WO2022080803A1 - 열적으로 안정한 루테늄 전구체 조성물 및 루테늄 함유 막 형성 방법 - Google Patents

열적으로 안정한 루테늄 전구체 조성물 및 루테늄 함유 막 형성 방법 Download PDF

Info

Publication number
WO2022080803A1
WO2022080803A1 PCT/KR2021/013991 KR2021013991W WO2022080803A1 WO 2022080803 A1 WO2022080803 A1 WO 2022080803A1 KR 2021013991 W KR2021013991 W KR 2021013991W WO 2022080803 A1 WO2022080803 A1 WO 2022080803A1
Authority
WO
WIPO (PCT)
Prior art keywords
chch
cymene
ruthenium
formula
group
Prior art date
Application number
PCT/KR2021/013991
Other languages
English (en)
French (fr)
Inventor
고원용
김진식
김대영
Original Assignee
주식회사 유피케미칼
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 유피케미칼 filed Critical 주식회사 유피케미칼
Priority to JP2023521347A priority Critical patent/JP2023545734A/ja
Priority to CN202180067977.3A priority patent/CN116348632A/zh
Publication of WO2022080803A1 publication Critical patent/WO2022080803A1/ko
Priority to US18/133,003 priority patent/US20230242560A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F15/00Compounds containing elements of Groups 8, 9, 10 or 18 of the Periodic Table
    • C07F15/0006Compounds containing elements of Groups 8, 9, 10 or 18 of the Periodic Table compounds of the platinum group
    • C07F15/0046Ruthenium compounds
    • C07F15/0053Ruthenium compounds without a metal-carbon linkage
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/06Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of metallic material
    • C23C16/18Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of metallic material from metallo-organic compounds
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F15/00Compounds containing elements of Groups 8, 9, 10 or 18 of the Periodic Table
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F15/00Compounds containing elements of Groups 8, 9, 10 or 18 of the Periodic Table
    • C07F15/0006Compounds containing elements of Groups 8, 9, 10 or 18 of the Periodic Table compounds of the platinum group
    • C07F15/0046Ruthenium compounds
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F17/00Metallocenes
    • C07F17/02Metallocenes of metals of Groups 8, 9 or 10 of the Periodic System
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/32Carbides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/34Nitrides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/40Oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45523Pulsed gas flow or change of composition over time
    • C23C16/45525Atomic layer deposition [ALD]
    • C23C16/45527Atomic layer deposition [ALD] characterized by the ALD cycle, e.g. different flows or temperatures during half-reactions, unusual pulsing sequence, use of precursor mixtures or auxiliary reactants or activations
    • C23C16/45536Use of plasma, radiation or electromagnetic fields
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45523Pulsed gas flow or change of composition over time
    • C23C16/45525Atomic layer deposition [ALD]
    • C23C16/45527Atomic layer deposition [ALD] characterized by the ALD cycle, e.g. different flows or temperatures during half-reactions, unusual pulsing sequence, use of precursor mixtures or auxiliary reactants or activations
    • C23C16/45536Use of plasma, radiation or electromagnetic fields
    • C23C16/45538Plasma being used continuously during the ALD cycle
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45523Pulsed gas flow or change of composition over time
    • C23C16/45525Atomic layer deposition [ALD]
    • C23C16/45527Atomic layer deposition [ALD] characterized by the ALD cycle, e.g. different flows or temperatures during half-reactions, unusual pulsing sequence, use of precursor mixtures or auxiliary reactants or activations
    • C23C16/45536Use of plasma, radiation or electromagnetic fields
    • C23C16/45542Plasma being used non-continuously during the ALD reactions
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45523Pulsed gas flow or change of composition over time
    • C23C16/45525Atomic layer deposition [ALD]
    • C23C16/45553Atomic layer deposition [ALD] characterized by the use of precursors specially adapted for ALD

Definitions

  • the present application relates to a ruthenium precursor compound for forming a film having high thermal stability, a film forming precursor composition including the ruthenium precursor compound, and a method for forming a ruthenium-containing film using the film forming precursor.
  • the ruthenium (Ru) metal conducts electricity well, like copper (Cu), tungsten (W), and cobalt (Co), it can be used as a wiring material of a semiconductor device. As the semiconductor device is integrated and the width of the metal wire becomes narrower, the resistance of the metal wire increases. When ruthenium metal is used for semiconductor device wiring, the ruthenium (Ru) metal is being studied as a next-generation wiring material because the resistance increases less compared to copper or cobalt when the metal wiring width is very narrow, such as 40 nm or less. .
  • a gaseous ruthenium compound is supplied to the substrate surface such as chemical vapor deposition (CVD) or atomic layer deposition (ALD) to provide ruthenium. It is advantageous to form a metal film.
  • CVD chemical vapor deposition
  • ALD atomic layer deposition
  • ruthenium precursor compositions which can be used for CVD or ALD for this purpose.
  • ruthenium (Ru) metal for manufacturing a semiconductor device, a thermally stable ruthenium precursor composition that does not change its composition at the temperature at which the precursor composition is vaporized is required.
  • An object of the present application is to provide a ruthenium precursor compound for forming a film having high thermal stability, a film forming precursor composition including the ruthenium precursor compound, and a method of forming a ruthenium-containing film using the film forming precursor.
  • a first aspect of the present application provides a ruthenium precursor compound represented by the following formula (I):
  • R 1 To R 6 are, each independently, hydrogen; a substituted or unsubstituted linear or branched C 1-10 alkyl group; Or a substituted or unsubstituted C 3-10 cycloalkyl group, and when the alkyl group or cycloalkyl group is substituted, it is substituted with a linear or branched C 1-3 alkyl group.
  • a second aspect of the present application provides a precursor composition for forming a film, comprising at least one ruthenium precursor compound according to the first aspect.
  • a third aspect of the present application provides a method for forming a ruthenium-containing film, comprising forming a ruthenium-containing film by using the precursor composition for film formation including the ruthenium precursor compound according to the first aspect.
  • the composition ratio of isomers changes during vaporization
  • the method for forming a ruthenium-containing film using the ruthenium precursor composition of the present application includes the composition of the vaporized precursor composition. Since it does not change during use, it is advantageous for forming a ruthenium film having certain characteristics and can be used in a semiconductor device manufacturing process.
  • a ruthenium-containing film having a thickness of several nm to several ⁇ m can be uniformly formed in various temperature ranges even on a substrate having a pattern (grooves) on the surface, a porous substrate, or a plastic substrate.
  • the ruthenium-containing film using the ruthenium precursor composition of the present application may be applied in various ways depending on the application purpose.
  • oxygen (O 2 ) and nitrogen (N 2 ) gas used as a reaction gas are each 70 sccm: 140 sccm, 100 sccm: 100 sccm, and 200 sccm: Used in various mixing ratios of 0 sscm
  • TEM transmission electron microscope
  • step of doing or “step of” does not mean “step for”.
  • alkyl refers to a linear or branched alkyl group having 1 to 12 carbon atoms, 1 to 10 carbon atoms, 1 to 8 carbon atoms, or 1 to 5 carbon atoms. and all possible isomers thereof.
  • the alkyl or alkyl group is a methyl group (Me), an ethyl group (Et), an n-propyl group ( n Pr), an iso-propyl group ( i Pr), an n-butyl group ( n Bu), an iso-butyl group ( i Bu), tert-butyl group (tert-Bu, t Bu), sec-butyl group (sec-Bu, sec Bu), n-pentyl group ( n Pe), iso-pentyl group ( iso Pe), sec -pentyl group ( sec Pe), tert-pentyl group ( t Pe), neo-pentyl group ( neo Pe), 3-pentyl group, n-hexyl group, iso-hexyl group, heptyl group, 4,4-dimethylphen a tyl group, an octyl group, a 2,2,4-trimethylpentyl group
  • membrane means “membrane” or “thin film”.
  • a first aspect of the present application provides a ruthenium precursor compound represented by the following formula (I):
  • R 1 To R 6 are, each independently, hydrogen; a substituted or unsubstituted linear or branched C 1-10 alkyl group; Or a substituted or unsubstituted C 3-10 cycloalkyl group, and when the alkyl group or cycloalkyl group is substituted, it is substituted with a linear or branched C 1-3 alkyl group.
  • one or more of R 1 , R 2 , R 5 and R 6 is a substituted or unsubstituted linear or branched C 1-10 alkyl group; Or it may be a substituted or unsubstituted C 3-10 cycloalkyl group.
  • the ruthenium compound may be one except when all of R 1 , R 2 , R 5 and R 6 are hydrogen.
  • the linear or branched C 1-10 alkyl group is a methyl group, an ethyl group, n-propyl group, iso-propyl group, n-butyl group, iso-butyl group, sec-butyl group, tert-butyl group, n-pentyl group, iso-pentyl group, sec-pentyl group, tert-pentyl group, neo-pentyl group, 3-pentyl group, n-hexyl group, iso-hexyl group, sec-hexyl group, tert-hexyl group, neo-hexyl group, n-heptyl group, iso-heptyl group, sec-heptyl group, tert-heptyl group, neo-heptyl group, n-octyl group, iso-octyl group, sec-o
  • the C 3-10 cycloalkyl group is a cyclopropyl group, a cyclobutyl group, a cyclopentyl group, a cyclohexyl group, a cycloheptyl group, a cyclooctyl group, a cyclononyl group, a cyclodecyl group, and their It may include one selected from the group consisting of isomers, but may not be limited thereto.
  • the C 3-10 cycloalkyl group may be a cyclopentyl group, a cyclohexyl group, or a cycloheptyl group, but may not be limited thereto.
  • the ruthenium precursor compound may be one selected from the following Chemical Formulas 1 to 3:
  • a second aspect of the present application provides a precursor composition for forming a film, comprising at least one ruthenium precursor compound according to the first aspect.
  • one or more of R 1 , R 2 , R 5 and R 6 is a substituted or unsubstituted linear or branched C 1-10 alkyl group; Or it may be a substituted or unsubstituted C 3-10 cycloalkyl group.
  • the ruthenium compound may be one except when all of R 1 , R 2 , R 5 and R 6 are hydrogen.
  • the linear or branched C 1-10 alkyl group is a methyl group, an ethyl group, n-propyl group, iso-propyl group, n-butyl group, iso-butyl group, sec-butyl group, tert-butyl group, n-pentyl group, iso-pentyl group, sec-pentyl group, tert-pentyl group, neo-pentyl group, 3-pentyl group, n-hexyl group, iso-hexyl group, sec-hexyl group, tert-hexyl group, neo-hexyl group, n-heptyl group, iso-heptyl group, sec-heptyl group, tert-heptyl group, neo-heptyl group, n-octyl group, iso-octyl group, sec-o
  • the C 3-10 cycloalkyl group is a cyclopropyl group, a cyclobutyl group, a cyclopentyl group, a cyclohexyl group, a cycloheptyl group, a cyclooctyl group, a cyclononyl group, a cyclodecyl group, and their It may include one selected from the group consisting of isomers, but may not be limited thereto.
  • the C 3-10 cycloalkyl group may be a cyclopentyl group, a cyclohexyl group, or a cycloheptyl group, but may not be limited thereto.
  • the precursor composition for film formation may be a mixture including one or more of the following ruthenium precursor compounds:
  • the ruthenium precursor compound may include one or more selected from the following compounds:
  • the film may be at least one selected from a ruthenium metal film, a ruthenium-containing oxide film, a ruthenium-containing nitride film, a ruthenium-containing carbide film, and combinations thereof, but may not be limited thereto. .
  • the ruthenium-containing oxide film or the ruthenium-containing nitride film may be variously applied to semiconductors, non-semiconductors, and display devices according to their application, but may not be limited thereto.
  • the precursor composition for film formation may further include one or more nitrogen sources selected from ammonia, nitrogen, hydrazine, and dimethyl hydrazine, but may not be limited thereto.
  • the precursor composition for film formation may further include one or more oxygen sources selected from water vapor, oxygen, and ozone, but may not be limited thereto.
  • a third aspect of the present application provides a method for forming a ruthenium-containing film, comprising forming a ruthenium-containing film by using the precursor composition for film formation including the ruthenium precursor compound according to the first aspect.
  • the ruthenium precursor compound included in the precursor composition for film formation may include one or more selected from the following compounds:
  • the ruthenium-containing film may be deposited by chemical vapor deposition (CVD) or atomic layer deposition (ALD), but may not be limited thereto.
  • CVD chemical vapor deposition
  • ALD atomic layer deposition
  • the composition of one or more ruthenium precursor compounds included in the precursor composition for film formation may be maintained while the precursor composition for film formation is heated and vaporized. In one embodiment of the present application, the composition of one or more ruthenium precursor compounds included in the precursor composition for film formation in the process of heating and vaporizing the precursor composition for film formation is about 70% or more, about 80% or more, about 90% % or more, or about 95% or more may be maintained.
  • the ruthenium-containing film may be deposited by metal organic chemical vapor deposition (MOCVD) or atomic layer deposition (ALD), but may not be limited thereto.
  • MOCVD metal organic chemical vapor deposition
  • ALD atomic layer deposition
  • the ruthenium-containing film is chemical vapor deposition method or atomic layer deposition method may be performed using a deposition apparatus, deposition conditions, and one or more additional reactive gases known in the art, but is limited thereto it may not be
  • the reaction gas used in the ALD and CVD method is a semiconductor such as hydrogen (H 2 ) gas, ammonia (NH 3 ) gas, oxygen (O 2 ) gas, or ozone (O 3 ) gas
  • a ruthenium-containing film may be formed using a gas used in the process, but may not be limited thereto.
  • a ruthenium-containing film containing less impurities may be formed.
  • a ruthenium oxide film may be formed, but may not be limited thereto.
  • a precursor composition for film formation including a ruthenium precursor compound is supplied in a gaseous state to a substrate located in a deposition chamber to form a ruthenium-containing film on the surface of the substrate including, but not limited to.
  • the ruthenium-containing film may be formed in a temperature range of room temperature to about 400 °C, but may not be limited thereto.
  • the ruthenium-containing film may be at room temperature to about 400° C., room temperature to about 350° C., room temperature to about 300° C., room temperature to about 250° C., room temperature to about 200° C., room temperature to about 150° C., room temperature to about 100° C.
  • the ruthenium-containing film may be formed in a thickness range of about 1 nm to about 500 nm, but may be variously applied depending on the application purpose, and may not be limited thereto.
  • the ruthenium-containing film may be from about 1 nm to about 500 nm, from about 1 nm to about 400 nm, from about 1 nm to about 300 nm, from about 1 nm to about 200 nm, from about 1 nm to about 100 nm, about 1 nm to about 50 nm, about 1 nm to about 40 nm, about 1 nm to about 30 nm, about 1 nm to about 20 nm, about 1 nm to about 10 nm, about 10 nm to about 500 nm, about 10 nm to about 400 nm, about 10 nm to about 300 nm, about 10 nm to about 200 nm, about 10 nm to about 100 nm,
  • the ruthenium-containing film may be formed on one or more substrates selected from conventional silicon semiconductor wafers, compound semiconductor wafers, and plastic substrates (PI, PET, PES, and PEN). , which may not be limited thereto.
  • a substrate having holes or grooves may be used, and a porous substrate having a large surface area may be used, but the present invention may not be limited thereto.
  • the ruthenium-containing film may be formed on all or part of a substrate simultaneously or sequentially on a substrate to which two or more different types of substrates are in contact or connected, but the present invention may not be limited thereto.
  • the ruthenium-containing film may be formed on a substrate including irregularities (grooves) having an aspect ratio of about 1 to about 100 and a width of about 10 nm to about 1 ⁇ m, but is limited thereto. it may not be
  • the unevenness (groove) may be in the form of a hole or a trench.
  • the aspect ratio is about 1 or more, about 10 or more, about 30 or more, about 50 or more, about 1 to about 100, about 1 to about 90, about 1 to about 80, about 1 to about 70, about 1 to about 60, about 1 to about 50, about 1 to about 40, about 1 to about 30, about 1 to about 20, about 1 to about 10, about 10 to about 100, about 10 to about 90, about 10 to about 80 , about 10 to about 70, about 10 to about 60, about 10 to about 50, about 10 to about 40, about 10 to about 30, about 10 to about 20, about 20 to about 100, about 20 to about 90, about 20 to about 80, about 20 to about 70, about 20 to about 60, about 20 to about 50, about 20 to about 40, about 20 to about 30, about 30 to about 100, about 30 to about 90, about 30 to about 80, about 30 to about 70, about 30 to about 60, about 30 to about 50, about 30 to about 40, about 40 to about 100, about 40 to about 90, about 40 to about 80, about 40 to about 100, about 40 to about 80, about
  • the width may be from about 10 nm to about 1 ⁇ m, from about 10 nm to about 900 nm, from about 10 nm to about 800 nm, from about 10 nm to about 700 nm, from about 10 nm to about 600 nm, about 10 nm to about 500 nm, about 10 nm to about 400 nm, about 10 nm to about 300 nm, about 10 nm to about 200 nm, about 10 nm to about 100 nm, about 10 nm to about 90 nm, about 10 nm to about 80 nm, about 10 nm to about 70 nm, about 10 nm to about 60 nm, about 10 to about 50 nm, about 10 nm to about 40 nm, about 10 nm to about 30 nm, about 10 nm to about 20 nm, about 20 nm to about 1 ⁇ m, about 20 nm to about 900 nm, about 20
  • the ruthenium precursor compound of the present invention included in the precursor composition for film formation is used as a precursor of atomic layer deposition or chemical vapor deposition due to low density and high thermal stability to form a ruthenium-containing film
  • a substrate having a pattern (grooves) on the surface, a porous substrate, or a plastic substrate in a temperature range of room temperature to about 400 ° C, about 200 ° C to about 400 ° C, or about 300 ° C to about 400 ° C A ruthenium-containing film having a thickness of several nm to several ⁇ m can be uniformly formed.
  • the method for forming a ruthenium-containing film includes receiving a substrate in a reaction chamber and then transferring the ruthenium precursor compound onto the substrate using a transport gas or a diluent gas, at room temperature to about 400° C., Alternatively, it is preferable to deposit the ruthenium-containing oxide thin film or nitride thin film at a deposition temperature in a wide range of about 200° C. to about 400° C., but may not be limited thereto.
  • the transport gas or diluent gas is argon (Ar), nitrogen (N 2 ), helium (He) or hydrogen (H 2 ) It is preferable to use one or more mixed gas selected from, This may not be limited.
  • a bubbling method in which the precursor is forcibly vaporized using a transport gas a liquid supply at room temperature and vaporized through a vaporizer
  • Various supply methods including a Liquid Delivery System (LDS) method and a Vapor Flow Controller (VFC) method that directly supplies using the vapor pressure of the precursor can be applied, but when the vapor pressure is high, the VFC method can be used, and when the vapor pressure is low, a bypass method of heating and vaporizing the vessel may be used.
  • LDS Liquid Delivery System
  • VFC Vapor Flow Controller
  • the method of supplying the ruthenium precursor compound into a bubbler container or VFC container and transporting it using bubbling or high vapor pressure using a transport gas at a temperature range of about 0.1 torr to about 10 torr, room temperature to about 100° C. can be used Most preferably, an LDS method in which the ruthenium precursor compound is supplied in a liquid phase at room temperature and vaporized through a vaporizer may be used, but may not be limited thereto.
  • argon (Ar) or nitrogen (N 2 ) gas in order to vaporize the ruthenium precursor compound, it is more preferable to transport it with argon (Ar) or nitrogen (N 2 ) gas, use thermal energy or plasma, or apply a bias on the substrate, may not be limited.
  • the deposition temperature of room temperature to about 400 °C, or about 200 °C to about 400 °C is applicable to various fields because the process temperature applicable to memory devices, logic devices, and display devices is wide this is a big one
  • a ruthenium precursor compound that can be used in a wide temperature range is required. This is preferably done, but may not be limited thereto.
  • the ruthenium-containing oxide film when the ruthenium-containing oxide film is formed during the deposition of the ruthenium-containing film, as a reactive gas, water vapor (H 2 O), oxygen (O 2 ), oxygen plasma, (O 2 Plasma), oxidation
  • a reactive gas water vapor (H 2 O), oxygen (O 2 ), oxygen plasma, (O 2 Plasma), oxidation
  • nitrogen (NO, N 2 O), nitric oxide plasma (N 2 O Plasma), oxygen nitrate (N 2 O 2 ), hydrogen peroxide (H 2 O 2 ), and ozone (O 3 ) Preference is given to using mixtures. However, it may not be limited thereto.
  • ammonia (NH 3 ), ammonia plasma (HN 3 Plasma), hydrazine (N 2 H 4 ), nitrogen plasma as a reactive gas to deposit a ruthenium-containing nitride film during deposition of the ruthenium-containing film It is preferable to use (N 2 Plasma). However, it may not be limited thereto.
  • Boiling Point 92°C (at 0.3 torr)
  • Boiling Point 86°C (at 0.3 torr)
  • each of the composition containing the Ru precursor compound (Formula 1) synthesized in Example 1 was placed and heated at 110° C. and 120° C. for 7 days, 14 days, and 28 days, respectively.
  • Ru precursor compositions [(p-cymene)(2,4-hexadiene)Ru (Formula 2) and (p-cymene)(1,3-hexadiene)Ru ( 2 g of the mixture of Formula 3), respectively, and heated at 110° C. and 120° C. for 7 days and 14 days, respectively.
  • the ratio of isomers measured by NMR before heating and NMR after heating is shown in Table 2 below. Even after 14 days of heating, the isomer ratio hardly changed, and no new NMR peaks appeared. Therefore, it can be confirmed that the isomer ratio is constant while the Ru precursor composition of Example 2 is heated to 110° C. and 120° C. to vaporize, respectively.
  • composition ratio of isomers changes during vaporization, whereas the composition ratio of the Ru precursor of the present invention remains constant during vaporization by heating.
  • a precursor composition comprising a (p-cymene)(2,4-dimethyl-1,3-pentadiene)Ru compound prepared by the method of Example 1, atomic deposition using plasma (PEALD; Plasma Enhanced Atomic Layer Deposition) ) process to form a Ru metal film.
  • PEALD Plasma Enhanced Atomic Layer Deposition
  • the Ru precursor composition was placed in a stainless steel container, heated to a temperature of 100° C., and argon carrier gas was flowed at a flow rate of 200 sccm to supply the vaporized Ru precursor composition to the PEALD reactor. At this time, the process pressure of the PEALD reactor was maintained at 1 torr to 1.2 torr.
  • the PEALD process was performed using a piece of silicon wafer heated to 300°C as a substrate.
  • a (O 2 +N 2 ) plasma generated by applying an RF power of 200 W as a pulse was used as a reactive gas.
  • An ALD supply cycle consisting of 10 seconds of supply of the Ru precursor composition, 10 seconds of Ar gas purge, 10 seconds of supply of (O 2 +N 2 ) plasma reaction gas, and 10 seconds of Ar gas purge was repeated 200 times.
  • the mixing ratio of oxygen (O 2 ) and nitrogen (N 2 ) gas used as a reaction gas was differently adjusted to 70 sccm: 140 sccm, 100 sccm: 100 sccm, and 200 sccm: 0 sscm, so that Ru formed in each case
  • the sheet resistance of the film was measured, and the calculated specific resistance by measuring the film thickness with a transmission electron microscope (TEM) is shown in Table 3 below.
  • TEM transmission electron microscope
  • the composition of the film according to the thickness measured by Auger electron spectroscopy is shown in FIG. 2 .
  • a Ru metal film having good electrical conductivity was formed with a film thickness of about 150 ⁇ to 400 ⁇ and a specific resistance of about 20 ⁇ cm to about 30 ⁇ cm.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Metallurgy (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Plasma & Fusion (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Vapour Deposition (AREA)
  • Electrodes Of Semiconductors (AREA)

Abstract

본원은, 열 안정성이 높은 막 형성용 루테늄 전구체 화합물, 상기 루테늄 전구체 화합물을 포함하는 막 형성용 전구체 조성물 및 상기 막 형성용 전구체를 이용하여 루테늄-함유 막을 형성하는 방법에 관한 것이다.

Description

열적으로 안정한 루테늄 전구체 조성물 및 루테늄 함유 막 형성 방법
본원은, 열 안정성이 높은 막 형성용 루테늄 전구체 화합물, 상기 루테늄 전구체 화합물을 포함하는 막 형성용 전구체 조성물 및 상기 막 형성용 전구체를 이용하여 루테늄-함유 막을 형성하는 방법에 관한 것이다.
루테늄(Ru) 금속은 구리(Cu), 텅스텐(W), 코발트(Co)처럼 전기를 잘 통하기 때문에 반도체 소자의 배선 재료로서 사용될 수 있다. 반도체 소자의 집적화가 진행되어 금속 배선의 폭이 좁아질수록 상기 금속 배선의 저항이 증가하게 된다. 반도체 소자 배선에 루테늄 금속을 사용하는 경우, 상기 금속 배선 폭이 40 nm 이하와 같이 매우 좁을 때 구리 또는 코발트에 비해 저항이 덜 증가하기 때문에, 상기 루테늄(Ru) 금속은 차세대 배선 재료로서 연구되고 있다. 차세대 반도체 소자의 배선에 필요한 좁은 홈을 루테늄 금속으로 채우려면, 화학증착법(CVD; chemical vapor deposition) 또는 원자층 증착법(ALD; atomic layer deposition)과 같이 기체 상태의 루테늄 화합물을 기판 표면에 공급하여 루테늄 금속 막을 형성하는 것이 유리하다.
상기 목적으로 CVD 또는 ALD에 사용할 수 있는 몇몇의 루테늄 전구체 조성물들이 알려져 있다. 다만, 반도체 소자 제조에 상기 루테늄(Ru) 금속을 사용하기 위해서는, 전구체 조성물을 기화시키는 온도에서 조성이 변화하지 않는 열적으로 안정한 루테늄 전구체 조성물이 요구된다.
[선행기술문헌]
L. G. Wen et al., "Ruthenium metallization for advanced interconnects", 2016 IEEE International Interconnect Technology Conference / Advanced Metallization Conference (IITC/AMC), doi:10.1109/iitc-amc.2016.7507651, 2016.
본원은, 열 안정성이 높은 막 형성용 루테늄 전구체 화합물, 상기 루테늄 전구체 화합물을 포함하는 막 형성용 전구체 조성물 및 상기 막 형성용 전구체를 이용하여 루테늄-함유 막을 형성하는 방법을 제공하고자 한다.
그러나, 본원이 해결하고자 하는 과제는 이상에서 언급한 과제로 제한되지 않으며, 언급되지 않은 또 다른 과제들은 아래의 기재로부터 통상의 기술자에게 명확하게 이해될 수 있을 것이다.
본원의 제 1 측면은, 하기 화학식 Ⅰ로서 표시되는, 루테늄 전구체 화합물을 제공한다:
[화학식 Ⅰ]
Figure PCTKR2021013991-appb-img-000001
;
상기 화학식 Ⅰ에서, R1 내지 R6은, 각각 독립적으로, 수소; 치환 또는 비치환된 선형 또는 분지형의 C1-10 알킬기; 또는 치환 또는 비치환된 C3-10 시클로알킬기이고, 상기 알킬기 또는 시클로알킬기가 치환되는 경우, 선형 또는 분지형의 C1-3 알킬기로 치환되는 것임.
본원의 제 2 측면은, 제 1 측면에 따른 루테늄 전구체 화합물을 하나 이상 포함하는, 막 형성용 전구체 조성물을 제공한다.
본원의 제 3 측면은, 제 1 측면에 따른 루테늄 전구체 화합물을 포함하는 막 형성용 전구체 조성물을 이용하여 루테늄-함유 막을 형성하는 것을 포함하는, 루테늄-함유 막 형성 방법을 제공한다.
열안정성이 낮은 Ru 전구체 조성물의 경우, 기화하는 동안 이성질체의 조성 비율이 변하는 반면, 본원의 구현예들에 따르면, 본원의 루테늄 전구체 조성물을 이용하는 루테늄-함유 막 형성 방법은, 기화시킨 전구체 조성물의 조성이 사용 중에 변화하지 않기 때문에 일정한 특성의 루테늄 막을 형성하는 데에 유리하여 반도체 소자 제조 공정에 사용할 수 있다.
본원의 구현예들에 따르면, 표면에 패턴(홈)이 있는 기재, 다공성 기재, 또는 플라스틱 기재 상에서도 다양한 온도 범위에서, 수 nm 내지 수 μm 두께의 루테늄-함유 막을 균일하게 형성할 수 있다.
본원의 구현예들에 따르면, 본원의 루테늄 전구체 조성물을 이용하는 루테늄-함유 막은 적용 용도에 따라 다양하게 응용될 수 있다.
도 1a 내지 도 1c는, 반응 가스로 사용하는 산소(O2) 및 질소(N2) 기체를 각각 70 sccm : 140 sccm, 100 sccm : 100 sccm, 및 200 sccm : 0 sscm의 다양한 혼합 비율로 사용하여, 각각의 경우에 형성된 루테늄-함유 막의 투과전자현미경(TEM; Transmission Electron Microscope) 이미지들이다.
도 2는, 오제 전자 분광법(Auger electron spectroscopy)으로 측정한 Ru 막 두께에 따른 막의 조성을 나타낸 것이다.
이하, 첨부한 도면을 참조하여 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 본원의 구현예 및 실시예를 상세히 설명한다. 그러나 본원은 여러 가지 상이한 형태로 구현될 수 있으며 여기에서 설명하는 구현예 및 실시예에 한정되지 않는다. 그리고 도면에서 본 발명을 명확하게 설명하기 위해서 설명과 관계없는 부분은 생략하였으며, 명세서 전체를 통하여 유사한 부분에 대해서는 유사한 도면 부호를 붙였다.
본원 명세서 전체에서, 어떤 부분이 다른 부분과 "연결"되어 있다고 할 때, 이는 "직접적으로 연결"되어 있는 경우뿐 아니라, 그 중간에 다른 소자를 사이에 두고 "전기적으로 연결"되어 있는 경우도 포함한다.
본원 명세서 전체에서, 어떤 부재가 다른 부재 "상에" 위치하고 있다고 할 때, 이는 어떤 부재가 다른 부재에 접해 있는 경우뿐 아니라 두 부재 사이에 또 다른 부재가 존재하는 경우도 포함한다.
본원 명세서 전체에서, 어떤 부분이 어떤 구성요소를 "포함"한다고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성요소를 제외하는 것이 아니라 다른 구성 요소를 더 포함할 수 있는 것을 의미한다.
본 명세서에서 사용되는 정도의 용어 "약", "실질적으로" 등은 언급된 의미에 고유한 제조 및 물질 허용오차가 제시될 때 그 수치에서 또는 그 수치에 근접한 의미로 사용되고, 본원의 이해를 돕기 위해 정확하거나 절대적인 수치가 언급된 개시 내용을 비양심적인 침해자가 부당하게 이용하는 것을 방지하기 위해 사용된다.
본원 명세서 전체에서 사용되는 정도의 용어 “~ 하는 단계” 또는 “~의 단계”는 “~를 위한 단계”를 의미하지 않는다.
본원 명세서 전체에서, 마쿠시 형식의 표현에 포함된 "이들의 조합(들)"의 용어는 마쿠시 형식의 표현에 기재된 구성 요소들로 이루어진 군에서 선택되는 하나 이상의 혼합 또는 조합을 의미하는 것으로서, 상기 구성 요소들로 이루어진 군에서 선택되는 하나 이상을 포함하는 것을 의미한다.
본원 명세서 전체에서, "A 및/또는 B"의 기재는, "A 또는 B, 또는 A 및 B"를 의미한다.
본원 명세서 전체에서, 용어 "알킬" 또는 "알킬기"는, 1 내지 12 개의 탄소 원자, 1 내지 10 개의 탄소 원자, 1 내지 8 개의 탄소 원자, 또는 1 내지 5 개의 탄소 원자를 갖는 선형 또는 분지형 알킬기 및 이들의 모든 가능한 이성질체를 포함한다. 예를 들어, 상기 알킬 또는 알킬기는 메틸기(Me), 에틸기(Et), n-프로필기(nPr), iso-프로필기(iPr), n-부틸기(nBu), iso-부틸기(iBu), tert-부틸기(tert-Bu, tBu), sec-부틸기(sec-Bu, secBu), n-펜틸기(nPe), iso-펜틸기(isoPe), sec-펜틸기(secPe), tert-펜틸기(tPe), neo-펜틸기(neoPe), 3-펜틸기, n-헥실기, iso-헥실기, 헵틸기, 4,4-디메틸펜틸기, 옥틸기, 2,2,4-트리메틸펜틸기, 노닐기, 데실기, 운데실기, 도데실기, 및 이들의 이성질체들 등을 들 수 있으나, 이에 제한되지 않을 수 있다.
본원 명세서 전체에서, 용어 "막"은 "막" 또는 "박막"을 의미한다.
이하, 본원의 구현예를 상세히 설명하였으나, 본원이 이에 제한되지 않을 수 있다.
본원의 제 1 측면은, 하기 화학식 Ⅰ로서 표시되는, 루테늄 전구체 화합물을 제공한다:
[화학식 Ⅰ]
Figure PCTKR2021013991-appb-img-000002
;
상기 화학식 Ⅰ에서, R1 내지 R6은, 각각 독립적으로, 수소; 치환 또는 비치환된 선형 또는 분지형의 C1-10 알킬기; 또는 치환 또는 비치환된 C3-10 시클로알킬기이고, 상기 알킬기 또는 시클로알킬기가 치환되는 경우, 선형 또는 분지형의 C1-3 알킬기로 치환되는 것임.
본원의 일 구현예에 있어서, R1, R2, R5 및 R6 중 하나 이상이 치환 또는 비치환된 선형 또는 분지형의 C1-10 알킬기; 또는 치환 또는 비치환된 C3-10 시클로알킬기일 수 있다. 본원의 일 구현예에 있어서, 상기 루테늄 화합물은 R1, R2, R5 및 R6 모두가 수소인 경우를 제외하는 것일 수 있다.
본원의 일 구현예에 있어서, 상기 선형 또는 분지형의 C1-10 알킬기는, 메틸기, 에틸기, n-프로필기, iso-프로필기, n-부틸기, iso-부틸기, sec-부틸기, tert-부틸기, n-펜틸기, iso-펜틸기, sec-펜틸기, tert-펜틸기, neo-펜틸기, 3-펜틸기, n-헥실기, iso-헥실기, sec-헥실기, tert-헥실기, neo-헥실기, n-헵틸기, iso-헵틸기, sec-헵틸기, tert-헵틸기, neo-헵틸기, n-옥틸기, iso-옥틸기, sec-옥틸기, tert-옥틸기, neo-옥틸기, n-노닐기, iso-노닐기, sec-노닐기, tert-노닐기, neo-노닐기, n-데실기, iso-데실기, sec-데실기, tert-데실기, neo-데실기, 및 이들의 이성질체로 이루어진 군으로부터 선택되는 것을 포함하는 것일 수 있으나, 이에 제한되지 않을 수 있다. 본원의 일 구현예에 있어서, 상기 선형 또는 분지형의 C1-10 알킬기는, 메틸기, 에틸기, n-프로필기, 또는 iso-프로필기일 수 있다.
본원의 일 구현예에 있어서, 상기 C3-10 시클로알킬기는 시클로프로필기, 시클로부틸기, 시클로펜틸기, 시클로헥실기, 시클로헵틸기, 시클로옥틸기, 시클로노닐기, 시클로데실기 및 이들의 이성질체로 이루어진 군으로부터 선택되는 것을 포함하는 것일 수 있으나, 이에 제한되지 않을 수 있다. 본원의 일 구현예에 있어서, 상기 C3-10 시클로알킬기는 시클로펜틸기, 시클로헥실기, 또는 시클로헵틸기일 수 있으나, 이에 제한되지 않을 수 있다.
본원의 일 구현예에 따른 루테늄 화합물은, (p-cymene)[CH2=C(CH3)CH=C(CH3)2]Ru, (p-cymene)[MeCH=C(CH3)CH=C(CH3)2]Ru, (p-cymene)[EtCH=C(CH3)CH=C(CH3)2]Ru, (p-cymene)[nPrCH=C(CH3)CH=C(CH3)2]Ru, (p-cymene)[iPrCH=C(CH3)CH=C(CH3)2]Ru, (p-cymene)[nBuCH=C(CH3)CH=C(CH3)2]Ru, (p-cymene)[iBuCH=C(CH3)CH=C(CH3)2]Ru, (p-cymene)[secBuCH=C(CH3)CH=C(CH3)2]Ru, (p-cymene)[tBuCH=C(CH3)CH=C(CH3)2]Ru, (p-cymene)(CH3CH=CH-CH=CHCH3)Ru, (p-cymene)(Me2C=CH-CH=CHCH3)Ru (p-cymene)(EtMeC=CH-CH=CHCH3)Ru, (p-cymene)(nPrMeC=CH-CH=CHCH3)Ru, (p-cymene)(iPrMeC=CH-CH=CHCH3)Ru, (p-cymene)(nBuMeC=CH-CH=CHCH3)Ru, (p-cymene)(iBuMeC=CH-CH=CHCH3)Ru, (p-cymene)(secBuMeC=CH-CH=CHCH3)Ru, (p-cymene)(tBuMeC=CH-CH=CHCH3)Ru, (p-cymene)(CH2=CHCH=CHCH2CH3)Ru, (p-cymene)(MeCH=CHCH=CHCH2CH3)Ru, (p-cymene)(EtCH=CHCH=CHCH2CH3)Ru, (p-cymene)(nPrCH=CHCH=CHCH2CH3)Ru, (p-cymene)(iPrCH=CHCH=CHCH2CH3)Ru, (p-cymene)(nBuCH=CHCH=CHCH2CH3)Ru, (p-cymene)(iBuCH=CHCH=CHCH2CH3)Ru, (p-cymene)(secBuCH=CHCH=CHCH2CH3)Ru, 및 (p-cymene)(tBuCH=CHCH=CHCH2CH3)Ru에서 선택되는 것일 수 있으나, 이에 제한되지 않을 수 있다.
본원의 일 구현예에 있어서, 상기 루테늄 전구체 화합물은 하기 화학식 1 내지 화학식 3에서 선택되는 것일 수 있다:
[화학식 1]
Figure PCTKR2021013991-appb-img-000003
;
[화학식 2]
Figure PCTKR2021013991-appb-img-000004
; 및
[화학식 3]
Figure PCTKR2021013991-appb-img-000005
.
본원의 제 2 측면은, 제 1 측면에 따른 루테늄 전구체 화합물을 하나 이상 포함하는, 막 형성용 전구체 조성물을 제공한다.
본원의 제 1 측면과 중복되는 부분들에 대해서는 상세한 설명을 생략하였으나, 본원의 제 1 측면에 대해 설명한 내용은 본원의 제 2 측면에서 그 설명이 생략되었더라도 동일하게 적용될 수 있다.
본원의 일 구현예에 있어서, R1, R2, R5 및 R6 중 하나 이상이 치환 또는 비치환된 선형 또는 분지형의 C1-10 알킬기; 또는 치환 또는 비치환된 C3-10 시클로알킬기일 수 있다. 본원의 일 구현예에 있어서, 상기 루테늄 화합물은 R1, R2, R5 및 R6 모두가 수소인 경우를 제외하는 것일 수 있다.
본원의 일 구현예에 있어서, 상기 선형 또는 분지형의 C1-10 알킬기는, 메틸기, 에틸기, n-프로필기, iso-프로필기, n-부틸기, iso-부틸기, sec-부틸기, tert-부틸기, n-펜틸기, iso-펜틸기, sec-펜틸기, tert-펜틸기, neo-펜틸기, 3-펜틸기, n-헥실기, iso-헥실기, sec-헥실기, tert-헥실기, neo-헥실기, n-헵틸기, iso-헵틸기, sec-헵틸기, tert-헵틸기, neo-헵틸기, n-옥틸기, iso-옥틸기, sec-옥틸기, tert-옥틸기, neo-옥틸기, n-노닐기, iso-노닐기, sec-노닐기, tert-노닐기, neo-노닐기, n-데실기, iso-데실기, sec-데실기, tert-데실기, neo-데실기, 및 이들의 이성질체로 이루어진 군으로부터 선택되는 것을 포함하는 것일 수 있으나, 이에 제한되지 않을 수 있다. 본원의 일 구현예에 있어서, 상기 선형 또는 분지형의 C1-10 알킬기는, 메틸기, 에틸기, n-프로필기, 또는 iso-프로필기일 수 있다.
본원의 일 구현예에 있어서, 상기 C3-10 시클로알킬기는 시클로프로필기, 시클로부틸기, 시클로펜틸기, 시클로헥실기, 시클로헵틸기, 시클로옥틸기, 시클로노닐기, 시클로데실기 및 이들의 이성질체로 이루어진 군으로부터 선택되는 것을 포함하는 것일 수 있으나, 이에 제한되지 않을 수 있다. 본원의 일 구현예에 있어서, 상기 C3-10 시클로알킬기는 시클로펜틸기, 시클로헥실기, 또는 시클로헵틸기일 수 있으나, 이에 제한되지 않을 수 있다.
본원의 일 구현예에 있어서, 상기 막 형성용 전구체 조성물은 하기 루테늄 전구체 화합물 중 하나 이상을 포함하는 혼합물일 수 있다:
(p-cymene)[CH2=C(CH3)CH=C(CH3)2]Ru, (p-cymene)[MeCH=C(CH3)CH=C(CH3)2]Ru, (p-cymene)[EtCH=C(CH3)CH=C(CH3)2]Ru, (p-cymene)[nPrCH=C(CH3)CH=C(CH3)2]Ru, (p-cymene)[iPrCH=C(CH3)CH=C(CH3)2]Ru, (p-cymene)[nBuCH=C(CH3)CH=C(CH3)2]Ru, (p-cymene)[iBuCH=C(CH3)CH=C(CH3)2]Ru, (p-cymene)[secBuCH=C(CH3)CH=C(CH3)2]Ru, (p-cymene)[tBuCH=C(CH3)CH=C(CH3)2]Ru, (p-cymene)(CH3CH=CH-CH=CHCH3)Ru, (p-cymene)(Me2C=CH-CH=CHCH3)Ru (p-cymene)(EtMeC=CH-CH=CHCH3)Ru, (p-cymene)(nPrMeC=CH-CH=CHCH3)Ru, (p-cymene)(iPrMeC=CH-CH=CHCH3)Ru, (p-cymene)(nBuMeC=CH-CH=CHCH3)Ru, (p-cymene)(iBuMeC=CH-CH=CHCH3)Ru, (p-cymene)(secBuMeC=CH-CH=CHCH3)Ru, (p-cymene)(tBuMeC=CH-CH=CHCH3)Ru, (p-cymene)(CH2=CHCH=CHCH2CH3)Ru, (p-cymene)(MeCH=CHCH=CHCH2CH3)Ru, (p-cymene)(EtCH=CHCH=CHCH2CH3)Ru, (p-cymene)(nPrCH=CHCH=CHCH2CH3)Ru, (p-cymene)(iPrCH=CHCH=CHCH2CH3)Ru, (p-cymene)(nBuCH=CHCH=CHCH2CH3)Ru, (p-cymene)(iBuCH=CHCH=CHCH2CH3)Ru, (p-cymene)(secBuCH=CHCH=CHCH2CH3)Ru, 및 (p-cymene)(tBuCH=CHCH=CHCH2CH3)Ru.
본원의 일 구현예에 있어서, 상기 루테늄 전구체 화합물은 하기 화합물에서 선택되는 하나 이상을 포함하는 것일 수 있다:
[화학식 1]
Figure PCTKR2021013991-appb-img-000006
;
[화학식 2]
Figure PCTKR2021013991-appb-img-000007
; 및
[화학식 3]
Figure PCTKR2021013991-appb-img-000008
.
본원의 일 구현예에 있어서, 상기 막은 루테늄 금속 막, 루테늄-함유 산화 막, 루테늄-함유 질화 막, 루테늄-함유 탄화 막 및 이들의 조합들에서 선택되는 하나 이상일 수 있으나, 이에 제한되지 않을 수 있다.
본원의 일 구현예에 있어서, 상기 루테늄-함유 산화 막 또는 상기 루테늄-함유 질화 막은 반도체 및 비 반도체, 디스플레이 소자에 그 적용 용도에 따라 다양하게 응용될 수 있으나, 이에 제한되지 않을 수 있다.
본원의 일 구현예에 있어서, 상기 막 형성용 전구체 조성물은 암모니아, 질소, 히드라진, 및 디메틸 히드라진에서 선택되는 하나 이상의 질소원을 추가 포함할 수 있으나, 이에 제한되지 않을 수 있다.
본원의 일 구현예에 있어서, 상기 막 형성용 전구체 조성물은 수증기, 산소, 및 오존에서 선택되는 하나 이상의 산소원을 추가 포함할 수 있으나, 이에 제한되지 않을 수 있다.
본원의 제 3 측면은, 제 1 측면에 따른 루테늄 전구체 화합물을 포함하는 막 형성용 전구체 조성물을 이용하여 루테늄-함유 막을 형성하는 것을 포함하는, 루테늄-함유 막 형성 방법을 제공한다.
본원의 제 1 측면 및 제 2 측면과 중복되는 부분들에 대해서는 상세한 설명을 생략하였으나, 본원의 제 1 측면 및 제 2 측면에 대해 설명한 내용은 본원의 제 3 측면에서 그 설명이 생략되었더라도 동일하게 적용될 수 있다.
본원의 일 구현예에 있어서, 상기 막 형성용 전구체 조성물에 포함되는 루테늄 전구체 화합물은 하기 화합물에서 선택되는 하나 이상을 포함하는 것일 수 있다:
[화학식 1]
Figure PCTKR2021013991-appb-img-000009
;
[화학식 2]
Figure PCTKR2021013991-appb-img-000010
; 및
[화학식 3]
Figure PCTKR2021013991-appb-img-000011
.
본원의 일 구현예에 있어서, 상기 루테늄-함유 막은 화학기상 증착법(CVD; chemical vapor deposition) 또는 원자층 증착법(ALD; atomic layer deposition)에 의해 증착되는 것일 수 있으나, 이에 제한되지 않을 수 있다.
본원의 일 구현예에 있어서, 상기 막 형성용 전구체 조성물이 가열하여 기화시키는 과정에서 상기 막 형성용 전구체 조성물에 포함되는 하나 이상의 루테늄 전구체 화합물의 조성이 유지되는 것일 수 있다. 본원의 일 구현예에 있어서, 상기 막 형성용 전구체 조성물이 가열하여 기화시키는 과정에서 상기 막 형성용 전구체 조성물에 포함되는 하나 이상의 루테늄 전구체 화합물의 조성이 약 70% 이상, 약 80% 이상, 약 90% 이상, 또는 약 95% 이상 유지되는 것일 수 있다.
본원의 일 구현예에 있어서, 상기 루테늄-함유 막은 유기금속 화학기상증착법 (MOCVD; metalorganic chemical vapor deposition) 또는 원자층 증착법(ALD)에 의해 증착되는 것일 수 있으나, 이에 제한되지 않을 수 있다. 본원의 일 구현예에 있어서, 상기 루테늄-함유 막은 화학기상증착법 또는 원자층 증착법은 본 기술분야에 공지된 증착 장치, 증착 조건, 및 하나 이상의 추가 반응기체 등을 이용하여 수행될 수 있으나, 이에 제한되지 않을 수 있다.
본원의 일 구현예에 있어서, 상기 ALD 및 CVD 방법에 이용되는 반응 기체로는 수소 (H2) 기체, 암모니아 (NH3) 기체, 산소 (O2) 기체, 또는 오존 (O3) 기체 등 반도체 공정에 사용하는 기체를 사용하여 루테늄-함유 막을 형성할 수 있으나, 이에 제한되지 않을 수 있다. 예를 들어, 상기 ALD 및 CVD 방법에 수소 기체 및/또는 암모니아 기체를 사용하여 막을 형성하는 경우, 불순물이 적게 포함된 루테늄-함유 막을 형성할 수 있다. 예를 들어, 산소 기체 또는 오존 기체를 사용하여 막을 형성하는 경우, 루테늄 산화물 막을 형성할 수 있으나, 이에 제한되지 않을 수 있다.
본원의 일 구현예에 있어서, 상기 루테늄-함유 막 형성 방법은 증착 챔버 내에 위치한 기재 상에 루테늄 전구체 화합물을 포함하는 막 형성용 전구체 조성물을 기체 상태로 공급하여, 기재 표면에 루테늄-함유 막을 형성하는 것을 포함하나, 이에 제한되는 것은 아니다.
본원의 일 구현예에 있어서, 상기 루테늄-함유 막은 상온 내지 약 400℃의 온도 범위에서 형성되는 것일 수 있으나, 이에 제한되지 않을 수 있다. 예를 들어, 상기 루테늄-함유 막은 상온 내지 약 400℃, 상온 내지 약 350℃, 상온 내지 약 300℃, 상온 내지 약 250℃, 상온 내지 약 200℃, 상온 내지 약 150℃, 상온 내지 약 100℃, 약 100℃ 내지 약 400℃, 약 100℃ 내지 약 350℃, 약 100℃ 내지 약 300℃, 약 100℃ 내지 약 250℃, 약 100℃ 내지 약 200℃, 약 100℃ 내지 약 150℃, 약 150℃ 내지 약 400℃, 약 150℃ 내지 약 350℃, 약 150℃ 내지 약 300℃, 약 150℃ 내지 약 250℃, 약 150℃ 내지 약 200℃, 약 200℃ 내지 약 400℃, 약 200℃ 내지 약 350℃, 약 200℃ 내지 약 300℃, 약 200℃ 내지 약 250℃, 약 250℃ 내지 약 400℃, 약 250℃ 내지 약 350℃, 약 250℃ 내지 약 300℃, 약 300℃ 내지 약 400℃, 약 300℃ 내지 약 350℃, 또는 약 350℃ 내지 약 400℃의 온도 범위에서 형성되는 것일 수 있으나, 이에 제한되지 않을 수 있다. 본원의 일 구현예에 있어서, 상기 루테늄-함유 막은 약 200℃ 내지 약 400℃, 또는 약 300℃ 내지 약 400℃의 온도 범위에서 형성되는 것일 수 있다.
본원의 일 구현예에 있어서, 상기 루테늄-함유 막은 약 1 nm 내지 약 500 nm의 두께 범위에서 형성되는 것일 수 있으나, 적용 용도에 따라 다양하게 응용될 수 있으며, 이에 제한되지 않을 수 있다. 예를 들어, 상기 루테늄-함유 막은 약 1 nm 내지 약 500 nm, 약 1 nm 내지 약 400 nm, 약 1 nm 내지 약 300 nm, 약 1 nm 내지 약 200 nm, 약 1 nm 내지 약 100 nm, 약 1 nm 내지 약 50 nm, 약 1 nm 내지 약 40 nm, 약 1 nm 내지 약 30 nm, 약 1 nm 내지 약 20 nm, 약 1 nm 내지 약 10 nm, 약 10 nm 내지 약 500 nm, 약 10 nm 내지 약 400 nm, 약 10 nm 내지 약 300 nm, 약 10 nm 내지 약 200 nm, 약 10 nm 내지 약 100 nm, 약 10 nm 내지 약 50 nm, 약 10 nm 내지 약 40 nm, 약 10 nm 내지 약 30 nm, 약 10 nm 내지 약 20 nm, 약 20 nm 내지 약 500 nm, 약 20 nm 내지 약 400 nm, 약 20 nm 내지 약 300 nm, 약 20 nm 내지 약 200 nm, 약 20 nm 내지 약 100 nm, 약 20 nm 내지 약 50 nm, 약 20 nm 내지 약 40 nm, 약 20 nm 내지 약 30 nm, 약 30 nm 내지 약 500 nm, 약 30 nm 내지 약 400 nm, 약 30 nm 내지 약 300 nm, 약 30 nm 내지 약 200 nm, 약 30 nm 내지 약 100 nm, 약 30 nm 내지 약 50 nm, 약 30 nm 내지 약 40 nm, 약 40 nm 내지 약 500 nm, 약 40 nm 내지 약 400 nm, 약 40 nm 내지 약 300 nm, 약 40 nm 내지 약 200 nm, 약 40 nm 내지 약 100 nm, 약 40 nm 내지 약 50 nm, 약 50 nm 내지 약 500 nm, 약 50 nm 내지 약 400 nm, 약 50 nm 내지 약 300 nm, 약 50 nm 내지 약 200 nm, 약 50 nm 내지 약 100 nm, 약 100 nm 내지 약 500 nm, 약 100 nm 내지 약 400 nm, 약 100 nm 내지 약 300 nm, 약 100 nm 내지 약 200 nm, 약 200m 내지 약 500 nm, 약 200 nm 내지 약 400 nm, 약 200 nm 내지 약 300 nm, 약 300 nm 내지 약 500 nm, 약 300 nm 내지 약 400 nm, 또는 약 400 nm 내지 약 500 nm의 두께 범위에서 형성되는 것일 수 있으나, 이에 제한되지 않을 수 있다. 본원의 일 구현예에 있어서, 상기 루테늄-함유 막은 약 1 nm 내지 약 50 nm의 두께 범위에서 형성되는 것일 수 있다.
본원의 일 구현예에 있어서, 상기 루테늄-함유 막은 통상적인 실리콘 반도체 웨이퍼, 화합물 반도체 웨이퍼, 및 플라스틱 기판들(PI, PET, PES, 및 PEN)에서 선택되는 하나 이상의 기재 상에 형성될 수 있는 것이나, 이에 제한되지 않을 수 있다. 또한, 구멍이나 홈이 있는 기재를 사용할 수도 있으며, 표면적이 넓은 다공질의 기재를 사용할 수 있으나, 이에 제한되지 않을 수 있다. 또한, 서로 다른 두 종류 이상의 기재가 접촉 또는 연결되어 있는 기재에 동시에 또는 순차적으로 기재 전체 또는 일부에 대하여 상기 루테늄-함유 막이 형성될 수 있는 것이나, 이에 제한되지 않을 수 있다.
본원의 일 구현예에 있어서, 상기 루테늄-함유 막은 종횡비가 약 1 내지 약 100이고, 폭이 약 10 nm 내지 약 1 ㎛인 요철(홈)을 포함하는 기재 상에 형성되는 것일 수 있으나, 이에 제한되지 않을 수 있다. 요철(홈)은 구멍(hole) 또는 도랑(trench) 형태일 수 있다. 예를 들어, 상기 종횡비는 약 1 이상, 약 10 이상, 약 30 이상, 약 50 이상, 약 1 내지 약 100, 약 1 내지 약 90, 약 1 내지 약 80, 약 1 내지 약 70, 약 1 내지 약 60, 약 1 내지 약 50, 약 1 내지 약 40, 약 1 내지 약 30, 약 1 내지 약 20, 약 1 내지 약 10, 약 10 내지 약 100, 약 10 내지 약 90, 약 10 내지 약 80, 약 10 내지 약 70, 약 10 내지 약 60, 약 10 내지 약 50, 약 10 내지 약 40, 약 10 내지 약 30, 약 10 내지 약 20, 약 20 내지 약 100, 약 20 내지 약 90, 약 20 내지 약 80, 약 20 내지 약 70, 약 20 내지 약 60, 약 20 내지 약 50, 약 20 내지 약 40, 약 20 내지 약 30, 약 30 내지 약 100, 약 30 내지 약 90, 약 30 내지 약 80, 약 30 내지 약 70, 약 30 내지 약 60, 약 30 내지 약 50, 약 30 내지 약 40, 약 40 내지 약 100, 약 40 내지 약 90, 약 40 내지 약 80, 약 40 내지 약 70, 약 40 내지 약 60, 약 40 내지 약 50, 약 50 내지 약 100, 약 50 내지 약 90, 약 50 내지 약 80, 약 50 내지 약 70, 약 50 내지 약 60, 약 60 내지 약 100, 약 60 내지 약 90, 약 60 내지 약 80, 약 60 내지 약 70, 약 70 내지 약 100, 약 70 내지 약 90, 약 70 내지 약 80, 약 80 내지 약 100, 약 80 내지 약 90, 또는 약 90 내지 약 100일 수 있으나, 이에 제한되지 않을 수 있다. 또한, 예를 들어, 상기 폭은 약 10 nm 내지 약 1 ㎛, 약 10 nm 내지 약 900 nm, 약 10 nm 내지 약 800 nm, 약 10 nm 내지 약 700 nm, 약 10 nm 내지 약 600 nm, 약 10 nm 내지 약 500 nm, 약 10 nm 내지 약 400 nm, 약 10 nm 내지 약 300 nm, 약 10 nm 내지 약 200 nm, 약 10 nm 내지 약 100 nm, 약 10 nm 내지 약 90 nm, 약 10 nm 내지 약 80 nm, 약 10 nm 내지 약 70 nm, 약 10 nm 내지 약 60 nm, 약 10 내지 약 50 nm, 약 10 nm 내지 약 40 nm, 약 10 nm 내지 약 30 nm, 약 10 nm 내지 약 20 nm, 약 20 nm 내지 약 1 ㎛, 약 20 nm 내지 약 900 nm, 약 20 nm 내지 약 800 nm, 약 20 nm 내지 약 700 nm, 약 20 nm 내지 약 600 nm, 약 20 nm 내지 약 500 nm, 약 20 nm 내지 약 400 nm, 약 20 nm 내지 약 300 nm, 약 20 nm 내지 약 200 nm, 약 20 nm 내지 약 100 nm, 약 20 nm 내지 약 90 nm, 약 20 nm 내지 약 80 nm, 약 20 nm 내지 약 70 nm, 약 20 nm 내지 약 60 nm, 약 20 nm 내지 약 50 nm, 약 20 nm 내지 약 40 nm, 약 20 nm 내지 약 30 nm, 약 30 nm 내지 약 1 ㎛, 약 30 nm 내지 약 900 nm, 약 30 nm 내지 약 800 nm, 약 30 nm 내지 약 700 nm, 약 30 nm 내지 약 600 nm, 약 30 nm 내지 약 500 nm, 약 30 nm 내지 약 400 nm, 약 30 nm 내지 약 300 nm, 약 30 nm 내지 약 200 nm, 약 30 nm 내지 약 100 nm, 약 30 nm 내지 약 90 nm, 약 30 nm 내지 약 80 nm, 약 30 nm 내지 약 70 nm, 약 30 nm 내지 약 60 nm, 약 30 내지 약 50 nm, 약 30 nm 내지 약 40 nm, 약 40 nm 내지 약 1 ㎛, 약 40 nm 내지 약 900 nm, 약 40 nm 내지 약 800 nm, 약 40 nm 내지 약 700 nm, 약 40 nm 내지 약 600 nm, 약 40 nm 내지 약 500 nm, 약 40 nm 내지 약 400 nm, 약 40 nm 내지 약 300 nm, 약 40 nm 내지 약 200 nm, 약 40 nm 내지 약 100 nm, 약 40 nm 내지 약 90 nm, 약 40 nm 내지 약 80 nm, 약 40 nm 내지 약 70 nm, 약 40 nm 내지 약 60 nm, 약 40 내지 약 50 nm, 약 50 nm 내지 약 1 ㎛, 약 50 nm 내지 약 900 nm, 약 50 nm 내지 약 800 nm, 약 50 nm 내지 약 700 nm, 약 50 nm 내지 약 600 nm, 약 50 nm 내지 약 500 nm, 약 50 nm 내지 약 400 nm, 약 50 nm 내지 약 300 nm, 약 50 nm 내지 약 200 nm, 약 50 nm 내지 약 100 nm, 약 50 nm 내지 약 90 nm, 약 50 nm 내지 약 80 nm, 약 50 nm 내지 약 70 nm, 약 50 nm 내지 약 60 nm, 약 100 nm 내지 약 1 ㎛, 약 100 nm 내지 약 900 nm, 약 100 nm 내지 약 800 nm, 약 100 nm 내지 약 700 nm, 약 100 nm 내지 약 600 nm, 약 100 nm 내지 약 500 nm, 약 100 nm 내지 약 400 nm, 약 100 nm 내지 약 300 nm, 약 100 nm 내지 약 200 nm, 약 200 nm 내지 약 1 ㎛, 약 200 nm 내지 약 900 nm, 약 200 nm 내지 약 800 nm, 약 200 nm 내지 약 700 nm, 약 200 nm 내지 약 600 nm, 약 200 nm 내지 약 500 nm, 약 200 nm 내지 약 400 nm, 약 200 nm 내지 약 300 nm, 약 300 nm 내지 약 1 ㎛, 약 300 nm 내지 약 900 nm, 약 300 nm 내지 약 800 nm, 약 300 nm 내지 약 700 nm, 약 300 nm 내지 약 600 nm, 약 300 nm 내지 약 500 nm, 약 300 nm 내지 약 400 nm, 약 400 nm 내지 약 1 ㎛, 약 400 nm 내지 약 900 nm, 약 400 nm 내지 약 800 nm, 약 400 nm 내지 약 700 nm, 약 400 nm 내지 약 600 nm, 약 400 nm 내지 약 500 nm, 약 500 nm 내지 약 1 ㎛, 약 500 nm 내지 약 900 nm, 약 500 nm 내지 약 800 nm, 약 500 nm 내지 약 700 nm, 약 500 nm 내지 약 600 nm, 약 600 nm 내지 약 1 ㎛, 약 600 nm 내지 약 900 nm, 약 600 nm 내지 약 800 nm, 약 600 nm 내지 약 700 nm, 약 700 nm 내지 약 1 ㎛, 약 700 nm 내지 약 900 nm, 약 700 nm 내지 약 800 nm, 약 800 nm 내지 약 1 ㎛, 약 800 nm 내지 약 900 nm, 또는 약 900 nm 내지 약 1 ㎛일 수 있으나, 이에 제한되지 않을 수 있다.
본원의 일 구현예에 있어서, 상기 막 형성용 전구체 조성물에 포함되는 본 발명의 루테늄 전구체 화합물은 낮은 밀도 및 높은 열 안정성에 기인하여 원자층 증착법 또는 화학기상 증착법의 전구체로서 사용하여 루테늄-함유 막을 형성할 수 있으며, 특히, 표면에 패턴(홈)이 있는 기재, 다공성 기재, 또는 플라스틱 기재 상에서도 상온 내지 약 400℃, 약 200℃ 내지 약 400℃, 또는 약 300℃ 내지 약 400℃의 온도 범위에서, 수 nm 내지 수 μm 두께의 루테늄-함유 막을 균일하게 형성할 수 있다.
본원의 일 구현예에 있어서, 상기 루테늄-함유 막 형성 방법은 반응 챔버 내에 기재를 수용한 뒤, 운송 가스 또는 희석 가스를 사용하여 상기 루테늄 전구체 화합물을 기재 상으로 이송하여, 상온 내지 약 400℃, 또는 약 200℃ 내지 약 400℃의 넓은 범위의 증착 온도에서 루테늄-함유 산화 박막 또는 질화 박막을 증착시키는 것이 바람직하나, 이에 제한되지 않을 수 있다.
본원의 일 구현예에 있어서, 상기 운송가스 또는 희석 가스는 아르곤(Ar), 질소 (N2), 헬륨 (He) 또는 수소 (H2) 중에서 선택되는 하나 이상의 혼합 가스를 사용하는 것이 바람직하나, 이에 제한되지 않을 수 있다.
본원의 일 구현예에 있어서, 상기 루테늄 전구체 화합물을 기재 상으로 전달하는 방식으로는 전구체를 운송 가스를 이용하여 강제적으로 기화시키는 버블링 (Bubbling) 방식, 상온에서 액상으로 공급하여 기화기를 통해 기화시키는 리퀴드 딜리버리 시스템 (LDS; Liquid Delivery System) 방식 및 전구체의 증기압을 이용하여 직접 공급하는 증기압 유량 조절기 (VFC; Vapor Flow Controller) 방식을 포함하는 다양한 공급 방식이 적용될 수 있으나, 증기압이 높은 경우는 VFC 방식을 사용할 수 있으며, 증기압이 낮은 경우는 용기를 가열하여 기화시키는 바이패스(Bypass) 방식이 사용될 수 있다. 상기 루테늄 전구체 화합물을 버블러 용기 또는 VFC 용기에 담아 약 0.1 torr 내지 약 10 torr, 상온 내지 약 100℃의 온도 범위에서 운송 가스를 이용하는 버블링 또는 높은 증기압을 이용하여 운송하는 챔버 내로 공급시키는 방식이 사용될 수 있다. 가장 바람직하게는 상기 루테늄 전구체 화합물을 상온에서 액상으로 공급하여 기화기를 통해 기화시키는 LDS 방식이 사용될 수 있으나, 이에 제한되지 않을 수 있다.
본원의 일 구현예에 있어서, 상기 루테늄 전구체 화합물을 기화시키기 위하여 아르곤(Ar) 또는 질소(N2) 가스로 운송, 열에너지 또는 플라즈마를 이용, 또는 기판상에 바이어스를 인가하는 것이 더욱 바람직하나, 이에 제한되지 않을 수 있다.
본원의 일 구현예에 있어서, 상기 증착 온도가 상온 내지 약 400℃, 또는 약 200℃ 내지 약 400℃인 것은 메모리 소자 및 로직 소자, 디스플레이 소자에 적용될 수 있는 공정온도가 넓기 때문에 다양한 분야에 적용 가능성이 큰 것이다. 또한, 루테늄-함유 산화 박막 또는 질화 박막의 필름 특성이 상이하여, 넓은 온도 범위에서 사용가능한 루테늄 전구체 화합물이 필요하기 때문에 상온 내지 약 400℃, 또는 약 200℃ 내지 약 400℃의 증착 온도 범위에서 증착이 이루어지는 것이 바람직하나, 이에 제한되지 않을 수 있다.
본원의 일 구현예에 있어서, 상기 루테늄-함유 막 증착 시 루테늄-함유 산화 막을 형성하는 경우, 반응가스로서 수증기 (H2O), 산소 (O2), 산소 플라즈마, (O2 Plasma), 산화질소 (NO, N2O), 산화질소 플라즈마 (N2O Plasma), 질화산소 (N2O2), 과산화수소수 (H2O2), 및 오존 (O3)에서 선택되는 하나 또는 둘 이상의 혼합물을 사용하는 것이 바람직하다. 그러나, 이에 제한되지 않을 수 있다.
본원의 일 구현예에 있어서, 상기 루테늄-함유 막 증착 시 루테늄-함유 질화 막을 증착하기 위해서 반응가스로서 암모니아 (NH3), 암모니아 플라즈마 (HN3 Plasma), 하이드라진 (N2H4), 질소 플라즈마 (N2 Plasma)를 쓰는 것이 바람직하다. 그러나, 이에 제한되지 않을 수 있다.
이하, 본원의 실시예를 통하여 본 발명을 좀더 구체적으로 설명하지만, 하기 실시예는 본원의 이해를 돕기 위하여 예시하는 것일 뿐, 본원의 내용이 하기 실시예에 한정되는 것은 아니다.
[실시예]
<실시예 1> (p-Cymene)(2,4-Dimethyl-1,3-pentadiene)Ru의 제조: [CH3C6H4CH(CH3)2][CH2=C(CH3)CH=C(CH3)2]Ru
[화학식 1]
Figure PCTKR2021013991-appb-img-000012
;
불꽃 건조된 1000 mL 슈렝크 (Schlenk) 플라스크에서, [RuCl2(p-cymene)]2 88.5 g (0.144 mol)과 Na2CO3 91.8 g (0.867 mol)을 2-프로판올 400 mL에 혼합하여 현탁액을 제조하였고, 상기 현탁액에 2,4-디메틸-1,3-펜타디엔 (2,4-dimethyl-1,3-pentadiene) 25 g (0.260 mol)을 천천히 첨가하고, 상기 혼합액을 12 시간 동안 환류시킨 후 반응을 완결시켰다. 상기 반응이 완료된 후 감압 하에서 용매 및 휘발성 부반응물을 제거한 뒤 n-헥산 500 mL를 이용하여 추출하였다. n-헥산 추출물을 셀라이트(Celite) 패드와 유리 프릿(frit)을 통해 여과한 뒤 수득한 여과액을 감압 하에서 용매를 제거하고, 감압 하에서 증류하여 상기 화학식 2로서 표시되는 주황색 액체 화합물[(p-cymene)(2,4-dimethyl-1,3-pentadiene)Ru] 52.2 g (수율 50.1 %)을 수득하였다.
끓는점: 92℃ (at 0.3 torr)
밀도: 1.25 g/mL (at 25℃)
1H-NMR (400 MHz, C6D6, 25℃): δ 4.981 (d, 1H, [CH3C6 H 4CH(CH3)2]-Ru), δ 4.656 (d, 1H, [CH3C6 H 4CH(CH3)2]-Ru), δ 4.596 (d, 1H, [CH3C6 H 4CH(CH3)2]-Ru), δ 4.384 (s, 1H, [CH2=C(CH3)CH=C(CH3)2]-Ru), δ 4.359 (d, 1H, [CH3C6 H 4CH(CH3)2]-Ru), δ 2.431 (q, 1H, [CH3C6H4CH(CH3)2]-Ru), δ 1.933 (s, 3H, [CH 3C6H4CH(CH3)2]-Ru), δ 1.878 (s, 1H, [CH 2=C(CH3)CH=C(CH3)2]-Ru), δ 1.824 (s, 3H, [CH2=C(CH 3)CH=C(CH3)2]-Ru), δ 1.533 (s, 1H, [CH 2=C(CH3)CH=C(CH3)2]-Ru), δ 1.479 (s, 3H, [CH2=C(CH3)CH=C(CH 3)2]-Ru), δ 1.264 (s, 3H, [CH2=C(CH3)CH=C(CH 3)2]-Ru), δ 1.186 (m, 6H, [CH3C6H4CH(CH 3)2]-Ru)
<실시예 2> (p-cymene)(2,4-hexadiene)Ru 과 (p-cymene)(1,3-hexadiene) Ru 혼합 조성물의 제조: [CH3C6H4CH(CH3)2](CH3CH=CH-CH=CHCH3)Ru + [CH3C6H4CH(CH3)2](CH2=CHCH=CHCH2CH3)Ru
[화학식 2]
Figure PCTKR2021013991-appb-img-000013
;
[화학식 3]
Figure PCTKR2021013991-appb-img-000014
;
불꽃 건조된 1000 mL 슈렝크 플라스크에서, [RuCl2(p-cymene)]2 30g (0.048 mol)과 Na2CO3 30.5 g (0.288 mol)을 2-프로판올 400 mL에 혼합하여 현탁액을 제조하였고, 상기 현탁액에 2,4-헥사디엔 (2,4-hexadiene) 16.6 g (0.192 mol)을 천천히 첨가하고, 상기 혼합액을 40 시간 동안 환류시킨 후 반응을 완결시켰다. 상기 반응이 완료된 후 감압 하에서 용매 및 휘발성 부반응물을 제거한 뒤 n-헥산 500 mL를 이용하여 추출하였다. n-헥산 추출물을 셀라이트(Celite) 패드와 유리 프릿(frit)을 통해 여과한 뒤 얻은 여과액을 감압 하에서 용매를 제거하고, 감압 하에서 증류하여 상기 화학식 3으로 표시되는 주황색 액체 혼합물[(p-cymene)(2,4-hexadiene)Ru 과 (p-cymene)(1,3-hexadiene) Ru의 조성물] 22 g (수율 62.8 %)을 수득하였다.
상기 액체의 NMR 스펙트럼으로부터, 이것이 (p-cymene)(2,4-hexadiene)Ru과 (p-cymene)(1,3-hexadiene)Ru이 6:4의 비율로 섞인 혼합물임을 알 수 있었다.
Ru 중심 금속에 배위한 이중 결합 탄소에 결합한 수소가 다른 탄소로 이동하는 이성화반응(isomerization reaction)이 알려져 있다 [Y. M. Wuu et al, Inorganic Chemistry 1988, 27(17), 3039-3044, doi: 10.1021/ic00290a028]. 이러한 이성화 반응을 통해서 원료로 사용한 2,4-hexadiene의 일부가 1,3-hexadine으로 바뀌었다고 추정된다. 두 이성질체는 끓는점이 거의 같아서 감압증류 후에도 6:4 비율이 유지되었다.
끓는점: 86℃ (at 0.3 torr)
밀도: 1.32 g/mL (at 25℃)
1H-NMR (700 MHz, C6D6, 25℃):
이성질체 1. 화학식 2: (p-cymene)(2,4-hexadiene)Ru, [CH3C6H4CH(CH3)2](CH3CH=CH-CH=CHCH3)Ru
δ 4.668 (m, 4H, [CH3C6 H 4CH(CH3)2](CH3CH=CH-CH=CHCH3)Ru), δ 4.330 (m, 2H, [CH3C6H4CH(CH3)2](CH3CH=CH-CH=CHCH3)Ru), δ 2.338 (m, 1H, [CH3C6H4CH(CH3)2](CH3CH=CH-CH=CHCH3)Ru), δ 2.013 (s, 3H, [CH 3C6H4CH(CH3)2](CH3CH=CH-CH=CHCH3)Ru), δ 1.371 (d, 6H, [CH3C6H4CH(CH3)2](CH 3CH=CH-CH=CHCH 3)Ru), δ 1.147 (d, 6H, [CH3C6H4CH(CH 3)2](CH3CH=CH-CH=CHCH3)Ru), δ 0.739 (m, 2H, [CH3C6H4CH(CH3)2](CH3CH=CH-CH=CHCH3)Ru)
이성질체 2. 화학식 3: (p-cymene)(1,3-hexadiene)Ru, [CH3C6H4CH(CH3)2](CH2=CHCH=CHCH2CH3)Ru
δ 4.983 (m, 1H, [CH3C6 H 4CH(CH3)2](CH2=CHCH=CHCH2CH3)Ru), δ 4.835 (m, 2H, [CH3C6 H 4CH(CH3)2](CH2=CHCH=CHCH2CH3)Ru), δ 4.727 (m, 1H, [CH3C6 H 4CH(CH3)2](CH2=CHCH=CHCH2CH3)Ru), δ 4.603 (m, 1H, [CH3C6H4CH(CH3)2](CH2=CHCH=CHCH2CH3)Ru), δ 4.418 (m, 1H, [CH3C6H4CH(CH3)2](CH2=CHCH=CHCH2CH3)Ru), δ 2.302 (m, 1H, [CH3C6H4CH(CH3)2](CH2=CHCH=CHCH2CH3)Ru), δ 1.969 (s, 3H, [CH 3C6H4CH(CH3)2](CH2=CHCH=CHCH2CH3)Ru), δ 1.758 (d, 1H, [CH3C6H4CH(CH3)2](CH 2=CHCH=CHCH2CH3)Ru), δ 1.703 (m, 1H, [CH3C6H4CH(CH3)2](CH2=CHCH=CHCH 2CH3)Ru), δ 1.401 (m, 1H, [CH3C6H4CH(CH3)2](CH2=CHCH=CHCH 2CH3)Ru), δ 1.120 (t, 3H, [CH3C6H4CH(CH3)2](CH2=CHCH=CHCH2CH 3)Ru), δ 1.098 (m, 6H, [CH3C6H4CH(CH 3)2](CH2=CHCH=CHCH2CH3)Ru), δ 0.726 (m, 1H, [CH3C6H4CH(CH3)2](CH2=CHCH=CHCH2CH3)Ru), δ 0.194 (d, 1H, [CH3C6H4CH(CH3)2](CH 2=CHCH=CHCH2CH3)Ru)
<실험예 1> 실시예 1에 따른 Ru 전구체 조성물의 열안정성 평가
밀폐된 스테인레스 스틸 용기 4 개에 실시예 1에서 합성한 Ru 전구체 화합물(화학식 1)을 포함하는 조성물을 각각 2g씩 담고 110℃ 및 120℃에서 7 일, 14 일, 및 28 일 동안 각각 가열하였다.
가열 전 NMR과 가열 후 NMR을 측정하여 각각의 순도를 하기 표 1에 나타내었다. 28 일 가열 후에도 순도는 거의 변하지 않았으며, 신규 NMR 피크가 나타나지 않았다. 따라서, 실시예 1의 Ru 전구체 조성물[(p-cymene)(2,4-dimethyl-1,3-pentadiene)Ru]을 110℃ 및 120℃로 가열하여 기화시키는 동안 분해 없이 일정한 비율을 유지하는 것을 확인할 수 있다.
실시예 1의 Ru 전구체 조성물의 열 안정성 평가
가열 조건 (p-cymene)(2,4-dimethyl-1,3-pentadiene)Ru의 순도 신규 NMR 피크
가열 전 99.80% -
110℃, 7 일 99.79% 없음
110℃, 14 일 99.75% 없음
110℃, 28 일 99.71% 없음
120℃, 7 일 99.78% 없음
120℃, 14 일 99.82% 없음
120℃, 28 일 99.72% 없음
<실험예 2> 실시예 2에 따른 Ru 전구체 조성물의 열안정성 평가
밀폐된 스테인레스 스틸 용기 4 개에 실시예 2에서 합성한 Ru 전구체 조성물[(p-cymene)(2,4-hexadiene)Ru (화학식 2) 과 (p-cymene)(1,3-hexadiene) Ru (화학식 3)의 혼합물]을 각각 2g씩 담고 110℃ 및 120℃에서 7 일 및 14 일 동안 각각 가열하였다.
가열 전 NMR과 가열 후 NMR을 측정한 이성질체 비율을 하기 표 2에 나타내었다. 14 일 가열 후에도 이성질체 비율이 거의 변하지 않았으며, 신규 NMR 피크도 나타나지 않았다. 따라서, 실시예 2의 상기 Ru 전구체 조성물을 110℃ 및 120℃로 각각 가열하여 기화시키는 동안 이성질체 비율이 일정함을 확인할 수 있다.
실시예 2의 Ru 전구체 조성물의 열안정성 평가
가열 조건 이성질체 비율 신규 NMR 피크
(p-cymene)(2,4-hexadiene)Ru (p-cymene)(1,3-hexadiene)Ru
가열 전 58.9% 41.4% -
110℃, 7일 59.6% 40.4% 없음
110℃, 14일 60.1% 39.9% 없음
120℃, 7일 60.3% 39.7% 없음
120℃, 14일 60.3% 39.7% 없음
열안정성이 낮은 Ru 전구체 조성물의 경우, 기화하는 동안 이성질체의 조성 비율이 변하는 반면, 본 발명의 Ru 전구체 조성물은 가열하여 기화시키는 동안 조성 비율이 일정하게 유지된다.
<실험예 3> (p-cymene)(2,4-dimethyl-1,3-pentadiene)Ru을 사용한 루테늄 막 증착
실시예 1의 방법에 의해 제조된 (p-cymene)(2,4-dimethyl-1,3-pentadiene)Ru 화합물로 이루어진 전구체 조성물을 사용하여, 플라즈마를 이용한 원자 증착법 (PEALD; Plasma Enhanced Atomic Layer Deposition) 공정으로 Ru 금속 막을 형성하였다. Ru 전구체 조성물은 스테인레스 스틸 재질의 용기에 담아 100℃ 온도로 가열하고 200 sccm 의 유속으로 아르곤 운반 가스(Ar carrier gas)를 흘려서 기화시킨 Ru 전구체 조성물을 PEALD 반응기에 공급하였다. 이 때 PEALD 반응기의 공정압력은 1 torr 내지 1.2 torr로 유지하였다. 300℃로 가열한 실리콘 웨이퍼 조각을 기질로 사용하여 PEALD 공정을 진행하였다. 산소와 질소의 혼합 기체를 공급할 때마다 200 W의 RF 전력을 펄스로 인가하여 발생시킨 (O2+N2) 플라즈마를 반응기체로써 사용하였다. Ru 전구체 조성물의 공급 10 초, Ar 기체 퍼지(purge) 10 초, (O2+N2) 플라즈마 반응 기체의 공급 10 초, Ar 기체 퍼지 10 초로 이루어진 ALD 공급 주기를 200 회 반복하였다.
반응 가스로 사용하는 산소(O2) 및 질소(N2) 기체의 혼합 비율을 70 sccm : 140 sccm, 100 sccm : 100 sccm, 및 200 sccm : 0 sscm으로 다르게 조절하여, 각각의 경우에 형성된 Ru 막의 면 저항을 측정하고, 막의 두께를 투과전자현미경(TEM; Transmission Electron Microscope)으로 측정하여 계산한 비저항을 하기 표 3에 나타내었다. 또한, 오제 전자 분광법(Auger electron spectroscopy)으로 측정한 두께에 따른 막의 조성을 도 2에 나타내었다.
반응 가스 온도 (℃) TEM 이미지 TEM에 의해 측정된 두께 (Å) 주기당 막 성장
(Å/주기)
면 저항
(μΩ/sq)
비저항
(μΩ·cm)
O2 + N2
(70:140 sccm)
300 도 1a 192 0.96 1.06×107 20.4
O2 + N2
(100:100 sccm)
300 도 1b 309 1.55 0.98×107 30.2
O2 + N2
(200:0 sccm)
300 도 1c 369 1.85 0.74×107 27.3
벌크 루테늄 금속 비저항 레퍼런스 7.1
상기 실험 결과, 막 두께 약 150 Å 내지 400 Å, 비저항 약 20 μΩ·cm 내지 약 30 μΩ·cm 로 전기 전도도가 양호한 Ru 금속 막이 형성된 것을 알 수 있다.
전술한 본원의 설명은 예시를 위한 것이며, 본원이 속하는 기술분야의 통상의 지식을 가진 자는 본원의 기술적 사상이나 필수적인 특징을 변경하지 않고서 다른 구체적인 형태로 쉽게 변형이 가능하다는 것을 이해할 수 있을 것이다. 그러므로 이상에서 기술한 실시예들은 모든 면에서 예시적인 것이며 한정적이 아닌 것으로 이해해야만 한다. 예를 들어, 단일형으로 설명되어 있는 각 구성 요소는 분산되어 실시될 수도 있으며, 마찬가지로 분산된 것으로 설명되어 있는 구성 요소들도 결합된 형태로 실시될 수도 있다.
본원의 범위는 상기 상세한 설명보다는 후술하는 특허청구범위에 의하여 나타내어지며, 특허청구범위의 의미 및 범위, 그리고 그 균등 개념으로부터 도출되는 모든 변경 또는 변형된 형태가 본원의 범위에 포함되는 것으로 해석되어야 한다.

Claims (18)

  1. 하기 화학식 Ⅰ로서 표시되는, 루테늄 전구체 화합물:
    [화학식 Ⅰ]
    Figure PCTKR2021013991-appb-img-000015
    ;
    상기 화학식 Ⅰ에서,
    R1 내지 R6은, 각각 독립적으로, 수소; 치환 또는 비치환된 선형 또는 분지형의 C1-10 알킬기; 또는 치환 또는 비치환된 C3-10 시클로알킬기이고,
    상기 알킬기 또는 시클로알킬기가 치환되는 경우, 선형 또는 분지형의 C1-3 알킬기로 치환되는 것임.
  2. 제 1 항에 있어서,
    R1, R2, R5 및 R6 중 하나 이상이 치환 또는 비치환된 선형 또는 분지형의 C1-10 알킬기; 또는 치환 또는 비치환된 C3-10 시클로알킬기인 것인, 루테늄 전구체 화합물.
  3. 제 1 항에 있어서,
    상기 루테늄 전구체 화합물은 하기 화합물에서 선택되는 것인, 루테늄 전구체 화합물:
    (p-cymene)[CH2=C(CH3)CH=C(CH3)2]Ru, (p-cymene)[MeCH=C(CH3)CH=C(CH3)2]Ru, (p-cymene)[EtCH=C(CH3)CH=C(CH3)2]Ru, (p-cymene)[nPrCH=C(CH3)CH=C(CH3)2]Ru, (p-cymene)[iPrCH=C(CH3)CH=C(CH3)2]Ru, (p-cymene)[nBuCH=C(CH3)CH=C(CH3)2]Ru, (p-cymene)[iBuCH=C(CH3)CH=C(CH3)2]Ru, (p-cymene)[secBuCH=C(CH3)CH=C(CH3)2]Ru, (p-cymene)[tBuCH=C(CH3)CH=C(CH3)2]Ru, (p-cymene)(CH3CH=CH-CH=CHCH3)Ru, (p-cymene)(Me2C=CH-CH=CHCH3)Ru (p-cymene)(EtMeC=CH-CH=CHCH3)Ru, (p-cymene)(nPrMeC=CH-CH=CHCH3)Ru, (p-cymene)(iPrMeC=CH-CH=CHCH3)Ru, (p-cymene)(nBuMeC=CH-CH=CHCH3)Ru, (p-cymene)(iBuMeC=CH-CH=CHCH3)Ru, (p-cymene)(secBuMeC=CH-CH=CHCH3)Ru, (p-cymene)(tBuMeC=CH-CH=CHCH3)Ru, (p-cymene)(CH2=CHCH=CHCH2CH3)Ru, (p-cymene)(MeCH=CHCH=CHCH2CH3)Ru, (p-cymene)(EtCH=CHCH=CHCH2CH3)Ru, (p-cymene)(nPrCH=CHCH=CHCH2CH3)Ru, (p-cymene)(iPrCH=CHCH=CHCH2CH3)Ru, (p-cymene)(nBuCH=CHCH=CHCH2CH3)Ru, (p-cymene)(iBuCH=CHCH=CHCH2CH3)Ru, (p-cymene)(secBuCH=CHCH=CHCH2CH3)Ru, 및 (p-cymene)(tBuCH=CHCH=CHCH2CH3)Ru.
  4. 제 1 항에 있어서,
    상기 루테늄 전구체 화합물은 하기 화합물에서 선택되는 것인, 루테늄 전구체 화합물:
    [화학식 1]
    Figure PCTKR2021013991-appb-img-000016
    ;
    [화학식 2]
    Figure PCTKR2021013991-appb-img-000017
    ; 및
    [화학식 3]
    Figure PCTKR2021013991-appb-img-000018
    .
  5. 하기 화학식 Ⅰ로서 표시되는 루테늄 전구체 화합물을 포함하는, 막 형성용 전구체 조성물:
    [화학식 Ⅰ]
    Figure PCTKR2021013991-appb-img-000019
    ;
    상기 화학식 Ⅰ에서,
    R1 내지 R6은, 각각 독립적으로, 수소; 치환 또는 비치환된 선형 또는 분지형의 C1-10 알킬기; 또는 치환 또는 비치환된 C3-10 시클로알킬기이고,
    상기 알킬기 또는 시클로알킬기가 치환되는 경우, 선형 또는 분지형의 C1-3 알킬기로 치환되는 것임.
  6. 제 5 항에 있어서,
    R1, R2, R5 및 R6 중 하나 이상이 치환 또는 비치환된 선형 또는 분지형의 C1-10 알킬기; 또는 치환 또는 비치환된 C3-10 시클로알킬기인 것인, 막 형성용 전구체 조성물.
  7. 제 5 항에 있어서,
    상기 루테늄 전구체 화합물은 하기 화합물에서 선택되는 하나 이상을 포함하는 것인, 막 형성용 전구체 조성물:
    (p-cymene)[CH2=C(CH3)CH=C(CH3)2]Ru, (p-cymene)[MeCH=C(CH3)CH=C(CH3)2]Ru, (p-cymene)[EtCH=C(CH3)CH=C(CH3)2]Ru, (p-cymene)[nPrCH=C(CH3)CH=C(CH3)2]Ru, (p-cymene)[iPrCH=C(CH3)CH=C(CH3)2]Ru, (p-cymene)[nBuCH=C(CH3)CH=C(CH3)2]Ru, (p-cymene)[iBuCH=C(CH3)CH=C(CH3)2]Ru, (p-cymene)[secBuCH=C(CH3)CH=C(CH3)2]Ru, (p-cymene)[tBuCH=C(CH3)CH=C(CH3)2]Ru, (p-cymene)(CH3CH=CH-CH=CHCH3)Ru, (p-cymene)(Me2C=CH-CH=CHCH3)Ru (p-cymene)(EtMeC=CH-CH=CHCH3)Ru, (p-cymene)(nPrMeC=CH-CH=CHCH3)Ru, (p-cymene)(iPrMeC=CH-CH=CHCH3)Ru, (p-cymene)(nBuMeC=CH-CH=CHCH3)Ru, (p-cymene)(iBuMeC=CH-CH=CHCH3)Ru, (p-cymene)(secBuMeC=CH-CH=CHCH3)Ru, (p-cymene)(tBuMeC=CH-CH=CHCH3)Ru, (p-cymene)(CH2=CHCH=CHCH2CH3)Ru, (p-cymene)(MeCH=CHCH=CHCH2CH3)Ru, (p-cymene)(EtCH=CHCH=CHCH2CH3)Ru, (p-cymene)(nPrCH=CHCH=CHCH2CH3)Ru, (p-cymene)(iPrCH=CHCH=CHCH2CH3)Ru, (p-cymene)(nBuCH=CHCH=CHCH2CH3)Ru, (p-cymene)(iBuCH=CHCH=CHCH2CH3)Ru, (p-cymene)(secBuCH=CHCH=CHCH2CH3)Ru, 및 (p-cymene)(tBuCH=CHCH=CHCH2CH3)Ru.
  8. 제 5 항에 있어서,
    상기 루테늄 전구체 화합물은 하기 화합물에서 선택되는 하나 이상을 포함하는 것인, 막 형성용 전구체 조성물:
    [화학식 1]
    Figure PCTKR2021013991-appb-img-000020
    ;
    [화학식 2]
    Figure PCTKR2021013991-appb-img-000021
    ; 및
    [화학식 3]
    Figure PCTKR2021013991-appb-img-000022
    .
  9. 제 5 항에 있어서,
    상기 막은 루테늄 금속 막, 루테늄-함유 산화 막, 루테늄-함유 질화 막, 루테늄-함유 탄화 막 및 이들의 조합들에서 선택되는 하나 이상인 것인, 막 형성용 전구체 조성물.
  10. 제 5 항에 있어서,
    암모니아, 질소, 히드라진, 및 디메틸 히드라진에서 선택되는 하나 이상의 질소원을 추가 포함하는, 막 형성용 전구체 조성물.
  11. 제 5 항에 있어서,
    수증기, 산소, 및 오존에서 선택되는 하나 이상의 산소원을 추가 포함하는, 막 형성용 전구체 조성물.
  12. 하기 화학식 Ⅰ로서 표시되는 루테늄 전구체 화합물을 포함하는 막 형성용 전구체 조성물을 이용하여 루테늄-함유 막을 형성하는 것을 포함하는, 루테늄-함유 막 형성 방법:
    [화학식 Ⅰ]
    Figure PCTKR2021013991-appb-img-000023
    ;
    상기 화학식 Ⅰ에서,
    R1 내지 R6은, 각각 독립적으로, 수소; 치환 또는 비치환된 선형 또는 분지형의 C1-10 알킬기; 또는 치환 또는 비치환된 C3-10 시클로알킬기이고,
    상기 알킬기 또는 시클로알킬기가 치환되는 경우, 선형 또는 분지형의 C1-3 알킬기로 치환되는 것임.
  13. 제 12 항에 있어서,
    상기 막 형성용 전구체 조성물에 포함되는 루테늄 전구체 화합물은 하기 화합물에서 선택되는 하나 이상을 포함하는 것인, 루테늄-함유 막 형성 방법:
    [화학식 1]
    Figure PCTKR2021013991-appb-img-000024
    ;
    [화학식 2]
    Figure PCTKR2021013991-appb-img-000025
    ; 및
    [화학식 3]
    Figure PCTKR2021013991-appb-img-000026
    .
  14. 제 12 항에 있어서,
    상기 루테늄-함유 막은 화학기상 증착법 또는 원자층 증착법에 의해 증착되는 것인, 루테늄-함유 막 형성 방법.
  15. 제 14 항에 있어서,
    상기 막 형성용 전구체 조성물이 가열하여 기화시키는 과정에서 상기 막 형성용 전구체 조성물에 포함되는 하나 이상의 루테늄 전구체 화합물의 조성이 유지되는 것인, 루테늄-함유 막 형성 방법.
  16. 제 12 항에 있어서,
    상기 루테늄-함유 막은 상온 내지 400℃의 온도 범위에서 형성되는 것인, 루테늄-함유 막 형성 방법.
  17. 제 12 항에 있어서,
    상기 루테늄-함유 막은 1 nm 내지 500 nm의 두께 범위에서 형성되는 것인, 루테늄-함유 막 형성 방법.
  18. 제 12 항에 있어서,
    상기 루테늄-함유 막은 종횡비가 1 내지 100이고, 폭이 10 nm 내지 1 ㎛인 요철(홈)을 포함하는 기재 상에 형성되는 것인, 루테늄-함유 막 형성 방법.
PCT/KR2021/013991 2020-10-12 2021-10-12 열적으로 안정한 루테늄 전구체 조성물 및 루테늄 함유 막 형성 방법 WO2022080803A1 (ko)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2023521347A JP2023545734A (ja) 2020-10-12 2021-10-12 熱的に安定したルテニウム前駆体組成物及びルテニウム含有膜の形成方法
CN202180067977.3A CN116348632A (zh) 2020-10-12 2021-10-12 热稳定的钌前体组合物和形成含钌膜的方法
US18/133,003 US20230242560A1 (en) 2020-10-12 2023-04-11 Thermally stable ruthenium precursor composition, and method for forming ruthenium-containing film

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2020-0131063 2020-10-12
KR20200131063 2020-10-12

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/133,003 Continuation US20230242560A1 (en) 2020-10-12 2023-04-11 Thermally stable ruthenium precursor composition, and method for forming ruthenium-containing film

Publications (1)

Publication Number Publication Date
WO2022080803A1 true WO2022080803A1 (ko) 2022-04-21

Family

ID=81208419

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2021/013991 WO2022080803A1 (ko) 2020-10-12 2021-10-12 열적으로 안정한 루테늄 전구체 조성물 및 루테늄 함유 막 형성 방법

Country Status (6)

Country Link
US (1) US20230242560A1 (ko)
JP (1) JP2023545734A (ko)
KR (1) KR20220048455A (ko)
CN (1) CN116348632A (ko)
TW (1) TW202214667A (ko)
WO (1) WO2022080803A1 (ko)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20100060482A (ko) * 2008-11-27 2010-06-07 주식회사 유피케미칼 루테늄 금속 또는 루테늄 산화물 박막 증착용 유기 금속 전구체 화합물 및 이를 이용한 박막 증착 방법
KR20130043557A (ko) * 2011-10-20 2013-04-30 주식회사 한솔케미칼 단차피복성이 우수한 루테늄 화합물 및 이를 이용하여 증착시킨 박막
KR20150137962A (ko) * 2014-05-30 2015-12-09 주식회사 유피케미칼 신규 루테늄 화합물, 이의 제조 방법, 이를 포함하는 막 증착용 전구체 조성물, 및 이를 이용하는 막의 증착 방법
WO2019195590A1 (en) * 2018-04-06 2019-10-10 Versum Materials Us, Llc Spin-on metallization

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20100060482A (ko) * 2008-11-27 2010-06-07 주식회사 유피케미칼 루테늄 금속 또는 루테늄 산화물 박막 증착용 유기 금속 전구체 화합물 및 이를 이용한 박막 증착 방법
KR20130043557A (ko) * 2011-10-20 2013-04-30 주식회사 한솔케미칼 단차피복성이 우수한 루테늄 화합물 및 이를 이용하여 증착시킨 박막
KR20150137962A (ko) * 2014-05-30 2015-12-09 주식회사 유피케미칼 신규 루테늄 화합물, 이의 제조 방법, 이를 포함하는 막 증착용 전구체 조성물, 및 이를 이용하는 막의 증착 방법
WO2019195590A1 (en) * 2018-04-06 2019-10-10 Versum Materials Us, Llc Spin-on metallization

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
DATABASE REGISTRY STN; 2 July 2020 (2020-07-02), ANONYMOUS : "Ruthenium, [(2,3,4,5-.eta.)-2,4-hexadiene][(1,2,3,4,5,6-.eta.)-1-methyl-4-(1-methylethyl)benzene]", XP055921243, Database accession no. 2439216-73-4 *

Also Published As

Publication number Publication date
CN116348632A (zh) 2023-06-27
JP2023545734A (ja) 2023-10-31
US20230242560A1 (en) 2023-08-03
TW202214667A (zh) 2022-04-16
KR20220048455A (ko) 2022-04-19

Similar Documents

Publication Publication Date Title
KR100708496B1 (ko) 루테늄 금속막의 제조 방법
WO2021133080A1 (ko) 이트륨/란탄족 금속 전구체 화합물, 이를 포함하는 막 형성용 조성물 및 이를 이용한 이트륨/란탄족 금속 함유 막의 형성 방법
WO2010071364A9 (ko) 금속 박막 또는 금속 산화물 박막 증착용 유기금속 전구체 화합물 및 이를 이용한 박막 증착 방법
US9416443B2 (en) Method for the deposition of a ruthenium containing film using arene diazadiene ruthenium(0) precursors
JPH0649944B2 (ja) 銅薄膜の選択蒸着の可能な銅錯体と、その蒸着法ならびに薄膜の選択エッチング法
US20080152793A1 (en) Method for the deposition of a ruthenium containing film with aryl and diene containing complexes
WO2019156400A1 (ko) 유기금속화합물 및 이를 이용한 박막
US11804375B2 (en) Haloalkynyl dicobalt hexacarbonyl precursors for chemical vapor deposition of cobalt
WO2015130108A1 (ko) 지르코늄 함유막 형성용 전구체 조성물 및 이를 이용한 지르코늄 함유막 형성 방법
US20200157680A1 (en) Peald processes using ruthenium precursor
WO2015099452A1 (ko) 구리 금속 필름 및 이의 제조 방법, 및 이를 이용한 반도체 소자용 구리 배선의 형성 방법
WO2022080803A1 (ko) 열적으로 안정한 루테늄 전구체 조성물 및 루테늄 함유 막 형성 방법
KR20210156444A (ko) 몰리브데넘 함유 전구체, 이를 이용한 몰리브데넘 함유 박막 및 이의 제조 방법.
WO2022025332A1 (ko) 코발트 화합물, 이를 포함하는 전구체 조성물, 및 이를 이용한 박막의 제조방법
KR101546319B1 (ko) 텅스텐 함유 막을 증착시키기 위한 텅스텐 전구체 및 이를 포함하는 텅스텐 함유 필름 증착방법
WO2014189340A1 (ko) 신규 루테늄 화합물, 이의 제조 방법, 이를 포함하는 막 증착용 전구체 조성물, 및 이를 이용하는 막의 증착 방법
KR102489662B1 (ko) 루테늄 전구체 조성물, 이의 제조방법, 및 이를 이용한 루테늄-함유 막의 형성 방법
WO2020130215A1 (ko) 코발트 전구체, 이의 제조방법 및 이를 이용한 박막의 제조방법
Gatineau et al. Deposition of highly pure ruthenium thin films with a new metal-organic precursor
WO2022139345A1 (ko) 신규 화합물, 이를 포함하는 전구체 조성물, 및 이를 이용한 박막의 제조방법
WO2024117807A1 (ko) 스칸듐 또는 이트륨 함유 박막 형성용 전구체, 이를 이용한 스칸듐 또는 이트륨 함유 박막 형성 방법 및 상기 스칸듐 또는 이트륨 함유 박막을 포함하는 반도체 소자.
KR101344988B1 (ko) 루테늄 함유 필름의 증착 방법
WO2022169290A1 (ko) 하프늄 전구체 화합물, 이를 포함하는 하프늄 함유 막 형성용 조성물 및 하프늄-함유 막 형성 방법
WO2022025333A1 (ko) 유기금속 화합물, 이를 포함하는 전구체 조성물, 및 이를 이용한 박막의 제조방법
WO2024058624A1 (ko) 란탄족 금속 함유 박막 형성용 전구체, 이를 이용한 란탄족 금속 함유 박막 형성 방법 및 상기 란탄족 금속 함유 박막을 포함하는 반도체 소자.

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21880450

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023521347

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21880450

Country of ref document: EP

Kind code of ref document: A1