WO2022025332A1 - 코발트 화합물, 이를 포함하는 전구체 조성물, 및 이를 이용한 박막의 제조방법 - Google Patents

코발트 화합물, 이를 포함하는 전구체 조성물, 및 이를 이용한 박막의 제조방법 Download PDF

Info

Publication number
WO2022025332A1
WO2022025332A1 PCT/KR2020/010193 KR2020010193W WO2022025332A1 WO 2022025332 A1 WO2022025332 A1 WO 2022025332A1 KR 2020010193 W KR2020010193 W KR 2020010193W WO 2022025332 A1 WO2022025332 A1 WO 2022025332A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
thin film
cobalt
compound
vapor deposition
Prior art date
Application number
PCT/KR2020/010193
Other languages
English (en)
French (fr)
Inventor
박민성
김효숙
임민혁
석장현
박정우
Original Assignee
주식회사 한솔케미칼
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 한솔케미칼 filed Critical 주식회사 한솔케미칼
Publication of WO2022025332A1 publication Critical patent/WO2022025332A1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F15/00Compounds containing elements of Groups 8, 9, 10 or 18 of the Periodic Table
    • C07F15/06Cobalt compounds
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/06Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of metallic material
    • C23C16/18Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of metallic material from metallo-organic compounds
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/34Nitrides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/40Oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/42Silicides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber

Definitions

  • the present invention relates to a vapor deposition compound capable of depositing a thin film through vapor deposition, specifically, applicable to an atomic layer deposition method or a chemical vapor deposition method, and a novel cobalt compound having excellent reactivity, volatility and thermal stability, including the cobalt compound to a precursor composition, a method for manufacturing a thin film using the precursor composition, and a cobalt-containing thin film prepared from the precursor composition.
  • Cobalt precursors have various oxidation numbers from -1 to +5 and usually have +2 and +3 oxidation numbers, and can form cobalt oxide and nitride thin films applied to semiconductor devices.
  • the cobalt metal thin film can be used in electrode materials, magnetic materials, magnetic random access memories (MRAM), diluted magnetic semiconductors (DMS), perovskite materials, catalysts, photocatalysts, etc. can
  • the cobalt metal thin film can be used as a copper diffusion barrier and capping layer in the metal wiring process due to the high integration of semiconductor devices, and is attracting attention as a next-generation material to replace the copper metal thin film.
  • Representative precursors currently known are carbonyl compounds Dicobalt hexacarbonyl t-butylacetylene (CCTBA), Co(CO) 3 (NO), cyclopentadiene compounds CpCo(CO) 2 , beta-diketonate compounds Co(tmhd) 2 , Co( acac) 2 , a diene compound Co( tBu2 DAD) 2 , and the like. They are mostly solid compounds with a relatively high melting point and low stability. In addition, impurity contamination may occur in the thin film during thin film deposition.
  • CCTBA which is most commonly used, has serious C and O contamination in the thin film after deposition.
  • CpCo(CO) 2 is a liquid compound and has the advantage of high vapor pressure, but low thermal stability.
  • Co( tBu2 DAD) 2 has less contamination in the thin film after deposition, but has a disadvantage of low volatility.
  • An object of the present invention is to provide a cobalt precursor compound for thin film deposition excellent in reactivity, thermal stability and volatility to solve the problems of the conventional cobalt precursor mentioned above.
  • an imidazole ligand and an alkoxide ligand having a structure similar to that of a diazadiene (DAD) ligand used in a conventional cobalt precursor aims to improve volatility, which was a disadvantage of the conventional precursor.
  • DAD diazadiene
  • the present invention is to provide a method for manufacturing a thin film using the cobalt precursor compound and a cobalt-containing thin film.
  • the present invention is a novel cobalt compound that is solid but has a low melting point, is purified at a low temperature, and has excellent volatility in a low temperature range by introducing an imidazole ligand, which can be expected to have high stability as an electron donor, into an alkoxide ligand having excellent reactivity and volatility. and a precursor composition comprising the same, in the present invention, to provide a novel cobalt precursor comprising a combination of an alkoxide ligand and an imidazole ligand. Furthermore, it is an object to provide a novel cobalt precursor in which the substituent of the alkoxide ligand is modified with an N-alkyl group.
  • R 1 and R 2 are each independently hydrogen or a linear or branched alkyl group having 1 to 4 carbon atoms;
  • R 3 is —OR 4 or —NR 5 R 6 ;
  • R 4 is hydrogen or a linear or branched alkyl group having 1 to 4 carbon atoms
  • R 5 and R 6 are each independently hydrogen, a linear or branched alkyl group having 1 to 4 carbon atoms, or a linear or branched alkylsilyl group having 1 to 6 carbon atoms.
  • Another aspect of the present application provides a precursor composition for vapor deposition comprising the cobalt compound.
  • Another aspect of the present application provides a method of manufacturing a thin film comprising introducing the precursor composition for vapor deposition into a chamber.
  • Another aspect of the present application provides a cobalt-containing thin film prepared by using the precursor composition for vapor deposition.
  • novel cobalt compound and the precursor composition comprising the vapor deposition compound according to the present invention have excellent reactivity, volatility and thermal stability, and are solid but have a low melting point, enabling uniform cobalt-containing thin film deposition with excellent properties, and thus excellent thin film properties, It is possible to secure thickness and step coverage.
  • Such physical properties provide a cobalt precursor suitable for atomic layer deposition and chemical vapor deposition, and contribute to excellent thin film properties.
  • Example 1 is, Co(MeMeIm) 2 (O t Bu) 2 NMR (nuclear magnetic resonance) data of the compound of Example 1 of the present application.
  • Example 2 is an XRC (X-ray crystallography) image of the Co(MeMeIm) 2 (O t Bu) 2 compound of Example 1 of the present application.
  • Example 5 is an XRC image of the Co(EtMeIm) 2 (O t Bu) 2 compound of Example 2 of the present application.
  • the present invention is applicable to an atomic layer deposition method or a chemical vapor deposition method, and is a novel cobalt compound having excellent reactivity, volatility and thermal stability, a precursor composition comprising the cobalt compound, a method for manufacturing a thin film using the precursor composition, and the precursor It relates to a cobalt-containing thin film prepared from the composition.
  • alkyl includes linear or branched alkyl groups having from 1 to 4 carbon atoms and all possible isomers thereof.
  • the alkyl group includes a methyl group (Me), an ethyl group (Et), a n-propyl group ( n Pr), an iso-propyl group ( i Pr), an n-butyl group ( n Bu), a tert-butyl group ( t Bu), iso-butyl group ( i Bu), sec-butyl group ( sec Bu), and isomers thereof, and the like, but may not be limited thereto.
  • Im refers to an abbreviation of “imidazole”
  • btsa refers to an abbreviation of “bis(trimethylsilyl)amide”.
  • One aspect of the present application provides a cobalt compound represented by the following formula (1).
  • R 1 and R 2 are each independently hydrogen or a linear or branched alkyl group having 1 to 4 carbon atoms;
  • R 3 is —OR 4 or —NR 5 R 6 ;
  • R 4 is hydrogen or a linear or branched alkyl group having 1 to 4 carbon atoms; It is preferable that R 5 and R 6 are each independently hydrogen, a linear or branched alkyl group having 1 to 4 carbon atoms, or a linear or branched alkylsilyl group having 1 to 6 carbon atoms.
  • R 1 , R 2 , and R 4 are each independently hydrogen, methyl group, ethyl group, n-propyl group, iso-propyl group, n-butyl group, iso- It may be any one selected from the group consisting of a butyl group, a sec-butyl group, and a tert-butyl group, but is not limited thereto.
  • R 5 and R 6 are, each independently, hydrogen, methyl group, ethyl group, n-propyl group, iso-propyl group, n-butyl group, iso-butyl group, sec It may be any one selected from the group consisting of -butyl group, tert-butyl group, methylsilyl group, dimethylsilyl group, trimethylsilyl group, and triethylsilyl group, but is not limited thereto.
  • the cobalt compound may be a solid at room temperature.
  • the cobalt compound according to the present invention has a low melting point and excellent volatility at a low temperature.
  • the compound represented by Formula 1 may be a Co(Imidazole)(Alkoxide) compound, characterized in that it is represented by Formula 1-1 below.
  • R 1 , R 2 and R 4 are each independently preferably hydrogen or a linear or branched alkyl group having 1 to 4 carbon atoms.
  • R 1 , R 2 , and R 4 are each independently hydrogen, a methyl group, an ethyl group, n-propyl group, iso-propyl group, n-butyl group, iso-butyl group, sec-butyl group, and It is more preferably any one selected from the group consisting of tert-butyl group.
  • the cobalt compound represented by Formula 1-1 may be prepared through a reaction as shown in Scheme 1 below.
  • X is a halogen element (eg, Cl, Br or I); R 1 , R 2 and R 4 are each independently hydrogen or a linear or branched alkyl group having 1 to 4 carbon atoms.
  • examples of the Co(Imidazole)(Alkoxide) compound represented by Formula 1-1 may include the following cobalt compounds, but are not limited thereto:
  • the compound represented by Formula 1 may be a Co(Imidazole)(amide) compound, characterized in that it is represented by Formula 1-2 below.
  • R 1 and R 2 are each independently hydrogen or a linear or branched alkyl group having 1 to 4 carbon atoms; It is preferable that R 5 and R 6 are each independently hydrogen, a linear or branched alkyl group having 1 to 4 carbon atoms, or a linear or branched alkylsilyl group having 1 to 6 carbon atoms.
  • R 1 and R 2 are each independently hydrogen, methyl group, ethyl group, n-propyl group, iso-propyl group, n-butyl group, iso-butyl group, sec-butyl group, and tert-butyl group It is more preferably any one selected from the group consisting of;
  • R 5 and R 6 are each independently hydrogen, methyl group, ethyl group, n-propyl group, iso-propyl group, n-butyl group, iso-butyl group, sec-butyl group, tert-butyl group, methylsilyl group , it is more preferably any one selected from the group consisting of a dimethylsilyl group, a trimethylsilyl group, and a triethylsilyl group.
  • the cobalt compound represented by Formula 1-2 may be prepared through a reaction as shown in Scheme 2 below.
  • X is a halogen element (eg, Cl, Br or I);
  • R 1 and R 2 are each independently hydrogen or a linear or branched alkyl group having 1 to 4 carbon atoms;
  • R 5 and R 6 are each independently hydrogen, a linear or branched alkyl group having 1 to 4 carbon atoms, or a linear or branched alkylsilyl group having 1 to 6 carbon atoms.
  • examples of the Co(Imidazole)(amide) compound represented by Formula 1-2 may include the following cobalt compounds, but are not limited thereto:
  • the compound represented by Formula 1 may be a Co(Imidazole)(amide) compound, characterized in that it is represented by Formula 1-3 below.
  • R 1 and R 2 are each independently hydrogen or a linear or branched alkyl group having 1 to 4 carbon atoms; It is preferable that R 5 and R 6 are each independently hydrogen, a linear or branched alkyl group having 1 to 4 carbon atoms, or a linear or branched alkylsilyl group having 1 to 6 carbon atoms.
  • R 1 and R 2 are each independently hydrogen, methyl group, ethyl group, n-propyl group, iso-propyl group, n-butyl group, iso-butyl group, sec-butyl group, and tert-butyl group It is more preferably any one selected from the group consisting of;
  • R 5 and R 6 are each independently hydrogen, methyl group, ethyl group, n-propyl group, iso-propyl group, n-butyl group, iso-butyl group, sec-butyl group, tert-butyl group, methylsilyl group , it is more preferably any one selected from the group consisting of a dimethylsilyl group, a trimethylsilyl group, and a triethylsilyl group.
  • the cobalt compound represented by Formula 1-3 may be prepared through a reaction as shown in Scheme 3 below.
  • X is a halogen element (eg, Cl, Br or I);
  • R 1 and R 2 are each independently hydrogen or a linear or branched alkyl group having 1 to 4 carbon atoms;
  • R 5 and R 6 are each independently hydrogen, a linear or branched alkyl group having 1 to 4 carbon atoms, or a linear or branched alkylsilyl group having 1 to 4 carbon atoms.
  • examples of the Co(Imidazole)(amide) compound represented by Formula 1-3 may include the following cobalt compounds, but are not limited thereto:
  • Another aspect of the present application provides a precursor composition for vapor deposition comprising the cobalt compound.
  • Another aspect of the present application provides a method of manufacturing a thin film comprising introducing the precursor composition for vapor deposition into a chamber.
  • the step of introducing the vapor deposition precursor into the chamber may include physisorption, chemisorption, or physical and chemisorption.
  • Another aspect of the present application provides a cobalt-containing thin film prepared by using the precursor composition for vapor deposition.
  • the precursor for vapor deposition, the method for manufacturing a thin film, and the cobalt-containing thin film according to the present invention can apply all of the contents described with respect to the cobalt compound, and the detailed description of overlapping parts is omitted, but the description Even if this is omitted, the same may be applied.
  • the method of manufacturing the thin film is an atomic layer deposition (ALD) method for sequentially introducing a vapor deposition precursor and a reaction gas of the present invention and a vapor deposition precursor of the present invention and a reactive gas continuously It may include all of the chemical vapor deposition method (Chemical Vapor Deposition, CVD) to form a film by injection.
  • ALD atomic layer deposition
  • CVD chemical Vapor Deposition
  • the deposition method is metal organic chemical vapor deposition (MOCVD), low pressure chemical vapor deposition (LPCVD), pulsed chemical vapor deposition (P-CVD), plasma enhanced atomic layer It may include a vapor deposition method (PE-ALD) or a combination thereof, but is not limited thereto.
  • MOCVD metal organic chemical vapor deposition
  • LPCVD low pressure chemical vapor deposition
  • P-CVD pulsed chemical vapor deposition
  • PE-ALD vapor deposition method
  • PE-ALD vapor deposition method
  • the method for manufacturing the thin film includes hydrogen (H 2 ), a compound (or mixture) containing an oxygen (O) atom, a compound (or mixture) containing a nitrogen (N) atom, or silicon (Si) as a reaction gas ) may further include injecting any one or more reactive gases selected from the atom-containing compound (or mixture).
  • the above may be used as the reaction gas, but is not limited thereto.
  • water (H 2 O), oxygen (O 2 ), and ozone (O 3 ) can be used as a reaction gas to deposit a cobalt oxide thin film, and ammonia (NH 3 ) as a reaction gas to deposit a cobalt nitride thin film. ) or hydrazine (N 2 H 4 ) may be used.
  • hydrogen (H 2 ) may be used as a reaction gas to deposit a metal cobalt thin film
  • a silane compound may be used as a reaction gas to deposit a cobalt silicide (CoSi or CoSi 2 ) thin film.
  • the thin film manufactured by the method for manufacturing the thin film of the present invention may be a cobalt metal thin film, a cobalt oxide thin film, a cobalt nitride thin film, or a cobalt silicide thin film, but is not limited thereto.
  • Example 1 The structure of the compound [Co(MeMeIm) 2 (O t Bu) 2 ] synthesized in Example 1 is as shown in FIG. 2 , and the NMR data and thermogravimetric analysis results thereof are shown in FIGS. 1 and 3 .
  • Example 2 It was sublimed at 0° C. and 0.2 Torr to obtain a purple solid.
  • the structure of the compound [Co(EtMeIm) 2 (O t Bu) 2 ] synthesized in Example 2 is as shown in FIG. 5 , and its NMR data and thermal weight The analysis results are shown in FIGS. 4 and 6 .
  • Example 3 The structure of the compound [Co(EtMeIm) 2 (O sec Bu) 2 ] synthesized in Example 3 is as shown in FIG. 8 , and the NMR data and thermogravimetric analysis results thereof are shown in FIGS. 7 and 9 .
  • Example 1 Example 2 Example 3 compound type Co(MeMeIm) 2 (O t Bu) 2 Co(EtMeIm) 2 (O t Bu) 2 Co(EtMeIm) 2 (O sec Bu) 2 Molecular Weight (M.W.) 397.42 425.47 425.47 State (Phase) solid solid solid Sublimation 70°C @ 200 mtorr 70°C @ 200 mtorr Solubility hexane hexane hexane Melting Point (m.p.) 114°C 95°C 63°C
  • the reaction product of Schlenk Flask 1 was cannulated into Schlenk Flask 2 and stirred overnight. When the reaction was completed, the temperature was lowered to room temperature and the solvent was removed by filtration under reduced pressure. The obtained compound was sublimed at 90° C. and 0.3 Torr to obtain a green solid.
  • Example 4 compound type Co(EtMeIm)(btsa) 2 Molecular Weight (M.W.) 490.87 State (Phase) solid Sublimation 90°C @ 300mtorr Solubility hexane Melting Point (m.p.) 125°C
  • a new cobalt precursor of any one of Examples 1 to 4 and a reactive gas containing oxygen (O 2 ) were alternately supplied on the substrate to prepare a cobalt thin film.
  • argon as a purge gas was supplied to purify the precursor and the reaction gas remaining in the deposition chamber.
  • the supply time of the precursor was adjusted to 8-15 seconds, and the supply time of the reaction gas was also adjusted to 8-15 seconds.
  • the pressure of the deposition chamber was adjusted to 1 to 20 torr, and the deposition temperature to 80 to 300 °C.
  • the novel cobalt precursor containing the imidazole ligand according to the present invention is a solid compound, but has a low melting point and excellent volatility.
  • the present invention relates to a vapor deposition compound capable of depositing a thin film through vapor deposition, and specifically, it is applicable to atomic layer deposition (ALD) or chemical vapor deposition (CVD), reactive, volatile and excellent thermal stability.
  • ALD atomic layer deposition
  • CVD chemical vapor deposition
  • the precursor composition containing the cobalt compound of the present invention is a solid, it is possible to deposit a uniform cobalt-containing thin film with excellent properties due to its low melting point, thereby securing excellent thin film properties, thickness and step coverage.
  • Such physical properties provide a cobalt-containing precursor suitable for atomic layer deposition and chemical vapor deposition, and contribute to excellent thin film properties.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

본 발명은 기상 증착을 통하여 박막 증착이 가능한 기상 증착 화합물에 관한 것으로, 구체적으로는 원자층 증착법 (Atomic Layer Deposition, ALD) 또는 화학 기상 증착법 (Chemical Vapor Deposition, CVD)에 적용가능하고, 반응성, 휘발성 및 열적 안정성이 우수한 신규 코발트 함유 화합물, 상기 코발트 화합물을 포함하는 전구체 조성물, 상기 전구체 조성물을 이용한 박막의 제조방법, 및 상기 전구체 조성물로 제조된 코발트-함유 박막에 관한 것이다.

Description

코발트 화합물, 이를 포함하는 전구체 조성물, 및 이를 이용한 박막의 제조방법
본 발명은 기상 증착을 통하여 박막 증착이 가능한 기상 증착 화합물에 관한 것으로, 구체적으로는 원자층 증착법 또는 화학 기상 증착법에 적용가능하고, 반응성, 휘발성 및 열적 안정성이 우수한 신규 코발트 화합물, 상기 코발트 화합물을 포함하는 전구체 조성물, 상기 전구체 조성물을 이용한 박막의 제조방법, 및 상기 전구체 조성물로 제조된 코발트-함유 박막에 관한 것이다.
코발트 전구체는 -1에서 +5까지 산화수가 다양하고 보통은 +2, +3 산화수를 가지며, 반도체 소자에 적용되는 코발트 산화물 및 질화물 박막을 형성 할 수 있다. 코발트 금속 박막은 전극 물질(electrode materials), 자성 물질(magnetic materials), 자기 저항 메모리(MRAM; magnetic random access memories), DMS(diluted magnetic semiconductors), 페로브스카이트 물질, 촉매, 광 촉매 등에 활용 될 수 있다. 또한 코발트 금속 박막은 반도체 소자의 고집적화로 금속 배선 공정의 구리 확산 방지막 및 capping layer로 이용 될 수 있으며, 구리 금속 박막을 대신 할 차세대 물질로 주목 받고 있다.
현재 알려져 있는 대표적인 전구체는 카보닐 화합물 CCTBA(Dicobalt hexacarbonyl t-butylacetylene), Co(CO)3(NO), 사이클로펜타디엔 화합물 CpCo(CO)2, 베타디케토네이트 화합물 Co(tmhd)2, Co(acac)2, 다이엔 화합물 Co(tBu2DAD)2 등이 있다. 이들은 대부분 고체 화합물로 녹는점이 비교적 높고 낮은 안정성을 갖는다. 또한 박막 증착 시 박막 내에 불순물 오염을 발생시킬 수 있다.
가장 대표적으로 쓰이는 CCTBA는 증착 후 박막 내 C, O 오염이 심각하며, CpCo(CO)2는 액체 화합물이고 증기압이 높다는 장점이 있지만 열안정성이 낮다. Co(tBu2DAD)2는 증착 후 박막 내 오염이 적지만 휘발성이 낮다는 단점이 있다. 이러한 기존 코발트 전구체의 단점 개선을 위해 신규 코발트 전구체 개발이 필요하다.
본 발명은 상기와 같이 언급된 기존의 코발트 전구체의 문제점들을 해결하기 위한 것으로 반응성, 열적 안정성 및 휘발성이 우수한 박막 증착용 코발트 전구체 화합물을 제공하는데 그 목적이 있다.
또한, 종래 코발트 전구체에 사용되는 다이아자다이엔(DAD) 리간드와 유사한 구조를 가지는 이미다졸 리간드와 알콕사이드 리간드의 조합으로 기존 전구체의 단점이었던 휘발성 개선을 목표로 한다.
또한, 본 발명은 상기 코발트 전구체 화합물을 이용한 박막의 제조방법 및 코발트-함유 박막을 제공하고자 한다.
그러나, 본원이 해결하고자 하는 과제는 이상에서 언급한 과제로 제한되지 않으며, 언급되지 않은 또 다른 과제들은 아래의 기재로부터 통상의 기술자에게 명확하게 이해될 수 있을 것이다.
본 발명은, 반응성과 휘발성이 우수한 알콕사이드 리간드에, 전자 주개로 높은 안정성을 기대할 수 있는 이미다졸 리간드를 도입함으로써, 고체이지만 녹는점이 낮고, 저온에서 정제되며, 낮은 온도 범위에서 휘발성이 우수한 신규 코발트 화합물 및 이를 포함하는 전구체 조성물을 개발하고자 하는 것으로서, 본 발명에서는 알콕사이드 리간드와 이미다졸 리간드의 조합으로 이루어진 신규 코발트 전구체를 제공하고자 한다. 나아가, 상기 알콕사이드 리간드의 치환기를 N-알킬기로 변형시킨 신규 코발트 전구체를 제공하고자 한다.
본원의 일 측면은, 하기 화학식 1로 표시되는 코발트 화합물을 제공한다:
[화학식 1]
Figure PCTKR2020010193-appb-I000001
상기 화학식 1에서, a는 1 또는 2이고; b는 2이며;
R1 및 R2는, 각각 독립적으로, 수소 또는 탄소수 1 내지 4의 선형 또는 분지형 알킬기이고; R3은 -OR4 또는 -NR5R6이고;
R4는 수소 또는 탄소수 1 내지 4의 선형 또는 분지형 알킬기이고; R5 및 R6은, 각각 독립적으로, 수소, 탄소수 1 내지 4의 선형 또는 분지형 알킬기, 또는 탄소수 1 내지 6의 선형 또는 분지형 알킬실릴기이다.
본원의 다른 측면은, 상기 코발트 화합물을 포함하는 기상 증착용 전구체 조성물을 제공한다.
본원의 또 다른 측면은, 상기 기상 증착용 전구체 조성물을 챔버에 도입하는 단계를 포함하는 박막의 제조 방법을 제공한다.
본원의 또 다른 측면은, 상기 기상 증착용 전구체 조성물을 이용하여 제조된 코발트-함유 박막을 제공한다.
본 발명에 따른 신규 코발트 화합물 및 상기 기상 증착 화합물을 포함하는 전구체 조성물은 반응성, 휘발성 및 열적 안정성이 우수하고 고체이지만 녹는점이 낮아 우수한 특성의 균일한 코발트 함유 박막 증착이 가능하고 이에 따른 우수한 박막 물성, 두께 및 단차 피복성의 확보가 가능하다.
상기와 같은 물성은 원자층 증착법 및 화학 기상 증착법에 적합한 코발트 전구체를 제공하고, 우수한 박막 특성에 기여한다.
도 1은, 본원 실시예 1의 Co(MeMeIm)2(OtBu)2 화합물의 NMR (nuclear magnetic resonance) 데이터이다.
도 2는, 본원 실시예 1의 Co(MeMeIm)2(OtBu)2 화합물의 XRC (X-ray crystallography) 이미지이다.
도 3은, 본원 실시예 1의 Co(MeMeIm)2(OtBu)2 화합물의 열 무게 분석(TGA) 그래프이다.
도 4는, 본원 실시예 2의 Co(EtMeIm)2(OtBu)2 화합물의 NMR 데이터이다.
도 5는, 본원 실시예 2의 Co(EtMeIm)2(OtBu)2 화합물의 XRC 이미지이다.
도 6은, 본원 실시예 2의 Co(EtMeIm)2(OtBu)2 화합물의 열 무게 분석(TGA) 그래프이다.
도 7은, 본원 실시예 3의 Co(EtMeIm)2(OsecBu)2 화합물의 NMR 데이터이다.
도 8은, 본원 실시예 3의 Co(EtMeIm)2(OsecBu)2 화합물의 XRC 이미지이다.
도 9는, 본원 실시예 3의 Co(EtMeIm)2(OsecBu)2 화합물의 열 무게 분석(TGA) 그래프이다.
도 10은, 본원 실시예 4의 Co(EtMeIm)(btsa)2 화합물의 NMR 데이터이다.
도 11은, 본원 실시예 4의 Co(EtMeIm)(btsa)2 화합물의 열 무게 분석(TGA) 그래프이다.
이하, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 본원의 구현예 및 실시예를 상세히 설명한다. 그러나 본원은 여러 가지 상이한 형태로 구현될 수 있으며 여기에서 설명하는 구현예 및 실시예에 한정되지 않는다.
본 발명은, 원자층 증착법 또는 화학 기상 증착법에 적용가능하고, 반응성, 휘발성 및 열적 안정성이 우수한 신규 코발트 화합물, 상기 코발트 화합물을 포함하는 전구체 조성물, 상기 전구체 조성물을 이용한 박막의 제조방법, 및 상기 전구체 조성물로 제조된 코발트-함유 박막에 관한 것이다.
본원 명세서 전체에서, 용어 "알킬"은, 1 내지 4 개의 탄소 원자를 갖는 선형 또는 분지형 알킬기 및 이들의 모든 가능한 이성질체를 포함한다. 예를 들어, 상기 알킬기로는 메틸기(Me), 에틸기(Et), n-프로필기(nPr), iso-프로필기(iPr), n-부틸기(nBu), tert-부틸기(tBu), iso-부틸기(iBu), sec-부틸기(secBu), 및 이들의 이성질체 등을 들 수 있으나, 이에 제한되지 않을 수 있다.
본원 명세서 전체에서, 용어 “Im”은 “이미다졸 (imidazole)”의 약어를 의미하고, 용어 “btsa”는 “비스(트리메틸실릴)아마이드 [bis(trimethylsilyl)amide]”의 약어를 의미한다.
본원의 일 측면은, 하기 화학식 1로 표시되는 코발트 화합물을 제공한다.
[화학식 1]
Figure PCTKR2020010193-appb-I000002
상기 화학식 1에서, a는 1 또는 2이고; b는 2이며;
R1 및 R2는, 각각 독립적으로, 수소 또는 탄소수 1 내지 4의 선형 또는 분지형 알킬기이고; R3은 -OR4 또는 -NR5R6이고;
R4는 수소 또는 탄소수 1 내지 4의 선형 또는 분지형 알킬기이고; R5 및 R6은, 각각 독립적으로, 수소, 탄소수 1 내지 4의 선형 또는 분지형 알킬기, 또는 탄소수 1 내지 6의 선형 또는 분지형 알킬실릴기인 것이 바람직하다.
본원의 일 구현예에 있어서, 보다 바람직하게는 R1, R2, 및 R4는, 각각 독립적으로, 수소, 메틸기, 에틸기, n-프로필기, iso-프로필기, n-부틸기, iso-부틸기, sec-부틸기, 및 tert-부틸기로 이루어진 군에서 선택되는 어느 하나일 수 있으나, 이에 제한되는 것은 아니다.
본원의 일 구현예에 있어서, 보다 바람직하게는 R5 및 R6은, 각각 독립적으로, 수소, 메틸기, 에틸기, n-프로필기, iso-프로필기, n-부틸기, iso-부틸기, sec-부틸기, tert-부틸기, 메틸실릴기, 디메틸실릴기, 트리메틸실릴기, 및 트리에틸실릴기로 이루어진 군에서 선택되는 어느 하나일 수 있으나, 이에 제한되는 것은 아니다.
본원의 일 구현예에 있어서, 상기 코발트 화합물은 상온에서 고체일 수 있다. 본 발명에 따른 코발트 화합물은 녹는점이 낮고, 낮은 온도에서 휘발성이 우수하다.
본원의 일 구현예에 있어서, 상기 화학식 1로 표시되는 화합물은 하기 화학식 1-1로 표시되는 것을 특징으로 하는 Co(Imidazole)(Alkoxide) 화합물일 수 있다.
[화학식 1-1]
Figure PCTKR2020010193-appb-I000003
상기 화학식 1-1에서, R1, R2 및 R4는, 각각 독립적으로, 수소 또는 탄소수 1 내지 4의 선형 또는 분지형 알킬기인 것이 바람직하다.
예를 들어, R1, R2 및 R4는, 각각 독립적으로, 수소, 메틸기, 에틸기, n-프로필기, iso-프로필기, n-부틸기, iso-부틸기, sec-부틸기, 및 tert-부틸기로 이루어진 군에서 선택되는 어느 하나인 것이 더욱 바람직하다.
본원의 일 구현예에서, 상기 화학식 1-1로 표시되는 코발트 화합물은 하기 반응식 1과 같은 반응을 통해 제조될 수 있다.
[반응식 1]
Figure PCTKR2020010193-appb-I000004
상기 반응식 1에서, X는 할로겐 원소 (예를 들어, Cl, Br 또는 I)이고; R1, R2 및 R4는, 각각 독립적으로, 수소 또는 탄소수 1 내지 4의 선형 또는 분지형 알킬기이다.
예를 들어, 상기 화학식 1-1로 표시되는 Co(Imidazole)(Alkoxide) 화합물로의 예로 하기와 같은 코발트 화합물들이 있을 수 있으나, 이에 제한되는 것은 아니다:
di-tert-butoxy-bis(1,3-dimethyl-2,3-dihydro-1H-imidazol-2-yl)cobalt [Co(MeMeIm)2(OtBu)2];
di-tert-butoxy-bis(1-ethyl-3-methyl-2,3-dihydro-1H-imidazol-2-yl)cobalt [Co(EtMeIm)2(OtBu)2];
di-sec-butoxy-bis(1-ethyl-3-methyl-2,3-dihydro-1H-imidazol-2-yl)cobalt [Co(EtMeIm)2(OsecBu)2].
본원의 일 구현예에 있어서, 상기 화학식 1로 표시되는 화합물은 하기 화학식 1-2로 표시되는 것을 특징으로 하는 Co(Imidazole)(amide) 화합물일 수 있다.
[화학식 1-2]
Figure PCTKR2020010193-appb-I000005
상기 화학식 1-2에서, R1 및 R2는, 각각 독립적으로, 수소 또는 탄소수 1 내지 4의 선형 또는 분지형 알킬기이고; R5 및 R6은, 각각 독립적으로, 수소, 탄소수 1 내지 4의 선형 또는 분지형 알킬기, 또는 탄소수 1 내지 6의 선형 또는 분지형 알킬실릴기인 것이 바람직하다.
예를 들어, R1 및 R2는, 각각 독립적으로, 수소, 메틸기, 에틸기, n-프로필기, iso-프로필기, n-부틸기, iso-부틸기, sec-부틸기, 및 tert-부틸기로 이루어진 군에서 선택되는 어느 하나인 것이 더욱 바람직하고; R5 및 R6은, 각각 독립적으로, 수소, 메틸기, 에틸기, n-프로필기, iso-프로필기, n-부틸기, iso-부틸기, sec-부틸기, tert-부틸기, 메틸실릴기, 디메틸실릴기, 트리메틸실릴기, 및 트리에틸실릴기로 이루어진 군에서 선택되는 어느 하나인 것이 더욱 바람직하다.
본원의 일 구현예에서, 상기 화학식 1-2로 표시되는 코발트 화합물은 하기 반응식 2과 같은 반응을 통해 제조될 수 있다.
[반응식 2]
Figure PCTKR2020010193-appb-I000006
상기 반응식 2에서, X는 할로겐 원소 (예를 들어, Cl, Br 또는 I)이고; R1 및 R2는, 각각 독립적으로, 수소 또는 탄소수 1 내지 4의 선형 또는 분지형 알킬기이고; R5 및 R6은, 각각 독립적으로, 수소, 탄소수 1 내지 4의 선형 또는 분지형 알킬기, 또는 탄소수 1 내지 6의 선형 또는 분지형 알킬실릴기이다.
예를 들어, 상기 화학식 1-2로 표시되는 Co(Imidazole)(amide) 화합물로의 예로 하기와 같은 코발트 화합물들이 있을 수 있으나, 이에 제한되는 것은 아니다:
bis(bis(trimethylsilyl)amino)-bis(1,3-dimethyl-2,3-dihydro-1H-imidazol-2-yl)cobalt [Co(MeMeIm)2(btsa)2];
bis(bis(trimethylsilyl)amino)-bis(1-ethyl-3-methyl-2,3-dihydro-1H-imidazol-2-yl)cobalt [Co(EtMeIm)2(btsa)2];
bis(bis(trimethylsilyl)amino)-bis(1-methyl-3-propyl-2,3-dihydro-1H-imidazol-2-yl)cobalt [Co(PrMeIm)2(btsa)2].
본원의 일 구현예에 있어서, 상기 화학식 1로 표시되는 화합물은 하기 화학식 1-3으로 표시되는 것을 특징으로 하는 Co(Imidazole)(amide) 화합물일 수 있다.
[화학식 1-3]
Figure PCTKR2020010193-appb-I000007
상기 화학식 1-3에서, R1 및 R2는, 각각 독립적으로, 수소 또는 탄소수 1 내지 4의 선형 또는 분지형 알킬기이고; R5 및 R6은, 각각 독립적으로, 수소, 탄소수 1 내지 4의 선형 또는 분지형 알킬기, 또는 탄소수 1 내지 6의 선형 또는 분지형 알킬실릴기인 것이 바람직하다.
예를 들어, R1 및 R2는, 각각 독립적으로, 수소, 메틸기, 에틸기, n-프로필기, iso-프로필기, n-부틸기, iso-부틸기, sec-부틸기, 및 tert-부틸기로 이루어진 군에서 선택되는 어느 하나인 것이 더욱 바람직하고; R5 및 R6은, 각각 독립적으로, 수소, 메틸기, 에틸기, n-프로필기, iso-프로필기, n-부틸기, iso-부틸기, sec-부틸기, tert-부틸기, 메틸실릴기, 디메틸실릴기, 트리메틸실릴기, 및 트리에틸실릴기로 이루어진 군에서 선택되는 어느 하나인 것이 더욱 바람직하다.
본원의 일 구현예에서, 상기 화학식 1-3으로 표시되는 코발트 화합물은 하기 반응식 3과 같은 반응을 통해 제조될 수 있다.
[반응식 3]
Figure PCTKR2020010193-appb-I000008
상기 반응식 3에서, X는 할로겐 원소 (예를 들어, Cl, Br 또는 I)이고; R1 및 R2는, 각각 독립적으로, 수소 또는 탄소수 1 내지 4의 선형 또는 분지형 알킬기이고; R5 및 R6은, 각각 독립적으로, 수소, 탄소수 1 내지 4의 선형 또는 분지형 알킬기, 또는 탄소수 1 내지 4의 선형 또는 분지형 알킬실릴기이다.
예를 들어, 상기 화학식 1-3으로 표시되는 Co(Imidazole)(amide) 화합물로의 예로 하기와 같은 코발트 화합물들이 있을 수 있으나, 이에 제한되는 것은 아니다:
bis(bis(trimethylsilyl)amino)-(1-ethyl-3-methyl-2,3-dihydro-1H-imidazol-2-yl)cobalt [Co(EtMeIm)(btsa)2].
본원의 다른 측면은, 상기 코발트 화합물을 포함하는 기상 증착용 전구체 조성물을 제공한다.
본원의 또 다른 측면은, 상기 기상 증착용 전구체 조성물을 챔버에 도입하는 단계를 포함하는 박막의 제조 방법을 제공한다. 상기 기상 증착 전구체를 챔버에 도입하는 단계는 물리흡착, 화학흡착, 또는 물리 및 화학흡착하는 단계를 포함할 수 있다.
본원의 또 다른 측면은, 상기 기상 증착용 전구체 조성물을 이용하여 제조된 코발트-함유 박막을 제공한다.
본 발명에 따른 기상 증착용 전구체, 박막의 제조 방법, 및 코발트-함유 박막은, 상기 코발트 화합물에 대하여 기술된 내용을 모두 적용할 수 있으며, 중복되는 부분들에 대해서는 상세한 설명을 생략하였으나, 그 설명이 생략되었더라도 동일하게 적용될 수 있다.
본원의 일 구현예에 있어서, 상기 박막의 제조방법은 본 발명의 기상 증착 전구체와 반응가스를 순차적으로 도입하는 원자층 증착법(Atomic Layer Deposition, ALD)과 본 발명의 기상 증착 전구체와 반응가스를 계속적으로 주입하여 성막하는 화학 기상 증착법(Chemical Vapor Deposition, CVD)을 모두 포함할 수 있다.
보다 구체적으로 상기 증착법은 유기 금속 화학 기상 증착(Metal Organic Chemical Vapor Deposition, MOCVD), 저압 화학기상증착(Low Pressure Chemical Vapor Deposition, LPCVD), 펄스화 화학 기상 증착법(P-CVD), 플라즈마 강화 원자층 증착법(PE-ALD) 또는 이들의 조합을 포함할 수 있으나, 이에 제한되는 것은 아니다.
본원의 일 구현예에 있어서, 상기 박막의 제조방법은 반응가스로 수소(H2), 산소(O) 원자 포함 화합물(또는 혼합물), 질소(N) 원자 포함 화합물(또는 혼합물) 또는 규소(Si) 원자 포함 화합물(또는 혼합물) 중에서 선택된 어느 하나 이상의 반응가스를 주입하는 단계를 더 포함할 수 있다.
보다 구체적으로 물(H2O), 산소(O2), 수소(H2), 오존(O3), 암모니아(NH3), 하이드라진(N2H4) 또는 실란(Silane) 중에서 선택된 어느 하나 이상을 반응가스로 사용할 수 있으나, 이에 제한되는 것은 아니다.
구체적으로, 코발트 산화물 박막을 증착하기 위해서 반응가스로 물(H2O), 산소(O2) 및 오존(O3)을 사용할 수 있고, 코발트 질화물 박막을 증착하기 위해서 반응가스로 암모니아(NH3) 또는 하이드라진(N2H4)을 사용할 수 있다.
또한, 금속 코발트 박막을 증착하기 위하여 반응가스로 수소(H2)를 사용할 수 있고, 코발트 실리사이드(CoSi 또는 CoSi2) 박막을 증착하기 위해서 반응가스로 실란류의 화합물을 사용할 수 있다.
본 발명의 박막의 제조방법에 의해서 제조된 박막은 코발트 금속 박막, 코발트 산화 박막, 코발트 질화 박막 또는 코발트 실리사이드 박막일 수 있으나, 이에 제한되는 것은 아니다.
이하, 실시예를 통하여 본 발명을 보다 상세히 설명한다. 그러나 하기의 실시예는 본 발명을 더욱 구체적으로 설명하기 위한 것으로서, 본 발명의 범위가 하기의 실시예에 의하여 한정되는 것은 아니다.
[실시예 1] Co(MeMeIm)2(OtBu)2의 합성
슈렝크 플라스크에 CoCl2 (1 eq, 3 g), 1,3-디메틸이미다졸륨 클로라이드 (1,3-Dimethylimidazolium Chloride) (2 eq), 칼륨 2-부톡사이드 (Potassium 2-butoxide; 4 eq) 및 테트라하이드로퓨란 (THF)를 넣고 실온에서 밤새 교반한 후 반응이 종료되면 감압 필터하여 용매를 제거하였다. 얻어진 화합물은 70℃ 및 0.2 Torr에서 승화하여 보라색 고체를 얻었다.
본 실시예 1에서 합성된 화합물 [Co(MeMeIm)2(OtBu)2]의 구조는 도 2에 나타낸 바와 같고, 이의 NMR 데이터 및 열무게 분석 결과를 도 1 및 3에 나타내었다.
[실시예 2] Co(EtMeIm)2(OtBu)2의 합성
슈렝크 플라스크에 CoCl2 (1 eq, 3 g), 1-에틸-3-메틸이미다졸륨 클로라이드 (1-Ethyl-3-methylimidazolium chloride; 2 eq), 칼륨 2-부톡사이드 (Potassium 2-butoxide; 4 eq) 및 THF를 넣고 밤새 교반한 후 반응이 종료되면 실온으로 온도를 낮추고 감압 필터하여 용매를 제거하였다. 얻어진 화합물은 7
0℃ 및 0.2 Torr에서 승화하여 보라색 고체를 얻었다.본 실시예 2에서 합성된 화합물 [Co(EtMeIm)2(OtBu)2]의 구조는 도 5에 나타낸 바와 같고, 이의 NMR 데이터 및 열무게 분석 결과를 도 4 및 6에 나타내었다.
[실시예 3] Co(EtMeIm)2(OsecBu)2의 합성
슈렝크 플라스크에 CoCl2 (1 eq, 3 g), 1-에틸-3-메틸이미다졸륨 클로라이드 (1-Ethyl-3-methylimidazolium chloride; 2 eq), 칼륨 2-부톡사이드 (Potassium 2-butoxide; 4 eq) 및 THF를 넣고 실온에서 밤새 교반한 후 반응이 종료되면 감압 필터하여 용매를 제거하였다. 얻어진 화합물은 재결정하여 보라색 고체를 얻었다.
본 실시예 3에서 합성된 화합물 [Co(EtMeIm)2(OsecBu)2]의 구조는 도 8에 나타낸 바와 같고, 이의 NMR 데이터 및 열무게 분석 결과를 도 7 및 9에 나타내었다.
상기 실시예 1 내지 3에서 합성된 Co(Imidazole)(Alkoxide) 화합물의 특성을 하기 표 1에 정리하였다.
실시예 1 실시예 2 실시예 3
화합물 종류 Co(MeMeIm)2(OtBu)2 Co(EtMeIm)2(OtBu)2 Co(EtMeIm)2(OsecBu)2
분자량(M.W.) 397.42 425.47 425.47
상태 (Phase) 고체 고체 고체
승화 (Sublimation) 70℃ @ 200 mtorr 70℃ @ 200 mtorr
용해도 (Solubility) 헥산 헥산 헥산
녹는점(m.p.) 114℃ 95℃ 63℃
[실시예 4] Co(EtMeIm)(btsa)2의 합성
슈렝크 플라스크 1에 CoCl2 (1 eq, 3 g), 칼륨 비스-트리메틸실릴아미드 (Potassium bis-trimethylsilylamide) (2 eq) 및 THF를 넣고 밤새 환류하였고, 슈렝크 플라스크 2에 1,3-디메틸이미다졸륨 클로라이드 (1,3-Dimethylimidazolium Chloride) (2 eq), 칼륨 비스-트리메틸실릴아미드 (Potassium bis-trimethylsilylamide) (2 eq) 및 THF를 넣고 밤새 환류하였다.
상기 슈렝크 플라스크 2에 슈렝크 플라스크 1의 반응물을 캐뉼러 삽입(cannulation)한 뒤 밤새 교반하였다. 반응이 종료되면 실온으로 온도를 낮추고 감압 필터하여 용매를 제거하였다. 얻어진 화합물은 90℃ 및 0.3 Torr에서 승화하여 초록색 고체를 얻었다.
본 실시예 4에서 합성된 화합물 [Co(EtMeIm)(btsa)2]의 특성을 하기 표2에 정리하였고, 이의 NMR 데이터 및 열무게 분석 결과는 도 10 및 11에 나타내었다.
실시예 4
화합물 종류 Co(EtMeIm)(btsa)2
분자량(M.W.) 490.87
상태 (Phase) 고체
승화 (Sublimation) 90℃ @ 300 mtorr
용해도 (Solubility) 헥산
녹는점(m.p.) 125℃
[제조예 1] 원자층 증착법(ALD)을 이용한 코발트-함유 박막의 제조
기판 상에 실시예 1 내지 4 중 어느 하나의 신규 코발트 전구체와 산소(O2)를 포함하는 반응가스를 교호적으로 공급하여 코발트 박막을 제조하였다. 전구체와 반응가스를 공급한 후에는 각각 퍼지가스인 아르곤을 공급하여 증착챔버 내에 잔존하는 전구체와 반응가스를 퍼지하였다. 전구체의 공급시간은 8~15초로 조절하였고, 반응가스의 공급시간 역시 8~15초로 조절하였다. 증착챔버의 압력은 1~20torr로 조절하였고, 증착온도는 80~300℃로 조절하였다.
기존의 코발트 화합물은 대부분 상온에서 고체 화합물이고 휘발성이 낮았다. 이에 비해 본 발명에 따른 이미다졸 리간드를 포함하는 신규 코발트 전구체는 고체 화합물이나 녹는점이 낮고 휘발성이 우수한 장점이 있다.
또한, 본 발명에 따른 이미다졸 리간드를 포함하는 신규 코발트 전구체를 통해 균일한 박막 증착이 가능하고, 이에 따라 우수한 박막 물성, 두께 및 단차 피복성을 확보할 수 있다.
본 발명의 범위는 상기 상세한 설명보다는 후술하는 특허청구범위에 의하여 나타내어지며, 특허청구범위의 의미 및 범위, 그리고 그 균등 개념으로부터 도출되는 모든 변경 또는 변형된 형태가 본 발명의 범위에 포함되는 것으로 해석되어야 한다.
본 발명은 기상 증착을 통하여 박막 증착이 가능한 기상 증착 화합물에 관한 것으로, 구체적으로는 원자층 증착법(Atomic Layer Deposition, ALD) 또는 화학 기상 증착법(Chemical Vapor Deposition, CVD)에 적용가능하고, 반응성, 휘발성 및 열적 안정성이 우수하다.
또한, 본 발명의 코발트 화합물을 포함하는 전구체 조성물은, 고체이지만 녹는점이 낮아 우수한 특성의 균일한 코발트-함유 박막 증착이 가능하고, 이에 따른 우수한 박막 물성, 두께 및 단차 피복성의 확보가 가능하다.
상기와 같은 물성은 원자층 증착법 및 화학 기상 증착법에 적합한 코발트-함유 전구체를 제공하고, 우수한 박막 특성에 기여한다.

Claims (9)

  1. 하기 화학식 1로 표시되는, 코발트 화합물:
    [화학식 1]
    Figure PCTKR2020010193-appb-I000009
    상기 화학식 1에서,
    a는 1 또는 2이고;
    b는 2이며;
    R1 및 R2는, 각각 독립적으로, 수소 또는 탄소수 1 내지 4의 선형 또는 분지형 알킬기이고;
    R3은 -OR4 또는 -NR5R6이고;
    R4는 수소 또는 탄소수 1 내지 4의 선형 또는 분지형 알킬기이고;
    R5 및 R6은, 각각 독립적으로, 수소, 탄소수 1 내지 4의 선형 또는 분지형 알킬기, 또는 탄소수 1 내지 6의 선형 또는 분지형 알킬실릴기이다.
  2. 제1항에 있어서,
    R1, R2, 및 R4는, 각각 독립적으로, 수소, 메틸기, 에틸기, n-프로필기, iso-프로필기, n-부틸기, iso-부틸기, sec-부틸기, 및 tert-부틸기로 이루어진 군에서 선택되는 어느 하나인, 코발트 화합물.
  3. 제1항에 있어서,
    R5 및 R6은, 각각 독립적으로, 수소, 메틸기, 에틸기, n-프로필기, iso-프로필기, n-부틸기, iso-부틸기, sec-부틸기, tert-부틸기, 메틸실릴기, 디메틸실릴기, 트리메틸실릴기, 및 트리에틸실릴기로 이루어진 군에서 선택되는 어느 하나인, 코발트 화합물.
  4. 제1항 내지 제3항 중 어느 한 항에 따른 코발트 화합물을 포함하는, 기상 증착용 전구체 조성물.
  5. 제4항에 따른 기상 증착용 전구체 조성물을 챔버에 도입하는 단계를 포함하는, 박막의 제조 방법.
  6. 제5항에 있어서,
    상기 박막의 제조방법은 원자층 증착법(Atomic Layer Deposition, ALD) 또는 화학 기상 증착법(Chemical Vapor Deposition, CVD)을 포함하는, 박막의 제조방법.
  7. 제5항에 있어서,
    반응가스로 수소(H2), 산소(O) 원자 포함 화합물, 질소(N) 원자 포함 화합물 또는 규소(Si) 원자 포함 화합물 중에서 선택된 어느 하나 이상을 주입하는 단계를 더 포함하는, 박막의 제조방법.
  8. 제7항에 있어서,
    상기 반응가스는 물(H2O), 산소(O2), 수소(H2), 오존(O3), 암모니아(NH3), 하이드라진(N2H4) 또는 실란(Silane) 중에서 선택된 어느 하나 이상인 것인, 박막의 제조방법.
  9. 제4항에 따른 기상 증착용 전구체 조성물을 이용하여 제조된, 코발트-함유 박막.
PCT/KR2020/010193 2020-07-28 2020-08-03 코발트 화합물, 이를 포함하는 전구체 조성물, 및 이를 이용한 박막의 제조방법 WO2022025332A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020200094049A KR102504310B1 (ko) 2020-07-28 2020-07-28 코발트 화합물, 이를 포함하는 전구체 조성물, 및 이를 이용한 박막의 제조방법
KR10-2020-0094049 2020-07-28

Publications (1)

Publication Number Publication Date
WO2022025332A1 true WO2022025332A1 (ko) 2022-02-03

Family

ID=80035777

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2020/010193 WO2022025332A1 (ko) 2020-07-28 2020-08-03 코발트 화합물, 이를 포함하는 전구체 조성물, 및 이를 이용한 박막의 제조방법

Country Status (2)

Country Link
KR (1) KR102504310B1 (ko)
WO (1) WO2022025332A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114540793A (zh) * 2022-03-04 2022-05-27 中山大学 一种钴基氧化物薄膜的原子层沉积方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170030493A (ko) * 2014-06-16 2017-03-17 다우 아그로사이언시즈 엘엘씨 보릴화 아렌의 제조 방법
KR20170038855A (ko) * 2014-07-24 2017-04-07 바스프 에스이 무기 박막의 제조 방법
KR20190071769A (ko) * 2016-11-23 2019-06-24 엔테그리스, 아이엔씨. 코발트의 화학적 증착을 위한 할로알키닐 디코발트 헥사카보닐 전구체

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100459609B1 (ko) 2002-10-14 2004-12-03 주식회사 메카로닉스 코발트 및 코발트실리사이드 박막 증착을 위한유기코발트화합물과 그 제조방법 및 박막 제조방법
KR20100061183A (ko) 2008-11-28 2010-06-07 주식회사 유피케미칼 코발트 금속 박막 또는 코발트 함유 세라믹 박막 증착용 유기 금속 전구체 화합물 및 이를 이용한 박막 제조 방법

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170030493A (ko) * 2014-06-16 2017-03-17 다우 아그로사이언시즈 엘엘씨 보릴화 아렌의 제조 방법
KR20170038855A (ko) * 2014-07-24 2017-04-07 바스프 에스이 무기 박막의 제조 방법
KR20190071769A (ko) * 2016-11-23 2019-06-24 엔테그리스, 아이엔씨. 코발트의 화학적 증착을 위한 할로알키닐 디코발트 헥사카보닐 전구체

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
DAY BENJAMIN M., PAL KUNTAL, PUGH THOMAS, TUCK JESSICA, LAYFIELD RICHARD A.: "Carbene Rearrangements in Three-Coordinate N-Heterocyclic Carbene Complexes of Cobalt(II) Bis(trimethylsilyl)amide", INORGANIC CHEMISTRY, vol. 53, no. 19, 6 October 2014 (2014-10-06), Easton , US , pages 10578 - 10584, XP055892237, ISSN: 0020-1669, DOI: 10.1021/ic501677k *
JAYASUNDARA CHATHURIKA R. K., SABASOVS DMITRIJS, STAPLES RICHARD J., OPPENHEIMER JOSSIAN, SMITH MILTON R., MALECZKA ROBERT E.: "Cobalt-Catalyzed C–H Borylation of Alkyl Arenes and Heteroarenes Including the First Selective Borylations of Secondary Benzylic C–H Bonds", ORGANOMETALLICS, vol. 37, no. 10, 29 May 2018 (2018-05-29), pages 1567 - 1574, XP055892236, ISSN: 0276-7333, DOI: 10.1021/acs.organomet.8b00144 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114540793A (zh) * 2022-03-04 2022-05-27 中山大学 一种钴基氧化物薄膜的原子层沉积方法
CN114540793B (zh) * 2022-03-04 2023-10-20 中山大学 一种钴基氧化物薄膜的原子层沉积方法

Also Published As

Publication number Publication date
KR102504310B1 (ko) 2023-02-28
KR20220014227A (ko) 2022-02-04

Similar Documents

Publication Publication Date Title
WO2021133080A1 (ko) 이트륨/란탄족 금속 전구체 화합물, 이를 포함하는 막 형성용 조성물 및 이를 이용한 이트륨/란탄족 금속 함유 막의 형성 방법
WO2010071364A9 (ko) 금속 박막 또는 금속 산화물 박막 증착용 유기금속 전구체 화합물 및 이를 이용한 박막 증착 방법
WO2015130108A1 (ko) 지르코늄 함유막 형성용 전구체 조성물 및 이를 이용한 지르코늄 함유막 형성 방법
WO2021060860A1 (ko) 박막 제조 방법
WO2015142053A1 (ko) 유기 게르마늄 아민 화합물 및 이를 이용한 박막 증착 방법
WO2019156400A1 (ko) 유기금속화합물 및 이를 이용한 박막
WO2017014399A1 (ko) 텅스텐 전구체 및 이를 포함하는 텅스텐 함유 필름 증착방법
WO2018048124A1 (ko) 5족 금속 화합물, 이의 제조 방법, 이를 포함하는 막 증착용 전구체 조성물, 및 이를 이용하는 막의 증착 방법
WO2022025332A1 (ko) 코발트 화합물, 이를 포함하는 전구체 조성물, 및 이를 이용한 박막의 제조방법
WO2014084557A1 (ko) 실리콘 전구체 화합물 및 이를 이용한 실리콘-함유 박막의 증착 방법
WO2020130216A1 (ko) 희토류 전구체, 이의 제조방법 및 이를 이용하여 박막을 형성하는 방법
WO2022139535A1 (ko) 상부 표면 개질제를 이용하는 박막 형성 방법
WO2022139345A1 (ko) 신규 화합물, 이를 포함하는 전구체 조성물, 및 이를 이용한 박막의 제조방법
WO2020116770A1 (ko) 4족 전이금속 화합물, 이의 제조방법 및 이를 이용하여 박막을 형성하는 방법
WO2014189340A1 (ko) 신규 루테늄 화합물, 이의 제조 방법, 이를 포함하는 막 증착용 전구체 조성물, 및 이를 이용하는 막의 증착 방법
WO2023068629A1 (ko) 3족 금속 전구체, 이의 제조방법 및 이를 이용하는 박막의 제조방법
WO2022025333A1 (ko) 유기금속 화합물, 이를 포함하는 전구체 조성물, 및 이를 이용한 박막의 제조방법
WO2022245039A1 (ko) 신규한 하프늄 함유 화합물, 이를 함유하는 하프늄 전구체 조성물, 상기 하프늄 전구체 조성물을 이용한 하프늄 함유 박막 및 이의 제조방법.
WO2021261890A1 (ko) 박막 형성용 프리커서, 이의 제조방법 및 이를 포함하는 박막 제조 방법
WO2020130215A1 (ko) 코발트 전구체, 이의 제조방법 및 이를 이용한 박막의 제조방법
WO2022080803A1 (ko) 열적으로 안정한 루테늄 전구체 조성물 및 루테늄 함유 막 형성 방법
WO2018062590A1 (ko) 산화물 박막 형성을 위한 기상 증착용 유기금속 전구체 화합물 및 이의 제조방법
WO2024117807A1 (ko) 스칸듐 또는 이트륨 함유 박막 형성용 전구체, 이를 이용한 스칸듐 또는 이트륨 함유 박막 형성 방법 및 상기 스칸듐 또는 이트륨 함유 박막을 포함하는 반도체 소자.
WO2021086006A1 (ko) 인듐 전구체 화합물, 이를 이용한 박막의 제조 방법 및 이로부터 제조된 기판
WO2024058624A1 (ko) 란탄족 금속 함유 박막 형성용 전구체, 이를 이용한 란탄족 금속 함유 박막 형성 방법 및 상기 란탄족 금속 함유 박막을 포함하는 반도체 소자.

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20947803

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20947803

Country of ref document: EP

Kind code of ref document: A1