WO2020130215A1 - 코발트 전구체, 이의 제조방법 및 이를 이용한 박막의 제조방법 - Google Patents

코발트 전구체, 이의 제조방법 및 이를 이용한 박막의 제조방법 Download PDF

Info

Publication number
WO2020130215A1
WO2020130215A1 PCT/KR2018/016739 KR2018016739W WO2020130215A1 WO 2020130215 A1 WO2020130215 A1 WO 2020130215A1 KR 2018016739 W KR2018016739 W KR 2018016739W WO 2020130215 A1 WO2020130215 A1 WO 2020130215A1
Authority
WO
WIPO (PCT)
Prior art keywords
thin film
compound
vapor deposition
group
cobalt
Prior art date
Application number
PCT/KR2018/016739
Other languages
English (en)
French (fr)
Inventor
김효숙
박민성
석장현
박정우
Original Assignee
주식회사 한솔케미칼
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 한솔케미칼 filed Critical 주식회사 한솔케미칼
Priority to US16/627,243 priority Critical patent/US11401290B2/en
Priority to JP2021532479A priority patent/JP7204922B2/ja
Priority to CN201880100332.3A priority patent/CN113242861B/zh
Publication of WO2020130215A1 publication Critical patent/WO2020130215A1/ko

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45523Pulsed gas flow or change of composition over time
    • C23C16/45525Atomic layer deposition [ALD]
    • C23C16/45553Atomic layer deposition [ALD] characterized by the use of precursors specially adapted for ALD
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F15/00Compounds containing elements of Groups 8, 9, 10 or 18 of the Periodic Table
    • C07F15/06Cobalt compounds
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/06Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of metallic material
    • C23C16/18Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of metallic material from metallo-organic compounds

Definitions

  • the present invention relates to a vapor deposition compound capable of thin film deposition through vapor deposition, and is specifically applicable to atomic layer deposition (ALD) or chemical vapor deposition (CVD), reactive, volatile And a novel cobalt precursor having excellent thermal stability, a method for manufacturing the same, and a method for manufacturing a thin film using the same.
  • ALD atomic layer deposition
  • CVD chemical vapor deposition
  • ALD atomic layer deposition
  • CVD chemical vapor deposition
  • cobalt silicide as an ohmic contact layer in a next-generation semiconductor process is not only a problem of an increase in contact resistance due to formation of cobalt boride (CoB), but also a relatively low resistivity when forming a cobalt silicide film and excellent thermal stability. Research is underway to use.
  • the cobalt oxide thin film is expected to be applied in various fields such as a magnetic detector, a moisture sensor, an oxygen sensor, and a superconductor.
  • studies are being actively conducted to improve the adhesion between the copper thin film and the diffusion barrier film by using a metal cobalt thin film as an adhesive layer.
  • precursor compounds for cobalt deposition that have been widely used are Co(CO) 3 (NO)[cobalt tricarbonyl nitrosyl], Co(CO) 2 Cp[cabalt dicarbonyl cyclopentadienyl], Co 2 (CO) 8 [dicobalt octacarbonyl ], CoCp 2 [biscyclopentadienyl cobalt], etc. are known.
  • Co(CO) 2 Cp compounds are liquid at room temperature and have a high vapor pressure, but they have many advantages in the process because they are thermally unstable such as thermal decomposition at room temperature. There are disadvantages.
  • Co 2 (CO) 8 and CoCp 2 compounds are solid at room temperature and have a relatively low vapor pressure, process application is more difficult than that of Co(CO) 3 (NO) and Co(CO) 2 Cp compounds.
  • cyclopentadienyl (cyclopentadienyl)-based compounds are not only relatively high deposition temperature of 300 °C or higher, there is a problem that the carbon contamination seriously occurs due to the decomposition characteristics of the ligand.
  • the present invention is to solve the problems of the existing cobalt precursor mentioned above, and has an object to provide a cobalt precursor compound for thin film deposition excellent in reactivity, thermal stability and volatility.
  • the present invention is to provide a method of manufacturing a thin film using the cobalt precursor compound.
  • cobalt thin films especially cobalt metal thin films
  • cobalt monovalent or divalent Co 1+ , Co 2+
  • there were disadvantages such as the use of hydrogen gas or contamination of the thin film.
  • One aspect of the present application provides a compound represented by Formula 1 below.
  • R 1 , R 2 , R 3 and R 4 are each independently hydrogen; Substituted or unsubstituted linear or branched, saturated or unsaturated alkyl group having 1 to 6 carbon atoms or isomers thereof, L is a neutral ligand containing an electron pair or multiple bonds.
  • Another aspect of the present application provides a vapor deposition precursor comprising the compound.
  • Another aspect of the present application provides a method of manufacturing a thin film comprising introducing the vapor deposition precursor into the chamber.
  • novel vapor-deposited cobalt compound according to the present invention and the precursor containing the vapor-deposited compound have excellent reactivity, volatility, and thermal stability, enabling thin film deposition at high temperatures, and avoiding side reactions due to less residue due to heat loss. Can.
  • the vapor deposition precursor of the present invention has a low viscosity and vaporization rate, thereby enabling uniform thin film deposition, thereby ensuring excellent thin film properties, thickness, and step coverage.
  • the above properties provide precursors suitable for atomic layer deposition and chemical vapor deposition, and contribute to excellent thin film properties.
  • novel cobalt precursor of the present invention can be prepared according to the synthetic reaction represented by the following Chemical Scheme 1.
  • X halogenated element
  • DAD Diazadiene
  • a new cobalt precursor was synthesized by introducing a neutral ligand including an electron pair or multiple bonds capable of providing electrons to the Co(DAD) skeleton.
  • X is a halogen element, and R 1 , R 2 , R 3 and R 4 are each independently hydrogen; Substituted or unsubstituted linear or branched, saturated or unsaturated alkyl group having 1 to 6 carbon atoms or isomers thereof, L is a neutral ligand containing an electron pair or multiple bonds.
  • One aspect of the present application provides a compound represented by Formula 1 below.
  • R 1 , R 2 , R 3 and R 4 are each independently hydrogen; It is preferably a substituted or unsubstituted linear or branched, saturated or unsaturated alkyl group having 1 to 6 carbon atoms, or an isomer thereof, and L is a neutral ligand containing an electron pair or multiple bonds.
  • R 1 , R 2 , R 3 and R 4 are each hydrogen, methyl group, ethyl group, n-propyl group, iso-propyl group, n-butyl group, iso-butyl group , sec-butyl group, tert-butyl group, and any one selected from the group consisting of isomers thereof, but is not limited thereto.
  • L is more preferably carbonyl (carbonyl, CO), nitrosyl (nitrosyl, NO), cyan (cyan, CN), isocyanide (isocyanide), nitrile (nitrile), alkyne (alkyne), alkene (alkene), diene (diene) or triene (triene) may be any one selected from the group consisting of a ligand, but is not limited thereto.
  • more preferably L may have the following structural formula, but is not limited thereto.
  • Cyclic diene 1,3(1,4)-cyclohexadiene, 1,3(1,4)-cycloheptadiene, cyclopentadiene, 1,5-cyclooctadiene, 1,5-dimethyl-1,5 -cyclooctadiene
  • R 1 'to R 22' in to 8) are each independently hydrogen, It is preferably a substituted or unsubstituted linear or branched, saturated or unsaturated alkyl group having 1 to 6 carbon atoms or isomers thereof.
  • the compound of the present invention described above may be liquid at room temperature, but is not limited thereto.
  • the compound represented by Chemical Formula 1 may be preferably a compound characterized by being represented by Chemical Formula 1-1.
  • R 1 , R 2 , R 3 and R 4 are the same as Formula 1, and R 5 and R 6 are each independently hydrogen; It is preferably a substituted or unsubstituted linear or branched, saturated or unsaturated alkyl group having 1 to 3 carbon atoms or isomers thereof.
  • Another aspect of the present application provides a vapor deposition precursor comprising a compound of the invention described above.
  • Another aspect of the present application provides a method of manufacturing a thin film comprising introducing a vapor deposition precursor of the present invention into a chamber.
  • the step of introducing the vapor deposition precursor into the chamber may include physical adsorption, chemical adsorption, or physical and chemical adsorption.
  • the method of manufacturing the thin film continues with the atomic layer deposition (ALD) method of sequentially introducing the vapor deposition precursor and the reaction gas of the present invention and the vapor deposition precursor and the reaction gas of the present invention.
  • ALD atomic layer deposition
  • CVD chemical vapor deposition
  • the deposition method is metal organic chemical vapor deposition (MOCVD), low pressure chemical vapor deposition (LPCVD), pulsed chemical vapor deposition (P-CVD), plasma enhanced atomic layer Vapor deposition (PE-ALD) or a combination thereof, but is not limited thereto.
  • MOCVD metal organic chemical vapor deposition
  • LPCVD low pressure chemical vapor deposition
  • P-CVD pulsed chemical vapor deposition
  • PE-ALD plasma enhanced atomic layer Vapor deposition
  • the manufacturing method of the thin film is hydrogen (H 2 ), an oxygen (O) atom-containing compound (or mixture), a nitrogen (N) atom-containing compound (or mixture) or silicon (Si) as a reaction gas. ) It may further include the step of injecting any one or more reaction gases selected from the atom-containing compound (or mixture).
  • any one selected from water (H 2 O), oxygen (O 2 ), hydrogen (H 2 ), ozone (O 3 ), ammonia (NH 3 ), hydrazine (N 2 H 4 ) or silane (Silane) may be used as a reaction gas, but is not limited thereto.
  • water vapor (H 2 O), oxygen (O 2 ), and ozone (O 3 ) can be used as the reaction gas to deposit the cobalt oxide thin film, and ammonia (NH 3) as the reaction gas to deposit the cobalt nitride thin film.
  • NH 3 ammonia
  • hydrazine (N 2 H 4 ) can be used.
  • a reaction gas can be used a compound of hydrogen (H 2), or silane (Silane) flow to deposit the metal cobalt thin film, a cobalt silicide (CoSi or CoSi 2) as a reaction gas hydrogen (H 2 in order to deposit a thin film ) Or silane compounds.
  • the thin film prepared by the method of manufacturing the thin film of the present invention may be a cobalt metal thin film, a cobalt oxide thin film, a cobalt nitride thin film, or a cobalt silicide thin film, but is not limited thereto.
  • novel cobalt precursor of the present invention can be prepared according to the synthetic reaction represented by the following Chemical Scheme 1.
  • a new cobalt precursor was synthesized by introducing a neutral ligand including an electron pair or multiple bonds capable of providing electrons to the Co(DAD) skeleton.
  • X is a halogen element, and R 1 , R 2 , R 3 and R 4 are each independently hydrogen; Substituted or unsubstituted linear or branched, saturated or unsaturated alkyl group having 1 to 6 carbon atoms or isomers thereof, L is a neutral ligand containing an electron pair or multiple bonds.
  • CoBr 2 (1 eq.) was added to a THF solvent in a flask, stirred at low temperature, and then DAD ligand compound (1 eq.) dissolved in the solvent was slowly added. The mixture was stirred at room temperature overnight, and after the reaction was completed, the solvent was removed to obtain a solid compound.
  • R 1 and R 2 in Chemical Formula 2 below were each independently isopropyl (iPr) or tert-butyl (tBu), and R 3 and R 4 were Each independently hydrogen (H), methyl (Me), or ethyl (Et).
  • the obtained compound was dissolved in pentane again, filtered under reduced pressure, and the solvent was removed to purify it by distillation or sublimation to obtain a pure final compound.
  • the dienyl ligand compound used in Example 2 is R 5 and R 6 in Chemical Formula 2 below, respectively, independently of hydrogen or methyl (Me).
  • Cobalt thin films were prepared using chemical vapor deposition (CVD).
  • the precursor containing the new cobalt precursor of Example 1 or 2 in octane at a concentration of 0.02M was used as a starting precursor solution. In order to vaporize this precursor solution, it was transferred to a vaporizer maintaining a temperature of 50 to 150°C at a flow rate of 0.1 cc/min. The vaporized precursor was transferred to a deposition chamber using 50 to 300 sccm helium (carrier gas). Hydrogen (H 2 ) was used as the reaction gas, and was supplied to the deposition chamber at a flow rate of 1 L/min (1 pm). The pressure of the deposition chamber was adjusted to 1 to 20 torr, and the deposition temperature was adjusted to 80 to 300°C. Under these conditions, the deposition process was performed for about 15 minutes.
  • Cobalt thin films were prepared using atomic layer deposition (ALD).
  • a new cobalt precursor of Example 1 or 2 and a reactive gas containing oxygen (O 2 ) were alternately supplied to prepare a cobalt thin film.
  • argon which is a purge gas
  • the supply time of the precursor was adjusted to 8 to 15 seconds, and the supply time of the reaction gas was also adjusted to 8 to 15 seconds.
  • the pressure of the deposition chamber was adjusted to 1 to 20 torr, and the deposition temperature was adjusted to 80 to 300°C.
  • Cobalt thin films were prepared using atomic layer deposition (ALD).
  • Ultrasonic treatment Ultrasonic
  • the novel cobalt precursor comprising the diazadiene (DAD) ligand and the neutral ligand of the present invention has a relatively high thermal stability and a high reactivity with an oxidizing reactant.
  • DAD diazadiene
  • a uniform thin film deposition is possible through a new cobalt precursor comprising a diazadiene (DAD) ligand and a neutral ligand according to the present invention, thereby ensuring excellent thin film properties, thickness and step coverage.
  • DAD diazadiene
  • the present invention relates to a vapor deposition compound capable of thin film deposition through vapor deposition, and is specifically applicable to atomic layer deposition (ALD) or chemical vapor deposition (CVD), reactive, volatile And excellent thermal stability enables thin film deposition at high temperatures, and fewer residues due to heat loss can prevent side reactions in the process.
  • ALD atomic layer deposition
  • CVD chemical vapor deposition
  • the vapor deposition precursor of the present invention has a low viscosity and vaporization rate, thereby enabling uniform thin film deposition, thereby ensuring excellent thin film properties, thickness, and step coverage.
  • the above properties provide precursors suitable for atomic layer deposition and chemical vapor deposition, and contribute to excellent thin film properties.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Chemical Vapour Deposition (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

본 발명은 기상 증착을 통하여 박막 증착이 가능한 기상 증착 화합물에 관한 것으로서, 구체적으로는 원자층 증착법(Atomic Layer Deposition, ALD) 또는 화학 기상 증착법(Chemical Vapor Deposition, CVD)에 적용가능하고 반응성, 휘발성 및 열적 안정성이 우수한 신규 코발트 전구체와 이의 제조방법 및 이를 이용한 박막의 제조방법에 관한 것이다.

Description

코발트 전구체, 이의 제조방법 및 이를 이용한 박막의 제조방법
본 발명은 기상 증착을 통하여 박막 증착이 가능한 기상 증착 화합물에 관한 것으로, 구체적으로는 원자층 증착법(Atomic Layer Deposition, ALD) 또는 화학 기상 증착법(Chemical Vapor Deposition, CVD)에 적용가능하고, 반응성, 휘발성 및 열적 안정성이 우수한 신규 코발트 전구체와 이의 제조방법 및 이를 이용한 박막의 제조방법에 관한 것이다.
웨이퍼 상에 전구체를 이용한 표면반응으로 절연막이나 전도성 박막 등을 형성시키는 원자층 증착법(Atomic Layer Deposition, ALD) 또는 화학 기상 증착법(Chemical Vapor Deposition, CVD)에 있어서 적절한 전구체의 선택은 공정장치와 더불어 매우 중요한 요소이다.
코발트의 경우, 코발트 보라이드(CoB) 형성으로 인한 컨택 저항 증가의 문제가 없을 뿐만 아니라 코발트 실리사이드막 형성 시 상대적으로 비저항이 낮고, 열적 안정성이 우수한 장점으로 차세대 반도체 공정에서의 오믹 컨택층으로서 코발트 실리사이드를 사용하려는 연구가 진행되고 있다.
특히, 반도체 소자의 직접도가 높아지고 그 구조가 점점 복잡해짐에 따라 높은 종횡비(high aspect ratio)를 가지는 구조에 우수한 단차 피복성(step coverage)을 가지는 코발트 박막이 요구되고 있다.
또한, 코발트 산화물 박막은 자기 검출기(magnetic detector), 습기센서, 산소센서 및 초전도체 등 다양한 분야에서 응용이 기대되고 있다. 이외에도 금속 코발트 박막을 접착층으로 사용하여 구리박막과 확산방지막의 접착성을 향상시키는 연구도 활발히 진행되고 있다.
일반적으로 기존에 널리 이용되고 있는 코발트 증착용 전구체 화합물로는 Co(CO)3(NO)[cobalt tricarbonyl nitrosyl], Co(CO)2Cp[cabalt dicarbonyl cyclopentadienyl], Co2(CO)8[dicobalt octacarbonyl], CoCp2[biscyclopentadienyl cobalt] 등이 알려져 있다.
이 중, Co(CO)3(NO), Co(CO)2Cp 화합물은 상온에서 액체이고 증기압이 상당히 높은 장점이 있지만, 상온에서 열분해가 발생하는 등 열적으로 불안정하기 때문에 공정상에서 많은 어려움을 초래할 수 있는 단점이 있다. 또한, Co2(CO)8 및 CoCp2 화합물은 상온에서 고체이고 증기압도 비교적 낮기 때문에 Co(CO)3(NO), Co(CO)2Cp 화합물보다 공정 적용이 더욱 어려운 문제가 있다.
더불어, 사이클로펜타디에닐(cyclopentadienyl) 계통의 화합물들은 증착온도가 300℃ 이상으로 상대적으로 높을 뿐만 아니라, 리간드의 분해 특성상 탄소 오염이 심각하게 발생하는 문제점이 있다.
이러한 문제점들을 해결하기 위하여, C=N 이중결합을 포함하고 있는 디아자디엔(Diazadiene, DAD) 리간드를 포함하고 있는 코발트 전구체나 중성 리간드를 포함하고 있는 전구체에 관한 연구가 진행되었으나, 여전히 다양한 증착 공정에서 활용될 수 있는 반응성, 휘발성 및 열적 안정성이 우수한 코발트 전구체에 대한 연구가 절실히 요구되고 있는 실정이다.
본 발명은 상기와 같이 언급된 기존의 코발트 전구체의 문제점들을 해결하기 위한 것으로 반응성, 열적 안정성 및 휘발성이 우수한 박막 증착용 코발트 전구체 화합물을 제공하는데 그 목적이 있다.
또한, 본 발명은 상기 코발트 전구체 화합물을 이용한 박막의 제조방법을 제공하고자 한다.
그러나, 본원이 해결하고자 하는 과제는 이상에서 언급한 과제로 제한되지 않으며, 언급되지 않은 또 다른 과제들은 아래의 기재로부터 당업자에게 명확하게 이해될 수 있을 것이다.
코발트 박막(특히, 코발트 금속 박막) 증착시, 코발트 1가 또는 2가(Co1+, Co2+) 전구체를 사용할 경우 수소가스를 사용하여야 하거나 박막의 오염이 유발되는 등의 단점이 있었다.
이에 반해서, 코발트 0가 화합물이 전구체가 사용될 경우, 코발트 1가 또는 2가(Co1+, Co2+) 전구체 사용시 발생할 수 있는 문제점들이 해소될 수 있으나, 아직 코발트 0가 화합물 전구체는 많이 알려져 있지 않은 상태이다.
C=N 이중결합을 포함하고 있는 디아자디엔(Diazadiene, DAD) 리간드는 금속과 결합 방식이 0가, 1가, 2가로 다양하고, 리간드가 0가 형태로 작용하는 경우 코발트 박막 형성에 적합한 리간드라 판단되고 있다.
특히, Co(DAD) 골격에 전자를 제공할 수 있는 중성 리간드(neutral ligand)를 도입하여 코발트 금속 주위에 비어있는 사이트를 감싸주어 화합물을 안정하게 하여, 기존 코발트 전구체 화합물을 뛰어넘는 반응성, 휘발성 및 열적 안정성이 우수한 상온에서 액체 상태인 신규 코발트 전구체를 얻을 수 있다.
본원의 일 측면은 하기 화학식 1로 표시되는 화합물을 제공한다.
[화학식 1]
Figure PCTKR2018016739-appb-I000001
상기 화학식 1에서 R1, R2, R3 및 R4는 각각 독립적으로 수소; 치환 또는 비치환된 탄소수 1 내지 6의 선형 또는 분지형, 포화 또는 불포화된 알킬기 또는 이들의 이성질체이고, L은 전자쌍 또는 다중 결합을 포함하는 중성 리간드이다.
본원의 다른 측면은 상기 화합물을 포함하는 기상 증착 전구체를 제공한다.
본원의 또 다른 측면은, 상기 기상 증착 전구체를 챔버에 도입하는 단계를 포함하는 박막의 제조방법을 제공한다.
본 발명에 따른 신규 기상 증착 코발트 화합물 및 상기 기상 증착 화합물을 포함하는 전구체는 반응성, 휘발성 및 열적 안정성이 우수하여 고온에서 박막 증착이 가능하고, 열 손실에 의한 잔류물이 적어 공정상 부반응을 방지할 수 있다.
또한, 본 발명의 기상 증착 전구체는 점도 및 기화율이 낮아 균일한 박막 증착이 가능하고, 이에 따른 우수한 박막 물성, 두께 및 단차 피복성의 확보가 가능하다.
상기와 같은 물성은 원자층 증착법 및 화학 기상 증착법에 적합한 전구체를 제공하고, 우수한 박막 특성에 기여한다.
본 발명의 신규 코발트 전구체는 하기 화학 반응식 1로 나타낸 합성 반응에 따라 제조될 수 있다.
먼저, 할로겐 원소(X)가 치환된 코발트 화합물(CoX2)과 C=N 이중 결합을 포함하고 있는 디아자디엔(Diazadiene, DAD) 리간드 화합물을 반응시켜서 Co(DAD) 골격을 가진 화합물을 합성한다. 이후, Co(DAD) 골격에 전자를 제공할 수 있는 전자쌍 또는 다중 결합을 포함하는 중성 리간드를 도입하여 신규 코발트 전구체를 합성하였다.
[화학 반응식 1]
Figure PCTKR2018016739-appb-I000002
상기 화학 반응식 1에서 X는 할로겐 원소이고, R1, R2, R3 및 R4는 각각 독립적으로 수소; 치환 또는 비치환된 탄소수 1 내지 6의 선형 또는 분지형, 포화 또는 불포화된 알킬기 또는 이들의 이성질체이며, L은 전자쌍 또는 다중 결합을 포함하는 중성 리간드이다.
이하, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 본원의 구현예 및 실시예를 상세히 설명한다. 그러나 본원은 여러 가지 상이한 형태로 구현될 수 있으며 여기에서 설명하는 구현예 및 실시예에 한정되지 않는다.
본원의 일 측면은, 하기 화학식 1로 표시되는 화합물을 제공한다.
[화학식 1]
Figure PCTKR2018016739-appb-I000003
상기 화학식 1에서 R1, R2, R3 및 R4는 각각 독립적으로 수소; 치환 또는 비치환된 탄소수 1 내지 6의 선형 또는 분지형, 포화 또는 불포화된 알킬기 또는 이들의 이성질체이고, L은 전자쌍 또는 다중 결합을 포함하는 중성 리간드(neutral ligand)인 것이 바람직하다.
본원의 일 구현예에 있어서, 보다 바람직하게는 R1, R2, R3 및 R4는 각각 수소, 메틸기, 에틸기, n-프로필기, iso- 프로필기, n-부틸기, iso-부틸기, sec-부틸기, tert-부틸기 및 이들의 이성질체로 이루어진 군에서 선택되는 어느 하나일 수 있으나, 이에 제한되는 것은 아니다.
본원의 일 구현예에 있어서, 보다 바람직하게는 L은 카보닐(carbonyl, CO), 니트로실(nitrosyl, NO), 시안(cyan, CN), 이소시아나이드(isocyanide), 니트릴(nitrile), 알킨(alkyne), 알켄(alkene), 디엔(diene) 또는 트리엔(triene)을 포함하는 리간드로 이루어진 군에서 선택되는 어느 하나일 수 있으나, 이에 제한되는 것은 아니다.
본원의 일 구현예에 있어서, 더욱 바람직하게는 L은 하기와 같은 구조식을 가질 수 있으나, 이에 제한되는 것은 아니다.
1) 알킬(alkyne): R1'-C≡C-R2'
2) 알켄(alkene): R3'R4'C=CR5'R6'
3) 디엔(diene): R7'R8'C=CR9'-CR10'=CR11'R12'
4) 트리엔(triene): R13'R14'C=CR15'-CR16'=CR17'-CR18'=CR19'R20'
5) 사이클릭 다이엔(cyclic diene): 1,3(1,4)-cyclohexadiene, 1,3(1,4)-cycloheptadiene, cyclopentadiene, 1,5-cyclooctadiene, 1,5-dimethyl-1,5-cyclooctadiene
6) 사이클릭 트리엔(cyclic triene): 1,3,5-cycloheptadiene
7) 이소시아나이드(isocyanide): R21'-NC
8) 알킬나이트릴(alkyl nitrile): R22'-CN
상기 1) 내지 8)에서 R1'내지 R22'는 각각 독립적으로 수소; 치환 또는 비치환된 탄소수 1 내지 6의 선형 또는 분지형, 포화 또는 불포화된 알킬기 또는 이들의 이성질체인 것이 바람직하다.
본원의 일 구현예에 있어서, 앞서 설명한 본 발명의 화합물은 상온에서 액상일 수 있으나, 이에 제한되는 것은 아니다.
본원의 일 구현예에 있어서, 상기 화학식 1로 표시되는 화합물은 하기 화학식 1-1로 표시되는 것을 특징으로 하는 화합물인 것이 바람직할 수 있다.
[화학식 1-1]
Figure PCTKR2018016739-appb-I000004
상기 화학식 1-1에서 R1, R2, R3 및 R4은 상기 화학식 1과 동일하고, R5 및 R6는 각각 독립적으로 수소; 치환 또는 비치환된 탄소수 1 내지 3의 선형 또는 분지형, 포화 또는 불포화된 알킬기 또는 이들의 이성질체인 것이 바람직하다.
본원의 다른 측면은, 앞서 설명한 본 발명의 화합물을 포함하는 기상 증착 전구체를 제공한다.
본원의 또 다른 측면은, 본 발명의 기상 증착 전구체를 챔버에 도입하는 단계를 포함하는 박막의 제조방법을 제공한다. 상기 기상 증착 전구체를 챔버에 도입하는 단계는 물리흡착, 화학흡착, 또는 물리 및 화학흡착하는 단계를 포함할 수 있다.
본원의 일 구현예에 있어서, 상기 박막의 제조방법은 본 발명의 기상 증착 전구체와 반응가스를 순차적으로 도입하는 원자층 증착법(Atomic Layer Deposition, ALD)과 본 발명의 기상 증착 전구체와 반응가스를 계속적으로 주입하여 성막하는 화학 기상 증착법(Chemical Vapor Deposition, CVD)을 모두 포함할 수 있다.
보다 구체적으로 상기 증착법은 유기 금속 화학 기상 증착(Metal Organic Chemical Vapor Deposition, MOCVD), 저압 화학기상증착(Low Pressure Chemical Vapor Deposition, LPCVD), 펄스화 화학 기상 증착법(P-CVD), 플라즈마 강화 원자층 증착법(PE-ALD) 또는 이들의 조합을 포함할 수 있으나, 이에 제한되는 것은 아니다.
본원의 일 구현예에 있어서, 상기 박막의 제조방법은 반응가스로 수소(H2), 산소(O) 원자 포함 화합물(또는 혼합물), 질소(N) 원자 포함 화합물(또는 혼합물) 또는 규소(Si) 원자 포함 화합물(또는 혼합물) 중에서 선택된 어느 하나 이상의 반응가스를 주입하는 단계를 더 포함할 수 있다.
보다 구체적으로 물(H2O), 산소(O2), 수소(H2), 오존(O3), 암모니아(NH3), 하이드라진(N2H4) 또는 실란(Silane) 중에서 선택된 어느 하나 이상을 반응가스로 사용할 수 있으나, 이에 제한되는 것은 아니다.
구체적으로, 코발트 산화물 박막을 증착하기 위해서 반응가스로 수증기(H2O), 산소(O2) 및 오존(O3)을 사용할 수 있고, 코발트 질화물 박막을 증착하기 위해서 반응가스로 암모니아(NH3) 또는 하이드라진(N2H4)을 사용할 수 있다.
또한, 금속 코발트 박막을 증착하기 위하여 반응가스로 수소(H2) 또는 실란(Silane)류의 화합물을 사용할 수 있고, 코발트 실리사이드(CoSi 또는 CoSi2) 박막을 증착하기 위해서 반응가스로 수소(H2) 또는 실란류의 화합물을 사용할 수 있다.
본 발명의 박막의 제조방법에 의해서 제조된 박막은 코발트 금속 박막, 코발트 산화 박막, 코발트 질화 박막 또는 코발트 실리사이드 박막일 수 있으나, 이에 제한되는 것은 아니다.
이하, 실시예를 이용하여 본원을 좀더 구체적으로 설명하지만, 본원이 이에 제한되는 것은 아니다.
본 발명의 신규 코발트 전구체는 하기 화학 반응식 1로 나타낸 합성 반응에 따라 제조될 수 있다.
먼저, 할로겐 원소(X)가 치환된 코발트 화합물(CoX2)과 C=N 이중 결합을 포함하고 있는 디아자디엔(Diazadiene, DAD) 리간드 화합물을 반응시켜서 Co(DAD) 골격을 가진 화합물을 합성한다. 이후, Co(DAD) 골격에 전자를 제공할 수 있는 전자쌍 또는 다중 결합을 포함하는 중성 리간드를 도입하여 신규 코발트 전구체를 합성하였다.
[화학 반응식 1]
Figure PCTKR2018016739-appb-I000005
상기 화학 반응식 1에서 X는 할로겐 원소이고, R1, R2, R3 및 R4는 각각 독립적으로 수소; 치환 또는 비치환된 탄소수 1 내지 6의 선형 또는 분지형, 포화 또는 불포화된 알킬기 또는 이들의 이성질체이며, L은 전자쌍 또는 다중 결합을 포함하는 중성 리간드이다.
[실시예 1]
Co(DAD)Br2 화합물의 합성
하기 화학 반응식 2에 나타낸 Co(DAD)Br2 화합물을 합성하기 위하여 플라스크에 CoBr2(1당량)를 THF 용매에 넣고 저온에서 교반시킨 후 용매에 녹인 DAD 리간드 화합물(1당량)을 천천히 넣었다. 혼합물을 상온에서 밤새 교반하고, 반응이 종료된 후 용매를 제거하여 고체 화합물을 얻었다.
실시예 1에서 사용된 DAD 리간드 화합물은 하기 화학 반응식 2의 R1, R2가 각각 독립적으로 이소프로필(isopropyl, iPr) 또는 tert-부틸(tert-butyl, tBu)이었고, R3, R4는 각각 독립적으로 수소(H), 메틸(Me), 또는 에틸(Et)이었다.
[실시예 2]
Co(DAD)(dienyl ligand) 화합물의 합성
하기 화학 반응식 2에 나타낸 바와 같이, 플라스크에 Na/K 합금(alloy) (1당량)를 THF에 넣고 저온으로 낮춘 후 용매에 녹인 실시예 1에 의해서 합성된 Co(DAD)Br2 (1당량)를 천천히 넣었다. 혼합물에 중성 리간드에 해당하는 디에닐 리간드(dienyl ligand) 화합물을 넣고 상온에서 밤새 교반한 후 반응 종료되면 혼합물을 감압 여과하고 용매를 제거한다.
얻어진 화합물을 다시 펜탄(pentane)에 녹인 후 감압 여과하고 용매를 제거하여 증류 또는 승화법으로 정제하여 순수한 최종 화합물을 얻었다.
실시예 2에서 사용된 디에닐 리간드(dienyl ligand) 화합물은 하기 화학 반응식 2에서 R5, R6는 각각 독립적으로 수소 또는 메틸(Me)이었다.
[화학 반응식 2]
Figure PCTKR2018016739-appb-I000006
[제조예 1]
화학 기상 증착법(CVD)을 이용하여 코발트 박막을 제조하였다.
실시예 1 또는 2의 신규 코발트 전구체가 0.02M 농도로 옥탄(octane)에 포함되어 있는 전구체를 출발 전구체 용액(starting precursor solution)으로 사용하였다. 이 전구체 용액을 기화시키기 위해 0.1cc/min의 유속으로 50~150℃의 온도가 유지되는 기화기에 전달하였다. 이렇게 기화된 전구체를 50 내지 300sccm 헬륨(캐리어 가스)을 사용하여 증착챔버에 전달하였다. 반응가스로는 수소(H2)를 사용하였고, 1L/min(1pm)의 유속으로 증착챔버에 공급하였다. 증착챔버의 압력은 1~20torr로 조절하였고, 증착온도는 80~300℃로 조절하였다. 이와 같은 조건에서 약 15분 동안 증착공정을 수행해주었다.
[제조예 2]
원자층 증착법(ALD)을 이용하여 코발트 박막을 제조하였다.
기판 상에 실시예 1 또는 2의 신규 코발트 전구체와 산소(O2)를 포함하는 반응가스를 교호적으로 공급하여 코발트 박막을 제조하였다. 전구체와 반응가스를 공급한 후에는 각각 퍼지가스인 아르곤을 공급하여 증착챔버 내에 잔존하는 전구체와 반응가스를 퍼지하였다. 전구체의 공급시간은 8~15초로 조절하였고, 반응가스의 공급시간 역시 8~15초로 조절하였다. 증착챔버의 압력은 1~20torr로 조절하였고, 증착온도는 80~300℃로 조절하였다.
[제조예 3]
원자층 증착법(ALD)을 이용하여 코발트 박막을 제조하였다.
저항이 0.02Ωm인 p-형 Si(100) 웨이퍼를 사용하였다. 증착에 앞서 p-형 Si 웨이퍼는 아세톤-에탄올-탈이온수(DI water)에 각각 10분씩 초음파 처리(Ultra sonic)하여 세척하였다. Si 웨이퍼 상에 형성된 자연 산화물 박막은 HF 10%(HF:H2O=1:9)의 용액에 10초 동안 담근 후 제거하였다.
[Co(DAD)(dienyl ligand) 전구체](10초/15초)-[Ar](10 내지 30초)-[O3](5초/8초/10초)-[Ar](10 내지 30초)의 순서로 공급하였으며, 퍼지를 위한 아르곤(Ar)의 유량은 1000sccm으로 하였다. 반응가스로는 224g/cm3 농도의 오존(O3)을 사용하였으며, 각 반응기체는 공압밸브의 on/off를 조절하여 주입하고, 80~300℃의 공정온도에서 성막하였다.
기존의 코발트 화합물은 상온에서 불안정한 단점으로 전구체로의 사용이 어려웠다. 이에 비해 본 발명인 디아자디엔(diazadiene, DAD) 리간드와 중성 리간드를 함께 포함하는 신규 코발트 전구체는 열안정성이 상대적으로 높음과 동시에 산화성 반응기체와의 반응성도 높은 장점이 있다.
또한, 본 발명인 디아자디엔(DAD) 리간드와 중성 리간드를 함께 포함하는 신규 코발트 전구체를 통해 균일한 박막 증착이 가능하고, 이에 따라 우수한 박막 물성, 두께 및 단차 피복성을 확보할 수 있다.
본 발명의 범위는 상기 상세한 설명보다는 후술하는 특허청구범위에 의하여 나타내어지며, 특허청구범위의 의미 및 범위, 그리고 그 균등 개념으로부터 도출되는 모든 변경 또는 변형된 형태가 본 발명의 범위에 포함되는 것으로 해석되어야 한다.
본 발명은 기상 증착을 통하여 박막 증착이 가능한 기상 증착 화합물에 관한 것으로, 구체적으로는 원자층 증착법(Atomic Layer Deposition, ALD) 또는 화학 기상 증착법(Chemical Vapor Deposition, CVD)에 적용가능하고, 반응성, 휘발성 및 열적 안정성이 우수하여 고온에서 박막 증착이 가능하고, 열 손실에 의한 잔류물이 적어 공정상 부반응을 방지할 수 있다.
또한, 본 발명의 기상 증착 전구체는 점도 및 기화율이 낮아 균일한 박막 증착이 가능하고, 이에 따른 우수한 박막 물성, 두께 및 단차 피복성의 확보가 가능하다.
상기와 같은 물성은 원자층 증착법 및 화학 기상 증착법에 적합한 전구체를 제공하고, 우수한 박막 특성에 기여한다.

Claims (9)

  1. 하기 화학식 1로 표시되는 화합물:
    [화학식 1]
    Figure PCTKR2018016739-appb-I000007
    상기 화학식 1에서,
    R1, R2, R3 및 R4는 각각 독립적으로 수소; 치환 또는 비치환된 탄소수 1 내지 6의 선형 또는 분지형, 포화 또는 불포화된 알킬기 또는 이들의 이성질체이고,
    L은 전자쌍 또는 다중 결합을 포함하는 중성 리간드이다.
  2. 제1항에 있어서,
    R1, R2, R3 및 R4는 각각 수소, 메틸기, 에틸기, n-프로필기, iso- 프로필기, n-부틸기, iso-부틸기, sec-부틸기, tert-부틸기 및 이들의 이성질체로 이루어진 군에서 선택되는 어느 하나인, 화합물.
  3. 제1항에 있어서,
    L은 카보닐(carbonyl, CO), 니트로실(nitrosyl, NO), 시안(cyan, CN), 이소시아나이드(isocyanide), 니트릴(nitrile), 알킨(alkyne), 알켄(alkene), 디엔(diene) 또는 트리엔(triene)을 포함하는 리간드로 이루어진 군에서 선택되는 어느 하나인, 화합물.
  4. 제1항에 있어서,
    상기 화학식 1로 표시되는 화합물은 하기 화학식 1-1로 표시되는 것을 특징으로 하는 화합물:
    [화학식 1-1]
    Figure PCTKR2018016739-appb-I000008
    상기 화학식 1-1에서,
    R1, R2, R3 및 R4은 상기 화학식 1과 동일하고,
    R5 및 R6는 각각 독립적으로 수소; 치환 또는 비치환된 탄소수 1 내지 3의 선형 또는 분지형, 포화 또는 불포화된 알킬기 또는 이들의 이성질체이다.
  5. 제1항 내지 제4항 중 어느 한 항의 화합물을 포함하는, 기상 증착 전구체.
  6. 제5항의 기상 증착 전구체를 챔버에 도입하는 단계를 포함하는, 박막의 제조방법.
  7. 제6항에 있어서,
    상기 박막의 제조방법은 원자층 증착법(Atomic Layer Deposition, ALD) 또는 화학 기상 증착법(Chemical Vapor Deposition, CVD)을 포함하는, 박막의 제조방법.
  8. 제6항에 있어서,
    반응가스로 수소(H2), 산소(O) 원자 포함 화합물, 질소(N) 원자 포함 화합물 또는 규소(Si) 원자 포함 화합물 중에서 선택된 어느 하나 이상을 주입하는 단계를 더 포함하는, 박막의 제조방법.
  9. 제8항에 있어서,
    상기 반응가스는 물(H2O), 산소(O2), 수소(H2), 오존(O3), 암모니아(NH3), 하이드라진(N2H4) 또는 실란(Silane) 중에서 선택된 어느 하나 이상인 것인, 박막의 제조방법.
PCT/KR2018/016739 2018-12-19 2018-12-27 코발트 전구체, 이의 제조방법 및 이를 이용한 박막의 제조방법 WO2020130215A1 (ko)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US16/627,243 US11401290B2 (en) 2018-12-19 2018-12-27 Cobalt precursor, method of preparing same and method of manufacturing thin film using same
JP2021532479A JP7204922B2 (ja) 2018-12-19 2018-12-27 コバルト前駆体、その製造方法およびこれを用いた薄膜の製造方法
CN201880100332.3A CN113242861B (zh) 2018-12-19 2018-12-27 钴前体、制备其的方法和使用其制造薄膜的方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020180165373A KR102123331B1 (ko) 2018-12-19 2018-12-19 코발트 전구체, 이의 제조방법 및 이를 이용한 박막의 제조방법
KR10-2018-0165373 2018-12-19

Publications (1)

Publication Number Publication Date
WO2020130215A1 true WO2020130215A1 (ko) 2020-06-25

Family

ID=71102254

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2018/016739 WO2020130215A1 (ko) 2018-12-19 2018-12-27 코발트 전구체, 이의 제조방법 및 이를 이용한 박막의 제조방법

Country Status (6)

Country Link
US (1) US11401290B2 (ko)
JP (1) JP7204922B2 (ko)
KR (1) KR102123331B1 (ko)
CN (1) CN113242861B (ko)
TW (1) TWI717159B (ko)
WO (1) WO2020130215A1 (ko)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102557282B1 (ko) 2020-12-21 2023-07-20 주식회사 한솔케미칼 신규 화합물, 이를 포함하는 전구체 조성물, 및 이를 이용한 박막의 제조방법
KR20240106986A (ko) 2022-12-28 2024-07-08 에스케이트리켐 주식회사 금속 함유 박막 형성용 전구체 및 이를 이용한 박막의 형성 방법 및 상기 박막을 포함하는 소자.

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20100061183A (ko) * 2008-11-28 2010-06-07 주식회사 유피케미칼 코발트 금속 박막 또는 코발트 함유 세라믹 박막 증착용 유기 금속 전구체 화합물 및 이를 이용한 박막 제조 방법
KR20120053479A (ko) * 2010-11-17 2012-05-25 주식회사 유피케미칼 다이아자다이엔계 금속 화합물, 이의 제조 방법 및 이를 이용한 박막 형성 방법
US9416443B2 (en) * 2012-02-07 2016-08-16 L'Air Liquide, Société Anonyme pour l'Etude et l'Exploitation des Procédés Georges Claude Method for the deposition of a ruthenium containing film using arene diazadiene ruthenium(0) precursors
KR20180022775A (ko) * 2015-06-17 2018-03-06 가부시키가이샤 아데카 신규 화합물, 박막 형성용 원료 및 박막의 제조 방법

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100459609B1 (ko) 2002-10-14 2004-12-03 주식회사 메카로닉스 코발트 및 코발트실리사이드 박막 증착을 위한유기코발트화합물과 그 제조방법 및 박막 제조방법
CN106460169B (zh) * 2014-06-13 2019-04-23 Up化学株式会社 液体前体组合物、其制备方法和使用该组合物形成层的方法
JP6808281B2 (ja) * 2015-12-16 2021-01-06 東ソー株式会社 置換シクロペンタジエニルコバルト錯体及びその製造方法、コバルト含有薄膜及びその作製方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20100061183A (ko) * 2008-11-28 2010-06-07 주식회사 유피케미칼 코발트 금속 박막 또는 코발트 함유 세라믹 박막 증착용 유기 금속 전구체 화합물 및 이를 이용한 박막 제조 방법
KR20120053479A (ko) * 2010-11-17 2012-05-25 주식회사 유피케미칼 다이아자다이엔계 금속 화합물, 이의 제조 방법 및 이를 이용한 박막 형성 방법
US9416443B2 (en) * 2012-02-07 2016-08-16 L'Air Liquide, Société Anonyme pour l'Etude et l'Exploitation des Procédés Georges Claude Method for the deposition of a ruthenium containing film using arene diazadiene ruthenium(0) precursors
KR20180022775A (ko) * 2015-06-17 2018-03-06 가부시키가이샤 아데카 신규 화합물, 박막 형성용 원료 및 박막의 제조 방법

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
SONG, Y. W. ET AL.: "Atomic Layer Deposition of Ru by Using a New Ru-precursor", ECS TRANSACTIONS, vol. 2, no. 4, 2006, pages 1 - 11, XP055720849 *

Also Published As

Publication number Publication date
TW202030198A (zh) 2020-08-16
TWI717159B (zh) 2021-01-21
US11401290B2 (en) 2022-08-02
KR102123331B1 (ko) 2020-06-17
US20210332074A1 (en) 2021-10-28
CN113242861A (zh) 2021-08-10
JP7204922B2 (ja) 2023-01-16
JP2022512154A (ja) 2022-02-02
CN113242861B (zh) 2023-10-27

Similar Documents

Publication Publication Date Title
KR100406534B1 (ko) 루테늄 박막의 제조 방법
EP2069373B1 (en) Organometallic precursor compounds
US5187300A (en) Volatile precursors for copper CVD
WO2020101336A1 (ko) 몰리브덴 함유 박막의 제조방법 및 이로부터 제조된 몰리브덴 함유 박막
US9416443B2 (en) Method for the deposition of a ruthenium containing film using arene diazadiene ruthenium(0) precursors
KR20070051331A (ko) 표면활성제를 사용한 구리의 원자층 증착
WO2015130108A1 (ko) 지르코늄 함유막 형성용 전구체 조성물 및 이를 이용한 지르코늄 함유막 형성 방법
US9034761B2 (en) Heteroleptic (allyl)(pyrroles-2-aldiminate) metal-containing precursors, their synthesis and vapor deposition thereof to deposit metal-containing films
KR20210156444A (ko) 몰리브데넘 함유 전구체, 이를 이용한 몰리브데넘 함유 박막 및 이의 제조 방법.
WO2022025332A1 (ko) 코발트 화합물, 이를 포함하는 전구체 조성물, 및 이를 이용한 박막의 제조방법
WO2020130215A1 (ko) 코발트 전구체, 이의 제조방법 및 이를 이용한 박막의 제조방법
TWI343367B (en) Volatile copper(i) complexes for deposition of copper films by atomic layer deposition
JP2008508427A (ja) 原子層蒸着による銅フィルムの蒸着のための銅(ii)錯体
WO2020130216A1 (ko) 희토류 전구체, 이의 제조방법 및 이를 이용하여 박막을 형성하는 방법
KR101546319B1 (ko) 텅스텐 함유 막을 증착시키기 위한 텅스텐 전구체 및 이를 포함하는 텅스텐 함유 필름 증착방법
WO2022139535A1 (ko) 상부 표면 개질제를 이용하는 박막 형성 방법
KR20240128971A (ko) 주석-함유 박막의 증착을 위한 주석-함유 전구체 및 이의 상응하는 증착 공정
KR20210089015A (ko) 이트륨 화합물, 이를 포함하는 박막의 형성 방법 및 이로부터 제조된 반도체 기판
KR20210058289A (ko) 텅스텐 전구체, 이의 제조방법 및 이를 이용한 텅스텐 함유 박막 및 이의 제조방법
WO2024128537A1 (ko) 갈륨 화합물, 이를 포함하는 박막 증착용 조성물 및 이를 이용한 박막의 제조 방법
WO2022025333A1 (ko) 유기금속 화합물, 이를 포함하는 전구체 조성물, 및 이를 이용한 박막의 제조방법
WO2021045385A2 (ko) 금속 질화물 박막의 형성 방법
WO2022169290A1 (ko) 하프늄 전구체 화합물, 이를 포함하는 하프늄 함유 막 형성용 조성물 및 하프늄-함유 막 형성 방법
WO2022139345A1 (ko) 신규 화합물, 이를 포함하는 전구체 조성물, 및 이를 이용한 박막의 제조방법
KR102682682B1 (ko) 5족 금속 화합물, 이를 포함하는 증착용 전구체 조성물 및 이를 이용하여 박막을 형성하는 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18943565

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021532479

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18943565

Country of ref document: EP

Kind code of ref document: A1