2 , alkali metal oxide, and a fluorine compound component as a mold powder that suppresses vertical cracking of subpackaged steel containing 0.1 to 2.0% by mass of Al.
  • a slow-cooling type mold powder containing caspidyne as the main crystal with a controlled ratio has been proposed.
  • Patent Document 2 does not describe the technical idea for simultaneously suppressing lateral cracks and corner cracks on the surface of the slab described above.
  • the present invention has been made in view of the above circumstances, and an object of the present invention is to have an Al content of 0.2 to 2.0% by mass and a carbon content of a subperforated crystal region (0.08 to 0. It is an object of the present invention to provide a mold powder capable of preventing vertical cracks, horizontal cracks, corner cracks, and dented shapes generated on the surface of continuously cast slabs of Al-containing subcapsular steel (17% by mass). Another object of the present invention is to provide a method for continuously casting an Al-containing subclave steel using this mold powder.
  • the composition of the mold powder in this way, the crystallization rate is stable and fast, and the crystal formation conditions with large slow cooling characteristics can be maintained.
  • the thickness of the molten layer of the mold powder becomes too thick due to the excessive melting of the mold powder, and the crystallization temperature rises, which tends to promote the formation of slug bears.
  • the molten state and low viscosity of the mold powder can be stably controlled by appropriately substituting a part of F and Na 2 O with Li 2 O.
  • Al-containing subpackaged steel containing 0.2% by mass or more and 2.0% by mass or less of Al (aluminum) and having a carbon content in the subcapsular region (0.08 to 0.17% by mass). It is a mold powder used for continuous casting of CaO, SiO 2 , Na 2 O, Li 2 O, F (fluorine), C (carbon) are the basic components.
  • the viscosity at 1300 ° C. in the composition of the mold powder in which the Al 2 O 3 content is increased by 20.0% by mass from the initial composition is ⁇ 1
  • the crystallization temperature in the composition is T CS 1
  • the mold powder for continuous casting of the Al-containing subclave steel according to any one of the above [1] to [4] is supplied into the continuous casting mold, and the slab drawing speed is set to 0. .7 to 2.0 m / min, and the thickness of the mold powder molten layer is 8 x Q 1/2 mm or more, 18 x Q 1/2 mm or less, and 18 x Q 1/2 mm or less with respect to the molten steel casting flow rate (Q; ton / min).
  • the present invention it is possible to prevent the occurrence of vertical cracks, horizontal cracks, corner cracks and dents on the surface of continuously cast slabs of Al-containing subclave steel. As a result, it is possible to stably produce continuously cast slabs having an Al content of 0.2 to 2.0% by mass and a carbon content in the subcapsular region, which is excellent in surface quality. It becomes.
  • mold powder is added to the molten steel surface in the continuous casting mold.
  • the mold powder added into the mold is heated by the heat of the molten steel in the mold to form a temperature gradient in which the temperature on the side in contact with the molten steel in the mold is high and the temperature on the opposite side in contact with the atmosphere is low. That is, the mold powder on the molten steel surface side in the mold melts to form a molten mold powder layer (referred to as "mold powder molten layer”) on the molten steel surface in the mold.
  • a mold powder layer (referred to as a "mold powder semi-molten layer”) in which a molten layer and a solid layer coexist is formed on the mold powder molten layer.
  • mold powder solid layer On the mold powder semi-molten layer, a mold powder layer (referred to as “mold powder solid layer") is formed in which a part of C (carbon) contained is burned, but other components have the same initial composition. Will be done.
  • the "initial composition of the mold powder” is the composition of the mold powder before it is added into the mold.
  • the molten mold powder flows into the gap between the mold and the solidified shell and is consumed, the molten mold powder is supplied from the mold powder semi-molten layer to the mold powder molten layer so as to supplement the consumed mold powder. To. Further, a new mold powder is added on the mold powder solid layer so as to supplement the consumed mold powder. In this way, the mold powder functions as a lubricant for the solidified shell and the mold, an antioxidant for the molten steel in the mold, and a heat retaining agent.
  • a mold is used.
  • the composition of the molded powder molten layer changes due to the reaction between the powder molten layer and Al in the molten steel.
  • gehlenite high melting point crystals, such as (Gehlenite 2CaO ⁇ Al 2 O 3 ⁇ SiO 2) is generated.
  • the present invention suppresses the formation of refractory crystals such as gerenite even if the composition of the molded powder molten layer changes as described above during continuous casting of the Al-containing subcapsular steel, and caspidine (2SiO). This is a technique for the purpose of stably and uniformly precipitating 2.3 CaO / CaF 2 ).
  • the stable and uniform precipitation of caspidine makes it possible to maintain the slow cooling effect of the mold powder.
  • the mold powder according to the present invention contains CaO (calcium oxide), SiO 2 (silicon oxide), Na 2 O (sodium oxide), Li 2 O (lithium oxide), F (fluorine), and C (carbon) as basic components.
  • the component control range is controlled as follows.
  • the "CaO content (mass%) / SiO 2 content (mass%)" in the initial composition of the mold powder is set to "1.0 + 0.05 x [Al content of molten steel (mass%)]” or more, and " 2.0-0.35 x [Al content of molten steel (mass%)] "or less.
  • [Al content (mass%) of molten steel] is the Al content of continuously cast molten steel. Therefore, for example, when the Al content of the continuously cast molten steel is 1.0% by mass, the "CaO content (mass%) / SiO 2 content (mass%)" of the mold powder is 1.05. It needs to be in the range of ⁇ 1.65.
  • the basicity ((mass% CaO) / (mass% SiO 2 )) of the mold powder molten layer is reduced because SiO 2 in the molded powder molten layer is reduced to Al in the molten steel and decreases. It rises from the early stage to the late stage of continuous casting. This change is promoted as the Al content of the molten steel increases.
  • the composition of the molded powder molten layer is designed so as to always overlap within the caspidine precipitation region.
  • the "crystallization temperature” is the temperature at which the heat generated by crystal formation is measured when the mold powder completely melted at 1300 ° C. is cooled at a constant speed of 5 ° C./min in a platinum crucible. Is.
  • the crystallization temperature is lowered to 1100 ° C. or lower, and crystal precipitation is suppressed.
  • the solidified shell is strongly cooled, and vertical cracks occur on the surface of the solidified shell.
  • Al 2 O 3 of the molded powder molten layer is enriched, it reaches the region where gerenite is formed, and the viscosity of the molded powder molten layer rapidly increases, so that the depletion and lateral cracking of the slab surface increase.
  • the "CaO content (mass%) / SiO 2 content (mass%)" in the initial composition of the mold powder is 1.0 or more "1.0 + 0.05 ⁇ [Al content (mass%) of molten steel]". Even in the region of less than, there is a part of the component range in which the caspidyne crystals are precipitated. However, in this region, when the mold powder molten layer absorbs Al 2 O 3 suspended in the molten steel and the Al 2 O 3 content of the mold powder molten layer increases, the mold powder molten layer moves into the precipitation region of gerenite. There is a risk that the stability of the continuous casting operation will decrease because the composition of the aluminum will change.
  • the “CaO content (mass%) / SiO 2 content (mass%)” in the initial composition of the mold powder is set to “1.0 + 0.05 ⁇ [Al content (mass%) of molten steel]”. That is all.
  • Na 2 O, Li 2 O and F Appropriately control the blending amount. Specifically, it is as follows.
  • the Na 2 O content in the initial composition of the mold powder is 8% by mass or less. Since Na has a higher affinity for F than Ca, excessive addition of Na 2 O inhibits the production of caspidine. Further, when Na 2 O is excessively contained, nepheline (NaAlSiO 4 ) is likely to be precipitated, and coarse caspidyne is likely to be non-uniformly produced with nepheline as a nucleus. As a result, a large slug bear is formed and induces a non-uniform inflow of the mold powder between the mold and the solidified shell. This effect, since the content of Na 2 O is remarkable at 8 weight percent, and 8 wt% the upper limit of the content of Na 2 O.
  • the Na 2 O content is preferably 5% by mass or less. More preferably, it is 4% by mass or less.
  • the component range is determined by an appropriate blending ratio with LiO and F described later.
  • Li 2 O can be used instead of Na 2 O as the viscosity modifier and the melt accelerator of the mold powder.
  • "Li 2 O content (mass%) / Na 2 O content (mass%)" is set to 0.6 or more in the initial composition of the mold powder.
  • the Li 2 O content is set to 2% by mass or more.
  • the Li 2 O content exceeds 7% by mass, precipitation of even caspidyne is inhibited and the production cost of the mold powder increases remarkably. Therefore, the upper limit of the Li 2 O content is It is 7% by mass.
  • the "Li 2 O content (mass%) / Na 2 O content (mass%)" exceeds 2.0, there may be an adverse effect of inhibiting the precipitation of caspidine and significantly increasing the production cost of the mold powder. is there. Therefore, the "Li 2 O content (mass%) / Na 2 O content (mass%)” is preferably 2.0 or less.
  • F fluorine
  • the melting of the mold powder is excessively promoted, and the thickness of the mold powder molten layer is excessively increased. Therefore, as a result, the distance from the molten steel surface in the mold to the upper surface of the molten mold powder layer is increased, the temperature of the molten mold powder layer is lowered, and the viscosity of the molten mold powder layer is increased and the slug bear is coarsened. This induces deep oscillation marks and depletion on the slab surface.
  • the Na 2 O content, the Li 2 O content and the F content are adjusted within the range satisfying the following equation (1).
  • C (carbon) is a component that functions as a melting rate adjuster for mold powder, and is an essential component for mold powder. If the C content is less than 2% by mass, the melting rate of the mold powder is too fast, which causes the unmelted mold powder to be caught and solidified to form agglomerates, resulting in coarsening of the slug bear and biting of foreign matter. It causes instability of continuous casting operation. Therefore, in the initial composition of the mold powder, the lower limit of the C content is set to 2% by mass.
  • the C content is set to 10% by mass or less.
  • K 2 O is 5% by mass or less
  • MnO is 5% by mass or less
  • MgO is 5% by mass or less
  • B 2 O 3 is 5% by mass or less
  • BaO is 5% by mass in the above composition. It is also possible to contain one or more of% or less. These components may be used as flux instead of Na 2 O or Li 2 O.
  • the addition of an excessive solvent also inhibits the precipitation of caspidine, lowers the crystallization temperature, and causes the slag bear to become coarse due to the excessive melting of the mold powder. Therefore, the total of these contents is preferably 5% by mass or less, and more preferably 3% by mass or less.
  • B 2 O 3 causes the movement of B (boron) from the molten mold powder layer to the molten steel, which increases the B concentration of the molten steel and causes hardening and embrittlement of the solidified shell, resulting in slab surface quality.
  • the amount of B 2 O 3 added is more preferably less than 2% by mass because it causes deterioration.
  • the content of Al 2 O 3 is low.
  • the smaller the Al 2 O 3 content the more the mold powder molten layer can be maintained in the component range where the precipitation of caspidyne can be used, and the characteristic change of the mold powder molten layer is stabilized at a low level. it can. Therefore, in the initial composition of the mold powder, the content of Al 2 O 3 is preferably 3% by mass or less, and more preferably 2% by mass or less.
  • the mold powder for continuous casting of Al-containing subclave steel according to the present invention is controlled to have the following characteristic characteristics.
  • the range of properties and their purpose will be described below.
  • the crystallization temperature of the mold powder shall be 1100 ° C or higher and 1250 ° C or lower. If the crystallization temperature is less than 1100 ° C., the slow cooling effect is insufficient and vertical cracks occur on the surface of the slab. On the other hand, if the crystallization temperature exceeds 1250 ° C., the crystallization temperature becomes too high, the fluidity of the mold powder is hindered, and there is a risk of breakout.
  • the viscosity of the mold powder at 1300 ° C. is 0.05 Pa ⁇ s or more and 0.20 Pa ⁇ s or less.
  • the viscosity at 1300 ° C. is less than 0.05 Pa ⁇ s, the mold powder molten layer is caught in the molten steel due to the turbulent flow of the molten steel surface in the mold and adheres to the inner layer of the solidified shell, resulting in mold powder in steel products. There is a risk of causing defects.
  • the characteristic change accompanying the enrichment of Al 2 O 3 is large, the variation in the characteristics of the molded powder molten layer increases and the continuous casting operation becomes unstable, so that the increase in the crystallization temperature and the viscosity increase. It is preferable to keep the amount of increase low.
  • the SiO 2 is reduced and the Al 2 O 3 is reduced with respect to the initial composition of the mold powder. Even if the enrichment occurs, the changes in crystallization temperature and viscosity due to these changes are suppressed. This is a feature of the mold powder according to the present invention.
  • the viscosity of the mold powder at 1300 ° C. in the initial composition is ⁇ 0
  • the crystallization temperature in the initial composition is T CS 0
  • SiO 2 in the initial composition of the mold powder is reduced with Al
  • the content of SiO 2 in the mold powder molten layer is reduced by 17.6% by mass from the initial composition
  • the Al 2 O 3 content is initially.
  • ⁇ 1 be the viscosity at 1300 ° C. in a composition increased by 20.0% by mass from the composition
  • T CS 1 be the crystallization temperature in that composition.
  • the viscosity of the mold powder was measured by a method of pulling up a platinum ball after charging the mold powder into a platinum crucible, raising the temperature to 1300 ° C. in an annular furnace to completely melt it. At that time, the temperature of the mold powder was measured with a thermocouple installed on the outer surface layer of the platinum crucible, and the temperature difference from the temperature inside the crucible was confirmed and calibrated in advance. Further, the temperature of the molten mold powder is measured while cooling the platinum ruts containing the molten mold powder at a cooling rate of 5 ° C./min at the furnace body temperature, and the cooling rate of the melted mold powder is the furnace body temperature. The temperature lower than the cooling rate of was regarded as the heat generation start temperature associated with crystal formation, and this temperature was defined as the crystallization temperature.
  • the applicable steel type is an Al-containing subcapsular steel containing 0.2% by mass or more and 2.0% by mass or less of Al and having a carbon content in the subcapsular region (0.08 to 0.17% by mass). set to target.
  • subpackaged steel having an Al content of more than 2.0% by mass it is very difficult to maintain the characteristic change due to the enrichment of Al 2 O 3 within a predetermined range.
  • a conventional mold powder for continuous casting of sub-packed steel can be used.
  • the mold powder according to the present invention may be used for continuous casting of subcapsular steel having an Al content of less than 0.2% by mass.
  • the slab drawing speed is preferably 0.7 m / min or more and 2.0 m / min or less. If the slab drawing speed is less than 0.7 m / min, the heat supply to the mold powder added on the molten steel surface in the mold is insufficient, and the mold powder does not melt sufficiently, so that the fluidity of the mold powder molten layer Is extremely poor, and the surface quality of the slab deteriorates. On the other hand, if the slab drawing speed exceeds 2.0 m / min, the amount of mold powder flowing into the mold / solidified shell is insufficient and there is a risk of breakout.
  • the thickness of the mold powder molten layer is 8 ⁇ Q 1/2 mm or more and 18 ⁇ Q with respect to the molten steel casting flow rate (Q; ton / min). It is preferably 1/2 mm or less and 35 mm or less.
  • This molten steel casting flow rate Q is related to the heat supply to the mold powder on the molten steel surface in the mold, in order to stably melt the mold powder and allow the molten mold powder to flow uniformly between the mold and the solidified shell. It is an important indicator of.
  • the thickness of the mold powder molten layer is less than 8 ⁇ Q 1/2 mm, the melting rate of the mold powder is insufficient compared to the consumption amount, and the risk of breakout due to insufficient lubrication between the solidified shell and the mold increases.
  • the amount of local mold powder flowing into the mold / solidified shell tends to fluctuate due to fluctuations in the molten steel surface in the mold, causing vertical cracks on the slab surface.
  • the thickness of the mold powder molten layer exceeds 18 ⁇ Q 1/2 mm or 35 mm, the distance between the upper surface of the mold powder molten layer (particularly near the mold) and the molten steel surface in the mold becomes long, and the mold powder Since the temperature of the molten layer becomes low, it leads to high viscosity and formation of slag bears, which induces cracks on the surface of the slab and breakout.
  • Table 1 shows the viscosity and crystallization temperature at 1300 ° C. in the initial composition of the mold powder as initial characteristics.
  • SiO 2 in the mold powder is reduced by Al in the molten steel
  • the SiO 2 content of the mold powder is reduced by 17.6% by mass from the initial composition
  • the Al 2 O 3 content is initially.
  • the viscosity and crystallization temperature at 1300 ° C. in the simulated composition assumed to be increased by 20.0% by mass from the composition are shown.
  • the powdered mold powder having each composition shown in Table 1 was periodically and uniformly supplied to the molten steel surface in the mold in a range where the mold powder consumption was 0.4 to 0.8 kg / m 2 .
  • the thickness of the mold powder molten layer was measured three times during steady casting in which slabs having a length of about 40 m from the start of casting were continuously cast, and the average value was used as a representative value of the thickness of the mold powder molten layer.
  • the slabs drawn from the continuous casting mold are immediately cooled in the secondary cooling zone, and in the upper bending zone and lower straightening zone, the corner temperature of the slab estimated from the two-dimensional heat transfer calculation is the composition of each steel component. It was cooled so that the cooling conditions would avoid the brittle temperature range in. Then, in each continuous casting test, 12 constant casting area slabs (slab slabs) having a predetermined length (about 9 m) were produced.
  • the scope of the present invention is not limited to the above manufacturing conditions.
  • One of the 12 slabs produced in this way was randomly selected for investigation, and the entire surface of the long side surface of the slab and the short side surface of the slab were subjected to penetrant inspection (color check, water-based dye).
  • the product was inspected, and the number of vertical cracks, horizontal cracks, and corner cracks in each slab was investigated.
  • vertical cracks, horizontal cracks, and corner cracks those having a crack length of 10 mm or more in the vertical direction or the horizontal direction of the slab were counted.
  • the grinder grinding amount is 2 mm or less for the long side surface and short side surface of the slab, and the grinder grinding amount is 10 mm or less for the slab corners. Shallow surface cracks that can be removed by the amount of grinding were accepted. The percentage of the number of accepted slabs out of 12 slabs was arranged as the pass rate.
  • the composition of the mold powder was out of the range of the present invention (levels 21 to 40), the mold powder had a low slow cooling effect, and vertical cracks frequently occurred on the surface of the slab. Further, in the mold powder having an unbalanced component of Na 2 O, F and Li 2 O, the occurrence of lateral cracking due to the formation of deep compression increased.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Structural Engineering (AREA)
  • Continuous Casting (AREA)
  • Treatment Of Steel In Its Molten State (AREA)

Abstract

Al含有量が0.2~2.0質量%で、炭素含有量が亜包晶領域(0.08~0.17質量%)であるAl含有亜包晶鋼の鋳片表面に発生する表面欠陥を防止するモールドパウダーを提供する。 本発明に係るモールドパウダーは、CaO、SiO、NaO、LiO、F(弗素)、C(炭素)を基本成分とし、モールドパウダーの初期組成において、「CaO含有量(質量%)/SiO含有量(質量%)」が、溶鋼のAl含有量に対して所定の範囲であり、NaO含有量が8質量%以下、LiO含有量が2質量%以上7質量%以下、「LiO含有量(質量%)/NaO含有量(質量%)」が0.6以上、F含有量が、前記NaO含有量及び前記LiO含有量に対して所定の範囲であり、C含有量が2質量%以上10質量%以下、1300℃における粘度が0.05~0.20Pa・s、結晶化温度が1100~1250℃であるモールドパウダー。

Description

Al含有亜包晶鋼の連続鋳造用モールドパウダー及び連続鋳造方法
 本発明は、Al(アルミニウム)含有量が0.2~2.0質量%で、炭素含有量が亜包晶領域であるAl含有亜包晶鋼の連続鋳造鋳片表面に発生する縦割れ、横割れ、コーナー割れ、及び、凹み形状を防止することのできる連続鋳造用モールドパウダーに関する。また、このモールドパウダーを用いたAl含有亜包晶鋼の連続鋳造方法に関する。
 鋼の連続鋳造において、炭素含有量が亜包晶領域の亜包晶鋼を凝固させる場合、δ→γ包晶変態に伴う固相の急激な体積変化に起因して凝固シェルが歪み、凝固シェルの表面には凹凸形状が生じやすくなる。ここで、亜包晶領域の炭素含有量とは、合金組成によって変化するが、一般的に、炭素含有量が0.08~0.17質量%の範囲である。この結果、凝固シェルの凹部は、鋳型との距離が離れて凝固が遅れ、局所的に薄肉化する。この薄肉化した部位に、熱歪や変態歪及び鋳片引き抜き力などが集中し、連続鋳造鋳片に表面割が発生することが一般的に知られている。
 鋳片の表面割れは、鋳片表面品質を劣化させて良鋳片歩留まりを低下させるだけでなく、連続鋳造時に凝固シェルが破れて溶鋼が漏れ出すブレークアウトの原因にもなるので、操業の安定性や安全性の観点からも問題となる。
 このような炭素含有量が亜包晶領域である亜包晶鋼の鋳片表面割れを防止するためには、鋳型内の冷却を緩冷却化し、凝固シェルの冷却速度を遅くする方法が有効であることが知られている。その手段の一つとして、モールドパウダーの特性制御が行われてきた。
 モールドパウダーは、連続鋳造用鋳型内の溶鋼湯面上に添加されると溶鋼からの熱を受けて溶融し、鋳型内溶鋼湯面の全体に広がった後、鋳型と凝固シェルとの境界から鋳型/凝固シェル間に流入して、潤滑剤、酸化防止剤及び断熱剤の役割を担う。
 鋳型/凝固シェル間に流入した溶融状態のモールドパウダーは、鋳型によって冷却されて結晶化(液相中に結晶が析出する現象)し、その後、固化する。その際、適切な結晶種を析出させる成分設計とすることで、鋳型/凝固シェル間の熱伝達が大いに阻害され、緩冷却効果が向上する。従来、前記結晶種としてカスピダイン(Cuspidine;2SiO・3CaO・CaF)が活用されてきた。
 例えば、特許文献1には、中炭素鋼(亜包晶鋼)の鋳片表面割れを抑制するために、潤滑性を維持しつつ結晶化温度(液相中に結晶が析出する温度)を1150~1250℃まで高温化して、結晶化を促進させたモールドパウダーが提案されている。特許文献1によれば、前記モールドパウダーを使用することで中炭素鋼の鋳片表面割れが防止されるとしている。尚、特許文献1には、モールドパウダーの結晶化温度が1250℃よりも高くなると、モールドパウダーの潤滑性が低下し、これにより、モールドパウダーの鋳型/凝固シェル間への均一な流入が阻害され、凝固シェルが鋳型に焼き付いてブレークアウトが発生したことが記載されている。
 しかし、特許文献1のような従来の亜包晶鋼用の緩冷却型のモールドパウダー及びこのモールドパウダーを用いた連続鋳造方法は、Al含有量が0.2質量%以上である亜包晶鋼の連続鋳造には、適切ではない。これは、以下の理由による。
 溶鋼とモールドパウダーとの接触界面においては、Al含有量が0.2質量%未満の亜包晶鋼でも、溶鋼中のAlがモールドパウダー中のSiOを還元するので、モールドパウダーの組成は、SiO量が減少してAl量が富化する。但し、この反応(酸化-還元反応)によるモールドパウダーの成分変動量は小さい。しかし、Al含有量が0.2質量%以上の亜包晶鋼では、前記酸化-還元反応によるモールドパウダーの成分変動量が大きくなるために、モールドパウダーの特性が経時的に大きく変化する。
 具体的には、SiOの減少及びAlの富化により、ゲーレナイト(Gehlenite;2CaO・Al・SiO)などの不均一生成しやすい高融点結晶の析出が促進され、カスピダインの均一析出は阻害される。更に、溶融状態のモールドパウダーの粘度が不均一に上昇し、モールドパウダーの鋳型/凝固シェル間への均一流入が阻害される。また、結晶化温度や粘度の著しい上昇は、モールドパウダーの焼結及びスラグベア(溶融したモールドパウダーが固化して鋳型壁面に付着する現象)の発生を促進させる。
 つまり、亜包晶鋼中のAl含有量が0.2質量%以上の場合には、モールドパウダーの特性が大きく変化し、鋳造安定性を著しく低下させる。これは、モールドパウダーの特性が大きく変化することで、スラグベアの粗大化やモールドパウダーの鋳型/凝固シェル間への流入不足に起因して拘束性ブレークアウトを招いたり、鋳型内での冷却条件のバラツキに起因して鋳片表面での縦割れを誘発したりするからである。
 また、スラグベアの生成及び不均一な粘度変化は、局所的なモールドパウダー流入量のバラツキを発生させ、亜包晶鋼の鋳片表面に深いオシレーションマークや凹凸(所謂、「ディプレッション」)を形成させる。鋳片表面の深いオシレーションマークや凹凸は、鋳片の著しい横割れやコーナー割れの原因になるので、良鋳片の歩留りが極めて悪化する。
 そこで、高濃度のAlを含有する亜包晶鋼に適応したモールドパウダーの開発もなされている。例えば、特許文献2には、Alを0.1~2.0質量%含有する亜包晶鋼の縦割れを抑制するモールドパウダーとして、CaO、SiO、アルカリ金属の酸化物、弗素化合物の成分比率を制御した、カスピダインを主結晶とする緩冷却型のモールドパウダーが提案されている。
 しかし、特許文献2には、上述した鋳片表面の横割れやコーナー割れも同時に抑制するための技術思想は記載されていない。
特開平8-197214号公報 特開2015-186813号公報
 本発明は上記事情に鑑みてなされたもので、その目的とするところは、Al含有量が0.2~2.0質量%で、炭素含有量が亜包晶領域(0.08~0.17質量%)であるAl含有亜包晶鋼の連続鋳造鋳片表面に発生する縦割れ、横割れ、コーナー割れ、及び、凹み形状を防止することのできるモールドパウダーを提供することである。また、このモールドパウダーを用いたAl含有亜包晶鋼の連続鋳造方法を提供することである。
 本発明者らは、上記課題を解決すべく、鋭意、研究し検討した。その結果、Al含有量が0.2~2.0質量%で、炭素含有量が亜包晶領域(0.08~0.17質量%)であるAl含有亜包晶鋼の連続鋳造用モールドパウダーの成分設計に関して以下の指針を見出し、本発明を完成した。
 (1)<鋳型内の均一緩冷却による鋳片表面の縦割れ防止に関して>
 溶鋼とモールドパウダーとの酸化-還元反応による、モールドパウダー中のSiOの減少及びAlの富化に起因して、モールドパウダーの塩基度(塩基度=(質量%CaO)/(質量%SiO))が、連続鋳造の初期から後期まで、連続的に変化する。この塩基度の変化に対応して、安定的な結晶生成を促すためには、モールドパウダーにおける成分変動の初期の成分範囲を、最大限、カスピダイン(Cuspidine;2SiO・3CaO・CaF)の初晶領域と合致させることが必要である。また、成分変動した後期のモールドパウダーの成分範囲も、カスピダインまたはカスピダインとマイエナイト(Mayenite;12CaO・7Al)との複合析出になるように設計することが必要である。
 モールドパウダーの組成をこのように設計することで、結晶化速度が安定して速く、緩冷却特性の大きい結晶生成条件が維持できることを知見した。これには、鋼のAl含有量に合わせた適切な初期組成の塩基度((質量%CaO)/(質量%SiO))の設定が肝要である。また、その際、モールドパウダーの初期組成のAl含有量を極力低減しておくことは、上記の目的のためには、より好ましい。
 (2)<モールドパウダー特性の変動及びスラグベアの生成に起因した鋳片表面の凹み、横割れ、コーナー割れの防止に関して>
 鋳片表面の凹みを防止するためには、溶融したモールドパウダーを低粘度に維持し、鋳型/凝固シェル間の全周に、均一に供給し続ける必要がある。本発明者らは、適切にF(弗素)、NaO、LiOを含有させ、モールドパウダーの初期組成の粘度を低下するとともに、Alの富化に伴う高融点結晶の生成を抑制し、結晶化温度の上昇を抑えることで、モールドパウダーの粘度の変化が抑制できることを知見した。
 但し、NaOを主体に含有すると、Alの富化に伴って、ネフェリン(Nepheline;NaAlSiO)を核として粗大なカスピダイン結晶が不均一に生成しやすくなり、モールドパウダーの焼結塊やスラグベアの形成が促進されることがわかった。モールドパウダーの焼結塊は、鋳型/凝固シェル間に巻き込まれることで鋳片表面の凹みを増大させ、鋳片表面の割れ発生を助長する。スラグベアは、凝固シェル先端の変形を促進したり、モールドパウダーの鋳型/凝固シェル間への流入を局所的に阻害したりして、凝固シェルの不均一凝固を招き、鋳片表面の割れ発生を助長する。
 更に、Fも過剰に含有させれば、モールドパウダーの過剰溶融によってモールドパウダーの溶融層の厚みが厚くなりすぎるとともに、結晶化温度が高くなり、これによって、スラグベアの形成を促進させる傾向がある。
 そこで、F及びNaOの一部を適切にLiOに置換することで、モールドパウダーの溶融状態と低粘度とを安定的に制御できることを見出した。
 本発明は上記知見に基づきなされたものであり、その要旨は以下のとおりである。
[1]Al(アルミニウム)を0.2質量%以上2.0質量%以下含有し、炭素含有量が亜包晶領域(0.08~0.17質量%)であるAl含有亜包晶鋼を連続鋳造する際に使用するモールドパウダーであって、
 CaO、SiO、NaO、LiO、F(弗素)、C(炭素)を基本成分とし、
 モールドパウダーの初期組成において、
 「CaO含有量(質量%)/SiO含有量(質量%)」が、「1.0+0.05×[溶鋼のAl含有量(質量%)]」以上、「2.0-0.35×[溶鋼のAl含有量(質量%)]」以下であり、
 NaO含有量が8質量%以下、LiO含有量が2質量%以上7質量%以下で、且つ、「LiO含有量(質量%)/NaO含有量(質量%)」が0.6以上であり、
 F含有量が、前記NaO含有量及び前記LiO含有量に対して下記の(1)式及び下記の(2)式を満足する範囲であり、
 C含有量が2質量%以上10質量%以下であり、
 1300℃における粘度が0.05~0.20Pa・s、結晶化温度が1100~1250℃である、
Al含有亜包晶鋼の連続鋳造用モールドパウダー。
10<(LiO含有量(質量%))+0.5×(NaO含有量(質量%))+0.8×(F含有量(質量%))<20……(1)
1.00≦(F含有量(質量%))/[(LiO含有量(質量%))+0.5×(NaO含有量(質量%))+1.46]≦1.24……(2)
[2]モールドパウダーの初期組成において、更に、KOを5質量%以下、MnOを5質量%以下、MgOを5質量%以下、Bを5質量%以下、BaOを5質量%以下のうちの1種または2種以上を含有する、上記[1]に記載のAl含有亜包晶鋼の連続鋳造用モールドパウダー。
[3]モールドパウダーの初期組成において、Al含有量が3質量%以下である、上記[1]または上記[2]に記載のAl含有亜包晶鋼の連続鋳造用モールドパウダー。
[4]モールドパウダーの初期組成における1300℃での粘度をη、初期組成における結晶化温度をTCS0とし、モールドパウダーのSiO含有量が前記初期組成よりも17.6質量%減少し、且つ、Al含有量が初期組成よりも20.0質量%増加したモールドパウダーの組成における1300℃での粘度をη、その組成における結晶化温度をTCS1としたとき、粘度ηと粘度ηとの粘度差(Δη=η-η)が0.15Pa・s以下で、結晶化温度TCS1と結晶化温度TCS0との結晶化温度差(ΔTCS=TCS1-TCS0)が100℃以下である、上記[1]から上記[3]のいずれかに記載のAl含有亜包晶鋼の連続鋳造用モールドパウダー。
[5]Al(アルミニウム)を0.2質量%以上2.0質量%以下含有し、炭素含有量が亜包晶領域(0.08~0.17質量%)であるAl含有亜包晶鋼を連続鋳造する際に、上記[1]から上記[4]のいずれかに記載のAl含有亜包晶鋼の連続鋳造用モールドパウダーを連続鋳造用鋳型内に供給し、鋳片引き抜き速度を0.7~2.0m/minとし、モールドパウダー溶融層の厚みを溶鋼鋳造流量(Q;トン/min)に対して8×Q1/2mm以上、18×Q1/2mm以下、且つ、35mm以下とする、Al含有亜包晶鋼の連続鋳造方法。
 本発明によれば、Al含有亜包晶鋼の連続鋳造鋳片表面の縦割れ、横割れ、コーナー割れ及び凹みの発生を防止することができる。これにより、Al含有量が0.2~2.0質量%で、炭素含有量が亜包晶領域であるAl含有亜包晶鋼の表面品質に優れた連続鋳造鋳片を安定して製造可能となる。
 以下、本発明を具体的に説明する。
 鋼の連続鋳造では、連続鋳造用鋳型内の溶鋼湯面にモールドパウダーを添加している。鋳型内に添加されたモールドパウダーは、鋳型内の溶鋼の熱によって加熱され、鋳型内溶鋼と接触する側の温度が高く、反対側の大気と接触する側が低くなる温度勾配を形成する。つまり、鋳型内溶鋼湯面側のモールドパウダーは溶融し、鋳型内溶鋼湯面上に溶融したモールドパウダー層(「モールドパウダー溶融層」と称す)を形成する。このモールドパウダー溶融層の上には、溶融層と固体層とが共存するモールドパウダー層(「モールドパウダー半溶融層」と称す)が形成される。このモールドパウダー半溶融層の上には、含有するC(炭素)の一部が燃焼するものの、その他の成分は初期組成と同等であるモールドパウダー層(「モールドパウダー固体層」と称す)が形成される。ここで、「モールドパウダーの初期組成」とは、鋳型内に添加する前のモールドパウダーの組成である。
 溶融したモールドパウダーは、鋳型と凝固シェルとの間隙に流入して消費されるので、消費されたモールドパウダーを補うように、モールドパウダー半溶融層から溶融したモールドパウダーがモールドパウダー溶融層に供給される。更に、消費されたモールドパウダーを補うように、モールドパウダー固体層の上には、新たなモールドパウダーが添加される。このようにして、モールドパウダーは、凝固シェルと鋳型との潤滑剤、鋳型内溶鋼の酸化防止剤及び保温剤として機能する。
 Alを0.2質量%以上2.0質量%以下含有し、炭素含有量が亜包晶領域(0.08~0.17質量%)であるAl含有亜包晶鋼の連続鋳造時には、モールドパウダー溶融層と溶鋼中のAlとの反応によってモールドパウダー溶融層の組成が変化する。モールドパウダー溶融層の組成が変化することで、ゲーレナイト(Gehlenite;2CaO・Al・SiO)などの高融点結晶が生成される。
 本発明は、前記Al含有亜包晶鋼の連続鋳造時に、上記のように、モールドパウダー溶融層の組成が変化しても、ゲーレナイトなどの高融点結晶の生成を抑制し、カスピダイン(Cuspidine;2SiO・3CaO・CaF)を安定的で均一に析出させることを目的とする技術である。カスピダインの安定的で均一な析出により、モールドパウダーによる緩冷却効果を持続させることが可能となる。
 本発明に係るモールドパウダーは、CaO(酸化カルシウム)、SiO(酸化珪素)、NaO(酸化ナトリウム)、LiO(酸化リチウム)、F(弗素)、C(炭素)を基本成分として、その成分制御範囲を以下のように制御するものである。
 先ず、モールドパウダーの初期組成における「CaO含有量(質量%)/SiO含有量(質量%)」を、「1.0+0.05×[溶鋼のAl含有量(質量%)]」以上、「2.0-0.35×[溶鋼のAl含有量(質量%)]」以下とする。ここで、[溶鋼のAl含有量(質量%)]は、連続鋳造される溶鋼のAl含有量である。したがって、例えば、連続鋳造される溶鋼のAl含有量が1.0質量%の場合には、モールドパウダーの「CaO含有量(質量%)/SiO含有量(質量%)」は、1.05~1.65の範囲内であることが必要である。
 上述したように、モールドパウダー溶融層中のSiOが溶鋼中のAlに還元されて減少することから、モールドパウダー溶融層の塩基度((質量%CaO)/(質量%SiO))は、連続鋳造の初期から後期にかけて上昇していく。この変化は溶鋼のAl含有量が多いほど助長される。
 したがって、連続鋳造される溶鋼のAl含有量に応じて、モールドパウダーの初期組成における「CaO含有量(質量%)/SiO含有量(質量%)」、つまり、塩基度((質量%CaO)/(質量%SiO))を、カスピダインの析出領域の下限の塩基度を確保するように調整する。また、モールドパウダー溶融層の塩基度((質量%CaO)/(質量%SiO))が上昇しても、モールドパウダー溶融層の組成が常にカスピダイン析出領域内に重なるように設計する。同時に、この領域では、モールドパウダー溶融層の組成がAl(酸化アルミニウム)の富化方向へ変化しても、カスピダイン及びマイエナイト(Mayenite;12CaO・7Al)の析出を最大限活用することができる。
 モールドパウダーの初期組成における「CaO含有量(質量%)/SiO含有量(質量%)」が「2.0-0.35×[溶鋼のAl含有量(質量%)]」を超えてしまうと、連続鋳造の後期のモールドパウダー溶融層の塩基度((質量%CaO)/(質量%SiO))が上昇しすぎて、結晶化温度が著しく上昇し、その結果、連続鋳造操業が不安定化する。これを防止するために、連続鋳造される溶鋼のAl含有量が多いほど、モールドパウダーの初期組成における「CaO含有量(質量%)/SiO含有量(質量%)」を低く調整する。ここで、「結晶化温度」とは、白金ルツボ中で、1300℃で完全溶融したモールドパウダーを5℃/minの冷却速度で等速冷却した際に、結晶生成に伴う発熱が測定される温度である。
 モールドパウダーの初期組成における「CaO含有量(質量%)/SiO含有量(質量%)」が1.0未満では、結晶化温度が1100℃以下に低下し、結晶析出が抑制される。これにより、凝固シェルは強冷却されて、凝固シェルの表面に縦割れが生じる。更に、モールドパウダー溶融層のAlが富化すると、ゲーレナイトの生成領域内に達し、モールドパウダー溶融層の粘度が急激に上昇するので、鋳片表面のディプレッションや横割れが増加する。
 また、モールドパウダーの初期組成における「CaO含有量(質量%)/SiO含有量(質量%)」が1.0以上「1.0+0.05×[溶鋼のAl含有量(質量%)]」未満の領域でも、カスピダイン結晶の析出する成分範囲が一部存在する。しかし、この領域では、溶鋼中に懸濁したAlをモールドパウダー溶融層が吸収してモールドパウダー溶融層のAl含有量が増加すると、ゲーレナイトの析出領域へとモールドパウダー溶融層の組成が変化してしまうので、連続鋳造操業の安定性が低下するリスクがある。
 上記のリスクは溶鋼中のAl含有量が多いほど増大するので、Al含有量の多い亜包晶鋼ほど、モールドパウダーの初期組成における「CaO含有量(質量%)/SiO含有量(質量%)」の下限を高めに調整し、常に安定してカスピダインを析出する成分範囲に維持する。したがって、本発明では、モールドパウダーの初期組成における「CaO含有量(質量%)/SiO含有量(質量%)」を「1.0+0.05×[溶鋼のAl含有量(質量%)]」以上とする。
 本発明では、モールドパウダー溶融層の粘度を低位に維持し、且つ、モールドパウダーの溶融の促進及び鋳型/凝固シェル間への均一流入を促進するために、NaO、LiO及びFの配合量を適切に制御する。具体的には以下の通りである。
 即ち、モールドパウダーの初期組成におけるNaO含有量は8質量%以下とする。NaはCaよりもFとの親和性が高いために、過剰なNaOの添加はカスピダインの生成を阻害する。更に、NaOを過剰に含有させるとネフェリン(Nepheline;NaAlSiO)が析出しやすく、ネフェリンを核として粗大なカスピダインが不均一に生成しやすくなる。その結果、大きなスラグベアを形成し、モールドパウダーの鋳型/凝固シェル間への不均一流入を誘発する。この影響は、NaO含有量が8質量%超で顕著であるので、NaO含有量の上限を8質量%とする。微細なカスピダイン結晶の均一析出を促進させて、鋳片の表面割れを抑止する観点からは、NaO含有量は5質量%以下とするのが好ましい。より好ましくは4質量%以下である。一方、NaO含有量の下限は、規定しないが、後述するLiOやFとの適切な配合比によって成分範囲が決定される。
 また、上記のように、NaO含有量は低いことが望ましいことから、モールドパウダーの粘度調整剤及び溶融促進剤として、NaOに替えてLiOを用いることができる。その際、モールドパウダーの初期組成において、「LiO含有量(質量%)/NaO含有量(質量%)」を0.6以上とすることにより、安定的に微細で均一なカスピダイン結晶の生成が実現できる。但し、LiO含有量が2質量%未満では、この効果が小さいことから、LiO含有量は2質量%以上とする。一方、LiO含有量が7質量%を超えると、カスピダインまでも析出が阻害されてしまうこと、及び、モールドパウダーの製造コストが著しく増加してしまうことから、LiO含有量の上限は7質量%とする。
 「LiO含有量(質量%)/NaO含有量(質量%)」が2.0を超えると、カスピダイン析出の阻害、及び、モールドパウダーの製造コストが著しく増加する弊害が現れる場合がある。したがって、「LiO含有量(質量%)/NaO含有量(質量%)」は2.0以下とすることが好ましい。
 F(弗素)は、カスピダインの生成に不可欠であり、且つ、Al含有量が上昇した場合の粘度上昇を抑制する効果も大きいことから、一定量以上含有させる。但し、NaO及びLiOに対してFを過剰に添加すると、モールドパウダーの溶融が過剰に促進されて、モールドパウダー溶融層の厚みが増大しすぎる。そのため、結果的に鋳型内溶鋼湯面からモールドパウダー溶融層の上面までの距離が拡大し、モールドパウダー溶融層が低温化して、モールドパウダー溶融層の高粘度化やスラグベアの粗大化を促す。これにより、鋳片表面に深いオシレーションマークやディプレッションを誘発する。
 そこで、モールドパウダーの初期組成において、NaO含有量、LiO含有量及びF含有量を下記の(1)式を満足する範囲に調整する。
 10<(LiO含有量(質量%))+0.5×(NaO含有量(質量%))+0.8×(F含有量(質量%))<20……(1)
 ここで、「(LiO含有量(質量%))+0.5×(NaO含有量(質量%))+0.8×(F含有量(質量%)」が10以下では、モールドパウダーの初期組成の粘度が高めであり、また、モールドパウダー溶融層のAl含有量が増加した際に粘度上昇が大きくなる。これらによって、モールドパウダーの鋳型/凝固シェル間への均一流入性が劣化する。したがって、モールドパウダーの低粘度と均一流入性の維持との観点から、本発明では、「(LiO含有量(質量%))+0.5×(NaO含有量(質量%))+0.8×(F含有量(質量%)」を10超えとする。
 一方、「(LiO含有量(質量%))+0.5×(NaO含有量(質量%))+0.8×(F含有量(質量%)」が20以上になると、モールドパウダーの滓化性が良すぎて、モールドパウダーの焼結やスラグベアが増加する。これらを防止するために、本発明では、「(LiO含有量(質量%))+0.5×(NaO含有量(質量%))+0.8×(F含有量(質量%)」を20未満とする。
 また、FがNaOやLiOよりも相対的に過剰に含有されると、カスピダイン結晶は得やすいものの、スラグベアの生成や結晶化温度の上昇に伴う粘度上昇などにより、鋳片表面品質が悪化する。そこで、モールドパウダーの初期組成において、下記の(2)式を満足する範囲に、NaO含有量、LiO含有量及びF含有量を調整する。
 1.00≦(F含有量(質量%))/[(LiO含有量(質量%))+0.5×(NaO含有量(質量%))+1.46]≦1.24……(2)
 ここで、「(F含有量(質量%))/[(LiO含有量(質量%))+0.5×(NaO含有量(質量%))+1.46]」が1.24以下を満たすように、NaO含有量、LiO含有量、F含有量を調整することで、適度の粘度と結晶化温度とに調整することができる。一方、「(F含有量(質量%))/[(LiO含有量(質量%))+0.5×(NaO含有量(質量%))+1.46]」が1.00未満では、FがNaOやLiOなどと結合し、カスピダインの生成に必要なFが低減して、結晶生成が低減してしまう。したがって、「(F含有量(質量%))/[(LiO含有量(質量%))+0.5×(NaO含有量(質量%))+1.46]」は1.00以上とする。
 C(炭素)は、モールドパウダーの溶融速度調整剤として機能する成分であり、モールドパウダーに必須の成分である。C含有量が2質量%未満では、モールドパウダーの溶融速度が速すぎ、これにより、未溶融のモールドパウダーを巻き込んで固化した凝集物を形成し、スラグベアの粗大化や異物噛み込みを発生し、連続鋳造操業の不安定化を招く。したがって、モールドパウダーの初期組成において、C含有量の下限を2質量%とする。
 一方、炭素含有量が10質量%を超えると、モールドパウダーの溶け広がりが抑制され過ぎて、鋳型/凝固シェル間の潤滑不足によるブレークアウトの危険が増加する。したがって、モールドパウダーの初期組成において、C含有量は10質量%以下とする。
 更に、モールドパウダーの初期組成において、上記組成に、KOを5質量%以下、MnOを5質量%以下、MgOを5質量%以下、Bを5質量%以下、BaOを5質量%以下のうちの1種または2種以上を含有させることも可能である。これらの成分は、NaOやLiOに替えてフラックスとして使用してもよい。但し、先述のように、過剰な溶剤の添加はカスピダインの析出も阻害して結晶化温度が低下したり、モールドパウダーの過剰溶融によるスラグベアの粗大化を招いたりする。したがって、これらの含有量の合計は5質量%以下とすることが好ましく、3質量%以下とすることがより好ましい。また、Bの添加により、モールドパウダー溶融層から溶鋼へのB(ボロン)の移動が起こり、溶鋼のB濃度が上昇して凝固シェルの硬化や脆化が起こり、鋳片表面品質の劣化を招くので、Bの添加量は2質量%未満とすることがより好ましい。
 モールドパウダーの初期組成において、Alの含有量は低い方が好ましい。モールドパウダーの初期組成において、Alの含有量が少ないほど、カスピダインの析出を利用可能な成分域にモールドパウダー溶融層を維持することができ、モールドパウダー溶融層の特性変化を低位安定化できる。そのため、モールドパウダーの初期組成において、Alの含有量は3質量%以下とすることが好ましく、2質量%以下とすることがより好ましい。
 上記の組成範囲に調整することで、本発明に係るAl含有亜包晶鋼の連続鋳造用モールドパウダーは、以下の特徴的な特性に制御される。特性の範囲及びその目的を以下に説明する。
 モールドパウダーの初期特性は、Alの富化による特性変化も加味して、以下の範囲に制御することが好ましい。
 モールドパウダーの結晶化温度は1100℃以上1250℃以下とする。結晶化温度が1100℃未満では緩冷却効果が不十分であり、鋳片表面に縦割れが発生する。一方、結晶化温度が1250℃を超えると、結晶化温度が高くなりすぎ、モールドパウダーの流動性が阻害されてブレークアウトの危険がある。
 モールドパウダーの1300℃における粘度は、0.05Pa・s以上0.20Pa・s以下とする。1300℃における粘度が0.05Pa・s未満では、モールドパウダー溶融層が鋳型内溶鋼湯面の乱流により溶鋼中に巻き込まれて凝固シェルの内層に付着し、鉄鋼製品において、モールドパウダー起因のヘゲ欠陥を発生するおそれがある。一方、1300℃における粘度が0.20Pa・sを超えると、Alの富化に伴ってモールドパウダー溶融層の粘度が上昇した場合に最大粘度が高くなりすぎ、モールドパウダーの鋳型/凝固シェル間への流入不足や不均一流入を招き、更にはスラグベアの形成を招く。これらにより、ブレークアウトや鋳片表面割れが発生する。
 また、Alの富化に伴う特性変化が大きいと、モールドパウダー溶融層の特性のバラツキが増大して、連続鋳造操業が不安定化することから、結晶化温度の上昇幅及び粘度の上昇幅も低く抑えることが好ましい。本発明に係るモールドパウダーでは、NaO含有量、LiO含有量及びF含有量を上記の範囲に調整することで、モールドパウダーの初期組成に対してSiOの減少及びAlの富化が生じても、これらの変化に伴う結晶化温度及び粘度の変化が抑制される。これが、本発明に係るモールドパウダーの特徴である。
 モールドパウダーの初期組成における1300℃での粘度をη、及び、初期組成における結晶化温度をTCS0とする。また、モールドパウダーの初期組成のSiOがAlで還元されたと想定し、モールドパウダー溶融層のSiOの含有量が初期組成よりも17.6質量%減少し、Al含有量が初期組成よりも20.0質量%増加した組成における1300℃での粘度をη、その組成における結晶化温度をTCS1とする。
 本発明に係る上記組成のモールドパウダーにおいては、粘度ηと粘度ηとの粘度差(Δη=η-η)が0.15Pa・s以下で、且つ、結晶化温度TCS1と結晶化温度TCS0との結晶化温度差(ΔTCS=TCS1-TCS0)が100℃以下に制御される。
 モールドパウダー溶融層の粘度及び結晶化温度の変化が上記よりも大きいと、Alの富化により、急速にモールドパウダーの結晶化挙動及び鋳型/凝固シェル間への流入挙動が変化し、鋳型内での場所によるバラツキも増大する。その結果、鋳片の表面欠陥を防止できないばかりかブレークアウトの危険も高まる。
 ここで、モールドパウダーの粘度は、モールドパウダーを白金ルツボに装入し、環状炉中で1300℃まで昇温して完全溶融させた後に、白金球の引き上げ法によって測定した。その際、モールドパウダーの温度は白金ルツボの外表層に設置した熱電対にて測定し、事前にルツボ内の温度との温度差を確認して校正した。また、溶融させたモールドパウダーを収容した白金ルツボを、炉体温度で5℃/minの冷却速度で冷却しながら溶融したモールドパウダーの温度を測定し、溶融したモールドパウダーの冷却速度が炉体温度の冷却速度より低下した温度を結晶生成に伴う発熱開始温度と捉え、この温度を結晶化温度とした。
 上記の組成及び特性を有する本発明に係るモールドパウダーを用いた、本発明に係る連続鋳造方法における鋳造条件を以下に説明する。
 適用する鋼種は、Alを0.2質量%以上2.0質量%以下含有し、炭素含有量が亜包晶領域(0.08~0.17質量%)であるAl含有亜包晶鋼を対象とする。Al含有量が2.0質量%を超える亜包晶鋼の場合、Alの富化による特性変化を所定の範囲内に維持することが非常に困難となる。一方、Al含有量が0.2質量%未満の亜包晶鋼では、従来の有亜包晶鋼の連続鋳造用モールドパウダーで対処することができる。勿論、Al含有量が0.2質量%未満の亜包晶鋼の連続鋳造に、本発明に係るモールドパウダーを使用してもよい。
 鋳片引き抜き速度は0.7m/min以上2.0m/min以下が好適である。鋳片引き抜き速度が0.7m/min未満では、鋳型内溶鋼湯面上に添加されたモールドパウダーへの熱供給が不足し、モールドパウダーが十分に溶融しないために、モールドパウダー溶融層の流動性が極めて悪く、鋳片表面品質が劣化する。一方、鋳片引き抜き速度が2.0m/minを超えると、モールドパウダーの鋳型/凝固シェル間への流入量が不足してブレークアウトの危険がある。
 上記と関連して、モールドパウダーを適切に溶融させるための指標として、モールドパウダー溶融層の厚みを溶鋼鋳造流量(Q;トン/min)に対して8×Q1/2mm以上、18×Q1/2mm以下、且つ、35mm以下とすることが好ましい。
 ここで、溶鋼鋳造流量Qは、「Q=7800(kg/m)×鋳片幅(m)×鋳片厚み(m)×鋳片引き抜き速度(m/min)/10」で計算される。この溶鋼鋳造流量Qは、鋳型内溶鋼湯面上のモールドパウダーへの熱供給に関係しており、モールドパウダーを安定的に溶融し、溶融したモールドパウダーを鋳型/凝固シェル間に均一流入させるための重要な指標となる。
 モールドパウダー溶融層の厚みが8×Q1/2mm未満では、モールドパウダーの溶融速度が消費量に比べて不足し、凝固シェルと鋳型との潤滑不足よるブレークアウトの危険が高まる。また、鋳型内溶鋼湯面の変動によって局所的なモールドパウダーの鋳型/凝固シェル間への流入量が変動しやすくなり、鋳片表面に縦割れを招く。
 一方、モールドパウダー溶融層の厚みが18×Q1/2mm超え、または、35mm超えでは、モールドパウダー溶融層の上面(特に鋳型近傍)と鋳型内溶鋼湯面との距離が長くなり、モールドパウダー溶融層が低温化するため、高粘度化やスラグベアの形成を招き、これによって、鋳片表面割れの発生やブレークアウトを誘発する。
 以上説明したように、本発明に係るAl含有亜包晶鋼の連続鋳造用モールドパウダー及び連続鋳造方法によれば、Al含有亜包晶鋼の連続鋳造鋳片表面の縦割れ、横割れ、コーナー割れ及び凹みの発生を防止することができる。これにより、Al含有量が0.2~2.0質量%で、炭素含有量が亜包晶領域であるAl含有亜包晶鋼の表面品質に優れた連続鋳造鋳片を安定して製造可能となる。
 本発明の効果を確認するために、モールドパウダーの結晶化挙動の確認及びAl含有亜包晶鋼の連続鋳造試験を実施した。
 試験に供した種々のモ-ルドパウダーの組成を表1に示す。表1には、モールドパウダーの初期組成における1300℃での粘度及び結晶化温度を初期特性として示す。また、併せて、モールドパウダー中のSiOが溶鋼中のAlによって還元され、モールドパウダーのSiO含有量が初期組成よりも17.6質量%減少し、且つ、Al含有量が初期組成よりも20.0質量%増加したと想定した模擬組成における1300℃での粘度及び結晶化温度を示す。
Figure JPOXMLDOC01-appb-T000001
 表1から明らかなように、本発明に係るモールドパウダーの組成範囲を満たす水準A1~A13は、Alの富化に伴う粘度及び結晶化温度の変化が抑制されていることがわかる。これに対して、本発明の範囲外の水準B1~B16では、粘度または結晶化温度の著しい増加が見られ特性の安定性が低いことがわかる。
 以下、表1に示すモールドパウダーを用いて連続鋳造試験を行った結果を説明する。連続鋳造試験では、垂直曲げ型連続鋳造機を用いて、表2に示す鋼成分組成を有する3種類の約270トンの溶鋼(鋼1~3)を、表3に示す鋳造条件で連続鋳造した。連続鋳造試験において、鋳片の厚みは250mm、鋳片の幅は1250mmとし、鋳型振動条件は、振幅3.5mm(=ストローク7.0mm)の正弦波形を採用し、鋳片引き抜き速度は、1.3m/minを基本とし、0.6~2.2m/minに変化させた。
 鋳型内溶鋼湯面に、表1に示す各組成の粉末状モールドパウダーを、モールドパウダー消費量が0.4~0.8kg/mとなる範囲で定期的に且つ均一に供給した。鋳造開始から約40m長さの鋳片を連続鋳造した定常鋳造中に、モールドパウダー溶融層の厚みを3回測定し、その平均値をモールドパウダー溶融層の厚みの代表値とした。
 連続鋳造用鋳型から引き抜かれた鋳片を、二次冷却帯で直ちに冷却し、上部曲げ帯及び下部矯正帯では、二次元伝熱計算から推定される鋳片のコーナー温度が、各鋼成分組成での脆化温度域を回避する冷却条件となるように冷却した。そして、各連続鋳造試験において、所定長さ(約9m)の定常鋳造域鋳片(スラブ鋳片)を12本製造した。尚、本発明の範囲は、上記製造条件に限定されるものではない。
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
 このようにして製造した12本の鋳片のうちの1本を無作為に抜き取って調査対象とし、鋳片長辺面及び鋳片短辺面の全面を浸透探傷検査(カラーチェック、水性染料)にて検品し、各鋳片の縦割れ及び横割れ・コーナー割れの発生個数を調査した。尚、縦割れ及び横割れ・コーナー割れは、割れ長さが鋳片の縦方向または横方向に10mm以上のものを計数した。
 また、縦割れ及び横割れ・コーナー割れが発生した鋳片でも、鋳片長辺面及び鋳片短辺面であればグラインダー研削量が2mm以下、鋳片コーナーであればグラインダー研削量が10mm以下の研削量で除去可能な浅い表面割れは合格とした。鋳片12本中の合格鋳片本数の百分率を、合格率として整理した。
 それらの結果を、鋳片表面品質として表3に併せて示す。
 本発明の範囲内のモールドパウダー組成及び鋳造条件を用いて鋳造した場合(水準1~7、水準10~20)には、縦割れ及び横割れ・コーナー割れの発生は極めて少なく、鋳片の合格率は80%以上を確保できた。一方、本発明の範囲内のモールドパウダー組成であっても、鋳造条件が本発明の範囲を外れた場合(水準8、9)には、モールドパウダーの鋳型/凝固シェル間への均一流入が阻害されて深いディプレッションが増加し、その影響で、特に横割れの発生が増加した。
 また、モールドパウダーの組成が本発明の範囲を外れた場合(水準21~40)には、緩冷却効果の低いモールドパウダーであり、鋳片表面に縦割れが頻発した。また、NaO、F、LiOの成分バランスの悪いモールドパウダーでは、深いディプレッションの形成による横割れの発生が増加した。

Claims (5)

  1.  Al(アルミニウム)を0.2質量%以上2.0質量%以下含有し、炭素含有量が亜包晶領域(0.08~0.17質量%)であるAl含有亜包晶鋼を連続鋳造する際に使用するモールドパウダーであって、
     CaO、SiO、NaO、LiO、F(弗素)、C(炭素)を基本成分とし、
     モールドパウダーの初期組成において、
     「CaO含有量(質量%)/SiO含有量(質量%)」が、「1.0+0.05×[溶鋼のAl含有量(質量%)]」以上、「2.0-0.35×[溶鋼のAl含有量(質量%)]」以下であり、
     NaO含有量が8質量%以下、LiO含有量が2質量%以上7質量%以下で、且つ、「LiO含有量(質量%)/NaO含有量(質量%)」が0.6以上であり、
     F含有量が、前記NaO含有量及び前記LiO含有量に対して下記の(1)式及び下記の(2)式を満足する範囲であり、
     C含有量が2質量%以上10質量%以下であり、
     1300℃における粘度が0.05~0.20Pa・s、結晶化温度が1100~1250℃である、
    Al含有亜包晶鋼の連続鋳造用モールドパウダー。
     10<(LiO含有量(質量%))+0.5×(NaO含有量(質量%))+0.8×(F含有量(質量%))<20……(1)
     1.00≦(F含有量(質量%))/[(LiO含有量(質量%))+0.5×(NaO含有量(質量%))+1.46]≦1.24……(2)
  2.  モールドパウダーの初期組成において、更に、KOを5質量%以下、MnOを5質量%以下、MgOを5質量%以下、Bを5質量%以下、BaOを5質量%以下のうちの1種または2種以上を含有する、請求項1に記載のAl含有亜包晶鋼の連続鋳造用モールドパウダー。
  3.  モールドパウダーの初期組成において、Al含有量が3質量%以下である、請求項1または請求項2に記載のAl含有亜包晶鋼の連続鋳造用モールドパウダー。
  4.  モールドパウダーの初期組成における1300℃での粘度をη、初期組成における結晶化温度をTCS0とし、モールドパウダーのSiO含有量が前記初期組成よりも17.6質量%減少し、且つ、Al含有量が初期組成よりも20.0質量%増加したモールドパウダーの組成における1300℃での粘度をη、その組成における結晶化温度をTCS1としたとき、粘度ηと粘度ηとの粘度差(Δη=η-η)が0.15Pa・s以下で、結晶化温度TCS1と結晶化温度TCS0との結晶化温度差(ΔTCS=TCS1-TCS0)が100℃以下である、請求項1から請求項3のいずれか1項に記載のAl含有亜包晶鋼の連続鋳造用モールドパウダー。
  5.  Al(アルミニウム)を0.2質量%以上2.0質量%以下含有し、炭素含有量が亜包晶領域(0.08~0.17質量%)であるAl含有亜包晶鋼を連続鋳造する際に、請求項1から請求項4のいずれか1項に記載のAl含有亜包晶鋼の連続鋳造用モールドパウダーを連続鋳造用鋳型内に供給し、鋳片引き抜き速度を0.7~2.0m/minとし、モールドパウダー溶融層の厚みを溶鋼鋳造流量(Q;トン/min)に対して8×Q1/2mm以上、18×Q1/2mm以下、且つ、35mm以下とする、Al含有亜包晶鋼の連続鋳造方法。
PCT/JP2020/021918 2019-06-04 2020-06-03 Al含有亜包晶鋼の連続鋳造用モールドパウダー及び連続鋳造方法 WO2020246498A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
CN202080041035.3A CN113939376B (zh) 2019-06-04 2020-06-03 含Al亚包晶钢的连续铸造用保护渣和连续铸造方法
US17/616,525 US11945028B2 (en) 2019-06-04 2020-06-03 Mold powder for continuous casting of A1-containing sub-peritectic steel and continuous casting method
KR1020217038814A KR102629377B1 (ko) 2019-06-04 2020-06-03 Al 함유 아포정 강의 연속 주조용 몰드 파우더 및 연속 주조 방법
EP20818855.7A EP3964304A4 (en) 2019-06-04 2020-06-03 FORMING POWDER FOR CONTINUOUS CASTING OF AL-CONTAINING SUB-PERITECTIC STEEL AND CONTINUOUS CASTING PROCESSES
JP2021524875A JP7014335B2 (ja) 2019-06-04 2020-06-03 Al含有亜包晶鋼の連続鋳造用モールドパウダー及び連続鋳造方法
JP2022007001A JP7272477B2 (ja) 2019-06-04 2022-01-20 Al含有亜包晶鋼の連続鋳造用モールドパウダー及び連続鋳造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019104488 2019-06-04
JP2019-104488 2019-06-04

Publications (1)

Publication Number Publication Date
WO2020246498A1 true WO2020246498A1 (ja) 2020-12-10

Family

ID=73653197

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/021918 WO2020246498A1 (ja) 2019-06-04 2020-06-03 Al含有亜包晶鋼の連続鋳造用モールドパウダー及び連続鋳造方法

Country Status (6)

Country Link
US (1) US11945028B2 (ja)
EP (1) EP3964304A4 (ja)
JP (2) JP7014335B2 (ja)
KR (1) KR102629377B1 (ja)
CN (1) CN113939376B (ja)
WO (1) WO2020246498A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115156492B (zh) * 2022-06-15 2024-02-20 攀钢集团攀枝花钢铁研究院有限公司 一种高洁净钢if钢连铸过程中间包覆盖剂及其加入方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08197214A (ja) 1995-01-18 1996-08-06 Nippon Steel Corp 鋼の連続鋳造用パウダー
JP2007290007A (ja) * 2006-04-25 2007-11-08 Kobe Steel Ltd 高Al鋼の連続鋳造方法
JP2015186813A (ja) 2014-03-26 2015-10-29 新日鐵住金株式会社 Al含有鋼の連続鋳造用モールドフラックス及び連続鋳造方法
JP2017013082A (ja) * 2015-06-29 2017-01-19 品川リフラクトリーズ株式会社 鋼の連続鋳造用モールドパウダーおよび鋼の連続鋳造方法
WO2017078178A1 (ja) * 2015-11-05 2017-05-11 新日鐵住金株式会社 連続鋳造用モールドフラックスおよび連続鋳造方法
JP2017528321A (ja) * 2014-06-24 2017-09-28 ティッセンクルップ スチール ヨーロッパ アクチェンゲゼルシャフトThyssenKrupp Steel Europe AG 鋳造粉末、鋳造スラグおよび鋼の鋳造方法

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61186155A (ja) * 1985-02-15 1986-08-19 Nippon Steel Corp Al含有鋼鋳造用パウダ−
JP4014001B2 (ja) * 2001-12-12 2007-11-28 日鐵住金建材株式会社 高Al含有鋼連続鋳造用モールドフラックス
JP3780966B2 (ja) * 2002-03-14 2006-05-31 住友金属工業株式会社 連続鋳造用パウダーとそれを使用した連続鋳造法
JP4610290B2 (ja) * 2004-10-13 2011-01-12 山陽特殊製鋼株式会社 高アルミニウム含有鋼の連続鋳造用モールドパウダーおよびこのパウダーを用いる高アルミニウム含有鋼の連続鋳造方法
WO2007125871A1 (ja) 2006-04-25 2007-11-08 Kabushiki Kaisha Kobe Seiko Sho 高アルミニウム鋼の連続鋳造方法及びモールドパウダー
JP4646849B2 (ja) * 2006-04-25 2011-03-09 株式会社神戸製鋼所 高アルミニウム鋼の連続鋳造用モールドパウダー
JP5148385B2 (ja) * 2008-06-26 2013-02-20 品川リフラクトリーズ株式会社 鋼の連続鋳造用モールドパウダー及び連続鋳造方法
EP2441541A4 (en) * 2009-07-07 2017-03-15 Nippon Steel & Sumitomo Metal Corporation Mold flux for continuous casting of steel and method for continuous casting of steel using same
CN102069157B (zh) * 2009-11-24 2013-03-13 攀钢集团钢铁钒钛股份有限公司 一种高铝钢的制备方法
JP5370929B2 (ja) * 2010-01-22 2013-12-18 新日鐵住金株式会社 鋼の連続鋳造用モールドフラックス
CN102233414B (zh) * 2011-07-28 2013-04-03 山西太钢不锈钢股份有限公司 高铝高锰型无磁钢结晶器保护渣及其制造方法
CN102389955B (zh) * 2011-11-26 2013-08-28 重庆大学 一种高铝钢连铸用结晶器保护渣
JP5777603B2 (ja) * 2012-12-26 2015-09-09 株式会社神戸製鋼所 連続鋳造方法
JP5708690B2 (ja) * 2013-03-22 2015-04-30 新日鐵住金株式会社 鋼の連続鋳造用モールドフラックス
CN106457369B (zh) * 2014-06-10 2018-09-28 新日铁住金株式会社 含Ti亚包晶钢的连续铸造用保护渣及连续铸造方法
CN104128578B (zh) * 2014-06-18 2016-06-29 武汉钢铁(集团)公司 环保型高铝包晶钢用连铸结晶器保护渣
JP6598443B2 (ja) * 2014-09-19 2019-10-30 日本製鉄株式会社 Al含有鋼の連続鋳造用モールドフラックスおよびAl含有鋼の連続鋳造方法
JP6674093B2 (ja) * 2016-03-24 2020-04-01 品川リフラクトリーズ株式会社 鋼の連続鋳造用モールドパウダーおよび連続鋳造方法
JP2019048316A (ja) * 2017-09-11 2019-03-28 新日鐵住金株式会社 Al含有鋼の連続鋳造方法
CN107824754A (zh) 2017-11-30 2018-03-23 攀钢集团西昌钢钒有限公司 一种用于倒角结晶器的保护渣及采用倒角结晶器的钢材铸坯方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08197214A (ja) 1995-01-18 1996-08-06 Nippon Steel Corp 鋼の連続鋳造用パウダー
JP2007290007A (ja) * 2006-04-25 2007-11-08 Kobe Steel Ltd 高Al鋼の連続鋳造方法
JP2015186813A (ja) 2014-03-26 2015-10-29 新日鐵住金株式会社 Al含有鋼の連続鋳造用モールドフラックス及び連続鋳造方法
JP2017528321A (ja) * 2014-06-24 2017-09-28 ティッセンクルップ スチール ヨーロッパ アクチェンゲゼルシャフトThyssenKrupp Steel Europe AG 鋳造粉末、鋳造スラグおよび鋼の鋳造方法
JP2017013082A (ja) * 2015-06-29 2017-01-19 品川リフラクトリーズ株式会社 鋼の連続鋳造用モールドパウダーおよび鋼の連続鋳造方法
WO2017078178A1 (ja) * 2015-11-05 2017-05-11 新日鐵住金株式会社 連続鋳造用モールドフラックスおよび連続鋳造方法

Also Published As

Publication number Publication date
KR20220002543A (ko) 2022-01-06
JP2022040358A (ja) 2022-03-10
US20220226886A1 (en) 2022-07-21
KR102629377B1 (ko) 2024-01-24
CN113939376B (zh) 2023-04-11
JP7272477B2 (ja) 2023-05-12
JPWO2020246498A1 (ja) 2021-11-18
US11945028B2 (en) 2024-04-02
EP3964304A1 (en) 2022-03-09
CN113939376A (zh) 2022-01-14
JP7014335B2 (ja) 2022-02-01
EP3964304A4 (en) 2022-05-11

Similar Documents

Publication Publication Date Title
JP4646849B2 (ja) 高アルミニウム鋼の連続鋳造用モールドパウダー
CN102218514A (zh) 中低碳钢连铸结晶器保护渣及其制备方法和连铸方法
CN104308104A (zh) 一种新型保护渣及其应用
JP4837804B2 (ja) 鋼の連続鋳造用モールドパウダー
JP7272477B2 (ja) Al含有亜包晶鋼の連続鋳造用モールドパウダー及び連続鋳造方法
JPH11320058A (ja) 連続鋳造用モールドパウダおよび連続鋳造方法
CN103938088B (zh) 一种电阻合金Cr20AlY的板坯连铸方法
KR20170011712A (ko) 고탄소강의 연속 주주용 몰드 플럭스
CN107695311B (zh) 投入材料及利用其的铸造方法
JP2008030061A (ja) 高アルミニウム鋼の連続鋳造用モールドパウダー
JP6510342B2 (ja) Al含有鋼用連続鋳造パウダーおよび連続鋳造方法
JP2016007610A (ja) 鋼の連続鋳造方法
JP3141187B2 (ja) 鋼の連続鋳造用パウダー
CN106001473B (zh) 一种含铬钢连铸结晶器保护渣及其应用
CN111375736B (zh) 一种马氏体沉淀硬化不锈钢的浇铸方法
CN105344956B (zh) 硫系易切削用钢专用连铸结晶器功能保护材料
JP4527693B2 (ja) 高Al鋼スラブの連続鋳造方法
KR20140058145A (ko) 몰드파우더 및 이를 이용한 페라이트계 스테인리스강의 연속주조방법
RU2693706C1 (ru) Шлакообразующая смесь для непрерывной разливки стали
JP2020142262A (ja) 連続鋳造用モールドパウダーの製造方法及び鋼の連続鋳造方法
JP7448798B2 (ja) 連続鋳造用モールドフラックス
JP7161035B2 (ja) モールドフラックス及びこれを用いた鋳造方法
JP2024118184A (ja) モールドパウダー
CN117467850A (zh) 一种用于电渣重熔含硫钢的低氟渣系及生产含硫钢的方法
JP2024124883A (ja) 鋼の連続鋳造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20818855

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021524875

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20217038814

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020818855

Country of ref document: EP

Effective date: 20211203