WO2021086006A1 - 인듐 전구체 화합물, 이를 이용한 박막의 제조 방법 및 이로부터 제조된 기판 - Google Patents

인듐 전구체 화합물, 이를 이용한 박막의 제조 방법 및 이로부터 제조된 기판 Download PDF

Info

Publication number
WO2021086006A1
WO2021086006A1 PCT/KR2020/014801 KR2020014801W WO2021086006A1 WO 2021086006 A1 WO2021086006 A1 WO 2021086006A1 KR 2020014801 W KR2020014801 W KR 2020014801W WO 2021086006 A1 WO2021086006 A1 WO 2021086006A1
Authority
WO
WIPO (PCT)
Prior art keywords
thin film
precursor compound
indium
manufacturing
indium precursor
Prior art date
Application number
PCT/KR2020/014801
Other languages
English (en)
French (fr)
Inventor
연창봉
김진희
정재선
이석종
Original Assignee
솔브레인 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 솔브레인 주식회사 filed Critical 솔브레인 주식회사
Priority to EP20883240.2A priority Critical patent/EP4053131A4/en
Priority to JP2022523511A priority patent/JP7387892B2/ja
Priority to US17/773,287 priority patent/US20240167151A1/en
Priority to CN202080074133.7A priority patent/CN114599658A/zh
Priority claimed from KR1020200140859A external-priority patent/KR20210052305A/ko
Publication of WO2021086006A1 publication Critical patent/WO2021086006A1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F5/00Compounds containing elements of Groups 3 or 13 of the Periodic Table
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/06Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of metallic material
    • C23C16/18Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of metallic material from metallo-organic compounds
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/34Nitrides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/40Oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber

Definitions

  • the present invention relates to an indium precursor compound, a method of manufacturing a thin film using the same, and a substrate manufactured therefrom, and more particularly, a uniform thin film can be formed by maintaining a constant composition by exhibiting a constant vapor pressure during the deposition process, and
  • the present invention relates to an indium precursor compound capable of increasing productivity by improving speed, a method of manufacturing a thin film using the same, and a substrate including a thin film manufactured therefrom.
  • TFT thin film transistor
  • amorphous silicon was used for thin film transistors, but recently, metal oxides having higher charge mobility than silicon and easier low-temperature processes than polycrystalline silicon have been used.
  • metal oxides materials to which various kinds of metal atoms such as indium and zinc are added are used, and the metal oxide thin film is sputtering, ALD (Atomic Layer Deposition), PLD (Pulsed Laser Deposition). ), CVD (Chemical Vapor Deposition), etc.
  • Indium is widely used in transparent electrodes because of its excellent transparency and electrical conductivity.
  • a metal thin film containing indium (In) is formed by sputtering using a sputter target.
  • the composition of the deposited thin film is determined by the sputter target, there is a limit to uniformly controlling the composition of the thin film.
  • the indium precursor used previously for example, trimethyl indium (CAS NO. 3385-78-2)
  • the indium precursor used previously is mostly solid.
  • problems in terms of vapor pressure control and film quality reproducibility In particular, under high temperature conditions (250°C or higher), most of the indium (In) precursors are thermally decomposed, making it difficult to obtain high-quality thin films, and there is also a limit to obtaining thin films with uniform thickness and multi-component composition during large-area deposition. exist.
  • an object of the present invention is to provide an indium precursor compound having high deposition rate and high volatility, excellent thermal stability and storage stability, and easy handling.
  • the present invention includes the indium precursor compound and exhibits a constant vapor pressure during the deposition process, so that a uniform thin film can be formed and a thin film having excellent film thickness uniformity is produced by the above method. It is an object of the present invention to provide a substrate including a thin film.
  • the present invention provides an indium precursor compound, characterized in that represented by the following formula (1).
  • R 1 , R 3 and R 4 are each independently a substituted or unsubstituted alkyl group having 1 to 6 carbon atoms
  • R 2 is a linear or branched alkyl group having 1 to 6 carbon atoms
  • R 5 and R 6 Each is independently hydrogen or an alkyl group having 1 to 3 carbon atoms
  • X is a carbon or hetero atom
  • n is an integer of 1 to 3.
  • the present invention provides a method of manufacturing a thin film comprising the step of forming a thin film by depositing the indium precursor compound on a substrate.
  • the present invention provides a substrate, characterized in that manufactured by the method of manufacturing the thin film.
  • an indium precursor compound having high volatility, excellent thermal stability and storage stability, and easy handling when manufacturing a thin film including this, it exhibits a constant vapor pressure during the deposition process to maintain a constant composition.
  • it is possible to manufacture a uniform thin film and there is an effect of providing a method of manufacturing a thin film with increased productivity by improving the deposition rate, and a substrate including a uniform thin film manufactured therefrom.
  • 1 is a graph showing a 1 H NMR spectrum of a precursor compound prepared in Synthesis Example of the present invention.
  • the indium precursor compound of the present invention a method of manufacturing a thin film using the same, and a substrate prepared therefrom will be described in detail.
  • the present inventors confirmed that by including a double bond in the ligand of the indium precursor and simplifying the ligand, the thermal stability is excellent and the deposition rate is greatly improved, and based on this, the present invention is completed by further research.
  • the indium precursor compound of the present invention is characterized by represented by the following formula (1).
  • R 1 , R 3 and R 4 are each independently a substituted or unsubstituted alkyl group having 1 to 6 carbon atoms
  • R 2 is a linear or branched alkyl group having 1 to 6 carbon atoms
  • R 5 and R 6 Each is independently hydrogen or an alkyl group having 1 to 3 carbon atoms
  • X is a carbon or hetero atom
  • n is a value that satisfies the valence of X and is an integer of 1 to 3.
  • X may be, for example, a hetero atom including an unshared electron pair.
  • the hetero atom including the unshared electron pair may be, for example, N, O, or S, and preferably N.
  • a coordination bond is formed between the indium and the hetero atom due to the unshared electron pair included in the hetero atom, so that the indium precursor compound becomes very stable, and the thermal stability and storage stability are improved. It works.
  • n when X is N (nitrogen), n may be 2, when X is O (oxygen) or S (sulfur), n may be 1, and when X is C (carbon), n is 3 Can be
  • R 2 is a C 1 to C 6 linear or branched alkyl group, preferably a branched alkyl group.
  • it may be a secondary or tertiary alkyl group, specifically iso-propyl, sec -butyl, iso-butyl, tert -butyl, sec-pentyl, iso-pentyl, tert -pentyl, neo-pentyl, iso-hexyl , sec -hexyl, tert -hexyl or neo-hexyl.
  • it may be iso-butyl, tert -butyl, tert -pentyl or neo-pentyl.
  • the formation of an intermolecular dimer of the indium precursor compound is prevented, thereby further stabilizing the deposition process and strengthening the coordination bond between the X element and indium, thereby further improving the thermal stability and storage stability of the precursor compound.
  • R 1 , R 3 and R 4 are each independently a substituted or unsubstituted alkyl group having 1 to 6 carbon atoms, and preferably an unsubstituted alkyl group having 1 to 3 carbon atoms.
  • the stability of the indium precursor compound is improved to improve thermal stability and storage stability in the deposition process, and the deposition rate is improved due to molecular simplification, thereby improving the manufacturing speed of the thin film and increasing productivity.
  • the substituted alkyl group having 1 to 6 carbon atoms means an alkyl group substituted with a substituent such as halogen, oxygen or nitrogen.
  • R 1 , R 3 and R 4 may each independently be a methyl group or an ethyl group.
  • R 5 and R 6 may each independently be hydrogen or an alkyl group having 1 to 3 carbon atoms, preferably hydrogen or an alkyl group having 1 or 2 carbon atoms, more preferably hydrogen or a methyl group.
  • R 5 and R 6 may each independently be hydrogen or an alkyl group having 1 to 3 carbon atoms, preferably hydrogen or an alkyl group having 1 or 2 carbon atoms, more preferably hydrogen or a methyl group.
  • the deposition rate of the indium precursor compound is further improved, thereby improving the manufacturing speed of the thin film and increasing productivity.
  • the indium precursor compound may be represented by the following formula (2).
  • R 2 to R 6 are as defined in Formula 1, and R 1a and R 1b are each an alkyl group having 1 to 6 carbon atoms, preferably an alkyl group having 1 to 3 carbon atoms, and more preferably a methyl group.
  • the stability of the indium precursor compound is further improved due to molecular simplification, thereby improving thermal stability and storage stability in the deposition process, and the deposition rate is further improved, thereby improving the thin film manufacturing speed and increasing productivity.
  • the indium precursor compound may have a vapor pressure of 0.01 to 400 mmHg, preferably 0.01 to 100 mmHg, more preferably 0.01 to 10 mmHg, measured at 25°C.
  • a vapor pressure 0.01 to 400 mmHg, preferably 0.01 to 100 mmHg, more preferably 0.01 to 10 mmHg, measured at 25°C.
  • the vapor pressure measurement method is not particularly limited as long as it is a known measurement method commonly performed in the technical field to which the present invention belongs, and may be measured by thermogravimetric analysis as an example.
  • the indium precursor compound of the present invention has excellent volatility as described above and has a sufficient vapor pressure for the deposition process of a thin film, and has an excellent effect of improving the process efficiency and the film quality of the thin film produced including the same when applied to the deposition process such as CVD and ALD. There is.
  • the thermal stability can be greatly improved, the storage stability can also be improved. Since this is kept constant and the composition is kept constant, a uniform thin film can be formed.
  • the X of the indium precursor compound is a hetero element comprising a lone pair, the coordinate bond is formed between the indium and the X elements by being and the compound can be more stabilized, with the indium and X elements in accordance with the type of the R 2 The effect of stabilizing the compound by enhancing the interaction can be further improved.
  • the ligand is simplified, so that the deposition rate is greatly improved, and the productivity of the thin film can be greatly improved when the thin film is manufactured, including the same.
  • the coordination bond between the element X and indium is relatively easily broken compared to other bonds in the compound, so that the reaction with the reaction gas during the thin film formation process can proceed more stably, thereby making the thin film formation process easier.
  • due to the chemical stability of the compound itself it is not thermally decomposed at a temperature of 200° C. or lower, so it is excellent in thermal stability and has low reactivity at room temperature, so there is no concern of spontaneous ignition, and it is easy to handle.
  • the indium precursor compound may be prepared through a reaction process shown in Scheme 1 below, as an example.
  • the present invention provides a method for manufacturing a thin film comprising the step of depositing the indium precursor compound on a substrate (eg, a wafer) to form a thin film.
  • the method of manufacturing a thin film of the present invention has excellent thermal stability by using the indium precursor compound to prevent thermal decomposition, maintain a constant vapor pressure to form a thin film stably and uniformly, and increase the deposition rate to increase productivity. Can be augmented.
  • the method of manufacturing the thin film may include depositing at least one selected from a gallium precursor and a zinc precursor and the indium precursor compound on a substrate to form a thin film.
  • the composition of the multi-component system is uniform and It is advantageous for manufacturing a transparent electronic device having excellent thermal stability.
  • the indium precursor compound, the gallium precursor, and the zinc precursor may be sequentially deposited on a substrate to form a multi-layered thin film.
  • the indium precursor compound, the gallium precursor, and the zinc precursor are simultaneously deposited on a substrate, or a mixed precursor compound obtained by mixing the indium precursor compound, a gallium precursor compound, and a zinc precursor compound is deposited to form a single-layered thin film. can do.
  • the method of manufacturing the thin film may be carried out under a deposition temperature of 200 to 1,000°C, for example.
  • the deposition temperature may be specifically 250 to 500°C, preferably 270 to 400°C, more preferably 300 to 350°C, and in this case, the indium precursor compound can be deposited at a relatively low temperature, resulting in process efficiency. It can be improved and there is an excellent effect of greatly improving the stability and productivity of the deposition process by reducing thermal decomposition of compounds used in the deposition process.
  • the method of manufacturing the thin film may be deposited by mixing the indium precursor compound, or the indium precursor compound, a gallium precursor, and a zinc precursor with a solvent as needed.
  • the solvent may be an organic solvent as an example, specifically tetrahydrofuran (THF), dimethoxyethane (DME), dichloromethane (DCM), dichloroethane (DCE), benzene (Benzene), toluene (Toluene)
  • THF tetrahydrofuran
  • DME dimethoxyethane
  • DCM dichloromethane
  • DCE dichloroethane
  • Benzene Benzene
  • toluene toluene
  • mesitylene mesitylene
  • the method of manufacturing the thin film may further include a step of depositing using plasma on the thin film formed on the substrate, for example, and in this case, a high-quality thin film can be obtained even under a relatively low temperature deposition condition.
  • the plasma may be, for example, an oxygen plasma, but is not limited thereto.
  • the method of manufacturing a thin film of the present invention may be carried out including one or more of the following steps:
  • the steps may be one cycle, and the cycle may be repeated tens or more times until a thin film having a desired thickness is formed.
  • the number of repetitions of the cycle may be 50 to 1000 times, preferably 100 to 300 times, and in this case, the thickness of the thin film may be properly implemented, and the process efficiency may be increased.
  • the method of manufacturing the thin film may be carried out including the following steps:
  • steps a) to f) are 1 cycle, and the cycle may be repeatedly performed.
  • the number of repetitions of the cycle may be 50 to 1000 times, preferably 100 to 300 times, and in this case, the thickness of the thin film may be properly implemented, and the process efficiency may be increased.
  • the method of manufacturing the thin film is, for example, chemical vapor deposition (CVD), organometallic chemical vapor deposition (MOCVD), low pressure vapor deposition (LPCVD), plasma enhanced vapor deposition (PECVD), atomic layer deposition (ALD), or plasma enhanced atomic A layer deposition method (PEALD) may be used, and preferably, a chemical vapor deposition method or an atomic layer deposition method may be used, but the present invention is not limited thereto.
  • CVD chemical vapor deposition
  • MOCVD organometallic chemical vapor deposition
  • LPCVD low pressure vapor deposition
  • PECVD plasma enhanced vapor deposition
  • ALD atomic layer deposition
  • PEALD plasma enhanced atomic A layer deposition method
  • a chemical vapor deposition method or atomic layer deposition method for example, by supplying a thin film deposition raw material to a substrate in a gaseous state, a film having a uniform thickness can be formed even on the surface of a structure having a large
  • the deposition temperature may be, for example, 200 to 1,000°C, specifically 250 to 500°C, preferably 270 to 400°C, more preferably 300 to 350°C, and in this case, the indium precursor compound is Since deposition is possible, process efficiency is improved, and thermal decomposition of compounds used in the deposition process is reduced, thereby greatly improving the stability and productivity of the deposition process.
  • the physical properties of the thin film may be improved by reducing the content of impurities such as carbon in the prepared thin film.
  • a time-division deposition apparatus that sequentially supplies and deposits deposition materials may be used.
  • a space-division deposition apparatus in which the substrate rotates and reciprocates in a space filled with one raw material gas and a space filled with another raw material gas may be used.
  • a roll-to-roll deposition apparatus wound in a roll form may be used.
  • the reaction gas is, for example, steam (H 2 O), hydrogen peroxide (H 2 O 2 ), oxygen (O 2 ), ozone (O 3 ), hydrogen (H 2 ), nitrogen (N 2 ), hydrazine (N 2 H 4 ), ammonia (NH 3 ), and may be one or more selected from the group consisting of silane, but is not limited thereto.
  • an indium-containing metal oxide thin film may be formed.
  • an indium-containing metal thin film may be formed.
  • an indium-containing metal nitride thin film may be formed.
  • the injection time of the indium precursor compound may be, for example, 1 to 30 seconds, preferably 1 to 20 seconds, more preferably 2 to 10 seconds, and within this range, the thickness uniformity of the thin film is improved.
  • the thickness uniformity of the thin film is improved.
  • the injection time of the reaction gas may be, for example, 1 to 40 seconds, preferably 1 to 30 seconds, more preferably 2 to 10 seconds, and excellent coating properties and uniform coating properties within this range. Therefore, there is an effect of improving the physical properties of the thin film.
  • the substrate e.g., wafer
  • the substrate is, for example, glass, silicon, metallic polyester (Polyester, PE), polyethylene terephthalate (PET), polyethylene naphthalate (PEN), polycarbonate (PC). ), polyetherimide (PEI), polyethersulfone (PES), polyetheretherketone (PEEK), and polyimide (PEI).
  • PE metallic polyester
  • PET polyethylene terephthalate
  • PEN polyethylene naphthalate
  • PC polycarbonate
  • PEI polyetherimide
  • PES polyethersulfone
  • PEEK polyetheretherketone
  • PEI polyimide
  • the substrate supplied to the chamber during the thin film manufacturing process refers to a substrate.
  • the present invention provides a substrate comprising a thin film manufactured by the method of manufacturing the thin film.
  • the substrate includes a substrate and a thin film formed on the substrate, and the thin film includes the indium precursor compound.
  • the thin film manufactured by the method of manufacturing the thin film may be, for example, an indium oxide thin film, an indium thin film, or an indium nitride thin film.
  • the film formation of a thin film is fast, and uniformity of the film thickness and thermal stability are excellent.
  • the thin film manufactured by the method of manufacturing the thin film may have a single layer structure or a multilayer structure, for example.
  • the single-layered thin film may be formed by depositing the indium precursor compound as an example, or may be formed by depositing a mixture of at least one selected from the group consisting of a gallium precursor and a zinc precursor on the indium precursor compound, Preferably, it may be formed by depositing a mixture of an indium precursor compound and a gallium precursor, a mixture of an indium precursor compound and a zinc precursor, or a mixture of an indium precursor compound, a gallium precursor, and a zinc precursor.
  • the gallium precursor and the zinc precursor may be trimethylgallium (TMG) and diethylzinc (DEZ), respectively, as specific examples.
  • the multilayered thin film may be, for example, a structure stacked by sequentially depositing the indium precursor compound and another precursor, and as a specific example, at least one selected from the group consisting of a gallium precursor and a zinc precursor and the indium precursor compound are described. It may be a structure deposited on and stacked.
  • the thin film manufactured by the method of manufacturing the thin film may be an IGZO (indium gallium zinc oxide) thin film as a specific example, and the In:Ga:Zn composition ratio of the IGZO thin film is, for example, 1 to 10: 1 to 10 based on the molar ratio. : 1 to 10, preferably 1 to 5: 1 to 5: may be 1 to 5, more preferably 1:1: 1.
  • IGZO indium gallium zinc oxide
  • the thin film prepared by the method of manufacturing the thin film has a specific resistance value of 1 ⁇ 10 -5 to 1 ⁇ 10 2 ⁇ cm at 25°C, preferably 1 ⁇ 10 -4 to 1 ⁇ 10 2 ⁇ cm, more preferably It may be 1 ⁇ 10 -3 to 10 ⁇ cm.
  • the method of measuring the specific resistance is not particularly limited as long as it is a known measurement method commonly carried out in the technical field to which the present invention belongs, and as a specific example, it can be measured through the 4-probe method (4-probe measurement method).
  • Step 1) To a solution prepared by adding 10 g (62.5 mmol) of anhydrous trimethyl indium and 200 ml of toluene to a 250 ml Schlenk flask, and cooling to -20°C, 6.91 g (31.3 mmol) of trichloroindium was slowly added dropwise and stirred for 30 minutes. After that, the temperature was gradually raised and stirred at room temperature. After the reaction was completed, the solvent was removed by applying vacuum at room temperature to obtain 16.91 g (93.8 mmol) of dimethylchloroindium as a white solid having the structure 1-1 of Scheme 2-1 below.
  • Step 2 To a solution prepared by adding 50 g (347.12 mmol) of 2-chloro-N,N-dimethylethylamine hydrochloride and 50 mL of distilled water to a 500 mL Schlenk flask and cooling to -20°C, tert-butyl amine 253.88 g (3.47 mol) was slowly added dropwise and stirred for 30 minutes, and then the temperature was gradually raised and stirred at room temperature for 1 hour. Thereafter, the temperature was raised to 80° C., stirred for 1 hour, and then the temperature was gradually lowered to room temperature.
  • Step 3) Add 50 mL of toluene to a 250 mL Schlenk flask, add 13.86 mL of n-butyllithium (2.5 M in hexane) solution, and cool to -20°C, while N,N-dimethylamino prepared in step 2) After slowly adding -N'-tert-butylethylene diamine 5 g (34.66 mmol) dropwise, the temperature was gradually raised to room temperature and stirred for 1 hour. Then, the obtained solution was cooled to -20°C, and then 6.25 g (34.66 mmol) of dimethylchloroindium prepared in step 1) was slowly added thereto.
  • n-butyllithium 2.5 M in hexane
  • the temperature of the flask was gradually raised and stirred at room temperature for 1 hour, then the temperature was raised to 110° C. and stirred for 1 hour, and the temperature was gradually lowered to room temperature. Then, under room temperature conditions, 6.25 g (34.66 mmol) of dimethylchloroindium prepared in step 1) was slowly added and stirred for 2 hours while raising the temperature of the flask to 110°C, and then gradually lowering the temperature to room temperature. .
  • the prepared indium precursor compound was a stable compound because it did not ignite or generate fume even when exposed to the atmosphere.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

본 발명은 인듐 전구체 화합물, 이를 이용한 박막의 제조 방법 및 이로부터 제조된 기판에 관한 것으로, 보다 상세하게는 화학식 1로 표시되는 것을 특징으로 하는 인듐 전구체 화합물, 이를 이용한 박막의 제조 방법 및 이로부터 제조된 기판에 관한 것이다. 본 발명에 따르면, 균일한 박막의 형성이 가능하고, 증착 속도가 향상되어 생산성을 증대시킬 수 있으면서 열 안정성과 보관 안정성이 우수하고 취급이 용이한 효과가 있다.

Description

인듐 전구체 화합물, 이를 이용한 박막의 제조 방법 및 이로부터 제조된 기판
본 발명은 인듐 전구체 화합물, 이를 이용한 박막의 제조 방법 및 이로부터 제조된 기판에 관한 것으로, 보다 상세하게는 증착 공정 중 일정한 증기압을 나타내어 조성이 일정하게 유지됨으로써 균일한 박막의 형성이 가능하고, 증착 속도가 향상되어 생산성을 증대시킬 수 있는 인듐 전구체 화합물, 이를 이용한 박막의 제조 방법 및 이로부터 제조된 박막을 포함하는 기판에 관한 것이다.
차세대 디스플레이는 저전력, 고해상도, 고신뢰성을 목표로 발전하고 있다. 이러한 목표를 이루기 위해서는 높은 전하 이동도를 갖는 박막 트랜지스터(thin film transistor; TFT) 물질이 요구된다.
기존에는 박막 트랜지스터에 비정질의 실리콘을 이용하였으나 최근에는 실리콘 보다 전하 이동도가 높고 다결정 실리콘에 비하여 저온 공정이 수월한 금속 산화물이 사용되고 있다. 이러한 금속 산화물로는 인듐(Indium), 아연(Zinc) 등의 여러 종류의 금속 원자를 첨가한 재료들이 사용되며, 금속 산화물 박막은 스퍼터링(Sputtering), ALD(Atomic Layer Deposition), PLD(Pulsed Laser Deposition), CVD(Chemical Vapor Deposition) 등의 공정에 의해 제조된다.
인듐은 투명도와 전기 전도도가 우수하여 투명 전극에 널리 활용되고 있는데, 대한민국 공개특허공보 제2011-0020901호와 같이 인듐(In)을 포함하는 금속 박막을 스퍼터(Sputter) 타켓을 이용하여 스퍼터링에 의해 형성할 경우, 증착된 박막의 조성은 스퍼터 타겟에 의해 결정되므로 박막의 조성을 균일하게 조절하는 데에는 한계가 있다. 또한 대면적 증착 시 박막의 조성 및 두께를 균일하게 유지하기 힘들어 균일한 막 특성을 얻기에도 어려움이 있다.
또한 스퍼터링(Sputtering) 대신 화학기상증착(Chemical Vapor Deposition; CVD) 방식으로 제조하는 경우, 기존에 사용되던 인듐 전구체(예를 들어, 트리메틸인듐(CAS NO. 3385-78-2))는 대부분 고체이므로 증기압 조절 및 막질 재현성 측면에서 문제가 있다. 특히 고온 조건(250℃ 이상)에서 대부분의 인듐(In) 전구체는 열 분해되는 특성이 있어 고품질의 박막을 얻기 힘들고, 대면적 증착 시 두께와 다성분계의 조성이 균일한 박막을 얻는 데에도 한계가 존재한다.
따라서, 고온에 대한 열 안정성이 우수하고 균일하게 증착되는 고품질의 인듐 전구체 개발이 절실한 상황이다.
[선행기술문헌]
[특허문헌]
한국 공개특허 제2011-0020901호
상기와 같은 종래기술의 문제점을 해결하고자, 본 발명은 높은 증착 속도 및 높은 휘발성을 가지면서 열 안정성과 보관 안정성이 우수하고 취급이 용이한 인듐 전구체 화합물을 제공하는 것을 목적으로 한다.
또한, 본 발명은 상기 인듐 전구체 화합물을 포함하며, 증착 공정 중 일정한 증기압을 나타내어 조성이 일정하게 유지됨으로써 균일한 박막을 형성할 수 있고 막 두께의 균일성이 우수한 박막의 제조 방법 및 상기 방법으로 제조된 박막을 포함하는 기판을 제공하는 것을 목적으로 한다.
본 발명의 상기 목적 및 기타 목적들은 하기 설명된 본 발명에 의하여 모두 달성될 수 있다.
상기의 목적을 달성하기 위하여, 본 발명은 하기 화학식 1로 표시되는 것을 특징으로 하는 인듐 전구체 화합물을 제공한다.
[화학식 1]
Figure PCTKR2020014801-appb-I000001
(상기 화학식 1에서 R1, R3 및 R4는 각각 독립적으로 치환 또는 비치환된 탄소수 1 내지 6의 알킬기이고, R2는 탄소수 1 내지 6의 선형 또는 분지형 알킬기이고, R5 및 R6은 각각 독립적으로 수소 또는 탄소수 1 내지 3의 알킬기이고, X는 탄소 또는 헤테로 원자이고, n은 1 내지 3의 정수이다.)
또한 본 발명은 상기 인듐 전구체 화합물을 기재 상에 증착하여 박막을 형성하는 단계를 포함하는 것을 특징으로 하는 박막의 제조 방법을 제공한다.
또한 본 발명은 상기 박막의 제조 방법으로 제조된 것을 특징으로 하는 기판을 제공한다.
본 발명에 따르면, 높은 휘발성을 가지면서 열 안정성 및 보관 안정성이 우수하고 취급이 용이한 인듐 전구체 화합물을 제공할 수 있고, 이를 포함하여 박막 제조 시, 증착 공정 중 일정한 증기압을 나타내어 조성이 일정하게 유지됨으로써 균일한 박막을 제조할 수 있으며 증착 속도가 향상되어 생산성이 증대된 박막의 제조 방법, 및 이로부터 제조되는 균일한 박막을 포함하는 기판을 제공하는 효과가 있다.
도 1은 본 발명의 합성예에서 제조한 전구체 화합물에 대한 1H NMR 스펙트럼을 나타내는 그래프이다.
이하 본 발명의 인듐 전구체 화합물, 이를 이용한 박막의 제조 방법 및 이로부터 제조된 기판을 상세하게 설명한다.
본 명세서 및 청구범위에 사용된 용어나 단어는 통상적이거나 사전적인 의미로 한정해서 해석되어서는 아니 되며, '발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다'는 원칙에 입각하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다.
본 명세서에 있어서, 어떤 부재가 다른 부재 '상에' 위치하고 있다고 할 때, 이는 어떤 부재가 다른 부재에 접해 있는 경우뿐만 아니라 두 부재 사이에 또 다른 부재가 존재하는 경우도 포함한다.
본 명세서에 있어서, 어떤 부분이 어떤 구성요소를 '포함'한다고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성요소를 제외하는 것이 아니라 다른 구성 요소를 더 포함할 수 있는 것을 의미한다.
본 발명자들은 인듐 전구체의 리간드에 이중결합을 포함하고 리간드를 간소화시킴으로써 열 안정성은 뛰어나면서 증착 속도가 크게 개선되는 것을 확인하고, 이를 토대로 더욱 연구에 매진하여 본 발명을 완성하게 되었다.
본 발명의 인듐 전구체 화합물은 하기 화학식 1로 표시되는 것을 특징으로 한다.
[화학식 1]
Figure PCTKR2020014801-appb-I000002
(상기 화학식 1에서 R1, R3 및 R4는 각각 독립적으로 치환 또는 비치환된 탄소수 1 내지 6의 알킬기이고, R2는 탄소수 1 내지 6의 선형 또는 분지형 알킬기이고, R5 및 R6은 각각 독립적으로 수소 또는 탄소수 1 내지 3의 알킬기이고, X는 탄소 또는 헤테로 원자이고, n은 X의 원자가를 만족시키는 값으로 1 내지 3의 정수이다.)
상기 화학식 1에서 X는 일례로 비공유 전자쌍을 포함하는 헤테로 원자일 수 있다. 상기 비공유 전자쌍을 포함하는 헤테로 원자는 일례로 N, O 또는 S일 수 있으며, 바람직하게는 N일 수 있다. 이 경우, 하기 화학식 1-1과 같이 상기 헤테로 원자에 포함되는 비공유 전자쌍으로 인해 인듐과 헤테로 원자 사이에 배위 결합이 형성되어 상기 인듐 전구체 화합물이 매우 안정해지며, 열 안정성 및 보관 안정성이 향상되는 우수한 효과가 있다.
[화학식 1-1]
Figure PCTKR2020014801-appb-I000003
일례로, X가 N(질소)인 경우, n은 2일 수 있고, X가 O(산소) 또는 S(황)인 경우 n은 1일 수 있으며, X가 C(탄소)일 경우 n은 3일 수 있다.
상기 화학식 1에서 R2는 탄소수 1 내지 6의 선형 또는 분지형 알킬기이고, 바람직하게는 분지형 알킬기이다. 일례로 2차 또는 3차 알킬기일 수 있고, 구체적으로는 iso-프로필, sec-부틸, iso-부틸, tert-부틸, sec-펜틸, iso-펜틸, tert-펜틸, neo-펜틸, iso-헥실, sec-헥실, tert-헥실 또는 neo-헥실일 수 있다. 가장 바람직하게는 iso-부틸, tert-부틸, tert-펜틸 또는 neo-펜틸일 수 있다. 이 경우, 상기 인듐 전구체 화합물의 분자간 다이머(dimer) 형성이 방지되어 증착 공정을 더욱 안정화시키고 상기 X 원소와 인듐 간의 배위 결합을 강화하여 상기 전구체 화합물의 열 안정성 및 보관 안정성이 보다 향상되는 이점이 있다.
상기 화학식 1에서 R1, R3 및 R4는 각각 독립적으로 치환 또는 비치환된 탄소수 1 내지 6의 알킬기이고, 바람직하게는 탄소수 1 내지 3의 비치환된 알킬기이다. 이 경우, 상기 인듐 전구체 화합물의 안정성이 향상되어 증착 공정에서의 열 안정성 및 보관 안정성이 향상되고, 분자 간소화로 인해 증착 속도가 향상되어 박막 제조 속도가 향상되고 생산성이 증대되는 우수한 효과가 있다. 이때 상기 치환된 탄소수 1 내지 6의 알킬기는 할로겐, 산소 또는 질소와 같은 치환기로 치환된 알킬기를 의미한다.
바람직한 일례로, 상기 R1, R3 및 R4는 각각 독립적으로 메틸기 또는 에틸기일 수 있다.
상기 화학식 1에서 R5 및 R6은 각각 독립적으로 수소 또는 탄소수 1 내지 3의 알킬기이고, 바람직하게는 수소, 또는 탄소수 1 또는 2의 알킬기, 더욱 바람직하게는 수소 또는 메틸기일 수 있다. 이 경우, 분자 간소화로 인해 상기 인듐 전구체 화합물의 증착 속도가 보다 향상되어 박막 제조 속도가 향상되고 생산성이 증대되는 효과가 있다.
바람직한 일례로, 상기 인듐 전구체 화합물은 하기 화학식 2로 표시될 수 있다.
[화학식 2]
Figure PCTKR2020014801-appb-I000004
상기 화학식 2에서 R2 내지 R6은 상기 화학식 1에서 정의한 바와 같고, R1a 및 R1b는 각각 탄소수 1 내지 6의 알킬기이고, 바람직하게는 탄소수 1 내지 3의 알킬기이고, 더욱 바람직하게는 메틸기이며, 이 경우, 분자 간소화로 인해 상기 인듐 전구체 화합물의 안정성이 보다 향상되어 증착 공정에서의 열 안정성 및 보관 안정성이 향상되고, 증착 속도가 보다 향상되어 박막 제조 속도가 향상되고 생산성이 증대되는 효과가 있다.
상기 인듐 전구체 화합물은 일례로 25℃에서 측정한 증기압이 0.01 내지 400 mmHg, 바람직하게는 0.01 내지 100 mmHg, 더욱 바람직하게는 0.01 내지 10 mmHg일 수 있다. 상기 범위 내에서 박막 제조 시 증착에 충분한 증기압을 가질 수 있고, 증착 속도가 향상되는 이점이 있다.
본 기재에서, 증기압의 측정 방법은 본 발명이 속한 기술 분야에서 통상적으로 실시하는 공지된 측정 방법이라면 특별히 제한되지 않으며, 일례로 열중량 분석법으로 측정할 수 있다.
본 발명의 인듐 전구체 화합물은 상기와 같이 휘발성이 우수하고 박막의 성막 공정에 충분한 증기압을 가져, CVD, ALD 등의 증착 공정에 적용 시 공정 효율 및 이를 포함하여 제조되는 박막의 막질을 향상시키는 우수한 효과가 있다.
본 발명의 인듐 전구체 화합물은, 인듐과 결합된 리간드에 이중결합 탄소를 포함함으로 인해 화합물이 안정화되어 열 안정성이 크게 개선될 수 있고, 보관 안정성 역시 개선될 수 있으며, 박막으로 제조 시 증착 공정 중 증기압이 일정하게 유지되어 조성이 일정하게 유지되므로 균일한 박막의 형성이 가능하다. 또한, 상기 인듐 전구체 화합물의 X가 비공유 전자쌍을 포함하는 헤테로 원소인 경우, 인듐과 X 원소 간에 배위 결합이 형성됨으로써 화합물이 더욱 안정화될 수 있고, 상기 R2의 종류에 따라 인듐과 X 원소와의 상호작용을 강화시켜 화합물을 안정화시키는 효과가 더욱 향상될 수 있다. 더욱이, 종래의 박막 형성용 인듐 전구체에 비하여 리간드가 간소화됨으로써 증착 속도가 크게 개선되어, 이를 포함하여 박막 제조 시 박막의 생산성을 크게 향상시킬 수 있다. 또한, 상기 X 원소와 인듐의 배위 결합은 화합물 내 다른 결합에 비하여 상대적으로 끊어지기 쉬워 박막 형성 공정 중 반응 가스와의 반응이 보다 안정적으로 진행될 수 있고, 이로 인해 박막 형성 공정이 용이한 이점이 있다. 동시에, 상기 화합물 자체의 화학적 안정성으로 인해 200℃ 이하의 온도에서 열분해되지 않아 열 안정성이 우수할 뿐만 아니라 상온에서의 반응성이 적어 자연 발화의 우려가 없고 취급이 용이한 이점이 있다.
상기 인듐 전구체 화합물은 일례로 하기 반응식 1에 나타낸 반응 공정을 거쳐 제조될 수 있다.
[반응식 1]
Figure PCTKR2020014801-appb-I000005
본 발명은, 상기 인듐 전구체 화합물을 기재(substrate, 예를 들어 웨이퍼) 상에 증착하여 박막을 형성하는 단계를 포함하는 것을 특징으로 하는 박막의 제조 방법을 제공한다.
본 발명의 박막의 제조 방법은, 상기 인듐 전구체 화합물을 이용함으로써 열 안정성이 우수하여 열 분해가 방지되고, 증기압이 일정하게 유지되어 박막을 안정적으로 균일하게 형성할 수 있으며, 증착 속도가 향상되어 생산성이 증대될 수 있다.
일례로, 상기 박막의 제조 방법은 갈륨 전구체 및 아연 전구체 중에서 선택된 1종 이상과 상기 인듐 전구체 화합물을 기재 상에 증착하여 박막을 형성하는 단계를 포함할 수 있고, 이 경우 다성분계의 조성이 균일하고 열 안정성이 우수한 투명 전자 소자의 제작에 유리하다.
일례로, 상기 박막 형성 단계는 상기 인듐 전구체 화합물, 갈륨 전구체 및 아연 전구체를 기재 상에 순차적으로 증착하여 다층 구조의 박막을 형성할 수 있다. 다른 일례로, 상기 인듐 전구체 화합물, 갈륨 전구체 및 아연 전구체를 기재 상에 동시에 증착하거나 또는 상기 인듐 전구체 화합물, 갈륨 전구체 화합물 및 아연 전구체 화합물을 혼합한 혼합 전구체 화합물을 증착하여 단일층 구조의 박막을 형성할 수 있다.
상기 박막의 제조 방법은 일례로 증착 온도 200 내지 1,000℃ 하에서 실시될 수 있다. 상기 증착 온도는 구체적으로는 250 내지 500℃, 바람직하게는 270 내지 400℃, 더욱 바람직하게는 300 내지 350℃일 수 있고, 이 경우 상대적으로 낮은 온도에서 인듐 전구체 화합물의 증착이 가능하여 공정 효율이 향상될 수 있고 증착 공정에 사용되는 화합물들의 열에 의한 분해를 감소시켜 증착 공정의 안정성 및 생산성이 크게 개선되는 우수한 효과가 있다.
상기 박막의 제조 방법은 일례로 필요에 따라 상기 인듐 전구체 화합물, 또는 상기 인듐 전구체 화합물, 갈륨 전구체 및 아연 전구체를 용매와 혼합하여 증착시킬 수 있다. 상기 용매는 일례로 유기용매일 수 있고, 구체적으로 테트라하이드로퓨란(THF), 디메톡시에탄(DME), 다이클로로메탄(DCM), 다이클로로에탄(DCE), 벤젠(Benzene), 톨루엔(Toluene) 및 메시틸렌(Mesitylene)으로 이루어진 군에서 선택된 1종일 수 있으며, 이 경우 박막 증착 시 전구체 화합물의 점도나 증기압의 조절이 보다 용이한 이점이 있다.
상기 박막의 제조 방법은 일례로 상기 기재 상에 형성된 박막 위에 플라즈마를 이용하여 증착하는 단계를 더 포함할 수 있고, 이 경우 상대적으로 낮은 온도의 증착 조건에서도 고품질의 박막을 얻을 수 있다. 상기 플라즈마는 일례로 산소 플라즈마일 수 있으나, 이에 제한되는 것은 아니다.
본 발명의 박막의 제조 방법은 다음과 같은 단계들 중 하나 이상을 포함하여 실시될 수 있다:
- 기재(substrate) 상에 본 발명의 인듐 전구체 화합물을 흡착시켜 증착하는 단계;
- 미흡착된 인듐 전구체 화합물을 비활성 기체로 퍼징하는 단계;
- 반응 가스를 주입하여 흡착된 인듐 전구체 화합물과 반응시키는 단계;
- 상기 반응의 부산물 및 미반응 물질을 비활성 기체로 퍼징하는 단계.
상기 박막의 제조 방법은 일례로 상기 단계들을 1 사이클로 하여, 원하는 두께의 박막이 형성될 때 까지 상기 사이클을 수십회 이상 반복할 수 있다. 구체적으로 상기 사이클 반복 회수는 50 내지 1000회, 바람직하게는 100 내지 300회일 수 있으며, 이 경우 박막의 두께가 적절히 구현되고, 공정 효율이 상승될 수 있다.
구체적인 일례로, 상기 박막의 제조 방법은 다음 단계들을 포함하여 실시될 수 있다:
a) 반응 챔버 내부에 기재를 반입하여 소성 온도로 유지하는 단계;
b) 상기 반응 챔버 내부에 비활성 기체를 주입하는 1차 퍼징 단계;
c) 상기 반응 챔버 내부에 본 발명의 인듐 전구체 화합물을 주입하여 상기 기재 상에 흡착하는 단계;
d) 상기 반응 챔버 내부로 비활성 기체를 주입하여 기재 상에 화학 흡착된 인듐 전구체 화합물은 남기고, 물리 흡착된 인듐 전구체 화합물은 제거하는 2차 퍼징 단계;
e) 상기 반응 챔버 내부로 반응 가스를 주입하여 상기 화학 흡착된 인듐 전구체 화합물과 반응시키는 단계; 및
f) 상기 반응의 부산물 및 미반응 물질을 상기 반응 챔버 외부로 방출시키는 3차 퍼징 단계.
상기 박막의 제조 방법은 일례로 상기 단계 a) 내지 f)를 1 사이클로 하여, 상기 사이클은 반복 수행될 수 있다. 구체적으로 상기 사이클 반복 회수는 50 내지 1000회, 바람직하게는 100 내지 300회일 수 있으며, 이 경우 박막의 두께가 적절히 구현되고, 공정 효율이 상승될 수 있다.
상기 박막의 제조 방법은 일례로 화학 기상 증착법(CVD), 유기금속 화학기상 증착법(MOCVD), 저압 기상 증착법(LPCVD), 플라즈마 강화 기상 증착법 (PECVD), 원자층 증착법(ALD), 또는 플라즈마 강화 원자층 증착법(PEALD)으로 실시될 수 있고, 바람직하게는 화학 기상 증착법 또는 원자층 증착법에 의해 실시될 수 있으나, 이에 한정되는 것은 아니다. 상기 화학 기상 증착법 또는 원자층 증착법은 일례로 박막 증착 원료를 기체 상태로 기판에 공급함으로써 종횡비가 큰 구조의 표면에도 균일한 두께의 막을 형성할 수 있으며, 대면적 또는 롤 형태의 기판에도 본 기재의 인듐 전구체 화합물을 균일한 농도로 공급하여 균일한 막을 형성할 수 있는 이점이 있다.
상기 증착 온도는 일례로 200 내지 1,000℃, 구체적으로는 250 내지 500℃, 바람직하게는 270 내지 400℃, 더욱 바람직하게는 300 내지 350℃일 수 있고, 이 경우 상대적으로 낮은 온도에서 인듐 전구체 화합물의 증착이 가능하여 공정 효율이 향상되고 증착 공정에 사용되는 화합물들의 열분해를 감소시켜 증착 공정의 안정성 및 생산성이 크게 개선되는 효과가 있다. 또한, 제조된 박막 내 탄소(carbon)와 같은 불순물(impurity)의 함량을 감소시켜 박막의 물성을 향상시킬 수 있다.
상기 증착은 일례로 증착 원료들을 순차적으로 공급하여 증착하는 시분할 증착 장치를 사용할 수 있다.
다른 일례로, 한 가지 원료의 기체가 채워져 있는 공간과, 다른 원료 기체가 채워져 있는 공간을 기판이 회전하며 왕복하는 방식의 공간분할 증착 장치를 사용할 수 있다.
또 다른 일례로, 상기 기판이 롤 형태의 고분자 기재인 경우에는 롤 형태로 감는 롤투롤(roll-to-roll) 증착 장치를 사용할 수 있다.
상기 반응 가스는 일례로 수증기(H2O), 과산화수소(H2O2), 산소(O2), 오존(O3), 수소(H2), 질소(N2), 히드라진(N2H4), 암모니아(NH3) 및 실란(silane)으로 이루어진 군으로부터 선택되는 1종 이상일 수 있으나, 이에 제한되는 것은 아니다.
구체적인 일례로, 수증기, 산소, 오존과 같은 산화성 반응 가스 존재 하에서 상기 인듐 전구체 화합물의 증착이 수행되는 경우, 인듐 함유 금속 산화물 박막이 형성될 수 있다.
구체적인 다른 일례로, 수소, 실란과 같은 반응 가스 존재 하에서 상기 인듐 전구체 화합물의 증착이 수행되는 경우, 인듐 함유 금속 박막이 형성될 수 있다.
구체적인 또 다른 일례로, 암모니아, 히드라진과 같은 질소계 반응 가스 존재 하에서 상기 인듐 전구체 화합물의 증착이 수행되는 경우, 인듐 함유 금속 질화물 박막이 형성될 수 있다.
상기 박막의 제조 방법에서 상기 인듐 전구체 화합물의 주입 시간은 일례로 1 내지 30 초, 바람직하게는 1 내지 20초, 더욱 바람직하게는 2 내지 10초일 수 있고, 이 범위 내에서 박막의 두께 균일도가 향상되어 복잡한 형상의 기판에서도 균일한 박막을 용이하게 제조할 수 있다.
상기 박막의 제조 방법에서 반응 가스의 주입 시간은 일례로 1 내지 40 초, 바람직하게는 1 내지 30초, 더욱 바람직하게는 2 내지 10초일 수 있고, 이 범위 내에서 우수한 피복성 및 균일한 도포성으로 인해 박막의 물성이 향상되는 효과가 있다.
상기 기재(예를 들어 웨이퍼)는 일례로 유리, 실리콘, 금속 폴리에스테르(Polyester, PE), 폴리에틸렌테레프탈레이트(Polyethyleneterephthalate, PET), 폴리에틸렌나프탈레이트(Polyethylenenapthalate, PEN), 폴리카르보네이트(Polycarbonate, PC), 폴리에테르이미드(Polyetherimide, PEI), 폴리에테르설폰(Polyethersulfone, PES), 폴리에테르에테르케톤(Polyetheretherketone, PEEK) 및 폴리이미드(Polyimide, PI)로 이루어진 군으로부터 선택된 1종 이상의 기재를 포함할 수 있으나, 이에 제한되는 것은 아니다.
본 기재에서, 박막 제조 공정 중 챔버에 공급되는 기판은 기재(substrate)를 지칭한다.
본 발명은 상기 박막의 제조 방법에 의해 제조된 박막을 포함하는 것을 특징으로 하는 기판을 제공한다. 여기에서, 기판은 기재 및 상기 기재 상에 형성된 박막을 포함하고, 상기 박막은 상기 인듐 전구체 화합물을 포함한다.
상기 박막의 제조 방법에 의해 제조된 박막은 일례로 인듐 산화물 박막, 인듐 박막 또는 인듐 질화물 박막일 수 있다. 이 경우, 박막의 막 형성이 빠르고 막 두께의 균일성 및 열 안정성이 우수한 효과가 있다.
상기 박막의 제조 방법에 의해 제조된 박막은 일례로 단일층 구조, 또는 다층 구조일 수 있다.
상기 단일층 구조의 박막은 일례로 상기 인듐 전구체 화합물을 증착하여 형성되거나, 상기 인듐 전구체 화합물에, 갈륨 전구체 및 아연 전구체로 이루어진 군으로부터 선택된 1종 이상을 혼합한 혼합물을 증착하여 형성될 수 있고, 바람직하게는 인듐 전구체 화합물과 갈륨 전구체의 혼합물, 인듐 전구체 화합물과 아연 전구체의 혼합물, 또는 인듐 전구체 화합물, 갈륨 전구체 및 아연 전구체의 혼합물을 증착하여 형성된 것일 수 있다. 상기 갈륨 전구체 및 아연 전구체는 구체적인 일례로 각각 TMG(trimethylgallium) 및 DEZ(diethylzinc)일 수 있다.
상기 다층 구조의 박막은 일례로 상기 인듐 전구체 화합물과 다른 전구체를 순차적으로 증착하여 적층된 구조일 수 있고, 구체적인 일례로 갈륨 전구체 및 아연 전구체로 이루어진 군에서 선택된 1종 이상과 상기 인듐 전구체 화합물을 기재 상에 증착하여 적층된 구조일 수 있다.
상기 박막의 제조 방법에 의해 제조된 박막은 구체적인 일례로 IGZO(인듐 갈륨 아연 산화물) 박막일 수 있고, 상기 IGZO 박막의 In:Ga:Zn 조성비는 일례로 몰비를 기준으로 1 내지 10 : 1 내지 10 : 1 내지 10, 바람직하게는 1 내지 5 : 1 내지 5 : 1 내지 5일 수 있으며, 더욱 바람직하게는 1:1:1일 수 있다.
상기 박막의 제조 방법에 의해 제조된 박막은 일례로 25℃에서 비저항 값이 1×10-5 내지 1×102 Ωcm, 바람직하게는 1×10-4 내지 1×102 Ωcm, 더욱 바람직하게는 1×10-3 내지 10 Ωcm일 수 있다.
본 기재에서 비저항의 측정 방법은 본 발명이 속한 기술 분야에서 통상적으로 실시하는 공지된 측정 방법이라면 특별히 제한되지 않으며, 구체적인 일례로 4-탐침법(4-probe 측정법)을 통해 측정할 수 있다.
이하, 본 발명의 이해를 돕기 위하여 바람직한 실시예를 제시하나, 하기 실시예는 본 발명을 예시하는 것일 뿐 본 발명의 범주 및 기술사상 범위 내에서 다양한 변경 및 수정이 가능함은 당업자에게 있어서 명백한 것이며, 이러한 변형 및 수정이 첨부된 특허청구범위에 속하는 것도 당연한 것이다.
[실시예]
합성예 1
인듐 전구체 화합물의 제조
단계 1) 250ml 슐렝크 플라스크에 무수 트리메틸인듐 10 g (62.5 mmol)과 톨루엔 200 ml를 넣고 -20℃로 냉각시켜 제조한 용액에, 트리클로로인듐 6.91 g (31.3 mmol)을 천천히 적가하여 30분간 교반한 후, 서서히 온도를 올려 실온에서 교반하였다. 반응 종료 후 상온에서 진공을 가해 용매를 제거하여 흰색 고체로서 하기 반응식 2-1의 1-1과 같은 구조를 갖는 디메틸클로로인듐 16.91 g (93.8 mmol)을 얻었다.
1H NMR (C6D6, 400 MHz): δ 0.19 (s, 6H)
[반응식 2-1]
Figure PCTKR2020014801-appb-I000006
단계 2) 500 mL 슐렝크 플라스크에 2-클로로-N,N-다이메틸에틸아민 염산염 50 g (347.12 mmol)과 증류수 50 mL를 넣고 -20℃로 냉각시켜 제조한 용액에, tert-부틸 아민 253.88 g (3.47 mol)을 천천히 적가하고 30분간 교반한 후, 온도를 서서히 올려 실온에서 1시간 동안 교반하였다. 그 후 80℃로 승온시킨 후 1시간 동안 교반한 뒤 실온으로 온도를 서서히 낮췄다. 반응 종료 후 플라스크를 -20℃로 냉각한 후 NaOH 20.83 g (520.68 mmol)을 증류수 50 mL에 희석한 용액을 천천히 적가한 후 서서히 온도를 올려 실온에서 1시간 동안 교반하였다. 이로부터 얻어진 용액을 헥산 150 mL로 3회 추출한 뒤, 헥산층에 상온에서 100 torr의 진공을 가하여 헥산을 제거한 뒤, 감압증류법을 이용하여 무색의 액체 상태인, 하기 반응식 2-2의 2-1과 같은 구조를 갖는 N,N-다이메틸아미노-N'-tert-부틸에틸렌 디아민 35 g (242.61 mmol)을 얻었다.
1H NMR (C6D6, 400 MHz): δ 1.06 (s, 9H), 1.21 (br, 1H), 2.06 (s, 6H), 2.33 (t, 2H), 2.56 (q, 2H)
[반응식 2-2]
Figure PCTKR2020014801-appb-I000007
단계 3) 250 mL 슐렝크 플라스크에 톨루엔 50 mL를 넣고 n-부틸리튬 (2.5 M in 헥산) 용액 13.86 mL를 넣은 뒤 -20℃로 냉각시키면서 상기 단계 2)에서 제조된 N,N-다이메틸아미노-N'-tert-부틸에틸렌 디아민 5 g (34.66 mmol)을 천천히 적가한 후, 서서히 실온으로 승온하여 1시간 동안 교반하였다. 그 후 얻어진 용액을 -20℃로 냉각한 후, 상기 단계 1)에서 제조된 디메틸클로로인듐 6.25 g (34.66 mmol)을 천천히 투입하였다. 투입이 완료된 후, 플라스크의 온도를 서서히 올려서 실온에서 1시간 동안 교반한 후, 110℃ 까지 승온하여 1시간 동안 교반하고, 다시 실온으로 온도를 서서히 낮췄다. 그 후, 실온 조건에서, 상기 단계 1)에서 제조된 디메틸클로로인듐 6.25 g (34.66 mmol)을 천천히 투입하고 플라스크의 온도를 110℃ 까지 올린 상태에서 2시간 동안 교반한 후 다시 실온까지 온도를 서서히 낮췄다. 반응 종료 후 얻어진 용액 내 고체를 걸러낸 뒤에 진공을 가해 용매를 제거하여 주황색 액체를 얻었고 상기 액체를 진공 증류하여 불순물을 제거한 뒤 투명하고 무색을 띄는 하기 반응식 2-3의 3-1로 표시되는 화합물(박막 형성용 전구체)을 얻었으며, 앞에서와 같이 이의 구조는 1H NMR 스펙트럼 분석을 통해 확인하였고, 그 결과를 하기 도 1에 나타내었다.
1H NMR (C6D6, 400 MHz): δ -0.01 (s, 6H), 1.17 (s, 9H), 2.02 (s, 6H), 4.08 (d, 1H), 6.48 (d, 1H)
[반응식 2-3]
Figure PCTKR2020014801-appb-I000008
상기 제조된 인듐 전구체 화합물은 대기에 노출되어도 발화되거나 흄(fume)이 발생하지 않아 안정한 화합물임을 확인하였다.

Claims (11)

  1. 하기 화학식 1로 표시되는 것을 특징으로 하는 인듐 전구체 화합물.
    [화학식 1]
    Figure PCTKR2020014801-appb-I000009
    (상기 화학식 1에서 R1, R3 및 R4는 각각 독립적으로 치환 또는 비치환된 탄소수 1 내지 6의 알킬기이고, R2는 탄소수 1 내지 6의 선형 또는 분지형 알킬기이고, R5 및 R6은 각각 독립적으로 수소 또는 탄소수 1 내지 3의 알킬기이고, X는 탄소 또는 헤테로 원자이고, n은 1 내지 3의 정수이다.)
  2. 제 1항에 있어서,
    상기 화학식 1에서 X는 비공유 전자쌍을 갖는 헤테로 원자인 것을 특징으로 하는 인듐 전구체 화합물.
  3. 제 1항에 있어서,
    상기 화학식 1에서 R2는 분지형 알킬기인 것을 특징으로 하는 인듐 전구체 화합물.
  4. 제 1항에 있어서,
    상기 인듐 전구체 화합물은 25℃에서 측정한 증기압이 0.01 내지 400 mmHg인 것을 특징으로 하는 인듐 전구체 화합물.
  5. 제 1항 내지 제 4항 중 어느 한 항의 인듐 전구체 화합물을 기재 상에 증착하여 박막을 형성하는 단계를 포함하는 것을 특징으로 하는 박막의 제조 방법.
  6. 제 5항에 있어서,
    상기 박막의 제조 방법은 갈륨 전구체 및 아연 전구체 중에서 선택된 1종 이상과 상기 인듐 전구체 화합물을 기재 상에 증착하여 박막을 형성하는 단계를 포함하는 것을 특징으로 하는 박막의 제조 방법.
  7. 제 5항에 있어서,
    상기 박막의 제조 방법은 증착 온도 200 내지 1,000℃ 하에서 실시되는 것을 특징으로 하는 박막의 제조 방법.
  8. 제 5항에 있어서,
    상기 증착은 화학 기상 증착법(CVD) 또는 원자층 증착법(ALD)에 의해 실시되는 것을 특징으로 하는 박막의 제조 방법.
  9. 기재; 및 상기 기재 상에 형성된 박막;을 포함하되,
    상기 박막은 제 5항 내지 제 8항 중 어느 한 항에 따른 방법으로 제조된 것을 특징으로 하는 기판.
  10. 제 9항에 있어서,
    상기 박막은 인듐 산화물 박막, 인듐 박막 또는 인듐 질화물 박막인 것을 특징으로 하는 기판.
  11. 제 9항에 있어서,
    상기 박막은 인듐 갈륨 아연 산화물(IGZO) 박막인 것을 특징으로 하는 기판.
PCT/KR2020/014801 2019-10-30 2020-10-28 인듐 전구체 화합물, 이를 이용한 박막의 제조 방법 및 이로부터 제조된 기판 WO2021086006A1 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP20883240.2A EP4053131A4 (en) 2019-10-30 2020-10-28 INDIUM PRECURSOR COMPOUND, METHOD FOR MAKING THIN FILM USING THIS COMPOUND, AND SUBSTRATE MADE THEREOF
JP2022523511A JP7387892B2 (ja) 2019-10-30 2020-10-28 インジウム前駆体化合物、これを用いた薄膜の製造方法、及びこれから製造された基板
US17/773,287 US20240167151A1 (en) 2019-10-30 2020-10-28 Indium precursor compound, method of preparing thin film using the same, and board prepared using the same
CN202080074133.7A CN114599658A (zh) 2019-10-30 2020-10-28 铟前体化合物,利用该铟前体化合物的薄膜的制备方法及由此制备的基板

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR20190136318 2019-10-30
KR10-2019-0136318 2019-10-30
KR1020200140859A KR20210052305A (ko) 2019-10-30 2020-10-28 인듐 전구체 화합물, 이를 이용한 박막의 제조 방법 및 이로부터 제조된 기판
KR10-2020-0140859 2020-10-28

Publications (1)

Publication Number Publication Date
WO2021086006A1 true WO2021086006A1 (ko) 2021-05-06

Family

ID=75715412

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2020/014801 WO2021086006A1 (ko) 2019-10-30 2020-10-28 인듐 전구체 화합물, 이를 이용한 박막의 제조 방법 및 이로부터 제조된 기판

Country Status (1)

Country Link
WO (1) WO2021086006A1 (ko)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5874131A (en) * 1996-10-02 1999-02-23 Micron Technology, Inc. CVD method for forming metal-containing films
KR20110020901A (ko) 2008-06-06 2011-03-03 이데미쓰 고산 가부시키가이샤 산화물 박막용 스퍼터링 타겟 및 그의 제조 방법
KR101221861B1 (ko) * 2012-03-26 2013-01-14 솔브레인 주식회사 금속 전구체 및 이를 이용하여 제조된 금속 함유 박막
KR20180007815A (ko) * 2016-07-14 2018-01-24 삼성전자주식회사 알루미늄 화합물과 이를 이용한 박막 형성 방법 및 집적회로 소자의 제조 방법
KR20180056949A (ko) * 2016-11-21 2018-05-30 한국화학연구원 13족 금속 전구체, 이를 포함하는 박막증착용 조성물 및 이를 이용하는 박막의 제조방법
KR20190121468A (ko) * 2018-04-18 2019-10-28 주식회사 한솔케미칼 원자층 증착용(ald), 화학 기상 증착용(cvd) 전구체 화합물 및 이를 이용한 ald/cvd 증착법

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5874131A (en) * 1996-10-02 1999-02-23 Micron Technology, Inc. CVD method for forming metal-containing films
KR20110020901A (ko) 2008-06-06 2011-03-03 이데미쓰 고산 가부시키가이샤 산화물 박막용 스퍼터링 타겟 및 그의 제조 방법
KR101221861B1 (ko) * 2012-03-26 2013-01-14 솔브레인 주식회사 금속 전구체 및 이를 이용하여 제조된 금속 함유 박막
KR20180007815A (ko) * 2016-07-14 2018-01-24 삼성전자주식회사 알루미늄 화합물과 이를 이용한 박막 형성 방법 및 집적회로 소자의 제조 방법
KR20180056949A (ko) * 2016-11-21 2018-05-30 한국화학연구원 13족 금속 전구체, 이를 포함하는 박막증착용 조성물 및 이를 이용하는 박막의 제조방법
KR20190121468A (ko) * 2018-04-18 2019-10-28 주식회사 한솔케미칼 원자층 증착용(ald), 화학 기상 증착용(cvd) 전구체 화합물 및 이를 이용한 ald/cvd 증착법

Similar Documents

Publication Publication Date Title
WO2020101336A1 (ko) 몰리브덴 함유 박막의 제조방법 및 이로부터 제조된 몰리브덴 함유 박막
WO2021133080A1 (ko) 이트륨/란탄족 금속 전구체 화합물, 이를 포함하는 막 형성용 조성물 및 이를 이용한 이트륨/란탄족 금속 함유 막의 형성 방법
WO2019103500A1 (ko) 실리콘 함유 박막 증착용 조성물 및 이를 이용한 실리콘 함유 박막의 제조방법
WO2015142053A1 (ko) 유기 게르마늄 아민 화합물 및 이를 이용한 박막 증착 방법
WO2017014399A1 (ko) 텅스텐 전구체 및 이를 포함하는 텅스텐 함유 필름 증착방법
WO2015130108A1 (ko) 지르코늄 함유막 형성용 전구체 조성물 및 이를 이용한 지르코늄 함유막 형성 방법
US20240167151A1 (en) Indium precursor compound, method of preparing thin film using the same, and board prepared using the same
WO2014084557A1 (ko) 실리콘 전구체 화합물 및 이를 이용한 실리콘-함유 박막의 증착 방법
WO2022025332A1 (ko) 코발트 화합물, 이를 포함하는 전구체 조성물, 및 이를 이용한 박막의 제조방법
WO2021086006A1 (ko) 인듐 전구체 화합물, 이를 이용한 박막의 제조 방법 및 이로부터 제조된 기판
WO2020130216A1 (ko) 희토류 전구체, 이의 제조방법 및 이를 이용하여 박막을 형성하는 방법
WO2019066179A1 (ko) 열적 안정성 및 반응성이 우수한 기상 증착 전구체 및 이의 제조방법
KR20200116839A (ko) 인듐 전구체 화합물, 이를 포함하는 박막 및 그 박막의 제조 방법
WO2020116770A1 (ko) 4족 전이금속 화합물, 이의 제조방법 및 이를 이용하여 박막을 형성하는 방법
WO2021261890A1 (ko) 박막 형성용 프리커서, 이의 제조방법 및 이를 포함하는 박막 제조 방법
WO2018062590A1 (ko) 산화물 박막 형성을 위한 기상 증착용 유기금속 전구체 화합물 및 이의 제조방법
WO2021085810A2 (ko) 4족 전이금속 화합물, 이의 제조방법 및 이를 포함하는 박막증착용 조성물
WO2022025333A1 (ko) 유기금속 화합물, 이를 포함하는 전구체 조성물, 및 이를 이용한 박막의 제조방법
WO2023200144A1 (ko) 인듐 화합물, 이를 포함하는 인듐 함유 박막증착용 조성물 및 인듐 함유 박막의 제조방법
WO2024128537A1 (ko) 갈륨 화합물, 이를 포함하는 박막 증착용 조성물 및 이를 이용한 박막의 제조 방법
WO2024058624A1 (ko) 란탄족 금속 함유 박막 형성용 전구체, 이를 이용한 란탄족 금속 함유 박막 형성 방법 및 상기 란탄족 금속 함유 박막을 포함하는 반도체 소자.
WO2023113308A1 (ko) 몰리브데넘 화합물, 이의 제조방법 및 이를 포함하는 박막 증착용 조성물
WO2022139345A1 (ko) 신규 화합물, 이를 포함하는 전구체 조성물, 및 이를 이용한 박막의 제조방법
WO2024117807A1 (ko) 스칸듐 또는 이트륨 함유 박막 형성용 전구체, 이를 이용한 스칸듐 또는 이트륨 함유 박막 형성 방법 및 상기 스칸듐 또는 이트륨 함유 박막을 포함하는 반도체 소자.
WO2022169232A1 (ko) 4족 전이금속 화합물, 이의 제조방법 및 이를 이용하여 박막을 형성하는 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20883240

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022523511

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 17773287

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020883240

Country of ref document: EP

Effective date: 20220530