WO2020222410A1 - 테트라알콕시실란의 연속 제조방법 - Google Patents

테트라알콕시실란의 연속 제조방법 Download PDF

Info

Publication number
WO2020222410A1
WO2020222410A1 PCT/KR2020/002500 KR2020002500W WO2020222410A1 WO 2020222410 A1 WO2020222410 A1 WO 2020222410A1 KR 2020002500 W KR2020002500 W KR 2020002500W WO 2020222410 A1 WO2020222410 A1 WO 2020222410A1
Authority
WO
WIPO (PCT)
Prior art keywords
tetraalkoxysilane
formula
basic catalyst
reactor
carbon atoms
Prior art date
Application number
PCT/KR2020/002500
Other languages
English (en)
French (fr)
Inventor
유복렬
김대진
Original Assignee
한국과학기술연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국과학기술연구원 filed Critical 한국과학기술연구원
Priority to JP2020552194A priority Critical patent/JP7052069B2/ja
Publication of WO2020222410A1 publication Critical patent/WO2020222410A1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F7/00Compounds containing elements of Groups 4 or 14 of the Periodic Table
    • C07F7/02Silicon compounds
    • C07F7/025Silicon compounds without C-silicon linkages
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F7/00Compounds containing elements of Groups 4 or 14 of the Periodic Table
    • C07F7/02Silicon compounds
    • C07F7/04Esters of silicic acids
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F7/00Compounds containing elements of Groups 4 or 14 of the Periodic Table
    • C07F7/02Silicon compounds
    • C07F7/08Compounds having one or more C—Si linkages
    • C07F7/18Compounds having one or more C—Si linkages as well as one or more C—O—Si linkages
    • C07F7/1804Compounds having Si-O-C linkages
    • C07F7/1872Preparation; Treatments not provided for in C07F7/20
    • C07F7/188Preparation; Treatments not provided for in C07F7/20 by reactions involving the formation of Si-O linkages
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/02Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
    • B01J31/0201Oxygen-containing compounds
    • B01J31/0211Oxygen-containing compounds with a metal-oxygen link
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/02Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
    • B01J31/12Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides containing organo-metallic compounds or metal hydrides
    • B01J31/122Metal aryl or alkyl compounds

Definitions

  • the present invention relates to a method for continuously producing a tetraalkoxysilane, and more particularly, to a method for continuously producing a high-purity tetraalkoxysilane in a high yield.
  • Tetraalkoxysilane is widely used in various industries such as silica particles, inorganic and organic polymer composites thereof, adhesives, and hard coatings.
  • the tetraalkoxysilane having the above uses includes a method of mass production through a dehydrochlorinated alkoxy reaction of a tetrachlorosilane and an alcohol, and a method of obtaining it through a direct reaction between a silicon metal and an alcohol using an alkali catalyst.
  • the method of reacting tetrachlorosilane with alcohol is advantageous for the synthesis of tetraethoxysilane, but generates HCl as a by-product, and HCl reacts with alcohol to produce water and alkanes chloride as by-products. Therefore, the above method must necessarily include a process of removing acidic HCl, and when neutralized with a basic compound, a salt is generated, and thus yield or purity is deteriorated.
  • the manufacturing process of tetraalkoxysilane using tetrachlorosilane consists of a total of three steps.
  • a large amount of HCl gas is generated as a by-product in the two-step alkoxylation process, and an additional process is required to remove HCl. Since a large process cost is incurred by such an additional process, the cost of tetraalkoxysilane is high.
  • U.S. Patent Publication No. 9,156,861 discloses a method of preparing an alkoxysilane by directly reacting a silicon metal and an alcohol under a copper catalyst.
  • the above US Patent Publication has a disadvantage in that the main product is mostly trialkoxysilane, and only a small amount of tetraalkoxysilane can be obtained.
  • An object of the present invention relates to a continuous method for producing tetraalkoxysilane, which can be effectively produced through a single process device, by producing tetraalkoxysilane using a direct reaction between a basic catalyst and a silicon metal and an alcohol.
  • the present invention comprises the steps of 1) preparing a basic catalyst represented by the following formula (2) by reacting a compound represented by the following formula (1) and an alkali metal;
  • M is an alkali metal
  • R 1 is Any one selected from a linear hydrocarbon group having 1 to 5 carbon atoms and a branched hydrocarbon group having 3 to 5 carbon atoms
  • R 2 is any one selected from hydrogen and a linear hydrocarbon group having 1 to 3 carbon atoms
  • the R 3 is any one selected from an alkyl group having 1 to 2 carbon atoms
  • n is an integer of 2 to 3.
  • R 1 is any one selected from an alkyl group having 1 to 3 carbon atoms
  • R 2 is any one selected from hydrogen and an alkyl group having 1 to 3 carbon atoms I can.
  • n may be 2.
  • step 1) the compound represented by Chemical Formula 1 and the alkali metal may be mixed in a molar ratio of 1.0: 1.0 to 1.1.
  • step 1) the compound represented by Formula 1 and the alkali metal may be mixed in a 1:1 molar ratio.
  • step 1) may be performed at a temperature of 100 to 190°C for 1 to 20 hours.
  • the alkali metal may be any one metal selected from Li, Na and K.
  • the silicon metal is selected from the group consisting of a mixture of hydrogen gas and an inert gas (argon gas or nitrogen gas) under the conditions of 400 to 600 °C oxide (SiO X ) present on the surface. It may be used after reducing and removing the mixed gas containing any one or more.
  • the reducing step may be performed for 2 to 5 hours.
  • R 1 of the basic catalyst represented by Formula 2 and R 3 of the alcohol represented by Formula 3 are They can be the same.
  • step 2) may be performed at a temperature of 140 to 185°C.
  • steps 1) and 2) may be performed under an inert atmosphere, and the inert atmosphere may be formed through argon gas or nitrogen gas.
  • the present invention can continuously produce high-purity tetraalkoxysilanes using one process device.
  • the present invention utilizes a basic catalyst prepared without using a solvent, even if the catalyst composition ratio is high in the process, the generation of impurities due to solvent decomposition can be minimized.
  • the production of tetraalkoxysilane is significantly more cost-effective compared to the prior art.
  • 1 is a flow chart showing a method for producing a tetraalkoxysilane of the present invention.
  • Example 2 is a graph showing the results of gas chromatography (GC) analysis of tetraethoxysilane prepared in Example 2-2.
  • GC gas chromatography
  • FIG. 3 is a graph showing the gas chromatography (GC) analysis results of tetraethoxysilane prepared from Comparative Example 1-1.
  • GC 4 is a graph showing gas chromatography (GC) analysis results of tetraethoxysilane prepared from Comparative Example 1-2.
  • 1 is a schematic diagram showing a process for continuously producing the tetraalkoxysilane of the present invention.
  • the present invention relates to a method of continuously producing tetraalkoxysilane by directly reacting a silicon metal and alcohol using a basic catalyst.
  • a solvent is used in preparing a basic catalyst, tetraalkoxy Excessive by-products were generated in addition to silane, so that high purity tetraalkoxysilane could not be obtained.
  • a process of purifying it is additionally required, it has been difficult to continuously produce tetraalkoxysilane.
  • the present invention prepared a basic catalyst without a solvent and directly reacted with a silicon metal and an alcohol using the same to prepare a tetraalkoxysilane.
  • the present invention has developed a continuous reaction process capable of obtaining tetraalkoxysilane in high purity and high yield by effectively controlling reactions occurring in the direct reaction of tetraalkoxysilane.
  • One aspect of the present invention relates to a method for producing a tetraalkoxysilane comprising the following steps.
  • M is an alkali metal
  • R 1 is Any one selected from a linear hydrocarbon group having 1 to 5 carbon atoms and a branched hydrocarbon group having 3 to 5 carbon atoms,
  • R 2 is any one selected from hydrogen and a linear hydrocarbon group having 1 to 3 carbon atoms
  • R 3 is any one selected from an alkyl group having 1 to 2 carbon atoms
  • N is an integer of 2 to 3.
  • the present invention is composed of the first reactor 10, the separation device 20, the recovery device 30 and the condensing device 40.
  • step 1) is that it is continuously performed in one first reactor 10.
  • the basic catalyst is stored in the first reactor 10 or manufactured in the first reactor 10, and the reaction mixture is discharged from the first reactor 10 through the first transfer tube 13, and the first supply tube 11 Alcohol and silicon metal are respectively supplied to the first reactor 10 through the and second supply pipes 12.
  • the first reactor 10 may be a single or multistage mixing reactor suitable for a continuous process equipped with a stirrer.
  • the basic catalyst is prepared directly from the first reactor 10, and then, alcohol and silicon metal are supplied to the first reactor 10 to undergo a synthesis reaction of tetraalkoxysilane together with the basic catalyst.
  • the basic catalyst 1) may be prepared as a basic catalyst represented by Formula 2 by mixing the compound represented by Formula 1 and an alkali metal. Specifically, a compound represented by the following formula (2) is supplied into the first reactor (10) through the first supply pipe (11), and then an alkali metal is supplied and reacted under the inert atmosphere, as shown in the following reaction formula (1). A basic catalyst represented by 1 is obtained.
  • M is an alkali metal
  • R 1 is Any one selected from a linear hydrocarbon group having 1 to 5 carbon atoms and a branched hydrocarbon group having 3 to 5 carbon atoms
  • R 2 is any one selected from hydrogen and a linear hydrocarbon group having 1 to 3 carbon atoms
  • the R 3 is any one selected from an alkyl group having 1 to 2 carbon atoms
  • n is an integer of 2 to 3.
  • the compound represented by Formula 1 and an alkali metal are reacted in an inert atmosphere to synthesize a basic catalyst represented by Formula 2, and the hydrogen gas generated at this time is
  • the first moving pipe 13, the second moving pipe 15, and the third moving pipe 16 connected to the upper part of the first reactor 10 are discharged through the second outlet 18.
  • the basic catalyst used in the synthesis of the conventional tetraalkoxysilane uses a solvent in the manufacturing process, and thus yields and purity are lowered, resulting in a problem that an unnecessary purification process must be additionally performed.
  • the basic catalyst represented by Chemical Formula 2 without adding a solvent or other substances during the manufacturing process, an alkyl group substitution is not made and a basic catalyst having a controlled structure is prepared. Even if the tetraalkoxysilane is prepared by administering a metal and an alcohol, the yield or purity is not affected, and thus the step can be significantly shortened.
  • the basic catalyst is very suitable for securing a catalytic function and process fluidity in a silicon metal and alcohol reaction.
  • the basic catalyst represented by Chemical Formula 2 uses the same compound represented by Chemical Formula 1 and an alkali metal, when prepared by a conventional process using a solvent rather than the same method as in the present invention, excessive impurities are mixed. A precise purification process is essential. The addition of a process step incurs a large loss on the cost and cost of the product in judging the effectiveness of the product.
  • R 1 is any one selected from a C 1 to C 5 alkyl group, an alkoxyl group, a hydroxyl group and a substituted amino group, and the substituents are each independently an alkoxy group having 1 to 5 carbon atoms, It may be any one selected from an alkyl group.
  • R 2 is any one selected from hydrogen, an alkyl group having 1 to 3 carbon atoms, an alkoxyl group, a hydroxyl group, and a substituted amino group, and the substituents are each independently selected from an alkoxy group and an alkyl group having 1 to 3 carbon atoms. It can be either.
  • R 1 is any one selected from an alkyl group having 1 to 3 carbon atoms
  • R 2 is more preferably any one selected from an alkyl group having 1 to 3 carbon atoms.
  • the process efficiency of a basic catalyst It is advantageous to be maximized.
  • R 1 is any one selected from a methyl group, an ethyl group, a propyl group, and a butyl group, and when R 2 is hydrogen, the inducibility of the basic catalyst is maximized and the reaction rate may be increased.
  • the number of carbon atoms of R 1 is greater than or equal to the number of carbon atoms of R 3 , and the same of R 1 and R 3 is more preferable since the generation of by-products can be minimized.
  • n 2
  • the lower the molecular weight of Formula 1 or 2 is, the more decomposition and transformation of the basic catalyst is suppressed, and thus the generation of by-products can be significantly reduced.
  • the compound represented by Formula 1 and the alkali metal may be simultaneously added to the first reactor 10, or the alkali metal may be sequentially added after the compound represented by Formula 1 is administered.
  • step 1) is an exothermic reaction
  • a method of slowly administering an alkali metal after the compound represented by Formula 1 is administered is preferable for safety.
  • the compound represented by Formula 1 and the alkali metal may be mixed in a molar ratio of 1.0: 1.0 to 1.1, and preferably 1: 1. If the mixing molar ratio of the compound represented by Chemical Formula 1 and the alkali metal is less than 1:1, the unreacted compound represented by Chemical Formula 1 remains, thereby generating a large amount of impurities. It may be difficult to obtain a tetraalkoxysilane having the same yield and high purity. In particular, when impurities are included, there is a problem in that the cost is increased in the process of purifying tetraalkoxysilane and thus economical efficiency is poor. In addition, since the unreacted compound represented by Formula 1 causes a side reaction in the subsequent reaction process, there may be a problem of shortening the process time due to the generation of by-products in the continuous production of tetraalkoxysilane.
  • the reaction of the compound represented by Chemical Formula 1 and the alkali metal it is preferable to use the same number of moles or a slight excess of the alkali metal, and if the molar ratio exceeds 10%, the amount of unreacted alkali metal increases. Since the yield of silane may be lowered, it is most preferred that the excess molar ratio of the alkali metal is 10% or less.
  • the compound represented by Formula 1 and the alkali metal are mixed at a molar ratio of 1: 1 without a solvent, the compound represented by Formula 1 can be prepared with almost no impurities and in high yield and high purity. It is most preferable in that the tetraalkoxysilane can be continuously produced by directly administering the precursor of the tetraalkoxysilane to the reactor 10.
  • the step 1) is preferably performed in an enclosed space blocking external air.
  • the sealed space is an inert atmosphere.
  • the inert atmosphere may be filled with argon gas or nitrogen gas.
  • the step 1) may be performed at a temperature of 100 to 190°C for 1 to 20 hours, and preferably step a) may be performed at a temperature of 120 to 150°C for 5 to 15 hours.
  • step a) is performed at a temperature of less than 100° C. for less than 1 hour, there is a problem that the reaction time is lengthened.
  • step a) is performed at a temperature exceeding 190° C., the basic catalyst may be deformed due to excessive reaction, so it is preferable to perform in the above range.
  • the melting point of the basic catalyst is 50 to 115°C, it is most preferable to maintain the temperature in the range of 120 to 150°C for easy handling in a continuous process.
  • Step 1) may further include completing the reaction by heating at 160 to 170° C. for 1 to 5 hours.
  • the temperature of the first reactor 10 is excessively increased in step 1), the reaction rate becomes faster, and thus the basic catalyst may be destroyed by excessive heat. Therefore, it is preferable not to heat the first reactor 10 by using a separate heating device unless the temperature drops significantly.
  • the temperature can be controlled by adjusting the administration rate of the alkali metal according to the temperature. For example, there is a method of dividing the total amount of alkali metal and adding it several times with a time difference.
  • nitrogen gas may be supplied into the first reactor 10 through the first supply pipe 11 to lower the reaction temperature.
  • hydrogen gas may be generated by an exothermic reaction. Since this has a risk of explosion, it is preferable to remove it by being discharged to the outside through the second discharge pipe 18 through the first to third moving pipes 14 to 16 connected to the upper portion of the first reactor 10.
  • a viscosity modifier may be further included in the step 1) or step 2), and the viscosity modifier is not particularly limited as long as it is a viscosity modifier generally used in the art, but may be preferably tetraalkoxysilane. However, when tetraalkoxysilane is added as a viscosity modifier, some alcohol may be generated, and since it performs a function of increasing the reaction rate of step 1) or step 2), addition of tetraalkoxysilane is also required to control the reaction rate. Can be considered.
  • the compound represented by the following Formula 4 may be produced by mixing the basic catalyst and tetraalkoxysilane.
  • R 1 is Any one selected from a linear hydrocarbon group having 1 to 5 carbon atoms and a branched hydrocarbon group having 3 to 5 carbon atoms, wherein R 3 is a substituent derived from an alcohol, any one selected from an alkyl group having 1 to 2 carbon atoms I can.
  • n is an integer of 2 to 3 and x is an integer of 1 to 4.
  • the basic catalyst synthesized through the above process is stored in the first reactor 10 and then mixed with the alcohol supplied from the first supply pipe 11 and the silicon metal supplied through the second supply pipe 12 to react, Subsequently, tetraalkoxysilane is produced (Step 2; Scheme 2).
  • the first supply pipe 11 may be a single line or a multi-line, and may be coupled to the lower end of the first reactor 10.
  • the hydrogen of the alcohol and the alkali metal ion of the basic catalyst generate an alkoxyalkali metal salt through an exchange reaction, and the silicon metal reacts with it, thereby producing a tetraalkoxysilane.
  • M is an alkali metal
  • R 1 is Any one selected from a linear hydrocarbon group having 1 to 5 carbon atoms and a branched hydrocarbon group having 3 to 5 carbon atoms
  • R 3 may be any one selected from an alkyl group having 1 to 2 carbon atoms.
  • N is an integer of 2 to 3.
  • R 1 is any one selected from an alkyl group having 1 to 3 carbon atoms
  • R 2 may be any one selected from an alkyl group having 1 to 3 carbon atoms
  • R 1 is a methyl group or ethyl It may be a group
  • R 2 may be a hydrogen or a methyl group.
  • R 3 may be selected from an alkyl group having 1 to 2 carbon atoms.
  • the number of carbon atoms of R 1 is greater than or equal to the number of carbon atoms of R 3 is preferable from the viewpoint of controlling the reaction temperature, and the same of R 1 and R 3 is more preferable since it can minimize the generation of by-products .
  • R 3 -OM is generated by an MH exchange reaction between a basic catalyst and an alcohol (R 3 -OH), and the R 3 -OM breaks the Si-Si bond of the silicon metal while R 3 -O-Si and Si- M bonds are formed.
  • Si-M bonds meet with alcohol (R 3 -OH) to form Si-OR 3 and HM bonds.
  • the HM bond reacts with alcohol (R 3 -OH) to generate R 3 -OM and H 2 , and through this mechanism, tetraalkoxysilane represented by the following formula (5) is synthesized.
  • R 3 may be selected from an alkyl group having 1 to 2 carbon atoms.
  • the alcohol supplied from the first supply pipe 11 and the silicon metal are supplied to the first reactor 10 through the second supply pipe 12, which reacts with a basic catalyst (Chemical Formula 2) in an inert atmosphere to form tetraalkoxysilane. Synthesize (step 2)).
  • the step 2) is also performed under an inert atmosphere, and the inert atmosphere is formed through argon or nitrogen gas, which is supplied to the first reactor 10 through the first supply pipe 11.
  • the basic catalyst may be included in 30 to 75% by weight relative to the total capacity of the first reactor 10, preferably 35 to 70% by weight, more preferably 50 to 70% by weight. .
  • the basic catalyst may be synthesized and manufactured in the first reactor 10.
  • the silicon metal can be used with a purity of 98% or more, and when the purity of the silicon metal is less than 98%, a problem arises that impurities mixed with iron and other metals occur, so it is recommended to use a purity of 98% or more. It is preferable, and considering the economic situation, it is more preferable that it is 98 to 99%.
  • the silicon metal may have an average particle size of 20 to 800 nm.
  • the silicon metal may be contained in an amount of 25 to 70% by weight relative to the total capacity of the first reactor 10, and preferably 25 to 70% by weight. If it is out of the above range, a problem of lowering the synthesis rate of tetraalkoxysilane may occur.
  • the silicon metal obtained by reducing the oxide (SiO X ) present on the surface is preferable to use.
  • the silicon metal is an oxide present on the surface by treating a mixed gas containing at least one selected from the group consisting of a mixed gas of hydrogen gas and an inert gas (argon gas or nitrogen gas) under 400 to 600°C conditions. SiO X ) may be removed by reduction.
  • the reducing step may be performed for 2 to 5 hours, if the reducing step can be appropriately adjusted according to the amount of silicon metal used. Oxide existing on the surface of the silicon metal remains without being removed, and thus a problem of lowering the yield and purity of tetraalkoxysilane may occur.
  • the silicon metal particles may be included in an amount of 30 to 65% by weight based on the total mass capacity of the first reactor 10, and preferably may be 30 to 50% by weight. It is preferable to continuously supply as much as it is consumed through a continuous manufacturing process of tetraalkoxysilane.
  • the alcohol may be represented by Formula 3 of R 3 OH, and R 3 may be any one selected from an alkyl group having 1 to 2 carbon atoms.
  • R 3 may be any one selected from an alkyl group having 1 to 2 carbon atoms.
  • Alcohol is supplied into the first reactor 10 in the form of steam through preheating of the first supply pipe 11 and may be continuously supplied.
  • the first supply pipe 11 may be preferably 100°C or higher, and preferably 100 to 190°C.
  • the step 2) may be performed in a temperature range of 120 to 190°C, more preferably 140 to 185°C. Because alcohol is preferably carried out at a temperature of 100 °C or higher to maintain the vaporized state. In addition, considering the yield of the tetraalkoxysilane, it is more preferable that the tetramethoxysilane is substantially carried out at a temperature range of 140 to 160°C and the tetraethoxysilane at 170 to 185°C.
  • the tetraalkoxysilane produced by the synthesis reaction in the first reactor 10 needs a separation process.
  • a separating device 20, a recovery device 30, and a condensing device 40 were installed.
  • the vapor containing the generated tetraalkoxysilane is supplied to the separation device 20 through the first transfer pipe 13.
  • the generated tetraalkoxysilane is in a mixture state with other substances other than the tetraalkoxysilane, and the temperature is maintained above the boiling point of the tetraalkoxysilane to 10°C, so that the tetraalkoxysilane, other products, and unreacted alcohol are transferred to the second transfer tube (15 ) Through the recovery device 30.
  • the reaction mixture received through the second transfer pipe 15 is recovered by being discharged from the recovery device 30, the tetraalkoxysilane, which is a high boiling point compound, to the first discharge pipe 17.
  • the remaining low-boiling compounds are supplied to a condensing device 40 that cools to room temperature through the third transfer pipe 16, where the low-boiling hydrogen gas is discharged through the third discharge pipe 18, and the unreacted alcohol is condensed and separated. It can be recycled by returning to the first reactor 10 through the 2 recycle pipe 19.
  • the tetraalkoxysilane product received from the first discharge pipe 17 has an excellent purity of 80% or more, and can be obtained with a purity of 99% or more through fractional distillation for high purity.
  • reaction mixture is introduced into the recovery device 30 through the second transfer pipe 15, and the recovery device 30 maintains a temperature of about the boiling point of alcohol (70 to 80°C), and the reaction mixture
  • the tetraalkoxysilane product and unreacted alcohol can be separated from.
  • the concentration of the catalyst can be maximized, and since there is no solvent, which is an organic substance, not only the dispersion of the heat of reaction is accelerated. Since generation of by-products can be minimized by exclusion of solvents, high-purity tetraalkoxysilane can be prepared in high yield.
  • the production of the basic catalyst used in the production of the tetraalkoxysilane can be flexibly controlled, and the production of the basic catalyst and the tetraalkoxysilane can be produced using a single process equipment, thus maximizing the process efficiency.
  • Example 1-1 Basic catalyst ( CH 3 O (CH 2 CH 2 O) 2 -Na ) preparation
  • the basic catalyst was present as a transparent suspension at a temperature of 57°C or higher, and a viscosity increased at a temperature of less than 40°C to change into a paste state. That is, it can be seen that the basic catalyst prepared from Example 1-1 (CH 3 O (CH 2 CH 2 O) 2 -Na) is easy to handle at 57°C or higher.
  • a basic catalyst (CH 3 O (CH 2 CH 2 O) 2 -K) was prepared in the same manner as in Example 1-1, except that 3.32 g (84.9 mmol) of potassium was used instead of sodium (Na). I did. The reaction was an exothermic reaction, and after 10 minutes, the temperature reached 146° C. and decreased.
  • the basic catalyst was present as a transparent suspension at 70° C. or higher, and changed into a paste state due to an increase in viscosity at a temperature of less than 60° C. That is, it can be seen that the basic catalyst (CH 3 O (CH 2 CH 2 O) 2 -K) prepared in Example 1-2 is easy to handle at 70° C. or higher.
  • the basic catalyst changes to a white slurry state when the temperature drops to about 40 to 60°C, and is not stirred with a magnetic stirrer. Heating again above 60° C. began to stir while converting to a white suspension. That is, it was confirmed that the basic catalyst (C 2 H 5 O (CH 2 CH 2 O) 2 -Na) was easy to handle at a temperature of 60°C or higher.
  • the basic catalyst was present as a white suspension at 105° C. or higher, and the viscosity increased at a temperature lower than 105° C. to become a white paste. That is, it can be seen that the basic catalyst (C 2 H 5 O (CH 2 CH 2 O) 2 -K) prepared in Example 1-4 is easy to handle at 115° C. or higher.
  • Example 1-5 Basic catalyst ( (CH 3 (CH 2 ) 3 O(CH 2 CH 2 O) 2 -Na ) preparation
  • the reaction was completed by heating to 150° C. through a heating device coupled to one side of the reactor. Then, the phase change was investigated while lowering the temperature.
  • the basic catalyst was present as a black suspension at 50° C. or higher, and increased viscosity at a temperature of 40° C. or higher, resulting in a black paste. That is, it can be seen that the basic catalyst ((CH 3 (CH 2 ) 3 O(CH 2 CH 2 O) 2 -Na) prepared from Example 1-5 is easy to handle at 50° C. or higher.
  • the basic catalyst changed to a black paste state near 50° C., and thus it was difficult to stir. That is, it can be seen that the basic catalyst (CH 3 (CH 2 ) 3 O(CH 2 CH 2 O) 2 -K) prepared from Example 1-6 is easy to handle at 50°C or higher.
  • a process for producing tetraalkoxysilane was designed through a 2 L reactor. This is as follows. First, a stirrable 2 L baffle-type reactor 10 was prepared, the inside of the reactor was filled with nitrogen, and then 1000.0 g (8.32 mol) of Diethylene glycol monomethyl ether was added, followed by heating. A basic catalyst of CH 3 O (CH 2 CH 2 O) 2 -Na was prepared by slowly adding 191.3 g (8.32 mol) of sodium (Na) metal in small portions so as not to be overheated by the reaction. At this time, the temperature of the first reactor 10 was increased to 100°C due to an exothermic reaction.
  • silicon metal particles (20-800 ⁇ m) were put into the first reactor 10.
  • the silicon metal was used to reduce and remove oxides (SiOx) on the surface of the silicon metal by flowing a 10% hydrogen/90% argon gas mixture under the condition of 400°C.
  • a first supply pipe 11 and a separating device 20 are connected to the first reactor 10, and heating means are each provided for temperature control in the first supply pipe 11 and the separating device 20. jacket) and insulation means were installed.
  • the first reactor 10 was maintained at a temperature of 122 to 150°C in consideration of the viscosity of the catalyst, and the first supply pipe 11 was also heated through a heating means to be 110°C.
  • methanol was continuously supplied to the reactor 10 through the first supply pipe 11 at a rate of 2 ml/min (about 2.97 mol/hour), (CH 3 O(CH 2 CH 2 O) 2 -Na)
  • the tetraalkoxysilane was synthesized through a direct reaction of contacting the basic catalyst of, silicon metal and methanol.
  • the direct reaction is an exothermic reaction and the internal temperature of the first reactor 10 is rapidly increased. Therefore, in order to prevent the first reactor 10 from being excessively heated, the internal temperature of the first reactor 10 is In the case of 140° C.
  • nitrogen gas (N 2 gas) was supplied to the reactor 10 through the alcohol supply line 11 by 10 ml/min, and the supply was stopped when the temperature was stabilized at an appropriate temperature (140 to 150° C.). .
  • N 2 gas nitrogen gas
  • 2,6 mol/hr of methanol was supplied to obtain an average of 0.50 mol/hr of tetramethoxysilane.
  • the reactant mixture obtained in the first reactor 10 is supplied to the recovery device 30 maintained at 70°C through the separation device 20, where the product tetramethoxysilane is received through the first discharge pipe 17. , The remaining unreacted methanol and hydrogen gas are transferred to the condensing device 40 through the third transfer pipe 16. Here, hydrogen gas was discharged, and unreacted methanol was recovered, returned to the first reactor 10 through the second recycle pipe 19, and recycled to recycle. All reactions were conducted in a thorough nitrogen environment.
  • a 50 L reactor was prepared and performed (see FIG. 1). This is a method of continuously producing tetraalkoxysilane by adding silicon metal and ethanol to the first reactor 10 and reacting directly.
  • a 50 L first reactor 10 was formed in a nitrogen atmosphere, and then 99% Diethylene glycol monoethyl ether 21 L (20,790). g, 155 mol) was added. And 3.562 kg (155 mol) of sodium metal was added by 1.781 kg at 10 hour intervals.
  • nitrogen (N 2 ) gas was supplied at a rate of 20 ml/min through the first supply pipe 11. The amount of nitrogen (N 2 ) gas injected into the first supply pipe 11 or the rate of addition of sodium metal may be controlled according to the overheated temperature.
  • alkali metals may be used instead of the sodium metal.
  • maintaining the temperature of the first reactor 10 above the melting point of the alkali metal accelerates the speed of the basic catalyst synthesis reaction and secures fluidity. It is desirable to do.
  • the basic catalyst prepared in Examples 1-1 to 1-6 has a handleable temperature from 50°C to 115°C, it is preferable to maintain a temperature of 100°C or higher, more preferably 100 to 190°C, 120 to 150°C is most preferred.
  • silicon metal As the silicon metal, a reduction process of removing oxides (SiO 2 ) existing on the surface of the silicon metal by flowing a 10% hydrogen/90% argon gas at 400° C. was used for about 3-4 hours.
  • the first supply pipe 11 was heated to 110°C, and then 99.9% absolute ethanol was supplied into the first reactor 10 by 10 to 20 g/min through the heated first supply pipe 11. Since the first supply pipe 11 is heated to a high temperature, anhydrous ethanol is vaporized while passing through the first supply pipe 11, so that the ethanol is supplied to the first reactor 10.
  • the reaction also increases in temperature due to an exothermic reaction
  • nitrogen gas was supplied through the first supply pipe 11.
  • the temperature of the first reactor 10 does not rise significantly due to an exothermic reaction or injection of nitrogen gas. Therefore, the temperature of the first reactor 10 was maintained at 175 to 180°C through an external heating device. When the temperature of the first reactor 10 was stabilized at 175 to 180°C, the supply of nitrogen gas was cut off.
  • the temperature of the first reactor 10 was continuously increased from 175 to 180 through an external heating device. It is desirable to keep it at °C. If the temperature is less than the above temperature, since the tetraethoxysilane cannot maintain the caustic state, the yield may be significantly lowered. In addition, since the basic catalyst may be decomposed when the temperature range is exceeded, it is most preferable to perform it within the temperature range.
  • the vaporized reaction mixture (including tetraethoxysilane) is transferred to the first separation device 20 through the first transfer tube 13 and back to the recovery device 30 maintained at 80° C., where tetraethoxysilane is a high boiling point product.
  • the ethoxysilane is received through the first discharge pipe 17, and the remaining unreacted ethanol and hydrogen gas are supplied to the condensing device 40 through the third transfer pipe 16.
  • hydrogen gas is discharged through the second discharge pipe, and unreacted ethanol may be recycled to the first reactor 10 through the second circulation pipe 19. It was confirmed that the tetraethoxysilane produced through the first reactor 10 was 1.6 kg/h per 1.9 kg/h of ethanol supply.
  • the total amount of the product received from the first discharge pipe 17 was 2.0 kg/h.
  • TEOS tetraethoxysilane
  • ethanol 18% (0.36 kg)
  • (EtO) 3 SiOSi ( OEt) 3 0.5% 10 g) C 2 H 5 OCH 2 CH 2 OCH 2 CH 2 OSi (OC 2 H 5 ) 3 It was confirmed that 1.4% (28 g) was present (FIG. 2).
  • Silicon metal particles were supplied to the first reactor 10 at a rate of 0.22 kg/h through the second supply pipe 12.
  • the tetraethoxysilane separated from the recovery device 30 was separated through the first discharge pipe 17, and the unreacted alcohol and hydrogen gas were kept at 80°C through the third transfer pipe 16. Moved to. Here, the hydrogen gas was discharged through the second discharge pipe 18, and the unreacted ethanol was returned and recycled to the first reactor 10 through the second recycle pipe 19.
  • the reaction product including tetraethoxysilane received through the recovery device 30 may be fractionated to obtain high purity (99% or more) tetraethoxysilane.
  • tetraethoxysilane 72.6% (1.46 kg) and ethanol 14% (281 g), n BuOSi (OEt) 3 0.8% (16 g), EtOCH 2 CH 2 OSi (OEt ) 3 0.8%(16 g), (EtO) 3 SiOSi(OEt) 3 2.0%(40 g) C 2 H 5 OCH 2 CH 2 OCH 2 CH 2 OSi(OC 2 H 5 ) 3 6.0%(121 g) , 1,1-diethoxyethane 0.3% (6 g), 2-ethoxyethyl vinyl ether 0.3% (6 g) and many other solvent decomposition products were confirmed (FIG. 3).
  • Comparative Example 1-2 40% of a basic catalyst, comprising a solvent (C 2 H 5 O (CH 2 CH 2 O) 2 -Na) in the manufacture of tetraethoxysilane
  • Test Example 1 Purity analysis according to the amount of solvent (part) used in preparing a basic catalyst
  • GC gas chromatography
  • FIG. 2 is a graph showing the results of gas chromatography (GC) analysis of tetraethoxysilane prepared from Example 2-2
  • FIG. 3 is a gas chromatography (GC) analysis of tetraethoxysilane prepared from Comparative Example 1-1.
  • GC gas chromatography
  • FIG. 4 is a graph showing the result of gas chromatography (GC) analysis of tetraethoxysilane prepared from Comparative Example 1-2.
  • first recirculation pipe 15 second transfer pipe

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

본 발명은 실리콘 금속과 알코올의 직접 반응에 의한 테트라알콕시실란을 연속적으로 제조할 수 있는 방법에 관한 것이다. 이에 따르면 용매를 사용하지 않고 염기성 촉매를 공정에 적용함으로써, 공정 내에서 촉매 구성 비율을 높일 수 있고, 용매 분해에 의한 불순물 생성을 최소화할 수 있고, 종래 직접반응보다 반응 효율 향상 및 정제 공정의 단순화 등 테트라알콕시실란을 제조함에 따라 종래기술에 비해 현저히 비용 효율적이다.

Description

테트라알콕시실란의 연속 제조방법
본 발명은 테트라알콕시실란의 연속 제조방법에 관한 것으로, 보다 상세하게는 고순도의 테트라알콕시실란을 고수율로 연속적으로 제조하는 방법에 관한 것이다.
테트라알콕시실란은 실리카 입자, 그의 무기물 및 유기고분자 복합체 제조에서부터 접착제, 하드코팅제 등 다양한 산업에서 널리 사용되고 있다.
상기와 같은 용도를 지닌 테트라알콕시실란은 사염화실란과 알코올의 탈염화수소화 알콕시 반응을 통해 대량으로 생산하는 방법과 알카리 촉매를 사용한 실리콘 금속과 알코올의 직접 반응을 통해 얻는 방법이 있다.
먼저, 사염화실란과 알코올을 반응시키는 방법은 테트라에톡시실란의 합성에는 유리하나, HCl을 부산물로 생성하고, 상기 HCl은 알코올과 반응하여 물과 염화알칸을 부산물로 생성한다. 따라서 상기 방법은 산성의 HCl를 제거하는 공정이 필수적으로 포함되어야 하고, 염기 화합물을 사용하여 중화시킬 경우, 염이 생성되므로 수율이나 순도가 저하되는 단점이 있다.
구체적으로 사염화실란을 통한 테트라알콕시실란 제조공정은 총 3단계 공정으로 구성되는데, 특히 2단계 알콕시화 공정에서 많은 양의 HCl 기체가 부산물로 발생되며, HCl을 제거하기 위하여 추가공정이 필요하다. 이러한 추가 공정에 의해 많은 공정비용이 발생하므로, 테트라알콕시실란의 단가가 높게 측정되고 있다.
따라서, 활용성이 광범위한 테트라알콕시실란을 저렴하게 대량으로 제조할 수 있는 방법에 대한 관심이 점차 커져가고 있다.
상술한 문제점을 해결하기 위하여, 미국특허공보 제9,156,861호에는 실리콘 금속과 알코올을 구리 촉매 하에서 직접 반응시켜 알콕시실란을 제조하는 방법이 개시되어 있다. 상기 미국특허공보는 주 생성물이 대부분 트리알콕시실란이고, 테트라알콕시실란은 소량만 얻을 수 있다는 단점이 존재한다.
[선행기술문헌]
[특허문헌]
미국특허공보 제9,156,861호
미국특허공보 제5,177,234호
미국특허공보 제4,762,939호
본 발명의 목적은 염기성 촉매와 실리콘 금속과 알코올의 직접반응을 이용하여 테트라알콕시실란을 제조함으로서, 하나의 공정 장치를 통해 효과적으로 제조할 수 있는 테트라알콕시실란의 연속 제조방법에 관한 것이다.
상기 본 발명의 목적을 실현하기 위하여, 본 발명은 1) 하기 화학식 1로 표시되는 화합물 및 알칼리 금속을 반응시켜 하기 화학식 2로 표시되는 염기성 촉매를 제조하는 단계; 및
2) 하기 화학식 2로 표시되는 염기성 촉매, 실리콘 금속 및 화학식 3으로 표시되는 알코올을 혼합하여 테트라알콕시실란을 연속적으로 제조하는 단계;를 포함하는 테트라알콕시실란의 제조방법.
[화학식 1]
R1O(CHR2CH2O)n-H
[화학식 2]
R1O(CHR2CH2O)n-M
[화학식 3]
R3OH
상기 식에서,
상기 M은 알칼리 금속이고, 상기 R1 탄소수 1 내지 5의 선형의 탄화수소기, 탄소수 3 내지 5의 분지형의 탄화수소기 중에서 선택되는 어느 하나이며, 상기 R2는 수소, 탄소수 1 내지 3의 선형의 탄화수소기 중에서 선택되는 어느 하나이며, 상기 R3은 탄소수 1 내지 2의 알킬기 중에서 선택되는 어느 하나이며, 상기 n은 2 내지 3의 정수이다.
본 발명의 일 구현예에 따르면 상기 화학식 1 또는 2에서, 상기 R1은 탄소수 1 내지 3의 알킬기 중에서 선택되는 어느 하나이고, 상기 R2는 수소, 탄소수 1 내지 3의 알킬기 중에서 선택되는 어느 하나일 수 있다.
본 발명의 다른 구현예에 따르면, 상기 화학식 1 또는 2에서, 상기 n은 2일 수 있다.
상기 1) 단계에서 상기 화학식 1로 표시되는 화합물과 알칼리 금속은 1.0 : 1.0~1.1 몰비로 혼합되는 것일 수 있다.
본 발명의 또 다른 구현예에 따르면, 상기 1) 단계에서 상기 화학식 1로 표시되는 화합물과 알칼리 금속은 1 : 1 몰비로 혼합되는 것일 수 있다.
본 발명의 또 다른 구현예에 따르면, 상기 1) 단계는 100 내지 190℃ 온도에서, 1 내지 20 시간동안 수행되는 것일 수 있다.
본 발명의 또 다른 구현예에 따르면, 상기 알칼리 금속은 Li, Na 및 K 중에서 선택되는 어느 하나의 금속일 수 있다.
본 발명의 또 다른 구현예에 따르면, 상기 실리콘 금속은 표면에 존재하는 산화물(SiOX)을 400 내지 600℃ 조건 하에서 수소 가스와 불활성 가스(아르곤 가스 또는 질소 가스)의 혼합물로 이루어진 군으로부터 선택되는 어느 하나 이상을 포함하는 혼합가스를 처리하여 환원 제거한 후 사용하는 것일 수 있다.
본 발명의 또 다른 구현예에 따르면, 상기 환원 단계는 2~5시간 동안 수행할 수 있다.
본 발명의 또 다른 구현예에 따르면, 상기 화학식 2로 표시되는 염기성 촉매의 R1과 상기 화학식 3으로 표시되는 알코올의 R3 서로 동일한 것일 수 있다.
본 발명의 또 다른 구현예에 따르면, 상기 2) 단계는 140 내지 185℃의 온도에서 수행되는 것일 수 있다.
본 발명의 또 다른 구현예에 따르면, 상기 1) 및 2) 단계는 불활성 분위기 하에서 수행되고, 상기 불활성 분위기는 아르곤 가스 또는 질소 가스를 통해 형성되는 것일 수 있다.
본 발명은 하나의 공정 장치를 사용하여 고순도의 테트라알콕시실란을 연속적으로 제조할 수 있다.
또한 본 발명은 용매를 사용하지 않고 제조된 염기성 촉매를 활용하기 때문에 공정 내에서 촉매 구성 비율이 높아도, 용매 분해에 의한 불순물 생성을 최소화할 수 있고, 종래 직접반응보다 반응 효율 향상 및 정제 공정의 단순화 등 테트라알콕시실란을 제조함에 따라 종래기술에 비해 현저히 비용효율적이다.
도 1은 본 발명의 테트라알콕시실란의 제조방법을 도시한 공정도이다.
도 2는 실시예 2-2로부터 제조된 테트라에톡시실란의 가스크로마토그래피(GC) 분석 결과를 나타내는 그래프이다.
도 3은 비교예 1-1로부터 제조된 테트라에톡시실란의 가스크로마토그래피(GC) 분석 결과를 나타내는 그래프이다.
도 4는 비교예 1-2로부터 제조된 테트라에톡시실란의 가스크로마토그래피(GC) 분석 결과를 나타내는 그래프이다.
본 발명은 다양한 변경을 가할 수 있고 여러 가지 형태를 가질 수 있는 바, 실시예들을 본문에 상세하게 설명하고자 한다. 그러나 이는 본 발명을 특정한 개시 형태에 대해 한정하려는 것이 아니며, 본 발명의 사상 및 기술범위에 포함되는 모든 변경, 균등물 내지 대체물을 포함하는 것으로 이해되어야 한다. 각 도면을 설명하면서 유사한 참조부호를 유사한 구성요소에 대해 사용하였다. 제1, 제2 등의 용어는 다양한 구성요소들을 설명하는데 사용될 수 있지만, 상기 구성요소들은 상기 용어들에 의해 한정되어서는 안 된다.
상기 용어들은 하나의 구성요소를 다른 구성요소로부터 구별하는 목적으로만 사용된다. 본 출원에서 사용한 용어는 단지 특정한 실시예를 설명하기 위해 사용된 것으로, 본 발명을 한정하려는 의도가 아니다. 단수의 표현 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다.
본 출원에서, "포함하다" 또는 "이루어진다" 등의 용어는 명세서상에 기재된 특징, 숫자, 단계, 동작, 구성요소, 부분품 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 동작, 구성요소, 부분품 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다.
다르게 정의되지 않는 한, 기술적이거나 과학적인 용어를 포함해서 여기서 사용되는 모든 용어들은 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에 의해 일반적으로 이해되는 것과 동일한 의미를 가지고 있다. 일반적으로 사용되는 사전에 정의되어 있는 것과 같은 용어들은 관련 기술의 문맥 상 가지는 의미와 일치하는 의미를 가지는 것으로 해석되어야 하며, 본 출원에서 명백하게 정의하지 않는 한, 이상적이거나 과도하게 형식적인 의미로 해석되지 않는다.
이하, 첨부한 도면들을 참조하여, 본 발명의 바람직한 실시예를 보다 상세하게 설명하고자 한다.
도 1은 본 발명의 테트라알콕시실란을 연속적으로 제조하기 위한 공정을 개략적으로 도시한 공정도이다.
상기 도시된 바와 같이 본 발명은 염기성 촉매를 사용하여 실리콘 금속과 알코올을 직접 반응시켜 테트라알콕시실란을 연속적으로 제조하는 방법에 관한 것으로, 종래에는 염기성 촉매를 제조함에 있어서 용매를 사용하기 때문에, 테트라알콕시실란외에 부산물이 과도하게 생성되어, 고순도의 테트라알콕시실란을 얻을 수가 없었다. 게다가 염기성 촉매를 제조한 후, 이를 정제하는 과정이 추가적으로 필요하므로 연속적으로 테트라알콕시실란을 생산하는 데 어려움이 많았다. 이에 본 발명은 상술한 문제점을 해결하기 위하여, 용매없이 염기성 촉매를 제조하고, 이를 사용하여 실리콘 금속과 알코올을 직접반응시켜 테트라알콕시실란을 제조하였다. 즉, 본 발명은 테트라알콕시실란의 직접 반응에서 발생하는 반응들을 효과적으로 제어함으로써, 테트라알콕시실란을 고순도 고수율로 얻을 수 있는 연속반응 공정을 개발하게 된 것이다.
본 발명의 일 측면은 하기 단계를 포함하는 테트라알콕시실란의 제조방법에 관한 것이다.
1) 하기 화학식 1로 표시되는 화합물 및 알칼리 금속을 반응시켜 하기 화학식 2로 표시되는 염기성 촉매를 제조하는 단계; 및
2) 하기 화학식 2로 표시되는 염기성 촉매, 실리콘 금속 및 화학식 3으로 표시되는 알코올을 혼합하여 테트라알콕시실란을 연속적으로 제조하는 단계.
[화학식 1]
R1O(CHR2CH2O)n-H
[화학식 2]
R1O(CHR2CH2O)n-M
[화학식 3]
R3OH
상기 화학식 1 또는 화학식 2에서,
상기 M은 알칼리 금속이고,
상기 R1 탄소수 1 내지 5의 선형의 탄화수소기, 탄소수 3 내지 5의 분지형의 탄화수소기 중에서 선택되는 어느 하나이며,
상기 R2는 수소, 탄소수 1 내지 3의 선형의 탄화수소기 중에서 선택되는 어느 하나이며,
상기 R3은 탄소수 1 내지 2의 알킬기 중에서 선택되는 어느 하나이며,
상기 n은 2 내지 3의 정수이다.
본 발명은 상기 제1반응기(10), 분리장치(20), 회수장치(30) 및 응축장치(40)로 구성된다.
상기 1) 단계는 하나의 제1반응기(10)에서 연속적으로 수행되는 것을 장점으로 한다. 상기 염기성 촉매는 제1반응기(10)에 보관되거나 제1반응기(10)에서 제조되고, 제1이동관(13)을 통해 제1반응기(10)로부터 반응혼합물이 배출되고, 제1공급관(11)과 제2공급관(12)을 통해 제1반응기(10)에 각각 알코올과 실리콘 금속이 공급된다.
상기 제1반응기(10)는 교반기가 장착된 연속공정에 적합한 1단(single) 또는 다단(multistage) 혼합 반응기일 수 있다.
먼저, 염기성 촉매는 상기 제1반응기(10)로부터 직접 제조되고, 이후, 상기 제1반응기(10)에 알코올과 실리콘 금속이 공급되어 상기 염기성 촉매와 함께 테트라알콕시실란의 합성반응을 거치게 된다.
상기 염기성 촉매는 1) 상기 화학식 1로 표시되는 화합물 및 알칼리 금속을 혼합하여 상기 화학식 2로 표시되는 염기성 촉매로 제조될 수 있다. 구체적으로 제1반응기(10) 내에 제1공급관(11)을 통해 하기 화학식 2로 표시되는 화합물을 공급받고, 이후 알칼리 금속을 공급받아, 상기 불활성 분위기 하에서 반응시켜 하기 반응식 1에 도시된 바와 같이 화학식 1로 표시되는 염기성 촉매를 얻게된다.
[반응식 1]
R1O(CHR2CH2O)n-H + M => R1O(CHR2CH2O)n-M + 1/2H2
상기 식에서,
상기 M은 알칼리 금속이고, 상기 R1 탄소수 1 내지 5의 선형의 탄화수소기, 탄소수 3 내지 5의 분지형의 탄화수소기 중에서 선택되는 어느 하나이며, 상기 R2는 수소, 탄소수 1 내지 3의 선형의 탄화수소기 중에서 선택되는 어느 하나이며, 상기 R3은 탄소수 1 내지 2의 알킬기 중에서 선택되는 어느 하나이며, 상기 n은 2 내지 3의 정수이다.
상기 반응식 1에 도시된 바와 같이 상기 제1반응기(10)에서는 상기 화학식 1로 표시되는 화합물과 알칼리 금속을 불활성 분위기하에서 반응시켜 화학식 2로 표시되는 염기성 촉매를 합성하며, 이 때 발생되는 수소 가스는 상기 제1반응기(10) 상부에 연결된 제1이동관(13), 제2이동관(15), 제3이동관(16)을 거처 제2배출구(18) 통해서 배출시킨다.
종래 테트라알콕시실란의 합성에 사용되는 염기성 촉매는 제조과정에 용매를 사용하기 때문에 수율과 순도를 저하시켜 불필요한 정제과정을 추가적으로 수행해야 하는 문제점을 야기하였다. 그러나 본 발명에서는 제조과정에 용매 혹은 기타 다른 물질의 첨가 없이 상기 화학식 2로 표시되는 염기성 촉매를 제조함으로써, 알킬기 치환이 이뤄지지 않고, 제어된 구조의 염기성 촉매를 제조하며, 불순물이 포함되지 않아 바로 실리콘 금속과 알코올을 투여하여 테트라알콕시실란을 제조하여도 수율이나 순도에 영향을 미치지 않으므로, 단계를 현저히 단축할 수 있다는 장점을 갖는다.
또한, 상기 염기성 촉매는 실리콘 금속과 알코올 반응에서 촉매 기능과 공정의 유동성 확보에 매우 적합하다.
만약 상기 화학식 2로 표시되는 염기성 촉매가, 동일한 화학식 1로 표시되는 화합물과 알칼리 금속을 사용하더라도 본 발명과 동일한 방법이 아닌, 용매를 사용하는 종래의 공정으로 제조될 경우에는 과량의 불순물이 혼합되므로 정밀한 정제하는 과정이 필수적으로 요구된다. 공정 단계의 추가는 제품의 실효성을 판단함에 있어서, 제품의 원가, 비용에 큰 손실을 미치게 된다.
상기 화학식 1 또는 2에서, 상기 R1,은 탄소수가 1 내지 5의 알킬기, 알콕실기, 히드록실기 및 치환 아미노기 중에서 선택되는 어느 하나이고, 상기 치환기는 각각 독립적으로 탄소수 1 내지 5의 알콕시기, 알킬기 중에서 선택되는 어느 하나일 수 있다. 또한 상기 R2는 수소, 탄소수가 1 내지 3의 알킬기, 알콕실기, 히드록실기 및 치환의 아미노기 중에서 선택되는 어느 하나이고, 상기 치환기는 각각 독립적으로 탄소수 1 내지 3의 알콕시기, 알킬기 중에서 선택되는 어느 하나일 수 있다.
보다 바람직하게 상기 R1은 탄소수 1 내지 3의 알킬기 중에서 선택되는 어느 하나이고, 상기 R2는 수소, 탄소수 1 내지 3의 알킬기 중에서 선택되는 어느 하나인 것이 보다 바람직한데, 이 경우 염기성 촉매의 공정 효율이 최대화되어 유리하다.
또한 상기 R1은 메틸기, 에틸기, 프로필기 및 부틸기 중에서 선택되는 어느 하나이고, 상기 R2는 수소일 경우, 염기성 촉매의 유도성이 최대화되어 반응속도를 높일 수 있다.
또한, 상기 R1의 탄소수가 상기 R3의 탄소수보다 크거나 동일한 것이 반응온도 조절 관점에서 바람직하고, 상기 R1와 R3은 동일한 것이 부산물 생성을 가장 최소화할 수 있어 보다 바람직하다.
상기 화학식 1 또는 2에서, 상기 n은 2인 것이 가장 바람직한데, 상기 화학식 1 또는 2의 분자량이 낮을수록 염기성 촉매의 분해와 변형이 억제되어, 이로 인한 부산물 생성을 현저히 줄일 수 있다.
상기 1) 단계는 화학식 1로 표시되는 화합물과 알칼리 금속이 제1반응기(10)에 동시에 첨가되거나, 화학식 1로 표시되는 화합물이 투여된 후 알칼리 금속이 순차적으로 첨가되는 것일 수 있다.
상기 1) 단계는 발열반응이므로 화학식 1로 표시되는 화합물이 투여된 후 알칼리 금속을 서서히 투여하는 방식이 안전상 바람직하다.
상기 화학식 1로 표시되는 화합물과 알칼리 금속은 1.0 : 1.0~1.1 몰비로 혼합될 수 있고, 바람직하게는 1 : 1일 수 있다. 상기 화학식 1로 표시되는 화합물과 알칼리 금속의 혼합 몰비가 1 : 1 미만이면 미반응된 상기 화학식 1로 표시되는 화합물이 잔존하게 되어 다량의 불순물을 생성하게 되므로, 나머지 공정이 모두 동일하더라도 본 발명과 같은 수율과 고순도의 테트라알콕시실란을 얻기 어려운 문제가 발생할 수 있다. 특히 불순물이 포함되면 테트라알콕시실란의 고순도화 공정에서 비용이 증가되어 경제성이 떨어지는 문제점이 있다. 게다가 미반응된 화학식 1로 표시되는 화합물은 추후 반응 과정에서 부수적인 반응을 야기하게 되므로, 테트라알콕시실란의 연속적인 제조에서 부산물 생성에 의한 공정시간을 단축하는 문제점이 발생할 수 있다.
상기 화학식 1로 표시되는 화합물과 알칼리 금속이 1 : 1.1 몰비로 혼합되는 경우, 과량의 알칼리 금속이 잔존하게 되는데, 이는 추후 반응과정에서 안정한 물질로 변환되므로 테트라알콕시실란의 제조과정에 영향을 미치지 않으므로 특별히 이에 제한되지 않는다.
다만 상기 화학식 1로 표시되는 화합물과 알칼리 금속의 반응에서 알카리 금속을 동일 몰 수 또는 약간 과량으로 사용하는 것이 바람직하며, 몰 비에서 10% 초과하면 미반응 알칼리 금속이 많아지기 때문에, 최종적으로 테트라알콕시실란의 수율이 저하될 수 있으므로, 알카리 금속의 초과 몰 비가 10% 이하인 것이 가장 바람직하다.
또한, 용매없이 상기 화학식 1로 표시되는 화합물과 알칼리 금속이 1 : 1의 몰비로 혼합되면 불순물이 거의 없이 화학식 1로 표시되는 화합물을 고수율, 고순도로 제조할 수 있으므로, 별도의 공정없이 제1반응기(10)에 테트라알콕시실란의 전구체를 바로 투여하여 테트라알콕시실란을 연속적으로 제조할 수 있다는 점에서 가장 바람직하다.
상기 1) 단계는 외부 공기를 차단한 밀폐된 공간에서 수행되는 것이 바람직하다. 또한 상기 밀페된 공간은 불활성 분위기인 것이 바람직하다. 불활성 분위기는 아르곤 가스 또는 질소 가스로 충진된 것일 수 있다.
상기 1) 단계는 100 내지 190℃ 온도에서, 1 내지 20 시간동안 수행될 수 있고, 바람직하게는 상기 a) 단계는 120 내지 150℃ 온도에서, 5 내지 15 시간동안 수행될 수 있다. 상기 a) 단계가 100℃ 미만의 온도에서 1 시간 미만동안 수행될 경우, 반응시간이 길어지는 문제점이 있다. 또한, 상기 a) 단계가 190℃를 초과한 온도에서 수행될 경우에는, 과도한 반응으로 인해 염기성 촉매의 변형이 발생할 수 있으므로 상기 범위에서 수행되는 것이 좋다.
또한, 상기 염기성 촉매의 녹는점이 50 내지 115℃이므로, 연속공정에서의 용이한 핸들링을 위해서는 120 내지 150℃ 범위로 온도를 유지하는 것이 가장 바람직하다.
상기 1) 단계는 160 내지 170℃로 1 내지 5시간 동안 가열하여 반응을 완료시키는 단계를 더 포함할 수 있다.
그러나 상기 1) 단계에서 제1반응기(10)의 온도가 과도하게 상승하면 반응 속도가 더욱 빨라지게 되므로, 과도한 열에 의해 염기성 촉매가 파괴될 가능성이 있다. 따라서 제1반응기(10)는 온도가 현저히 떨어지지 않는 한 별도의 가열장치를 이용하여 가열하지 않는 것이 바람직하다. 예컨대, 알칼리 금속의 첨가에 따라 발열반응이 진행되므로, 온도에 따라 알칼리 금속의 투여속도를 조절하여 온도를 제어할 수 있다. 예컨대, 알카리 금속의 총량을 분할하여 시간차를 두고 여러 번 나누어 첨가하는 방법이 있다. 또한 제1반응기(10)의 온도가 180 ℃를 초과할 경우 질소 가스를 제1공급관(11)을 통해 제1반응기(10) 내로 공급하여 반응온도를 낮출 수 있다.
상기 1) 단계는 발열반응으로 수소 가스가 생성될 수 있다. 이는 폭발의 위험성이 있으므로 제1반응기(10)의 상부에 연결된 제1~3이동관(14~16)을 거처 제2배출관(18)을 통해 외부로 배출되어 제거하는 것이 바람직하다.
상기 1) 단계 또는 2) 단계에 점도 완화제를 더 포함할 수 있고, 상기 점도 완화제는 당업계에서 일반적으로 사용되는 점도 완화제라면 특별히 제한되지 않으나, 바람직하게는 테트라알콕시실란일 수 있다. 단, 테트라알콕시실란을 점도 완화제로 첨가할 경우, 일부 알코올이 발생할 수 있고, 이는 1) 단계 또는 2) 단계의 반응 속도를 증진시키는 기능을 수행하므로, 반응속도 조절을 위해서도 테트라알콕시실란의 첨가가 고려될 수 있다.
상기 염기성 촉매와 테트라알콕시실란의 혼합으로 인해 하기 화학식 4로 표시되는 화합물이 생성될 수 있다.
[화학식 4]
[R1O(CHR2CH2O)n-]4-XSi(OR3)X
화학식 4에서, 상기 R1 탄소수 1 내지 5의 선형의 탄화수소기, 탄소수 3 내지 5의 분지형의 탄화수소기 중에서 선택되는 어느 하나이며, 상기 R3는 알코올로부터 유래된 치환기로, 탄소수 1 내지 2의 알킬기 중에서 선택되는 어느 하나일 수 있다. 상기 n은 2 내지 3의 정수이고 x는 1 내지 4 의 정수이다.
상기 화학식 4로부터 제조된 화합물은 정상상태로 존재하므로, 설사, 화학식 1로 표시되는 화합물과 테트라알콕시실란이 반응하여 상기 화학식 4로 표시되는 화합물이 제조되더라도 이는 다시 촉매로서 활동하게 된다.
상기 과정을 통해 합성된 염기성 촉매는 제1반응기(10)에 보관되어 있다가 상기 제1공급관(11)으로부터 공급된 알코올과 제2공급관(12)을 통해 공급된 실리콘 금속과 혼합되어 반응함으로써, 연속적으로 테트라알콕시실란을 생성하게 된다(2 단계; 반응식 2).
상기 제1공급관(11)은 단일관(single line) 또는 다중관(multi-line)일 수 있고, 상기 제1반응기(10)의 하단에 결합되어 있을 수 있다.
상기 알코올의 수소와 염기성 촉매의 알칼리 금속 이온이 교환반응을 통해 알콕시알칼리 금속염을 생성하고, 이와 실리콘 금속이 반응함에 따라 테트라알콕시실란이 생성된다.
[반응식 2]
R1O(CHR2CH2O)n-M + R3OH => R3-O-M + R1O(CHR2CH2O)n-H
R3-O-M + Si-Si => R3-O-Si + Si-M
Si-M + R3-O-H => Si-H + R3-O-M => Si-O-R3 + H-M
H-M + R3-O-H => R3-O-M + H2
상기 반응식 2에서,
상기 M은 알칼리 금속이고, 상기 R1 탄소수 1 내지 5의 선형의 탄화수소기, 탄소수 3 내지 5의 분지형의 탄화수소기 중에서 선택되는 어느 하나이며, 상기 R3은 탄소수 1 내지 2의 알킬기 중에서 선택되는 어느 하나일 수 있다. 상기 n은 2 내지 3의 정수이다.
상기 반응식 2에서, 상기 R1은 탄소수 1 내지 3의 알킬기 중에서 선택되는 어느 하나이고, 상기 R2는 수소, 탄소수 1 내지 3의 알킬기 중에서 선택되는 어느 하나일 수 있으며, 상기 R1은 메틸기 또는 에틸기일 수 있고, 상기 R2는 수소 또는 메틸기일 수 있다.
상기 반응식 2에서, 바람직하게 상기 R3은 탄소수 1 내지 2의 알킬기 중에서 선택될 수 있다.
또한, 반응식 2에서, 상기 R1의 탄소수가 상기 R3의 탄소수보다 크거나 동일한 것이 반응온도 조절 관점에서 바람직하고, 상기 R1와 R3은 동일한 것이 부산물 생성을 가장 최소화할 수 있어 보다 바람직하다.
상기 실리콘 금속과 반응에서 생성된 R3-O-M은 염기성 촉매보다 반응속도가 현저히 크기 때문에, 테트라알콕시실란 제조에서 염기성 촉매보다 Si-Si 결합 분해 반응도 예상되지만, 목적물 생성 측면에서 주된 화학반응은 R3-O-M과 실리콘 금속(Si-Si)과의 반응 매커니즘을 거치는 것으로 예상할 수 있다.
우선 염기성 촉매와 알코올(R3-O-H)의 사이에서 M-H 교환반응으로 R3-O-M이 생성되고, 상기 R3-O-M이 실리콘 금속의 Si-Si 결합을 깨지면서 R3-O-Si와 Si-M 결합이 형성된다. 다시 Si-M 결합이 알코올(R3-O-H)과 만나서 Si-O-R3과 H-M 결합을 생성한다. 이후 H-M 결합은 알코올(R3-O-H)과 반응하여 R3-O-M와 H2를 생성하고, 이 매커니즘을 거쳐서 하기 화학식 5로 표시되는 테트라알콕시실란이 합성되는 것이다.
[화학식 5]
Si(OR3)4
상기 화학식 5에서, 상기 R3은 탄소수 1 내지 2의 알킬기 중에서 선택될 수 있다.
다음, 상기와 같은 과정을 통해 제조된 하기 화학식 2로 표시되는 염기성 촉매를 사용하여 본 발명의 테트라알콕시실란을 제조하는데 사용할 수 있다.
즉, 제1반응기(10)에 제1공급관(11)으로부터 공급되는 알코올과 제2공급관(12)을 통해 실리콘 금속이 공급되고, 이는 불활성 분위기 하에서 염기성 촉매(화학식 2)과 반응하여 테트라알콕시실란을 합성한다( 2) 단계).
상기 2) 단계 역시 불활성 분위기 하에서 수행되고, 상기 불활성 분위기는 아르곤 또는 질소 가스를 통해 형성되는 것으로써, 이는 제1공급관(11)을 통해 제1반응기(10)에 공급된다.
본 발명에서, 상기 염기성 촉매는 제1반응기(10)의 전체 용량 대비 30 내지 75 중량% 포함되어 있을 수 있고, 바람직하게는 35 내지 70 중량%, 보다 바람직하게는 50 내지 70 중량%일 수 있다. 앞서 언급한 바와 같이 상기 염기성 촉매는 제1반응기(10) 내에 합성되어 제조된 것일 수 있다.
상기 실리콘 금속은 98% 이상의 순도인 것을 사용할 수 있고, 상기 실리콘 금속의 순도가 98% 미만인 경우, 철과 다른 금속이 섞인 불순물이 발생하는 문제가 발생하기 때문에, 98% 이상의 순도인 것을 사용하는 것이 바람직하며, 경제적 상황을 고려한다면 98~99%인 것이 보다 바람직하다.
또한, 상기 실리콘 금속은 20 내지 800 ㎚의 평균 입자크기를 갖는 것일 수 있다.
상기 실리콘 금속은 제1반응기(10)의 전체 용량 대비 25 내지 70 중량% 포함되는 것일 수 있고, 바람직하게는 25 내지 70 중량%일 수 있다. 상기 범위를 벗어날 경우 테트라알콕시실란의 합성 속도가 저하되는 문제가 발생할 수 있다.
추가적으로 테트라알콕시실란을 제조하기 위하여, 상기 실리콘 금속은 표면에 존재하는 산화물(SiOX)을 환원한 것을 사용하는 것이 바람직하다. 구체적으로 상기 실리콘 금속은 400 내지 600℃ 조건 하에서 수소 가스와 불활성 가스 (아르곤 가스 또는 질소 가스)의 혼합 가스로 이루어진 군으로부터 선택되는 어느 하나 이상을 포함하는 혼합가스를 처리하여 표면에 존재하던 산화물(SiOX)를 환원 제거한 것일 수 있다.
상기 환원 단계는 2~5시간동안 수행하는 것일 수 있는데, 만약 상기 환원 단계는 실리콘 금속 사용량에 따라 적절히 조절할 수 있다. 실리콘 금속의 표면에 존재하는 산화물이 제거되지 못하고 잔류하게 되어, 테트라알콕시실란의 수율과 순도를 저하시키는 문제가 발생할 수 있다.
상기 실리콘 금속입자는 제1반응기(10)의 총 질량 용량 대비 30 내지 65 중량% 포함될 수 있고, 바람직하게는 30 내지 50 중량%일 수 있다. 테트라알콕시실란의 연속 제조공정을 통해 소비되는 만큼 연속적으로 공급해주는 것이 바람직하다.
상기 알코올은 R3OH의 화학식 3으로 표시될 수 있고, 상기 R3은 탄소수 1 내지 2의 알킬기 중에서 선택되는 어느 하나인 것일 수 있다. 또한 상기 알코올은 고순도의 알코올을 사용하는 것이 바람직하며, 특히 저분자량의 메탄올, 에탄올을 사용하는 것이 바람직하다. 알코올은 제1공급관(11)의 예열을 통해 증기의 형태로 제1반응기(10)내에 공급되며, 연속적으로 공급될 수 있다. 상기 제1공급관(11)은 100℃ 이상인 것이 좋고, 바람직하게는 100 내지 190℃일 수 있다.
본 발명에서는 알코올을 제외하고는 용매가 사용되지 않으며, 용매의 반응속도와 반응열을 제어하기 위해서는, 제1공급관(11)을 통해 알코올과 함께 질소 가스를 공급하면 효과적으로 제어할 수 있다. 이를 통해 촉매 제조시간, 실리콘 금속의 알콕시화 반응을 안정적으로 수행할 수 있도록 제어할 수 있다는 장점을 갖는다.
상기 2) 단계는 120 내지 190℃의 온도 범위에서 수행되는 것일 수 있고, 보다 바람직하게는 140 내지 185℃일 수 있다. 왜냐하면 알코올이 기화된 상태를 유지하기 위해 100℃ 이상의 온도에서 수행되는 것이 바람직하다. 또한, 테트라알콕시실란의 수율을 고려한다면, 실질적으로 테트라메톡시실란은 140 내지 160℃, 테트라에톡시실란은 170 내지 185℃ 온도 범위에서 수행되는 것이 보다 바람직하다.
이후 상기 제1반응기(10)에서 합성반응에 의해 생성된 테트라알콕시실란은 분리공정이 필요하다. 이를 위해 분리장치(20), 회수장치(30) 및 응축장치(40)를 설치하였다.
상기 생성된 테트라알콕시실란을 포함하는 증기는 제1이동관(13)을 통해 분리장치(20)로 공급되게 된다. 이때, 생성된 테트라알콕시실란은 테트라알콕시실란 외에 다른 물질과의 혼합물 상태이고, 온도는 테트라알콕시실란의 끓는점 내지 10℃ 상향으로 유지하여 테트라알콕시실란, 그외 생성물과 미반응 알코올을 제2이동관(15)을 통해서 회수장치(30)로 보냈다. 상기 생성된 테트라알콕시실란을 포함하는 증기 중에서 테트라알콕시실란 생성물의 끓는점보다 10℃ 이상의 물질들은, 바로 응축되어 제1재순환관(14)을 통해 제1반응기(10)로 다시 돌아가기 때문에, 생성물이 기화된 상태를 유지할 수 있도록 130 내지 179℃ 범위에서 테트라알콕시실란 생성물의 끓는점 또는 10℃ 높은 온도 미만으로 유지하도록 한다.
상기 제2이동관(15)을 통해서 받은 반응 혼합물은 회수장치(30)에서 고비점 화합물인 테트라알콕시실란은 제1배출관(17)으로 배출되어 회수된다. 나머지 저비점 화합물은 제3이동관(16)을 통해 실온으로 냉각하는 응축장치(40)로 공급되고, 여기서 저비점의 수소 가스는 제3배출관(18)을 통해 배출되고, 미반응 알코올은 응축 분리되어 제2재순환관(19)을 통해 제1반응기(10)로 복귀시켜 재순환될 수 있다. 제1배출관(17)으로부터 받은 테트라알콕시실란 생성물은 80% 이상의 우수한 순도를 가지며, 고순도화를 위한 분별증류를 거처 99%이상 순도로 얻을 수 있다.
구체적으로 상기 제2이동관(15)을 통해서 상기 회수장치(30)로 반응 혼합물이 유입되고, 상기 회수장치(30)는 알코올의 끓는점(70~80℃) 정도의 온도를 유지하여, 상기 반응 혼합물로부터 테트라알콕시실란 생성물과 미반응 알코올을 분리할 수 있다.
따라서 본 발명의 일 구현예에 따르면, 상기 테트라알콕시실란 제조공정에서 용매의 사용을 배제함으로써, 촉매의 농도를 최대로 높일 수 있고, 또한 유기물 성분인 용매가 없기 때문에 반응열의 분산이 빠르게 될뿐만 아니라 용매 배제에 의한, 부산물 생성을 최소화 할 수 있으므로, 고순도의 테트라알콕시실란을 고수율로 제조가 가능하다.
또한, 테트라알콕시실란의 제조에서 사용되는 염기성 촉매의 생산을 탄력적으로 조절할 수 있으며, 염기성 촉매 제조와 동시에 테트라알콕시실란을 하나의 공정 장치를 이용하여 제조할 수 있으므로 공정효율을 최대화할 수 있다.
본 발명의 염기성 촉매를 사용하는 경우에는 다른 촉매를 사용할 때보다 더 안정적이며, 수율과 반응 속도가 더 개선될 수 있다. 동시에 본 발명의 테트라알콕시실란의 제조방법을 통해서 고순도의 테트라알콕시실란을 종래의 기술보다 경제적으로 제조할 수 있다.
종래, 실리콘 금속 및 알코올의 직접반응을 통해 테트라알콕시실란을 제조하는 방법이 존재했다. 이는 용매 분해 및 부산물 발생 등으로 인해 테트라알콕시실란의 생성 수율이 낮으며, 또한 다양한 부산물 제거를 위한 고순도화 정제공정이 필수적으로 요구되어 공정비용이 높다는 문제점이 있었다. 이에 반해 본 발명은 테트라알콕시실란 제조공정의 고효율화 및 정제공정의 단순화로 경제성을 확보함으로써, 연속 공정으로 테트라알콕시실란을 80% 이상의 고순도로 제조할 수 있으므로, 많은 비용을 절감할 수 있다는 큰 장점을 갖는다.
이하 본 발명의 실시예들에 대해 상술한다. 다만, 하기 실시예들은 본 발명의 일부 실시 형태에 불과한 것으로서, 본 발명이 하기 실시예들에 한정되는 것으로 해석되어서는 아니된다.
실시예 1-1. 염기성 촉매(CH3O(CH2CH2O)2-Na) 제조
우선, 마그네틱 교반기(Heidolph MR 3000)에 100 ㎖ 용량의 2-구 둥근 플라스크와 가열 맨틀(heating mantle)을 장착한 후, 중앙 구에 컨덴서를 연결하고, 건조 N2 가스로 불어서 반응장치를 건조시켰다. 나머지 반응기 입구를 통해서 마그네틱 바(Cowie 사, 20 × 10 ㎜)와 나트륨(Na) 3.32 g(84.9 mmol)을 넣고 고무 stopper로 막았다. 주사기로 디에틸렌글리콜 모노메틸 이써(Diethylene glycol monomethyl ether) 10 ㎖(10.2 g, 84.9 mmol)를 고무 stopper를 통해서 즉시(1-3초) 투입하여 반응시켜 염기성 촉매(CH3O(CH2CH2O)2-Na)를 제조하였다. 상기 반응은 발열반응으로, 15분 후 온도가 187℃에 도달하고 하강하였다.
상기 염기성 촉매는 57℃ 이상에서는 투명한 현탁액으로 존재하고, 40℃ 미만의 온도에서는 점도가 증가되어 페이스트 상태로 변하였다. 즉, 실시예 1-1로부터 제조된 염기성 촉매(CH3O(CH2CH2O)2-Na)는 57℃ 이상에서 핸들링이 용이함을 알 수 있다.
실시예 1-2. 염기성 촉매(CH3O(CH2CH2O)2-K) 제조
나트륨(Na) 대신에 칼륨 3.32 g(84.9 mmol)을 사용하였다는 것을 제외하고는 실시예 1-1과 모두 동일하게 하여 염기성 촉매(CH3O(CH2CH2O)2-K)를 제조하였다. 상기 반응은 발열반응으로 10분 후 온도가 146℃에 도달하고 하강하였다.
상기 염기성 촉매는 70℃ 이상에서는 투명한 현탁액으로 존재하고, 60℃ 미만의 온도에서는 점도가 증가되어 페이스트 상태로 변하였다. 즉, 상기 실시예 1-2로부터 제조된 염기성 촉매(CH3O(CH2CH2O)2-K)는 70℃ 이상에서 핸들링이 용이함을 알 수 있다.
실시예 1-3. 염기성 촉매(C2H5O(CH2CH2O)2-Na) 제조
나트륨 금속 3.32 g(84.9 mmol) 대신에 나트륨 금속 1.71 g(74.4 mmol)을 첨가하고, 디에틸렌글리콜 모노메틸 이써(Diethylene glycol monomethyl ether) 대신에 디에틸렌글리콜 모노에틸 이써(Diethylene glycol monoethyl ether) 10 ㎖(9.99 g, 74.4 mmol)을 투입하였다는 것을 제외하고는 실시예 1-1과 모두 동일하게 하여 염기성 촉매(C2H5O(CH2CH2O)2-Na)를 제조하였다. 상기 반응은 발열반응으로, 20분 동안 온도가 164℃까지 상승하였다가 하강하였다.
상기 염기성 촉매는 온도가 약 40~60℃로 떨어지면 백색의 슬러리 상태로 변하게 되어, 마그네틱 교반기로 교반되지 않는다. 60℃ 이상으로 다시 가열하면 백색의 현탁액으로 전환되면서 교반되기 시작하였다. 즉 상기 염기성 촉매(C2H5O(CH2CH2O)2-Na)는 60℃ 이상의 온도에서 핸들링이 용이함을 확인하였다.
실시예 1-4. 염기성 촉매(C2H5O(CH2CH2O)2-K) 제조
나트륨 금속 3.32 g(84.9 mmol) 대신에 칼륨 금속 2.91 g(74.4 mmol)을 첨가하고, 여기에 디에틸렌글리콜 모노메틸 이써(Diethylene glycol monomethyl ether) 대신에 디에틸렌글리콜 모노에틸 이써(Diethylene glycol monoethyl ether) 10 ㎖(9.99 g, 74.4 mmol)를 투입하였다는 것을 제외하고는 실시예 1-1과 모두 동일하게 하여 염기성 촉매(C2H5O(CH2CH2O)2-K)를 제조하였다. 상기 반응은 발열반응으로, 4분 후 온도가 105℃에 도달하고 하강하였다.
상기 염기성 촉매는 105℃ 이상에서는 백색의 현탁액으로 존재하고, 105℃ 미만의 온도에서는 점도가 증가되어 백색의 페이스트 상태로 변하였다. 즉, 상기 실시예 1-4로부터 제조된 염기성 촉매(C2H5O(CH2CH2O)2-K)는 115℃ 이상에서 핸들링이 용이함을 알 수 있다.
실시예 1-5. 염기성 촉매((CH3(CH2)3O(CH2CH2O)2-Na) 제조
나트륨 금속 3.32 g(84.9 mmol) 대신에 나트륨 금속 1.35 g(58.6 mmol)을 첨가하고, 디에틸렌글리콜 모노메틸 이써(Diethylene glycol monomethyl ether) 대신에 디에틸렌글리콜 모노부틸 이써(Diethylene glycol monobuthyl ether) 10 ㎖(9.5 g, 58.6 mmol)을 투입하였다는 것을 제외하고는 실시예 1-1과 모두 동일하게 하여 염기성 촉매((CH3(CH2)3O(CH2CH2O)2-Na)를 제조하였다. 상기 반응은 발열반응으로, 10분 후 온도가 43℃에 도달하였다가 하강하였다.
이때 반응기의 일면에 결합되어 있는 가열장치를 통해 150℃로 가열하여 반응을 완료하였다. 이후 온도를 내리면서 상변화를 조사하였다.
상기 염기성 촉매는 50℃ 이상에서는 검은색 현탁액으로 존재하고, 40℃ 미만의 온도에서는 점도가 증가되어 검은색 페이스트 상태로 변하였다. 즉, 상기 실시예 1-5로부터 제조된 염기성 촉매((CH3(CH2)3O(CH2CH2O)2-Na)는 50℃ 이상에서 핸들링이 용이함을 알 수 있다.
실시예 1-6. 염기성 촉매(CH3(CH2)3O(CH2CH2O)2-K) 제조
나트륨 금속 대신에 칼륨 금속 2.29 g(58.6 mmol)을 첨가하고, 여기에 디에틸렌글리콜 모노메틸 이써(Diethylene glycol monomethyl ether) 대신에 디에틸렌글리콜 모노부틸 이써(Diethylene glycol monobuthyl ether) 10 ㎖(9.5 g, 58.6 mmol)를 투입하였다는 것을 제외하고는 실시예 1-1과 모두 동일하게 하여 염기성 촉매(CH3(CH2)3O(CH2CH2O)2-K)를 제조하였다, 상기 반응은 발열반응으로 10분 후 온도가 78℃에 도달하고 하강하였다. 이때 반응기의 일면에 결합되어 있는 가열장치를 통해 150℃로 가열하였다.
상기 염기성 촉매는 50℃ 근처에서 검은색 페이스트 상태로 변하여 교반에 어려움이 있었다. 즉, 상기 실시예 1-6으로부터 제조된 염기성 촉매(CH3(CH2)3O(CH2CH2O)2-K)는 50℃ 이상에서 핸들링이 용이함을 알 수 있다.
실시예 2-1. 테트라메톡시실란 제조(2L 반응기)
먼저, 2 L 반응기를 통해 테트라알콕시실란의 제조공정을 설계하였다. 이는 다음과 같다. 우선 교반 가능한 2 L 용량의 베플(baffle) 형태 반응기(10)를 준비하고, 이의 내부를 질소로 채운 후, 디에틸렌글리콜 모노메틸 이써(Diethylene glycol monomethyl ether) 1000.0 g(8.32 mol)을 넣고, 발열반응에 의해 과열되지 않도록 나트륨(Na) 금속 191.3g(8.32 mol)을 소량씩 천천히 첨가하여, CH3O(CH2CH2O)2-Na의 염기성 촉매를 제조하였다. 이때, 발열반응에 의해 제1반응기(10) 온도는 100℃까지 올라갔다.
다음, 실리콘 금속 입자(20-800 ㎛) 750 g을 제1반응기(10) 내에 투입하였다. 상기 실리콘 금속은 400℃ 조건 하에서, 10% 수소/90% 아르곤 혼합가스를 흘려 실리콘 금속 표면의 산화물(SiOx)을 환원·제거한 것을 사용하였다.
상기 제1반응기(10)에 제1공급관(11), 분리장치(20)가 연결되어 있고, 상기 제1공급관(11)과 분리장치(20)에서의 온도 제어를 위해 각각에 가열수단(heating jacket)과 단열수단을 설치하였다.
제1반응기(10)는 촉매의 점도를 고려하여 122 내지 150℃의 온도로 유지하고, 상기 제1공급관(11) 역시 110℃가 되도록 가열수단을 통해 가열하였다.
이후, 제1공급관(11)을 통해 반응기(10) 내에 메탄올을 2 ㎖/분(약 2.97 mol/시간) 속도로 연속적으로 공급하여, (CH3O(CH2CH2O)2-Na)의 염기성 촉매와 실리콘 금속 및 메탄올을 접촉시키는 직접 반응을 통해 테트라알콕시실란이 합성되도록 하였다. 상기 직접 반응은 발열반응으로 제1반응기(10) 내부 온도가 급격히 상승하게 된다. 따라서 제1반응기(10)가 과도하게 가열되는 것을 방지하기 위해 상기 제1반응기(10) 내부 온도가 140℃ 이상일 경우, 알코올 공급라인(11)을 통해 반응기(10) 내부로 질소 가스(N2 gas)를 10 ㎖/min씩 공급하고, 적정온도(140 내지 150℃)로 안정화되면 공급을 중단하였다. 상기 공정에서 메탄올 2,6 mol/hr을 공급하여 평균 0.50 mol/hr의 테트라메톡시실란을 얻었다.
제1반응기(10)에서 얻어진 반응물 혼합물은 분리장치(20)를 통해서 70℃로 유지된 회수장치(30)로 공급되고, 여기서 생성물인 테트라메톡시실란은 제1배출관(17)을 거처 받아냈고, 나머지 미반응 메탄올과 수소 가스는 제3이동관(16)을 통해서 응축장치(40)로 이동된다. 여기서 수소 가스는 배출시키고, 미반응 메탄올은 회수되어 제2재순환관(19)을 통해 다시 제1반응기(10)로 복귀 및 재순환시켜 재활용하였다. 모든 반응은 철저한 질소 환경에서 진행하였다.
실시예 2-2 테트라에톡시실란 제조(스케일 업-50 L)
테트라알콕시실란의 연속식 테스트를 위해, 50 L 용량의 반응기를 준비하여, 수행하였다(도 1 참조). 제1반응기(10)에 실리콘 금속과 에탄올을 첨가하여, 직접반응시켜 테트라알콕시실란을 연속적으로 제조하는 방법이다.
테트라알콕시실란의 합성에 앞서, 먼저 염기성 촉매를 제조하기 위해 50 L 용량의 제1반응기(10)를 질소 분위기로 조성한 후, 99% 디에틸렌글리콜 모노에틸 이써(Diethylene glycol monoethyl ether) 21 L(20,790 g, 155 mol)를 첨가하였다. 그리고 나트륨 금속 3.562 kg(155 mol)을 10 시간 간격으로 1.781 kg씩 첨가하였다. 이때 발열반응에 의한 과열을 방지하기 위하여 제1공급관(11)을 통해 질소(N2) 가스를 20 ㎖/min 속도로 공급하였다. 과열되는 온도에 따라 제1공급관(11)에 주입되는 질소(N2) 가스의 양 또는 나트륨 금속의 첨가속도를 제어할 수 있다.
또한, 상기 나트륨 금속 대신 다른 알칼리 금속이 사용될 수 있고, 이때, 제1반응기(10) 온도는 알칼리 금속의 녹는점 이상으로 온도를 유지해주는 것이, 염기성 촉매 합성 반응의 속도를 촉진시키고, 유동성을 확보하기 위해 바람직하다. 예컨대, 실시예 1-1부터 1-6에서 제조된 염기성 촉매는 50℃부터 115℃까지 핸들링 가능온도가 존재하므로, 100℃ 이상의 온도를 유지하는 것이 바람직하고, 보다 바람직하게는 100 내지 190℃, 120 내지 150℃가 가장 바람직하다.
본 실시예에서는 제1반응기(10)가 상온의 조건일 때 나트륨 금속을 첨가하기 시작하여, 반응이 진행되면서 130℃까지 온도 상승이 관찰되었다. 반응기 내의 온도 상승이 거의 멈추었을 때, 제1반응기(10) 외부에 결합된 가열장치로 150℃로 온도를 제어하여 촉매 합성 반응의 속도를 촉진하여 염기성 촉매(C2H5O(CH2CH2O)2-Na)를 제조하였다.
이후, 제1반응기(10) 온도를 130℃로 낮춘 후, 입자형태의 실리콘 금속(20-800 um) 13.5 kg를 투여하였다. 상기 실리콘 금속은 제2공급관(12)을 통해 지속적으로 제1반응기(10) 내에 투여되었으며, 투여량은 실리콘 금속의 소비량과 동일하게 투여하는 것이 바람직하다.
상기 실리콘 금속은 400℃에서 10% 수소/90% 아르곤 혼합가스를 흘려주어 실리콘 금속 표면에 존재하는 산화물(SiO2)을 제거하는 환원공정을 3-4시간 정도 진행한 것을 사용하였다.
다음, 제1공급관(11)을 110℃로 가열한 다음, 가열된 제1공급관(11)을 통해 99.9% 무수 에탄올을 제1반응기(10) 내로 10~20 g/min씩 공급하였다. 제1공급관(11)이 고온으로 가열되어 있기 때문에 무수 에탄올은 제1공급관(11)을 통과하면서 기화되므로, 제1반응기(10)에는 기회된 에탄올이 공급된다.
상기 반응 역시 발열반응으로 온도가 상승하기 때문에, 제1공급관(11)을 통해 질소 가스가 공급되었다. 제1반응기(10)는 발열반응이나, 질소 가스의 주입으로 온도가 크게 상승하지 않는다. 따라서 제1반응기(10)의 온도를 외부 가열장치를 통해 175 내지 180℃로 유지하였다. 175 내지 180℃로 제1반응기(10)의 온도가 안정화되면 질소 가스의 공급을 차단하였다.
상기 반응을 통해 테트라에톡시실란이 연속적으로 생성되었고, 생성된 테트라에톡시실란은 기화된 상태이므로, 기화열을 뺏어가게 되므로 외부 가열장치를 통해 제1반응기(10)의 온도를 지속적으로 175 내지 180℃로 유지시켜주는 것이 바람직하다. 만약 상기 온도 미만이면 테트라에톡시실란이 가화 상태를 유지하지 못하기 때문에 수율이 현저히 저하되는 문제가 발생할 수 있다. 또한 상기 온도 범위를 초과하면 염기성 촉매가 분해될 수 있으므로 상기 온도 범위 내에서 수행하는 것이 가장 바람직하다.
기화된 반응 혼합물(테트라에톡시실란 포함)은 제1이동관(13)을 통해 제1분리장치(20)로, 다시 80℃로 유지된 회수장치(30)로 이동하고, 여기서 고비점 생성물인 테트라에톡시실란은 제1배출관(17)을 통해서 받아내고, 나머지 미반응 에탄올과 수소 가스는 제3이동관(16)를 통해 응축장치(40)에 공급된다. 여기서 수소 가스는 제2배출관을 통해서 배출시키고, 미반응 에탄올은 제2순환관(19)을 통해서 제1반응기(10)로 재순환시킬 수 있다. 상기 제1반응기(10)를 통해 생성되는 테트라에톡시실란은 1.9 kg/h의 에탄올 공급당 1.6 kg/h을 얻음을 확인하였다. 이때 제1배출관(17)에서 받아낸 생성물의 총량은 2.0 kg/h이었다. 상기 생성물을 GC로 분석한 결과, 테트라에톡시실란(TEOS) 80%(1.6 kg)과 에탄올 18%(0.36 kg), nBuOSi(OEt)3 0.1%(2 g), (EtO)3SiOSi(OEt)3 0.5%(10 g) C2H5OCH2CH2OCH2CH2OSi(OC2H5)3 1.4%(28 g)이 존재함을 확인하였다(도 2). 상기 제1반응기(10)에 실리콘 금속입자는 제2공급관(12)을 통해 0.22kg/h의 속도로 공급되었다.
상기 회수장치(30)로부터 분리된 테트라에톡시실란은 제1배출관(17)을 통해 분리하였고, 미반응 알코올과 수소가스는 제3이동관(16)을 통해 80℃로 유지된 응축장치(40)로 이동시켰다. 여기서 수소가스는 제2배출관(18)을 통해 배출되고, 미반응 에탄올은 제2재순환관(19)을 통해 제1반응기(10)로 복귀 및 재순환시켰다. 회수장치(30)를 통해서 받은 테트라에톡시실란을 포함하는 반응생성물은 분별증류를 통해 고순도(99% 이상) 테트라에톡시실란을 얻을 수 있다.
비교예 1-1. 19% 용매를 포함하는 염기성 촉매(C2H5O(CH2CH2O)2-Na) 로 테트라에톡시실란의 제조
염기성 촉매(C2H5O(CH2CH2O)2-Na) 제조에서 기존의 C2H5O(CH2CH2O)2-H의 사용양(21 L) 대비 19% 과량인 25 L(24.75 kg, 184.5 mol) 투입한 것을 제외하고는 실시예 2-2와 동일한 장치와 방법으로 반응을 수행하였다. 또한 테트라에톡시실란 제조 반응도 모두 동일한 방법으로 수행하였다. 상기 제1반응기(10)를 통해 생성되는 테트라에톡시실란은 1.8 kg/h의 에탄올 공급당 1.46 kg/h을 얻음을 확인하였다. 이때 제1배출관(17)에서 받아낸 생성물의 총량은 2.01 kg/h이었다. 상기 생성물을 GC로 분석한 결과, 테트라에톡시실란(TEOS) 72.6%(1.46 kg)과 에탄올 14%(281g), nBuOSi(OEt)3 0.8%(16 g), EtOCH2CH2OSi(OEt)3 0.8%(16 g), (EtO)3SiOSi(OEt)3 2.0%(40 g) C2H5OCH2CH2OCH2CH2OSi(OC2H5)3 6.0%(121 g), 1,1-디에톡시에탄 0.3%(6 g), 2-에톡시에틸 비닐 에테르 0.3%(6 g) 및 그 밖에 많은 용매 분해 생성물이 얻어졌음을 확인하였다(도 3).
비교예 1-2. 40% 용매를 포함하는 염기성 촉매(C2H5O(CH2CH2O)2-Na)로 테트라에톡시실란의 제조
염기성 촉매(C2H5O(CH2CH2O)2-Na) 제조에서, 기존의 C2H5O(CH2CH2O)2-H의 사용양(21 L) 대비 40% 과량인 29.4 L(29.1 kg, 214.0 mol) 투입한 것을 제외하고는 실시예 2-2와 동일한 장치와 방법으로 반응을 수행하였다. 또한 테트라에톡시실란 제조 반응도 모두 동일한 방법으로 수행하였다.
상기 제1반응기(10)를 통해 생성되는 테트라에톡시실란은 1.8 kg/h의 에탄올 공급당 1.45 kg/h을 얻음을 확인하였다. 이때 제1배출관(17)에서 받아낸 생성물의 총량은 2.03 kg/h이었다. 상기 생성물을 GC로 분석한 결과, TEOS 71%(1.45 kg), 에탄올 14%(0.284 kg), nBuOSi(OEt)3 0.3%(6 g), EtOCH2CH2OSi(OEt)3 0.9%(18 g), (EtO)3SiOSi(OEt)3 2.0%(40 g) C2H5OCH2CH2OCH2CH2OSi(OC2H5)3 7.0%(142 g), 1,1,-디에톡시에탄 0.3%(6 g), 2-에톡시에틸 비닐 에테르 0.3%(6 g) 및 그 밖에 용매 분해로 생성된 미규명 생성물이 얻어졌음을 확인하였다(도 4).
시험예 1. 염기성 촉매 제조에서 용매(part) 사용량에 따른 순도 분석
상기 실시예 2-2, 비교예 1-1, 비교예 1-2로부터 제조된 테트라에톡시실란(TEOS)를 가스크로마토그래피(GC)를 이용하여 분석하였다.
도 2는 실시예 2-2로부터 제조된 테트라에톡시실란의 가스크로마토그래피(GC) 분석 결과를 나타내는 그래프이고, 도 3은 비교예 1-1로부터 제조된 테트라에톡시실란의 가스크로마토그래피(GC) 분석 결과를 나타내는 그래프이고, 도 4는 비교예 1-2로부터 제조된 테트라에톡시실란의 가스크로마토그래피(GC) 분석 결과를 나타내는 그래프이다. 이에 따르면, 실시예 2-2로부터 제조된 테트라에톡시실란이 80% 이상의 순도를 가지며, 20% 미만의 불순물이 포함되어 있음을 확인하였다. 불순물도 대부분 에탄올이고, 미규명 물질이 존재하지 않으므로 단순 정제과정을 통해 99%까지 순도를 높일 수 있다.
이에 반해, 비교예 1-1, 비교예 1-2과 같이 용매를 사용한 방법으로 제조할 경우, 71~72.6% 순도로 테트라에톡시실란을 얻으며, 27.4~29% 이상의 불순물이 포함되어 있음을 확인하였다. 게다가 에탄올 외에 다수의 불순물이 존재하며, 이 중에는 미규명 생성물도 존재하므로, 산업적으로 테트라에톡시실란을 제공하기 위해서는 반드시 정제과정이 요구되며, 다양한 종류의 불순물 때문에 고도의 정제공정이 필요하므로 공정시간과 비용이 급격하게 증가하게 된다.
또한, 비교예 1-1보다 용매의 함량이 높은 비교예 1-2의 공정에서 불순물의 함량이 증가함을 알 수 있다.
또한, 비록 구체적인 실험결과는 본 명세서에 제시하지는 않았지만, 상기 화학식 1의 화합물과 알칼리 금속의 투입 몰비가 1.0 : 1.0~1.1 몰 범위 내인 경우 고순도 생성물을 얻을 수 있는 반면, 상기 범위를 벗어나는 경우 순도가 급격하게 저하될 뿐만 아니라, 분별증류 등 공지 정제법으로 제거되기 어려운 불순물이 여전히 존재함을 확인하였다.
[부호의 설명]
10 : 제1반응기 11 : 제1공급관
12 : 제2공급관 13 : 제1이동관
14 : 제1재순환관 15 : 제2이동관
16 : 제3이동관 17 : 제1배출관
18 : 제2배출관 19 : 제2재순환관
20 : 분리장치 30 : 회수장치
40 : 응축장치

Claims (12)

1) 하기 화학식 1로 표시되는 화합물 및 알칼리 금속을 반응시켜 하기 화학식 2로 표시되는 염기성 촉매를 제조하는 단계; 및
2) 하기 화학식 2로 표시되는 염기성 촉매, 실리콘 금속 및 화학식 3으로 표시되는 알코올을 혼합하여 테트라알콕시실란을 연속적으로 제조하는 단계;를 포함하는 테트라알콕시실란의 제조방법.
[화학식 1]
R1O(CHR2CH2O)n-H
[화학식 2]
R1O(CHR2CH2O)n-M
[화학식 3]
R3OH
상기 식에서,
상기 M은 알칼리 금속이고,
상기 R1 탄소수 1 내지 5의 선형의 탄화수소기, 탄소수 3 내지 5의 분지형의 탄화수소기 중에서 선택되는 어느 하나이며,
상기 R2는 수소, 탄소수 1 내지 3의 선형의 탄화수소기 중에서 선택되는 어느 하나이며,
상기 R3은 탄소수 1 내지 2의 알킬기 중에서 선택되는 어느 하나이며,
상기 n은 2 내지 3의 정수이다.
제1항에 있어서,
상기 화학식 1 또는 2에서, 상기 R1은 탄소수 1 내지 3의 알킬기 중에서 선택되는 어느 하나이고, 상기 R2는 수소, 탄소수 1 내지 3의 알킬기 중에서 선택되는 어느 하나인 것을 특징으로 하는 테트라알콕시실란의 제조방법.
제1항에 있어서,
상기 화학식 1 또는 2에서, 상기 n은 2인 것을 특징으로 하는 테트라알콕시실란의 제조방법.
제1항에 있어서,
상기 1) 단계에서 상기 화학식 1로 표시되는 화합물과 알칼리 금속은 1.0 : 1.0~1.1 몰비로 혼합되는 것을 특징으로 하는 테트라알콕시실란의 제조방법.
제1항에 있어서,
상기 1) 단계에서 상기 화학식 1로 표시되는 화합물과 알칼리 금속은 1 : 1 몰비로 혼합되는 것을 특징으로 하는 테트라알콕시실란의 제조방법.
제1항에 있어서,
상기 1) 단계는 100 내지 190℃ 온도에서, 1 내지 20 시간동안 수행되는 것을 특징으로 하는 테트라알콕시실란의 제조방법.
제1항에 있어서,
상기 알칼리 금속은 Li, Na 및 K 중에서 선택되는 어느 하나의 금속인 것을 특징으로 하는 테트라알콕시실란의 제조방법.
제1항에 있어서,
상기 실리콘 금속은 표면에 존재하는 산화물(SiOX)을 400 내지 600℃ 조건 하에서 수소 가스와 불활성 가스(아르곤 가스 또는 질소 가스)의 혼합물로 이루어진 군으로부터 선택되는 어느 하나 이상을 포함하는 혼합가스를 처리하여 환원 제거한 후 사용하는 것을 특징으로 하는 테트라알콕시실란의 제조방법.
제8항에 있어서,
상기 환원 단계는 2~5시간동안 수행하는 것을 특징으로 하는 테트라알콕시실란의 제조방법.
제1항에 있어서,
상기 화학식 2로 표시되는 염기성 촉매의 R1과 상기 화학식 3으로 표시되는 알코올의 R3 서로 동일한 것을 특징으로 하는 테트라알콕시실란의 제조방법.
제1항에 있어서,
상기 2) 단계는 140 내지 185℃의 온도에서 수행되는 것을 특징으로 하는 테트라알콕시실란의 제조방법.
제1항에 있어서,
상기 1) 및 2) 단계는 불활성 분위기 하에서 수행되고, 상기 불활성 분위기는 아르곤 가스 또는 질소 가스를 통해 형성되는 것을 특징으로 하는 테트라알콕시실란의 제조방법.
PCT/KR2020/002500 2019-04-29 2020-02-20 테트라알콕시실란의 연속 제조방법 WO2020222410A1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020552194A JP7052069B2 (ja) 2019-04-29 2020-02-20 テトラアルコキシシランの連続製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2019-0050123 2019-04-29
KR1020190050123A KR102060081B1 (ko) 2019-04-29 2019-04-29 테트라알콕시실란의 연속 제조방법

Publications (1)

Publication Number Publication Date
WO2020222410A1 true WO2020222410A1 (ko) 2020-11-05

Family

ID=69103376

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2020/002500 WO2020222410A1 (ko) 2019-04-29 2020-02-20 테트라알콕시실란의 연속 제조방법

Country Status (4)

Country Link
US (1) US10968237B2 (ko)
JP (1) JP7052069B2 (ko)
KR (1) KR102060081B1 (ko)
WO (1) WO2020222410A1 (ko)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11286492A (ja) * 1998-02-06 1999-10-19 Huels Ag 塩素不含のテトラアルコキシシランの連続的製造法
KR20120032544A (ko) * 2009-11-25 2012-04-05 쇼와 덴코 가부시키가이샤 모노실란 및 테트라알콕시실란의 제조방법
JP2013136539A (ja) * 2011-12-28 2013-07-11 Tosoh Corp テトラアルコキシシランの製造方法
JP2014051455A (ja) * 2012-09-07 2014-03-20 Sekisui Chem Co Ltd テトラアルコキシシランの製造方法
US20170267701A1 (en) * 2014-05-09 2017-09-21 National Institute Of Advanced Industrial Science And Technology Method for Producing Tetraalkoxysilane

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3010797A (en) * 1957-07-26 1961-11-28 Robert S Aries High purity elemental silicon
DE2354683C2 (de) * 1973-11-02 1982-02-11 Dynamit Nobel Ag, 5210 Troisdorf Verfahren zur Herstellung von Orthokieselsäuretetraalkoxialkylestern
GB2017129A (en) * 1978-03-23 1979-10-03 Zirconal Processes Ltd Improvements in the manufacture of alkyl silicates
US4211717A (en) * 1979-03-23 1980-07-08 Zirconal Processes Limited Manufacture of alkyl silicates
JPS55149290A (en) * 1979-05-11 1980-11-20 Showa Denko Kk Preparation of tetraalkyl orthosilicate
DE3016807A1 (de) * 1980-05-02 1981-11-05 Licentia Patent-Verwaltungs-Gmbh, 6000 Frankfurt Verfahren zur herstellung von silizium
US4288604A (en) * 1980-05-19 1981-09-08 Stauffer Chemical Company Method for the production of tetraalkyl silicates
US4289889A (en) * 1980-06-30 1981-09-15 Union Carbide Corporation Preparation of tetraalkoxysilanes
GB2140814A (en) * 1983-05-05 1984-12-05 Lakseed Limited Process for the manufacture of tetra-alkoxysilanes
JPS62120390A (ja) * 1985-11-20 1987-06-01 Chisso Corp テトラメトキシシランの製造方法
US4762939A (en) * 1987-09-30 1988-08-09 Union Carbide Corporation Process for trialkoxysilane/tetraalkoxysilane mixtures from silicon metal and alcohol
US5177234A (en) * 1991-06-03 1993-01-05 Dow Corning Corporation Preparation of alkoxysilanes by contacting a solution of hydrogen fluoride in an alcohol with silicon
DE19918431A1 (de) * 1999-04-23 2000-10-26 Bayer Ag Verfahren zur Herstellung eines Katalysators zur selektiven Oxidation von Kohlenwasserstoffen
JP2001039708A (ja) 1999-05-21 2001-02-13 Kobe Steel Ltd 高純度金属Si及び高純度SiOの製造方法
US7365220B2 (en) * 2005-09-29 2008-04-29 Momentive Performance Materials Inc. Process for the recovery of alkoxysilanes obtained from the direct reaction of silicon with alkanols
CN101041668B (zh) 2007-03-27 2010-08-11 句容市兴春化工有限公司 无氯法直接合成四烷氧基硅烷的连续化生产方法
KR101422080B1 (ko) * 2011-09-06 2014-07-22 인스티튜트 오브 아이온-플라즈마엔드 레이저 테크놀러지스 트리알콕시실란의 제조방법
US8916122B2 (en) * 2012-01-17 2014-12-23 Mayaterials, Inc. Method of producing alkoxysilanes and precipitated silicas from biogenic silicas

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11286492A (ja) * 1998-02-06 1999-10-19 Huels Ag 塩素不含のテトラアルコキシシランの連続的製造法
KR20120032544A (ko) * 2009-11-25 2012-04-05 쇼와 덴코 가부시키가이샤 모노실란 및 테트라알콕시실란의 제조방법
JP2013136539A (ja) * 2011-12-28 2013-07-11 Tosoh Corp テトラアルコキシシランの製造方法
JP2014051455A (ja) * 2012-09-07 2014-03-20 Sekisui Chem Co Ltd テトラアルコキシシランの製造方法
US20170267701A1 (en) * 2014-05-09 2017-09-21 National Institute Of Advanced Industrial Science And Technology Method for Producing Tetraalkoxysilane

Also Published As

Publication number Publication date
US10968237B2 (en) 2021-04-06
JP7052069B2 (ja) 2022-04-11
KR102060081B1 (ko) 2019-12-30
JP2021526124A (ja) 2021-09-30
US20200339609A1 (en) 2020-10-29

Similar Documents

Publication Publication Date Title
WO2017095174A1 (ko) 중합성 조성물
WO2018084465A1 (ko) 중합성 조성물
WO2018030552A1 (ko) 중합성 조성물
WO2019203407A1 (ko) 원자층 증착용(ald), 화학 기상 증착용(cvd) 전구체 화합물 및 이를 이용한 ald/cvd 증착법
WO2020222410A1 (ko) 테트라알콕시실란의 연속 제조방법
WO2016032284A1 (ko) 봉형 산화 몰리브덴의 제조방법 및 산화 몰리브덴 복합체의 제조방법
WO2015030440A1 (ko) 히드록시아렌 붕소산 화합물의 열적 탈붕소수소화 및 이를 이용하여 페놀계 화합물의 오르소 또는 메타 위치에 작용기를 도입시킨 히드록시아렌 화합물의 제조방법
WO2020116770A1 (ko) 4족 전이금속 화합물, 이의 제조방법 및 이를 이용하여 박막을 형성하는 방법
WO2022119070A1 (ko) 카보네이트 유도체 제조용 셀레늄계 촉매 시스템 및 그를 이용한 카보네이트 유도체의 제조방법
WO2023033284A1 (ko) 불화알킬글리세린 유도체 및 계면활성제 용도
WO2018038505A1 (ko) 프로필렌 직접산화 반응용 촉매, 이의 제조방법 및 이를 이용한 프로필렌 직접산화 반응에 의한 프로필렌 옥사이드 제조방법
WO2022220610A1 (ko) 스핑고신-1-인산 수용체 효능제 합성을 위한 중간체의 제조방법
WO2017082541A1 (ko) 금속 전구체, 이의 제조방법, 및 이를 이용하여 박막을 형성하는 방법
WO2014112688A1 (ko) 질소에 치환기가 없는 이민의 촉매적 제조 방법 및 생성된 이민의 이용
WO2014054889A1 (ko) 트리알콕시실란을 이용한 모노실란의 제조방법
WO2019088431A1 (ko) 세척액 조성물 및 이를 이용한 중합 장치 세척 방법
WO2016035945A1 (ko) 코어-쉘 나노 입자, 그 제조방법 및 이를 이용한 과산화수소 생산방법
WO2023075263A1 (ko) 비대칭형 포스페이트계 화합물의 제조방법
WO2024019487A1 (en) Novel molybdenum compound, method of producing the same, and method of producing molybdenum-containing thin film including the same
WO2019132144A1 (ko) N-치환 말레이미드 정제방법
WO2024071976A1 (en) Silicon precursor compound in asymmetric structure, method for preparing the same, and method for preparing a silicon-containing thin film
WO2022114782A1 (ko) 탄탈 화합물, 이의 제조방법 및 이를 포함하는 탄탈 함유 박막증착용 조성물
WO2022146091A1 (ko) 이소시아네이트 화합물의 제조 방법
WO2023277590A1 (ko) 알킬-d-알라니네이트의 제조방법, 알킬-d-알라니네이트, 알킬-d-알라니네이트 유도체, 및 이를 포함하는 의약품 또는 농업용품
WO2022255837A1 (ko) 유기 금속 화합물 제조방법 및 이를 이용하여 박막을 형성하는 방법

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2020552194

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20799077

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20799077

Country of ref document: EP

Kind code of ref document: A1