WO2007125871A1 - 高アルミニウム鋼の連続鋳造方法及びモールドパウダー - Google Patents

高アルミニウム鋼の連続鋳造方法及びモールドパウダー Download PDF

Info

Publication number
WO2007125871A1
WO2007125871A1 PCT/JP2007/058751 JP2007058751W WO2007125871A1 WO 2007125871 A1 WO2007125871 A1 WO 2007125871A1 JP 2007058751 W JP2007058751 W JP 2007058751W WO 2007125871 A1 WO2007125871 A1 WO 2007125871A1
Authority
WO
WIPO (PCT)
Prior art keywords
sio
cao
mold
vertical
less
Prior art date
Application number
PCT/JP2007/058751
Other languages
English (en)
French (fr)
Inventor
Takashi Miyake
Hitoshi Nakata
Tsuyoshi Mimura
Tomoaki Omoto
Yukimasa Iwamoto
Original Assignee
Kabushiki Kaisha Kobe Seiko Sho
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2006121055A external-priority patent/JP3993623B1/ja
Priority claimed from JP2006120786A external-priority patent/JP4646849B2/ja
Application filed by Kabushiki Kaisha Kobe Seiko Sho filed Critical Kabushiki Kaisha Kobe Seiko Sho
Priority to KR1020087026242A priority Critical patent/KR101057950B1/ko
Priority to GB0821413A priority patent/GB2450855B/en
Priority to US12/297,984 priority patent/US8146649B2/en
Priority to CN2007800230321A priority patent/CN101472691B/zh
Publication of WO2007125871A1 publication Critical patent/WO2007125871A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/10Supplying or treating molten metal
    • B22D11/11Treating the molten metal
    • B22D11/111Treating the molten metal by using protecting powders
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/10Supplying or treating molten metal
    • B22D11/108Feeding additives, powders, or the like
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/10Supplying or treating molten metal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/10Supplying or treating molten metal
    • B22D11/11Treating the molten metal
    • B22D11/114Treating the molten metal by using agitating or vibrating means
    • B22D11/115Treating the molten metal by using agitating or vibrating means by using magnetic fields
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/16Controlling or regulating processes or operations

Definitions

  • the present invention relates to a method for producing high-A1 steel from a molten steel having a dissolved aluminum (A1) content of 0.1% by mass or more by continuous forging, and in particular, producing a piece having good surface quality.
  • the present invention relates to a continuous forging method.
  • Mold powder mainly consists of CaO and Si 2 O, and in order to adjust the viscosity and solidification temperature of molten slag, Al O, MgO,
  • This mold powder (A) ensuring lubricity between the vertical mold and the solidified shell, and (B) slow cooling by suppressing the heat removal rate from the solidified shell to the vertical mold. Is mentioned.
  • a hard sintered material called slag bear is formed on the wall surface, and the inflow of molten slag is hindered. As a result, lubricity is impaired, the solidified shell and the scissors are seized, and breakout occurs.
  • Patent Document 1 manufactures a piece having excellent surface quality even in continuous forging of high A1 steel, and in particular, suppresses the formation of slag bear, so that crystals with low basicity and high viscosity are produced.
  • a mold powder having a composition and physical properties is proposed (claims, paragraphs [0004] and [0007]).
  • Patent Document 2 discloses a mold powder containing two or more kinds of oxides of elements belonging to Group IA of the Periodic Table in order to achieve slow cooling by generating a composite crystal different from caspidine. (Claims and paragraph [0013]).
  • LiCa FSiO, NaCa FSiO, etc. are disclosed as assumed composite crystals.
  • NaCa FSiO is assumed as the main composite crystal.
  • Patent Document 2 is characterized by containing two or more kinds of oxides of elements belonging to Group IA of the Periodic Table because the object is to reduce the softening temperature of the mold powder ( Paragraph [0024]).
  • Patent Document 3 describes the reaction between A1 and SiO in the continuous forging of high aluminum steel [the above formula (
  • the chemical composition range is determined by the C content [C].
  • the range is generally C: 0.09 to 0.18%.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2003-53496 (Claims, paragraphs [0004] and [00 07])
  • Patent Document 2 JP-A-10-216907 (Claims, paragraphs [0013], [0020], [0024] and [0030])
  • Patent Document 3 Japanese Patent Laid-Open No. 2002-346708 (Claims, paragraphs [0011] and [0 017])
  • Non-Patent Document 1 “Solidification” — 373 (1985) Japan Society for the Promotion of Science
  • the present invention has been made paying attention to the circumstances as described above, and its purpose is to produce high A1 steel having an A1 content of 0.1% or more by continuous forging. Another object of the present invention is to provide a continuous forging method and a mold powder that can prevent the occurrence of dents and cracks of the piece and can produce a piece having excellent surface quality.
  • the A1 content is 0.1 to 3.0% (meaning mass%, the same shall apply hereinafter), and Si, Mn, Ni, Cr and Mo
  • the C content [C] satisfying the relations of the following formulas (1) to (3) are continuously formed using mold powder.
  • [T—CaO], [SiO 2] and [Li 2 O] are the modes of T—CaO, SiO and Li 2 O, respectively.
  • the molten steel surface level fluctuation speed in the vertical mold is set to 14 mmZ seconds or less, and molten steel is discharged in the vertical direction of the vertical mold, and an immersion nozzle whose discharge angle is 0 ° to 55 ° downward with respect to the horizontal is used.
  • the main point is that operation is performed while applying vertical vibrations such that the stroke of the amplitude is greater than 2 mm and less than 8 mm and the negative strip time tN defined by the following formula (6) is 0.28 seconds or less. I have it.
  • f is the vertical frequency (Hz)
  • s is the distance between the top and bottom stop points of the saddle when it is vertical (mm)
  • Vc is the speed at which the scissors are pulled out (mmZ seconds)
  • AI O 4.0% or less (excluding 0%),
  • a mold powder for continuously forging steel with a dissolved A1 content of 0.1% or more characterized by satisfying
  • the composition of the mold powder is made appropriate, and the continuous forging conditions are controlled appropriately to prevent the dents and cracks on the surface of the piece.
  • High A1 steel with excellent surface quality could be produced.
  • the present inventors have intensively studied in order to solve the above problems. As a result, by making the mold powder composition appropriate and controlling the continuous forging conditions appropriately
  • LiAlO is uniformly crystallized as fine crystals on the vertical surface of the slag film.
  • a uniform air layer is formed.
  • uniform heat removal is achieved, the variation in the temperature of the vertical copper plate is small, and in addition to preventing cracking by slow cooling, a solidified shell of uniform thickness is formed. It is thought that the dents and cracks of the pieces due to transformation shrinkage are also suppressed.
  • the present invention is not limited to such an estimation mechanism.
  • Li O from mold powder reacts with Al O formed by reaction with A1, and Li
  • this mold powder is made of high A1 steel.
  • the mold used in the present invention is also adjusted to an appropriate range. It is a characteristic of powder.
  • each component in the mold powder of the present invention will be described. Explain the quantity, basicity [T—CaO] Z [SiO 2] and mass ratio [Li 0] / [SiO 2]
  • T—CaO represents the CaO amount (% by mass) when all the Ca contained in the mold powder is converted to CaO.
  • the amount of T—CaO in the mold powder is 35% or more, preferably 38% or more, more preferably 40% or more, 55% or less, preferably 50% or less, more preferably 48% or less.
  • the amount of T-Ca 2 O is less than 35%, SiO increases relatively, and as a result, the reaction of formula (7) causes A
  • LiAlO is difficult to crystallize out of composition range
  • LiAlO is difficult to crystallize
  • the solidification temperature of the glue becomes too high.
  • SiO amount is 10% or more, preferably 15% or more, 30% or less, preferably 28% or less.
  • the amount of SiO, which is a glass-forming element, is less than 10%
  • the amount of Al 2 O is 4.0% or less.
  • Al O is a mold powder.
  • MgO amount is 0.2% or more, preferably 0.3% or more, more preferably 0.4% or more, 1. 0% or less, preferably 0.9% or less, more preferably 0.8% or less.
  • MgO acts as a nucleus for crystallization of crystals in the slag film. For this reason, if the MgO content exceeds 1.0%, the number of nuclei will increase, making it impossible to control the crystallization of the crystals properly.
  • 2CaO-7AlO may crystallize preferentially.
  • the amount of MgO is less than 0.2%
  • the crystal Since there are too few crystal nuclei, the crystal does not crystallize sufficiently until a low equilibrium temperature is reached, and it is difficult to perform slow cooling, particularly just below the vertical meniscus where the molten steel is hot. When the equilibrium temperature is reached, coarse crystals crystallize at once, resulting in variations in the heat removal rate.
  • Li 2 O amount is 7% or more, preferably 7.5% or more, more preferably 8.0% or more, 13
  • Li O content is less than 7%
  • the viscosity may increase and lubricity may not be ensured. Conversely, the Li O content exceeds 13%
  • the viscosity of the molten powder is greatly reduced, and the molten slag may locally flow excessively or pulsate, which may adversely affect the stable operation of continuous fabrication.
  • the F amount is 7% or more, preferably 7.5% or more, more preferably 8.0% or more, and is 13% or less, preferably 12% or less, more preferably 11% or less. If the F amount is less than 7%, the viscosity of the molten slag increases, and lubricity may not be ensured. On the other hand, F has an action of suppressing the crystallization of Li AlO. In particular, when the F content exceeds 13%, the crystallization amount of LiAlO is reduced.
  • This amount of C represents all the amount of C contained in the mold powder. That is, this amount of C is the sum of the amount of single carbon (free C) added as a raw material for mold powder and the amount of carbon in compounds such as LiCO added as a raw material for LiO. Represents. Mo
  • the amount of C in the powder powder is 10.5% or more, preferably 11.0% or more, more preferably 11.5% or more, 14% or less, preferably 13.5% or less, more preferably 13%. It is the following. If the amount of C is less than 10.5%, the melting rate of the mold powder becomes too high, resulting in excessive inflow and non-uniform inflow. As a result, vertical cracks of the piece are likely to occur.
  • the amount of C exceeds 14%, the melting rate becomes too low to secure a sufficient slag film thickness.
  • the slag film breaks when the molten steel surface level changes inevitably occur in industrial production, causing seizure and rapid cooling due to direct contact of the molten steel with the mold. The surface quality of the piece deteriorates.
  • the mold powder used in the present invention also has the above components and inevitable impurity power.
  • Na O and K O are used to reduce viscosity and solidification temperature.
  • the mold powder of the present invention is also characterized by not containing these. Because, in the continuous forging of high aluminum steel planned by the present invention, the following reaction formulas (8) and (9):
  • the unevenness (air layer) of the slag film may vary.
  • the basicity [T—CaO] Z [SiO 2] is 1.6 or more, preferably 1.8 or more, more preferably 2.
  • LiAlO is difficult to crystallize. Also, gelenite (3CaO '2SiO ⁇ ⁇ 1 ⁇ ) is easily generated.
  • the mass ratio [Li 0] / [SiO 2] is 0.2 or more, preferably 0.3 or more, more preferably 0.4 or more.
  • SiO 2 is less than 0.2, the amount of Li 2 O is insufficient, so that LiAlO is sufficiently produced.
  • LiAlO is difficult to crystallize.
  • the solidification temperature of the mold powder (molten slag) of the present invention is preferably 950 to 1200 ° C, more preferably 1000 to 1150 ° C. If the solidification temperature is less than 950 ° C, the crystal will be crystallized, and the effect of slow cooling may not be fully exhibited. On the other hand, when the solidification temperature exceeds 1200 ° C, slag bears are formed, and the breakout may cause cracks on the surface of the piece due to non-uniform inflow by the slag bears.
  • the A1 content of the continuously forged steel (A1 content in the molten steel) is 0.1% or more, preferably 0.3% or more, in order to sufficiently exert the effect of the mold powder. Preferably it is 0.5% or more, 2.5% or less, preferably 2.0% or less, more preferably 1.7% or less.
  • the amount of dissolved A1 in the steel represents the amount of A1 dissolved in the molten steel used for continuous forging, and this amount is the amount of A1 precipitated (ie not dissolved) such as Al 2 O 3. Not included
  • the basic component contents of Si, Mn, Al, Ni, Cr and Mo are each 4.0% or less (excluding 0%) Therefore, the above formulas (1) to (3) are satisfied.
  • it is essentially made of iron, but may contain unavoidable impurities such as S, P, Cu, etc., and a small amount of acceptable components (for example, 0.2% or less of Ti, Nb, etc. ) May also be included.
  • this fluctuation speed is preferably 10 mmZsec or less.
  • the Ar gas flow rate for preventing nozzle clogging is optimized and the shape of the discharge hole of the immersion nozzle is optimized according to the manufacturing conditions. good.
  • the immersion nozzle used in the vertical mold must have the molten steel discharge direction in the vertical direction of the vertical mold.
  • the molten steel discharge direction is the thickness direction
  • the molten steel discharge flow hits a specific part of the vertical wide solidified shell, and the heat removal status of the corresponding part is different from other parts. Easy to become the starting point of cracking.
  • the discharge angle of the immersion nozzle is preferably 0 ° or more and 55 ° or less downward with respect to the horizontal direction.
  • the discharge angle of the immersion nozzle is less than 0 ° (that is, upward)
  • the molten molten steel is directly directed to the interface between the molten mold powder and the molten steel bath surface, so that the interface becomes hot and stirred.
  • the reaction of formula (7) that occurs between dissolved A1 and SiO in the mold powder is intense.
  • f the vertical frequency (Hz)
  • s the distance (mm) between the top and bottom stop points of the vertical type
  • Vc the speed at which the vertical piece is pulled out (mmZ seconds).
  • the negative strip time tN defined by the above equation (6) is known as an index indicating the depth of the oscillation mark taking into account the amplitude (for example, “Third Edition Steel Handbook”). ⁇ Steel making 'steel making' (edited by the Japan Iron and Steel Institute), p638), the smaller the value, the smaller the depth of the oscillation mark (for example, “Iron and Steel”, 67 (1981), pi 190 ). In addition, when continuously forging normal steel, the negative strip time tN is set to about 0.35 seconds or less.
  • the negative strip time tN defined by the above equation (6) is set to 0.28 seconds or less. Need to control. In other words, when the negative strip time tN is greater than 0.28 seconds, the downward kinetic energy of the bowl-shaped is transmitted by the powder, and the pressure is generated on the meniscus powder. The depth of the mark increases, the deformation stress accompanying solidification and transformation concentrates in the valleys of the oscillation mark, and transverse cracks occur.
  • the preferable upper limit of the negative strip time tN is 0.25 seconds.
  • the basic forging conditions in the method of the present invention are as described above. It is also effective to perform in-mold electromagnetic stirring if necessary. By performing electromagnetic stirring, the molten steel flow in the mold is made uniform, and the temperature of the molten steel that collides with the solidified shell is made uniform, so that the heat input in the width direction of the steel piece is made uniform and uniform. A solidified shell can be obtained, and deburstion can be prevented. In order to exert such an effect, it is preferable that the magnetic flux density at the time of electromagnetic stirring is 300 gauss or more, more preferably 500 gauss or more.
  • molten steels steel types
  • mold powders having compositions shown in Table 2 below were used.
  • the mold size in continuous forging is 240 x 1230 mm
  • the forging speed is 1.4 mZ.
  • the solidification temperature of the mold powder (molten slag) was calculated.
  • the solidification temperature (° C) was calculated from the viscosity of molten slag 7? Specifically, the viscosity 7? Of the molten slag is continuously measured while raising the temperature by the vibrating piece method, and the logarithmic log ⁇ of the viscosity 7?
  • a graph was created with the horizontal axis representing the reciprocal 1ZT of the viscosity measurement temperature ⁇ on the vertical axis, and the temperature ⁇ ⁇ corresponding to the inflection point of this graph was determined as the solidification temperature.
  • MWZm 2 vertical heat flux
  • the vertical heat flux is obtained by calculating the total heat removal amount in the vertical type from the flow rate of the vertical cooling water and the temperature difference between the inlet and outlet, and dividing this by the contact area between the vertical type copper plate and the vertical piece. Calculated. A sample with a heat flux value of 1.5 MWZm 2 or higher was judged as “strong cooling” and a sample with a heat flux value of less than 1.5 MWZm 2 was judged as “slow cooling”.
  • thermocouple embedded in a vertical copper plate.
  • the forging speed may be reduced, and if the fluctuation still does not stop, the forging may be stopped.
  • dents and cracks were evaluated.
  • For dents on the surface of the slab remove two slabs from the part that has been forged in a steady state from 1 heat, and visually inspect the front and back surfaces of the slab wide surface to measure the dent depth at the part where dents are observed. A dent with a depth of more than ⁇ mm was evaluated as “with a dent”.
  • As for cracks on the surface of the flakes the front and back surfaces of the wide face of the flakes were visually observed, and any crack having a length of 100 mm or more was evaluated as “cracked”.
  • Test No. 13 has a high MgO content in the mold powder, and mayenite and the like were preferentially crystallized, resulting in variations in the heat removal rate, and the dents and cracks in the chips. There has occurred.
  • the SiO content in the mold powder is
  • Test No. 16 has a high Li O content in the mold powder.
  • Test No. 17 had a low Li O content in the mold powder.
  • Test No. 18 the F content in the mold powder was low, the viscosity increased, and sufficient lubricity could not be secured, so dents and cracks occurred.
  • Test No. 19 has a high F content in the mold powder and an extremely low LiAlO content.
  • Test No. 20 has a low basicity [T—CaO] Z [SiO 2], which is a rough particle. A large amount of one renite crystallized, resulting in variations in heat removal rate and cracking of the flakes.
  • Test No. 21 has a low Li O content in the mold powder,
  • the solidification temperature was too high to ensure adequate lubricity, and cracks occurred on the piece.
  • Test No. 22 had a high content of Li 2 O in the mold powder.
  • a— A1— O crystals were crystallized non-uniformly, which is thought to have affected the variation in the heat removal rate. Furthermore, a large amount of gehlenite is generated, the crystal becomes unstable, and slow cooling is not achieved.
  • the steels shown in Table 1 were produced in the same manner as in Example 1 except that molten steel (steel types) having various chemical composition compositions shown in Table 1 was used and mold powders having compositions shown in Table 4 below were used.
  • the continuous forging conditions vertical inner molten metal surface level fluctuation speed, immersion nozzle discharge angle, electromagnetic stirring magnetic flux density, vertical vibration stroke, negative strip time tN were controlled as shown in Table 5 below.
  • test No. 35 the magnetic stirrer magnetic flux density, which is a preferable requirement of the present invention, is increased, and the heat removal rate becomes uneven. And cracks occur.
  • test No. 40 the vertical amplitude stroke was 2 mm, and cracking occurred due to insufficient inflow.
  • Test Nos. 41 and 42 the oscillation mark interval is large, so that there are dents and cracks along the oscillation mark.
  • LiAlO cassvidine (3 CaO-2SiO 'CaF), dicalcium silicate (2CaO'SiO), mayenite (12Ca) present in slag film obtained from mold powder
  • the solidification temperature and consumption of mold powder were calculated.
  • the solidification temperature (° C) was calculated from the viscosity r? And temperature T of the molten slag.
  • the viscosity r? Of the molten slag is continuously measured while raising the temperature by the vibrating piece method, the logarithm log ⁇ of the viscosity 7? Is the vertical axis, and the inverse of the viscosity measurement temperature ⁇ 1ZT is the horizontal axis.
  • a graph was created, and the temperature ⁇ ⁇ corresponding to the inflection point of this graph was determined as the solidification temperature.
  • the consumption (kgZm 2 ) was determined by measuring the amount of mold powder added to the mold every time a 10 m long piece was produced, and dividing the added amount by the surface area of the produced piece. . These results are shown in Table 8.
  • the values of consumption shown in Table 8 indicate the forging speed at the top and bottom of the forging. This is the average of the values excluding the degree of decrease.
  • MWZm 2 vertical heat flux
  • the vertical heat flux is obtained by calculating the total heat removal amount in the vertical type from the flow rate of the vertical cooling water and the temperature difference between the inlet and outlet, and dividing this by the contact area between the vertical type copper plate and the vertical piece. Calculated. A sample with a heat flux value of 1.5 MWZm 2 or higher was judged as “strong cooling” and a sample with a heat flux value of less than 1.5 MWZm 2 was judged as “slow cooling”. Table 8 shows the results.
  • dents and cracks were evaluated.
  • For dents on the surface of the slab remove two slabs from the part that has been forged in a steady state from 1 heat, and visually inspect the front and back surfaces of the slab wide surface to measure the dent depth at the part where dents are observed. A dent with a depth of more than ⁇ mm was evaluated as “with a dent”.
  • As for cracks on the surface of the flakes the front and back surfaces of the wide face of the flakes were visually observed, and any crack having a length of 100 mm or more was evaluated as “cracked”.
  • mold powder Nos. 1-10 satisfying the requirements of the present invention can achieve slow cooling even when no sbidyne is formed in the slag film. A piece having excellent surface quality without cracks can be produced. This slow cooling is thought to be achieved by LiAlO in the slag film. Mold powder No.
  • 1 to 10 have the proper solidification temperature and proper lubrication. In addition, continuous fabrication using these enables stable operation with little temperature fluctuation.
  • No. 13 has a small amount of SiO, so a large amount of slag bear is generated, and the dents and cracks of the flakes
  • No. 15 is the amount of Li 2 O and Li 2 O / SiO force
  • No. 17 has a large amount of F, LiAlO is not sufficiently crystallized, and the heat removal rate varies.
  • No. 19 has a small amount of Li 2 O, so the solidification temperature becomes too high and proper lubricity is ensured.
  • No. 20 has too much Li 2 O, so a sufficient amount of LiAlO is not crystallized and the heat removal rate is increased.
  • Na-Al-O crystals were crystallized non-uniformly, which may have had an adverse effect on the variation in heat extraction rate.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Continuous Casting (AREA)
  • Treatment Of Steel In Its Molten State (AREA)

Abstract

 本発明は、Al含有量が0.1%以上であるような高Al鋼を連続鋳造によって製造する場合でも、凹みや鋳片の割れの発生を防止して、表面品質に優れた鋳片を製造できる連続鋳造方法を提供する。所定の化学成分を有する高Al溶鋼を、モールドパウダーを用いて連続鋳造するに際して、モールドパウダーとして、T-CaO:35~55%、SiO2:10~30%、Al2O3:4.0%以下(0%を含まない)、MgO:0.2~1.0%、Li2O:7~13%、F:7~13%、C:10.5~14%、および不可避不純物からなり、1.6≦[T-CaO]/[SiO2]≦5、および0.2≦[Li2O]/[SiO2]≦1.1を満たすものと用いると共に、鋳型内の湯面レベル変動速度、鋳型幅方向への溶鋼の吐出角度、振幅のストローク、および所定の関係式で定められるネガティブストリップ時間tN等の条件を制御しつつ操業する。

Description

明 細 書
高アルミニウム鋼の連続铸造方法及びモールドパウダー
技術分野
[0001] 本発明は、溶存アルミニウム (A1)量が 0. 1質量%以上である溶鋼から連続铸造法 によって高 A1鋼を製造する方法に関するものであり、特に表面品質が良好な铸片を 製造するための連続铸造方法に関するものである。
背景技術
[0002] 鋼の連続铸造では、モールドパウダー(mold powder)力 铸型内の溶鋼表面上に 添加される。これは、溶鋼力ゝらの熱で滓ィ匕溶融し、溶融スラグ層を形成し、順次铸型 と凝固シェルとの隙間に流入して、消費される。モールドパウダーは、主に CaOと Si Oとからなり、さらに溶融スラグの粘度や凝固温度を調整するために Al O、 MgO、
2 2 3
Na 0、 Fや Li Oなど、またスラグの溶融速度を調整するために Cなどが加えられてい
2 2
る。このモールドパウダーの主な役割としては、(A)铸型および凝固シェル間の潤滑 性を確保すること、および (B)凝固シェルから铸型への抜熱速度を抑えて緩冷却さ せることなどが挙げられる。
[0003] まず上記 (A)で挙げた铸型および凝固シェル間の潤滑性を確保するためには、铸 型および凝固シェルの隙間にモールドパウダー力も得られる溶融スラグが適正量流 入するように、その粘度及び凝固温度を適正に設定することが重要である。一般的に 高速铸造となるほど、溶融スラグの流入量を確保するため、低粘度のものが使用され る。
[0004] また上記 (B)の緩冷却は、得られる铸片の表面品質に直結するため重要である。
亜包晶鋼のように铸片表面割れの発生しやす 、鋼種では、特に緩冷却が必要とされ る。緩冷却のためには、モールドパウダー力も得られるスラグフィルム(slag film)中、 特にその铸型側表面に結晶を晶出させることが有効である。スラグフィルムの铸型側 表面に結晶が晶出すると、フィルムと铸型との間に凹凸が形成され、この凹凸に含ま れる空気層が断熱層として作用するからである。この結晶として、カスピダイン (cuspid ine; 3CaO - 2SiO 'CaF )力 一般的に利用されている。 [0005] しかし溶存 Al量が 0. 1%以上であるような溶鋼力 連続铸造法によって铸片を製 造する際には、(A)の潤滑性の確保、および (B)の緩冷却が困難となる。なぜなら、 このような高 A1鋼の連続铸造では、下記の反応式(7):
4Al+3SiO → 2A1 0 +3Si
2 3 … (7)
2
で表される化学反応により、 SiOが消費されるからである。そのため溶融スラグ中に
2
おける塩基度 [CaO]Z[SiO ]が上昇して、凝固温度が著しく上昇する。そして铸型
2
壁面にスラグベアと呼ばれる硬い焼結物ができ、溶融スラグの流入が阻害される。そ の結果、潤滑性が損なわれて、凝固シェルと铸型とが焼き付き、ブレークアウトが発 生してしまう。
[0006] また上記式(7)の反応により、溶融スラグが組成変動を受けるため、カスピダインを 安定して生成させることが困難になる。このように高 A1鋼の連続铸造では、上記式(7 )の反応による組成変動が生ずるために、表面品質に優れた铸片を、安定して製造 することが難しい。
[0007] そこで特許文献 1は、高 A1鋼の連続铸造でも表面品質に優れた铸片を製造するた め、殊にスラグベアの生成を抑制するため、低塩基度で、且つ高粘度で結晶が晶出 しにく!/、組成および物性を有するモールドパウダーを提案して 、る(特許請求の範囲 、段落 [0004]および [0007] )。
[0008] また特許文献 2は、カスピダインとは異なる複合結晶を生じさせて緩冷却を達成す るため、周期律表 IA族に属する元素の酸ィ匕物を 2種類以上含有するモールドバウダ 一を開示している(特許請求の範囲および段落 [0013])。尚、特許文献 2の発明で は、想定する複合結晶として、 LiCa FSiOや NaCa FSiOなどを開示しているが、
2 4 2 4
実施例で用いられている周期律表 IA族に属する元素の酸ィ匕物の中では、 Na O量
2 が最も多いことから、メインの複合結晶として NaCa FSiOを想定していると考えられ
2 4
る(段落 [0020]および [0030])。また特許文献 2の発明は、モールドパウダーの軟 化温度を低減させることが目的であるため、周期律表 IA族に属する元素の酸ィ匕物を 2種類以上含有することを特徴として ヽる (段落 [0024] )。
[0009] 特許文献 3は、高アルミニウム鋼の連続铸造において、 A1と SiOとの反応 [上記式 (
2
7) ]により Al O含有率が増加する際に、凝固温度および粘度が増加して、ブレーク アウトの発生および铸片の表面品質の悪ィ匕を防止するために、 CaO、 SiO 、 Li 0、
2 2
F、 Na 0、 K Oおよび Al O含有率が所定の式を満たし、溶融層が凝固したフィルム
2 2 2 3
中に、カスビダインの結晶が晶出するような組成を有するモールドパウダーを提案し て 、る(特許請求の範囲、段落 [0011]および [0017] )。
[0010] し力しながら、高 A1鋼でも特に包晶反応ある 、は δ Z Ύ変態量が多 、ような組成 域の鋼では、上記のようなモールドパウダーを用いても、得られる铸片の表面に変態 収縮に伴うデイブレツシヨン(depression;凹凸)や割れが発生しやす!/、と 、う問題があ る。こうした鋼種は亜包晶鋼と呼ばれており、一般的には Fe— Cあるいは Fe— Fe C
2 3 二元系平衡状態図に基づき、 C含有量 [C]によってその化学成分組成範囲が決定 される。その範囲は概ね C : 0. 09〜0. 18%であるとされている。
[0011] ところが、合金鋼の場合には、添加元素の影響により状態図そのものが変化し、 δ 相の最大固溶 C濃度、包晶点ともに移動するので、 C含有量のみで亜包晶鋼の組成 範囲を一律に規定できないという事情がある。こうしたことから、高 A1鋼でも特に包晶 反応あるいは δ / γ変態量が多いような組成については、 Si, Mn, Al, Ni, Crおよ び Mo等の合金元素の影響を考慮し、平衡熱力学計算に基づいて下記式(1)〜(3) のように規定することが知られている(非特許文献 1)。尚、これらの式の対象となる亜 包晶鋼は、 Si, Mn, Al, Ni, Crおよび Moの基本成分の含有量は、夫々 4. 0%以 下(0%を含まない)であることを想定したものであり、 A1の含有量は 0. 1〜3. 0%で ある。
fl -0.10≤[C]≤f2 + 0.05
fl = 0.0828[Si] -0.0195 [Mn] + 0.07398 [Al] 0.04614[Ni] +0.02447 [Cr] +0.01851 [Mo] +0.090 - -- (2)
f2 = 0.2187[Si] -0.03291 [Mn] +0.2017[A1] -0.06715 [Ni] +0.04776 [Cr] +0.04601 [Mo] +0.173 · '· (3)
〔式中、 [Si] , [Mn] , [Al] , [Ni] , [Cr]および [Mo]は、夫々 Si, Mn, Ni, Crお よび Moの含有量 (質量%)を示す。〕
特許文献 1:特開 2003— 53496号公報 (特許請求の範囲、段落 [0004]および [00 07]) 特許文献 2 :特開平 10— 216907号公報 (特許請求の範囲、段落 [0013]、 [0020] 、 [0024]および [0030])
特許文献 3:特開 2002— 346708号公報 (特許請求の範囲、段落 [0011]および [0 017])
非特許文献 1 :「凝固」— 373 (1985) 日本学術振興会製鋼第 19委員会第 3分科 会凝固現象協議会 10670
発明の開示
発明が解決しょうとする課題
[0012] 上記式(1)〜(3)で規定される亜包晶鋼のように、铸片表面割れの発生しやすい 鋼種では、割れを抑制するために、抜熱速度を低下させて、緩冷却することが重要 である。そのため従来では、一般的に、モールドパウダー力 得られるスラグフィルム 中にカスピダイン(3CaO ' 2SiO 'CaF
2 2 )を晶出させて、その铸型表面に凹凸(空気 による断熱層)を形成させることにより、緩冷却を達成していた。し力ゝし高 A1鋼の場合 は、組成変動のために、カスピダインを安定して生成させることが困難である。
[0013] また、上記のような鋼種を表面品質を良好に維持しつつ製造するには、適切なモ 一ルドパウダーを用いることも重要であるが、連続铸造における条件も適切に制御す る必要がある。しかしながら、 A1含有量が 0. 1%以上である高 A1鋼を連続铸造する 場合における最適な铸造条件につ 、て、確立されて 、るとは 、えな 、のが実情であ る。
[0014] 本発明は上記の様な事情に着目してなされたものであって、その目的は、 A1含有 量が 0. 1%以上であるような高 A1鋼を連続铸造によって製造する場合でも、凹みや 铸片の割れの発生を防止して、表面品質に優れた铸片を製造できる連続铸造方法 及びモールドパウダーを提供することにある。
課題を解決するための手段
[0015] 本発明の第 1の局面における連続铸造方法は、 A1含有量が 0. 1〜3. 0% (質量% の意味、以下同じ)であると共に、 Si, Mn, Ni, Crおよび Moを夫々 4. 0%以下(0% を含まな!/、)含み、且つ C含有量 [C]が下記式 ( 1)〜 (3)式の関係を満たす溶鋼を、 モールドパウダーを用いて連続铸造するに際して、 fl-0.10≤[C]≤f2 + 0.05 …ひ)
fl = 0.0828[Si] -0.0195[Mn] + 0.07398 [Al] 0.04614[Ni] +0.02447
[Cr] +0.01851 [Mo] +0.090 …
f2 = 0.2187[Si] -0.03291 [Mn] +0.2017[A1] 0.06715 [Ni] +0.04776
[Cr] +0.04601 [Mo] +0.173 … )
〔式中、 [Si], [Mn], [Al], [Ni], [Cr]および [Mo]は、夫々 Si, Mn, Ni, Crお よび Moの含有量 (質量%)を示す。〕
前記モールドパウダーとして、 T— CaO:35〜55%、 SiO: 10
2 〜30%、 Al O :4.
2 3
0%以下(0%を含まない)、 MgO:0.2〜1.0%、LiO:7
2 〜13%、F:7〜13%、C:
10.5〜14%、および不可避不純物からなり、下記式 (4)および(5)を満たすと共に 1.6≤ [T-CaO]/[SiO ]≤5 ---(4)
2
0.2≤[Li 0]/[SiO ]≤1.1 ---(5)
2 2
〔式中、 [T—CaO]、 [SiO ]および [Li O]は、夫々 T—CaO、 SiOおよび Li Oのモ
2 2 2 2 一ルドパウダー中の含有量 (質量%)を表す。〕
铸型内の湯面レベル変動速度を 14mmZ秒以下とし、铸型幅方向に溶鋼を吐出 させると共に、その吐出角度が水平に対して下向き 0° 以上、 55° 以下の浸漬ノズ ルを用い、更に振幅のストロークを 2mm超、 8mm以下とし、且つ下記式(6)で定め られるネガティブストリップ時間 (negative strip time)tNが 0.28秒以下となるような铸 型振動を付与しつつ操業する点に要旨を有するものである。
ίΝ=(1/π ·ί)οο8_1(νο/π -f-s) ·'·(6)
〔ここで、 f:铸型振動数 (Hz)、 s:铸型振動時の铸型の上止点と下止点間の距離( mm)、 Vc:铸片引き抜き速度 (mmZ秒)を夫々示す〕
[0016] 上記本発明方法においては、 300〜 1200ガウスの磁束密度で铸型内電磁攪拌を 行 、つつ操業することが好まし 、。
[0017] (786記載分)
本発明の第 2の局面におけるモールドパウダーは、
T CaO:35〜55% (質量%の意味、以下同じ)、 SiO : 10〜30%、
2
AI O :4. 0%以下(0%を含まない)、
2 3
MgO : 0. 2〜1. 0%、
Li 0 : 7〜13%、
2
F: 7〜13%、
C : 10. 5〜14%、
および不可避不純物からなり、
下記式 (4)および(5) :
1.6≤ [T-CaO]/[SiO ]≤5 … (4)
2
0.2≤[Li 0]/[SiO ]≤1.1 … (5)
2 2
〔式中、 [T— CaO]、 [SiO ]および [Li O]は、それぞれ、 T— CaO、 SiOおよび Li
2 2 2 2 oのモールドパウダー中の含有量(質量0 /0)を表す。〕
を満たすことを特徴とする、溶存 A1量が 0. 1%以上である鋼を連続铸造するための モールドパウダーである。
発明の効果
[0018] 本発明の第 1の局面の製造方法によれば、モールドパウダーの組成を適切にする と共に、連続铸造条件を適切に制御することによって、铸片表面の凹みや割れが防 止されて表面品質に優れた高 A1鋼を製造することができた。
[0019] (786記載分)
本発明の第 2の局面のモールドパウダーを連続铸造に用いると、铸片表面の凹み や割れが防止されて表面品質に優れた高アルミニウム鋼を製造することができる。 発明を実施するための最良の形態
[0020] 本発明者らは、前記課題を解決するために鋭意研究を重ねた。その結果、モール ドパウダーの組成を適切にすると共に、連続铸造条件を適切に制御することによって
、上記目的が見事に達成されることを見出し、本発明を完成した。まず、本発明で用
V、るモールドパウダーにつ 、て説明する。
[0021] 従来提案されているモールドパウダーでは、高 A1鋼に適用したときには、組成変動 のために、カスピダインを安定して生成させることが困難である。そこで本発明者らは 、スラグフィルム中に、カスビダインに代わる結晶を晶出させることを検討した。
[0022] しかし緩冷却のために、ダイカルシウムシリケート(dicalcium silicate; 2CaO · SiO )
2
、メイエナイト(mayenite; 12CaO - 7A1 0 )およびゲーレナイト (gehlenite; 3CaO · 2S
2 3
ίθ ·Α1 O )のような結晶を晶出させると、铸型銅板温度変動が大きくなる問題がある
2 2 3
上に、铸片の凹みや割れの防止には有効ではない。これらは、粗大な結晶として、ス ラグフィルム中で不均一に晶出するため、铸型側の表面に不均一な凹凸(空気層)を 形成し、その結果、抜熱速度にバラツキが生ずる。そうすると凝固シェルの厚みが不 均一になるため、変態収縮で、铸片表面に凹みや割れが発生すると考えられる。
[0023] そこで鋭意検討した結果、カスビダインの代わりに、 LiAlOをスラグフィルム中に晶
2
出させることで、铸片の凹凸や割れを、有効に防止できることを見出した。 LiAlOを
2 晶出させることにより、铸片の凹凸や割れを防止できる正確なメカニズムは不明であ る力 次のように推定できる。
[0024] LiAlOは、スラグフィルムの铸型表面に、微細な結晶として均一に晶出するため、
2
均一な空気層が形成される。その結果、均一な抜熱が達成され、铸型銅板温度の変 動が小さぐまた緩冷却により、割れが防止されることに加えて、均一な厚みの凝固シ エルが形成されることにより、変態収縮による铸片の凹みや割れも抑制されると考えら れる。但し、本発明はこのような推定メカニズムに限定されない。
[0025] 本発明で用いるモールドパウダーでは、モールドパウダーからの SiOと溶鋼からの
2
A1とが反応して形成される Al Oに、モールドパウダーからの Li Oを反応させて、 Li
2 3 2
AIOを晶出させることを意図している。即ち、このモールドパウダーは、高 A1鋼の連
2
続铸造で、組成変動の原因となる上記式(7)の SiOと Alとの反応を利用して、 LiAl
2
Oを晶出させるものである。そしてこの、モールドパウダーは、 LiAlOを晶出させるた
2 2
めに、各成分量、殊に T CaO、 SiOおよび Li O量、並びにこれらの質量比 [Li O]
2 2 2
/[SiO ]および塩基度 [T CaO]Z[SiO ]が、適正範囲に調整されている必要が
2 2
ある。
[0026] また、溶融スラグ (モールドパウダー)の凝固温度を適正範囲に調整して、潤滑性を 確保するという観点から、各成分組成が適正範囲に調整されていることも、本発明で 用いるモールドパウダーの特徴である。以下、本発明のモールドパウダー中の各成 分量、塩基度 [T—CaO]Z[SiO ]および質量比 [Li 0]/[SiO ]を、それぞれ説明
2 2 2
する。
[0027] [T CaO : 35〜55%]
本発明で用いるモールドパウダーにおいて、「T— CaO」とは、モールドパウダー中 に含まれる全ての Caを、 CaOに換算した際の CaO量 (質量%)を表す。モールドパ ウダ一中の T—CaO量は、 35%以上、好ましくは 38%以上、より好ましくは 40%以 上であり、 55%以下、好ましくは 50%以下、より好ましくは 48%以下である。 T-Ca O量が 35%未満であると、相対的に SiOが増加し、その結果、式(7)の反応により A
2
1 O量が増加し、 LiAlOが晶出しやすい組成範囲力 外れて、 LiAlOが晶出しにく
2 3 2 2
くなる。またゲーレナイト(3Ca02SiO ·Α1 Ο )も生成しやすくなる。逆に T— CaO
2 2 3
量が 55%を超えても、相対的に Li Oおよび SiO量が低下し、その結果、式(7)の反
2 2
応により Al O量が低下して、充分な量の LiAlOが確保できなくなる。また溶融スラ
2 3 2
グの凝固温度が高くなりすぎる。
[0028] [SiO : 10〜30%]
2
SiO量は、 10%以上、好ましくは 15%以上であり、 30%以下、好ましくは 28%以
2
下、より好ましくは 25%以下である。ガラス形成元素である SiO量が 10%未満である
2
と、結晶が発達しやすいため、粗大な結晶が形成されて、スラグフィルムの铸型表面 側に不均一な凹凸が形成される。また凝固温度も上昇し、潤滑性が損なわれて、スラ グベアが生成しやすくなる。逆に SiO量が 30%を超えると、 LiAlOよりも、ゲーレナ
2 2
イト(3CaO' 2SiO ·Α1 Ο )やダイカルシウムシリケート(2CaO . SiO )が多く晶出す
2 2 3 2
る。
[0029] [AI O :4. 0%以下(0%を含まない)]
2 3
溶融スラグの凝固温度および粘度の上昇を防止するため、 Al O量は、 4. 0%以
2 3
下、好ましくは 3%以下、より好ましくは 2%以下である。但し Al Oは、モールドパウダ
2 3
一製造において不可避不純物として混入されるため、この量を 0%にすることは工業 的に困難である。
[0030] [MgO : 0. 2〜1. 0%]
MgO量は、 0. 2%以上、好ましくは 0. 3%以上、より好ましくは 0. 4%以上であり、 1. 0%以下、好ましくは 0. 9%以下、より好ましくは 0. 8%以下である。 MgOは、スラ グフィルム中で結晶が晶出するための核として作用する。そのため MgO量が 1. 0% を超えると、核が多くなりすぎて、結晶の晶出を適切に制御できなくなり、殊にモール ドパウダー組成によっては、ダイカルシウムシリケート(2CaO ' SiO )やメイエナイト(1
2
2CaO - 7Al O )が優先的に晶出する場合がある。一方、 MgO量が 0. 2%未満であ
2 3
ると、結晶の核が少なすぎるため、低温の平衡温度に達するまでは結晶が充分に晶 出せず、殊に溶鋼が高温である铸型メニスカス直下では、緩冷却が行いにくい。また 平衡温度に達すると、粗大な結晶が一度に晶出するため、抜熱速度にバラツキが生 じる。
[0031] [Li O : 7〜13%]
2
Li O量は、 7%以上、好ましくは 7. 5%以上、より好ましくは 8. 0%以上であり、 13
2
%以下、好ましくは 12%以下、より好ましくは 11%以下である。 Li O量が 7%未満で
2
あると、充分な量の LiAlOを晶出させることが難しぐまた溶融スラグの凝固温度およ
2
び粘度が上昇して、潤滑性が確保できない場合がある。逆に Li O量が 13%を超え
2
ても、 LiAlOが晶出する最適範囲力 外れて、その晶出量が低下し、緩冷却が達成
2
されない場合がある。さらに溶融パウダーの粘度が大きく低下して、溶融スラグが局 所的に過剰流入したり、脈動が生じて、連続铸造の安定操業に悪影響を及ぼすこと がある。
[0032] [F : 7〜13%]
F量は、 7%以上、好ましくは 7. 5%以上、より好ましくは 8. 0%以上であり、 13% 以下、好ましくは 12%以下、より好ましくは 11%以下である。 F量が 7%未満であると 、溶融スラグの粘度が上昇し、潤滑性を確保できなくなる場合がある。一方、 Fは、 Li AlOの晶出を抑制する作用を有し、殊に F量が 13%を超えると、 LiAlOの晶出量が
2 2 急激に低減する。
[0033] [C : 10. 5〜14%]
この C量は、モールドパウダー中に含まれる全ての C量を表す。即ち、この C量は、 モールドパウダーの原料として添加されるような、単体の炭素量 (遊離 C量)と、例え ば Li O原料として添加される Li CO等の化合物中の炭素量との合計を表す。モー ルドパウダー中の C量は、 10. 5%以上、好ましくは 11. 0%以上、より好ましくは 11. 5%以上であり、 14%以下、好ましくは 13. 5%以下、より好ましくは 13%以下である 。 C量が 10. 5%未満であると、モールドパウダーの溶融速度が大きくなりすぎて、流 入過多となり、不均一流入が生ずる。その結果、铸片の縦割れが発生しやすくなる。 逆に C量が 14%を超えると、溶融速度が小さくなりすぎて、充分なスラグフィルムの厚 みが確保できなくなる。その結果、工業生産上で不可避的に発生する铸型内の湯面 変動の際に、スラグフィルムの膜切れを起こし、焼付きや、溶鋼が直接铸型に接する ことによる急冷のために、铸片の表面品質が劣化する。
[0034] 本発明で用いるモールドパウダーは、上記成分および不可避不純物力もなる。尚、 一般的なモールドパウダーには、粘度、凝固温度を低減させるために、 Na Oや K O
2 2 が添加されている力 本発明のモールドパウダーは、これらを含有しないことも特徴と する。なぜなら本発明が予定する高アルミニウム鋼の連続铸造では、下記の反応式( 8)および(9):
2Al+3Na O → Al O +6Na … (8)
2 2 3
2A1+3K O → 2A1 0 +6K … (9)
2 2 3
で示される化学反応が起こるため、 Na O
2 や K O
2 が消費されて、これらの作用が充分 に発揮されず、想定する以上の Al Oが生成して、溶融スラグの凝固温度などに悪
2 3
影響を及ぼす力もである。また Na Oが存在すると、 Na— Al— O結晶が不均一に晶
2
出して、スラグフィルムの凹凸(空気層)にバラツキが生ずることがある。
[0035] [1. 6≤[T-CaO]/[SiO ]≤5]
2
塩基度 [T— CaO]Z[SiO ]は、 1. 6以上、好ましくは 1. 8以上、より好ましくは 2.
2
0以上であり、 5以下、好ましくは 4以下、より好ましくは 3以下である。塩基度が 1. 6未 満であると、相対的に SiO量が増加し、 LiAlOが晶出しやすい組成範囲力 外れて
2 2
、 LiAlOが晶出しにくくなる。またゲーレナイト(3CaO' 2SiO ·Α1 Ο )も生成しやす
2 2 2 3 くなる。逆に塩基度が 5を超えても、相対的に SiO量が減少し、それに伴い Al O量
2 2 3 および LiAlO量が減少する。またにガラス形成成分である SiO量が減少することで
2 2
、メイエナイト(12CaO ' 7Al O )が過度に発達してしまう。さらに凝固温度が高くなつ
2 3
て潤滑性に悪影響を及ぼし得る。 [0036] [0. 2≤ [Li 0],[SiO ]≤ 1. 1]
2 2
質量比 [Li 0]/[SiO ]は、 0. 2以上、好ましくは 0. 3以上、より好ましくは 0. 4以
2 2
上であり、 1. 1以下、好ましくは 1. 0以下、より好ましくは 0. 9以下である。 [Li O
2 ]Z[
SiO ]が 0. 2未満であると、 Li O量が不充分となるため、 LiAlOが充分に生成され
2 2 2
なくなる。逆に [Li 0]/[SiO ]が 1. 1を超えても、 LiAlO晶出のための最適範囲か
2 2 2
ら外れるために、 LiAlOが晶出しにくくなる。
2
[0037] 本発明のモールドパウダー(溶融スラグ)の凝固温度は、好ましくは 950〜1200°C 、より好ましくは 1000〜1150°Cである。凝固温度が 950°C未満であると、結晶が晶 出しに《なり、緩冷却の効果を充分に発揮させることができないおそれがある。一方 、凝固温度が 1200°Cを超えると、スラグベアが生成し、スラグベアによる不均一流入 のために、ブレークアウトゃ铸片表面の割れが生ずる場合がある。
[0038] 連続铸造する鋼の A1含有量 (溶鋼中の A1含有量)は、上記モールドパウダーの効 果を充分に発揮させるために、 0. 1%以上、好ましくは 0. 3%以上、より好ましくは 0 . 5%以上であり、 2. 5%以下、好ましくは 2. 0%以下、より好ましくは 1. 7%以下で ある。ここで鋼の溶存 A1量とは、連続铸造に用いる溶鋼中に溶けている A1の量を表 し、この量には、 Al Oなどとして析出している(即ち溶存していない) A1量は含まれな
2 3
い。
[0039] また、本発明方法で対象とする亜包晶鋼では、 Si, Mn, Al, Ni, Crおよび Moの 基本成分の含有量は、夫々 4. 0%以下 (0%を含まない)であることを想定したもので あり、上記式(1)〜(3)を満足するものである。上記成分の他は、実質的に鉄からなる ものであるが、 S, P, Cu等の不可避不純物も含有し得る他、少量の許容成分 (例え ば、 0. 2%以下の Ti, Nb等)も含み得る。
[0040] 本発明において、上記目的を達成するためには、連続铸造条件も適切に制御する 必要がある力 次にこれらの条件について説明する。
[0041] [铸型内の湯面レベル変動速度: 14mmZ秒以下]
铸型内の湯面レベル変動速度は、モールドパウダー溶融プールの安定を維持する ために適切な範囲に制御する必要がある。この変動速度が 14mmZ秒を超えると、 モールドパウダー溶融プールが切れて溶鋼が铸型銅板に直接接触し、铸型抜熱速 度が不均一となる。その結果、铸型熱電対温度変動が大きくなつてデイブレツシヨン や割れ等が発生しやすくなる。尚、この変動速度は、好ましくは lOmmZ秒以下とす るのが良い。また、铸型内の湯面レベル変動速度を上記の範囲に制御するには、铸 造条件に応じて、ノズル詰まり防止用 Arガス流量を最適化し、浸漬ノズルの吐出孔 形状を最適化すれば良い。
[0042] [铸型幅方向に溶鋼を吐出させると共に、その吐出角度が水平に対して下向き 0° 以上、 55° 以下の浸漬ノズルを用いる]
铸型内で使用する浸漬ノズルは、その溶鋼吐出方向が铸型の幅方向である必要が ある。溶鋼吐出方向が厚み方向であると、铸型広面側凝固シェルの特定部位に溶鋼 吐出流が当り、該当部位の抜熱状況が他の部位と異なり、変態収縮の大きい該鋼種 ではデイブレツシヨンや割れの起点となり易 、。このときの浸漬ノズルの吐出角度(吐 出方向角度)は水平方向に対して下向き 0° 以上、 55° 以下とするのが良い。浸漬 ノズルの吐出角度が 0° 未満 (即ち、上向き)となると、吐出溶鋼が溶融モールドバウ ダ一と溶鋼浴面の界面に直接向力うため、界面が高温かつ攪拌される状態となり、溶 鋼中の溶存 A1とモールドパウダー中の SiOとの間で起こる前記式(7)の反応が激し
2
く進行し、適切なモールドパウダー組成に制御できない。また、浸漬ノズルの吐出角 度が水平方向下向き 55° 以上になると、高温の溶鋼吐出流が铸型下方に向力う流 れが中心となり、铸型内溶鋼浴面温度が低下し過ぎることなる。こうした場合には、比 較的凝固温度の高い本モールドパウダーにおいてはスラグベアが発生し、モールド パウダーの流入不均一を起こし、縦割れを発生させることがある。
[0043] [振幅のストローク: 2mm超、 8mm以下、下記式(6)で定められるネガティブストリツ プ時間 tN : 0. 28秒以下]
連続铸造を行う場合には、铸型を振動しながら铸片を下方に引き抜くのが一般的 であるが、この铸型振動条件としては、铸型の上死点と下死点間の距離で定められ る振幅のストロークを 2mm超、 8mm以下の範囲に制御した上で、下記式(6)で定め られるネガティブストリップ時間 tNが 0. 28秒以下となるような铸型振動を付与しつつ する必要がある。
ー(6) 〔ここで、 f :铸型振動数 (Hz)、 s :铸型振動時の铸型の上止点と下止点間の距離( mm)、 Vc:铸片引き抜き速度 (mmZ秒)を夫々示す〕
[0044] 上記ストロークが 2mm以下になると、モールドパウダーの流入量が極端に減少し、 铸型ー铸片間の焼き付き頻度が増加し、ブレイクアウトの危険性が増加するため安 定铸造が実現し難くなる。また、ストロークが 8mmを超えると、ォッシレーシヨンマーク の間隔が広くなり、铸造初期の収縮応力が分散されず、ォッシレーシヨンマーク部に 集中し、デイブレツシヨンを引き起こすことになる。
[0045] 上記式(6)で定められるネガティブストリップ時間 tNは、振幅も考慮に入れたォッシ レーシヨンマーク深さを示す指標として知られているものであり(例えば、「第 3版 鉄 鋼便覧 Π 製鉄'製鋼」(日本鉄鋼協会編)、 p638)、この値が小さいほどォッシレー シヨンマーク深さは小さくなるとされているものである(例えば、「鉄と鋼」, 67 (1981) , pi 190)。また、通常の鋼材を連続铸造するときには、上記ネガティブストリップ時 間 tNは 0. 35秒程度以下に設定されることになる。本発明者らが検討したとことによ れば、本発明で対象とする高 A1鋼を連続铸造するには、上記式 (6)で定められるネ ガティブストリップ時間 tNを 0. 28秒以下に制御する必要がある。即ち、このネガティ ブストリップ時間 tNが 0. 28秒よりも大きな値となると、铸型の下向きの運動エネルギ 一がパウダーにより伝達され、メニスカスのパウダーに圧力が発することに起因してォ ッシレーシヨンマークの深さが大きくなり、ォッシレーシヨンマークの谷間部に凝固、変 態に伴う変形応力が集中し、横割れが発生することになる。尚、ネガティブストリップ 時間 tNの好ましい上限は 0. 25秒である。
[0046] 本発明方法における基本的な铸造条件は上記の通りである力 必要によって铸型 内電磁攪拌を行なうことも有効である。電磁攪拌を行うことによって、铸型内の溶鋼流 動が均一化され、凝固シェルへ衝突する溶鋼温度が均一化されるため、铸片の幅方 向への入熱量が均一化され、均一な凝固シェルが得られ、デイブレツシヨン'縦割れ が防止できることになる。こうした効果発揮させるためには、電磁攪拌を行なうときの 磁束密度が 300ガウス (gauss)以上とすることが好ましぐより好ましくは 500ガウス以 上である。但し、磁束密度が大きくなり過ぎると、溶鋼湯面の溶鋼流速が速くなり過ぎ て、上記式 (6)で示した反応が激しく進行し、適切なモールドパウダー組成に制御で きなレ、ことがあるので、 1200ガウス以下とすることが好ま U 、。
実施例
[0047] 以下、実施例を挙げて本発明をより具体的に説明するが、本発明はもとより下記実 施例によって制限を受けるものではなぐ前 ·後記の趣旨に適合し得る範囲で適当に 変更を加えて実施することも勿論可能であり、それらはいずれも本発明の技術的範 囲に包含される。
[0048] [実施例 1]
垂直曲げ型連続铸造機を用いて、 1ヒート 240トンの溶鋼を铸造した。この実施例 では、下記表 1に示す各種化学成分組成の溶鋼 (鋼種)を用いると共に、下記表 2に 示した組成のモールドパウダーを用いた。このとき、連続铸造におけるモールドサイ ズは 240 X 1230mmであり、铸造速度は 1. 4mZ分である。
[0049] [表 1]
Figure imgf000015_0001
[0050] [表 2]
Figure imgf000016_0001
[0051] 潤滑性の指針として、モールドパウダー (溶融スラグ)の凝固温度を算出した。凝固 温度 (°C)は、溶融スラグの粘度 7?および温度 Tから算出した。具体的には振動片法 により、昇温しながら溶融スラグの粘度 7?を連続的に測定し、粘度 7?の対数 log ηを
Υ軸に、粘度の測定温度 Τの逆数 1ZTを横軸にとったグラフを作成し、このグラフの 変曲点に対応する温度 Τを凝固温度として求めた。
[0052] 緩冷却の指針として、铸型熱流束 (MWZm2)を算出した。铸型熱流束は、铸型冷 却水の流量と入口出口の温度差とから、铸型での総抜熱量を求め、これを、铸型銅 板と铸片との接触面積で割ることにより算出した。熱流束値が 1. 5MWZm2以上の ものを「強冷却」、 1. 5MWZm2未満のものを「緩冷却」と判定した。
[0053] 連続铸造の安定操業の指針として、铸型銅板に埋設した熱電対を用いて、一定速 度で铸造した一定区間における温度変動 (°C)を測定した。尚、連続铸造では、温度 変動が 15°Cを超えると、铸造速度の減速措置、それでも変動が収まらない場合は铸 造停止措置を行う場合がある。
[0054] 铸片の表面品質の指針として、凹みおよび割れを評価した。铸片表面の凹みは、 定常状態で铸造できた部位のスラブを 1ヒートから 2枚任意に抜き取りし、スラブ広面 の表裏面を目視検査して、凹みが認められた部位について凹み深さを測定し、深さ 力^ mm以上の凹みがあるものを、「凹み有り」と評価した。铸片表面の割れは、铸片 の広面の表面および裏面を目視観察し、長さ 100mm以上の割れが 1つでも存在す るものを、「割れ有り」と評価した。
[0055] これらの結果を、連続铸造条件 (铸型内湯面レベル変動速度、浸漬ノズル吐出角 度、電磁攪拌磁束密度、铸型振動ストローク、ネガティブストリップ時間 tN)と共に、 下記表 3に示す。
[0056] [表 3]
Figure imgf000018_0001
[0057] これらの結果から明らかなように、本発明で規定する要件を満足するもの (試験 No . 1〜10)では、緩冷却、或は铸型熱電対温度変動の安定化が実現でき、凹みや割 れの無い表面品質に優れた铸片を製造することができる。これに対して、本発明で規 定する要件を欠くモールドパウダーを用いたもの (試験 No. 11〜23)では、緩冷却 ができなかったり、 LiAlO以外の結晶が多く晶出したり、潤滑性に難があつたりした
2
結果、铸片に凹みや割れが発生していることが分かる。
[0058] 具体的には、試験 No. 11のものでは、モールドパウダー中の C含有量が過剰とな つており、溶融が不十分なため、スラグフィルムが十分に形成されない部分が急冷と なり、縦割れが発生した。試験 No. 12のものでは、モールドパウダー中の MgO含有 量が少なくなつており、粗大な結晶が晶出したため、抜熱速度にバラツキが生じ、铸 片の凹みや割れが発生した。
[0059] 試験 No. 13のものでは、モールドパウダー中の MgO含有量が多くなつており、メイ ェナイト等が優先的に晶出したため、抜熱速度にバラツキが生じ、铸片の凹みや割 れが発生した。試験 No. 14, 15のものでは、モールドパウダー中の SiO含有量が
2 少なくなつており、スラブベアが多量に発生し、铸片の凹みや割れが発生した。
[0060] 試験 No. 16のものでは、モールドパウダー中の Li O含有量が多くなつており、そ
2
の結果 [Li O/SiO ]の大きくなつており、粘度低下により過剰流入が起こり、流入が
2 2
脈動する結果となり、铸型熱電対温度変動が大きくなつている。また、適正な潤滑性 が確保されずに、铸片の凹みや割れが発生した。
[0061] 試験 No. 17のものでは、モールドパウダー中の Li O含有量が少なくなつており、そ
2
の結果 [Li O/SiO ]の小さくなつており、粘度,凝固温度が高ぐ十分な消費原単
2 2
位が確保できず、潤滑性が確保できないこと、またメイエナイト、ダイカルシウムシリケ ートが多く晶出し、抜熱速度にバラツキが生じたため、凹みや割れが発生した。
[0062] 試験 No. 18のものでは、モールドパウダー中の F含有量が少なくなつており、粘度 が上昇し十分な潤滑性が確保できないため、凹みや割れが発生した。試験 No. 19 のものでは、モールドパウダー中の F含有量が多くなつており、 LiAlO量が極端に少
2
なくなったことで緩冷却が達成されず、凹みや割れが発生した。
[0063] 試験 No. 20のものでは、塩基度 [T— CaO]Z[SiO ]が低くなつており、粗大なゲ 一レナイトが多量に晶出したため、抜熱速度にバラツキが生じ、铸片の割れが発生し た。試験 No. 21のものでは、モールドパウダー中の Li O含有量が少なくなつており、
2
凝固温度が高くなりすぎて適正な潤滑性が確保できず、铸片に割れが発生した。
[0064] 試験 No. 22のものでは、モールドパウダー中の Li O含有量が多くなつており、抜
2
熱速度にバラツキが生じ、铸片の割れが発生した。試験 No. 23のものでは、塩基度 [T-CaO]/[SiO ]が低くなつており、粗大なゲーレナイトが多量に晶出したため、
2
抜熱速度にバラツキが生じ、铸片の割れが発生した。また、 Na Oも存在するため、 N
2
a— A1— O結晶が不均一に晶出し、これも抜熱速度にバラツキに影響を及ぼしたもの と考えられる。更に、ゲーレナイトが大量に生成し結晶が不安定となって、緩冷却が 達成されていない。
[0065] [実施例 2]
前記表 1に示した各種化学成分組成の溶鋼 (鋼種)を用いると共に、下記表 4に示 した組成のモールドパウダーを用いる以外は、実施例 1と同様にして表 1記載の鋼を 铸造した。このとき、連続铸造条件 (铸型内湯面レベル変動速度、浸漬ノズル吐出角 度、電磁攪拌磁束密度、铸型振動ストローク、ネガティブストリップ時間 tN)を下記表 5のように制御した。
[0066] [表 4]
Figure imgf000021_0001
[S挲] [Z900]
TS.8S0/.00Zdf/X3d YZ IL^ZllLmi OAV
Figure imgf000023_0001
[0068] これらについて、実施例 1と同様にして、潤滑性 (凝固温度)、緩冷却 (铸型熱流束) 、安定操業 (温度変動)、铸片の表面品質 (凹みおよび割れ)等について評価した。 その結果を、上記表 5に併記する。
[0069] これらの結果から明らかなように、本発明で規定する要件を満足するもの (試験 No . 24, 25, 28, 30-34, 36〜39)では、緩冷却、或は铸型熱電対温度変動の安定 化が実現でき、凹みや割れの無!、表面品質に優れた铸片を製造することができる。 これに対して、本発明で規定する铸造条件を外れるもの(試験 No. 26, 27, 29, 35 , 40〜42)では、凹みや割れが発生していることが分かる。
[0070] 具体的には、試験 No. 26, 27のものでは、铸型内湯面レベル変動速度が大きくな つており、抜熱速度が不均一となり、その結果、铸型熱電対温度変動が大きくなつて 凹みや割れが発生している。試験 No. 29のものでは、浸漬ノズル吐出角度が— 5° となっており、抜熱速度が不均一となり、その結果、铸型熱電対温度変動が大きくな つて凹みや割れが発生して 、る。
[0071] 試験 No. 35のものでは、本発明の好ましい要件である電磁攪拌磁束密度が大きく なっており、抜熱速度が不均一となり、その結果、铸型熱電対温度変動が大きくなつ て凹みや割れが発生して 、る。
[0072] 試験 No. 40のものでは、铸型振幅ストロークが 2mmとなっており、流入不足で割 れが発生している。試験 No. 41, 42のものでは、ォッシレーシヨンマーク(oscillation mark)間隔が大きいので、ォッシレーシヨンマークに沿った凹み、割れが発生している
[実施例 3] (786記載分)
[0073] 垂直曲げ型連続铸造機を用いて、 1ヒート 240トンの溶鋼から、 Cr— Mo添加鋼を 铸造した。この実施例では、以下の表 6に示す組成のモールドパウダーと、 C量が 0. 18%、 Si量が 0. 04%、 Mn量が 2. 1%、 Cr、 Mo、 Niおよび P量が 1%以下、溶存 A 1量が 1. 6%であり、残部が Feおよび不可避不純物力もなる溶鋼とを用いた。連続铸 造におけるモールドサイズは 240 X 1230mmであり、铸造速度は 1. 4mZ分である
[0074] [表 6] Na20
T-CaO Si02 Al203 MgO Li20 F C T-CaO LizO
No. + 20
(%) (%) ( ) (%) (%) (%) ( ) /Si02 /Si02
( )
1 47.4 20.6 3.1 0.7 9.2 8.5 10.5 0 2.3 0.4
2 46.4 24.7 1.1 0.8 9.3 7.0 10.7 0 1.9 0.4
3 41.6 24.9 0.5 0.7 8.3 13.0 11.0 0 1.7 0.3
4 46.8 29.2 0.3 0.2 7.0 7.0 10.5 0 1.6 0.2
5 54.1 10.8 20 0.7 11.9 10.0 10.5 0 5.0 1.1
6 50.9 14.5 2.0 0.3 12.4 9.2 10.7 0 3.5 0.9
7 48.4 19.2 3.0 0.9 9.1 8.4 11.0 0 2.5 0.5
8 42.8 25.2 1.0 0.5 9.5 7.5 13.5 0 1.7 0.4
9 39.0 24.4 4.0 0.7 8.1 13.0 10.8 0 1.6 0.3
10 41.0 27.0 3.0 0.8 10.8 10.5 11.2 0 1.8 0.3
11 46.8 25.0 1.0 0.1 9.4 7.0 10.7 0 1.9 0.4
12 40.3 24.2 2.3 1.2 8.1 13.0 11.0 0 1.7 0.3
13 52.1 9.3 4.0 0.7 10.5 11.0 13.7 0 5.6 1.1
14 52.6 10.5 2.0 0.7 13.7 10.0 10.5 0 5.0 1.3
15 58.9 16.8 2.0 0.7 1.7 9.2 10.7 0 3.5 0.1
16 48.3 19.2 6.0 0.7 9.0 5.8 11.0 0 2.5 0.5
1フ 38.9 22.9 1.5 0.7 8.6 14.0 13.5 0 1.7 0.4
18 38.4 27.4 0.5 0.7 9,1 13.0 10.8 0 1.4 0.3
19 64.4 10.6 3.6 0.7 2.5 7.0 11 2 0 6.1 0.2
20 40.9 25.6 4.2 0.7 13.7 13.0 7.1 0 1.6 0.3
21 44.6 19.4 3.2 0.7 8.7 8.5 15.0 0 2.3 0.4
22 47.0 28.0 2.6 4.8 6.2 6.5 6.8 0 1.7 0.2
23 29.8 36.2 3.2 0.7 10.5 10.5 7.0 2.2 0.8 0.3
[0075] モールドパウダーから得られるスラグフィルム中に存在する LiAlO カスビダイン(3 CaO-2SiO 'CaF )、ダイカルシウムシリケート(2CaO'SiO )、メイエナイト(12Ca
2 2 2
0-7A10 )およびゲーレナイト(3CaO'2SiO ·Α1 Ο )の量を調べるために、铸造終
2 3 2 2 3
了後に铸型内からスラグフィルムを採取し、 X線回折 (Cu管球 40kV、 200mA)で、 それぞれの結晶の X線回折強度を測定した。これらの X線回折強度の大小を、表 7に 示す。
[0076] [表 7] カスピ イン タィカルシウム
メイエナイト ケ'一レナイト
(3CaO シリケート
No. LiAI02 (1 2CaO (2CaO - Si02
■Si02 (2CaO
■7AI203) ■Al203)
■CaF2) ■Si02)
1 大 無 無 中 無
2 大 無 中 小 無
3 大 無 小 無 小
4 中 無 小 小 無
5 大 無 無 無 無
6 大 無 小 小 無
7 大 無 中 中 小
8 大 無 中 小 無
9 大 無 小 小 無
1 0 大 中 無 無 小
1 1 小 無 大 大 小
1 2 小 中 中 大 中
1 3 小 無 大 中 小
14 小 無 中 大 無
1 5 無 無 中 大 無
1 6 小 無 中 大 小
1 7 小 中 大 中 無
1 8 小 中 無 無 大
1 9 無 無 中 大 無
20 小 中 小 無 大
21 小 無 小 大 小
22 小 小 無 中 大
23 小 小 無 無 大
潤滑性の指針として、モールドパウダー (溶融スラグ)の凝固温度および消費量を 算出した。凝固温度 (°C)は、溶融スラグの粘度 r?および温度 Tから算出した。具体的 には振動片法により、昇温しながら溶融スラグの粘度 r?を連続的に測定し、粘度 7?の 対数 log ηを縦軸に、粘度の測定温度 Τの逆数 1ZTを横軸にとったグラフを作成し、 このグラフの変曲点に対応する温度 Τを凝固温度として求めた。消費量 (kgZm2)は 、長さ 10mの铸片が铸造される毎に铸型内に添加したモールドパウダー量を測定し 、その添加量を铸造された铸片の表面積で割ることにより求めた。これらの結果を表 8に示す。なお表 8に示す消費量の値は、铸造の最トップおよび最ボトム部の铸造速 度低下部分を除 、た値の平均値である。
[0078] 緩冷却の指針として、铸型熱流束 (MWZm2)を算出した。铸型熱流束は、铸型冷 却水の流量と入口出口の温度差とから、铸型での総抜熱量を求め、これを、铸型銅 板と铸片との接触面積で割ることにより算出した。熱流束値が 1. 5MWZm2以上の ものを「強冷却」、 1. 5MWZm2未満のものを「緩冷却」と判定した。この結果を表 8 に示す。
[0079] 連続铸造の安定操業の指針として、铸型銅板に埋設した熱電対を用いて、一定速 度で铸造した一定区間における温度変動 (°C)を測定した。この結果を表 8に示す。 なお連続铸造では、温度変動が 15°Cを超えると、铸造速度の減速措置、それでも変 動が収まらない場合は铸造停止措置を行う場合がある。
[0080] 铸片の表面品質の指針として、凹みおよび割れを評価した。铸片表面の凹みは、 定常状態で铸造できた部位のスラブを 1ヒートから 2枚任意に抜き取りし、スラブ広面 の表裏面を目視検査して、凹みが認められた部位について凹み深さを測定し、深さ 力^ mm以上の凹みがあるものを、「凹み有り」と評価した。铸片表面の割れは、铸片 の広面の表面および裏面を目視観察し、長さ 100mm以上の割れが 1つでも存在す るものを、「割れ有り」と評価した。これらの結果を表 8に示す。
[0081] [表 8]
凝固
消費量
No. 皿度 変動 凹み 割れ
(kg/m2)
(。c) (°C)
1 1055 0.35 μ
1.23 、Α 5 無 無
2 1050 0.31 1.31 、
7 無 無
3 1110 0.32 1.39 根 ί 11 無 無
4 1120 0.25 1.45 "Π 13 無 無
5 1105 0.33 1.41 、Α
根," π 6 無 無
6 1040 0.35 1,49 瓶 /"Π 10 無 無
7 1065 0.30 1.26 緩/" Π 6 無 無
ョ Μ
8 1040 0.31 1 i -A
.41 、 '
瓶 , _ 11 無 無
9 1080 0.29 1,31 9 無 無
10 1005 0.33 μ
1.3 、A S 無 無
11 1060 0.36 1.41 據 "Π 16 有 有
12 1070 0.32 1.41 棵, "Π 22 有 有
13 1205 0.41 μ、
1.32 18 有 有
isg、Α
14 1185 0.42 1.49 t /"π 24 有 有
15 i
1305 0.19 1.3 、Α
9 ins / 28 有 有
16 1055 0.3フ 1.42 25 有 有
17 i -A
1075 0.37 1.38 職 ,"Π 22 有 有
18 1055 0.16 1.39 、 16 有 有
19 1320 0.19 1.41 根 31 無 有
20 930 0.43 1.65 強冷 13 無 有
21 1070 0.21 1.46 緩冷 15 無 有
22 1095 0.22 1.48 27 有 有
23 925 0.14 1.71 強冷 36 無 有
[0082] 表 6〜8の結果力 示されるように、本発明の要件を満たすモールドパウダー No. 1 〜10は、そのスラグフィルム中にカスビダインが形成されなくとも、緩冷却を実現でき 、凹みや割れの無い表面品質に優れた铸片を製造することができる。この緩冷却は 、スラグフィルム中の LiAlOにより達成されると考えられる。またモールドパウダー No
2
. 1〜10は、その凝固温度が適正範囲内にあり、適正な潤滑性を有していることが分 かる。またこれらを用いた連続铸造では、温度変動が少な 安定に操業することが できる。
[0083] これらに対して、本発明の要件を満たさないモールドパウダー No. 11〜23を用い た連続铸造では、以下に記載する理由により、凹みや割れの有る铸片しか得られな かった。
No. 11は、 MgO量が少なぐ粗大な結晶が晶出したため、抜熱速度にバラツキが 生じ、铸片の凹みや割れが発生した。
No. 12は、 MgO量が多ぐメイエナイトなどが優先的に晶出したため、抜熱速度に バラツキが生じ、铸片の凹みや割れが発生した。
[0084] No. 13は、 SiO量が少ないため、スラグベアが多量に生成し、铸片の凹みや割れ
2
が発生した。
No. 14は、 Li O量および Li O/SiOが大きいため、溶融スラグの粘度が低下した
2 2 2
と考えられる。そのため過剰流入および脈動が生じ、温度変動が大きくなつた。また 適正な潤滑性が確保されずに、铸片の凹みや割れが発生した。
No. 15は、 Li O量および Li O/SiO力 、さいため、溶融スラグの凝固温度およ
2 2 2
び粘度が高くなつて適正な潤滑性が確保されず、またメイエナイトやダイカルシウム シリケートが多く晶出して抜熱速度にバラツキが生じたために、铸片の凹みや割れが 発生した。
[0085] No. 16は、 F量が少なぐ溶融スラグの粘度が上昇して、適正な潤滑性が確保でき ず、铸片の凹みや割れが発生した。
No. 17は、 F量が多くて、 LiAlOが充分に晶出されず、抜熱速度にバラツキが生
2
じ、铸片の凹みや割れが発生した。
No. 18は、塩基度 [T— CaO]Z[SiO ]が低ぐ粗大なゲーレナイトが多く生じた
2
ため、抜熱速度にバラツキが生じ、铸片の凹みや割れが発生した。
[0086] No. 19は、 Li O量が少ないため、凝固温度が高くなりすぎて、適正な潤滑性が確
2
保できず、铸片の割れが発生した。
No. 20は、 Li Oが多すぎるため、充分な量の LiAlOが晶出されず、抜熱速度に
2 2
ノ ラツキが生じて、铸片の割れが発生した。
[0087] No. 21は、 C量が多くて溶融速度が不充分であるため、スラグフィルムが充分に形 成されない部分が生じ、その部分が急冷されて、割れが発生した。
No. 22は、 C量が少なくて溶融速度が増大したため、流入過多および不均一流入 が生じ、铸片の凹みや割れが発生した。 No. 23は、塩基度 [T— CaO]Z[SiO ]が低ぐ粗大なゲーレナイトが多く生じた
2
ため、抜熱速度のバラツキが生じ、铸片の割れが発生した。また Na Oも存在するた
2
め、 Na— Al— O結晶が不均一に晶出し、これも抜熱速度のバラツキに悪影響を及ぼ したと考えられる。

Claims

請求の範囲
A1含有量が 0.1〜3.0% (質量%の意味、以下同じ)であると共に、 Si, Mn, Ni, Crおよび Moを夫々 4.0%以下(0%を含まない)含み、且つ C含有量 [C]が下記式 (1)〜(3)式の関係を満たす溶鋼を、モールドパウダーを用いて連続铸造するに際 して、
fl-0.10≤[C]≤f2 + 0.05
fl = 0.0828[Si]— 0.0195[Mn] + 0.07398 [Al]— 0.04614[Ni] +0.02447
[Cr] +0.01851 [Mo] +0.090 ---(2)
f2 = 0.2187[Si] -0.03291 [Mn] +0.2017[A1] -0.06715 [Ni] +0.04776
[Cr] +0.04601 [Mo] +0.173 … )
〔式中、 [Si], [Mn], [Al], [Ni], [Cr]および [Mo]は、夫々 Si, Mn, Ni, Crお よび Moの含有量 (質量%)を示す。〕
前記モールドパウダーとして、 T— CaO:35〜55%、 SiO: 10〜30%、 Al O :4.
2 2 3
0%以下(0%を含まない)、 MgO:0.2〜1.0%、LiO:7〜13%、F:7〜13%、C:
2
10.5〜14%、および不可避不純物からなり、下記式 (4)および(5)を満たすと共に 1.6≤ [T-CaO]/[SiO ]≤5 ---(4)
2
0.2≤[Li 0]/[SiO ]≤1.1 ---(5)
2 2
〔式中、 [T—CaO]、 [SiO ]および [Li O]は、夫々 T—CaO、 SiOおよび Li Oのモ
2 2 2 2 一ルドパウダー中の含有量 (質量%)を表す。〕
铸型内の湯面レベル変動速度を 14mmZ秒以下とし、铸型幅方向に溶鋼を吐出 させると共に、その吐出角度が水平に対して下向き 0° 以上、 55° 以下の浸漬ノズ ルを用い、更に振幅のストロークを 2mm超、 8mm以下とし、且つ下記式(6)で定め られるネガティブストリップ時間 tNが 0.28秒以下となるような铸型振動を付与しつつ 操業することを特徴とする高 A1鋼の連続铸造方法。
Figure imgf000031_0001
ー(6)
〔ここで、 f:铸型振動数 (Hz)、 s:铸型振動時の铸型の上止点と下止点間の距離 ( mm)、 Vc:铸片引き抜き速度 (mmZ秒)を夫々示す〕 [2] 300〜 1200ガウスの磁束密度で铸型内電磁攪拌を行 、つつ操業する請求項 1に 記載の連続铸造方法。
[3] 鋼の連続铸造に用いられるモールドパウダーであって、
T CaO:35〜55% (質量%の意味、以下同じ)、
SiO :10〜30%、
2
AIO :4.0%以下(0%を含まない)、
2 3
MgO:0.2〜1.0%、
Li 0:7〜13%、
2
F:7〜13%、
C:10.5〜14%、
および不可避不純物からなり、
下記式 (4)および(5):
1.6≤ [T-CaO]/[SiO ]≤5 ---(4)
2
0.2≤[Li 0]/[SiO ]≤1.1 ---(5)
2 2
〔式中、 [T—CaO]、 [SiO ]および [Li O]は、それぞれ、 T—CaO、 SiOおよび Li
2 2 2 2 oのモールドパウダー中の含有量(質量0 /0)を表す。〕
を満たすことを特徴とする、溶存 A1量が 0.1%以上である鋼を連続铸造するための モーノレドパウダー。
PCT/JP2007/058751 2006-04-25 2007-04-23 高アルミニウム鋼の連続鋳造方法及びモールドパウダー WO2007125871A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020087026242A KR101057950B1 (ko) 2006-04-25 2007-04-23 고 알루미늄 강의 연속 주조 방법 및 몰드 분말
GB0821413A GB2450855B (en) 2006-04-25 2007-04-23 Method of continuous casting of high-aluminium steel and mold powder
US12/297,984 US8146649B2 (en) 2006-04-25 2007-04-23 Method of continuous casting of high-aluminum steel and mold powder
CN2007800230321A CN101472691B (zh) 2006-04-25 2007-04-23 高铝钢的连续铸造方法及结晶器保护渣

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2006-120786 2006-04-25
JP2006121055A JP3993623B1 (ja) 2006-04-25 2006-04-25 高Al鋼の連続鋳造方法
JP2006-121055 2006-04-25
JP2006120786A JP4646849B2 (ja) 2006-04-25 2006-04-25 高アルミニウム鋼の連続鋳造用モールドパウダー

Publications (1)

Publication Number Publication Date
WO2007125871A1 true WO2007125871A1 (ja) 2007-11-08

Family

ID=38655396

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/058751 WO2007125871A1 (ja) 2006-04-25 2007-04-23 高アルミニウム鋼の連続鋳造方法及びモールドパウダー

Country Status (4)

Country Link
US (1) US8146649B2 (ja)
KR (1) KR101057950B1 (ja)
GB (1) GB2450855B (ja)
WO (1) WO2007125871A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008030062A (ja) * 2006-07-26 2008-02-14 Kobe Steel Ltd 高Al鋼の連続鋳造方法
CN102756103A (zh) * 2012-08-10 2012-10-31 重庆大学 高结晶性高润滑性连铸用结晶器保护渣

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102233413B (zh) * 2011-06-27 2013-08-07 河南通宇冶材集团有限公司 一种超纯净钢无侵蚀型覆盖剂及其生产方法
KR101898367B1 (ko) * 2014-06-10 2018-09-12 신닛테츠스미킨 카부시키카이샤 Ti 함유 아포정강의 연속 주조용 몰드 플럭스 및 연속 주조 방법
WO2016038725A1 (ja) * 2014-09-11 2016-03-17 新日鐵住金株式会社 鋼の連続鋳造用モールドフラックス
CN108348992B (zh) * 2015-11-05 2020-11-06 日本制铁株式会社 连续铸造用保护渣以及连续铸造方法
KR102629377B1 (ko) 2019-06-04 2024-01-24 제이에프이 스틸 가부시키가이샤 Al 함유 아포정 강의 연속 주조용 몰드 파우더 및 연속 주조 방법
CN113084113B (zh) * 2021-03-08 2022-06-14 山东钢铁股份有限公司 一种适用于板坯连铸机的异钢种混浇方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002346708A (ja) * 2001-05-28 2002-12-04 Sumitomo Metal Ind Ltd 連続鋳造用モールドパウダ
JP2003181606A (ja) * 2001-12-12 2003-07-02 Nippon Steel Metal Prod Co Ltd 高Al・Y・REM含有鋼連続鋳造用モールドフラックス

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3179358B2 (ja) 1997-01-31 2001-06-25 日本鋼管株式会社 連続鋳造用モールドパウダー
JP3412691B2 (ja) * 1999-12-28 2003-06-03 株式会社神戸製鋼所 溶融金属の連続鋳造法
JP2003053496A (ja) 2001-08-07 2003-02-26 Sanyo Special Steel Co Ltd アルミニウム含有鋼の連続鋳造用モールドパウダー
JP4380171B2 (ja) * 2002-03-01 2009-12-09 Jfeスチール株式会社 鋳型内溶鋼の流動制御方法及び流動制御装置並びに連続鋳造鋳片の製造方法
US20050045303A1 (en) * 2003-08-29 2005-03-03 Jfe Steel Corporation, A Corporation Of Japan Method for producing ultra low carbon steel slab
US7493936B2 (en) * 2005-11-30 2009-02-24 Kobe Steel, Ltd. Continuous casting method

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002346708A (ja) * 2001-05-28 2002-12-04 Sumitomo Metal Ind Ltd 連続鋳造用モールドパウダ
JP2003181606A (ja) * 2001-12-12 2003-07-02 Nippon Steel Metal Prod Co Ltd 高Al・Y・REM含有鋼連続鋳造用モールドフラックス

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008030062A (ja) * 2006-07-26 2008-02-14 Kobe Steel Ltd 高Al鋼の連続鋳造方法
CN102756103A (zh) * 2012-08-10 2012-10-31 重庆大学 高结晶性高润滑性连铸用结晶器保护渣

Also Published As

Publication number Publication date
GB2450855A (en) 2009-01-07
US20110094703A1 (en) 2011-04-28
US8146649B2 (en) 2012-04-03
GB2450855B (en) 2010-12-01
GB0821413D0 (en) 2008-12-31
KR20080108312A (ko) 2008-12-12
KR101057950B1 (ko) 2011-08-18

Similar Documents

Publication Publication Date Title
WO2007125871A1 (ja) 高アルミニウム鋼の連続鋳造方法及びモールドパウダー
JP4646849B2 (ja) 高アルミニウム鋼の連続鋳造用モールドパウダー
Cho et al. Assessment of CaO–Al2O3 based mold flux system for high aluminum TRIP casting
KR102204170B1 (ko) 회주철 접종제
JPWO2006003899A1 (ja) マグネシウム合金材の製造方法
JP3993623B1 (ja) 高Al鋼の連続鋳造方法
CN103469109A (zh) 一种石墨钢材质的粗轧辊及其制造方法
CN111482566B (zh) 一种含铝包晶高强汽车钢的连铸方法
CN113000803B (zh) 一种提高高碳钢大方坯内部质量的连铸工艺方法
CN108425075B (zh) 一种汽车悬架系统用弹簧钢及其制造方法
JP4430638B2 (ja) 高アルミニウム鋼の連続鋳造用モールドパウダー
CN109112418A (zh) 一种高锰钢的连铸方法
JP4527693B2 (ja) 高Al鋼スラブの連続鋳造方法
JP4556823B2 (ja) B含有ステンレス鋼の連続鋳造方法
CN111375736B (zh) 一种马氏体沉淀硬化不锈钢的浇铸方法
TW201919792A (zh) 鋼的連續鑄造方法及薄鋼板的製造方法
JP7014335B2 (ja) Al含有亜包晶鋼の連続鋳造用モールドパウダー及び連続鋳造方法
CN110484809B (zh) 复合锤头、其制备方法和复合锤头铸件模型
JP4516923B2 (ja) アルミキルド鋼の連続鋳造鋼片及びその製造方法
RU2403121C1 (ru) Способ непрерывной разливки стали
CN106077534B (zh) 铸铁模、制备方法及其搭接方法
KR102539284B1 (ko) 내가스 결함성에 우수한 구상흑연주철
Wang et al. Effect of rare earth on primary carbides in H13 die steel and their addition method: a review
JP7161035B2 (ja) モールドフラックス及びこれを用いた鋳造方法
Riposan et al. Role of residual aluminium in ductile iron solidification

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200780023032.1

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07742186

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 12297984

Country of ref document: US

ENP Entry into the national phase

Ref document number: 0821413

Country of ref document: GB

Kind code of ref document: A

Free format text: PCT FILING DATE = 20070423

WWE Wipo information: entry into national phase

Ref document number: 0821413.2

Country of ref document: GB

122 Ep: pct application non-entry in european phase

Ref document number: 07742186

Country of ref document: EP

Kind code of ref document: A1