RU2403121C1 - Способ непрерывной разливки стали - Google Patents

Способ непрерывной разливки стали Download PDF

Info

Publication number
RU2403121C1
RU2403121C1 RU2009135793/02A RU2009135793A RU2403121C1 RU 2403121 C1 RU2403121 C1 RU 2403121C1 RU 2009135793/02 A RU2009135793/02 A RU 2009135793/02A RU 2009135793 A RU2009135793 A RU 2009135793A RU 2403121 C1 RU2403121 C1 RU 2403121C1
Authority
RU
Russia
Prior art keywords
mold
crystalliser
metal
ingot
formula
Prior art date
Application number
RU2009135793/02A
Other languages
English (en)
Inventor
Сергей Викторович Прохоров (RU)
Сергей Викторович Прохоров
Дмитрий Валентинович Юречко (RU)
Дмитрий Валентинович Юречко
Александр Сергеевич Казаков (RU)
Александр Сергеевич Казаков
Игорь Михайлович Захаров (RU)
Игорь Михайлович Захаров
Олег Анатольевич Николаев (RU)
Олег Анатольевич Николаев
Original Assignee
Открытое акционерное общество "Магнитогорский металлургический комбинат"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Открытое акционерное общество "Магнитогорский металлургический комбинат" filed Critical Открытое акционерное общество "Магнитогорский металлургический комбинат"
Priority to RU2009135793/02A priority Critical patent/RU2403121C1/ru
Application granted granted Critical
Publication of RU2403121C1 publication Critical patent/RU2403121C1/ru

Links

Landscapes

  • Continuous Casting (AREA)

Abstract

Способ включает подачу металла из промежуточного ковша в кристаллизатор, поддержание положения мениска металла в кристаллизаторе на одном уровне, вытягивание из кристаллизатора слитка, придание кристаллизатору возвратно-поступательного движения. Скорость вытягивания определяют по формуле Vp=kv×(А+B)/(А×B)-ΔT×kz, где kv - эмпирический коэффициент, равный 0,15-0,25 м2/мин, А - толщина заготовки, м, В - ширина заготовки, м, ΔT - температура перегрева стали над температурой ликвидус °С, равная 15-35°С, kz - эмпирический коэффициент, равный 0,005-0,015 м/мин×°С, амплитуду качания (Акач) изменяют в пределах от ±1,5 до ±4 мм. Частоту N, циклов/мин, возвратно-поступательного движения кристаллизатора определяют по формуле N=180/Акач+100×Vp, где Акач - амплитуда качания, мм, Vp - скорость разливки, м/мин, 100 - коэффициент пропорциональности, циклов/м, 180 -эмпирический коэффициент, мм. Достигается повышение качества непрерывнолитой заготовки, снижение аварийности и повышение производительности МНЛЗ.

Description

Изобретение относится к области металлургии, в частности к непрерывной разливке металла на машинах непрерывного литья заготовок (МНЛЗ).
Известен способ непрерывного литья заготовок, включающий подачу металла в кристаллизатор, вытягивание заготовки и ее охлаждение под кристаллизатором, при этом мениску металла в кристаллизаторе сообщают колебания посредством изгиба оболочки в зоне вторичного охлаждения, при этом колебания уровня мениска металла в кристаллизаторе осуществляют с амплитудой 0,1-0,2 мм (Патент SU 1741359, B22D 11/00/1).
Недостатком этого способа является нестабильное состояние мениска металла в кристаллизаторе, вызывающее захват неметаллических включений, а также не учитывается температура металла, что приводит в высокой аварийности и низкому качеству получаемых слитков.
Наиболее близкий по технической сущности и выбранный в качестве ближайшего аналога способ получения высококачественной непрерывнолитой заготовки, который включает подачу металла в кристаллизатор с температурой на 35-40°С выше температуры ликвидуса, непрерывное вытягивания слитка из кристаллизатора со скоростью 0,3-0,45 м/мин, сообщение кристаллизатору возвратно-поступательного качания, причем амплитуда качания поддерживается постоянной, а частоту качания кристаллизатора определяют по формуле N=240×Vp, где Vp - скорость разливки. (Патент RU 2169635, B22D 11/00/2).
Недостатком этого способа является высокая температура перегрева металла на 35-40°С выше температуры ликвидуса, которая приводит к развитию дефектов макроструктуры, возникновению аварий и снижению производительности МНЛЗ, кроме того, низкая скорость разливки 0,3-0,45 м/мин приводит к переохлаждению поверхности сляба за счет излучения, конвекции и теплоотдачи к оборудованию МНЛЗ, которые нельзя скомпенсировать низкими расходами охладителя в зоне вторичного охлаждения, а также частота качания кристаллизатора, определяемая по формуле N=240×Vp, и постоянная амплитуда приведут к образованию грубых складок от возвратно-поступательного движения кристаллизатора и образованию поверхностных дефектов непрерывнолитого сляба, что ухудшит качество непрерывнолитой заготовки, уменьшит выход годного и снизит производительность МНЛЗ.
Технический результат от использования данного изобретения заключается в повышении качества непрерывнолитой заготовки, увеличении выхода годного, снижении аварийности и повышении производительности МНЛЗ.
Указанный технический эффект достигается тем, что в способе непрерывной разливки стали, включающем подачу металла из промежуточного ковша в кристаллизатор, поддержание положения мениска металла в кристаллизаторе на одном уровне, вытягивание из кристаллизатора слитка, придание кристаллизатору возвратно-поступательного движения, в отличие от ближайшего аналога скорость вытягивания определяют по формуле Vp=kv×(А+В)/(А×В)-ΔT×kz, где kv - эмпирический коэффициент, равный 0,15-0,25 м2/мин, А - толщина заготовки, м; В - ширина заготовки, м; ΔТ - температура перегрева стали над температурой ликвидус, °С, равная 15-35°С, kz - эмпирический коэффициент, равный 0,005-0,015 м/мин×°С, амплитуду качания (Акач) изменяют в пределах от ±1,5 до ±4 мм, а частоту N, циклов/мин, возвратно-поступательного движения кристаллизатора определяют по формуле N=180/Акач+100×Vp, где Акач - амплитуда качания, мм; Vp - скорость разливки, м/мин; 100 - коэффициент пропорциональности, циклов/м; 180 - эмпирический коэффициент, мм.
Формулы для определения скорости вытягивания слитка и частоты возвратно-поступательного движения кристаллизатора получены опытным путем и являются эмпирическими.
Скорость вытягивания из кристаллизатора слитка, определяемая по формуле Vp=kv×(А+В)/(А×В)-ΔТ×kz, объясняется теплофизическими закономерностями кристаллизации формирующейся заготовки и теплопередачей в кристаллизаторе. Так как при увеличении скорости вытягивания заготовки из кристаллизатора существенно уменьшается толщина слоя затвердевшего металла и увеличивается тепловой поток, необходимо при выборе скорости вытягивания учитывать температуру металла, подаваемого в кристаллизатор. При разливке металла с большой температурой перегрева на высокой скорости разливки произойдет ухудшение качества слитка, возникновение аварийных ситуаций и снижение производительности МНЛЗ. При разливке металла с небольшой температурой перегрева на низкой скорости разливки произойдет переохлаждение внутренних и наружных слоев формирующегося слитка, что приведет к образованию трещин, ухудшению качества слитка и снижению выхода годного.
Диапазон значений эмпирического коэффициента скорости вытягивания 0,15-0,25 объясняется теплофизическими закономерностями кристаллизации формирующейся заготовки как в кристаллизаторе, так и в зоне вторичного охлаждения. При меньших значениях, вследствие длительного теплоотвода, на переохлажденных участках поверхности заготовки будут образовываться трещины, что ухудшит качество заготовки, уменьшит выход годного и снизит производительность МНЛЗ. При больших значениях из-за недостаточного времени теплоотвода будет происходить разогрев поверхности и неполная кристаллизация заготовки, что ухудшит качество поверхности и макроструктуры заготовки, уменьшит выход годного, а также может привести к возникновению аварий и снижению производительности МНЛЗ.
Диапазон значений эмпирического коэффициента скорости охлаждения 0,005-0,015 объясняется теплофизическими закономерностями распределения тепловых потоков на поверхности и фронте кристаллизации формирующейся заготовки в процессе ее вытягивания из кристаллизатора. При меньших значениях на фронте кристаллизации формирующейся заготовки, вследствие недостаточного теплоотвода, будут образовываться горячие трещины, что ухудшит качество заготовки и может привести в возникновению аварийных ситуаций и снижению производительности МНЛЗ. При больших значениях на фронте кристаллизации формирующейся заготовки будут возникать растягивающие напряжения вследствие повышенного температурного градиента между внутренними и поверхностными слоями, что ухудшит качество поверхности и макроструктуры заготовки, уменьшит выход годного и снизит производительность МНЛЗ.
При амплитуде качания кристаллизатора менее ±1,5 мм не будет обеспечено необходимое проникновение шлака в зазор между формирующейся корочкой слитка и стенкой кристаллизатора, что приведет к возникновению растягивающих напряжений на поверхности корочки и образованию трещин, ухудшению качества слитка и снижению выхода годного, а также возможно прилипание корочки к стенке кристаллизатора, возникновение аварийных ситуаций и снижение производительности МНЛЗ, а при амплитуде качания кристаллизатора более ±4 мм на поверхности сляба будут образовываться грубые складки (следы качания), обогащенные неметаллическими включениями, по месту расположения которых на участке загиба и разгиба слитка возникают трещины, ухудшается качество слитка и снижается выход годного.
Частота возвратно-поступательного движения кристаллизатора определяется по формуле N=180/Акач+100×Vp, где Акач - амплитуда качания, мм; Vp - скорость разливки, м/мин. Объясняется гидродинамической и теплофизической закономерностью взаимодействия формирующейся корочки слитка со стенками кристаллизатора и шлаковой прослойкой, образующейся между корочкой и стенками кристаллизатора. Процесс проскальзывания кристаллизатора вниз относительно заготовки, который способствует снятию растягивающих напряжений, действующих на формирующуюся корочку, и образованию на поверхности слитка складок с меньшей или большей глубиной, очень важен для получения качественной заготовки и обеспечения безаварийной работы МНЛЗ. Продолжительность этого процесса характеризуется временем, в течение которого скорость движения кристаллизатора вниз превышает скорость вытягивания сляба - временем опережения. Данный параметр зависит от скорости разливки, амплитуды качания и частоты возвратно-поступательного движения кристаллизатора. При длительном времени опережения на поверхности сляба будут образовываться грубые складки (следы качания), обогащенные неметаллическими включениями, по месту расположения которых на участке загиба и разгиба слитка возникают трещины, ухудшается качество слитка и снижается выход годного, а при коротком времени опережения не будет обеспечено необходимое проникновение шлака в зазор между формирующейся корочкой слитка и стенкой кристаллизатора, что приведет к возникновению растягивающих напряжений на поверхности корочки и образованию трещин, ухудшению качества слитка и снижению выхода годного, а также прилипанию корочки к стенке кристаллизатора и, как следствие, возникновению аварийных ситуаций и снижению производительности МНЛЗ.
Диапазон значений перегрева металла на 15-35°С над температурой ликвидус объясняется теплофизическими закономерностями кристаллизации формирующейся заготовки. При меньших значениях на поверхности заготовки будут образовываться завороты корки, пояса, а также будет происходить вовлечение в поверхностный слой заготовки шлаковых включений, что ухудшит качество поверхности заготовки, уменьшит выход годного и снизит производительность МНЛЗ, кроме того, при меньших значениях будет происходить затягивание сталевыпускных отверстий промежуточного ковша, что может привести к возникновению аварийных ситуаций и снижению производительности МНЛЗ. При больших значениях будет образовываться крупнокристаллическая структура с сильно развитой ликвацией, что приведет в ухудшению качества макроструктуры и образованию на поверхности заготовки продольных и поперечных трещин по границам первичных зерен, ослабленных ликвацией легкоплавких соединений, что ухудшит качество заготовки и уменьшит выход годного, кроме того, при больших значениях резко возрастает вероятность образования аварий по прорывам формирующейся корочки, что приведет к снижению производительности МНЛЗ.
Заявляемый способ непрерывной разливки стали был опробован при разливке стали на двухручьевой слябовой МНЛЗ криволинейного типа. В процессе разливки стали марки 17Г1С-У температура стали в промежуточном составляла на 22°С больше температуры ликвидус, сечение отливаемой заготовки 250×1730 мм×мм. Коэффициент скорости вытягивания принимали равным 0,2 м2/мин, а коэффициент скорости охлаждения 0,01 м/мин×°С. Скорость разливки устанавливали согласно формуле и она составила 0,7 м/мин, а частота качания при установленной амплитуде ±3 мм составила 130 циклов/мин. Результаты использования предлагаемого изобретения на Магнитогорском металлургическом комбинате показали, что разливка стали по технологии заявляемого изобретения позволяет повысить качество непрерывно-литой заготовки, увеличить выхода годного, снизить аварийность и повысить производительность МНЛЗ.

Claims (1)

  1. Способ непрерывной разливки стали, включающий подачу металла из промежуточного ковша в кристаллизатор, поддержание положения мениска металла в кристаллизаторе на одном уровне, вытягивание из кристаллизатора слитка, придание кристаллизатору возвратно-поступательного движения, отличающийся тем, что скорость вытягивания определяют по формуле
    Vp=kv·(А+B)/(А·B)-ΔT·kz,
    где kv - эмпирический коэффициент, равный 0,15-0,25 м2/мин;
    А - толщина заготовки, м;
    В - ширина заготовки, м;
    ΔT - температура перегрева стали над температурой ликвидус °С, равная 15-35°С;
    kz - эмпирический коэффициент, равный 0,005-0,015 м/мин·°С,
    амплитуду качания (Акач) изменяют в пределах от ±1,5 до ±4 мм, а частоту N, циклов/мин, возвратно-поступательного движения кристаллизатора определяют по формуле
    N=180/Акач+100·Vp,
    где Акач - амплитуда качания, мм;
    Vp - скорость разливки, м/мин;
    100 - коэффициент пропорциональности, циклов/м;
    180 - эмпирический коэффициент, мм.
RU2009135793/02A 2009-09-25 2009-09-25 Способ непрерывной разливки стали RU2403121C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2009135793/02A RU2403121C1 (ru) 2009-09-25 2009-09-25 Способ непрерывной разливки стали

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2009135793/02A RU2403121C1 (ru) 2009-09-25 2009-09-25 Способ непрерывной разливки стали

Publications (1)

Publication Number Publication Date
RU2403121C1 true RU2403121C1 (ru) 2010-11-10

Family

ID=44025966

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2009135793/02A RU2403121C1 (ru) 2009-09-25 2009-09-25 Способ непрерывной разливки стали

Country Status (1)

Country Link
RU (1) RU2403121C1 (ru)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2494833C1 (ru) * 2012-03-11 2013-10-10 Открытое акционерное общество "Магнитогорский металлургический комбинат" Способ непрерывной разливки стали
RU2700979C1 (ru) * 2018-10-23 2019-09-24 Публичное акционерное общество "Северсталь" (ПАО "Северсталь") Способ непрерывной разливки стали

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2494833C1 (ru) * 2012-03-11 2013-10-10 Открытое акционерное общество "Магнитогорский металлургический комбинат" Способ непрерывной разливки стали
RU2700979C1 (ru) * 2018-10-23 2019-09-24 Публичное акционерное общество "Северсталь" (ПАО "Северсталь") Способ непрерывной разливки стали

Similar Documents

Publication Publication Date Title
JP5655988B2 (ja) 連続鋳造用鋳型及び鋼の連続鋳造方法
CN103691909B (zh) 一种铝/镁固液复合铸造成型方法
CN109877287B (zh) 一种亚包晶钢棒材表面细小裂纹控制的方法
JP2007290004A (ja) 高アルミニウム鋼の連続鋳造用モールドパウダー
JP2008018467A (ja) Al−Si系アルミニウム合金の連続鋳造方法
JP5018274B2 (ja) 丸ビレット鋳片の連続鋳造用鋳型および連続鋳造方法
RU2403121C1 (ru) Способ непрерывной разливки стали
JP2007290007A (ja) 高Al鋼の連続鋳造方法
JP6264524B1 (ja) 鋼の連続鋳造方法
JP2008030061A (ja) 高アルミニウム鋼の連続鋳造用モールドパウダー
KR101949351B1 (ko) 연속 주조기를 이용한 주편의 제조 방법
RU2492021C1 (ru) Способ непрерывной разливки стали
CN110116193B (zh) 一种圆坯结晶器及连铸设备、连铸圆坯振痕抑制方法
CN110125346B (zh) 一种板坯结晶器及连铸设备、连铸板坯振痕抑制方法
JP4527693B2 (ja) 高Al鋼スラブの連続鋳造方法
JP5712685B2 (ja) 連続鋳造方法
JP3022211B2 (ja) 丸ビレット鋳片の連続鋳造用鋳型及びその鋳型を用いた連続鋳造方法
RU2169635C2 (ru) Способ получения высококачественной непрерывно-литой круглой заготовки
JP5691949B2 (ja) 大断面鋳片の連続鋳造方法
RU2245754C1 (ru) Способ полунепрерывного литья металла
JP4076155B2 (ja) 鉄合金系チクソキャスティング用素材の製造方法
JPH09285855A (ja) Ni含有鋼の製造方法
RU2494833C1 (ru) Способ непрерывной разливки стали
JP2003290878A (ja) 水平連続鋳造方法
SU1011329A1 (ru) Способ непрерывного горизонтального лить металлов и сплавов