WO2022025333A1 - 유기금속 화합물, 이를 포함하는 전구체 조성물, 및 이를 이용한 박막의 제조방법 - Google Patents

유기금속 화합물, 이를 포함하는 전구체 조성물, 및 이를 이용한 박막의 제조방법 Download PDF

Info

Publication number
WO2022025333A1
WO2022025333A1 PCT/KR2020/010194 KR2020010194W WO2022025333A1 WO 2022025333 A1 WO2022025333 A1 WO 2022025333A1 KR 2020010194 W KR2020010194 W KR 2020010194W WO 2022025333 A1 WO2022025333 A1 WO 2022025333A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
thin film
compound
vapor deposition
organometallic
Prior art date
Application number
PCT/KR2020/010194
Other languages
English (en)
French (fr)
Inventor
김효숙
박민성
임민혁
석장현
박정우
Original Assignee
주식회사 한솔케미칼
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 한솔케미칼 filed Critical 주식회사 한솔케미칼
Priority to US18/017,921 priority Critical patent/US20230257406A1/en
Priority to CN202080104904.2A priority patent/CN116134172A/zh
Priority to JP2023504679A priority patent/JP7496028B2/ja
Publication of WO2022025333A1 publication Critical patent/WO2022025333A1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F13/00Compounds containing elements of Groups 7 or 17 of the Periodic Table
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F15/00Compounds containing elements of Groups 8, 9, 10 or 18 of the Periodic Table
    • C07F15/06Cobalt compounds
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F15/00Compounds containing elements of Groups 8, 9, 10 or 18 of the Periodic Table
    • C07F15/06Cobalt compounds
    • C07F15/065Cobalt compounds without a metal-carbon linkage
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/06Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of metallic material
    • C23C16/18Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of metallic material from metallo-organic compounds
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/34Nitrides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/40Oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/42Silicides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber

Definitions

  • the present invention relates to a vapor deposition compound capable of depositing a thin film through vapor deposition, specifically, a novel organometallic compound applicable to an atomic layer deposition method or a chemical vapor deposition method, and excellent in reactivity, volatility and thermal stability, the organometallic compound A precursor composition comprising a, a method for manufacturing a thin film using the precursor composition, and to an organometallic thin film prepared from the precursor composition.
  • the organometallic precursor thin film can form a metal thin film, an oxide thin film, and a nitride thin film of various compositions, and is widely applied in the semiconductor field.
  • CVD and ALD deposition methods as methods for forming thin films, and the need for ALD deposition methods with advantages such as uniform thin film production, thin film thickness controllable, and high step coverage is emphasized according to high integration and ultra-miniaturization of semiconductor materials.
  • the precursor for use in the ALD deposition method also plays a very important role, and requires high volatility and thermal stability.
  • manganese metal thin films are applied to organic semiconductor electrodes and ferromagnetic electrode materials.
  • the manganese oxide thin film may be used in electrode materials, electrochemical capacitors, soft magnetic materials, perovskite materials, lithium-based batteries of solid electrolytes, catalysts, and the like.
  • the manganese nitride thin film is a next-generation material that can be used as a copper diffusion barrier and a copper adhesion layer in a back-end-of-line copper connection material of a semiconductor material wiring. Catalysts, batteries, memory devices, Various applications such as displays and sensors are expected.
  • the manganese (Mn) precursor is a carbonyl compound Mn 2 (CO) 10 , a cyclopentadiene compound Mn(Cp) 2 , a beta-diketonate compound Mn(tmhd) 3 , an amidinate compound Mn (tBu-Me-amd) 2 and the like. They are mostly solid compounds with a relatively high melting point and low stability. In addition, impurity contamination may occur in the thin film during thin film deposition.
  • the compound Mn(MeCp)(CO) 3 composed of a combination of two ligands is a liquid compound, but has a disadvantage in that the boiling point is high and the stability of the compound is low.
  • the compound Mn(hfa) 2 (tmeda), which fills the coordination number by introducing an electron donor ligand, has a much lower melting point than the beta-diketonate compound, but has a disadvantage in that it is a solid compound and has a high deposition temperature. As such, it is necessary to develop a new organometallic precursor to improve the disadvantages of the existing precursors.
  • An object of the present invention is to provide an organometallic precursor compound for thin film deposition excellent in reactivity, thermal stability and volatility to solve the problems of the existing organometallic precursors mentioned above.
  • the present invention is to provide a method for manufacturing a thin film using the organometallic precursor compound and an organometallic-containing thin film.
  • the present invention is to develop a novel organometallic compound having a low melting point and excellent volatility in a low temperature range and a precursor composition comprising the same by introducing an imidazole ligand to an alkoxide ligand having excellent reactivity and volatility, and in the present invention, an alkoxide
  • An object of the present invention is to provide a novel organometallic precursor composed of a combination of an imidazole ligand. Furthermore, it is an object to provide a novel organometallic precursor in which the substituent of the alkoxide ligand is modified.
  • One aspect of the present application provides an organometallic compound represented by the following formula (1).
  • M is Mn, Cu, Co, Fe or Ni;
  • R 1 and R 2 are each independently hydrogen or a linear or branched alkyl group having 1 to 4 carbon atoms;
  • R 3 is —OR 4 or —NR 5 R 6 ;
  • R 4 is hydrogen or a linear or branched alkyl group having 1 to 4 carbon atoms
  • R 5 and R 6 are each independently hydrogen, a linear or branched alkyl group having 1 to 4 carbon atoms, or a linear or branched alkylsilyl group having 1 to 6 carbon atoms.
  • Another aspect of the present application provides a precursor composition for vapor deposition comprising the organometallic compound.
  • Another aspect of the present application provides a method of manufacturing a thin film comprising introducing the precursor composition for vapor deposition into a chamber.
  • Another aspect of the present application provides an organometallic-containing thin film prepared using the precursor composition for vapor deposition.
  • novel organometallic compound according to the present invention and the precursor composition comprising the vapor deposition compound are solid or liquid compounds with low viscosity, and have excellent volatility, and thus uniform thin film deposition is possible.
  • the precursor composition for vapor deposition of the present invention has high thermal stability and reactivity, so that excellent thin film properties, thickness, and step coverage can be secured.
  • Such physical properties provide an organometallic precursor suitable for atomic layer deposition and chemical vapor deposition, and contribute to excellent thin film properties.
  • TTDTA thermogravimetric-differential thermal analysis
  • TTDTA thermogravimetric-differential thermal analysis
  • TTDTA thermogravimetric-differential thermal analysis
  • TTDTA thermogravimetric-differential thermal analysis
  • the present invention is applicable to an atomic layer deposition method or a chemical vapor deposition method, and is a novel organometallic compound having excellent reactivity, volatility and thermal stability, a precursor composition comprising the organometallic compound, a method for producing a thin film using the precursor composition, and It relates to an organometallic-containing thin film prepared from the precursor composition.
  • alkyl includes linear or branched alkyl groups having from 1 to 4 carbon atoms and all possible isomers thereof.
  • the alkyl group includes a methyl group (Me), an ethyl group (Et), a n-propyl group ( n Pr), an iso-propyl group ( i Pr), an n-butyl group ( n Bu), a tert-butyl group ( t Bu), iso-butyl group ( i Bu), sec-butyl group ( sec Bu), and isomers thereof, and the like, but may not be limited thereto.
  • Iz refers to an abbreviation of “imidazole”
  • btsa refers to an abbreviation of “bis(trimethylsilyl)amide”.
  • One aspect of the present application provides an organometallic compound represented by the following formula (1).
  • M is Mn, Cu, Co, Fe or Ni;
  • R 1 and R 2 are each independently hydrogen or a linear or branched alkyl group having 1 to 4 carbon atoms;
  • R 3 is —OR 4 or —NR 5 R 6 ;
  • R 4 is hydrogen or a linear or branched alkyl group having 1 to 4 carbon atoms
  • R 5 and R 6 are each independently hydrogen, a linear or branched alkyl group having 1 to 4 carbon atoms, or a linear or branched alkylsilyl group having 1 to 6 carbon atoms.
  • R 1 , R 2 , and R 4 are each independently hydrogen, methyl group, ethyl group, n-propyl group, iso-propyl group, n-butyl group, iso- It may be any one selected from the group consisting of a butyl group, a sec-butyl group, and a tert-butyl group, but is not limited thereto.
  • R 5 and R 6 are, each independently, hydrogen, methyl group, ethyl group, n-propyl group, iso-propyl group, n-butyl group, iso-butyl group, sec It may be any one selected from the group consisting of -butyl group, tert-butyl group, methylsilyl group, dimethylsilyl group, trimethylsilyl group, and triethylsilyl group, but is not limited thereto.
  • the organometallic compound may be a liquid or a solid at room temperature, preferably a liquid, but is not limited thereto.
  • the compound represented by Formula 1 may be an M (Imidazole) (Alkoxide) compound, characterized in that it is represented by Formula 2 below.
  • M is Mn, Cu, Fe or Ni; It is preferable that R 1 , R 2 and R 4 each independently represent hydrogen or a linear or branched alkyl group having 1 to 4 carbon atoms.
  • R 1 , R 2 , and R 4 are each independently hydrogen, a methyl group, an ethyl group, n-propyl group, iso-propyl group, n-butyl group, iso-butyl group, sec-butyl group, and It is more preferably any one selected from the group consisting of tert-butyl group.
  • the organometallic compound represented by Formula 2 may be prepared through a reaction as shown in Scheme 1 below.
  • M is Mn, Cu, Fe or Ni;
  • X is a halogen element (eg Cl, Br or I);
  • R 1 , R 2 and R 4 are each independently hydrogen or a linear or branched alkyl group having 1 to 4 carbon atoms.
  • examples of the Mn(Imidazole)(Alkoxide) compound in which the central metal (M) is manganese among the organic compounds represented by Formula 2 may include the following manganese compounds, but is not limited thereto:
  • the compound represented by Formula 1 may be an M(Imidazole)(amide) compound, characterized in that it is represented by Formula 3 below.
  • M is Mn, Cu, Fe or Ni;
  • R 1 and R 2 are each independently hydrogen or a linear or branched alkyl group having 1 to 4 carbon atoms; It is preferable that R 5 and R 6 are each independently hydrogen, a linear or branched alkyl group having 1 to 4 carbon atoms, or a linear or branched alkylsilyl group having 1 to 6 carbon atoms.
  • R 1 and R 2 are each independently hydrogen, methyl group, ethyl group, n-propyl group, iso-propyl group, n-butyl group, iso-butyl group, sec-butyl group, and tert-butyl group It is more preferably any one selected from the group consisting of;
  • R 5 and R 6 are each independently hydrogen, methyl group, ethyl group, n-propyl group, iso-propyl group, n-butyl group, iso-butyl group, sec-butyl group, tert-butyl group, methylsilyl group , it is more preferably any one selected from the group consisting of a dimethylsilyl group, a trimethylsilyl group, and a triethylsilyl group.
  • the organometallic compound represented by Chemical Formula 3 may be prepared through a reaction as shown in Scheme 2 below.
  • M is Mn, Cu, Fe or Ni;
  • X is a halogen element (eg Cl, Br or I);
  • R 1 and R 2 are each independently hydrogen or a linear or branched alkyl group having 1 to 4 carbon atoms;
  • R 5 and R 6 are each independently hydrogen, a linear or branched alkyl group having 1 to 4 carbon atoms, or a linear or branched alkylsilyl group having 1 to 6 carbon atoms.
  • examples of the Mn(Imidazole)(amide) compound in which the central metal (M) is manganese among the organic compounds represented by Formula 3 may include the following manganese compounds, but is not limited thereto:
  • Another aspect of the present application provides a precursor composition for vapor deposition comprising the organometallic compound.
  • Another aspect of the present application provides a method of manufacturing a thin film comprising introducing the precursor composition for vapor deposition into a chamber.
  • the step of introducing the vapor deposition precursor into the chamber may include physisorption, chemisorption, or physical and chemisorption.
  • Another aspect of the present application provides an organometallic-containing thin film prepared using the precursor composition for vapor deposition.
  • the precursor for vapor deposition, the method for manufacturing a thin film, and the organometallic thin film according to the present invention can apply all of the contents described with respect to the organometallic compound, and the detailed description of overlapping parts is omitted, but the Even if the description is omitted, the same may be applied.
  • the method of manufacturing the thin film is an atomic layer deposition (ALD) method for sequentially introducing a vapor deposition precursor and a reaction gas of the present invention and a vapor deposition precursor of the present invention and a reactive gas continuously It may include all of the chemical vapor deposition method (Chemical Vapor Deposition, CVD) to form a film by injection.
  • ALD atomic layer deposition
  • CVD chemical Vapor Deposition
  • the deposition method is metal organic chemical vapor deposition (MOCVD), low pressure chemical vapor deposition (LPCVD), pulsed chemical vapor deposition (P-CVD), plasma enhanced atomic layer It may include a vapor deposition method (PE-ALD) or a combination thereof, but is not limited thereto.
  • MOCVD metal organic chemical vapor deposition
  • LPCVD low pressure chemical vapor deposition
  • P-CVD pulsed chemical vapor deposition
  • PE-ALD vapor deposition method
  • PE-ALD vapor deposition method
  • the method for manufacturing the thin film includes hydrogen (H 2 ), a compound (or mixture) containing an oxygen (O) atom, a compound (or mixture) containing a nitrogen (N) atom, or silicon (Si) as a reaction gas ) may further include injecting any one or more reactive gases selected from the atom-containing compound (or mixture).
  • the above may be used as the reaction gas, but is not limited thereto.
  • water (H 2 O), oxygen (O 2 ) and ozone (O 3 ) can be used as reactive gases to deposit an organometallic oxide thin film, and ammonia ( NH 3 ) or hydrazine (N 2 H 4 ) may be used.
  • hydrogen (H 2 ) may be used as a reaction gas to deposit a metal organometallic thin film
  • a silane compound may be used as a reactive gas to deposit an organometallic silicide (MnSi or MnSi 2 ) thin film.
  • the thin film manufactured by the method for manufacturing a thin film of the present invention may be an organometallic metal thin film, an organometallic oxide thin film, an organometallic nitride thin film, or an organometallic silicide thin film, but is not limited thereto.
  • thermogravimetric-differential thermal analysis result of the compound [Mn(MeMeIz) 2 ( sec BuO) 2 ] synthesized in Example 1 of the following Chemical Formula 2-1 is shown in FIG. 1 .
  • thermogravimetric-differential thermal analysis of the compound [Mn(MeMeIz) 2 (btsa) 2 ] synthesized in Example 4 below represented by the following formula 3-1 is shown in FIG. 4 .
  • thermogravimetric-differential thermal analysis of the compound [Mn(MePrIz) 2 (btsa) 2 ] synthesized in Example 6 of the following formula 3-3 is shown in FIG. 6 .
  • a manganese thin film was prepared by alternately supplying a reaction gas containing the novel manganese precursor and oxygen (O 2 ) of any one of Examples 1 to 6 on the substrate. After supplying the precursor and the reaction gas, argon as a purge gas was supplied to purify the precursor and the reaction gas remaining in the deposition chamber. The supply time of the precursor was adjusted to 8-15 seconds, and the supply time of the reaction gas was also adjusted to 8-15 seconds. The pressure of the deposition chamber was adjusted to 1-20 torr, and the deposition temperature was adjusted to 80-300°C.
  • novel manganese precursor containing the imidazole ligand according to the present invention has relatively high thermal stability and high reactivity with an oxidizing reaction gas.
  • the present invention relates to a vapor deposition compound capable of depositing a thin film through vapor deposition, and specifically, it is applicable to an atomic layer deposition method or a chemical vapor deposition method, and has excellent reactivity, volatility and thermal stability.
  • the precursor composition comprising the novel organometallic compound and the vapor deposition compound according to the present invention is a solid or low-viscosity liquid compound, and has excellent volatility to enable uniform thin film deposition, and has high thermal stability and reactivity to provide excellent thin film properties , thickness and step coverage can be secured.
  • Such physical properties provide an organometallic-containing precursor suitable for atomic layer deposition and chemical vapor deposition, and contribute to excellent thin film properties.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

본 발명은 기상 증착을 통하여 박막 증착이 가능한 기상 증착 화합물에 관한 것으로, 구체적으로는 원자층 증착법 (Atomic Layer Deposition, ALD) 또는 화학 기상 증착법 (Chemical Vapor Deposition, CVD)에 적용 가능하고, 반응성, 휘발성 및 열적 안정성이 우수한 유기금속 함유 화합물, 상기 유기금속 화합물을 포함하는 전구체 조성물, 상기 전구체 조성물을 이용한 박막의 제조방법, 및 상기 전구체 조성물로 제조된 유기금속 함유 박막에 관한 것이다.

Description

유기금속 화합물, 이를 포함하는 전구체 조성물, 및 이를 이용한 박막의 제조방법
본 발명은 기상 증착을 통하여 박막 증착이 가능한 기상 증착 화합물에 관한 것으로, 구체적으로는 원자층 증착법 또는 화학 기상 증착법에 적용 가능하고, 반응성, 휘발성 및 열적 안정성이 우수한 신규 유기금속 화합물, 상기 유기금속 화합물을 포함하는 전구체 조성물, 상기 전구체 조성물을 이용한 박막의 제조방법, 및 상기 전구체 조성물로 제조된 유기금속 함유 박막에 관한 것이다.
유기금속 전구체 박막은 다양한 조성의 금속 박막, 산화물 박막 및 질화물 박막의 형성이 가능하고 반도체 분야에 다양하게 응용된다. 박막을 형성하는 방법으로는 CVD, ALD 증착법이 있고 반도체 소재의 고집적화, 초미세화에 따라 균일한 박막 제조, 박막 두께 조절 가능, 높은 단차피복성 등의 장점을 지닌 ALD 증착법의 필요성이 강조되고 있다. 이때, ALD 증착법에 사용하기 위한 전구체 또한 아주 중요한 역할을 하고, 높은 휘발성 및 열적 안정성을 요구한다.
유기금속 금속 박막 중에서, 특히, 망간 금속 박막은 유기 반도체 전극 및 강자성 (ferromagnetic) 전극 물질에 응용이 된다. 망간 산화물 박막은 전극 물질 (electrode materials), 전기 화학적 축전지 (electrochemical capacitors), 연자성 물질 (soft magnetic materials), 페로브스카이트 물질, 고체 전해질의 리튬 기반 배터리, 촉매 등에 활용될 수 있다. 또한, 망간 질화물 박막은 반도체 재료 배선의 백앤드 (back-end-of-line) 구리 연결재에서 구리의 확산 방지막 및 구리 접착층 (adhesion layer)으로 이용될 수 있는 차세대 물질로 촉매, 배터리, 메모리 소자, 디스플레이, 센서 등 다양한 응용을 기대하고 있다.
현재 알려져 있는 대표적인 유기금속 전구체 중 망간(Mn) 전구체는 카보닐 화합물 Mn2(CO)10, 사이클로펜타디엔 화합물 Mn(Cp)2, 베타디케토네이트 화합물 Mn(tmhd)3, 아미디네이트 화합물 Mn(tBu-Me-amd)2 등이 있다. 이들은 대부분 고체 화합물로 녹는점이 비교적 높고 낮은 안정성을 갖는다. 또한 박막 증착시 박막내에 불순물 오염을 발생시킬 수 있다. 이외에도 두 개의 리간드 조합으로 이루어진 화합물 Mn(MeCp)(CO)3은 액체 화합물이지만 끓는점이 높고 화합물의 안정성이 낮다는 단점이 있다. 또한 전자주개 리간드를 도입하여 배위수를 채워주는 화합물 Mn(hfa)2(tmeda)은 베타디케토네이트 화합물보다 녹는점은 많이 낮아졌지만 고체 화합물이고 증착 온도가 높다는 단점이 있다. 이처럼 기존에 사용하고 있는 전구체가 갖는 단점 개선을 위한 신규 유기금속 전구체 개발이 필요한 실정이다.
본 발명은 상기와 같이 언급된 기존의 유기금속 전구체의 문제점들을 해결하기 위한 것으로 반응성, 열적 안정성 및 휘발성이 우수한 박막 증착용 유기금속 전구체 화합물을 제공하는데 그 목적이 있다.
또한, 본 발명은 상기 유기금속 전구체 화합물을 이용한 박막의 제조방법 및 유기금속-함유 박막을 제공하고자 한다.
그러나, 본원이 해결하고자 하는 과제는 이상에서 언급한 과제로 제한되지 않으며, 언급되지 않은 또 다른 과제들은 아래의 기재로부터 통상의 기술자에게 명확하게 이해될 수 있을 것이다.
본 발명은, 반응성과 휘발성이 우수한 알콕사이드 리간드에, 이미다졸 리간드를 도입함으로써, 녹는점이 낮고 낮은 온도 범위에서 휘발성이 우수한 신규 유기금속 화합물 및 이를 포함하는 전구체 조성물을 개발하고자 하는 것으로서, 본 발명에서는 알콕사이드와 이미다졸 리간드의 조합으로 이루어진 신규 유기금속 전구체를 제공하고자 한다. 나아가, 상기 알콕사이드 리간드의 치환기를 변형시킨 신규 유기금속 전구체를 제공하고자 한다.
본원의 일 측면은, 하기 화학식 1로 표시되는 유기금속 화합물을 제공한다.
[화학식 1]
Figure PCTKR2020010194-appb-I000001
상기 화학식 1에서, M은 Mn, Cu, Co, Fe 또는 Ni이고;
a는 2이며; b는 1 또는 2이고 (단, M이 Co인 경우, b는 2가 아님);
R1 및 R2는, 각각 독립적으로, 수소 또는 탄소수 1 내지 4의 선형 또는 분지형 알킬기이고; R3은 -OR4 또는 -NR5R6이고;
R4는 수소 또는 탄소수 1 내지 4의 선형 또는 분지형 알킬기이고;
R5 및 R6은, 각각 독립적으로, 수소, 탄소수 1 내지 4의 선형 또는 분지형 알킬기, 또는 탄소수 1 내지 6의 선형 또는 분지형 알킬실릴기이다.
본원의 다른 측면은, 상기 유기금속 화합물을 포함하는 기상 증착용 전구체 조성물을 제공한다.
본원의 또 다른 측면은, 상기 기상 증착용 전구체 조성물을 챔버에 도입하는 단계를 포함하는 박막의 제조 방법을 제공한다.
본원의 또 다른 측면은, 상기 기상 증착용 전구체 조성물을 이용하여 제조된 유기금속 함유 박막을 제공한다.
본 발명에 따른 신규 유기금속 화합물 및 상기 기상 증착 화합물을 포함하는 전구체 조성물은 고체 또는 점도가 낮은 액체 화합물로 휘발성이 우수하여 균일한 박막 증착이 가능하다.
또한, 본 발명의 기상 증착용 전구체 조성물은 열적안정성 및 반응성이 높아 우수한 박막 물성, 두께 및 단차 피복성의 확보가 가능하다.
상기와 같은 물성은 원자층 증착법 및 화학 기상 증착법에 적합한 유기금속 전구체를 제공하고, 우수한 박막 특성에 기여한다.
도 1은, 본원의 실시예 1의 Mn(MeMeIz)2(secBuO)2 화합물의 열 중량-시차 열 분석(TGDTA) 그래프이다.
도 2는, 본원의 실시예 2의 Mn(MeEtIz)2(secBuO)2 화합물의 열 중량-시차 열 분석(TGDTA) 그래프이다.
도 3은, 본원의 실시예 3의 Mn(MePrIz)2(secBuO)2 화합물의 열 중량-시차 열 분석(TGDTA) 그래프이다.
도 4는, 본원의 실시예 4의 Mn(MeMeIz)2(btsa)2 화합물의 열 중량-시차 열 분석(TGDTA) 그래프이다.
도 5는, 본원의 실시예 5의 Mn(MeEtIz)2(btsa)2 화합물의 열 중량-시차 열 분석(TGDTA) 그래프이다.
도 6은, 본원의 실시예 6의 Mn(MePrIz)2(btsa)2 화합물의 열 중량-시차 열 분석(TGDTA) 그래프이다.
이하, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 본원의 구현예 및 실시예를 상세히 설명한다. 그러나 본원은 여러 가지 상이한 형태로 구현될 수 있으며 여기에서 설명하는 구현예 및 실시예에 한정되지 않는다.
본 발명은, 원자층 증착법 또는 화학 기상 증착법에 적용가능하고, 반응성, 휘발성 및 열적 안정성이 우수한 신규 유기금속 화합물, 상기 유기금속 화합물을 포함하는 전구체 조성물, 상기 전구체 조성물을 이용한 박막의 제조방법, 및 상기 전구체 조성물로 제조된 유기금속-함유 박막에 관한 것이다.
본원 명세서 전체에서, 용어 "알킬"은, 1 내지 4 개의 탄소 원자를 갖는 선형 또는 분지형 알킬기 및 이들의 모든 가능한 이성질체를 포함한다. 예를 들어, 상기 알킬기로는 메틸기(Me), 에틸기(Et), n-프로필기(nPr), iso-프로필기(iPr), n-부틸기(nBu), tert-부틸기(tBu), iso-부틸기(iBu), sec-부틸기(secBu), 및 이들의 이성질체 등을 들 수 있으나, 이에 제한되지 않을 수 있다.
본원 명세서 전체에서, 용어 “Iz”는 “이미다졸 (imidazole)”의 약어를 의미하고, 용어 “btsa”는 “비스(트리메틸실릴)아마이드 [bis(trimethylsilyl)amide]”의 약어를 의미한다.
본원의 일 측면은, 하기 화학식 1로 표시되는 유기금속 화합물을 제공한다.
[화학식 1]
Figure PCTKR2020010194-appb-I000002
상기 화학식 1에서, M은 Mn, Cu, Co, Fe 또는 Ni이고;
a는 2이며; b는 1 또는 2이고 (단, M이 Co인 경우, b는 2가 아님);
R1 및 R2는, 각각 독립적으로, 수소 또는 탄소수 1 내지 4의 선형 또는 분지형 알킬기이고; R3은 -OR4 또는 -NR5R6이고;
R4는 수소 또는 탄소수 1 내지 4의 선형 또는 분지형 알킬기이고;
R5 및 R6은, 각각 독립적으로, 수소, 탄소수 1 내지 4의 선형 또는 분지형 알킬기, 또는 탄소수 1 내지 6의 선형 또는 분지형 알킬실릴기인 것이 바람직하다.
본원의 일 구현예에 있어서, 보다 바람직하게는 R1, R2, 및 R4는, 각각 독립적으로, 수소, 메틸기, 에틸기, n-프로필기, iso-프로필기, n-부틸기, iso-부틸기, sec-부틸기, 및 tert-부틸기로 이루어진 군에서 선택되는 어느 하나일 수 있으나, 이에 제한되는 것은 아니다.
본원의 일 구현예에 있어서, 보다 바람직하게는 R5 및 R6은, 각각 독립적으로, 수소, 메틸기, 에틸기, n-프로필기, iso-프로필기, n-부틸기, iso-부틸기, sec-부틸기, tert-부틸기, 메틸실릴기, 디메틸실릴기, 트리메틸실릴기, 및 트리에틸실릴기로 이루어진 군에서 선택되는 어느 하나일 수 있으나, 이에 제한되는 것은 아니다.
본원의 일 구현예에 있어서, 상기 유기금속 화합물은 상온에서 액체 또는 고체일 수 있고, 액체인 것이 바람직하나, 이에 제한되는 것은 아니다.
본원의 일 구현예에 있어서, 상기 화학식 1로 표시되는 화합물은 하기 화학식 2로 표시되는 것을 특징으로 하는 M(Imidazole)(Alkoxide) 화합물일 수 있다.
[화학식 2]
Figure PCTKR2020010194-appb-I000003
상기 화학식 2에서, M은 Mn, Cu, Fe 또는 Ni이고; R1, R2 및 R4는, 각각 독립적으로, 수소 또는 탄소수 1 내지 4의 선형 또는 분지형 알킬기인 것이 바람직하다.
예를 들어, R1, R2 및 R4는, 각각 독립적으로, 수소, 메틸기, 에틸기, n-프로필기, iso-프로필기, n-부틸기, iso-부틸기, sec-부틸기, 및 tert-부틸기로 이루어진 군에서 선택되는 어느 하나인 것이 더욱 바람직하다.
본원의 일 구현예에서, 상기 화학식 2로 표시되는 유기금속 화합물은 하기 반응식 1과 같은 반응을 통해 제조될 수 있다.
[반응식 1]
Figure PCTKR2020010194-appb-I000004
상기 반응식 1에서, M은 Mn, Cu, Fe 또는 Ni이고; X는 할로겐 원소 (예를 들어, Cl, Br 또는 I)이고; R1, R2 및 R4는, 각각 독립적으로, 수소 또는 탄소수 1 내지 4의 선형 또는 분지형 알킬기이다.
예를 들어, 상기 화학식 2로 표시되는 유기화합물 중 중심 금속(M)이 망간인 Mn(Imidazole)(Alkoxide) 화합물로의 예로 하기와 같은 망간 화합물들이 있을 수 있으나, 이에 제한되는 것은 아니다:
di-sec-butoxy-bis(1,3-dimethyl-2,3-dihydro-1H-imidazol-2-yl)manganese [Mn(MeMeIz)2(secBuO)2];
di-sec-butoxy-bis(1-ethyl-3-methyl-2,3-dihydro-1H-imidazol-2-yl)manganese [Mn(MeEtIz)2(secBuO)2];
di-sec-butoxy-bis(1-methyl-3-propyl-2,3-dihydro-1H-imidazol-2-yl)manganese [Mn(MePrIz)2(secBuO)2].
본원의 일 구현예에 있어서, 상기 화학식 1로 표시되는 화합물은 하기 화학식 3으로 표시되는 것을 특징으로 하는 M(Imidazole)(amide) 화합물일 수 있다.
[화학식 3]
Figure PCTKR2020010194-appb-I000005
상기 화학식 3에서, M은 Mn, Cu, Fe 또는 Ni이고; R1 및 R2는, 각각 독립적으로, 수소 또는 탄소수 1 내지 4의 선형 또는 분지형 알킬기이고; R5 및 R6은, 각각 독립적으로, 수소, 탄소수 1 내지 4의 선형 또는 분지형 알킬기, 또는 탄소수 1 내지 6의 선형 또는 분지형 알킬실릴기인 것이 바람직하다.
예를 들어, R1 및 R2는, 각각 독립적으로, 수소, 메틸기, 에틸기, n-프로필기, iso-프로필기, n-부틸기, iso-부틸기, sec-부틸기, 및 tert-부틸기로 이루어진 군에서 선택되는 어느 하나인 것이 더욱 바람직하고; R5 및 R6은, 각각 독립적으로, 수소, 메틸기, 에틸기, n-프로필기, iso-프로필기, n-부틸기, iso-부틸기, sec-부틸기, tert-부틸기, 메틸실릴기, 디메틸실릴기, 트리메틸실릴기, 및 트리에틸실릴기로 이루어진 군에서 선택되는 어느 하나인 것이 더욱 바람직하다.
본원의 일 구현예에서, 상기 화학식 3으로 표시되는 유기금속 화합물은 하기 반응식 2과 같은 반응을 통해 제조될 수 있다.
[반응식 2]
Figure PCTKR2020010194-appb-I000006
상기 반응식 2에서, M은 Mn, Cu, Fe 또는 Ni이고; X는 할로겐 원소 (예를 들어, Cl, Br 또는 I)이고; R1 및 R2는, 각각 독립적으로, 수소 또는 탄소수 1 내지 4의 선형 또는 분지형 알킬기이고; R5 및 R6은, 각각 독립적으로, 수소, 탄소수 1 내지 4의 선형 또는 분지형 알킬기, 또는 탄소수 1 내지 6의 선형 또는 분지형 알킬실릴기이다.
예를 들어, 상기 화학식 3으로 표시되는 유기화합물 중 중심 금속(M)이 망간인 Mn(Imidazole)(amide) 화합물로의 예로 하기와 같은 망간 화합물들이 있을 수 있으나, 이에 제한되는 것은 아니다:
bis(bis(trimethylsilyl)amino)-bis(1,3-dimethyl-2,3-dihydro-1H-imidazol-2-yl)manganese [Mn(MeMeIz)2(btsa)2];
bis(bis(trimethylsilyl)amino)-bis(1-ethyl-3-methyl-2,3-dihydro-1H-imidazol-2-yl)manganese [Mn(MeEtIz)2(btsa)2];
bis(bis(trimethylsilyl)amino)-bis(1-methyl-3-propyl-2,3-dihydro-1H-imidazol-2-yl)manganese [Mn(MePrIz)2(btsa)2].
본원의 다른 측면은, 상기 유기금속 화합물을 포함하는 기상 증착용 전구체 조성물을 제공한다.
본원의 또 다른 측면은, 상기 기상 증착용 전구체 조성물을 챔버에 도입하는 단계를 포함하는 박막의 제조 방법을 제공한다. 상기 기상 증착 전구체를 챔버에 도입하는 단계는 물리흡착, 화학흡착, 또는 물리 및 화학흡착하는 단계를 포함할 수 있다.
본원의 또 다른 측면은, 상기 기상 증착용 전구체 조성물을 이용하여 제조된 유기금속 함유 박막을 제공한다.
본 발명에 따른 기상 증착용 전구체, 박막의 제조 방법, 및 유기금속 함유 박막은, 상기 유기금속 화합물에 대하여 기술된 내용을 모두 적용할 수 있으며, 중복되는 부분들에 대해서는 상세한 설명을 생략하였으나, 그 설명이 생략되었더라도 동일하게 적용될 수 있다.
본원의 일 구현예에 있어서, 상기 박막의 제조방법은 본 발명의 기상 증착 전구체와 반응가스를 순차적으로 도입하는 원자층 증착법(Atomic Layer Deposition, ALD)과 본 발명의 기상 증착 전구체와 반응가스를 계속적으로 주입하여 성막하는 화학 기상 증착법(Chemical Vapor Deposition, CVD)을 모두 포함할 수 있다.
보다 구체적으로 상기 증착법은 유기 금속 화학 기상 증착(Metal Organic Chemical Vapor Deposition, MOCVD), 저압 화학기상증착(Low Pressure Chemical Vapor Deposition, LPCVD), 펄스화 화학 기상 증착법(P-CVD), 플라즈마 강화 원자층 증착법(PE-ALD) 또는 이들의 조합을 포함할 수 있으나, 이에 제한되는 것은 아니다.
본원의 일 구현예에 있어서, 상기 박막의 제조방법은 반응가스로 수소(H2), 산소(O) 원자 포함 화합물(또는 혼합물), 질소(N) 원자 포함 화합물(또는 혼합물) 또는 규소(Si) 원자 포함 화합물(또는 혼합물) 중에서 선택된 어느 하나 이상의 반응가스를 주입하는 단계를 더 포함할 수 있다.
보다 구체적으로 물(H2O), 산소(O2), 수소(H2), 오존(O3), 암모니아(NH3), 하이드라진(N2H4) 또는 실란(Silane) 중에서 선택된 어느 하나 이상을 반응가스로 사용할 수 있으나, 이에 제한되는 것은 아니다.
구체적으로, 유기금속 산화물 박막을 증착하기 위해서 반응가스로 물(H2O), 산소(O2) 및 오존(O3)을 사용할 수 있고, 유기금속 질화물 박막을 증착하기 위해서 반응가스로 암모니아(NH3) 또는 하이드라진(N2H4)을 사용할 수 있다.
또한, 금속 유기금속 박막을 증착하기 위하여 반응가스로 수소(H2)를 사용할 수 있고, 유기금속 실리사이드(MnSi 또는 MnSi2) 박막을 증착하기 위해서 반응가스로 실란류의 화합물을 사용할 수 있다.
본 발명의 박막의 제조방법에 의해서 제조된 박막은 유기금속 금속 박막, 유기금속 산화 박막, 유기금속 질화 박막 또는 유기금속 실리사이드 박막일 수 있으나, 이에 제한되는 것은 아니다.
이하, 실시예를 통하여 본 발명을 보다 상세히 설명한다. 그러나 하기의 실시예는 본 발명을 더욱 구체적으로 설명하기 위한 것으로서, 본 발명의 범위가 하기의 실시예에 의하여 한정되는 것은 아니다.
[실시예 1] Mn(MeMeIz)2(secBuO)2의 합성
슈렝크 플라스크에 MnCl2 (1 eq, 13 g), 1,3-디메틸이미다졸륨 클로라이드 (1,3-Dimethylimidazolium Chloride) (2 eq), 칼륨 2-부톡사이드 (Potassium 2-butoxide; 4 eq) 및 테트라하이드로퓨란 (THF)를 넣고 실온에서 밤새 교반한 후 반응이 종료되면 감압 필터하여 용매를 제거하였다. 얻어진 화합물은 70℃ 및 0.3 Torr에서 감압 증류하여 주황색 액체를 얻었다.
본 실시예 1에서 합성된 하기 화학식 2-1로 표시되는 화합물[Mn(MeMeIz)2(secBuO)2]의 열 중량-시차 열 분석 결과를 도 1에 나타내었다.
[화학식 2-1]
Figure PCTKR2020010194-appb-I000007
[실시예 2] Mn(MeEtIz)2(secBuO)2의 합성
슈렝크 플라스크에 MnCl2 (1 eq, 13 g), 1-에틸-3-메틸이미다졸륨 클로라이드 (1-Ethyl-3-methylimidazolium chloride; 2eq), 칼륨 2-부톡사이드 (Potassium 2-butoxide; 4 eq) 및 THF를 넣고 밤새 환류한 후 반응이 종료되면 실온으로 온도를 낮추고 감압 필터하여 용매를 제거하였다. 얻어진 화합물은 70℃ 및 0.2 Torr에서 감압 증류하여 주황색 액체를 얻었다.
본 실시예 2에서 합성된 하기 화학식 2-2로 표시되는 화합물[Mn(MeEtIz)2(secBuO)2]의 열 중량-시차 열 분석 결과를 도 2에 나타내었다.
[화학식 2-2]
Figure PCTKR2020010194-appb-I000008
[실시예 3] Mn(MePrIz)2(secBuO)2의 합성
슈렝크 플라스크에 MnCl2 (1 eq, 13 g), 1-메틸-3-프로필이미다졸륨 클로라이드 (1-Methyl-3-propylimidazolium chloride; 2 eq), 칼륨 2-부톡사이드 (Potassium 2-butoxide; 4 eq) 및 THF를 넣고 실온에서 밤새 교반한 후 반응이 종료되면 감압 필터하여 용매를 제거하였다. 얻어진 화합물은 65℃ 및 0.2 Torr에서 감압 증류하여 주황색 액체를 얻었다.
본 실시예 3에서 합성된 하기 화학식 2-3으로 표시되는 화합물[Mn(MePrIz)2(secBuO)2]의 열 중량-시차 열 분석 결과를 도 3에 나타내었다.
[화학식 2-3]
Figure PCTKR2020010194-appb-I000009
[실시예 4] Mn(MeMeIz)2(btsa)2의 합성
슈렝크 플라스크에 MnCl2 (1 eq, 3 g), 1,3-디메틸이미다졸륨 클로라이드 (1,3-Dimethylimidazolium Chloride; 2 eq), 칼륨 비스-트리메틸실릴아미드 (Potassium bis-trimethylsilylamide; 4 eq) 및 THF를 넣고 밤새 환류한 후 반응이 종료되면 실온으로 온도를 낮추고 감압 필터하여 용매를 제거하였다. 얻어진 화합물은 90℃ 및 1 Torr에서 승화하여 노란 갈색 고체를 얻었다.
본 실시예 4에서 합성된 하기 화학식 3-1로 표시되는 화합물[Mn(MeMeIz)2(btsa)2]의 열 중량-시차 열 분석 결과를 도 4에 나타내었다.
[화학식 3-1]
Figure PCTKR2020010194-appb-I000010
[실시예 5] Mn(MeEtIz)2(btsa)2의 합성
슈렝크 플라스크에 MnCl2 (1 eq, 3 g), 1-에틸-3-메틸이미다졸륨 클로라이드 (1-Ethyl-3-methylimidazolium chloride; 2 eq), 칼륨 비스-트리메틸실릴아미드 (Potassium bis-trimethylsilylamide; 4 eq) 및 THF를 넣고 밤새 환류한 후 반응이 종료되면 실온으로 온도를 낮추고 감압 필터하여 용매를 제거하였다. 얻어진 화합물은 80℃ 및 0.4 Torr에서 증류하여 주황색 액체를 얻었다.
본 실시예 5에서 합성된 하기 화학식 3-2로 표시되는 화합물[Mn(MeEtIz)2(btsa)2]의 열 중량-시차 열 분석 결과를 도 5에 나타내었다.
[화학식 3-2]
Figure PCTKR2020010194-appb-I000011
[실시예 6] Mn(MePrIz)2(btsa)2의 합성
슈렝크 플라스크에 MnCl2 (1 eq, 3 g), 1-메틸-3-프로필이미다졸륨 클로라이드 (1-Methyl-3-propylimidazolium chloride; 2 eq), 칼륨 비스-트리메틸실릴아미드 (Potassium bis-trimethylsilylamide; 4 eq) 및 THF를 넣고 밤새 환류한 후 반응이 종료되면 실온으로 온도를 낮추고 감압 필터하여 용매를 제거하였다. 얻어진 화합물은 60℃ 및 0.4 Torr에서 증류하여 주황색 액체를 얻었다.
본 실시예 6에서 합성된 하기 화학식 3-3으로 표시되는 화합물[Mn(MePrIz)2(btsa)2]의 열 중량-시차 열 분석 결과를 도 6에 나타내었다.
[화학식 3-3]
Figure PCTKR2020010194-appb-I000012
[제조예 1] 원자층 증착법(ALD)을 이용한 망간-함유 박막의 제조
기판 상에 실시예 1 내지 6 중 어느 하나의 신규 망간 전구체와 산소(O2)를 포함하는 반응가스를 교호적으로 공급하여 망간 박막을 제조하였다. 전구체와 반응가스를 공급한 후에는 각각 퍼지 가스인 아르곤을 공급하여 증착 챔버 내에 잔존하는 전구체와 반응가스를 퍼지하였다. 전구체의 공급 시간은 8~15초로 조절하였고, 반응 가스의 공급 시간 역시 8~15초로 조절하였다. 증착 챔버의 압력은 1~20 torr로 조절하였고, 증착 온도는 80~300℃로 조절하였다.
기존의 유기금속 화합물은 상온에서 불안정한 단점으로 전구체로의 사용이 어려웠다. 이에 비해 본 발명에 따른 이미다졸 리간드를 포함하는 신규 망간 전구체는 열안정성이 상대적으로 높음과 동시에 산화성 반응 기체와의 반응성도 높은 장점이 있다.
또한, 본 발명에 따른 이미다졸 리간드를 포함하는 신규 유기금속 전구체를 통해 균일한 박막 증착이 가능하고, 이에 따라 우수한 박막 물성, 두께 및 단차 피복성을 확보할 수 있다.
본 발명의 범위는 상기 상세한 설명보다는 후술하는 특허청구범위에 의하여 나타내어지며, 특허청구범위의 의미 및 범위, 그리고 그 균등 개념으로부터 도출되는 모든 변경 또는 변형된 형태가 본 발명의 범위에 포함되는 것으로 해석되어야 한다.
본 발명은 기상 증착을 통하여 박막 증착이 가능한 기상 증착 화합물에 관한 것으로, 구체적으로는 원자층 증착법 또는 화학 기상 증착법에 적용 가능하고, 반응성, 휘발성 및 열적 안정성이 우수히다.
또한, 본 발명에 따른 신규 유기금속 화합물 및 상기 기상 증착 화합물을 포함하는 전구체 조성물은 고체 또는 점도가 낮은 액체 화합물로 휘발성이 우수하여 균일한 박막 증착이 가능하고, 열적안정성 및 반응성이 높아 우수한 박막 물성, 두께 및 단차 피복성의 확보가 가능하다.
상기와 같은 물성은 원자층 증착법 및 화학 기상 증착법에 적합한 유기금속-함유 전구체를 제공하고, 우수한 박막 특성에 기여한다.

Claims (9)

  1. 하기 화학식 1로 표시되는, 유기금속 화합물:
    [화학식 1]
    Figure PCTKR2020010194-appb-I000013
    상기 화학식 1에서,
    M은 Mn, Cu, Co, Fe 또는 Ni이고;
    a는 2이며;
    b는 1 또는 2이고 (단, M이 Co인 경우, b는 2가 아님);
    R1 및 R2는, 각각 독립적으로, 수소 또는 탄소수 1 내지 4의 선형 또는 분지형 알킬기이고;
    R3은 -OR4 또는 -NR5R6이고;
    R4는 수소 또는 탄소수 1 내지 4의 선형 또는 분지형 알킬기이고;
    R5 및 R6은, 각각 독립적으로, 수소, 탄소수 1 내지 4의 선형 또는 분지형 알킬기, 또는 탄소수 1 내지 6의 선형 또는 분지형 알킬실릴기이다.
  2. 제1항에 있어서,
    R1, R2, 및 R4는, 각각 독립적으로, 수소, 메틸기, 에틸기, n-프로필기, iso-프로필기, n-부틸기, iso-부틸기, sec-부틸기, 및 tert-부틸기로 이루어진 군에서 선택되는 어느 하나인, 유기금속 화합물.
  3. 제1항에 있어서,
    R5 및 R6은, 각각 독립적으로, 수소, 메틸기, 에틸기, n-프로필기, iso-프로필기, n-부틸기, iso-부틸기, sec-부틸기, tert-부틸기, 메틸실릴기, 디메틸실릴기, 트리메틸실릴기, 및 트리에틸실릴기로 이루어진 군에서 선택되는 어느 하나인, 유기금속 화합물.
  4. 제1항 내지 제3항 중 어느 한 항에 따른 유기금속 화합물을 포함하는, 기상 증착용 전구체 조성물.
  5. 제4항에 따른 기상 증착용 전구체 조성물을 챔버에 도입하는 단계를 포함하는, 박막의 제조 방법.
  6. 제5항에 있어서,
    상기 박막의 제조방법은 원자층 증착법(Atomic Layer Deposition, ALD) 또는 화학 기상 증착법(Chemical Vapor Deposition, CVD)을 포함하는, 박막의 제조방법.
  7. 제5항에 있어서,
    반응가스로 수소(H2), 산소(O) 원자 포함 화합물, 질소(N) 원자 포함 화합물 또는 규소(Si) 원자 포함 화합물 중에서 선택된 어느 하나 이상을 주입하는 단계를 더 포함하는, 박막의 제조방법.
  8. 제7항에 있어서,
    상기 반응가스는 물(H2O), 산소(O2), 수소(H2), 오존(O3), 암모니아(NH3), 하이드라진(N2H4) 또는 실란(Silane) 중에서 선택된 어느 하나 이상인 것인, 박막의 제조방법.
  9. 제4항에 따른 기상 증착용 전구체 조성물을 이용하여 제조된, 유기금속 함유 박막.
PCT/KR2020/010194 2020-07-29 2020-08-03 유기금속 화합물, 이를 포함하는 전구체 조성물, 및 이를 이용한 박막의 제조방법 WO2022025333A1 (ko)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US18/017,921 US20230257406A1 (en) 2020-07-29 2020-08-03 Organometallic compound, precursor composition comprising same, and method for manufacturing thin film using same
CN202080104904.2A CN116134172A (zh) 2020-07-29 2020-08-03 有机金属化合物、含该化合物的前体组合物及用其的薄膜制备方法
JP2023504679A JP7496028B2 (ja) 2020-07-29 2020-08-03 有機金属化合物、これを含む前駆体組成物、およびこれを用いた薄膜の製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2020-0094537 2020-07-29
KR1020200094537A KR102432833B1 (ko) 2020-07-29 2020-07-29 유기금속 화합물, 이를 포함하는 전구체 조성물, 및 이를 이용한 박막의 제조방법

Publications (1)

Publication Number Publication Date
WO2022025333A1 true WO2022025333A1 (ko) 2022-02-03

Family

ID=80035770

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2020/010194 WO2022025333A1 (ko) 2020-07-29 2020-08-03 유기금속 화합물, 이를 포함하는 전구체 조성물, 및 이를 이용한 박막의 제조방법

Country Status (5)

Country Link
US (1) US20230257406A1 (ko)
KR (1) KR102432833B1 (ko)
CN (1) CN116134172A (ko)
TW (1) TWI761257B (ko)
WO (1) WO2022025333A1 (ko)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007153869A (ja) * 2005-08-04 2007-06-21 Tosoh Corp 金属含有化合物、その製造方法、金属含有薄膜及びその形成方法
KR20190020148A (ko) * 2016-09-30 2019-02-27 주식회사 한솔케미칼 산화물 박막 형성을 위한 기상 증착용 유기금속 전구체 화합물 및 이의 제조방법
KR101962355B1 (ko) * 2017-09-26 2019-03-26 주식회사 한솔케미칼 열적 안정성 및 반응성이 우수한 기상 증착 전구체 및 이의 제조방법

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5779823B2 (ja) 2010-11-17 2015-09-16 ユーピー ケミカル カンパニー リミテッド ジアザジエン系金属化合物、これの製造方法及びこれを利用した薄膜形成方法
US9518217B2 (en) * 2011-09-06 2016-12-13 E Ink Holdings Inc. Transition metal carbene complexes and the electroluminescent application thereof
EP3172356B1 (en) * 2014-07-24 2018-09-19 Basf Se Process for the generation of thin inorganic films

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007153869A (ja) * 2005-08-04 2007-06-21 Tosoh Corp 金属含有化合物、その製造方法、金属含有薄膜及びその形成方法
KR20190020148A (ko) * 2016-09-30 2019-02-27 주식회사 한솔케미칼 산화물 박막 형성을 위한 기상 증착용 유기금속 전구체 화합물 및 이의 제조방법
KR101962355B1 (ko) * 2017-09-26 2019-03-26 주식회사 한솔케미칼 열적 안정성 및 반응성이 우수한 기상 증착 전구체 및 이의 제조방법

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
FREEMAN LUCAS A., WALLEY JACOB E., DICKIE DIANE A., GILLIARD ROBERT J.: "Low-nuclearity magnesium hydride complexes stabilized by N-heterocyclic carbenes", DALTON TRANSACTIONS, vol. 48, no. 46, 26 November 2019 (2019-11-26), Cambridge , pages 17174 - 17178, XP055890674, ISSN: 1477-9226, DOI: 10.1039/C9DT03915E *
NORMAND ADRIEN T., HAWKES KIRSTY J., CLEMENT NICOLAS D., CAVELL KINGSLEY J., YATES BRIAN F.: "Atom-Efficient Catalytic Coupling of Imidazolium Salts with Ethylene Involving Ni−NHC Complexes as Intermediates: A Combined Experimental and DFT Study", ORGANOMETALLICS, vol. 26, no. 22, 1 October 2007 (2007-10-01), pages 5352 - 5363, XP055890671, ISSN: 0276-7333, DOI: 10.1021/om070181e *

Also Published As

Publication number Publication date
JP2023535086A (ja) 2023-08-15
CN116134172A (zh) 2023-05-16
TW202206437A (zh) 2022-02-16
KR20220014653A (ko) 2022-02-07
TWI761257B (zh) 2022-04-11
KR102432833B1 (ko) 2022-08-18
US20230257406A1 (en) 2023-08-17

Similar Documents

Publication Publication Date Title
WO2021133080A1 (ko) 이트륨/란탄족 금속 전구체 화합물, 이를 포함하는 막 형성용 조성물 및 이를 이용한 이트륨/란탄족 금속 함유 막의 형성 방법
WO2010071364A9 (ko) 금속 박막 또는 금속 산화물 박막 증착용 유기금속 전구체 화합물 및 이를 이용한 박막 증착 방법
WO2015105337A1 (en) Novel trisilyl amine derivative, method for preparing the same and silicon-containing thin film using the same
WO2019103500A1 (ko) 실리콘 함유 박막 증착용 조성물 및 이를 이용한 실리콘 함유 박막의 제조방법
WO2019156400A1 (ko) 유기금속화합물 및 이를 이용한 박막
WO2015130108A1 (ko) 지르코늄 함유막 형성용 전구체 조성물 및 이를 이용한 지르코늄 함유막 형성 방법
WO2017014399A1 (ko) 텅스텐 전구체 및 이를 포함하는 텅스텐 함유 필름 증착방법
WO2015142053A1 (ko) 유기 게르마늄 아민 화합물 및 이를 이용한 박막 증착 방법
TW201311702A (zh) 雜配位(烯丙基)(吡咯-2-醛亞胺鹽(aldiminate))含金屬前驅物其合成及其氣相沈積以沈積含金屬膜
WO2014084557A1 (ko) 실리콘 전구체 화합물 및 이를 이용한 실리콘-함유 박막의 증착 방법
WO2020130216A1 (ko) 희토류 전구체, 이의 제조방법 및 이를 이용하여 박막을 형성하는 방법
WO2022025333A1 (ko) 유기금속 화합물, 이를 포함하는 전구체 조성물, 및 이를 이용한 박막의 제조방법
WO2022025332A1 (ko) 코발트 화합물, 이를 포함하는 전구체 조성물, 및 이를 이용한 박막의 제조방법
WO2019066179A1 (ko) 열적 안정성 및 반응성이 우수한 기상 증착 전구체 및 이의 제조방법
KR101546319B1 (ko) 텅스텐 함유 막을 증착시키기 위한 텅스텐 전구체 및 이를 포함하는 텅스텐 함유 필름 증착방법
WO2020116770A1 (ko) 4족 전이금속 화합물, 이의 제조방법 및 이를 이용하여 박막을 형성하는 방법
KR20210058370A (ko) 텅스텐 화합물, 이의 제조방법 및 이를 이용한 텅스텐 함유 박막 및 이의 제조방법
WO2022139345A1 (ko) 신규 화합물, 이를 포함하는 전구체 조성물, 및 이를 이용한 박막의 제조방법
WO2018062590A1 (ko) 산화물 박막 형성을 위한 기상 증착용 유기금속 전구체 화합물 및 이의 제조방법
WO2020130215A1 (ko) 코발트 전구체, 이의 제조방법 및 이를 이용한 박막의 제조방법
WO2024117807A1 (ko) 스칸듐 또는 이트륨 함유 박막 형성용 전구체, 이를 이용한 스칸듐 또는 이트륨 함유 박막 형성 방법 및 상기 스칸듐 또는 이트륨 함유 박막을 포함하는 반도체 소자.
WO2021086006A1 (ko) 인듐 전구체 화합물, 이를 이용한 박막의 제조 방법 및 이로부터 제조된 기판
WO2021045385A2 (ko) 금속 질화물 박막의 형성 방법
WO2024058624A1 (ko) 란탄족 금속 함유 박막 형성용 전구체, 이를 이용한 란탄족 금속 함유 박막 형성 방법 및 상기 란탄족 금속 함유 박막을 포함하는 반도체 소자.
WO2024049037A1 (ko) 신규한 아미디네이트 리간드, 상기 리간드를 포함하는 박막 형성용 전구체

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20947632

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2023504679

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20947632

Country of ref document: EP

Kind code of ref document: A1