WO2020233497A1 - 一种绿色环保的聚酰胺树脂的制备方法 - Google Patents

一种绿色环保的聚酰胺树脂的制备方法 Download PDF

Info

Publication number
WO2020233497A1
WO2020233497A1 PCT/CN2020/090262 CN2020090262W WO2020233497A1 WO 2020233497 A1 WO2020233497 A1 WO 2020233497A1 CN 2020090262 W CN2020090262 W CN 2020090262W WO 2020233497 A1 WO2020233497 A1 WO 2020233497A1
Authority
WO
WIPO (PCT)
Prior art keywords
polyamide
green
monomer
diamine
preparing
Prior art date
Application number
PCT/CN2020/090262
Other languages
English (en)
French (fr)
Inventor
李洋
Original Assignee
成都肆零壹科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 成都肆零壹科技有限公司 filed Critical 成都肆零壹科技有限公司
Priority to MX2021010508A priority Critical patent/MX2021010508A/es
Priority to US17/611,562 priority patent/US20220227933A1/en
Priority to EP20809926.7A priority patent/EP3957675A4/en
Priority to SG11202111044QA priority patent/SG11202111044QA/en
Priority to KR1020217032550A priority patent/KR102662924B1/ko
Priority to EA202192368A priority patent/EA202192368A1/ru
Priority to CA3132749A priority patent/CA3132749A1/en
Priority to JP2021562051A priority patent/JP7397511B2/ja
Publication of WO2020233497A1 publication Critical patent/WO2020233497A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G69/00Macromolecular compounds obtained by reactions forming a carboxylic amide link in the main chain of the macromolecule
    • C08G69/02Polyamides derived from amino-carboxylic acids or from polyamines and polycarboxylic acids
    • C08G69/26Polyamides derived from amino-carboxylic acids or from polyamines and polycarboxylic acids derived from polyamines and polycarboxylic acids
    • C08G69/28Preparatory processes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G69/00Macromolecular compounds obtained by reactions forming a carboxylic amide link in the main chain of the macromolecule
    • C08G69/02Polyamides derived from amino-carboxylic acids or from polyamines and polycarboxylic acids
    • C08G69/26Polyamides derived from amino-carboxylic acids or from polyamines and polycarboxylic acids derived from polyamines and polycarboxylic acids
    • C08G69/265Polyamides derived from amino-carboxylic acids or from polyamines and polycarboxylic acids derived from polyamines and polycarboxylic acids from at least two different diamines or at least two different dicarboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G69/00Macromolecular compounds obtained by reactions forming a carboxylic amide link in the main chain of the macromolecule
    • C08G69/40Polyamides containing oxygen in the form of ether groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G69/00Macromolecular compounds obtained by reactions forming a carboxylic amide link in the main chain of the macromolecule
    • C08G69/44Polyester-amides

Definitions

  • the invention relates to the technical field of engineering plastics, in particular to a method for preparing a green and environment-friendly polyamide resin.
  • nylon polymerization processes include nylon salt process and melt polymerization process.
  • strong polar organic solvents such as water or ethanol are consumed, and key parameters such as temperature and pH need to be controlled to ensure quality stability.
  • the added water will volatilize during the polycondensation process, and this process will consume a lot of energy.
  • the melt polymerization process does not require the addition of water as a solvent, the melt polymerization requires the addition of diamine while the dibasic acid is molten.
  • the process must first melt the dibasic acid and then carry out the polymerization reaction, in order to avoid the addition of the dibasic acid.
  • diamine When combined with diamine, a large amount of concentrated heat is released, which makes the temperature too high and causes decomposition. It is necessary to slowly add diamine. This addition process may take several hours, which greatly limits the production efficiency of melt polymerization process to produce nylon. The reaction efficiency is low.
  • due to the violent exotherm in the process of combining diamine and dibasic acid a large amount of diamine with lower boiling point will be lost.
  • a preparation method of polyamide resin By weight, the raw materials include 5-60 parts of polymerized monomer dibasic acid, 3-50 parts of diamine, and 10-90 parts of reactive dispersion system polyamide; The reaction is dispersed into the molten polyamide dispersion system, and a polymerization reaction occurs to obtain a polymer product.
  • the present invention uses polyamide as a medium to disperse the monomer dibasic acid and diamine.
  • the dibasic acid and the diamine meet in the polyamide dispersion system to form a salt, and a polymerization reaction occurs, and the monomer dibasic acid and diamine reduce Both can react with the polyamide dispersion system, and can also react with the low molecular weight polycondensate generated during the polymerization process, so that the entire system is very uniform, and there will be no incompatibility of a certain component.
  • the process of the acid and amine in the monomer of the present invention reacting to form a salt, dehydration polymerization is carried out in a molten polyamide dispersion system.
  • the melting point of aliphatic monomers will be lower than the melting point of the polymer raw materials. If all materials are put in at one time and then heated and melted, the acid and amine will be melted and mixed before the polyamide is melted, and the heat release is not conducive to control. Therefore, preferably, when the melting point of the monomer raw material is lower than the melting point of the polyamide raw material, the dibasic acid, the diamine and the polyamide cannot be put into the reaction system at the same time.
  • a strong shearing device such as an internal mixer can be used to put all the materials into it.
  • strong shearing of this type of dispersing equipment can also make the system heat up quickly, so the polyamide can be melted before the acid and amine are exothermic violently.
  • the reaction exotherm of the aromatic acid and amine dissolved therein is easier to control. In this way, a reasonable order of material addition can be designed according to the characteristics of materials and equipment.
  • the highest temperature reached by the material is higher than the melting point of the crystalline polyamide or the glass transition temperature of the amorphous polyamide, so that the polyamide can be melted.
  • polyamide itself has high polarity, it is very helpful to disperse polar monomers of dibasic acid and diamine after melting, thus avoiding the use of water as a solvent to prepare nylon salt.
  • the viscosity of the polyamide itself is relatively high, both monomeric amines and acids can react with the polyamide to reduce the molecular weight of the polymer, thereby reducing the melting temperature and viscosity of the entire system, which is very conducive to uniform monomer mixing.
  • the traditional melt polymerization process is usually suitable for monomers with higher boiling points. Such monomers usually have longer carbon chains, so the melting point of polyamide products is usually lower.
  • the unit mass of monomers emits more heat when mixing, and it is difficult to control the heat release during the mixing process of amino groups and carboxyl groups, so it is not suitable for traditional The melt polymerization.
  • the melt dispersion system of polyamide since the melt dispersion system of polyamide is added, the ratio of amino groups and carboxyl groups in the system is diluted, so that the heat release is reduced, and it is easy to control. Therefore, the advantages are more manifested in the melt polymerization of monomers with smaller molecular weight.
  • the maximum temperature reached by the material is higher than the melting point of the crystalline polyamide by more than 20°C.
  • the polyamide as a dispersion system needs to be fully melted. In order to improve the efficiency and solubility of the reaction, it is preferable that the maximum temperature of the material during the dispersion process reaches the melting point of the polyamide 20°C or more. Otherwise, longer dispersion time and stronger shear are required to complete dispersion, which will affect efficiency.
  • the route of the invention does not require special preparation of nylon salt in advance, so it is convenient to prepare copolymer nylon by mixing several dibasic acids or diamines and then feeding, so as to adjust the performance of the product in a larger range. It is even possible to add part of the polyacid or polyamine into the monomer to make the product have a certain degree of crosslinking, thereby improving the temperature resistance of the product.
  • the method of the present invention is a general method for preparing polyamide, and the used dibasic acid, diamine, and polyamide raw materials can be arbitrarily selected according to performance requirements and cost factors.
  • the diamine is selected from at least one of aliphatic diamine and aromatic diamine containing 2-20 carbon atoms.
  • the melting point of the polyamide product is higher than 230°C.
  • the polyamide melt dispersion system since the polyamide melt dispersion system is added, the ratio of the amino group and the carboxyl group in the system is diluted, so that the heat release is reduced, and it is easy to control. Therefore, the advantages can be more manifested in the melt polymerization of monomers with smaller molecular weight.
  • the PA56, PA66, and PA46 products prepared by the monomer amine being a diamine with no more than 6 carbons can all efficiently utilize the polymerization method of the present invention, and the melting points of these polyamide products all exceed 230°C.
  • the dibasic acid is selected from at least one of aliphatic dibasic acid and aromatic dibasic acid containing 2-20 carbon atoms.
  • the molar ratio of aromatic dibasic acid contained in the dibasic acid monomer is not less than 20%.
  • aromatic monomers can greatly improve the temperature resistance of polyamide.
  • aromatic dibasic acids have obvious cost advantages and are more widely used.
  • the melting point of aromatic dibasic acid is often close to or exceeds the decomposition temperature, and the solubility in water and organic solvents is worse than that of aliphatic dibasic acid, and cannot be used in the traditional melt polymerization process of melting the acid first.
  • the control of nylon salt is also more difficult than aliphatic dibasic acid.
  • the method of the present invention has a particularly prominent advantage in the polymerization of monomers containing aromatic dibasic acids to prepare semi-aromatic nylon.
  • the aromatic dibasic acid can be fully dissolved in the system after reacting with the polyamide, even if there are some aromatic dibasic acids that are not completely dissolved.
  • the presence of acid can also be very uniformly distributed in the system with very fine particles.
  • a small amount of aromatic dibasic acid can also be dissolved in the molten aliphatic dibasic acid, but when the proportion of aromatic dibasic exceeds 20%, the traditional nylon salt method will be very difficult to dissolve. In contrast, the present invention The advantages can be more prominent.
  • the reactive dispersion system polyamide of the present invention is selected from at least one of aliphatic polyamide, aromatic monomer-containing polyamide, ether bond-containing polyamide and ester bond-containing polyamide.
  • the source of the polyamide dispersion system of the present invention is very wide.
  • polyamides containing ether and ester bonds can also be used as dispersion media for the present invention. Method.
  • the molar ratio of the dibasic acid to the diamine in the present invention is 0.4-2:1.
  • the raw material polyamide of the present invention can use a low molecular weight amide oligomer as the polyamide raw material, and the content ratio of amino groups and carboxyl groups in the oligomer raw materials can be larger.
  • the ratio of carboxyl groups adjusts the ratio of acid and amine raw materials, so that the ratio of acid and amine in the final whole system is balanced to obtain a high molecular weight product. Therefore, in the present invention, the ratio of acid to amine in the three main raw materials can be adjusted between 0.4-2:1, thereby making the source of the raw materials of the present invention more extensive, very primary amide oligomers, even containing only a small amount
  • the repeating unit oligopolyamide can also be used as the raw material polyamide.
  • the end groups of such amide oligomers can be mainly amino groups, carboxyl groups, or the ratio of amino groups to carboxyl groups, or even primary polymers containing unpolymerized carboxylic acid or amine monomers.
  • the source can be only prepolymerized amide salt, or simple ring-opening polymerization of low-molecular-weight polyamide, or even headstock from other polymerization processes or polymerization waste products that have not been completely reacted, which can also be used in the production of the present invention In the process.
  • the amine value and acid value of the oligomer can be measured to determine the ratio of additional amine and acid to the raw material.
  • the method of the present invention can also be used to prepare various amino or carboxyl-terminated polyamides with different molecular weights.
  • Low molecular weight polyamide can be used as an important component in polyurethane and epoxy resin formulations.
  • the raw dibasic acid and diamine of the present invention can be the same as the monomers of the raw polyamide to prepare homopolyamide, or different to prepare copolyamide.
  • the order of monomer addition is relatively flexible, and it can be added all at once or in batches.
  • the addition time of the monomer dibasic acid does not precede the addition of the monomer diamine.
  • the proportion of the dispersion system polyamide in the raw material of the present invention is not less than 10%.
  • the process of amine and acid reaction to produce amide will generate water, and the equilibrium constant of the reaction can be as high as 400 or more. Therefore, the presence of water in the raw material will not cause the polymerization reaction to fail, but the evaporation of water will consume a lot of heat, resulting in energy consumption Increase, so the dried raw material will be more economical, preferably the water content of the raw material is not higher than 5%.
  • polyamide as a medium to disperse monomer dibasic acid and diamine.
  • the dibasic acid and diamine will generate salt in the polyamide dispersion system instead of water, and the polymerization reaction will occur, so that the entire polymerization reaction is close to homogeneous conditions. It does not undergo the salt formation process in water or ethanol, greatly simplifies the polymerization process, and avoids the production of waste liquid in the nylon salt preparation process.
  • the by-product produced is theoretically only water produced in the polycondensation process, which is a green and environmentally friendly high-temperature polymer synthesis method.
  • the present invention adds a melt dispersion system of polyamide to dilute the ratio of amino groups and carboxyl groups in the system, so that the heat release is reduced and easy to control. Therefore, it has more advantages in the melt polymerization of monomers with smaller molecular weights, especially It is suitable for small molecular weight diamine monomers, which can increase the speed of amine adding to the system, with high reaction efficiency, high polymer melting point and good temperature resistance.
  • the product produced by the process route of the present invention is not affected by factors such as temperature and pH value during the preparation of nylon salt in the aqueous solution, and has good quality stability.
  • the polyamide raw materials of the present invention have a wide range of sources, which can be finished polyamides available on the market, or prepolymer oligomers of polyamides, including defective products produced during the manufacturing process, which can be used as raw materials. No waste is produced.
  • the molar ratio of aromatic dibasic acid in dibasic acid monomer is not less than 20%.
  • the solubility and melting performance of aromatic dibasic acid are far worse than that of aliphatic dibasic acid, so it contains aromatic dibasic acid.
  • the preparation of acid nylon is also more difficult than aliphatic nylon. Since the method of the present invention makes full use of the dispersion advantage of polyamide as a dispersion system, it is particularly suitable for the preparation of semi-aromatic high temperature nylon containing aromatic dibasic acid.
  • a method for preparing a green and environment-friendly polyamide resin By weight, the raw materials include 5 parts of polymerized monomer dibasic acid, 3 parts of diamine, and 10 parts of reactive dispersion system polyamide; monomer dibasic acid and dibasic acid
  • the contact reaction of the primary amine to form a salt and dehydration polymerization are carried out in a molten polyamide dispersion system, and finally a polyamide product with a suitable molecular weight is generated.
  • a preparation method of a green and environmentally friendly polyamide resin By weight, the raw materials include 60 parts of polymerized monomer dibasic acid, 50 parts of diamine, and 90 parts of reactive dispersion system polyamide; In the molten polyamide dispersion system, a polymerization reaction occurs to obtain a polymer product.
  • the melting point of the monomer raw material is lower than the melting point of the polyamide raw material, the polymerized monomer dibasic acid and diamine cannot be simultaneously put into the reaction system.
  • the maximum temperature reached by the material is higher than the glass transition temperature of the amorphous polyamide, so that the polyamide can be melted.
  • the raw materials include 20 parts of polymerized monomer dibasic acid, 15 parts of diamine, and 12 parts of reactive dispersion system polyamide; the polymerized monomer is reacted and dispersed to In the molten polyamide dispersion system, a polymerization reaction occurs to obtain a polymer product.
  • the maximum temperature reached by the material is higher than the melting point of the crystalline polyamide by more than 20°C.
  • the melting point of the polyamide product is higher than 230°C.
  • the melting point of the monomer raw material is lower than the melting point of the polyamide raw material, the dibasic acid, diamine and polyamide cannot be put into the reaction system at the same time.
  • the raw materials include 50 parts of polymerized monomer dibasic acid, 20 parts of diamine, and 20 parts of reactive dispersion system polyamide; the polymerized monomer is reacted and dispersed to In the molten polyamide dispersion system, a polymerization reaction occurs to obtain a polymer product.
  • the melting point of the monomer raw material is lower than the melting point of the polyamide raw material, the dibasic acid, diamine and polyamide cannot be put into the reaction system at the same time.
  • the maximum temperature reached by the material is more than 20°C higher than the melting point of the crystalline polyamide.
  • the melting point of the polyamide product is higher than 230°C.
  • the molar ratio of aromatic dibasic acid contained in the dibasic acid monomer is not less than 20%.
  • the reactive dispersion system polyamide is selected from at least one of aliphatic polyamide, aromatic monomer-containing polyamide, ether bond-containing polyamide, and ester bond-containing polyamide.
  • the molar ratio of the monomer dibasic acid to the diamine is 0.4-2:1.
  • the addition time of monomer dibasic acid does not precede the addition of monomer diamine.
  • the proportion of the dispersion system polyamide in the raw material is not less than 10%.
  • the method of the present invention is a general method for preparing polyamide, and the diamine, diamine and polyamide raw materials used can be arbitrarily selected according to performance requirements and cost factors.
  • the diamine is selected from: at least one of aliphatic diamine and aromatic diamine containing 2-20 carbon atoms; including butane diamine, pentane diamine, hexamethylene diamine, and decane diamine , Alicyclic diamines, etc.
  • the dibasic acid is selected from at least one of aliphatic dibasic acid and aromatic dibasic acid containing 2-20 carbon atoms.
  • the polyamide refers to at least one of aliphatic polyamide and semi-aromatic polyamide. Including PA6, PA66, PA56, PA12T, PA10T, PA9T, PA6T, PAMXD6 and other polymers,
  • the raw materials include 18.3 parts of polymerized monomer terephthalic acid, 12.8 parts of hexamethylene diamine, and 11.3 parts of PA6 resin;
  • Polymerization method place 113 g of PA6 resin in a formula amount in a nitrogen-protected autoclave equipped with a condensing device. After nitrogen replacement for three times, the temperature is raised to 300° C. to melt the PA6. 182.6g of terephthalic acid, 127.6g of hexamethylenediamine, 0.15g of benzoic acid, 0.2g of catalyst, and 0.2g of antioxidant were added to the molten PA6. The temperature was raised to 310°C under mechanical stirring and closed dispersion reaction for 1 hour, then slowly Relieve the pressure and release the produced water. Then, it was reacted at 310°C and 0.02Mpa for 0.5 hours. The temperature was raised to 320°C and the material was discharged to obtain a semi-aromatic polyamide PA6T/6 with a melting point of 290°C.
  • the raw materials include 21.9 parts of polymerized monomer adipic acid, 17.4 parts of hexamethylene diamine, and 22.6 parts of PA66 resin;
  • Polymerization method place 226 g of PA66 resin in a formula amount in a nitrogen-protected autoclave equipped with a condensing device, and after nitrogen replacement for three times, the temperature is raised to 290°C to melt the PA66.
  • Add 219 g of adipic acid, 174 g of hexamethylene diamine, 0.15 g of benzoic acid, 0.2 g of catalyst, and 0.2 g of antioxidants keep the condition of 280° C. for 1 hour with mechanical stirring and airtight dispersion, then slowly release the pressure and release the water produced. Then, react at 280°C and 0.02Mpa for 0.5 hours. The temperature was raised to 290°C and the material was discharged to obtain an aliphatic polyamide PA66 with a melting point of 266°C.
  • the raw materials include 16.6 parts of polymerized monomer terephthalic acid, 17.2 parts of decane diamine, and 31.0 parts of PA10T resin;
  • Polymerization method add 166 g of terephthalic acid, 310 g of PA10T resin, and 172 g of decane diamine into an internal mixer, and mix at 330°C for 15 minutes. After cooling, put the melt-dispersed product into an autoclave, react at 320°C for 30 minutes, and then react at 310°C and 0.02Mpa for 15 minutes, heat up to 330°C to discharge, and obtain polyamide PA10T, melting point 310°C.
  • raw materials include 16.6 parts of polymerized monomer terephthalic acid, 11.7 parts of hexamethylene diamine, and 20 parts of PA66 resin;
  • Polymerization method add 166 g of terephthalic acid and 200 g of PA66 resin into the internal mixer, and mix at 310°C for 15 minutes. After cooling, put the melted and dispersed product into an anticorrosive stainless steel autoclave equipped with a condensing device, warm up to soften, add 117g of hexamethylene diamine under stirring and dispersion, react at 300°C for 30 minutes, and then at 310°C, 0.02 The reaction was carried out for 15 minutes under Mpa conditions, and the temperature was raised to 330°C for discharging to obtain polyamide PA6T/66 with a melting point of 303°C.
  • the raw materials include 14.6 parts of polymerized monomer adipic acid, 11.7 parts of hexamethylene diamine, and 20 parts of PA66 resin;
  • Polymerization method add 146g of adipic acid and 200g of PA66 resin into an uncorrosively treated autoclave equipped with a condensing device, heat up to 290 degrees Celsius, stir for 1 hour to make the two raw materials melt and react, mix well, and then 117g of hexamethylenediamine was added under stirring and dispersion, reacted at 280°C for 1 hour, then reacted at 280°C and 0.02Mpa for 30 minutes, heated to 290°C and discharged to obtain polyamide PA66 with a melting point of 266°C.
  • the raw materials include 16.6 parts of polymerized monomer terephthalic acid, 17.2 parts of decane diamine, and 31.0 parts of PA10T resin;
  • Polymerization method Put 310g of PA10T resin and 172g of decanediamine into an internal mixer, and mix at 330°C for 15 minutes. After cooling, put the melted and dispersed product into an autoclave equipped with a condensing device, heat to 320°C to melt it, add 166g of terephthalic acid, disperse and react at 320°C for 1.5 hours, then at 310°C, Reacted for 15 minutes under the condition of 0.02Mpa, heated to 330°C and discharged to obtain polyamide PA10T with a melting point of 308°C.
  • the raw materials include 29.2 parts of polymerized monomer adipic acid, 34.8 parts of hexamethylene diamine, and 50.0 parts of a PA66 prepolymer prepared by the laboratory.
  • the number average molecular weight is about 500Da
  • the end group analysis carboxyl content is 0.004mol. /g
  • the amino group is 0.0002mol/g, which is a kind of prepolymer whose end groups are basically carboxyl groups. It starts to soften at 180°C and melts completely at 220°C.
  • the method steps include:
  • the ratio of dibasic acid in the raw material is correspondingly reduced, and the molar ratio of dibasic acid to diamine is 0.67:1.
  • the amount of 50.0 parts of prepolymer unchanged, reducing the amount of adipic acid to 14.6 parts, the amount of hexamethylene diamine needs to be 23.2 parts, and the molar ratio is 0.5:1. If the proportion of adipic acid in the polymerization raw material is further reduced, the molar ratio of dibasic acid and diamine will be further reduced. If a prepolymer with amino-based end groups is selected, the molar ratio of dibasic acid and diamine will be reversed, with acid surpassing amine.
  • the raw materials include 22.5 parts of polymerized monomers terephthalic acid and adipic acid, 17.4 parts of hexamethylene diamine, and 53.4 parts of PA66 resin;
  • Dibasic acid in mole ratio including: 20% terephthalic acid, 80% adipic acid;
  • Polymerization method add 175 g of adipic acid, 49 g of terephthalic acid, and PA66534 g of formula into a stainless steel autoclave with a condenser, replace with nitrogen three times, and seal the mixture for 1 hour under mechanical stirring at 290°C. Then add 174g of hexamethylene diamine, continue to react and disperse at 290°C for 1 hour, slowly release the pressure, and release the generated water. Then, react at 280°C and 0.02Mpa for 0.5 hours. The temperature was raised to 290°C and the material was discharged to obtain an aliphatic polyamide PA66 with a melting point of 271°C.
  • raw materials include 16.6 parts of terephthalic acid, 11.7 parts of hexamethylene diamine, and 12 parts of PA66 resin;
  • Polymerization method Mix 166 g of terephthalic acid and 120 g of PA66 resin in an internal mixer at 320 degrees Celsius for 15 minutes to obtain a uniformly mixed dispersion, which is cooled for later use. Put the obtained dispersion into a stainless steel autoclave equipped with a condensing device, heat it up to 300°C to melt it, add 117g of hexamethylene diamine and mix uniformly, react at 320°C for 1 hour, and then react at 320°C, 0.02Mpa In 30 minutes, the temperature was raised to 340°C and the material was discharged to obtain polyamide PA6T/66 with a melting point of 330°C.
  • the raw materials include 14.6 parts of polymerized monomer adipic acid, 11.7 parts of hexamethylene diamine, and 7 parts of PA66 resin;
  • Polymerization method add 146g of monomer adipic acid and 70g of PA66 resin into a stainless steel reactor equipped with a condenser, heat up to 200°C, stir and disperse for 2 hours, PA66 resin will not melt, and a uniform dispersion cannot be formed.
  • 117 g of hexamethylene diamine was added dropwise and the temperature was raised to 220°C. After 1 hour of reaction, the system was a melt containing unreacted PA66 particles, which could not be pumped out through the bottom pump. The reaction continued for 3 hours, and a uniform polymer was still not obtained.
  • the temperature is increased to 290°C, the reaction temperature is above the raw polymer, and a homogeneous system is formed after 30 minutes of reaction, and then the material is discharged under vacuum for 15 minutes to obtain PA66 melting point of 260°C.
  • the raw materials include 16.6 parts of polymerized monomer isophthalic acid, 17.2 parts of hexamethylene diamine, and 31.0 parts of PA6I resin.
  • PA6I resin is an amorphous polymer with no melting point and only a glass transition temperature of 130°C.
  • Polymerization method Add 310 g of PA6I resin and 166 g of terephthalic acid into an internal mixer, and mix at 300°C for 15 minutes. After cooling, put the melted and dispersed product into an anticorrosive stainless steel autoclave equipped with a condensing device, heat it up to 280°C to melt it, add 172g of hexamethylene diamine, disperse and react at 300°C for 1 hour, then at 310°C , React for 15 minutes under the condition of 0.02Mpa, heat up to 330°C and discharge the material to obtain polyamide PA6I resin, amorphous material, glass transition temperature of 130°C. During the cooling process of the material, it is found that when the material is gradually cooled to around 200°C, the system has been It starts to solidify and cannot be stirred.
  • the raw materials include 16.6 parts of polymerized monomer isophthalic acid, 17.2 parts of hexamethylene diamine, and 31.0 parts of PA6I resin.
  • PA6I resin is an amorphous polymer with no melting point and only a glass transition temperature of 130°C.
  • Polymerization method Add 310g of PA6I resin and 166g of terephthalic acid into the internal mixer together, and start the internal mixer at 200°C. It is found that the internal mixer is overloaded and cannot be operated. The materials can be fully mixed uniformly until the temperature is raised to 265°C, which means that for amorphous polymer raw materials, the required temperature is not only higher than the glass transition temperature, but also needs to reach the temperature at which the material can be melt-processed to apply the method of the present invention Preparation of polyamide products.
  • conventional catalysts for polyamide synthesis or one or more additives such as antioxidants, lubricants, molecular weight regulators, etc. can be added as needed, or the polymerization reaction can be completed directly without additives.
  • the preparation method is suitable for the synthesis of various polyamide resins, and is not limited to the types listed in the examples, and has a wide range of applications.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Polyamides (AREA)

Abstract

一种绿色环保的聚酰胺树脂的制备方法,按重量计,原料包括聚合单体二元酸5-60份、二元胺3-50份,以及反应性分散体系聚酰胺10-90份;将聚合单体反应分散到熔融状态的聚酰胺分散体系之中,发生聚合反应得到聚合物产物。整个工艺路线中不经历水或者乙醇中的成盐过程,并且产品不受成盐过程中温度、pH值等影响,质量非常稳定,解决了传统尼龙盐生产中耗水、耗能、耗时、质量不稳定的问题。

Description

一种绿色环保的聚酰胺树脂的制备方法 技术领域
本发明涉及工程塑料技术领域,具体涉及一种绿色环保的聚酰胺树脂的制备方法。
背景技术
目前最常用的尼龙聚合工艺包括尼龙盐工艺和熔融聚合工艺两种。尼龙盐制备的过程中,会消耗水或者乙醇等强极性有机溶剂,并且需要控制温度和pH值等关键参数来保证质量的稳定性。加入的水会在缩聚过程中汽化后挥发掉,这个过程会消耗大量的能源。
熔融聚合工艺虽然不需要加入水作溶剂,但熔融聚合需要在二元酸熔融的状态下加入二元胺,工艺过程要先将二元酸熔融,再进行聚合反应,为了避免加料过程二元酸和二元胺结合时大量集中放热,使得温度过高导致分解,需要缓慢的加入二元胺,这个加入过程就可能长达数小时,这样极大地限制了熔融聚合工艺生产尼龙的生产效率,反应效率低。另一方面,由于二元胺和二元酸结合过程中剧烈放热会导致沸点较低的二元胺的大量损失,为了避免单体的挥发损失,通常适用于沸点较高的单体,此类单体通常碳链较长,因此聚酰胺产物的熔点通常较低。对于分子量较小的单体而言,由于挥发性强,并且氨基或者羧基密度高,单位质量的单体混合放热更多,难以控制氨基和羧基混合过程中的放热,因此传统的熔融聚合工艺不适用于小分子量单体胺的熔融聚合。
发明内容
针对传统尼龙盐和熔融聚合工艺存在的上述问题,本发明提供了一种绿色环保的聚酰胺树脂的制备方法,整个工艺路线中不经历水或者乙醇中的成盐过程,并且产品不受成盐过程中温度、pH值等影响,质量非常稳定,解决了传统 尼龙盐生产中耗水、耗能、耗时、质量不稳定的问题。
为了实现上述发明目的,本发明采用的技术方案是:
一种聚酰胺树脂的制备方法,按重量计,原料包括聚合单体二元酸5-60份、二元胺3-50份,以及反应性分散体系聚酰胺10-90份;将聚合单体反应分散到熔融状态的聚酰胺分散体系之中,发生聚合反应得到聚合物产物。
本发明使用聚酰胺作为介质分散单体二元酸和二元胺,二元酸和二元胺在聚酰胺分散体系中相遇生成盐,发生聚合反应,并且单体二元酸和二元胺还都能够与聚酰胺分散体系发生反应,也能够与聚合过程中生成的低分子量缩聚体反应,使得的整个体系非常均匀,不会出现某一组分不相容的情况。
本发明单体中酸和胺反应成盐、脱水聚合的过程在熔融状态的聚酰胺分散体系中进行。
通常情况下,脂肪族单体的熔点都会低于聚合物原料的熔点,如果所有物料一次性投入再升温熔融,在聚酰胺熔融前酸和胺就已经熔化混合,放热不利于控制。因此优选地,当单体原料的熔点低于聚酰胺原料的熔点,二元酸、二元胺和聚酰胺不能同时投入反应体系之中。
当适用芳香族酸作为单体时,因为芳香族酸的熔点会高于聚合物原料,则可以利用密炼机等强剪切设备,可将所有物料全部投入。这类分散设备除了加热外,强剪切也能使得体系快速升温,因此在酸和胺发生剧烈放热前即可将聚酰胺熔融。有了熔融的聚合聚酰胺存在作为分散体系,溶解其中的芳香族酸和胺反应放热就更容易控制。这样可以根据物料、设备等的特性来设计合理的物料添加的顺序。
本发明在聚合单体的分散步骤中,物料达到的最高温度高于结晶聚酰胺的熔点或者无定形聚酰胺的玻璃化温度,使得聚酰胺能够熔融。因为聚酰胺本身 具有高极性,熔融之后非常有利于分散二元酸和二元胺类的极性单体,从而避免了用水作为溶剂来制备尼龙盐。虽然聚酰胺本身粘度较大,但是单体胺和酸均可以和聚酰胺发生反应,使得聚合物的分子量降低,从而使得整个体系熔融温度降低,粘度也降低,非常有利于单体的均匀混合。
传统的熔融聚合工艺为了避免单体的挥发损失,通常适用于沸点较高的单体,此类单体通常碳链较长,因此聚酰胺产物的熔点通常较低。对于分子量较小的单体而言,由于挥发性强,并且氨基或者羧基密度高,单位质量的单体混合放热更多,难以控制氨基和羧基混合过程中的放热,因此不适用于传统的熔融聚合。本发明中由于加入了聚酰胺的熔融分散体系,因此稀释了体系中氨基和羧基的比例,使得放热量减少,容易控制,因此在分子量较小的单体的熔融聚合中更能体现出优势。
进一步优选地,物料达到的最高温度高于结晶聚酰胺的熔点20℃以上。作为分散体系的聚酰胺需要充分的熔融,为了提高反应的效率和溶解度,优选分散过程中物料的最高温度达到聚酰胺的熔点20℃以上。否则需要更长的分散时间和更强的剪切来完成分散,影响效率。
本发明的路线不需要专门提前制备尼龙盐,因此很方便通过几种二元酸或者二元胺混和后投料的方式来制备共聚尼龙,从而在更大的范围内调整产品的性能。甚至可以在单体中加入部分的多元酸或者多元胺,使得产品具有一定的交联度,从而提高产品的耐温性能。
本发明所述的方法是一种通用的制备聚酰胺的方法,所用到的二元酸、二元胺、聚酰胺原料可以根据性能要求和成本因素任意选择。
所述的二元胺选自:含2-20个碳原子的脂肪族二元胺和芳香族二元胺中的至少一种。
进一步优选地,聚酰胺产物的熔点高于230℃。本发明中由于加入了聚酰胺 熔融分散体系,因此稀释了体系中氨基和羧基的比例,使得放热量减少,容易控制,因此在分子量较小的单体的熔融聚合中更能体现出优势。单体胺为不大于6个碳的二元胺制得的PA56、PA66、PA46产物均可以高效的利用本发明的聚合方法,这些聚酰胺产物熔点均超过了230℃。
所述的二元酸选自:含2-20个碳原子的脂肪族二元酸和芳香族二元酸中的至少一种。
优选地,所述二元酸单体中含有芳香族二元酸摩尔比例不低于20%。
芳香族单体的引入能够大幅度的提高聚酰胺的耐温性能。其中芳香族二元酸的成本优势明显,应用更加广泛。但是芳香族二元酸的熔点往往接近或者超过了分解温度,并且在水和有机溶剂中的溶解性也比脂肪族二元酸更差,不能用于传统的先熔化酸的熔融聚合工艺,制备尼龙盐的控制也比脂肪族二元酸更困难。本发明的方法在用于含有芳香族二元酸的单体制备半芳香尼龙的聚合中具有特别突出的优势。由于聚酰胺熔体具有很强的极性,并且分散在高温下进行,芳香族二元酸能够比较充分的和聚酰胺反应后溶解在体系中,即使有部分未能完全溶解的芳香族二元酸存在,也能够以非常细的颗粒非常均匀的分布于体系中。在聚合反应发生后,随着体系中聚酰胺的比例增加,所有芳香族二元酸最终将融入体系中成为均相。少量的芳香族二元酸也能溶于熔化的脂肪族二元酸中,但是当芳香族二元比例超过20%时,传统的尼龙盐方法溶解将非常困难,相较之下,本发明的优势能够更加突显。
本发明所述反应性分散体系聚酰胺选自脂肪族聚酰胺、含芳香族单体聚酰胺、含醚键聚酰胺和含酯键聚酰胺中的至少一种。
本发明的聚酰胺分散体系的来源非常广泛,除了常规的脂肪族聚酰胺、含有芳香族单体的聚酰胺外,含醚键和酯键的聚酰胺也同样能够作为分散介质用于本发明的方法中。
本发明所述二元酸与二元胺的摩尔比例为0.4-2:1。为了得到分子量足够大的最终聚合物,需要保证最终聚合体系中氨基和羧酸基官能团比例的相对平 衡。本发明的原料聚酰胺可以使用分子量较低的酰胺寡聚物作为聚酰胺原料,在寡聚物原料中的氨基和羧基的含量比例范围可以较大,因此需要根据寡聚物原料中的氨基和羧基的比例调整酸和胺原料的比例,使得最终的整个体系中酸和胺的比例平衡,得到高分子量的产物。因此,在本发明中,三种主要原料中酸与胺的比例可以在0.4-2:1之间调整,从而使得本发明原料的来源更加广泛,非常初级的酰胺寡聚物,甚至只包含少量重复单元的寡聚酰胺也可以作为原料聚酰胺来使用。此类酰胺寡聚物的端基可以以氨基为主,可以以羧基为主,也可以氨基和羧基比例相当,甚至可以是含有未聚合完的羧酸或者胺类单体的初级聚合物。来源可以是仅经过预聚的酰胺盐,或者简单开环聚合的低分子量聚酰胺,甚至可以是其他聚合工艺过程中的机头料或者没有完全反应的聚合废品,同样可以用于本发明的生产过程中。在这种情况下,可以通过对寡聚物的胺值和酸值进行测定,从而确定原料中另外添加胺和酸的比例。整个体系中二元胺或者二元酸过量的时候,使用本发明的方法也可以制备各种不同分子量的氨基或者羧基封端的聚酰胺。低分子量的聚酰胺可以作为聚氨酯、环氧树脂配方中的重要组成成分。
本发明的原料二元酸和二元胺可以与原料聚酰胺的单体相同从而制备均聚聚酰胺,也可以不同从而制备共聚聚酰胺。
本发明的方法中,单体加入的顺序相对灵活,可以一次性加入,也可以分批加入。优选地,在聚合单体的分散步骤中,单体二元酸的加入时间不先于单体二元胺的加入。
对于常用的制备反应装置的金属材料来说,酸的腐蚀性要远超过胺的腐蚀性,因此单体酸不先于单体胺加入体系中能够避免形成强酸性体系,能够适用更加常规的材料制备设备,减少设备方面的投资。
作为分散体系的聚酰胺量太少会极大的影响分散的效率,因此,本发明所 述分散体系聚酰胺在原料中的比例不低于10%。
胺和酸反应生产成酰胺的过程会生成水,并且反应的平衡常数可以高达400以上,因此原料中存在水不会导致聚合反应不能进行,但是水的蒸发会消耗大量的热量,导致能耗的增加,因此干燥的原料会更经济,优选原料含水量不高于5%。
本发明的有益效果在于:
1、使用聚酰胺作为介质分散单体二元酸和二元胺,二元酸和二元胺在聚酰胺分散体系而不是水中生成盐,发生聚合反应,使得整个聚合反应在接近均相的条件下进行,不经历水或者乙醇中的成盐过程,大大简化了聚合过程,并且避免了尼龙盐制备过程中废液的产生。产生的副产物理论上只有缩聚过程中生成的水,是一种绿色环保的耐高温聚合物合成方法。
2、本发明加入了聚酰胺的熔融分散体系,稀释了体系中氨基和羧基的比例,使得放热量减少,容易控制,因此在分子量较小的单体的熔融聚合中更能体现出优势,特别是适用于小分子量二元胺单体,可以提高胺加入体系的速度,反应效率高,聚合物熔点高,耐温性能好。
3、本发明工艺路线生产的产品不受水溶液中尼龙盐制备过程中温度、pH值等因素的影响,质量稳定性好。
4、本发明的聚酰胺原料来源广泛,可以是市场上购得的成品的聚酰胺,也可以是聚酰胺的预聚体寡聚物,包括制程中产生的不良品都可以作为原料,因此基本不产生废料。
5、二元酸单体中含有芳香族二元酸摩尔比例不低于20%,芳香族二元酸的溶解性和熔融的性能均远比脂肪族二元酸差,因此含有芳香族二元酸的尼龙的制备也比脂肪族尼龙困难。由于本发明的方法充分利用了聚酰胺作为分散体系的分散优势,特别适合于含有芳香族二元酸的半芳香高温尼龙的制备。
具体实施方式
为了更加清楚、详细地说明本发明的目的技术方案,下面通过相关实施例对本发明进行进一步描述。以下实施例仅为具体说明本发明的实施方法,并不限定本发明的保护范围。
实施例1
一种绿色环保的聚酰胺树脂的制备方法,按重量计,原料包括聚合单体二元酸5份、二元胺3份,以及反应性分散体系聚酰胺10份;单体二元酸和二元胺接触反应成盐以及脱水聚合的过程在熔融状态聚酰胺分散体系中进行,最终生成分子量合适的聚酰胺产物。
实施例2
一种绿色环保的聚酰胺树脂的制备方法,按重量计,原料包括聚合单体二元酸60份、二元胺50份,以及反应性分散体系聚酰胺90份;将聚合单体反应分散到熔融状态的聚酰胺分散体系之中,发生聚合反应得到聚合物产物。
当单体原料的熔点低于聚酰胺原料的熔点,聚合单体二元酸和二元胺不能同时投入反应体系之中。
在聚合单体的分散步骤中,物料达到的最高温度高于无定形聚酰胺的玻璃化温度,使得聚酰胺能够熔融。
实施例3
一种绿色环保的聚酰胺树脂的制备方法,按重量计,原料包括聚合单体二元酸20份、二元胺15份,以及反应性分散体系聚酰胺12份;将聚合单体反应分散到熔融状态的聚酰胺分散体系之中,发生聚合反应得到聚合物产物。
在聚合单体的分散步骤中,物料达到的最高温度高于结晶聚酰胺的熔点20℃以上。
聚酰胺产物的熔点高于230℃。
当单体原料的熔点低于聚酰胺原料的熔点,二元酸、二元胺和聚酰胺不能同时投入反应体系之中。
实施例4
一种绿色环保的聚酰胺树脂的制备方法,按重量计,原料包括聚合单体二元酸50份、二元胺20份,以及反应性分散体系聚酰胺20份;将聚合单体反应分散到熔融状态的聚酰胺分散体系之中,发生聚合反应得到聚合物产物。
当单体原料的熔点低于聚酰胺原料的熔点,二元酸、二元胺和聚酰胺不能同时投入反应体系之中。
物料达到的最高温度高于结晶聚酰胺的熔点20℃以上。
聚酰胺产物的熔点高于230℃。
所述二元酸单体中含有芳香族二元酸摩尔比例不低于20%。
所述反应性分散体系聚酰胺选自脂肪族聚酰胺、含芳香族单体聚酰胺、含醚键聚酰胺和含酯键聚酰胺中的至少一种。
所述单体二元酸与二元胺的摩尔比例为0.4-2:1。
在聚合单体的分散步骤中,单体二元酸的加入时间不先于单体二元胺的加入。
所述分散体系聚酰胺在原料中的比例不低于10%。
本发明所述的方法是一种通用的制备聚酰胺的方法,所用到的二元胺、二元胺、聚酰胺原料可以根据性能要求和成本因素任意选择。
所述的二元胺选自:含2-20个碳原子的脂肪族二元胺和芳香族二元胺中的至少一种;包括丁二胺、戊二胺、己二胺、癸二胺、脂环族二胺等。
所述的二元酸选自:含2-20个碳原子的脂肪族二元酸和芳香族二元酸中的 至少一种。
所述的聚酰胺是指脂肪族聚酰胺和半芳香族聚酰胺中的至少一种。包括PA6、PA66、PA56、PA12T、PA10T、PA9T、PA6T、PAMXD6等聚合物,
实施例5
按重量计,原料包括聚合单体对苯二甲酸18.3份、己二胺12.8份,以及PA6树脂11.3份;
聚合方法:将配方量的PA6树脂113g置于氮气保护的装有冷凝装置的高压釜中,氮气置换3次后,升温至300℃,使得PA6熔融。对苯二甲酸182.6g,己二胺127.6g,苯甲酸0.15g,催化剂0.2g,抗氧剂0.2g加入到熔融的PA6中,升温到310℃条件下机械搅拌密闭分散反应1小时,然后缓慢泄压,放出产生的水。然后在310℃条件下,0.02Mpa条件下反应0.5小时。升温至320℃出料,得到半芳香族聚酰胺PA6T/6,熔点290℃。
实施例6
按重量计,原料包括聚合单体己二酸21.9份、己二胺17.4份,以及PA66树脂22.6份;
聚合方法:将配方量的PA66树脂226g置于氮气保护的装有冷凝装置的高压釜中,氮气置换3次后,升温至290℃,使得PA66熔融。加入己二酸219g,己二胺174g,苯甲酸0.15g,催化剂0.2g,抗氧剂0.2g,保持280℃条件下机械搅拌密闭分散反应1小时,然后缓慢泄压,放出产生的水。然后在280℃条件下,0.02Mpa条件下反应0.5小时。升温至290℃出料,得到脂肪族聚酰胺PA66,熔点266℃。
实施例7
按重量计,原料包括聚合单体对苯二甲酸16.6份、癸二胺17.2份,以及 PA10T树脂31.0份;
聚合方法:将配方量的对苯二甲酸166g,PA10T树脂310g和癸二胺172g一起加入密炼机中,于330℃条件下密炼15分钟。冷却后,将熔融分散的产物加入高压反应釜中,320℃条件下反应30分钟,然后在310℃条件下,0.02Mpa条件下反应15分钟,升温至330℃出料,得到聚酰胺PA10T,熔点310℃。
实施例8
按重量计,原料包括聚合单体对苯二甲酸16.6份、己二胺11.7份,以及PA66树脂20份;
聚合方法:将配方量的对苯二甲酸166g,PA66树脂200g一起加入密炼机中,于310℃条件下密炼15分钟。冷却后,将熔融分散的产物加入防腐处理的装有冷凝装置不锈钢高压反应釜中,升温软化,搅拌分散下加入己二胺117g,300℃条件下反应30分钟,然后在310℃条件下,0.02Mpa条件下反应15分钟,升温至330℃出料,得到聚酰胺PA6T/66,熔点303℃。
实施例9
按重量计,原料包括聚合单体己二酸14.6份、己二胺11.7份,以及PA66树脂20份;
聚合方法:将配方量的己二酸146g,PA66树脂200g一起加入未经防腐处理的装有冷凝装置高压反应釜中,升温至290摄氏度,搅拌1小时使得两种原料熔融反应,混合均匀,然后搅拌分散下加入己二胺117g,280℃条件下反应1小时,然后在280℃条件下,0.02Mpa条件下反应30分钟,升温至290℃出料,得到聚酰胺PA66,熔点266℃。
该反应釜经过几次使用后,未经防腐处理的冷凝装置接口附近出现锈蚀痕迹,锈迹进入到产品中会导致产品中出现异物黑点,并且颜色发黄,提示须若 先将酸分散到聚酰胺中,设备材料须选择耐腐蚀的不锈钢材料。
实施例10
按重量计,原料包括聚合单体对苯二甲酸16.6份、癸二胺17.2份,以及PA10T树脂31.0份;
聚合方法:将配方量的PA10T树脂310g和癸二胺172g一起加入密炼机中,于330℃条件下密炼15分钟。冷却后,将熔融分散的产物加入装有冷凝装置的高压反应釜中,升温至320℃使之熔融,加入对苯二甲酸166g,320℃条件下分散反应1.5小时,然后在310℃条件下,0.02Mpa条件下反应15分钟,升温至330℃出料,得到聚酰胺PA10T,熔点308℃。
实施例11
按重量计,原料包括聚合单体己二酸29.2份、己二胺34.8份,以及由实验室制备的一种PA66预聚体50.0份,数均分子量约为500Da,端基分析羧基含量0.004mol/g,氨基0.0002mol/g,即是一种端基基本为羧基的预聚体,从180℃开始软化,至220摄氏度熔化完全。
方法步骤包括:
将配方中的PA66预聚体500g,加入带冷凝装置的高压釜中,氮气置换3次后,升温至250℃使之熔融,分别加入己二胺348g己二酸292g,290℃机械搅拌条件下分散反应1小时。缓慢泄压,放出产生的水。然后在280℃条件下,0.02Mpa条件下反应0.5小时。升温至290℃出料,得到脂肪族聚酰胺PA66,熔点265℃,与实施例6中的熔点基本一致。
本实施例中,因为PA66预聚体本身端基以羧基为主,因此原料中二元酸比例相应降低,二元酸和二元胺的摩尔比为:0.67:1。保持50.0份预聚体用量不变,降低己二酸至14.6份,则己二胺用量需为23.2份,此时摩尔比为0.5: 1。如果聚合原料中己二酸比例进一步降低,则二元酸和二元胺的摩尔比例将进一步降低。如果选择端基以氨基为主的预聚体,则二元酸和二元胺的摩尔比将反过来,酸超过胺。
实施例12
按重量计,原料包括聚合单体对苯二甲酸和己二酸22.5份、己二胺17.4份,以及PA66树脂53.4份;
二元酸按摩尔比例计,包括:20%的对苯二甲酸,80%的己二酸;
聚合方法:将配方量的己二酸175g,对苯二甲酸49g,PA66534g一起加入带冷凝装置的不锈钢高压釜中,氮气置换3次后,密闭于290℃机械搅拌条件下分散反应1小时。然后加入己二胺174g,继续在290℃下反应分散1小时,缓慢泄压,放出产生的水。然后在280℃条件下,0.02Mpa条件下反应0.5小时。升温至290℃出料,得到脂肪族聚酰胺PA66,熔点271℃。
实施例13
按重量计,原料包括聚合单体份对苯二甲酸16.6份、己二胺11.7份,以及PA66树脂12份;
聚合方法:将对苯二甲酸166g,PA66树脂120g在320摄氏度的密炼机中密炼混合15分钟,得到混合均匀的分散体,冷却备用。将得到的分散体加入装有冷凝装置不锈钢高压反应釜中,升温至300℃使之熔融,加入己二胺117g混合均匀,320℃条件下反应1小时,然后在320℃,0.02Mpa条件下反应30分钟,升温至340℃出料,得到聚酰胺PA6T/66,熔点达330℃。
实施例14
按重量计,原料包括聚合单体己二酸14.6份、己二胺11.7份,以及PA66树脂7份;
聚合方法:将单体己二酸146g和PA66树脂70g加入到装有冷凝装置的不锈钢反应釜中,升温至200℃,搅拌分散2个小时,PA66树脂不熔融,无法形成均匀的分散体。滴加己二胺117g,升温至220℃,反应1小时后,体系为含有未反应PA66颗粒的熔体,无法通过釜底泵抽出,继续反应3小时,依然无法得到均匀的聚合物。
升温至290℃,反应温度在原料聚合物之上,反应30分钟即形成均匀体系,然后真空反应15分钟出料,得到PA66熔点260℃。
本实施例说明如果在聚合物熔点之下进行反应,即使分散反应时间增至3小时,依然无法得到均匀的聚合物,但当分散反应温度升在原料聚合物之上,45分钟内即可完成反应得到均匀的聚合物产物,因此,分散反应过程中体系温度超过原料聚合物熔点是必须的。
实施例15
按重量计,原料包括聚合单体间苯二甲酸16.6份、己二胺17.2份,以及PA6I树脂31.0份,其中PA6I树脂为无定形聚合物,没有熔点,只有玻璃化温度130℃。
聚合方法:将配方量的PA6I树脂310g和对苯二甲酸166g一起加入密炼机中,于300℃条件下密炼15分钟。冷却后,将熔融分散的产物加入装有冷凝装置的防腐不锈钢高压反应釜中,升温至280℃使之熔融,加入己二胺172g,300℃条件下分散反应1小时,然后在310℃条件下,0.02Mpa条件下反应15分钟,升温至330℃出料,得到聚酰胺PA6I树脂,无定形材料,玻璃化温度130℃,该物料冷却过程中发现当物料逐步降温至200摄氏度附近时,体系已经开始凝固,无法搅动。
实施例16
按重量计,原料包括聚合单体间苯二甲酸16.6份、己二胺17.2份,以及PA6I树脂31.0份,其中PA6I树脂为无定形聚合物,没有熔点,只有玻璃化温度130℃。
聚合方法:将配方量的PA6I树脂310g和对苯二甲酸166g一起加入密炼机中,于200℃条件下开始密炼,发现密炼机载荷过大,无法操作。直至升温到265℃后,才能使得物料充分混合均匀,说明对于无定形聚合物原料来说,所需温度不仅要高于玻璃化温度,而且需要达到材料能够熔融加工的温度才能适用本发明的方法制备聚酰胺产品。
将混合物料冷却后,将熔融分散的产物加入装有冷凝装置的防腐不锈钢高压反应釜中,升温至280℃使之熔融,加入己二胺172g,300℃条件下分散反应1小时,然后在310℃条件下,0.02Mpa条件下反应15分钟,升温至330℃出料,得到聚酰胺PA6I树脂,无定形材料,玻璃化温度121℃。
对比实施例15和16,仅仅是因为分散混合的温度差异就导致最终产物的玻璃化温度相差近10℃,说明高的反应分散温度能够使得产品具有更好的均匀性。
常规聚酰胺树脂的缩聚生产工艺为了解决单体的分散性问题,需要首先制备尼龙盐,在此过程中,需要耗费大量的水或者有机溶剂,并且在聚合过程中会引入一定量的水作为分散剂,在聚合过程中需要随反应物一起升温到200℃以上,此过程不仅产生废水需要处理,而且会额外耗费当量的能源。本发明可以不需要水或者醇溶液中制备尼龙盐的过程,节约大量的水资源和能源,是一种新型的绿色环保的新工艺,较常规先加酸熔化的熔融工艺生产效率高,产物耐温性能更好。并且本发明的方法可以很容易的引入各种单体制备共聚尼龙,在很大范围内调整产品的性能。
本发明的制备方法可以根据需要加入聚酰胺合成的常规催化剂或者抗氧 剂、润滑剂、分子量调节剂等某种或某几种助剂,也可以不加助剂直接完成聚合反应。本制备方法适用于各种聚酰胺树脂的合成,而不限于实施例中列举的种类,应用范围广。
以上所述实施例仅表达了本发明的具体实施方式,其描述较为具体和详细,但并不能因此而理解为对本发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。

Claims (11)

  1. 一种绿色环保的聚酰胺树脂的制备方法,其特征在于,按重量计,原料包括聚合单体二元酸5-60份、二元胺3-50份,以及反应性分散体系聚酰胺10-90份,将聚合单体反应分散到熔融状态的聚酰胺分散体系之中,发生聚合反应得到聚合物产物。
  2. 根据权利要求1所述绿色环保的聚酰胺树脂的制备方法,其特征在于,单体中酸和胺反应成盐、脱水聚合的过程在熔融状态的聚酰胺分散体系中进行。
  3. 根据权利要求2所述绿色环保的聚酰胺树脂的制备方法,其特征在于,当单体原料的熔点低于聚酰胺原料的熔点,二元酸、二元胺和聚酰胺不能同时投入反应体系之中。
  4. 根据权利要求1所述绿色环保的聚酰胺树脂的制备方法,其特征在于,在聚合单体的分散步骤中,物料达到的最高温度高于结晶聚酰胺的熔点或者无定形聚酰胺的玻璃化温度,使得聚酰胺能够熔融。
  5. 根据权利要求1所述绿色环保的聚酰胺树脂的制备方法,其特征在于,物料达到的最高温度高于结晶聚酰胺的熔点20℃以上。
  6. 根据权利要求5所述绿色环保的聚酰胺树脂的制备方法,其特征在于,聚酰胺产物的熔点高于230℃。
  7. 根据权利要求1所述绿色环保的聚酰胺树脂的制备方法,其特征在于,所述二元酸单体中含有芳香族二元酸摩尔比例不低于20%。
  8. 根据权利要求1所述绿色环保的聚酰胺树脂的制备方法,其特征在于,所述反应性分散体系聚酰胺选自脂肪族聚酰胺、含芳香族单体聚酰胺、含醚键聚酰胺和含酯键聚酰胺中的至少一种。
  9. 根据权利要求1所述绿色环保的聚酰胺树脂的制备方法,其特征在于,所述单体二元酸与二元胺的摩尔比例为0.4-2:1。
  10. 根据权利要求1所述绿色环保的聚酰胺树脂的制备方法,其特征在于,在聚合单体的分散步骤中,单体二元酸的加入时间不先于单体二元胺的加入。
  11. 根据权利要求1所述绿色环保的聚酰胺树脂的制备方法,其特征在于,所述分散体系聚酰胺在原料中的比例不低于10%。
PCT/CN2020/090262 2019-05-17 2020-05-14 一种绿色环保的聚酰胺树脂的制备方法 WO2020233497A1 (zh)

Priority Applications (8)

Application Number Priority Date Filing Date Title
MX2021010508A MX2021010508A (es) 2019-05-17 2020-05-14 Un metodo favorablemente con el medio amiente para preparar resina de poliamida.
US17/611,562 US20220227933A1 (en) 2019-05-17 2020-05-14 Method for preparing environmentally friendly polyamide resin
EP20809926.7A EP3957675A4 (en) 2019-05-17 2020-05-14 PROCESS FOR PRODUCTION OF ECO-FRIENDLY POLYAMIDE RESIN
SG11202111044QA SG11202111044QA (en) 2019-05-17 2020-05-14 An environment-friendly method for preparing polyamide resin
KR1020217032550A KR102662924B1 (ko) 2019-05-17 2020-05-14 폴리아미드 수지의 친환경적인 제조방법
EA202192368A EA202192368A1 (ru) 2019-05-17 2020-05-14 Способ получения экологически безопасной полиамидной смолы
CA3132749A CA3132749A1 (en) 2019-05-17 2020-05-14 An environment-friendly method for preparing polyamide resin
JP2021562051A JP7397511B2 (ja) 2019-05-17 2020-05-14 環境に優しいポリアミド樹脂の製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910410581 2019-05-17
CN201910410581.9 2019-05-17

Publications (1)

Publication Number Publication Date
WO2020233497A1 true WO2020233497A1 (zh) 2020-11-26

Family

ID=71907906

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/090262 WO2020233497A1 (zh) 2019-05-17 2020-05-14 一种绿色环保的聚酰胺树脂的制备方法

Country Status (10)

Country Link
US (1) US20220227933A1 (zh)
EP (1) EP3957675A4 (zh)
JP (1) JP7397511B2 (zh)
KR (1) KR102662924B1 (zh)
CN (1) CN111518270B (zh)
CA (1) CA3132749A1 (zh)
EA (1) EA202192368A1 (zh)
MX (1) MX2021010508A (zh)
SG (1) SG11202111044QA (zh)
WO (1) WO2020233497A1 (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112062950B (zh) * 2020-03-28 2021-06-29 成都肆零壹科技有限公司 一种连续化尼龙聚合工艺
CN114716678A (zh) * 2020-12-22 2022-07-08 成都肆零壹科技有限公司 一种酰亚胺结构聚合物的制备方法
CN115449077B (zh) * 2021-06-09 2023-10-13 成都肆零壹科技有限公司 一种碱金属硫化物脱水的方法及其在聚合反应中的应用
CN115772262B (zh) * 2021-09-06 2024-01-19 成都肆零壹科技有限公司 一种制备脂肪族二元酸尼龙的连续化工艺
WO2023036265A1 (zh) * 2021-09-13 2023-03-16 成都肆零壹科技有限公司 一种半芳香族尼龙连续化聚合工艺
CN116515103A (zh) * 2022-01-24 2023-08-01 成都肆零壹科技有限公司 一种低吸水耐高温共聚尼龙及其制备方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0041371B1 (en) * 1980-05-30 1986-08-06 Unitika Ltd. Melt-processable copolyamides having aromatic amide unit and fibers prepared therefrom
CN101284906A (zh) * 2007-04-11 2008-10-15 三菱瓦斯化学株式会社 聚酰胺的制备方法
SG180968A1 (zh) * 2009-11-27 2012-06-28
CN105829398A (zh) * 2014-05-13 2016-08-03 三菱瓦斯化学株式会社 聚酰胺的制造方法
JP2017519082A (ja) * 2014-06-26 2017-07-13 ディーエスエム アイピー アセッツ ビー.ブイ. 半結晶性半芳香族ポリアミドの調製プロセス
KR101813395B1 (ko) * 2016-08-29 2017-12-28 롯데케미칼 주식회사 폴리에스테르-아미드 화합물 및 그 제조방법
CN108047444A (zh) * 2018-01-02 2018-05-18 中国科学院理化技术研究所 一种半芳香族透明共聚聚酰胺材料及其制备方法
CN109354863A (zh) * 2018-09-29 2019-02-19 东莞市意普万尼龙科技股份有限公司 共聚尼龙制品及其制备方法
CA3075401A1 (en) * 2017-09-28 2019-04-04 Dupont Polymers, Inc. Polymerization process

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5179175A (en) * 1990-12-14 1993-01-12 Texaco Chemical Company Polyamides from polyetheramines, hexamethylene diamine and adipic acid
JP3248287B2 (ja) * 1993-03-04 2002-01-21 東レ株式会社 ポリアミドの製造方法
US5637653A (en) * 1995-05-02 1997-06-10 Dainippon Ink And Chemicals, Incorporated Polymer blend materials composed of an aromatic polyamide and a soluble polyamide
CN103102486B (zh) * 2011-11-15 2016-07-13 上海杰事杰新材料(集团)股份有限公司 一种尼龙及其制备方法
CN105330848A (zh) * 2015-11-30 2016-02-17 广东优巨先进材料研究有限公司 一种共聚透明聚酰胺的合成方法
US11198787B2 (en) * 2016-11-10 2021-12-14 Kaneka Corporation Polyamide resin, molded body, laminate, medical device, and polyamide resin production method

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0041371B1 (en) * 1980-05-30 1986-08-06 Unitika Ltd. Melt-processable copolyamides having aromatic amide unit and fibers prepared therefrom
CN101284906A (zh) * 2007-04-11 2008-10-15 三菱瓦斯化学株式会社 聚酰胺的制备方法
SG180968A1 (zh) * 2009-11-27 2012-06-28
CN105829398A (zh) * 2014-05-13 2016-08-03 三菱瓦斯化学株式会社 聚酰胺的制造方法
JP2017519082A (ja) * 2014-06-26 2017-07-13 ディーエスエム アイピー アセッツ ビー.ブイ. 半結晶性半芳香族ポリアミドの調製プロセス
KR101813395B1 (ko) * 2016-08-29 2017-12-28 롯데케미칼 주식회사 폴리에스테르-아미드 화합물 및 그 제조방법
CA3075401A1 (en) * 2017-09-28 2019-04-04 Dupont Polymers, Inc. Polymerization process
CN108047444A (zh) * 2018-01-02 2018-05-18 中国科学院理化技术研究所 一种半芳香族透明共聚聚酰胺材料及其制备方法
CN109354863A (zh) * 2018-09-29 2019-02-19 东莞市意普万尼龙科技股份有限公司 共聚尼龙制品及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3957675A4 *

Also Published As

Publication number Publication date
KR20210138660A (ko) 2021-11-19
CN111518270A (zh) 2020-08-11
JP2022529283A (ja) 2022-06-20
EP3957675A1 (en) 2022-02-23
MX2021010508A (es) 2021-10-01
EP3957675A4 (en) 2022-12-28
SG11202111044QA (en) 2021-11-29
CN111518270B (zh) 2021-02-26
CA3132749A1 (en) 2020-11-26
US20220227933A1 (en) 2022-07-21
EA202192368A1 (ru) 2022-03-02
JP7397511B2 (ja) 2023-12-13
KR102662924B1 (ko) 2024-05-03

Similar Documents

Publication Publication Date Title
WO2020233497A1 (zh) 一种绿色环保的聚酰胺树脂的制备方法
WO2021197217A1 (zh) 一种连续化尼龙聚合工艺
CN1116341C (zh) 生产聚酰胺的方法
CN104387581B (zh) 半芳香共聚聚酰胺树脂的制备方法及树脂
CN102414252B (zh) 制备二酸/二胺盐溶液的方法
TWI462949B (zh) 聚醯胺之製法
CN108383996B (zh) 一种高结晶速率聚酰胺及其制备方法和应用
BRPI0917984B1 (pt) processo em batelada para a produção de poliamidas
CN111363144B (zh) 一种聚酯酰胺的聚合工艺
CN108178831A (zh) PA(66-co-6T)共聚物的制备方法
CN105814115A (zh) 聚酰胺树脂及使用其的聚酰胺模塑体
CN111225940A (zh) 聚合方法
JPH0717747B2 (ja) ポリアミドの製造法
KR20130069386A (ko) 폴리아마이드의 제조 방법
KR101674245B1 (ko) 폴리아미드의 제조방법
WO2011122231A1 (ja) ポリペンタメチレンアジパミド樹脂の製造方法
US4962181A (en) Polyamide polymer having 12-F fluorine-containing linking groups
EA025053B1 (ru) Способ получения па-410 и па-410, получаемый таким способом
JP4168233B2 (ja) ポリアミド製造法
JP3175478B2 (ja) ポリアミド樹脂の製造方法
CN115806667B (zh) 一种半芳香族尼龙连续化聚合工艺
CN115286785B (zh) 一种基于间苯二甲胺的耐高温尼龙及其制备方法
CN107428936A (zh) 聚酰胺酰亚胺、聚酰胺酰亚胺原料盐及它们的制造方法
JP3232929B2 (ja) ポリアミドの製造方法
CN115806667A (zh) 一种半芳香族尼龙连续化聚合工艺

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20809926

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 3132749

Country of ref document: CA

ENP Entry into the national phase

Ref document number: 20217032550

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2021562051

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020809926

Country of ref document: EP

Effective date: 20211116