WO2019203407A1 - 원자층 증착용(ald), 화학 기상 증착용(cvd) 전구체 화합물 및 이를 이용한 ald/cvd 증착법 - Google Patents

원자층 증착용(ald), 화학 기상 증착용(cvd) 전구체 화합물 및 이를 이용한 ald/cvd 증착법 Download PDF

Info

Publication number
WO2019203407A1
WO2019203407A1 PCT/KR2018/012722 KR2018012722W WO2019203407A1 WO 2019203407 A1 WO2019203407 A1 WO 2019203407A1 KR 2018012722 W KR2018012722 W KR 2018012722W WO 2019203407 A1 WO2019203407 A1 WO 2019203407A1
Authority
WO
WIPO (PCT)
Prior art keywords
ntbu
precursor
thin film
group
och
Prior art date
Application number
PCT/KR2018/012722
Other languages
English (en)
French (fr)
Inventor
황정운
문기영
이주원
염규현
석장현
박정우
Original Assignee
주식회사 한솔케미칼
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 한솔케미칼 filed Critical 주식회사 한솔케미칼
Priority to EP18915619.3A priority Critical patent/EP3783002B1/en
Priority to US17/047,918 priority patent/US11472821B2/en
Priority to CN201880092457.6A priority patent/CN112020504B/zh
Priority to JP2020556227A priority patent/JP7184921B2/ja
Publication of WO2019203407A1 publication Critical patent/WO2019203407A1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F5/00Compounds containing elements of Groups 3 or 13 of the Periodic Table
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F5/00Compounds containing elements of Groups 3 or 13 of the Periodic Table
    • C07F5/06Aluminium compounds
    • C07F5/061Aluminium compounds with C-aluminium linkage
    • C07F5/062Al linked exclusively to C
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F3/00Compounds containing elements of Groups 2 or 12 of the Periodic Table
    • C07F3/06Zinc compounds
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F5/00Compounds containing elements of Groups 3 or 13 of the Periodic Table
    • C07F5/06Aluminium compounds
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/06Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of metallic material
    • C23C16/18Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of metallic material from metallo-organic compounds
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/34Nitrides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/40Oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45523Pulsed gas flow or change of composition over time
    • C23C16/45525Atomic layer deposition [ALD]
    • C23C16/45527Atomic layer deposition [ALD] characterized by the ALD cycle, e.g. different flows or temperatures during half-reactions, unusual pulsing sequence, use of precursor mixtures or auxiliary reactants or activations
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45523Pulsed gas flow or change of composition over time
    • C23C16/45525Atomic layer deposition [ALD]
    • C23C16/45553Atomic layer deposition [ALD] characterized by the use of precursors specially adapted for ALD
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02172Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides
    • H01L21/02175Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides characterised by the metal
    • H01L21/02178Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides characterised by the metal the material containing aluminium, e.g. Al2O3
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/0226Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
    • H01L21/02263Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase
    • H01L21/02271Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition
    • H01L21/0228Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition deposition by cyclic CVD, e.g. ALD, ALE, pulsed CVD

Definitions

  • the present invention relates to a novel precursor compound, and more particularly to a non-pyrophoric precursor compound capable of thin film deposition through atomic layer deposition (ALD) and chemical vapor deposition (CVD);
  • ALD atomic layer deposition
  • CVD chemical vapor deposition
  • the present invention relates to an ALD / CVD deposition method using the same.
  • Fabrication of Al 2 O 3 thin films using the ALD / CVD process is an important technique to solve the corrosion and moisture barrier of metal materials due to moisture, which is a challenge for organic electronic devices. In addition, it is also a technology applicable to passivation of intermediate insulators and solar cells.
  • TMA Al (CH 3 ) is used as a precursor for preparing Al 2 O 3 thin film using a conventional ALD / CVD process. 3
  • TMA has an ideal ALD thin film deposition rate.
  • TMA has spontaneous flammability, a fatal drawback.
  • the present application is to provide a novel precursor compound applicable to atomic layer deposition (ALD) and chemical vapor deposition (CVD) and a method for producing a thin film on which the precursor compound is deposited.
  • ALD atomic layer deposition
  • CVD chemical vapor deposition
  • the novel precursor compound of the present invention is composed of transition metals of Groups 12 and 13, and relates to a heteroretic novel precursor compound having various substituents, and the homomoleptic precursor compound having the same group is natural. Due to the disadvantage of having a pyrophoric nature, the present application may be an alternative compound, and has a high reactivity with various oxidants and thermal stability that does not decompose upon vaporization.
  • the precursor compound of the present application can provide aluminum oxide (Al 2 O 3 ) through atomic layer deposition (ALD) and chemical vapor deposition (CVD) together with ozone (O 3 ) or water (H 2 O), a wide It has a process temperature section (ALD window), it is possible to obtain a high purity quantitative metal oxide (Metal oxide) thin film, and has an excellent step coverage (Step coverage).
  • One aspect of the present application provides a compound represented by the following Chemical Formula 1.
  • N is 1 when M is a divalent transition metal of Group 12 on the periodic table
  • n 2
  • R 1 to R 5 are hydrogen, a substituted or unsubstituted linear or branched alkyl group having 1 to 4 carbon atoms, or an isomer thereof.
  • Another aspect of the present application provides a precursor including the compound represented by Chemical Formula 1.
  • Another aspect of the present application provides a thin film on which a precursor including the compound represented by Chemical Formula 1 is deposited.
  • Another aspect of the present application provides a method for preparing a thin film comprising introducing a precursor including a compound represented by Chemical Formula 1 into a reactor.
  • Heteroleptic composed of a transition metal of Group 12 (Zn; zinc) or Group 13 (Al; aluminum, Ga; gallium, In; indium) and an alkyl (Alkyl) group and an alkoxy amide group
  • a transition metal of Group 12 (Zn; zinc) or Group 13 (Al; aluminum, Ga; gallium, In; indium) and an alkyl (Alkyl) group and an alkoxy amide group One novel precursor compound is possible.
  • the precursor compound has a thin film deposition rate comparable to conventional TMA (Trimethylaluminum), can be used as a substitute for TMA (Trimethylaluminum) having a pyrophoric nature in the atmosphere, and a wide range of process temperature (ALD window)
  • the precursor compound has thermal stability that does not decompose upon vaporization, high reactivity with various oxidants, and a wide process temperature range (ALD window). Furthermore, a high purity quantitative metal oxide thin film can be obtained, and the step coverage has an excellent effect.
  • thermogravimetric analysis (TGA) graph comparing the properties of the novel precursor compounds of the present disclosure.
  • FIG. 2 is a graph showing a change in deposition rate according to precursor injection time for an atomic layer deposition process in which the compound of Comparative Example 1 and the compound of Example 1 used ozone (O 3 ) as an oxidizing agent, according to Preparation Example 1; It has a constant thin film deposition rate.
  • FIG. 3 relates to a variation of thin film deposition rate according to process temperature in an atomic layer deposition process using the compound of Comparative Example 1 and the compound of Example 1 using ozone (O 3 ) as an oxidizing agent according to Preparation Example 1.
  • Example 1 shows a stable thin film deposition rate according to the temperature, and thus has a wide process temperature range (ALD window).
  • Example 4 is an atomic layer deposition process of the compound of Example 1 and the compound of Example 1 using ozone (O 3 ) as the oxidizing agent according to Preparation Example 1, atomic layer deposition (ALD) of the compound of Example 1 It is a graph showing the component content in the resulting Al 2 O 3 thin film, which was measured by X-ray photoelectron spectroscopy (XPS).
  • XPS X-ray photoelectron spectroscopy
  • FIG. 5 is a graph showing changes in deposition rate of a thin film according to precursor injection time for an atomic layer deposition process in which a compound of Comparative Example 1 and a compound of Example 1 used water (H 2 O) as an oxidizing agent according to Preparation Example 2; FIG. It has a constant thin film deposition rate.
  • FIG. 6 relates to an atomic layer deposition process in which the compound of Comparative Example 1 and the compound of Example 1 use water (H 2 O) as an oxidizing agent, according to Preparation Example 2. As a result, it shows a stable thin film deposition rate, and thus has a wide range of process temperature range (ALD window).
  • H 2 O water
  • FIG. 7 shows the result of the atomic layer deposition process of the compound of Example 1 regarding the atomic layer deposition process in which the compound of Comparative Example 1 and the compound of Example 1 used water (H 2 O) as an oxidizing agent, according to Preparation Example 2.
  • Example 8 is an atomic layer deposition process using the compound of Example 1 and water (H 2 O) as the oxidizing agent according to Preparation Example 2, a graph of the Al 2 O 3 thin film thickness according to the number of deposition process cycle (cycle) to be.
  • FIG. 9 relates to an atomic layer deposition process using water (H 2 O) as a compound of Example 1 and an oxidant according to Preparation Example 2.
  • FIG. 9 is a graph showing deposition rates and densities of Al 2 O 3 thin films according to temperature.
  • FIG. 10 relates to an atomic layer deposition process using water (H 2 O) as a compound of Example 1 and an oxidizing agent, according to Preparation Example 2.
  • FIG. 10 shows a step coverage (TEM) observed by transmission electron microscopy (TEM). Step coverage) image.
  • TEM transmission electron microscopy
  • AR aspect ratio
  • One aspect of the present application provides a compound represented by the following Chemical Formula 1.
  • N is 1 when M is a divalent transition metal of Group 12 on the periodic table
  • n 2
  • R 1 to R 5 are hydrogen, a substituted or unsubstituted linear or branched alkyl group having 1 to 4 carbon atoms, or an isomer thereof.
  • M in Formula 1 may include one selected from the group consisting of Al, Zn, In, and Ga, but may not be limited thereto.
  • R 1 to R 5 of the general formula 1 is hydrogen, methyl group, ethyl group, n-propyl group, iso-propyl group, n-butyl group, iso-butyl group, sec-butyl group, tert It may include one selected from the group consisting of -butyl group and isomers thereof, but is not limited thereto.
  • M and R 1 to R 5 of the compound may be one or more selected from the group consisting of combinations described above, but is not limited thereto.
  • the precursor compound of Formula 1 may be a solid or liquid at room temperature.
  • it has high volatility and thermal stability, high reactivity with various oxidants, and a wide process temperature range (ALD window) in ALD processes.
  • the compound of Formula 1 may be a substitute for improving the pyrophoric which is a disadvantage of conventional commercialized compounds.
  • the compounds commercially available in existing are consists of deception alkyl (Alkyl) transition metal and copper group (Homoleptic), specifically, AlMe 3, AlEt 3, ZnMe 2 , ZnEt 2 GaMe 3, GaEt 3, InMe 3, InEt 3 ( Me: methyl, Et: ethyl).
  • Thin film deposition methods include atomic layer deposition (ALD) and chemical vapor deposition (CVD).
  • Atomic layer deposition is a technique of forming a thin film by a self-limiting reaction by alternately supplying the elements necessary for thin film formation. Atomic layer deposition allows the deposition of very thin films and precise control of the desired thickness and composition. Even a large-area substrate can form a film of uniform thickness, and exhibits excellent step coverage even at a high aspect ratio. In addition, the thin film has an advantage of less impurities.
  • Chemical vapor deposition is a technique of injecting a reactive gas into the reactor to apply a suitable activity and reaction energy to form a desired thin film on the substrate surface.
  • a reactive gas into the reactor to apply a suitable activity and reaction energy to form a desired thin film on the substrate surface.
  • it can be mass-produced, so it has low cost, and it is possible to deposit various kinds of elements and compounds, and the control range of process conditions is very wide, so that thin films of various characteristics can be easily obtained, and excellent step coverage (Step coverage) can be obtained.
  • the atomic layer deposition (ALD) and chemical vapor deposition (CVD) precursor composition comprises a compound represented by the formula (1).
  • M in Formula 1 may be a transition metal of Group 12 and 13 on the periodic table, preferably M may be one selected from the group consisting of Al, Zn, In and Ga
  • the present invention is not limited thereto.
  • R 1 to R 5 of the general formula 1 is hydrogen, methyl group, ethyl group, n-propyl group, iso-propyl group, n-butyl group, iso-butyl group, sec-butyl group, tert It may be one selected from the group consisting of -butyl group and isomers thereof, preferably R 1 is methyl group, R 2 R 3 is hydrogen or methyl group, R 4 is tert-butyl group, R 5 is methyl group or ethyl group It may be a compound characterized in that, more preferably Al (CH 3 ) 2 [CH 3 OC (CH 3 ) 2 CH 2 NtBu], Al (CH 3 ) 2 [CH 3 OCH (CH 3 ) CH 2 NtBu ], Al (CH 3 ) 2 [CH 3 OCH 2 CH 2 NtBu], Zn (CH 3 ) [CH 3 OCH 2 CH 2 NtBu], Zn (CH 3 ) [CH 3 ) [CH 3 OC [CH 3
  • Another aspect of the present application provides a precursor including the compound represented by Chemical Formula 1.
  • Another aspect of the present application provides a thin film on which a precursor including the compound represented by Chemical Formula 1 is deposited.
  • Another aspect of the present application provides a method of preparing a thin film comprising introducing a precursor including a compound represented by Chemical Formula 1 into a reactor.
  • the thin film manufacturing method of the present application provides an oxide film, a nitride film, or a metal film manufacturing method using an oxidizing agent, a nitriding agent or a reducing agent.
  • the ALD process temperature may be 80 °C to 400 °C, but is not limited thereto, the preferred process temperature is 130 °C to 320 °C.
  • the injection time of the precursor compound may be 0.2 seconds to 10 seconds, but is not limited thereto, the preferred injection time is 2 to 10 seconds in the O 3 process conditions, H 2 O process conditions 1 to 5 seconds.
  • the oxidant includes ozone (O 3 ), or water (H 2 O), but is not limited thereto.
  • Example 7 Zn (CH 3 ) [CH 3 OC (CH 3 ) 2 CH 2 NtBu] and [Example 8] Zn (Et) [CH 3 OC (CH 3 ) 2 CH 2 NtBu] are represented by Formula 3 ] Can be synthesized using the reaction scheme.
  • the measured property values can be confirmed through Table 2 below.
  • Examples 1 to 6 of the present application are all nonpyrophoric in the atmosphere and are solid or liquid at room temperature.
  • Example 1 prepared by the above Example (Al (CH 3 ) 2 [CH 3 OC (CH 3 ) 2 CH 2 NtBu]), Example 2 (Al (CH 3 ) 2 [CH 3 OCH (CH 3 ) CH 2 NtBu]) and Example 3 (Al (CH 3 ) 2 [CH 3 OCH 2 CH 2 NtBu]) were subjected to thermogravimetric analysis (TG analysis).
  • TG analysis thermogravimetric analysis
  • thermogravimetric analysis was alumina crucible with 50 ⁇ L capacity using the TGA / DSC 1 STAR e System from Mettler Toledo. The amount of all samples was used 10 mg, the measurement was carried out from 30 °C to 400 °C. Specific conditions and measured values for thermogravimetric analysis can be confirmed through the following Table 3 and FIG. 1.
  • the half-life [T 1/2 (° C)] of the precursors of Examples 1 to 3 of the present application is 132 ° C to 155 ° C.
  • Film formation evaluation was carried out by atomic layer deposition (ALD) of the precursor compound of Example 1 (Al (CH 3 ) 2 [CH 3 OC (CH 3 ) 2 CH 2 NtBu]) prepared by the above example.
  • ALD atomic layer deposition
  • the precursor compound of Example 1 Al (CH 3 ) 2 [CH 3 OC (CH 3 ) 2 CH 2 NtBu]
  • the oxidizing agent ozone (O 3 ) and water (H 2 O) were used, and an inert gas such as argon (Ar) or nitrogen (N 2 ) was used for purging purposes.
  • Injecting the precursor, argon, ozone or water and argon was one cycle and the deposition was carried out on a Si (silicon) wafer.
  • ozone (O) was used as an oxidizing agent during the process of the precursor compound of Example 1 (Al (CH 3 ) 2 [CH 3 OC (CH 3 ) 2 CH 2 NtBu]).
  • XPS X-ray photoelectron spectroscopy
  • water (H 2 O) was used as an oxidizing agent in the process of the precursor compound of Example 1 (Al (CH 3 ) 2 [CH 3 OC (CH 3 ) 2 CH 2 NtBu]).
  • Thin film deposition rate according to precursor injection time, thin film deposition rate according to process temperature, aluminum (Al), oxygen (O), carbon (C) in thin film deposited by X-ray photoelectron spectroscopy (XPS) analysis The content and the ratio of O / Al, the thickness of the thin film (Growth linearity) according to the deposition process cycle (cycle), the density of Al 2 O 3 with the temperature and the step coverage (Step coverage) were observed.
  • Example 1 Injection of a precursor compound exhibiting a constant thin film deposition rate in an atomic layer deposition (ALD) process of a precursor of Al (CH 3 ) 2 [CH 3 OC (CH 3 ) 2 CH 2 NtBu] and ozone (O 3 ) Time was measured to confirm the self-limiting reaction.
  • ALD atomic layer deposition
  • the precursor is a precursor of Example 1
  • the flow rate of argon (Ar) for purging the precursor was 100 sccm.
  • Ozone (O 3 ) as a reaction gas was injected at a concentration of 144 g / m 3 .
  • the precursor temperature was 40 °C
  • the carrier gas injection rate was 5 sccm
  • the process temperature was 260 °C
  • the number of processes was 200 cycles.
  • Comparative Example 1 precursor (0.2-2 seconds) -Ar (10 seconds) -O 3 (1.2 seconds) -Ar (10 seconds) was supplied in the order, and the flow rate of argon for purging the precursor was 500 sccm.
  • the reaction gas ozone was injected at a concentration of 144 g / m 3 .
  • the precursor temperature of Comparative Example 1 was 5 °C, the carrier gas injection amount was 10 sccm flow, the process temperature is 300 °C, the number of processes is 200 cycles.
  • Example 1 Determination of the thin film deposition rate at different temperatures during the atomic layer deposition (ALD) process of the precursor of Al (CH 3 ) 2 [CH 3 OC (CH 3 ) 2 CH 2 NtBu]) and ozone (O 3 ) Process temperature section (ALD window) was confirmed.
  • ALD atomic layer deposition
  • the precursor of Example 1 has a process temperature range (ALD window) having a constant thin film deposition rate from 150 °C to 320 °C.
  • Example 1 Element content according to process temperature during atomic layer deposition (ALD) process of Al (CH 3 ) 2 [CH 3 OC (CH 3 ) 2 CH 2 NtBu] and ozone (O 3 ) Atomic%) and Atomic ratio (O / Al) were measured by X-ray photoelectron spectroscopy (XPS) analysis.
  • ALD atomic layer deposition
  • XPS X-ray photoelectron spectroscopy
  • the process temperature range is 80 °C to 300 °C and the content of the quantitative Al 2 O 3 thin film according to the temperature was confirmed.
  • Example 1 A precursor of Al (CH 3 ) 2 [CH 3 OC (CH 3 ) 2 CH 2 NtBu] and a precursor compound exhibiting a constant thin film deposition rate in the atomic layer deposition (ALD) process of water (H 2 O) The self-limiting reaction was confirmed by measuring the injection time. Referring to FIG. 5, when the process temperature is 150 ° C., a uniform thin film deposition rate after 1 second of the process injection time of the precursor (TMA) of Comparative Example 1 is shown.
  • TMA atomic layer deposition
  • Example 7 the process was performed in Example 1, in the order of precursor (1-5 seconds) -Ar (20 seconds) -H 2 O (1.2 seconds) -Ar (20 seconds).
  • the flow rate of argon (Ar) for purging the precursor was 100 sccm.
  • Precursor temperature of Example 1 was 40 °C, the carrier gas injection amount was flowed 10 sccm, the temperature of the water oxidant is 10 °C, the process temperature is 150 °C, the total number of processes is 200 cycles.
  • the precursor of Comparative Example 1 when the precursor of Comparative Example 1, was supplied in the order of precursor (0.2 ⁇ 2 seconds)-Ar (10 seconds)-H 2 O (1.2 seconds)-Ar (10 seconds), purge of the precursor (Purge) Argon (Ar) flow rate was set to 500 sccm.
  • the precursor of Comparative Example 1 had a temperature of 5 ° C., a carrier gas injection amount of 10 sccm, a water temperature of oxidant 10 ° C., a process temperature of 150 ° C., and a total number of processes of 200 cycles.
  • Example 1 Determination of thin film deposition rate at different temperatures during atomic layer deposition (ALD) process of Al (CH 3 ) 2 [CH 3 OC (CH 3 ) 2 CH 2 NtBu] and water (H 2 O)
  • ALD window atomic layer deposition
  • the precursor of Example 1 shows a constant thin film deposition rate from 130 °C to 320 °C
  • the precursor of Comparative Example 1 shows a constant thin film deposition rate from 130 °C to 200 °C
  • the thin film deposition rate from 200 °C to 320 °C This tended to fall.
  • Table 8 and the foregoing description it can be seen that the precursor of Example 1 has a wider process temperature range (ALD window) than the precursor of Comparative Example 1.
  • the process temperature range (ALD window) of the precursor of Example 1 has a wider process temperature than the precursor (TMA) of the conventional commercialized Comparative Example 1.
  • the precursor injection amount of the precursor of Comparative Example 1 is 5 times more, the precursor injection time (sec) is 5 times shorter, the purge gas injection time is also 2 times shorter.
  • Example 1 Element Content According to Process Temperature in Atomic Layer Deposition (ALD) Process of Precursor (Al (CH 3 ) 2 [CH 3 OC (CH 3 ) 2 CH 2 NtBu]) and Water (H 2 O) (Atomic%) and Atomic ratio (O / Al ratio) were measured by X-ray photoelectron spectroscopy (XPS) analysis.
  • ALD Atomic Layer Deposition
  • the process temperature range is 150 °C to 300 °C and the content of the quantitative Al 2 O 3 thin film according to the temperature was confirmed.
  • ALD Atomic Layer Deposition
  • 8 is a graph showing the thickness change of the thin film according to the number of processes, and it can be seen that the film has a thin film deposition rate of 0.91 A / cycle at a temperature condition of 150 ° C. and 0.93 A / cycle at 300 ° C.
  • Example 1 The thin film according to the process temperature during the atomic layer deposition (ALD) process of the precursor of Al (CH 3 ) 2 [CH 3 OC (CH 3 ) 2 CH 2 NtBu] and water (H 2 O) Density tends to increase with increasing temperature, and it can be seen that the precursor of Example 1 has a better thin film density than the precursor of Comparative Example 1. This can be seen through FIG. 9 and Table 10. Table 10 relates to the density of Al 2 O 3 (Bulk) and the temperature-dependent density of the precursor (TMA) and water (H 2 O) of Comparative Example 1 during the atomic layer deposition process. Mater. 2004, 16, 639.
  • Example 1 Hole according to temperature during atomic layer deposition (ALD) process of precursor (Al (CH 3 ) 2 [CH 3 OC (CH 3 ) 2 CH 2 NtBu]) and water (H 2 O) Step coverage of the trench structure and trench structure was confirmed by transmission electron microscopy (TEM) measurement.
  • Process temperature was 150 degreeC or 300 degreeC
  • the aspect ratio in the hole structure was 26: 1
  • the aspect ratio in the trench structure was 40: 1.
  • the step coverage of the hole structure and the trench structure has a level of 98% or more at a temperature condition of 150 °C, 300 °C. Accordingly, it can be seen that the precursor of Example 1 has excellent step coverage in a wide temperature range.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Chemical Vapour Deposition (AREA)
  • Formation Of Insulating Films (AREA)

Abstract

본 발명은 전구체 화합물에 관한 것으로서, 보다 상세하게는 원자층 증착법(Atomic Layer Deposition; ALD) 또는 화학 기상 증착법(Chemical Vapor Deposition; CVD)을 통하여 박막 증착에 이용가능한 비발화성(Nonpyrophoric)의 전구체 화합물 및 이를 이용한 ALD/CVD 증착법에 관한 것이다. 

Description

원자층 증착용(ALD), 화학 기상 증착용(CVD) 전구체 화합물 및 이를 이용한 ALD/CVD 증착법
본 발명은 신규한 전구체 화합물에 관한 것으로서, 보다 상세하게는 원자층 증착법(Atomic Layer Deposition; ALD) 및 화학 기상 증착법(Chemical Vapor Deposition; CVD)을 통하여 박막 증착이 가능한 비발화성(Nonpyrophoric) 전구체 화합물 및 이를 이용한 ALD/CVD 증착법에 관한 것이다.
ALD/CVD 공정을 이용하여 Al2O3 박막을 제작하는 방법은 유기 전자 장치의 난제인 습기로 인한 금속 물질의 부식 방지 및 습기 차단을 해결해 줄 중요 기술이다. 뿐만 아니라, 중간 절연체, 태양전지의 부동화(passivation)에 적용 가능한 기술이기도 하다.
Al2O3 박막 공정 과정에서는 낮은 증착 온도를 요구하며, 실온보다 낮은 온도의 증착 기술이 요구되는데, 기존의 ALD/CVD 공정을 이용하여 Al2O3 박막 제조 전구체로서 TMA [Al(CH3)3]가 많이 상용화되고 있으며, TMA는 이상적인 ALD 박막 증착율을 가진다. 그러나, TMA는 치명적인 단점인 자연 발화성을 가지고 있다. 따라서, 산업 스케일의 큰 부피 제조에 있어서 안전한 전구체에 관한 연구는 계속되고 있다.
한편, 13족의 3가 전이금속으로 알루미늄(Al)을 포함한 비발화성 전구체 화합물 관련 연구로서 문헌 [Plasma-enhanced and thermal atomic layer deposition of Al2O3 using dimethylaluminum isopropoxide, [Al(CH3)2(μ-OiPr)]2, as an alternative aluminum precursor (J.Vac.Sci.Technol.A, 2012, 30(2), 021505-1)에 [Al(CH3)2(μ-OiPr)]2 (DMAI, iPr=isopropyl)의 제조방법이 개시된 바 있으나, ALD 공정 후 Al2O3 박막의 밀도가 낮은 단점이 있다.
따라서, 비발화성(Nonpyrophoric)을 가지며, 기화 후 분해되지 않는 열적 안정성 및 다양한 산화제, 질화제, 또는 환원제와 높은 반응성을 가지는 신규 전구체 화합물의 새로운 구조 설계를 통해, 구조적으로 안정하여 ALD/CVD 공정 시 폭넓은 온도 구간(ALD window)에서 박막을 형성할 수 있는 전구체 개발의 필요성이 대두되고 있다.
본원은 원자층 증착법(ALD) 및 화학 기상 증착법(CVD)에 적용가능한 신규 전구체 화합물 및 상기 전구체 화합물이 증착된 박막의 제조방법을 제공하고자 한다.
본원의 신규 전구체 화합물은 12족 및 13족의 전이금속으로 이루어져 있으며, 여러 치환기를 갖는 헤테로렙틱(Heteroleptic)한 신규 전구체 화합물에 관한 것으로서, 기존의 동일기를 가지는 호모렙틱(Homoleptic)한 전구체 화합물은 자연 발화적(Pyrophoric) 성격을 가지고 있는 단점이 있어, 본원은 이에 대한 대체 화합물이 될 수 있으며, 기화 시 분해되지 않는 열적 안정성 및 다양한 산화제와 높은 반응성을 가지고 있다.
또한, 본원의 전구체 화합물은 오존(O3) 또는 물(H2O)과 함께 원자층 증착법(ALD) 및 화학 기상 증착법(CVD)을 통해 알루미늄 옥사이드(Al2O3)를 제공 가능하며, 넓은 공정온도 구간(ALD window)을 가지며, 높은 순도의 정량적 금속 산화물(Metal oxide) 박막을 얻을 수 있으며, 단차 피복성(Step coverage)이 우수한 효과를 가진다.
그러나, 본원이 해결하고자 하는 과제는 이상에서 언급한 과제로 제한되지 않으며, 언급되지 않은 또 다른 과제들은 아래의 기재로부터 당업자에게 명확하게 이해될 수 있을 것이다.
본원의 일 측면은, 하기 화학식 1로서 표시되는 화합물을 제공한다.
[화학식 1]
Figure PCTKR2018012722-appb-I000001
상기 화학식 1에서,
M이 주기율표 상 12족의 2가 전이금속인 경우 n은 1이고,
M이 주기율표 상 13족의 3가 전이금속인 경우 n은 2이며,
R1 내지 R5는 수소, 치환 또는 비치환된 탄소수 1 내지 4의 선형 또는 분지형 알킬기 또는 이들의 이성질체이다.
본원의 다른 측면은, 상기 화학식 1로 표시되는 화합물을 포함하는 전구체를 제공한다.
본원의 또 다른 측면은, 상기 화학식 1로 표시되는 화합물을 포함하는 전구체가 증착된 박막을 제공한다.
본원의 또 다른 측면은, 상기 화학식 1로 표시되는 화합물을 포함하는 전구체를 반응기에 도입하는 단계를 포함하는 박막의 제조방법을 제공한다.
본원에 의하면, 12족 (Zn;아연) 또는 13족 (Al;알루미늄,Ga;갈륨,In;인듐)의 전이 금속과 알킬(Alkyl)기 및 알콕시 아마이드(Alkoxy amide)기로 이루어진 헤테로렙틱(Heteroleptic)한 신규 전구체 화합물을 제조가 가능하다. 상기 전구체 화합물은 기존의 TMA(Trimethylaluminum)와 견줄만한 박막증착율을 가지며, 대기 중에서 자연 발화적(Pyrophoric) 성격을 가지는 TMA(Trimethylaluminum)의 대체물로 사용 가능하며, 넓은 범위의 공정온도(ALD window)를 가진다.
또한, 상기 전구체 화합물은 기화 시 분해되지 않는 열적 안정성, 다양한 산화제와 높은 반응성 및 넓은 공정온도 구간(ALD window)을 가진다. 더 나아가, 높은 순도의 정량적(Stoichiometric) 금속 산화물(Metal oxide) 박막을 얻을 수 있으며, 단차 피복성(Step coverage)이 우수한 효과를 가진다.
도 1은 본원의 신규 전구체 화합물들의 특성을 비교한 열중량분석(Thermogravimetric analysis; TGA) 그래프이다.
도 2는 제조예1에 따라, 비교예1의 화합물과 실시예1의 화합물이 산화제로 오존(O3)을 사용한 원자층 증착공정에 관한, 전구체 주입시간에 따른 박막 증착율 변화를 나타낸 그래프로서, 일정한 박막 증착율을 가진다.
도 3은 제조예1에 따라, 비교예1의 화합물과 실시예1의 화합물이 산화제로 오존(O3)을 사용한 원자층 증착공정에 관한, 공정온도에 따른 박막 증착율 변화에 관한 것으로 본원의 실시예1은 온도에 따라 안정적인 박막 증착율을 보이며 따라서, 넓은 공정온도 구간(ALD window)을 가진다.
도 4는 제조예1에 따라, 비교예1의 화합물과 실시예1의 화합물이 산화제로 오존(O3)을 사용한 원자층 증착공정에 관한 것으로, 실시예1의 화합물의 원자층 증착(ALD) 공정 후 결과물인 Al2O3 박막 내 성분 함량을 나타낸 그래프로서, X선 광전자 분광법(X-ray Photoelectron Spectroscopy; XPS)으로 측정하였다.
도 5는 제조예2에 따라, 비교예1의 화합물과 실시예1의 화합물이 산화제로 물(H2O)을 사용한 원자층 증착공정에 관한, 전구체 주입시간에 따른 박막 증착율 변화를 나타낸 그래프로서, 일정한 박막 증착율을 가진다.
도 6은 제조예2에 따라, 비교예1의 화합물과 실시예1의 화합물이 산화제로 물(H2O)을 사용한 원자층 증착공정에 관한 것으로, 본원의 실시예1의 화합물은 공정온도에 따라 안정적인 박막 증착율을 보이며 따라서, 넓은 범위의 공정온도 구간(ALD window)을 가진다.
도 7은 제조예2에 따라, 비교예1의 화합물과 실시예1의 화합물이 산화제로 물(H2O)을 사용한 원자층 증착공정에 관한, 실시예1의 화합물의 원자층 증착공정 후 결과물인 Al2O3 박막 내 성분 함량을 나타낸 그래프로서, X선 광전자 분광법으로 측정하였다.
도 8은 제조예2에 따라, 실시예1의 화합물과 산화제로 물(H2O)을 사용한 원자층 증착공정에 관한 것으로, 증착공정 횟수(cycle)에 따른 Al2O3 박막 두께에 관한 그래프이다.
도 9는 제조예2에 따라, 실시예1의 화합물과 산화제로 물(H2O)을 사용한 원자층 증착공정에 관한 것으로, 온도에 따른 Al2O3 박막 증착율 및 밀도를 나타낸 그래프이다.
도 10은 제조예2에 따라, 실시예1의 화합물과 산화제로 물(H2O)을 사용한 원자층 증착공정에 관한 것으로, 투과 전자 현미경(Transmission electron microscopy; TEM)으로 관찰한 단차 피복성(Step coverage) 이미지이다. 공정 온도는 150℃ 또는 300℃일 때이며, 홀구조와 트랜치 구조를 관측하였다. 홀구조의 종횡비(Aspect ratio, AR)은 26:1이며, 트랜치 구조의 종횡비는 40:1이다.
 이하, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 본 발명의 실시예에 대하여 상세히 설명한다. 그러나 본 발명은 여러 가지 상이한 형태로 구현될 수 있으며, 여기에서 설명하는 실시예에 한정되지 않는다.
본원의 일 측면은 하기 화학식 1로서 표시되는 화합물을 제공한다.
[화학식 1]
Figure PCTKR2018012722-appb-I000002
상기 화학식 1에서,
M이 주기율표 상 12족의 2가 전이금속인 경우 n은 1이고,
M이 주기율표 상 13족의 3가 전이금속인 경우 n은 2이며,
R1 내지 R5는 수소, 치환 또는 비치환된 탄소수 1 내지 4의 선형 또는 분지형 알킬기 또는 이들의 이성질체이다.
본원의 일 구현예에 있어서, 상기 화학식 1의 M은 Al, Zn, In 및 Ga로 이루어진 군에서 선택되는 1종을 포함할 수 있으나, 이에 제한되지 않을 수 있다.
본원의 일 구현예에 있어서, 상기 화학식 1의 R1 내지 R5는 수소, 메틸기, 에틸기, n-프로필기, iso-프로필기, n-부틸기, iso-부틸기, sec-부틸기, tert-부틸기 및 이들의 이성질체로 이루어진 군에서 선택되는 1종을 포함할 수 있으나, 이에 제한되는 것은 아니다.
상기 화합물의 M 및 R1 내지 R5는 상기 기재한 이들의 조합들로 이루어진 군에서 선택되는 1종 이상일 수 있으나, 이에 제한되는 것은 아니다.
본원의 일 구현예에 있어서, 상기 화학식 1의 전구체 화합물은 상온에서 고체 또는 액체일 수 있다. 또한, 휘발성과 열적 안정성이 높고, 다양한 산화제와 함께 높은 반응성 및 ALD 공정 시 넓은 공정온도 구간 (ALD window)를 가진다.
본원의 일 구현예에 있어서, 상기 화학식 1의 화합물은 기존의 상용화된 화합물의 단점인 발화성(Pyrophoric)을 개선하는 대체물이 될 수 있다. 기존의 상용화된 화합물들은 전이금속 및 동일기(Homoleptic)인 알킬(Alkyl)기만으로 이루어져있으며, 구체적으로는 AlMe3, AlEt3, ZnMe2, ZnEt2 GaMe3, GaEt3, InMe3, InEt3 (Me: 메틸, Et: 에틸)가 있다.
박막 증착법에는 원자층 증착법(Atomic Layer Deposition, ALD)과 화학 기상 증착법(Chemical Vapor Deposition, CVD)이 있다,
원자층 증착법은 박막 형성에 필요한 원소를 번갈아 공급하여 자기제한적 반응 (Self-limiting reaction)에 의해 박막을 형성 시키는 기술이다. 원자층 증착법은 매우 얇은 막을 증착할 수 있으며, 원하는 두께와 조성을 정밀하게 제어할 수 있다. 대면적의 기판에서도 균일한 두께의 막을 형성할 수 있으며, 높은 종횡비에서도 우수한 단차 피복성(Step coverage)를 나타낸다. 또한, 박막에 불순물이 적다는 장점을 가지고 있다.
화학 기상 증착법은 반응성의 가스(gas)를 반응기에 주입하여 적당한 활성 및 반응에너지를 가하여 기판 표면에 원하는 박막을 형성하는 기술이다. 공정 시, 대량 생산이 가능하여 비용이 적은 장점이 있으며, 여러 가지 종류의 원소 및 화합물의 증착이 가능하며, 공정 조건의 제어 범위가 매우 넓어 다양한 특성의 박막을 쉽게 얻을 수 있고, 우수한 단차 피복성(Step coverage)를 얻을 수 있다.
본원의 일 구현예에 있어서, 상기 원자층 증착용(ALD) 및 화학 기상 증착용(CVD) 전구체 조성물은 화학식 1로서 표시되는 화합물을 포함한다.
[화학식 1]
Figure PCTKR2018012722-appb-I000003
본원의 일 구현예에 있어서, 상기 화학식 1의 M은 주기율표 상 12족 및 13족의 전이금속일 수 있으며, 바람직하게는 M은 Al, Zn, In 및 Ga로 이루어진 군에서 선택되는 1종일 수 있으나, 이에 제한되는 것은 아니다.
본원의 일 구현예에 있어서, 상기 화학식 1의 R1 내지 R5는 수소, 메틸기, 에틸기, n-프로필기, iso-프로필기, n-부틸기, iso-부틸기, sec-부틸기, tert-부틸기 및 이들의 이성질체로 이루어진 군에서 선택되는 1종일 수 있으며, 바람직하게는 R1은 메틸기, R2 R3는 수소 또는 메틸기, R4는 tert-부틸기, R5은 메틸기 또는 에틸기인 것을 특징으로 하는 화합물일 수 있으며, 더 바람직하게는 Al(CH3)2[CH3OC(CH3)2CH2NtBu], Al(CH3)2[CH3OCH(CH3)CH2NtBu], Al(CH3)2[CH3OCH2CH2NtBu], Zn(CH3)[CH3OCH2CH2NtBu], Zn(CH3)[CH3OC(CH3)2CH2NtBu], Zn(Et)[CH3OC(CH3)2CH2NtBu], In(CH3)2[CH3OCH2CH2NtBu], Ga(CH3)2[CH3OCH2CH2NtBu] (Et: 에틸, tBu: tert-부틸)로 이루어진 군에서 선택되는 1종일 수 있으며, 이에 제한되는 것은 아니다.
본원의 다른 측면은, 상기 화학식 1로 표시되는 화합물을 포함하는 전구체를 제공한다.
본원의 다른 측면은, 상기 화학식 1로 표시되는 화합물을 포함하는 전구체가 증착된 박막을 제공한다.
본원의 다른 측면은, 상기 화학식 1로 표시되는 화합물을 포함하는 전구체를 반응기에 도입하는 단계를 포함하는 박막의 제조방법을 제공한다. 또한, 본원의 박막 제조방법은 산화제, 질화제 또는 환원제를 사용하여 산화막, 질화막, 또는 금속막 제조방법을 제공한다.
본원의 일 구현예에 있어서, 상기 ALD 공정 온도는 80℃ 내지 400℃ 일 수 있으나, 이에 제한되는 것은 아니며, 바람직한 공정 온도는 130℃ 내지 320℃이다.
본원의 일 구현예에 있어서, 상기 전구체 화합물의 주입 시간은 0.2초 내지 10초일 수 있으나, 이에 제한되는 것은 아니며, 바람직한 주입 시간은 O3 공정 조건에서는 2 내지 10초 이며, H2O 공정 조건에서는 1 내지 5초이다.
본원의 일 구현예에 있어서, 상기 산화제는 오존(O3), 또는 물(H2O)을 포함하는 것으로, 이에 제한되는 것은 아니다.
이하, 실시예를 이용하여 본원을 좀더 구체적으로 설명하지만, 본원이 이에 제한되는 것은 아니다.
본 실시예의 일반적인 합성방법은 하기 식1과 같다.
[식 1]
Figure PCTKR2018012722-appb-I000004
본 실시예의 M(전이금속)이 Al(알루미늄)일 경우의 합성 방법은 하기 식2와 같다.
[식 2]
Figure PCTKR2018012722-appb-I000005
[실시예 1] Al(CH3)2[CH3OC(CH3)2CH2NtBu]의 제조
리간드 CH3OC(CH3)2CH2NHtBu 1당량을 -78℃의 헥산 또는 헵탄에 용해된 2M Al(Me)3 1당량에 첨가하고, 서서히 상온으로 온도를 높인 후, 약 16 시간 교반한다. 상기 반응을 완료하고, 진공 하에서 용매를 제거한다. 수득한 화합물을 감압 증류하여, 무색 액체인 전구체 Al(CH3)2[CH3OC(CH3)2CH2NtBu]를 수득한다. 1H NMR(C6D6):δ2.75 (Al(CH3)2[CH3OC(CH3)2CH2NtBu], s, 2H), 2.63 (Al(CH3)2[CH3OC(CH3)2CH2NtBu], s, 3H), 1.28 Al(CH3)2[CH3OC(CH3)2CH2NtBu], s, 9H), 0.83 (Al(CH3)2[CH3OC(CH3)2CH2NtBu], s, 6H), -0.43 (Al(CH3)2[CH3OC(CH3)2CH2NtBu], s, 6H).
[실시예 2] Al(CH3)2[CH3OCH(CH3)CH2NtBu]의 제조
리간드 CH3OCH(CH3)CH2NHtBu 1당량을 -78℃의 헥산 또는 헵탄에 용해된 2M Al(Me)3 1당량에 첨가하고, 서서히 상온으로 온도를 높인 후, 약 16 시간 교반한다. 상기 반응을 완료하고, 진공 하에서 용매를 제거한다. 수득한 화합물을 감압 증류하여, 무색 액체인 전구체 Al(CH3)2[CH3OCH(CH3)CH2NtBu]를 수득한다. 1H NMR(C6D6):δ3.40-3.32 (Al(CH3)2[CH3OCH(CH3)CH2NtBu], m, 1H), 2.88 (Al(CH3)2[CH3OCH(CH3)CH2NtBu], dd, J1 = 11.1 Hz, J2 = 4.7 Hz, 1H), 2.69-2.65 (Al(CH3)2[CH3OCH(CH3)CH2NtBu], m, 1H), 2.66 (Al(CH3)2[CH3OCH(CH3)CH2NtBu], s, 3H), 1.29 (Al(CH3)2[CH3OCH(CH3)CH2NtBu], s, 9H), 0.68 (Al(CH3)2[CH3OCH(CH3)CH2NtBu], d, J = 5.8 Hz, 3H), -0.40 (Al(CH3)2[CH3OCH(CH3)CH2NtBu], s, 3H), -0.44 (Al(CH3)2[CH3OCH(CH3)CH2NtBu], s, 3H).
[실시예 3] Al(CH3)2[CH3OCH2CH2NtBu]의 제조
리간드 CH3OCH2CH2NHtBu 1당량을 -78℃의 헥산 또는 헵탄에 용해된 2M Al(Me)3 1당량에 첨가하고, 서서히 상온으로 온도를 높인 후, 약 16 시간 교반한다. 상기 반응을 완료하고, 진공 하에서 용매를 제거한다. 수득한 화합물을 감압 증류하여, 무색 액체인 전구체 Al(CH3)2[CH3OCH2CH2NtBu] 를 수득한다. 1H NMR(C6D6):δ3.09 (Al(CH3)2[CH3OCH2CH2NtBu], t, J = 6.9 Hz, 2H), 2.79 (Al(CH3)2[CH3OCH2CH2NtBu], t, J = 6.9 Hz, 2H), 2.62 (Al(CH3)2[CH3OCH2CH2NtBu], s, 3H), 1.28 (Al(CH3)2[CH3OCH2CH2NtBu], s, 9H), -0.44 (Al(CH3)2[CH3OCH2CH2NtBu], s, 6H).
본 실시예의 M(전이금속)이 Zn(아연)일 경우의 합성 방법은 하기 식3과 같다.
[식 3]
Figure PCTKR2018012722-appb-I000006
[실시예 4] Zn(CH3)[CH3OCH2CH2NtBu]의 제조
리간드 CH3OCH2CH2NHtBu 1당량을 -78℃의 톨루엔에 용해된 1.2M Zn(Me)2 1당량에 첨가하고, 서서히 상온으로 온도를 높인 후, 약 16 시간 교반한다. 상기 반응을 완료하고, 진공 하에서 용매를 제거한다. 수득한 화합물을 감압 증류하여, 흰색 고체인 전구체 Zn(CH3)[CH3OCH2CH2NtBu] 를 수득한다. 1H NMR(C6D6):δ 3.01-2.96 (Zn(CH3)[CH3OCH2CH2NtBu], m, 2H), 2.99 (Zn(CH3)[CH3OCH2CH2NtBu], s, 3H), 2.33-2.29 (Zn(CH3)[CH3OCH2CH2NtBu], m, 2H), 0.91 (Zn(CH3)[CH3OCH2CH2NtBu], s, 9H), -0.39 (Zn(CH3)[CH3OCH2CH2NtBu], s, 3H)
본 실시예의 M(전이금속)이 In(인듐)일 경우의 합성 방법은 하기 식4와 같다.
[식 4]
Figure PCTKR2018012722-appb-I000007
[실시예 5] In(CH3)2[CH3OCH2CH2NtBu]의 제조
리간드 CH3OCH2CH2NHtBu 1당량을 -78℃의 Toluene에 용해된 In(Me)3·EtO2 1당량에 첨가하고, 서서히 상온으로 온도를 높인 후, 약 16시간 동안 110℃로 가열한다. 상기 반응을 완료하고, 진공 하에서 용매를 제거한다. 수득한 화합물을 감압 증류하여, 무색 액체인 전구체 In(CH3)2[CH3OCH2CH2NtBu]를 수득한다. 1H NMR(C6D6):δ3.21 (In(CH3)2[CH3OCH2CH2NtBu], t, J = 5.5 Hz, 2H), 2.99 (In(CH3)2[CH3OCH2CH2NtBu], s, 3H), 2.48-2.43 (In(CH3)2[CH3OCH2CH2NtBu], m, 2H), 0.85 (In(CH3)2[CH3OCH2CH2NtBu], s, 9H), 0.00 (In(CH3)2[CH3OCH2CH2NtBu], s, 6H).
본 실시예의 M(전이금속)이 Ga(갈륨)일 경우의 합성 방법은 하기 식5와 같다.
[식 5]
Figure PCTKR2018012722-appb-I000008
[실시예 6] Ga(CH3)2[CH3OCH2CH2NtBu]의 제조
리간드 CH3OCH2CH2NHtBu 1당량을 -78℃의 Toluene에 용해된 Ga(Me)3·EtO2 1당량에 천천히 첨가한 후, 서서히 온도를 높여 약 16 시간동안 110℃로 가열한다. 상기 반응을 완료하고, 진공 하에서 용매를 제거한다. 수득한 화합물을 감압 증류하여, 무색 액체인 전구체 Ga(CH3)2[CH3OCH2CH2NtBu]를 수득한다. 1H NMR(C6D6):δ3.21 (Ga(CH3)2[CH3OCH2CH2NtBu], t, J = 5.2 Hz, 2H), 3.00 (Ga(CH3)2[CH3OCH2CH2NtBu], s, 3H), 2.55-2.51 (Ga(CH3)2[CH3OCH2CH2NtBu], m, 2H), 0.92 (Ga(CH3)2[CH3OCH2CH2NtBu], s, 9H), 0.00 (Ga(CH3)2[CH3OCH2CH2NtBu], s, 6H).
또한, [실시예 7] Zn(CH3)[CH3OC(CH3)2CH2NtBu] 및 [실시예 8] Zn(Et)[CH3OC(CH3)2CH2NtBu]은 [식 3]의 반응식을 이용하여 합성할 수 있었다.
상기 합성된 실시예 및 비교예의 구조식은 하기 표1과 같다.
[표 1]
Figure PCTKR2018012722-appb-I000009
[실험예 1] 전구체 화합물들의 물성 측정
상기 실시예에 의해 제조된 Al(CH3)2[CH3OC(CH3)2CH2NtBu], Al(CH3)2[CH3OCH(CH3)CH2NtBu] 및 Al(CH3)2[CH3OCH2CH2NtBu] 전구체 화합물들의 물성 측정을 실시하였다. 물성으로는 실온시의 상태, 끓는점 및 자연 발화성에 대해서 측정하였다.
상기 물성 측정 값은 하기 표 2를 통해 확인 가능하다.
[표 2]
Figure PCTKR2018012722-appb-I000010
상기 표2를 통해 알 수 있듯이, 본원의 실시예 1 내지 6은 대기에서 모두 비발화성(Nonpyrophoric)을 가지며, 상온에서 고체 또는 액체이다.
[실험예 2] 전구체 화합물들의 열중량분석(TG analysis)
상기 실시예에 의해 제조된 실시예1(Al(CH3)2[CH3OC(CH3)2CH2NtBu]), 실시예2(Al(CH3)2[CH3OCH(CH3)CH2NtBu]) 및 실시예3(Al(CH3)2[CH3OCH2CH2NtBu])인 전구체 화합물들의 열중량분석(TG analysis)을 실시하였다.
열중량분석(TGA) 분석 시 사용 된 기기는 Mettler Toledo사의 TGA/DSC 1 STARe System으로 50μL용량의 알루미나 도가니(Alumina crucible)를 사용하였다. 모든 시료의 양은 10 mg을 사용하였고, 30℃에서 400℃까지 측정을 실시하였다. 열중량분석에 대한 구체적인 조건 및 측정값은 하기 표 3 및 도 1을 통해 확인 가능하다.
[표 3]
Figure PCTKR2018012722-appb-I000011
상기 표3에서와 같이, 본원의 실시예 1 내지 3의 전구체의 반감기[T1/2 (℃)]는 132℃ 내지 155℃이다. 또한, 300℃에서는 잔류량이 거의 없으며, 기화시 분해됨 없이 열적 안정성을 가진다.
[제조예] 전구체 화합물의 원자층 증착(ALD) 공정을 통한 성막 평가
상기 실시예에 의해 제조된 실시예1(Al(CH3)2[CH3OC(CH3)2CH2NtBu])인 전구체 화합물의 원자층 증착법(ALD)을 통한 성막 평가를 진행 하였다. 산화제로는 오존(O3) 및 물(H2O)을 사용하였고, 불활성 기체인 아르곤(Ar) 또는 질소(N2) 등을 퍼지 목적으로 사용하였다. 전구체, 아르곤, 오존 또는 물 그리고 아르곤을 주입하는 것을 한 싸이클로 하였으며 증착은 Si(실리콘)웨이퍼 상에서 수행하였다.
제조예 1에 의해서 제조된 박막에 대해서는 성막 평가 항목으로 상기 실시예1(Al(CH3)2[CH3OC(CH3)2CH2NtBu])의 전구체 화합물의 공정시 산화제로 오존(O3)를 사용하였을 경우의 전구체 주입시간에 따른 박막 증착율 변화, 공정온도에 따른 박막 증착율 변화 및 XPS(X-ray photoelectron spectroscopy) 분석을 통한 증착한 박막 내 알루미늄(Al), 산소(O), 탄소(C) 함유량 및 O/Al의 비율을 평가하였다.
제조예2에 의해서 제조된 박막에 대해서는 상기 실시예1(Al(CH3)2[CH3OC(CH3)2CH2NtBu])의 전구체 화합물의 공정시 산화제로 물(H2O)을 사용하였을 경우의 전구체 주입시간에 따른 박막 증착율 변화, 공정온도에 따른 박막 증착율 변화, XPS(X-ray photoelectron spectroscopy) 분석을 통한 증착한 박막 내 알루미늄(Al), 산소(O), 탄소(C) 함유량 및 O/Al의 비율, 증착공정 횟수(cycle)에 따른 박막 두께 변화(Growth linearity), 온도에 따른 Al2O3의 밀도 및 단차 피복성(Step coverage)을 관측하였다.
[제조예1] 실시예1의 전구체와 산화제로 O3를 사용한 원자층 증착 공정을 통한 성막 평가
< 전구체 주입시간에 따른 박막 증착율 변화 (Saturation) >
실시예1(Al(CH3)2[CH3OC(CH3)2CH2NtBu])의 전구체와 오존(O3)의 원자층 증착(ALD) 공정 시 일정한 박막 증착율을 나타내는 전구체 화합물의 주입시간을 측정하여 자기제한적 반응(Self-limiting reaction)을 확인하였다.
도2를 살펴보면, 비교예1(TMA)의 전구체의 공정 온도가 300℃일 때, 공정 주입시간은 1초 이후, 실시예1의 전구체 공정 온도가 260℃일 때, 공정 주입시간 4초 이후에 일정한 박막 증착율을 보인다.
[표 4]
Figure PCTKR2018012722-appb-I000012
상기 표4에서 알 수 있듯이, 공정의 과정은 실시예1 의 전구체일 때, 전구체(2~10초)-Ar(10초)-O3(3초)-Ar(10초)의 순서로 공급하였으며, 전구체의 퍼지(Purge)를 위한 아르곤(Ar)의 유량은 100 sccm으로 하였다. 반응 가스인 오존(O3)은 144g/m3 농도로 주입하였다. 전구체의 온도는 40℃이며, 캐리어 가스 주입량은 5 sccm을 흘려주었으며 공정온도는 260℃이며, 공정횟수는 200 cycle이다.
또한, 비교예1 일때, 전구체(0.2~2초)-Ar(10초)-O3(1.2초)-Ar(10초)의 순서로 공급하였으며, 전구체의 퍼지를 위한 아르곤의 유량은 500 sccm이며, 반응가스인 오존은 144g/m3 농도로 주입하였다. 비교예1의 전구체 온도는 5℃이며, 캐리어 가스 주입량은 10 sccm을 흘려주었으며, 공정온도는 300℃이며, 공정 횟수는 200 cycle이다.
< 공정 온도에 따른 박막 증착율 변화(ALD window) >
실시예1(Al(CH3)2[CH3OC(CH3)2CH2NtBu])의 전구체와 오존(O3)의 원자층 증착(ALD) 공정 시 상이한 온도에 따른 박막 증착율을 측정하여 공정 온도 구간(ALD window)을 확인하였다. 도3을 살펴보면, 실시예1의 전구체는 150℃ 내지 320℃까지 일정한 박막 증착율을 가지는 공정온도 구간(ALD window)을 가짐을 알 수 있다.
[표 5]
Figure PCTKR2018012722-appb-I000013
상기 표5을 통해, 실시예1의 전구체의 공정 온도 범위(ALD window)가 기존의 상용화된 비교예1의 전구체(TMA)와 견줄 만한 넓은 범위의 공정온도 구간을 가짐을 알 수 있다.
< Al2O3 박막 내 원소 함량, O/Al의 비율(Ratio)>
실시예1(Al(CH3)2[CH3OC(CH3)2CH2NtBu])의 전구체와 오존(O3)의 원자층 증착(ALD) 공정 진행 시, 공정 온도에 따른 원소 함량(Atomic %) 및 원소 비율(Atomic ratio, O/Al)을 XPS (X-ray photoelectron spectroscopy) 분석을 통해 측정하였다.
도 4를 살펴보면, 공정 온도 범위는 80℃ 내지 300℃이며 온도에 따른 정량적 Al2O3 박막의 함량을 확인하였다.
[표 6]
Figure PCTKR2018012722-appb-I000014
상기 표6을 살펴보면, 저온에서도 C(탄소)의 함량은 관측되지 않았으며, 온도가 증가할수록 Al(알루미늄)의 함량은 높아지고, O(산소)의 함량은 떨어져, O/Al의 비율이 감소하는 것을 알 수 있다.
[제조예2] 실시예1의 전구체와 산화제로 H2O를 사용한 원자층 증착 공정을 통한 성막 평가
< 전구체 주입시간에 따른 박막 증착율 변화(Saturation) >
실시예1(Al(CH3)2[CH3OC(CH3)2CH2NtBu])의 전구체와 물(H2O)의 원자층 증착(ALD) 공정 시 일정한 박막 증착율을 나타내는 전구체 화합물의 주입시간을 측정하여 자기제한적 반응(Self-limiting reaction)을 확인하였다. 도5를 살펴보면, 공정 온도가 150℃일 때, 비교예1의 전구체(TMA)의 공정 주입시간 1초 이후에 일정한 박막 증착율을 보인다.
[표 7]
Figure PCTKR2018012722-appb-I000015
상기 표7에서 알 수 있듯이, 공정의 과정은 실시예1 일 때, 전구체(1~5초)-Ar(20초)-H2O(1.2초)-Ar(20초)의 순서로 공급하였으며, 전구체의 퍼지(Purge)를 위한 아르곤(Ar)의 유량은 100 sccm으로 하였다. 실시예1의 전구체의 온도는 40℃이며, 캐리어 가스 주입량은 10 sccm을 흘려주었으며 산화제인 물의 온도는 10℃이며, 공정온도는 150℃이며, 총 공정 횟수는 200 cycle이다.
또한, 비교예 1의 전구체일 때, 전구체(0.2~2초)-Ar(10초)-H2O(1.2초)-Ar(10초)의 순서로 공급하였으며, 전구체의 퍼지(Purge)를 위한 아르곤(Ar)의 유량은 500 sccm으로 하였다. 비교예1의 전구체의 온도는 5℃이며, 캐리어 가스 주입량은 10 sccm을 흘려주었으며 산화제인 물의 온도는 10℃이며, 공정온도는 150℃이며, 총 공정횟수는 200 cycle이다.
< 공정온도에 따른 박막 증착율 변화(ALD window) >
실시예1(Al(CH3)2[CH3OC(CH3)2CH2NtBu])의 전구체와 물(H2O)의 원자층 증착(ALD) 공정 시 상이한 온도에 따른 박막 증착율을 측정하여 공정 온도 구간(ALD window)을 확인하였다. 도6을 살펴보면, 실시예1의 전구체는 130℃ 내지 320℃까지 일정한 박막 증착율을 보이지만, 비교예1의 전구체는 130℃ 내지 200℃까지는 일정한 박막 증착율을 보이는 반면, 200℃ 내지 320℃에서는 박막 증착율이 떨어지는 경향을 보였다. 표 8 및 앞선 설명을 통해, 비교예1의 전구체보다 실시예1의 전구체가 더 넓은 공정온도 구간(ALD window)를 가진다는 것을 알 수 있다.
[표 8]
Figure PCTKR2018012722-appb-I000016
상기 표8 및 앞선 설명을 통해, 실시예1의 전구체의 공정 온도 범위(ALD window)가 기존의 상용화된 비교예1의 전구체(TMA)보다 넓은 범위의 공정온도를 가짐을 알 수 있다. 또한, 공정 온도 범위 측정 시, 비교예 1의 전구체의 퍼지가스 주입량이 5배 많으며, 전구체 주입 시간(sec)은 5배 짧고, 퍼지가스 주입시간 또한 2배 짧다.
< Al2O3 박막 내 원소 함량, O/Al의 비율(Ratio) >
실시예1(Al(CH3)2[CH3OC(CH3)2CH2NtBu])인 전구체와 물(H2O)의 원자층 증착(ALD) 공정 진행 시, 공정 온도에 따른 원소 함량(Atomic %) 및 원소 비율(Atomic ratio, O/Al ratio)을 XPS (X-ray photoelectron spectroscopy) 분석을 통해 측정하였다.
도 7를 살펴보면, 공정 온도 범위는 150℃ 내지 300℃이며 온도에 따른 정량적 Al2O3 박막의 함량을 확인하였다.
[표 9]
Figure PCTKR2018012722-appb-I000017
상기 표9를 살펴보면, 150℃, 300℃온도 조건에서 Al(알루미늄) 및 O(산소)의 함량 및 O/Al의 비율이 유사하다는 것을 확인할 수 있다.
< 공정 횟수에 따른 박막 두께 변화(Growth linearity) >
실시예1(Al(CH3)2[CH3OC(CH3)2CH2NtBu])의 전구체와 물(H2O)의 원자층 증착(ALD) 공정 진행 시, 증착공정 횟수(cycle)에 따른 박막 두께 변화는 150℃ 또는 300℃ 온도 조건에서 유사한 경향을 갖는다. 도 8은 공정 횟수에 따른 박막 두께 변화를 그래프로 나타낸 것이며, 온도 조건 150℃ 에서는 0.91 A/cycle, 300℃에서는 0.93 A/cycle의 박막 증착율을 갖는다는 것을 알 수 있다.
< 상이한 온도에 따른 Al2O3 박막의 밀도(Film density by XRR) >
실시예1(Al(CH3)2[CH3OC(CH3)2CH2NtBu])의 전구체와 물(H2O)의 원자층 증착(ALD) 공정 진행 시, 공정 온도에 따른 박막의 밀도는 온도가 증가함에 따라 밀도도 증가하는 경향을 보이며, 실시예1의 전구체가 비교예1의 전구체보다 우수한 박막 밀도를 가짐을 알 수 있다. 이는 도9및 표 10을 통해 확인 가능하다. 표10은 Al2O3(Bulk)일 때의 밀도 및 비교예1의 전구체(TMA)와 물(H2O)이 원자층 증착 공정시, 온도에 따른 밀도에 관한 것으로서, 문헌 Chem. Mater. 2004, 16, 639을 참고하였다.
[표 10]
Figure PCTKR2018012722-appb-I000018
< 상이한 온도에 따른 Al2O3 박막의 단차 피복성(Step coverage by TEM)>
실시예1(Al(CH3)2[CH3OC(CH3)2CH2NtBu])인 전구체와 물(H2O)의 원자층 증착(ALD) 공정 진행 시, 온도에 따른 홀(Hole) 및 트랜치(Trench)구조의 단차 피복성에 대해서 TEM (Transmission electron microscopy) 측정을 통해 확인하였다. 공정온도는 150℃ 또는 300℃이며, 홀 구조일 때의 종횡비는 26:1이며, 트랜치 구조일때의 종횡비는 40:1이었다.
[표 11]
Figure PCTKR2018012722-appb-I000019
상기 표11에서 알 수 있듯이, 홀 구조 및 트랜치 구조의 단차 피복성은 150℃, 300℃의 온도 조건에서 98% 이상의 수준을 갖는다. 이에 따라, 실시예 1의 전구체는 넓은 온도 구간에서 우수한 단차 피복성을 가지는 것을 확인할 수 있다.
전술한 본원의 설명은 예시를 위한 것이며, 본원이 속하는 기술분야의 통상의 지식을 가진 자는 본원의 기술적 사상이나 필수적인 특징을 변경하지 않고서 다른 구체적인 형태로 쉽게 변형이 가능하다는 것을 이해할 수 있을 것이다. 그러므로 이상에서 기술한 실시예들은 모든 면에서 예시적인 것이며 한정적이 아닌 것으로 이해해야만 한다.
본원의 범위는 상기 상세한 설명보다는 후술하는 특허청구범위에 의하여 나타내어지며, 특허청구범위의 의미 및 범위, 그리고 그 균등 개념으로부터 도출되는 모든 변경 또는 변형된 형태가 본원의 범위에 포함되는 것으로 해석되어야 한다.

Claims (10)

  1. 하기 화학식 1로서 표시되는 화합물:
    [화학식 1]
    Figure PCTKR2018012722-appb-I000020
    상기 화학식 1에서,
    M이 주기율표 상 12족의 2가 전이금속인 경우 n은 1이고,
    M이 주기율표 상 13족의 3가 전이금속인 경우 n은 2이며,
    R1 내지 R5는 수소, 치환 또는 비치환된 탄소수 1 내지 4의 선형 또는 분지형 알킬기 또는 이들의 이성질체이다.
  2. 제1항에 있어서,
    상기 화학식 1의 M은 Al, Zn, In 및 Ga로 이루어진 군에서 선택되는 1종인 것을 특징으로 하는 화합물.
  3. 제1항에 있어서,
    상기 화학식 1의 R1 내지 R5는 수소, 메틸기, 에틸기, n-프로필기, iso-프로필기, n-부틸기, iso-부틸기, sec-부틸기, tert-부틸기 및 이들의 이성질체로 이루어진 군에서 선택되는 1종인 것을 특징으로 하는 화합물.
  4. 제1항에 있어서,
    상기 R1은 메틸기;
    상기 R2 및 R3는 수소 또는 메틸기;
    상기 R4는 tert-부틸기 및
    상기 R5는 메틸기 또는 에틸기인 것을 특징으로 하는 화합물.
  5. 제1항에 있어서,
    상기 화학식 1은 Al(CH3)2[CH3OC(CH3)2CH2NtBu], Al(CH3)2[CH3OCH(CH3)CH2NtBu], Al(CH3)2[CH3OCH2CH2NtBu], Zn(CH3)[CH3OCH2CH2NtBu], Zn(CH3)[CH3OC(CH3)2CH2NtBu], Zn(Et)[CH3OC(CH3)2CH2NtBu], In(CH3)2[CH3OCH2CH2NtBu], Ga(CH3)2 [CH3OCH2CH2NtBu] (여기서, Et는 에틸, tBu은 tert-부틸기임)로 이루어진 군에서 선택되는 1종인 것을 특징으로 하는 화합물.
  6. 제1항 내지 제5항 중 어느 한 항의 화합물을 포함하는 전구체.
  7. 제1항 내지 제5항 중 어느 한 항의 화합물을 포함하는 전구체를 반응기에 도입하는 단계를 포함하는 박막의 제조방법.
  8. 제7항에 있어서,
    상기 제조방법은 원자층 증착(ALD) 또는 화학 기상 증착(CVD)을 포함하는 박막의 제조방법.
  9. 제7항에 있어서,
    상기 제조방법은 산화제, 질화제, 또는 환원제로 이루어진 군 중에서 어느 1종 이상을 사용하는 단계를 포함하는 박막의 제조방법.
  10. 제7항에 있어서,
    상기 박막은 산화막, 질화막, 또는 금속막을 포함하는 박막의 제조방법.
PCT/KR2018/012722 2018-04-18 2018-10-25 원자층 증착용(ald), 화학 기상 증착용(cvd) 전구체 화합물 및 이를 이용한 ald/cvd 증착법 WO2019203407A1 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP18915619.3A EP3783002B1 (en) 2018-04-18 2018-10-25 Precursor compound for atomic layer deposition (ald) and chemical vapor deposition (cvd), and ald/cvd method using same
US17/047,918 US11472821B2 (en) 2018-04-18 2018-10-25 Precursor compounds for atomic layer deposition (ALD) and chemical vapor deposition (CVD) and ALD/CVD process using the same
CN201880092457.6A CN112020504B (zh) 2018-04-18 2018-10-25 用于原子层沉积(ald)和化学气相沉积(cvd)的前体化合物以及使用其的ald/cvd工艺
JP2020556227A JP7184921B2 (ja) 2018-04-18 2018-10-25 原子層蒸着用(ald)、化学気相蒸着用(cvd)前駆体化合物およびこれを用いたald/cvd蒸着法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2018-0044802 2018-04-18
KR1020180044802A KR102087858B1 (ko) 2018-04-18 2018-04-18 원자층 증착용(ald), 화학 기상 증착용(cvd) 전구체 화합물 및 이를 이용한 ald/cvd 증착법

Publications (1)

Publication Number Publication Date
WO2019203407A1 true WO2019203407A1 (ko) 2019-10-24

Family

ID=68239690

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2018/012722 WO2019203407A1 (ko) 2018-04-18 2018-10-25 원자층 증착용(ald), 화학 기상 증착용(cvd) 전구체 화합물 및 이를 이용한 ald/cvd 증착법

Country Status (7)

Country Link
US (1) US11472821B2 (ko)
EP (1) EP3783002B1 (ko)
JP (1) JP7184921B2 (ko)
KR (1) KR102087858B1 (ko)
CN (1) CN112020504B (ko)
TW (1) TWI711623B (ko)
WO (1) WO2019203407A1 (ko)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114599658A (zh) * 2019-10-30 2022-06-07 秀博瑞殷株式公社 铟前体化合物,利用该铟前体化合物的薄膜的制备方法及由此制备的基板
WO2022118834A1 (ja) * 2020-12-04 2022-06-09 株式会社Adeka インジウム化合物、薄膜形成用原料、薄膜及びその製造方法
US11819234B2 (en) 2019-03-20 2023-11-21 Covidien Lp Tissue resecting instrument including a rotation lock feature

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021086006A1 (ko) * 2019-10-30 2021-05-06 솔브레인 주식회사 인듐 전구체 화합물, 이를 이용한 박막의 제조 방법 및 이로부터 제조된 기판

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20120072986A (ko) * 2010-12-24 2012-07-04 주식회사 한솔케미칼 금속 산화물 또는 금속-규소 산화물 박막 증착용 유기 금속 전구체 및 이를 이용한 박막 증착 방법
KR20160082350A (ko) * 2014-12-31 2016-07-08 주식회사 유진테크 머티리얼즈 유기 13족 전구체 및 이를 이용한 박막 증착 방법
KR20160101697A (ko) * 2015-02-17 2016-08-25 주식회사 유피케미칼 알루미늄 화합물 및 이를 이용한 알루미늄-함유 막의 형성 방법
KR20170055268A (ko) * 2015-11-11 2017-05-19 한국화학연구원 인듐 전구체, 이의 제조방법, 및 이를 이용하여 박막을 형성하는 방법
KR101787204B1 (ko) 2015-11-23 2017-10-18 주식회사 한솔케미칼 원자층 증착용(ald) 유기금속 전구체 화합물 및 이를 이용한 ald 증착법

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3907579A1 (de) * 1989-03-09 1990-09-13 Merck Patent Gmbh Verwendung von metallorganischen verbindungen zur abscheidung duenner filme aus der gasphase
KR100897495B1 (ko) * 2007-10-11 2009-05-15 한국화학연구원 신규의 갈륨 아미노알콕사이드 화합물 및 그 제조방법
KR101052360B1 (ko) * 2008-11-14 2011-07-27 한국화학연구원 신규의 갈륨 알콕사이드 화합물 및 그 제조방법
WO2010151430A1 (en) 2009-06-22 2010-12-29 Arkema Inc. Chemical vapor deposition using n,o polydentate ligand complexes of metals

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20120072986A (ko) * 2010-12-24 2012-07-04 주식회사 한솔케미칼 금속 산화물 또는 금속-규소 산화물 박막 증착용 유기 금속 전구체 및 이를 이용한 박막 증착 방법
KR20160082350A (ko) * 2014-12-31 2016-07-08 주식회사 유진테크 머티리얼즈 유기 13족 전구체 및 이를 이용한 박막 증착 방법
KR20160101697A (ko) * 2015-02-17 2016-08-25 주식회사 유피케미칼 알루미늄 화합물 및 이를 이용한 알루미늄-함유 막의 형성 방법
KR20170055268A (ko) * 2015-11-11 2017-05-19 한국화학연구원 인듐 전구체, 이의 제조방법, 및 이를 이용하여 박막을 형성하는 방법
KR101787204B1 (ko) 2015-11-23 2017-10-18 주식회사 한솔케미칼 원자층 증착용(ald) 유기금속 전구체 화합물 및 이를 이용한 ald 증착법

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
J. VAC. SCI. TECHNOL. A, vol. 30, no. 2, 2012, pages 021505 - 1
YUN, JAESOOK ET AL.: "Effects of Ligand and Cosolvent on Oxidative Coupling Polymerization of 2,6-Dimethylphenol Catalyzed by Chelating Amine-Copper(II) Complexes", MACROMOLECULAR RESEARCH, vol. 21, no. 10, 24 May 2013 (2013-05-24) - October 2013 (2013-10-01), pages 1054 - 1058, XP055646334 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11819234B2 (en) 2019-03-20 2023-11-21 Covidien Lp Tissue resecting instrument including a rotation lock feature
CN114599658A (zh) * 2019-10-30 2022-06-07 秀博瑞殷株式公社 铟前体化合物,利用该铟前体化合物的薄膜的制备方法及由此制备的基板
WO2022118834A1 (ja) * 2020-12-04 2022-06-09 株式会社Adeka インジウム化合物、薄膜形成用原料、薄膜及びその製造方法
KR20230117368A (ko) 2020-12-04 2023-08-08 가부시키가이샤 아데카 인듐 화합물, 박막 형성용 원료, 박막 및 그 제조 방법

Also Published As

Publication number Publication date
EP3783002C0 (en) 2023-06-07
CN112020504B (zh) 2023-10-13
TWI711623B (zh) 2020-12-01
JP2021517905A (ja) 2021-07-29
CN112020504A (zh) 2020-12-01
US20210230193A1 (en) 2021-07-29
EP3783002A4 (en) 2021-05-26
KR20190121468A (ko) 2019-10-28
KR102087858B1 (ko) 2020-03-12
EP3783002A1 (en) 2021-02-24
TW201943718A (zh) 2019-11-16
JP7184921B2 (ja) 2022-12-06
US11472821B2 (en) 2022-10-18
EP3783002B1 (en) 2023-06-07

Similar Documents

Publication Publication Date Title
WO2019203407A1 (ko) 원자층 증착용(ald), 화학 기상 증착용(cvd) 전구체 화합물 및 이를 이용한 ald/cvd 증착법
WO2018048124A1 (ko) 5족 금속 화합물, 이의 제조 방법, 이를 포함하는 막 증착용 전구체 조성물, 및 이를 이용하는 막의 증착 방법
WO2012176989A1 (en) A diamine compound or its salt, preparing method of the same, and uses of the same
WO2015142053A1 (ko) 유기 게르마늄 아민 화합물 및 이를 이용한 박막 증착 방법
WO2019088722A1 (ko) 루테늄함유 박막의 제조방법 및 이로부터 제조된 루테늄함유 박막
WO2022149854A1 (ko) 핵성장 지연을 이용한 영역 선택적 박막 형성 방법
WO2015190871A1 (en) Liquid precursor compositions, preparation methods thereof, and methods for forming layer using the composition
WO2017135715A1 (ko) 4 족 금속 원소-함유 화합물, 이의 제조 방법, 이를 포함하는 막 증착용 전구체 조성물, 및 이를 이용하는 막의 증착 방법
WO2020116770A1 (ko) 4족 전이금속 화합물, 이의 제조방법 및 이를 이용하여 박막을 형성하는 방법
WO2023068629A1 (ko) 3족 금속 전구체, 이의 제조방법 및 이를 이용하는 박막의 제조방법
WO2017082541A1 (ko) 금속 전구체, 이의 제조방법, 및 이를 이용하여 박막을 형성하는 방법
WO2018182309A1 (en) Composition for depositing silicon-containing thin film containing bis(aminosilyl)alkylamine compound and method for manufacturing silicon-containing thin film using the same
WO2021145661A2 (ko) 원자층 증착용(ald), 화학 기상 증착용(cvd) 전구체 화합물 및 이를 이용한 ald/cvd 증착법
WO2021153986A1 (ko) 실리콘 전구체 화합물, 이를 포함하는 실리콘-함유 막 형성용 조성물 및 실리콘-함유 막 형성 방법
WO2021085810A2 (ko) 4족 전이금속 화합물, 이의 제조방법 및 이를 포함하는 박막증착용 조성물
WO2021261890A1 (ko) 박막 형성용 프리커서, 이의 제조방법 및 이를 포함하는 박막 제조 방법
WO2020027552A1 (en) Aluminum compounds and methods of forming aluminum-containing film using the same
WO2024049150A1 (ko) 금속 화합물을 포함하는 박막증착용 조성물, 이를 이용한 금속 함유 박막의 제조방법 및 이를 이용하여 제조된 금속 함유 박막
WO2022055201A1 (ko) 4족 금속 원소-함유 화합물, 이를 포함하는 전구체 조성물, 및 이를 이용한 박막의 제조 방법
WO2023219428A1 (ko) 금속막 형성용 전구체 화합물 및 이를 이용한 금속막
WO2023113308A1 (ko) 몰리브데넘 화합물, 이의 제조방법 및 이를 포함하는 박막 증착용 조성물
WO2020111405A1 (ko) 실리콘 전구체 및 이를 이용한 실리콘 함유 박막의 제조방법
WO2022169232A1 (ko) 4족 전이금속 화합물, 이의 제조방법 및 이를 이용하여 박막을 형성하는 방법
WO2024058431A1 (ko) 이트륨 또는 스칸듐 함유 박막 형성용 전구체, 이를 이용한 이트륨 또는 스칸듐 함유 박막 형성 방법 및 상기 이트륨 또는 스칸듐 함유 박막을 포함하는 반도체 소자
WO2022255837A1 (ko) 유기 금속 화합물 제조방법 및 이를 이용하여 박막을 형성하는 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18915619

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020556227

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018915619

Country of ref document: EP

Effective date: 20201118