WO2020220735A1 - 一种声学输出装置 - Google Patents

一种声学输出装置 Download PDF

Info

Publication number
WO2020220735A1
WO2020220735A1 PCT/CN2020/070542 CN2020070542W WO2020220735A1 WO 2020220735 A1 WO2020220735 A1 WO 2020220735A1 CN 2020070542 W CN2020070542 W CN 2020070542W WO 2020220735 A1 WO2020220735 A1 WO 2020220735A1
Authority
WO
WIPO (PCT)
Prior art keywords
sound
frequency
acoustic
sound guide
guide holes
Prior art date
Application number
PCT/CN2020/070542
Other languages
English (en)
French (fr)
Inventor
张磊
付峻江
闫冰岩
廖风云
齐心
Original Assignee
深圳市韶音科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市韶音科技有限公司 filed Critical 深圳市韶音科技有限公司
Priority to KR1020217038992A priority Critical patent/KR102533573B1/ko
Priority to EP20798417.0A priority patent/EP3952331A4/en
Priority to JP2021564592A priority patent/JP7333829B2/ja
Priority to BR112021021750A priority patent/BR112021021750A2/pt
Publication of WO2020220735A1 publication Critical patent/WO2020220735A1/zh
Priority to US17/226,109 priority patent/US11503395B2/en
Priority to US18/053,376 priority patent/US11985465B2/en
Priority to US18/150,179 priority patent/US11985466B2/en
Priority to US18/150,187 priority patent/US12075207B2/en
Priority to US18/151,397 priority patent/US11838712B2/en
Priority to US18/151,460 priority patent/US11838713B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R1/00Details of transducers, loudspeakers or microphones
    • H04R1/10Earpieces; Attachments therefor ; Earphones; Monophonic headphones
    • H04R1/1016Earpieces of the intra-aural type
    • GPHYSICS
    • G02OPTICS
    • G02CSPECTACLES; SUNGLASSES OR GOGGLES INSOFAR AS THEY HAVE THE SAME FEATURES AS SPECTACLES; CONTACT LENSES
    • G02C11/00Non-optical adjuncts; Attachment thereof
    • G02C11/10Electronic devices other than hearing aids
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R1/00Details of transducers, loudspeakers or microphones
    • H04R1/10Earpieces; Attachments therefor ; Earphones; Monophonic headphones
    • GPHYSICS
    • G02OPTICS
    • G02CSPECTACLES; SUNGLASSES OR GOGGLES INSOFAR AS THEY HAVE THE SAME FEATURES AS SPECTACLES; CONTACT LENSES
    • G02C11/00Non-optical adjuncts; Attachment thereof
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/16Sound input; Sound output
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/16Sound input; Sound output
    • G06F3/162Interface to dedicated audio devices, e.g. audio drivers, interface to CODECs
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/16Sound input; Sound output
    • G06F3/165Management of the audio stream, e.g. setting of volume, audio stream path
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/16Sound input; Sound output
    • G06F3/167Audio in a user interface, e.g. using voice commands for navigating, audio feedback
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10LSPEECH ANALYSIS TECHNIQUES OR SPEECH SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING TECHNIQUES; SPEECH OR AUDIO CODING OR DECODING
    • G10L21/00Speech or voice signal processing techniques to produce another audible or non-audible signal, e.g. visual or tactile, in order to modify its quality or its intelligibility
    • G10L21/02Speech enhancement, e.g. noise reduction or echo cancellation
    • G10L21/0208Noise filtering
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10LSPEECH ANALYSIS TECHNIQUES OR SPEECH SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING TECHNIQUES; SPEECH OR AUDIO CODING OR DECODING
    • G10L21/00Speech or voice signal processing techniques to produce another audible or non-audible signal, e.g. visual or tactile, in order to modify its quality or its intelligibility
    • G10L21/02Speech enhancement, e.g. noise reduction or echo cancellation
    • G10L21/038Speech enhancement, e.g. noise reduction or echo cancellation using band spreading techniques
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04MTELEPHONIC COMMUNICATION
    • H04M1/00Substation equipment, e.g. for use by subscribers
    • H04M1/02Constructional features of telephone sets
    • H04M1/03Constructional features of telephone transmitters or receivers, e.g. telephone hand-sets
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04MTELEPHONIC COMMUNICATION
    • H04M1/00Substation equipment, e.g. for use by subscribers
    • H04M1/02Constructional features of telephone sets
    • H04M1/03Constructional features of telephone transmitters or receivers, e.g. telephone hand-sets
    • H04M1/035Improving the acoustic characteristics by means of constructional features of the housing, e.g. ribs, walls, resonating chambers or cavities
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04MTELEPHONIC COMMUNICATION
    • H04M1/00Substation equipment, e.g. for use by subscribers
    • H04M1/78Circuit arrangements in which low-frequency speech signals proceed in one direction on the line, while speech signals proceeding in the other direction on the line are modulated on a high-frequency carrier signal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R1/00Details of transducers, loudspeakers or microphones
    • H04R1/02Casings; Cabinets ; Supports therefor; Mountings therein
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R1/00Details of transducers, loudspeakers or microphones
    • H04R1/02Casings; Cabinets ; Supports therefor; Mountings therein
    • H04R1/026Supports for loudspeaker casings
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R1/00Details of transducers, loudspeakers or microphones
    • H04R1/02Casings; Cabinets ; Supports therefor; Mountings therein
    • H04R1/028Casings; Cabinets ; Supports therefor; Mountings therein associated with devices performing functions other than acoustics, e.g. electric candles
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R1/00Details of transducers, loudspeakers or microphones
    • H04R1/10Earpieces; Attachments therefor ; Earphones; Monophonic headphones
    • H04R1/1008Earpieces of the supra-aural or circum-aural type
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R1/00Details of transducers, loudspeakers or microphones
    • H04R1/10Earpieces; Attachments therefor ; Earphones; Monophonic headphones
    • H04R1/1025Accumulators or arrangements for charging
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R1/00Details of transducers, loudspeakers or microphones
    • H04R1/10Earpieces; Attachments therefor ; Earphones; Monophonic headphones
    • H04R1/1041Mechanical or electronic switches, or control elements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R1/00Details of transducers, loudspeakers or microphones
    • H04R1/10Earpieces; Attachments therefor ; Earphones; Monophonic headphones
    • H04R1/1058Manufacture or assembly
    • H04R1/1075Mountings of transducers in earphones or headphones
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R1/00Details of transducers, loudspeakers or microphones
    • H04R1/10Earpieces; Attachments therefor ; Earphones; Monophonic headphones
    • H04R1/1083Reduction of ambient noise
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R1/00Details of transducers, loudspeakers or microphones
    • H04R1/20Arrangements for obtaining desired frequency or directional characteristics
    • H04R1/22Arrangements for obtaining desired frequency or directional characteristics for obtaining desired frequency characteristic only 
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R1/00Details of transducers, loudspeakers or microphones
    • H04R1/20Arrangements for obtaining desired frequency or directional characteristics
    • H04R1/22Arrangements for obtaining desired frequency or directional characteristics for obtaining desired frequency characteristic only 
    • H04R1/24Structural combinations of separate transducers or of two parts of the same transducer and responsive respectively to two or more frequency ranges
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R1/00Details of transducers, loudspeakers or microphones
    • H04R1/20Arrangements for obtaining desired frequency or directional characteristics
    • H04R1/22Arrangements for obtaining desired frequency or directional characteristics for obtaining desired frequency characteristic only 
    • H04R1/24Structural combinations of separate transducers or of two parts of the same transducer and responsive respectively to two or more frequency ranges
    • H04R1/245Structural combinations of separate transducers or of two parts of the same transducer and responsive respectively to two or more frequency ranges of microphones
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R1/00Details of transducers, loudspeakers or microphones
    • H04R1/20Arrangements for obtaining desired frequency or directional characteristics
    • H04R1/22Arrangements for obtaining desired frequency or directional characteristics for obtaining desired frequency characteristic only 
    • H04R1/26Spatial arrangements of separate transducers responsive to two or more frequency ranges
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R1/00Details of transducers, loudspeakers or microphones
    • H04R1/20Arrangements for obtaining desired frequency or directional characteristics
    • H04R1/22Arrangements for obtaining desired frequency or directional characteristics for obtaining desired frequency characteristic only 
    • H04R1/28Transducer mountings or enclosures modified by provision of mechanical or acoustic impedances, e.g. resonator, damping means
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R1/00Details of transducers, loudspeakers or microphones
    • H04R1/20Arrangements for obtaining desired frequency or directional characteristics
    • H04R1/22Arrangements for obtaining desired frequency or directional characteristics for obtaining desired frequency characteristic only 
    • H04R1/28Transducer mountings or enclosures modified by provision of mechanical or acoustic impedances, e.g. resonator, damping means
    • H04R1/2803Transducer mountings or enclosures modified by provision of mechanical or acoustic impedances, e.g. resonator, damping means for loudspeaker transducers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R1/00Details of transducers, loudspeakers or microphones
    • H04R1/20Arrangements for obtaining desired frequency or directional characteristics
    • H04R1/22Arrangements for obtaining desired frequency or directional characteristics for obtaining desired frequency characteristic only 
    • H04R1/28Transducer mountings or enclosures modified by provision of mechanical or acoustic impedances, e.g. resonator, damping means
    • H04R1/2807Enclosures comprising vibrating or resonating arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R1/00Details of transducers, loudspeakers or microphones
    • H04R1/20Arrangements for obtaining desired frequency or directional characteristics
    • H04R1/22Arrangements for obtaining desired frequency or directional characteristics for obtaining desired frequency characteristic only 
    • H04R1/28Transducer mountings or enclosures modified by provision of mechanical or acoustic impedances, e.g. resonator, damping means
    • H04R1/2807Enclosures comprising vibrating or resonating arrangements
    • H04R1/2811Enclosures comprising vibrating or resonating arrangements for loudspeaker transducers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R1/00Details of transducers, loudspeakers or microphones
    • H04R1/20Arrangements for obtaining desired frequency or directional characteristics
    • H04R1/22Arrangements for obtaining desired frequency or directional characteristics for obtaining desired frequency characteristic only 
    • H04R1/28Transducer mountings or enclosures modified by provision of mechanical or acoustic impedances, e.g. resonator, damping means
    • H04R1/2807Enclosures comprising vibrating or resonating arrangements
    • H04R1/2838Enclosures comprising vibrating or resonating arrangements of the bandpass type
    • H04R1/2842Enclosures comprising vibrating or resonating arrangements of the bandpass type for loudspeaker transducers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R1/00Details of transducers, loudspeakers or microphones
    • H04R1/20Arrangements for obtaining desired frequency or directional characteristics
    • H04R1/22Arrangements for obtaining desired frequency or directional characteristics for obtaining desired frequency characteristic only 
    • H04R1/28Transducer mountings or enclosures modified by provision of mechanical or acoustic impedances, e.g. resonator, damping means
    • H04R1/2807Enclosures comprising vibrating or resonating arrangements
    • H04R1/2853Enclosures comprising vibrating or resonating arrangements using an acoustic labyrinth or a transmission line
    • H04R1/2857Enclosures comprising vibrating or resonating arrangements using an acoustic labyrinth or a transmission line for loudspeaker transducers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R1/00Details of transducers, loudspeakers or microphones
    • H04R1/20Arrangements for obtaining desired frequency or directional characteristics
    • H04R1/22Arrangements for obtaining desired frequency or directional characteristics for obtaining desired frequency characteristic only 
    • H04R1/28Transducer mountings or enclosures modified by provision of mechanical or acoustic impedances, e.g. resonator, damping means
    • H04R1/2869Reduction of undesired resonances, i.e. standing waves within enclosure, or of undesired vibrations, i.e. of the enclosure itself
    • H04R1/2892Mountings or supports for transducers
    • H04R1/2896Mountings or supports for transducers for loudspeaker transducers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R1/00Details of transducers, loudspeakers or microphones
    • H04R1/20Arrangements for obtaining desired frequency or directional characteristics
    • H04R1/32Arrangements for obtaining desired frequency or directional characteristics for obtaining desired directional characteristic only
    • H04R1/34Arrangements for obtaining desired frequency or directional characteristics for obtaining desired directional characteristic only by using a single transducer with sound reflecting, diffracting, directing or guiding means
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R1/00Details of transducers, loudspeakers or microphones
    • H04R1/20Arrangements for obtaining desired frequency or directional characteristics
    • H04R1/32Arrangements for obtaining desired frequency or directional characteristics for obtaining desired directional characteristic only
    • H04R1/34Arrangements for obtaining desired frequency or directional characteristics for obtaining desired directional characteristic only by using a single transducer with sound reflecting, diffracting, directing or guiding means
    • H04R1/342Arrangements for obtaining desired frequency or directional characteristics for obtaining desired directional characteristic only by using a single transducer with sound reflecting, diffracting, directing or guiding means for microphones
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R1/00Details of transducers, loudspeakers or microphones
    • H04R1/20Arrangements for obtaining desired frequency or directional characteristics
    • H04R1/32Arrangements for obtaining desired frequency or directional characteristics for obtaining desired directional characteristic only
    • H04R1/34Arrangements for obtaining desired frequency or directional characteristics for obtaining desired directional characteristic only by using a single transducer with sound reflecting, diffracting, directing or guiding means
    • H04R1/345Arrangements for obtaining desired frequency or directional characteristics for obtaining desired directional characteristic only by using a single transducer with sound reflecting, diffracting, directing or guiding means for loudspeakers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R1/00Details of transducers, loudspeakers or microphones
    • H04R1/20Arrangements for obtaining desired frequency or directional characteristics
    • H04R1/32Arrangements for obtaining desired frequency or directional characteristics for obtaining desired directional characteristic only
    • H04R1/34Arrangements for obtaining desired frequency or directional characteristics for obtaining desired directional characteristic only by using a single transducer with sound reflecting, diffracting, directing or guiding means
    • H04R1/345Arrangements for obtaining desired frequency or directional characteristics for obtaining desired directional characteristic only by using a single transducer with sound reflecting, diffracting, directing or guiding means for loudspeakers
    • H04R1/347Arrangements for obtaining desired frequency or directional characteristics for obtaining desired directional characteristic only by using a single transducer with sound reflecting, diffracting, directing or guiding means for loudspeakers for obtaining a phase-shift between the front and back acoustic wave
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R1/00Details of transducers, loudspeakers or microphones
    • H04R1/20Arrangements for obtaining desired frequency or directional characteristics
    • H04R1/32Arrangements for obtaining desired frequency or directional characteristics for obtaining desired directional characteristic only
    • H04R1/34Arrangements for obtaining desired frequency or directional characteristics for obtaining desired directional characteristic only by using a single transducer with sound reflecting, diffracting, directing or guiding means
    • H04R1/38Arrangements for obtaining desired frequency or directional characteristics for obtaining desired directional characteristic only by using a single transducer with sound reflecting, diffracting, directing or guiding means in which sound waves act upon both sides of a diaphragm and incorporating acoustic phase-shifting means, e.g. pressure-gradient microphone
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R1/00Details of transducers, loudspeakers or microphones
    • H04R1/44Special adaptations for subaqueous use, e.g. for hydrophone
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R3/00Circuits for transducers, loudspeakers or microphones
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R3/00Circuits for transducers, loudspeakers or microphones
    • H04R3/005Circuits for transducers, loudspeakers or microphones for combining the signals of two or more microphones
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R3/00Circuits for transducers, loudspeakers or microphones
    • H04R3/02Circuits for transducers, loudspeakers or microphones for preventing acoustic reaction, i.e. acoustic oscillatory feedback
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R3/00Circuits for transducers, loudspeakers or microphones
    • H04R3/12Circuits for transducers, loudspeakers or microphones for distributing signals to two or more loudspeakers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R3/00Circuits for transducers, loudspeakers or microphones
    • H04R3/12Circuits for transducers, loudspeakers or microphones for distributing signals to two or more loudspeakers
    • H04R3/14Cross-over networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R5/00Stereophonic arrangements
    • H04R5/02Spatial or constructional arrangements of loudspeakers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R5/00Stereophonic arrangements
    • H04R5/033Headphones for stereophonic communication
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R5/00Stereophonic arrangements
    • H04R5/033Headphones for stereophonic communication
    • H04R5/0335Earpiece support, e.g. headbands or neckrests
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R9/00Transducers of moving-coil, moving-strip, or moving-wire type
    • H04R9/06Loudspeakers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04SSTEREOPHONIC SYSTEMS 
    • H04S7/00Indicating arrangements; Control arrangements, e.g. balance control
    • H04S7/30Control circuits for electronic adaptation of the sound field
    • H04S7/302Electronic adaptation of stereophonic sound system to listener position or orientation
    • H04S7/303Tracking of listener position or orientation
    • H04S7/304For headphones
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/80Services using short range communication, e.g. near-field communication [NFC], radio-frequency identification [RFID] or low energy communication
    • GPHYSICS
    • G02OPTICS
    • G02CSPECTACLES; SUNGLASSES OR GOGGLES INSOFAR AS THEY HAVE THE SAME FEATURES AS SPECTACLES; CONTACT LENSES
    • G02C11/00Non-optical adjuncts; Attachment thereof
    • G02C11/06Hearing aids
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10LSPEECH ANALYSIS TECHNIQUES OR SPEECH SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING TECHNIQUES; SPEECH OR AUDIO CODING OR DECODING
    • G10L21/00Speech or voice signal processing techniques to produce another audible or non-audible signal, e.g. visual or tactile, in order to modify its quality or its intelligibility
    • G10L21/02Speech enhancement, e.g. noise reduction or echo cancellation
    • G10L21/0208Noise filtering
    • G10L21/0216Noise filtering characterised by the method used for estimating noise
    • G10L2021/02161Number of inputs available containing the signal or the noise to be suppressed
    • G10L2021/02166Microphone arrays; Beamforming
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R1/00Details of transducers, loudspeakers or microphones
    • H04R1/10Earpieces; Attachments therefor ; Earphones; Monophonic headphones
    • H04R1/105Earpiece supports, e.g. ear hooks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R2201/00Details of transducers, loudspeakers or microphones covered by H04R1/00 but not provided for in any of its subgroups
    • H04R2201/10Details of earpieces, attachments therefor, earphones or monophonic headphones covered by H04R1/10 but not provided for in any of its subgroups
    • H04R2201/103Combination of monophonic or stereophonic headphones with audio players, e.g. integrated in the headphone
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R2201/00Details of transducers, loudspeakers or microphones covered by H04R1/00 but not provided for in any of its subgroups
    • H04R2201/40Details of arrangements for obtaining desired directional characteristic by combining a number of identical transducers covered by H04R1/40 but not provided for in any of its subgroups
    • H04R2201/4012D or 3D arrays of transducers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R2410/00Microphones
    • H04R2410/05Noise reduction with a separate noise microphone
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R2420/00Details of connection covered by H04R, not provided for in its groups
    • H04R2420/07Applications of wireless loudspeakers or wireless microphones
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R2430/00Signal processing covered by H04R, not provided for in its groups
    • H04R2430/03Synergistic effects of band splitting and sub-band processing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R2430/00Signal processing covered by H04R, not provided for in its groups
    • H04R2430/20Processing of the output signals of the acoustic transducers of an array for obtaining a desired directivity characteristic
    • H04R2430/21Direction finding using differential microphone array [DMA]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R2430/00Signal processing covered by H04R, not provided for in its groups
    • H04R2430/20Processing of the output signals of the acoustic transducers of an array for obtaining a desired directivity characteristic
    • H04R2430/23Direction finding using a sum-delay beam-former
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R2460/00Details of hearing devices, i.e. of ear- or headphones covered by H04R1/10 or H04R5/033 but not provided for in any of their subgroups, or of hearing aids covered by H04R25/00 but not provided for in any of its subgroups
    • H04R2460/13Hearing devices using bone conduction transducers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R2499/00Aspects covered by H04R or H04S not otherwise provided for in their subgroups
    • H04R2499/10General applications
    • H04R2499/11Transducers incorporated or for use in hand-held devices, e.g. mobile phones, PDA's, camera's
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04SSTEREOPHONIC SYSTEMS 
    • H04S2400/00Details of stereophonic systems covered by H04S but not provided for in its groups
    • H04S2400/11Positioning of individual sound objects, e.g. moving airplane, within a sound field

Definitions

  • This application relates to the field of smart devices, and in particular to an acoustic output device.
  • an acoustic output device which on the one hand can achieve the effects of increasing the listening volume and reducing sound leakage of the acoustic output device, and on the other hand, can improve the sound receiving effect of the acoustic output device.
  • the present application provides an acoustic output device.
  • the acoustic output device can reduce sound leakage through the setting of multiple sound sources and the setting of high and low frequency divisions, thereby improving user experience.
  • the acoustic output device can also use a microphone noise reduction system to reduce the microphone's receiving noise, thereby further improving the user experience.
  • An aspect of the present application provides glasses, which may include a frame, lenses and temples.
  • the glasses may further include: at least one low-frequency acoustic driver, the at least one low-frequency acoustic driver may output sound from the at least two first sound guide holes; at least one high-frequency acoustic driver, the at least one high-frequency acoustic driver may be from At least two second sound guide holes output sound; and a controller, the controller may be configured to make the low-frequency acoustic driver output sound in the first frequency range, and make the high-frequency acoustic driver output in the first frequency range Sound in the second frequency range, wherein the second frequency range may include frequencies higher than the first frequency range.
  • the first pitch may be in the range of 20mm-40mm, and the second pitch may be in the range of 3mm-7mm.
  • the first pitch may be at least twice the second pitch.
  • the first frequency range may include frequencies below 650 Hz, and the second frequency range may include frequencies above 1000 Hz.
  • the first frequency range and the second frequency range may overlap.
  • the controller may include an electronic frequency dividing module.
  • the electronic frequency dividing module can be used to divide the frequency of the audio source signal to generate a low frequency signal corresponding to a first frequency range and a high frequency signal corresponding to a second frequency range, wherein the low frequency signal can drive the at least one low frequency acoustic driver Sound is generated, and the high-frequency signal can drive the at least one high-frequency acoustic driver to generate sound.
  • the electronic frequency dividing module may include at least one of a passive filter, an active filter, an analog filter, and a digital filter.
  • the at least one low-frequency acoustic driver may include a first transducer
  • the at least one high-frequency acoustic driver may include a second transducer, wherein the first transducer and the second transducer The two transducers can have different frequency response characteristics.
  • the first transducer may include a low frequency speaker
  • the second transducer may include a high frequency speaker
  • a first acoustic path may be formed between the at least one low-frequency acoustic driver and the at least two first sound guide holes, and the at least one high-frequency acoustic driver and the at least two second A second acoustic path may be formed between the sound guide holes, and the first acoustic path and the second acoustic path may have different frequency selection characteristics.
  • the first acoustic path may include an acoustic resistance material, and the acoustic impedance of the acoustic resistance material may be in the range of 5 MKS Rayleigh to 500 MKS Rayleigh.
  • the glasses may further include a supporting structure.
  • the support structure can be adapted to be worn on the body of the user.
  • the supporting structure may be configured to carry the at least one high-frequency acoustic driver and the at least one low-frequency acoustic driver, so that the at least two first sound guide holes and the at least two second sound guide holes may be located away from the user The position of the ears.
  • the at least two second sound guide holes may be closer to the user's ears than the at least two first sound guide holes.
  • the at least two first sound guide holes and the at least two second sound guide holes may be located on the support structure.
  • the low-frequency acoustic driver may be encapsulated by a housing, and the housing may define a front chamber and a rear chamber of the low-frequency acoustic driver.
  • the front chamber of the low-frequency acoustic driver may be acoustically coupled to one of the at least two first sound guide holes, and the rear chamber may be acoustically coupled to the The other one of the at least two first sound guide holes.
  • the high-frequency acoustic driver may be encapsulated by a housing, and the housing may define a front chamber and a rear chamber of the high-frequency acoustic driver.
  • the front chamber of the high-frequency acoustic driver may be acoustically coupled to one of the at least two second sound-guiding holes, and the rear of the high-frequency acoustic driver The chamber may be acoustically coupled to another second sound guide hole of the at least two second sound guide holes.
  • the sounds output from the at least two first sound guide holes may have opposite phases.
  • Fig. 1 is a schematic diagram of a dual-point sound source according to some embodiments of the present application
  • Fig. 2 is a graph showing the variation of leakage sound of a dual-point sound source and a single-point sound source with frequency according to some embodiments of the present application;
  • 3A and 3B are exemplary graphs showing changes in near-field listening volume and far-field leakage volume with the distance between two-point sound sources according to some embodiments of the present application;
  • Fig. 4 is an exemplary structural block diagram of an acoustic output device according to some embodiments of the present application.
  • Fig. 5 is a schematic diagram of acoustic output according to some embodiments of the present application.
  • FIGS. 6A and 6B are schematic diagrams of sound output according to some embodiments of the present application.
  • FIG. 7A and 7B are structural schematic diagrams of acoustic output devices according to some embodiments of the present application.
  • 8A-8C are schematic diagrams of acoustic paths according to some embodiments of the present application.
  • Fig. 9 is an exemplary graph of sound leakage under the joint action of two sets of two-point sound sources according to some embodiments of the present application.
  • Fig. 10 is a schematic structural diagram of another acoustic output device according to some embodiments of the present application.
  • FIG. 11 is a schematic diagram of two point sound sources and listening positions according to some embodiments of the present application.
  • Fig. 12 is a graph showing changes in listening volume with frequency of two-point sound sources with different spacings according to some embodiments of the present application.
  • FIG. 13 is a graph of normalized parameters of two-point sound sources with different spacing in the far field as a function of frequency according to some embodiments of the present application;
  • Fig. 14 is a schematic diagram of an exemplary distribution of baffles arranged between two-point sound sources according to some embodiments of the present application.
  • FIG. 15 is a graph showing the variation of listening volume with frequency when the auricle is located between two-point sound sources according to some embodiments of the present application.
  • Fig. 16 is a graph showing the variation of the leakage sound volume with frequency when the auricle is located between two-point sound sources according to some embodiments of the present application;
  • FIG. 17 is a graph of normalized parameters changing with frequency when the two-point sound source of the acoustic output device according to some embodiments of the present application is distributed on both sides of the auricle;
  • FIG. 18 is a graph showing changes in listening volume and leakage volume with frequency between two point sound sources with or without a baffle according to some embodiments of the present application;
  • 19 is a graph showing the variation of the listening volume and the leakage volume with the distance between the two-point sound source when the frequency of the two-point sound source is 300 Hz with or without a baffle according to some embodiments of the present application;
  • 20 is a graph showing the variation of the listening volume and the leakage volume with the distance between the two-point sound source when the frequency of the dual-point sound source is 1000 Hz with or without a baffle according to some embodiments of the present application;
  • 21 is a graph showing the variation of the listening volume and the leakage volume with the distance between the two-point sound source when the frequency of the dual-point sound source is 5000 Hz with or without a baffle according to some embodiments of the present application;
  • Fig. 22 is a graph showing the variation of listening volume with frequency when the distance d between two-point sound sources is 1 cm according to some embodiments of the present application;
  • FIG. 23 is a graph showing the variation of listening volume with frequency when the distance d between two-point sound sources is 2 cm according to some embodiments of the present application.
  • FIG. 24 is a graph showing the variation of listening volume with frequency when the distance d between two-point sound sources is 4 cm according to some embodiments of the present application.
  • FIG. 25 is a graph of the normalized parameters of the far field with frequency when the distance d between the two-point sound sources is 1 cm according to some embodiments of the present application;
  • FIG. 26 is a graph of the normalized parameters of the far field varying with frequency when the distance d between the two-point sound sources is 2 cm according to some embodiments of the present application;
  • FIG. 27 is a graph of the normalized parameters of the far field versus frequency when the distance d between the two-point sound sources is 4 cm according to some embodiments of the present application;
  • Fig. 28 is an exemplary position distribution diagram of different listening positions according to some embodiments of the present application.
  • FIG. 29 is a graph showing the variation of the listening volume with frequency of a two-point sound source without a baffle according to some embodiments of the present application at different listening positions in the near field;
  • FIG. 30 is a graph showing normalized parameters of a two-point sound source without a baffle according to some embodiments of the present application at different listening positions in the near field as a function of frequency;
  • FIG. 31 is a graph showing the variation of the listening volume with frequency of the baffled two-point sound source at different listening positions in the near field according to some embodiments of the present application.
  • Fig. 32 is a graph showing normalized parameters of a baffled two-point sound source at different listening positions as a function of frequency according to some embodiments of the present application;
  • FIG. 33 is a schematic diagram of an exemplary distribution of dual-point sound sources and baffles according to some embodiments of the present application.
  • FIG. 34 is a graph showing the variation of the listening volume in the near field with frequency when the baffle according to some embodiments of the present application is at different positions;
  • 35 is a graph showing the change in the volume of far-field sound leakage with frequency when the baffle according to some embodiments of the present application is at different positions;
  • FIG. 36 is a graph of normalized parameters varying with frequency when the baffle is at different positions according to some embodiments of the present application.
  • Fig. 37 is a schematic structural diagram of yet another acoustic output device according to some embodiments of the present application.
  • Fig. 38 is a schematic diagram of glasses according to some embodiments of the present application.
  • 39 is a cross-sectional view of the temples of glasses according to some embodiments of the present application.
  • Fig. 40 is a distribution diagram of sound guide holes on the temples according to some embodiments of the present application.
  • Figure 41 is a cross-sectional view of the temples of glasses according to some embodiments of the present application.
  • FIG. 42 is a distribution diagram of sound guide holes on temples according to some embodiments of the present application.
  • FIG. 43 is a distribution diagram of sound guide holes on temples according to some embodiments of the present application.
  • Fig. 44 is a schematic diagram of a microphone noise reduction system according to some embodiments of the present application.
  • Fig. 45A is a schematic diagram of a microphone noise reduction system according to some embodiments of the present application.
  • FIG. 45B is a schematic diagram of a microphone noise reduction system according to some embodiments of the present application.
  • Figure 46A is a frequency response of a first microphone and a frequency response of a second microphone according to some embodiments of the present application;
  • FIG. 46B is a frequency response of the first microphone and another frequency response of the second microphone according to some embodiments of the present application.
  • FIG. 47 is a schematic diagram of a sub-band noise suppression subunit according to some embodiments of the present application.
  • Fig. 48 is a schematic diagram of a phase modulation signal according to some embodiments of the present application.
  • Fig. 49A is a schematic diagram of another type of glasses according to some embodiments of the present application.
  • FIG. 49B is a schematic diagram of another type of glasses according to some embodiments of the present application.
  • Figure 50A is a schematic diagram of a temple according to some embodiments of the present application.
  • Figure 50B is a schematic diagram of a temple according to some embodiments of the present application.
  • FIG. 51A is a schematic diagram of another type of glasses according to some embodiments of the present application.
  • FIG. 51B is a schematic diagram of another type of glasses according to some embodiments of the present application.
  • Figure 52A is a schematic diagram of a temple according to some embodiments of the present application.
  • FIG. 52B is a schematic diagram of another type of glasses according to some embodiments of the present application.
  • Fig. 53 is a schematic diagram of another type of glasses according to some embodiments of the present application.
  • Fig. 54 is a schematic diagram of still another kind of glasses according to some embodiments of the present application.
  • Fig. 55 is a schematic diagram of components in an acoustic output device according to some embodiments of the present application.
  • Fig. 56 is a schematic diagram of the connection of components in the acoustic output device according to some embodiments of the present application.
  • Fig. 57 is a schematic diagram of an exemplary power module according to some embodiments of the present application.
  • Fig. 58 is a structural diagram of a voice control system in an acoustic output device according to some embodiments of the present application.
  • FIG. 59 is a schematic cross-sectional structure diagram of open binaural headphones according to some embodiments of the present application.
  • Fig. 61 is a schematic cross-sectional view of a partition structure of an open binaural earphone according to some embodiments of the present application.
  • FIG. 62 is a schematic diagram showing the positions of sound guide holes according to some embodiments of the present application.
  • FIG. 63A shows the frequency response of the first speaker unit and the frequency response of the second speaker unit according to some embodiments of the present application
  • FIG. 63B shows the frequency response of the first speaker unit and another frequency response of the second speaker unit according to some embodiments of the present application.
  • Fig. 64 is a schematic diagram of an exemplary open binaural headset according to some embodiments of the present application.
  • system is a method for distinguishing different components, elements, parts, parts, or assemblies of different levels.
  • the words can be replaced by other expressions.
  • acoustic output device or “speaker”
  • This description is only a form of conduction application.
  • “acoustic output device” or “speaker” can also be replaced by other similar words, such as “sounding device”, “hearing aid” or “speaker” Device” etc.
  • the various implementations in the present invention can be easily applied to other non-speaker hearing devices.
  • a microphone such as a microphone can pick up the sound of the user/wearer's surrounding environment, and under a certain algorithm, transmit the processed sound (or the generated electrical signal) to the acoustic output part.
  • the acoustic output device can be modified to add the function of picking up ambient sound, and after certain signal processing, the sound is transmitted to the user/wearer through the acoustic output module, so as to realize the combination of the acoustic output device and the traditional acoustic output device.
  • the algorithms mentioned here can include noise cancellation, automatic gain control, acoustic feedback suppression, wide dynamic range compression, active environment recognition, active anti-noise, directional processing, tinnitus processing, multi-channel wide dynamic range compression, active howling One or a combination of suppression, volume control, etc.
  • a flowchart is used in this application to illustrate the operations performed by the system according to the embodiments of the application. It should be understood that the preceding or following operations are not necessarily performed exactly in order. Instead, the steps can be processed in reverse order or simultaneously. At the same time, you can also add other operations to these processes, or remove a step or several operations from these processes.
  • This application provides an acoustic output device.
  • the acoustic output device When the user wears the acoustic output device, the acoustic output device is located at least on the side of the user's head, close to but not blocking the user's ears.
  • the acoustic output device can be worn on the user's head (for example, non-ear earphones worn with glasses, headbands or other structures), or on other parts of the user's body, such as the user's neck/shoulder area.
  • the acoustic output device may include at least two sets of acoustic drivers, including at least one set of high-frequency acoustic drivers and one set of low-frequency acoustic drivers.
  • Each group of acoustic drivers can be used to generate sound with a certain frequency range, and propagate the sound outward through at least two acoustically coupled sound guide holes.
  • the acoustic output device may include at least one set of acoustic drivers, and the sound generated by the at least one set of acoustic drivers may be propagated outward through at least two sound guide holes acoustically coupled thereto.
  • a baffle structure may be provided on the acoustic output device, so that the at least two sound guide holes are respectively distributed on both sides of the baffle.
  • the at least two sound guide holes may be distributed on both sides of the user's auricle.
  • the auricle serves as a baffle to separate the at least two sound guide holes, so that the at least two sound guide holes The sound guide holes have different acoustic paths to the user's ear canal.
  • Fig. 1 is a schematic diagram of a dual-point sound source according to some embodiments of the present application.
  • the sound guide is regarded as the sound source of the external output sound to describe.
  • each sound guide hole can be approximately regarded as a point sound source.
  • any sound guide hole opened in the acoustic output device for outputting sound can be approximated as a single point sound source on the acoustic output device.
  • the sound field sound pressure p generated by a single-point sound source satisfies formula (1):
  • is the angular frequency
  • ⁇ 0 is the air density
  • r is the distance between the target point and the sound source
  • Q 0 is the volume velocity of the sound source
  • k is the wave number.
  • the point sound source can also be realized by other structures, such as a vibrating surface, a sound radiating surface, and so on.
  • a vibrating surface such as a vibrating surface
  • a sound radiating surface such as a vibrating surface, a sound radiating surface, and so on.
  • the sound produced by structures such as sound guide holes, vibrating surfaces, and sound radiating surfaces can be equivalent to point sound at the spatial scale discussed in this application.
  • the source has the same sound propagation characteristics and the same mathematical description.
  • the acoustic effect achieved by the "acoustic driver outputting sound from at least two first sound guide holes" described in this application can also be achieved by the above Other acoustic structures achieve the same effect, such as "at least two acoustic drivers output sound from at least one sound radiating surface". According to the actual situation, other acoustic structures can be selected for reasonable adjustment and combination, and the same acoustic output effect can also be achieved.
  • the principle of the above-mentioned surface sound source and other structures to radiate sound is similar to the above-mentioned point sound source, so I will not repeat it here. .
  • the acoustic output device can be provided with at least two sound guide holes corresponding to the same acoustic driver to construct a dual-point sound source to reduce the sound radiated by the sound output device to the surrounding environment.
  • the sound radiated by the acoustic output device to the surrounding environment may be called far-field sound leakage because it may be heard by other people in the environment.
  • the sound radiated by the acoustic output device to the ears of the user wearing the device can also be called near-field listening due to the close distance to the user.
  • the sound output by the two sound guide holes ie, two-point sound source
  • the acoustic output device can show different sound effects in the near field (for example, the listening position of the user's ear) and the far field.
  • the near field for example, the listening position of the user's ear
  • the far-field leakage can be realized according to the principle of sound wave anti-phase cancellation. Tone reduction.
  • the sound field sound pressure p generated by the two-point sound source satisfies the following formula:
  • a 1 and A 2 are the intensity of two point sound sources respectively, Are the phases of the two point sound sources, d is the distance between the two point sound sources, and r 1 and r 2 satisfy formula (3):
  • r is the distance between any target point in space and the center of the dual-point sound source
  • represents the angle between the line between the target point and the center of the dual-point sound source and the line where the dual-point sound source is located.
  • the size of the sound pressure p of the target point in the sound field is related to the intensity of each point sound source, the distance d between the point sound sources, the phase, and the distance from the sound source.
  • the acoustic driver may include a diaphragm.
  • the diaphragm vibrates, sound can be emitted from the front and back sides of the diaphragm, respectively.
  • the front side of the diaphragm in the acoustic output device is provided with an antechamber for transmitting sound.
  • the front chamber is acoustically coupled with a sound guide hole, and the sound on the front side of the diaphragm can be transmitted to the sound guide hole through the front chamber and further spread out.
  • the acoustic output device is provided with a rear chamber for transmitting sound at a position behind the diaphragm.
  • the back chamber is acoustically coupled with another sound guide hole, and the sound on the back side of the diaphragm can be transmitted to the sound guide hole through the back chamber and further spread out.
  • the structure of the front chamber and the rear chamber may be configured so that the sound output by the acoustic driver at different sound guide holes meets specific conditions.
  • the length of the front room and the back room can be designed so that a set of sounds with a specific phase relationship (for example, opposite phase) can be output from the two sound guide holes, so that the listening volume of the acoustic output device in the near field is low and the sound in the far field The sound leakage of the field has been effectively improved.
  • a specific phase relationship for example, opposite phase
  • the far-field leakage generated by a dual-point sound source will increase with the increase in frequency, that is to say, the far-field leakage reduction of a dual-point sound source
  • the capacity decreases with increasing frequency.
  • Fig. 2 is a graph showing the variation of leakage sound with frequency of a dual-point sound source and a single-point sound source according to some embodiments of the present application.
  • the distance between the corresponding two-point sound sources in Figure 2 is fixed, and the two point sound sources have the same amplitude and opposite phase.
  • the dotted line represents the variation curve of the leakage volume of a single-point sound source at different frequencies
  • the solid line represents the variation curve of the leakage volume of a dual-point sound source at different frequencies.
  • the abscissa represents the frequency (f) of the sound, the unit is Hertz (Hz), and the ordinate uses the normalized parameter ⁇ as an index for evaluating the leakage volume.
  • the calculation formula of ⁇ is as follows:
  • P far represents the sound pressure of the acoustic output device in the far field (ie, the far-field leakage sound pressure)
  • P ear represents the sound pressure around the wearer's ears (ie, the near-field listening sound pressure).
  • the frequency at the intersection of the double-point sound source and the single-point sound source with the frequency variation curve can be used as the upper limit frequency of the double-point sound source that can reduce the leakage sound according to the above content.
  • the leakage reduction capability of the dual-point sound source (that is, the ⁇ value is small) is stronger (below -80dB), so in this frequency band
  • the optimization goal can be to increase the listening volume; when the frequency is high (for example, in the range of 1000Hz-8000Hz), the dual-point sound source has a weaker leakage reduction capability (above -80dB), so it can be reduced in this frequency band. Small leakage is the optimization goal.
  • the frequency corresponding to the ⁇ value at a specific value can be used as the frequency division point.
  • a high frequency band with a higher sound frequency for example, the sound output by a high frequency acoustic driver
  • a low frequency band with a lower sound frequency for example, the sound output by a low frequency acoustic driver
  • the method of measuring and calculating the leakage sound can be reasonably adjusted according to the actual situation.
  • the average value of the sound pressure amplitude of multiple points on a spherical surface with a two-point sound source center as the center and a radius of r (for example, 40 cm) can be taken as the value of sound leakage.
  • the distance between the near-field listening position and the point sound source is much smaller than the distance between the point sound source and the far-field sound leakage measurement sphere.
  • the ratio of the distance between the near-field listening position and the center of the two-point sound source to the radius r is less than 0.3, 0.2, 0.15, or 0.1.
  • one or more points in the far-field position can be taken as the position to measure the sound leakage, and the volume of the position can be used as the value of the sound leakage.
  • the center of the two-point sound source can be taken as the center of the circle, and the sound pressure amplitude of two or more points can be averaged according to a certain spatial angle in the far field as the value of sound leakage.
  • FIG. 3A and 3B are exemplary graphs showing changes in the near-field listening volume and the far-field leakage volume with the distance between two-point sound sources according to some embodiments of the present application.
  • FIG. 3B is a graph of FIG. 3A after normalization.
  • the solid line represents the curve of the listening volume of the two-point sound source with the distance between the two-point sound source
  • the dashed line represents the curve of the leakage volume of the two-point sound source with the distance between the two-point sound source
  • the abscissa represents the double-point distance d between two point sound sources with sound source distance d 0 reference pitch ratio d / d
  • the ordinate represents the volume of the sound (in decibels dB).
  • the spacing ratio d/d 0 can reflect the change of the spacing between the two point sound sources.
  • the reference distance d 0 can be selected within a specific range.
  • d 0 can be a specific value taken in the range of 2.5 mm to 10 mm, for example, d 0 can be 5 mm.
  • the reference distance d 0 may be determined based on the listening position. For example, the distance from the listening position to the nearest sound source can be taken as the reference interval d 0 . It should be known that the reference distance d 0 can be flexibly selected according to the actual scene and any other suitable value, which is not limited here. Just as an example, in Fig. 3A, d 0 is equal to 5 mm as the reference value for the change of the distance between the two-point sound source.
  • the listening volume and the leakage volume of the two-point sound source both increase.
  • the ratio d/d 0 of the two-point sound source spacing d to the reference spacing d 0 is less than the ratio threshold, as the two-point sound source spacing increases, the increase in the listening volume is greater than the increase in the leakage volume. That is, the increase in listening volume is more significant than the increase in leakage volume.
  • the ratio d/d 0 of the two-point sound source spacing d to the reference spacing d 0 is 2
  • the difference between the listening volume and the leakage volume is about 20 dB
  • the ratio d/d 0 is 4.
  • the difference between listening volume and leakage volume is about 25dB.
  • the ratio d/d 0 of the two-point sound source spacing d to the reference spacing d 0 reaches the ratio threshold
  • the ratio of the listening volume of the two-point sound source to the leakage volume reaches the maximum.
  • the curve of the listening volume and the curve of the leakage volume gradually tend to be parallel, that is, the increase in the listening volume and the increase in the leakage volume remain the same.
  • the ratio threshold of the spacing ratio d/d 0 of the two-point sound source spacing may be in the range of 0-7.
  • the d/d 0 ratio threshold can be set in the range of 0.5-4.5.
  • the ratio threshold of d/d 0 can be set within the range of 1-4.
  • the ratio threshold may be determined based on the difference change between the listening volume of the double-point sound source in FIG. 3A and the leakage volume. For example, the ratio corresponding to the maximum difference between the listening volume and the leakage volume can be determined as the ratio threshold. As shown in Figure 3B, when the spacing ratio d/d 0 is less than the ratio threshold (eg, 4), as the spacing between the two-point sound sources increases, the normalized listening curve shows an upward trend (the slope of the curve is greater than 0).
  • the ratio threshold eg, 4
  • the increase in listening volume is greater than the increase in leakage volume; when the spacing ratio d/d 0 is greater than the ratio threshold, as the spacing between the two-point sound sources increases, the slope of the normalized listening curve gradually approaches 0, parallel to the normalized leakage curve, that is, as the distance between the two-point sound sources increases, the listening volume increase is no longer greater than the leakage volume increase.
  • the near-field listening volume can be significantly increased while the far-field leakage volume is only slightly increased (that is, the near-field listening volume
  • the increment of is greater than the increment of the far-field leakage sound volume).
  • two or more two-point sound sources such as a high-frequency two-point sound source and a low-frequency two-point sound source
  • the distance between each group of two-point The distance between point sound sources is smaller than the distance between low-frequency two-point sound sources.
  • the high-frequency dual-point sound source leakage Due to the low-frequency dual-point sound source leakage is small (stronger leakage reduction ability), the high-frequency dual-point sound source leakage is larger (weak leakage reduction ability), and the high-frequency range chooses a smaller two-point sound source spacing , Can make the listening volume significantly greater than the leakage volume, thereby reducing the leakage.
  • the acoustic output device can be effectively used as an open binaural earphone even in a relatively quiet environment.
  • Fig. 4 is an exemplary structural block diagram of an acoustic output device according to some embodiments of the present application.
  • the acoustic output device 100 may include an electronic frequency dividing module 110, an acoustic driver 140 and an acoustic driver 150, an acoustic path 145, an acoustic path 155, at least two first sound guide holes 147, and at least two second guide holes. Sound hole 157.
  • the acoustic output device 100 further includes a controller (not shown in the figure), and the electronic frequency dividing module 110 is used as a part of the controller to generate electrical signals input to different acoustic drivers.
  • the connection between different components in the acoustic output device 100 may be a wired connection or a wireless connection.
  • the electronic frequency dividing module 110 may send signals to the acoustic driver 140 and/or the acoustic driver 150 through wired transmission or wireless transmission.
  • the electronic frequency division module 110 can perform frequency division processing on the audio source signal.
  • the sound source signal may come from one or more sound source devices integrated in the acoustic output device 100 (for example, a memory storing audio data), or may be an audio signal received by the sound output device 100 in a wired or wireless manner.
  • the electronic frequency dividing module 110 can decompose the input audio source signal into two or more frequency-divided signals containing different frequency components.
  • the electronic frequency division module 110 can decompose the audio source signal into a first frequency division signal (or frequency division signal 1) with high-frequency sound components and a second frequency division signal (or frequency division signal 2) with low-frequency sound components. ).
  • a crossover signal with high-frequency sound components can be directly called a high-frequency signal
  • a crossover signal with low-frequency sound components can be directly called a low-frequency signal.
  • the low-frequency signal in the embodiments of the present application refers to a sound signal with a lower frequency in the first frequency range
  • a high-frequency signal refers to a sound signal with a higher frequency in the second frequency range.
  • the first frequency range and the second frequency range may or may not include overlapping frequency ranges, and the second frequency range includes frequencies higher than the first frequency range.
  • the first frequency range may refer to frequencies lower than the first frequency threshold
  • the second frequency range may refer to frequencies higher than the second frequency threshold.
  • the first frequency threshold may be lower than, equal to, or higher than the second frequency threshold.
  • the first frequency threshold may be smaller than the second frequency threshold (for example, the first frequency threshold may be 600 Hz, and the second frequency threshold may be 700 Hz), which indicates that there is no overlap between the first frequency range and the second frequency range.
  • the first frequency threshold may be equal to the second frequency (for example, both the first frequency threshold and the second frequency threshold are 650 Hz or other arbitrary frequency values).
  • the first frequency threshold may be greater than the second frequency threshold, which indicates that there is an overlap between the first frequency range and the second frequency range. In this case, the difference between the first frequency threshold and the second frequency threshold may not exceed the third frequency threshold.
  • the third frequency threshold may be a fixed value, for example, 20 Hz, 50 Hz, 100 Hz, 150 Hz, 200 Hz, or may be a value related to the first frequency threshold and/or the second frequency threshold (for example, the value of the first frequency threshold) 5%, 10%, 15%, etc.), or a value flexibly set by the user according to the actual scene, which is not limited here. It should be known that the first frequency threshold and the second frequency threshold can be flexibly set according to different situations, which are not limited here.
  • the electronic frequency dividing module 110 may include a frequency divider 115 and signal processors 120 and 130.
  • the frequency divider 115 can be used to decompose the audio source signal into two or more frequency-divided signals containing different frequency components, for example, a frequency-divided signal 1 with high-frequency sound components and a frequency-divided signal with low-frequency sound components 2.
  • the frequency divider 115 may be any electronic device that can realize the signal decomposition function, including but not limited to one of passive filters, active filters, analog filters, digital filters, etc. random combination.
  • the frequency divider 115 may divide the frequency of the audio source signal based on one or more frequency division points.
  • the frequency division point refers to the signal frequency that distinguishes the first frequency range from the second frequency range.
  • the frequency division point may be a feature point in the overlap frequency range (for example, the low frequency boundary point, the high frequency boundary point of the overlap frequency range , Center frequency point, etc.).
  • the crossover point may be determined according to the relationship between the frequency and the leakage of the acoustic output device (for example, the curves shown in FIGS. 2, 3A, and 3B).
  • the frequency point corresponding to the leakage volume that satisfies a certain condition can be selected as the crossover point, for example, 1000 Hz as shown in FIG. 2.
  • the user can directly designate a specific frequency as the crossover point.
  • the crossover point can be 600Hz, 800Hz, 1000Hz, 1200Hz, etc.
  • the crossover point may be determined according to the performance of the acoustic driver. For example, considering that the above-mentioned low-frequency acoustic driver and high-frequency acoustic driver have different frequency response curves, a frequency range that is higher than 1/2 of the upper limit frequency of the low-frequency acoustic driver and lower than 2 times the lower limit frequency of the high-frequency acoustic driver can be selected Select the crossover point within. More preferably, the crossover point can be selected in a frequency range higher than 1/3 of the upper limit frequency of the low-frequency acoustic driver and lower than 1.5 times the lower limit frequency of the high-frequency acoustic driver.
  • the signal processors 120 and 130 may respectively further process the frequency-divided signals to meet the requirements of subsequent sound output.
  • the signal processor 120 or 130 may include one or more signal processing components.
  • the signal processor may include, but is not limited to, one or any combination of amplifiers, amplitude modulators, phase modulators, delayers, dynamic gain controllers, etc.
  • the processing performed by the signal processor 120 and/or 130 on the sound signal includes adjusting the amplitude corresponding to some frequencies in the sound signal.
  • the signal processors 120 and 130 may respectively adjust the intensity of the corresponding sound signal in the overlapping frequency range (for example, reduce the overlapping frequency range The amplitude of the internal signal) in order to avoid the consequence of excessive sound in the overlapping frequency range caused by the superposition of multiple sound signals in the subsequent output sound.
  • the frequency-divided signals can be transmitted to the acoustic drivers 140 and 150, respectively.
  • the sound signal passed into the acoustic driver 140 may be a sound signal including a lower frequency range (for example, the first frequency range), so the acoustic driver 140 may also be referred to as a low-frequency acoustic driver.
  • the sound signal passed into the acoustic driver 150 may be a sound signal containing a higher frequency range (for example, a second frequency range), so the acoustic driver 150 may also be referred to as a high-frequency acoustic driver.
  • the acoustic driver 140 and the acoustic driver 150 may respectively convert the respective sound signals into low-frequency sound and high-frequency sound, and transmit them to the outside.
  • the acoustic driver 140 may be acoustically coupled with at least two first sound guide holes (such as two first sound guide holes 147) (for example, through two acoustic paths 145, respectively). 147 connection), and spread the sound from the at least two first sound guide holes.
  • the acoustic driver 150 may be acoustically coupled with at least two second sound guide holes (such as two second sound guide holes 157) (for example, connected to two second sound guide holes 157 through two acoustic paths 155), and can The sound is transmitted from the at least two second sound guide holes.
  • the sound guide hole may be a small hole formed on the acoustic output device that has a specific opening and allows sound to pass through.
  • the shape of the sound guide hole may include, but is not limited to, one of a circle, an ellipse, a square, a trapezoid, a rounded quadrilateral, a triangle, an irregular figure, etc., or any combination thereof.
  • the number of sound guide holes connected to the acoustic driver 140 or 150 is not limited to two, and can be any value, for example, 3, 4, 6, etc.
  • the acoustic driver 140 may be made to generate equal (or approximately equal) amplitude and opposite (or approximately equal) phase values at at least two first sound guide holes. Opposite) low-frequency sounds, and the acoustic driver 150 respectively generates high-frequency sounds with the same amplitude (or approximately the same) and opposite phase (or approximately the opposite) at the at least two second sound guide holes. In this way, based on the principle of sound wave interference cancellation, the far-field sound leakage of low-frequency sounds (or high-frequency sounds) will be reduced. According to the content described in Fig. 2 and Figs.
  • the wavelength of low-frequency sound is greater than that of high-frequency sound, and in order to reduce the interference cancellation of sound in the near field (for example, the listening position of the user’s ear),
  • the distance between the first sound guide holes and the distance between the second sound guide holes are respectively set to different values. For example, assuming that there is a first distance between two first sound guide holes and a second distance between two second sound guide holes, the first distance may be greater than the second distance. In some embodiments, the first distance and the second distance can be any value.
  • the first pitch may not be greater than 40mm, for example, in the range of 20mm-40mm
  • the second pitch may not be greater than 12mm
  • the first pitch may be greater than the second pitch.
  • the first pitch may not be less than 12mm, and the second pitch may not be greater than 7mm, for example, in the range of 3mm-7mm. More preferably, the first pitch may be 30 mm, and the second pitch may be 5 mm. For another example, the first pitch may be at least twice the second pitch. Preferably, the first distance may be at least 3 times the second distance. Preferably, the first pitch may be at least 5 times the second pitch.
  • the acoustic driver 140 may include a transducer 143.
  • the transducer 143 transmits the sound to the first sound guide hole 147 through the acoustic path 145.
  • the acoustic driver 150 may include a transducer 153.
  • the transducer 153 transmits the sound to the second sound guide hole 157 through the acoustic path 155.
  • the transducer may include, but is not limited to, one or any combination of a transducer of an air conduction speaker, a transducer of a bone conduction speaker, a hydro-acoustic transducer, an ultrasonic transducer, etc.
  • the working principle of the transducer may include, but is not limited to, one or any combination of moving coil type, moving iron type, piezoelectric type, electrostatic type, magnetostrictive type, etc.
  • the acoustic driver may include transducers having different properties or numbers.
  • the low-frequency acoustic driver 140 and the high-frequency acoustic driver 150 may each include a transducer (such as a low-frequency speaker unit and a high-frequency speaker unit) having different frequency response characteristics.
  • the low frequency acoustic driver 140 may include two transducers 143 (such as two low frequency speaker units), and the high frequency acoustic driver 150 may include two transducers 153 (such as two high frequency speaker units).
  • the acoustic output device 100 may generate sounds with different frequency ranges in other ways. For example, transducer frequency division, acoustic path frequency division, etc.
  • the structure of the electronic frequency dividing module 110 (the part in the dashed frame) can be omitted, and the sound source signal can be input to the acoustic driver 140 and the acoustic driver 150 respectively.
  • the acoustic output device 100 uses a transducer to implement signal frequency division, and the acoustic driver 140 and the acoustic driver 150 can convert the input audio source signal into a low-frequency signal and a high-frequency signal, respectively.
  • the low-frequency acoustic driver 140 can convert the sound source signal into a low-frequency sound with low-frequency components through the transducer 143 (such as a low-frequency speaker); the low-frequency sound can be transmitted to at least two firsts along at least two different acoustic paths 145
  • the sound guide hole 147 is transmitted to the outside through the first sound guide hole 147.
  • the high-frequency acoustic driver 150 can convert the sound source signal into a high-frequency sound with high-frequency components through the transducer 153 (such as a tweeter); the high-frequency sound can be transmitted to at least two along at least two different acoustic paths 155
  • the second sound guide hole 157 propagates to the outside through the second sound guide hole 157.
  • the acoustic path connecting the transducer and the sound guide hole (such as the acoustic path 145 and 155) will affect the nature of the transmitted sound.
  • the acoustic path will attenuate the transmitted sound to a certain degree or change the phase of the transmitted sound.
  • the acoustic path may be constituted by one or any combination of sound ducts, sound cavities, resonant cavities, sound holes, sound slits, tuning nets, etc., or any combination thereof.
  • the acoustic path may further include an acoustic resistance material, which has a specific acoustic impedance.
  • the acoustic impedance can range from 5MKS Rayleigh to 500MKS Rayleigh.
  • the acoustic resistance material may include, but is not limited to, plastic, textile, metal, permeable material, woven material, screen material or mesh material, porous material, granular material, polymer material, etc., or any combination thereof.
  • the acoustic output device 100 utilizes an acoustic path to achieve signal frequency division.
  • the sound source signal is input into a specific acoustic driver and converted into a sound containing high and low frequency components, and the sound signal propagates along acoustic paths with different frequency selection characteristics.
  • a sound signal can be transmitted along an acoustic path with low-pass characteristics to the corresponding sound guide hole to produce low-frequency sound that propagates outwards. In this process, high-frequency sounds are absorbed or attenuated by the acoustic path with low-pass characteristics. .
  • the sound signal can be transmitted along an acoustic path with high-pass characteristics to the corresponding sound guide hole to produce high-frequency sound propagating outwards.
  • low-frequency sounds are absorbed or attenuated by the acoustic path with high-pass characteristics.
  • the controller in the acoustic output device 100 may cause the low-frequency acoustic driver 140 to output sounds in the first frequency range (ie, low-frequency sounds), and cause the high-frequency acoustic driver 150 to output sounds in the second frequency range. Sound (ie high-frequency sound).
  • the acoustic output device 100 may further include a supporting structure. The supporting structure may be used to carry acoustic drivers (such as high-frequency acoustic driver 150, low-frequency acoustic driver 140) so that the acoustic driver is positioned away from the user's ear.
  • the sound guide hole acoustically coupled with the high-frequency acoustic driver 150 may be closer to the expected position of the user's ear (for example, the entrance of the ear canal), while the sound guide hole acoustically coupled with the low-frequency acoustic driver 140 may be closer to the expected position. The location is farther.
  • the support structure can be used to encapsulate an acoustic driver.
  • the supporting structure of the encapsulated acoustic driver may include a shell made of various materials such as plastic, metal, and cloth tape.
  • the housing encapsulates the acoustic driver and forms a front chamber and a rear chamber corresponding to the acoustic driver, the front chamber may be acoustically coupled to one of the at least two sound guide holes, and the rear chamber may be acoustically coupled to at least two sound guide holes The other in the hole.
  • the front chamber of the low-frequency acoustic driver 140 may be acoustically coupled to one of the at least two first sound guide holes 147, and the rear chamber of the low-frequency acoustic driver 140 may be acoustically coupled to the other of the at least two first sound guide holes 147
  • the front chamber of the high-frequency acoustic driver 150 may be acoustically coupled to one of the at least two second sound guide holes 157, and the rear chamber of the high-frequency acoustic driver 150 may be acoustically coupled to the other of the at least two second sound guide holes 157 One.
  • the sound guide holes (such as the first sound guide hole 147 and the second sound guide hole 157) may be provided on the housing.
  • the acoustic output device 100 may include any number of acoustic driver structures.
  • the acoustic output device 100 may include two sets of high-frequency acoustic drivers 150 and two sets of low-frequency acoustic drivers 140, or one set of high-frequency acoustic drivers 150 and two sets of low-frequency acoustic drivers 140, etc., and these high-frequency/low-frequency drivers can be used separately To generate sounds in a specific frequency range.
  • the acoustic driver 140 and/or the acoustic driver 150 may include another signal processor.
  • the signal processor may have the same or different structural components as the signal processor 120 or 130.
  • the acoustic output device and its modules shown in FIG. 4 can be implemented in various ways.
  • the system and its modules may be implemented by hardware, software, or a combination of software and hardware.
  • the hardware part can be implemented using dedicated logic;
  • the software part can be stored in a memory and executed by an appropriate instruction execution system, such as a microprocessor or dedicated design hardware.
  • an appropriate instruction execution system such as a microprocessor or dedicated design hardware.
  • processor control codes for example on a carrier medium such as a disk, CD or DVD-ROM, such as a read-only memory ( Such codes are provided on a programmable memory of firmware) or a data carrier such as an optical or electronic signal carrier.
  • the system and its modules of this application can not only be implemented by hardware circuits such as very large-scale integrated circuits or gate arrays, semiconductors such as logic chips, transistors, etc., or programmable hardware devices such as field programmable gate arrays, programmable logic devices, etc. It can also be implemented by software executed by various types of processors, or can be implemented by a combination of the aforementioned hardware circuit and software (for example, firmware).
  • the above description of the acoustic output device 100 and its components is only for convenience of description, and does not limit the present application within the scope of the examples mentioned. It can be understood that for those skilled in the art, after understanding the principle of the device, it is possible to arbitrarily combine various units or form substructures to connect with other units without departing from this principle.
  • the electronic frequency division module 110 may be omitted, and the frequency division of the audio source signal may be implemented by the internal structure of the low-frequency acoustic driver 140 and/or the high-frequency acoustic driver 150.
  • the signal processor 120 or 130 may be a part independent of the electronic frequency dividing module 110. Such deformations are all within the protection scope of this application.
  • Fig. 5 is a schematic diagram of an acoustic output device according to some embodiments of the present application. For the purpose of illustration, description will be made by taking the same transducer coupled with different sound guide holes to form outwardly propagating sound as an example.
  • each transducer has a front side and a back side, and there are corresponding front chambers (ie, the first acoustic path) and back chambers (ie, the second acoustic path) on the front or back of the transducer.
  • these structures may have the same or approximately the same equivalent acoustic impedance, so that the transducer is symmetrically loaded.
  • the symmetrical load of the transducer can make different sound guide holes form sound sources satisfying the relationship between amplitude and phase (such as the "two-point sound source” with the same amplitude and opposite phase as described above), so that at high frequencies and/or A specific radiated sound field is formed in the low frequency range (for example, near-field sound is enhanced, while far-field sound leakage is suppressed).
  • the acoustic driver (such as the acoustic driver 140 or 150) may include a transducer, and an acoustic path and a sound guide hole connected to the transducer.
  • the position of the user's ear E is also shown in FIG. 5 for illustration.
  • the diagram (a) on the left in FIG. 5 mainly shows an application scenario of the acoustic driver 140.
  • the acoustic driver 140 includes a transducer 143 and is acoustically coupled with two first sound guide holes 147 through an acoustic path 145.
  • the diagram (b) on the right in FIG. 3 mainly shows an application scenario of the acoustic driver 150.
  • the acoustic driver 150 includes a transducer 153 and is acoustically coupled with two second sound guide holes 157 through an acoustic path 155.
  • the transducer 143 or 153 can generate vibration under the drive of an electric signal, and the vibration will generate a set of sounds with equal amplitude and opposite phase (180 degrees antiphase).
  • the transducer type may include, but is not limited to, one or any combination of air conduction speakers, bone conduction speakers, underwater acoustic transducers, ultrasonic transducers, etc.
  • the working principle of the transducer may include, but is not limited to, one or any combination of moving coil type, moving iron type, piezoelectric type, electrostatic type, magnetostrictive type, etc.
  • the transducer 143 or 153 may include a diaphragm that vibrates when driven by an electrical signal, and the front and back of the diaphragm can simultaneously output normal phase sound and reverse phase sound.
  • FIG 5 "+” and “-” are used to illustrate sounds of different phases, where “+” represents normal phase sound, and “-” represents reverse phase sound.
  • the transducer may be encapsulated by a housing on the support structure, and the housing may be provided with sound channels connected to the front side and the rear side of the transducer, respectively, thereby forming an acoustic path.
  • the front cavity of the transducer 143 is coupled to one of the two first sound guide holes 147 through the first acoustic path (ie, the front half of the acoustic path 145), and the back cavity of the transducer 143 passes through The second acoustic path (ie, the second half of the acoustic path 145) is acoustically coupled to the other of the two first sound guide holes 147.
  • the normal phase sound and the reverse phase sound output by the transducer 143 are respectively output from the two first sound guide holes 147.
  • the front cavity of the transducer 153 is coupled to one of the two second sound guide holes 157 through the third acoustic path (ie, the front half of the acoustic path 155), and the back cavity of the transducer 153 passes through The fourth acoustic path (ie, the second half of the acoustic path 155) is coupled to the other sound guide hole of the two second sound guide holes 157.
  • the normal phase sound and the reverse phase sound output by the transducer 153 are respectively output from the two second sound guide holes 157.
  • the acoustic path affects the nature of the delivered sound. For example, the acoustic path will attenuate the transmitted sound to a certain degree or change the phase of the transmitted sound.
  • the acoustic path may be constituted by one or any combination of sound ducts, sound cavities, resonant cavities, sound holes, sound slits, tuning nets, etc., or any combination thereof.
  • the acoustic path may further include an acoustic resistance material, which has a specific acoustic impedance.
  • the acoustic impedance can range from 5MKS Rayleigh to 500MKS Rayleigh.
  • the acoustic resistance material may include, but is not limited to, one or any combination of plastic, textile, metal, permeable material, woven material, screen material, and mesh material.
  • the front and back chambers corresponding to the acoustic driver can be set to have approximately the same equivalent.
  • Acoustic impedance For example, use the same acoustic resistance material, set up sound guide holes of the same size or shape, and so on.
  • the distance between the two first sound guide holes 147 of the low-frequency acoustic driver can be expressed as d 1 (that is, the first distance), and the distance between the two second sound guide holes 157 of the high-frequency acoustic driver can be expressed as d 2 (That is, the second spacing).
  • d 1 that is, the first distance
  • d 2 That is, the second spacing
  • the transducer 143 and the transducer 153 are jointly housed in the housing of the acoustic output device, and placed in isolation via a structure in the housing.
  • the acoustic output device 300 may include multiple sets of high-frequency acoustic drivers and low-frequency acoustic drivers.
  • the acoustic output device may include a set of high-frequency acoustic drivers and a set of low-frequency acoustic drivers, which are used to output sound to the left ear and/or the right ear at the same time.
  • the acoustic output device may include two sets of high-frequency acoustic drivers and two sets of low-frequency acoustic drivers.
  • One set of high-frequency acoustic drivers and one set of low-frequency acoustic drivers are used to output sound to the user's left ear, and the other set of high-frequency acoustic drivers And the low frequency acoustic driver is used to output sound to the user's right ear.
  • the high frequency acoustic driver and the low frequency acoustic driver may be configured to have different powers.
  • the low frequency acoustic driver may be configured to have a first power
  • the high frequency acoustic driver may be configured to have a second power
  • the first power is greater than the second power.
  • the first power and the second power can be any value.
  • 6A and 6B are schematic diagrams of sound output according to some embodiments of the present application.
  • the acoustic output device can generate sound in the same frequency range through two or more transducers, and propagate outward through different sound guide holes.
  • different transducers can be controlled by the same or different controllers, and can produce sounds that meet certain phase and amplitude conditions (for example, sounds with the same amplitude but opposite phase, different amplitudes and different phases. Opposite voices, etc.).
  • the controller can make the electrical signals input to the two low-frequency transducers of the acoustic driver have the same amplitude and opposite phase, so that when sound is formed, the two low-frequency transducers can output the same amplitude but Low-frequency sounds with opposite phases.
  • two transducers in the acoustic driver can be arranged in parallel in the acoustic output device, one of which is used to output normal phase sound, and the other is used to output reverse phase sound. sound.
  • the acoustic driver 140 on the right may include two transducers 143, two acoustic paths 145, and two first sound guide holes 147, and the acoustic driver 150 on the left may include two transducers 153. , Two acoustic paths 155 and two second sound guide holes 157.
  • the two transducers 143 can generate a set of low-frequency sounds with opposite phases (180 degrees antiphase).
  • One of the two transducers 143 outputs normal-phase sound (such as the transducer located below), and the other outputs anti-phase sound (such as the transducer located above).
  • the two sets of low-frequency sounds with opposite phases follow two
  • the acoustic path 145 is transmitted to the two first sound guide holes 147 and travels outward through the two first sound guide holes 147.
  • the two transducers 153 can generate a set of high-frequency sounds with opposite phases (180 degrees antiphase).
  • One of the two transducers 153 outputs normal-phase high-frequency sound (such as the transducer located below), and the other outputs reverse-phase high-frequency sound (such as the transducer located above).
  • the high-frequency sound is respectively transmitted to the two second sound guide holes 157 along the two acoustic paths 155 and propagates outward through the two second sound guide holes 157.
  • the two transducers in the acoustic driver can be arranged relatively close to each other along the same straight line, and one of them is used for outputting normal phase sound, and the other is used for Output reversed sound.
  • the acoustic driver 140 is on the left and the acoustic driver 150 is on the right.
  • the two transducers 143 of the acoustic driver 140 respectively generate a set of low-frequency sounds with the same amplitude and opposite phase under the control of the controller.
  • One of the transducers outputs positive-phase low-frequency sound and is transmitted to a first sound guide hole 147 along the first acoustic path, and the other transducer outputs anti-phase low-frequency sound and is transmitted to the other second acoustic path along the second acoustic path.
  • the two transducers 153 of the acoustic driver 150 respectively generate a set of high frequency sounds with equal amplitude and opposite phase under the control of the controller.
  • One of the transducers outputs normal-phase high-frequency sound and transmits it to a second sound guide hole 157 along the third acoustic path, and the other transducer outputs anti-phase high-frequency sound and transmits it to the other second acoustic path along the fourth acoustic path.
  • Two sound guide holes 157 Two sound guide holes 157.
  • the transducer 143 and/or the transducer 153 may be of various suitable types.
  • the transducer 143 and the transducer 153 may be moving coil speakers, which have the characteristics of high low-frequency sensitivity, large low-frequency dive depth, and low distortion.
  • the transducer 143 and the transducer 153 may be moving iron speakers, which have the characteristics of small size, high sensitivity, and large high frequency range.
  • the transducer 143 and the transducer 153 may be air conduction speakers or bone conduction speakers.
  • the transducer 143 and the transducer 153 may be balanced armature speakers.
  • the transducer 143 and the transducer 153 may be different types of transducers.
  • the transducer 143 may be a moving iron speaker, and the transducer 153 may be a moving coil speaker.
  • the transducer 143 may be a moving coil speaker, and the transducer 153 may be a moving iron speaker.
  • the listening position (that is, the position of the ear canal when the user wears the acoustic output device) may be located on the line of a set of two-point sound sources.
  • the listening position may be any suitable position.
  • the listening position may be located on a circle centered on the center of the two-point sound source.
  • the listening position can be located on the same side of the line of the two sets of dual-point sound sources, or in the middle of the line of the two sets of dual-point sound sources.
  • the simplified structure of the acoustic output device shown in FIGS. 6A and 6B is only an example, and is not a limitation of the present application.
  • the acoustic output device 400 and/or the acoustic output device 500 may include one or more combined structures such as a supporting structure, a controller, and a signal processor.
  • FIGS. 7A and 7B are schematic diagrams of acoustic output devices according to some embodiments of the present application.
  • the acoustic driver (such as the acoustic driver 140 or 150) may include multiple sets of narrowband speakers.
  • the acoustic output device may include multiple sets of narrowband speaker units and signal processing modules.
  • the acoustic output device respectively includes n groups of 2*n narrowband speaker units. Each group of narrowband speaker units has a different frequency response curve, the frequency response of each group is complementary, and jointly cover the audible sound frequency band.
  • the narrowband speaker mentioned here may be an acoustic driver with a narrower frequency response range compared to the above-mentioned low-frequency acoustic driver and high-frequency acoustic driver.
  • A1 to An and B1 to Bn respectively form n groups of two-point sound sources.
  • each group of two-point sound sources produces sounds with different frequency ranges.
  • the interval d n each sound source two-dot sound to regulate each frequency band of the near-field and far-field. For example, in order to increase the near-field listening volume and reduce the far-field leakage volume, the distance between the higher frequency two-point sound source can be made smaller than the lower frequency two-point sound source distance.
  • the signal processing module may include an equalizer (EQ) processing module and a digital signal processing (DSP) module.
  • the signal processing module can be used to realize signal equalization and other general digital signal processing algorithms (such as amplitude modulation, modulation equalization).
  • the processed signal can be connected to a corresponding acoustic driver (for example, a narrowband speaker) structure to output sound.
  • a corresponding acoustic driver for example, a narrowband speaker
  • the narrowband speaker may be a moving coil speaker or a moving iron speaker. More preferably, the narrowband speaker may be a balanced armature speaker. Two balanced armature speakers can be used to construct a two-point sound source, and the phases of the output sounds of the two speakers are opposite.
  • the acoustic driver (such as the acoustic driver 140 or 150) may include multiple sets of full-band speakers.
  • the acoustic output device may include multiple sets of full-band speaker units and signal processing modules.
  • the acoustic output device respectively includes n groups of 2*n full-band speaker units. Each group of full-band speaker units has the same or similar frequency response curve and can cover a wide frequency range.
  • the signal processing module in FIG. 7B includes at least one set of filters for dividing the frequency of the sound source signal, and then inputting electrical signals corresponding to different frequency ranges to each group of full-band speakers.
  • each group of speaker units can respectively generate sounds with different frequency ranges.
  • 8A-8C are schematic diagrams of acoustic paths according to some embodiments of the present application.
  • the corresponding acoustic filter network can be constructed by arranging sound tubes, acoustic cavities, acoustic resistance and other structures in the acoustic path to achieve frequency division of sound.
  • Figures 8A-8C show schematic structural diagrams of frequency division of a sound signal using an acoustic path. It should be noted that FIGS. 8A-8C are only examples of acoustic path settings when the acoustic path is used to divide the sound signal, and are not a limitation of the present application.
  • a group or more than one group of lumen structures can be connected in series to form an acoustic path, and an acoustic resistance material is arranged in the lumen to adjust the acoustic impedance of the entire structure to achieve a filtering effect.
  • the sound can be band-pass filtered or low-pass filtered by adjusting the size of each structure in the official cavity and the acoustic resistance material to achieve frequency division of the sound. As shown in FIG.
  • one or more resonant cavities can be constructed in the acoustic path branch, and the filtering effect can be achieved by adjusting the size of each structure and the acoustic resistance material.
  • a combination of a lumen and a resonant cavity (for example, a Helmholtz resonant cavity) structure can be constructed in the acoustic path, and the filter effect can be achieved by adjusting the size of each structure and the acoustic resistance material.
  • Fig. 9 is an exemplary graph of sound leakage under the joint action of two sets of two-point sound sources according to some embodiments of the present application.
  • FIG. 9 shows the acoustic output device (such as the acoustic output device 100, the acoustic output device 300, the acoustic output device 100, the acoustic output device 300, and the acoustic output device) under the combined action of two sets of double-point sound sources (a group of high-frequency double-point sound sources and a group of low-frequency double-point sound sources).
  • Device 400, acoustic output device 500, acoustic output device 600, etc. The crossover point of the two sets of dual-point sound sources in the figure is around 700 Hz.
  • the normalized parameter ⁇ is used as an index to evaluate the leakage volume (see formula (4) for the calculation of ⁇ ).
  • the dual-point sound source has a stronger ability to reduce leakage.
  • two sets of two-point sound sources are used to output high-frequency sound and low-frequency sound respectively, and the distance between the low-frequency two-point sound sources is greater than that of the high-frequency two-point sound sources Pitch.
  • the near-field listening volume increase is greater than the far-field leakage volume increase, which can achieve a higher near-field volume output in the low frequency range .
  • the leakage of the two-point sound source is originally very small, after increasing the distance between the two-point sound source, the slightly increased leakage can still be kept at a low level.
  • the high-frequency range by setting a smaller two-point sound source spacing (d 2 ), the problem of too low cut-off frequency for high-frequency leakage reduction and too narrow leakage reduction audio band is overcome.
  • the acoustic output device provided by the pitch in the low range is provided by two-dot sound source distance d 1
  • the high frequency is provided a two-dot sound source d 2 of the present application embodiment, can be obtained compared with a single point source, and a set of two point sound sources Stronger ability to reduce leakage.
  • the actual low-frequency and high-frequency sound output by the acoustic output device may be different from those shown in FIG. 9.
  • low-frequency and high-frequency sounds may have a certain overlap (aliasing) in the frequency bands near the crossover point, resulting in the total drop leakage of the acoustic output device without sudden changes at the crossover point as shown in Figure 9. Instead, there are gradual changes and transitions in the frequency band near the crossover point, as shown by the thin solid line in Figure 9. It is understandable that these differences will not affect the overall sound leakage reduction effect of the acoustic output device provided by the embodiment of the present application.
  • the acoustic output device provided by the present application can achieve sound output in different frequency bands by setting a high-frequency dual-point sound source and a low-frequency dual-point sound source, thereby achieving a better sound output effect;
  • the acoustic output device has a stronger effect of reducing leakage in a higher frequency band, and meets the needs of open binaural acoustic output devices.
  • the acoustic output device may include at least one set of acoustic drivers, and the sound generated by the at least one set of acoustic drivers can be propagated outward through at least two sound guide holes acoustically coupled therewith.
  • a baffle structure may be provided on the acoustic output device, so that the at least two sound guide holes are respectively distributed on both sides of the baffle.
  • the at least two sound guide holes may be distributed on both sides of the user's auricle.
  • the auricle serves as a baffle to separate the at least two sound guide holes, so that the at least two sound guide holes
  • the sound guide holes have different acoustic paths to the user's ear canal.
  • Fig. 10 is a schematic structural diagram of another acoustic output device according to some embodiments of the present application.
  • the acoustic output device 1000 may include a supporting structure 1010 and an acoustic driver 1020 disposed in the supporting structure.
  • the acoustic output device 1000 may be worn on the user's body (for example, the head, neck or upper torso of the human body) through the support structure 1010, while the support structure 1010 and the acoustic driver 1020 may be close to but not block the ear canal ,
  • the user's ears are kept open, and the user can not only hear the sound output by the acoustic output device 1000, but also obtain the sound of the external environment.
  • the acoustic output device 1000 can be arranged around or partly around the circumference of the user's ear, and can transmit sound through air conduction or bone conduction.
  • the support structure 1010 can be used to be worn on the body of a user, and can carry one or more acoustic drivers 1020.
  • the support structure 1010 may be a closed housing structure with a hollow inside, and the one or more acoustic drivers 1020 are located inside the support structure 1010.
  • the acoustic output device 1000 can be combined with glasses, headsets, head-mounted display devices, AR/VR helmets and other products. In this case, the support structure 1010 can be suspended or clamped. The method is fixed near the user's ear.
  • a hook may be provided on the supporting structure 1010, and the shape of the hook matches the shape of the auricle, so that the acoustic output device 1000 can be independently worn on the user's ear through the hook.
  • the independently worn acoustic output device 1000 may be connected to a signal source (for example, a computer, a mobile phone, or other mobile devices) in a wired or wireless (for example, Bluetooth) manner.
  • a signal source for example, a computer, a mobile phone, or other mobile devices
  • a wired or wireless for example, Bluetooth
  • the acoustic output device 1000 at the left and right ears may include a first output device and a second output device, wherein the first output device can communicate with the signal source, and the second output device can communicate with the first output device in a wireless manner.
  • the first output device and the second output device realize synchronization of audio playback through one or more synchronization signals.
  • the wireless connection mode may include, but is not limited to, Bluetooth, local area network, wide area network, wireless personal area network, near field communication, etc., or any combination thereof.
  • the supporting structure 1010 may be a housing structure with a human ear fitting shape, such as a circular ring shape, an oval shape, a polygonal shape (regular or irregular), a U shape, a V shape, and a semicircular shape to support
  • the structure 1010 can be directly hung on the user's ear.
  • the support structure 1010 may also include one or more fixing structures.
  • the fixing structure may include an ear hook, a head beam or an elastic band, so that the acoustic output device 1000 can be better fixed on the user's body and prevent the user from falling during use.
  • the elastic band may be a headband, and the headband may be configured to be worn around the head area.
  • the elastic band may be a neckband, configured to be worn around the neck/shoulder area.
  • the elastic band may be a continuous band and can be elastically stretched to be worn on the user's head, and the elastic band can also apply pressure to the user's head, making the acoustic output device 1000 firm The ground is fixed on a specific position of the user's head.
  • the elastic band may be a discontinuous band.
  • the elastic band may include a rigid part and a flexible part, wherein the rigid part may be made of a rigid material (for example, plastic or metal), and the rigid part may be physically connected to the supporting structure 1010 of the acoustic output device 1000 (for example, a snap connection). , Threaded connection, etc.).
  • the flexible portion may be made of elastic material (for example, cloth, composite material or/and neoprene).
  • the support structure 1010 when the user wears the acoustic output device 1000, the support structure 1010 may be located above or below the auricle.
  • the supporting structure 1010 can also be provided with a sound guide hole 1011 and a sound guide hole 1012 for transmitting sound.
  • the sound guide hole 1011 and the sound guide hole 1012 may be respectively located on both sides of the user's auricle, and the acoustic driver 1020 may output sound through the sound guide hole 1011 and the sound guide hole 1012.
  • the acoustic driver 1020 is an element that can receive electrical signals and convert them into sound signals for output.
  • the type of acoustic driver 1020 may include a low-frequency acoustic driver, a high-frequency acoustic driver, or a full-frequency acoustic driver, or any combination thereof.
  • the acoustic driver 1020 may also include, but is not limited to, moving coil, moving iron, piezoelectric, electrostatic, magnetostrictive, and other drivers.
  • the acoustic driver 1020 may include a diaphragm. When the diaphragm vibrates, sound can be emitted from the front and back sides of the diaphragm, respectively.
  • the front side of the diaphragm in the support structure 1010 is provided with an antechamber 1013 for transmitting sound.
  • the front chamber 1013 is acoustically coupled with the sound guide hole 1011, and the sound on the front side of the diaphragm can be emitted from the sound guide hole 1011 through the front chamber 1013.
  • a rear chamber 1014 for transmitting sound is provided at a position on the rear side of the diaphragm in the support structure 1010.
  • the rear chamber 1014 is acoustically coupled with the sound guide hole 1012, and the sound on the rear side of the diaphragm can be emitted from the sound guide hole 1012 through the rear chamber 1014.
  • the front and back sides of the diaphragm can simultaneously produce a set of opposite phase sounds.
  • the structure of the front chamber 1013 and the rear chamber 1014 may be configured so that the sound output by the acoustic driver 1020 at the sound guide hole 1011 and the sound guide hole 1012 meets specific conditions.
  • the length of the front chamber 1013 and the rear chamber 1014 can be designed so that a set of sounds with a specific phase relationship (for example, opposite phase) can be output at the sound guide hole 1011 and the sound guide hole 1012, so that the acoustic output device 1000 has a near field Both the lower listening volume and the far-field leakage problem have been effectively improved.
  • a set of sounds with a specific phase relationship for example, opposite phase
  • the acoustic driver 1020 may also include multiple diaphragms (for example, two diaphragms).
  • the multiple vibrating membranes vibrate respectively to generate sound, and the sound is transmitted from the corresponding sound guide hole after passing through different cavities connected to the supporting structure.
  • the multiple diaphragms can be controlled by the same or different controllers respectively, and can produce sounds that meet certain phase and amplitude conditions (for example, sounds with the same amplitude but opposite phases, sounds with different amplitudes and opposite phases, etc. ).
  • Fig. 11 is a schematic diagram of two point sound sources and listening positions according to some embodiments of the present application. As shown in Figure 11, point sound source a 1 and point sound source a 2 are located on the same side of the listening position, and point sound source a 1 is closer to the listening position, point sound source a 1 and point sound source a 2 are output respectively Sounds of the same amplitude but opposite phase.
  • Fig. 12 is a graph showing the variation of listening volume with frequency of two-point sound sources with different spacings according to some embodiments of the present application.
  • the abscissa represents the frequency (f) of the sound output by the dual-point sound source, in hertz (Hz), and the ordinate represents the volume of the sound, in decibels (dB).
  • Hz hertz
  • dB decibels
  • the sound pressure amplitude difference that is, the sound pressure difference
  • the sound path difference becomes larger.
  • the effect of sound cancellation is weakened, which in turn increases the volume of the listening position.
  • the volume at the listening position in the middle and low frequency bands for example, the sound with a frequency less than 1000 Hz
  • the volume at the listening position in the middle and low frequency bands is still lower than the volume produced by a single-point sound source at the same location and the same intensity.
  • the sound pressure amplitude that is, the sound pressure
  • the sound pressure may refer to the pressure generated by the vibration of sound through air.
  • the volume at the listening position can be increased by increasing the distance between the two-point sound source (for example, the point sound source a 1 and the point sound source a 2 ), but as the distance increases, the sound of the two-point sound source The cancellation ability becomes weak, which in turn leads to an increase in far-field sound leakage.
  • FIG. 13 is a graph of normalized parameters of two-point sound sources with different spacings in the far field as a function of frequency according to some embodiments of the present application. Among them, the abscissa represents the frequency (f) of the sound, the unit is hertz (Hz), and the ordinate uses the normalized parameter ⁇ as an index for evaluating the leakage volume, and the unit is decibel (dB).
  • the far-field normalization parameter ⁇ of a single-point sound source is used as a reference. As the distance between two-point sound sources increases from d to 10d, the far-field normalization parameter ⁇ gradually increases, indicating leakage The sound gradually becomes louder.
  • the normalization parameter ⁇ please refer to formula (4) and its related description.
  • adding a baffle structure to the acoustic output device is beneficial to improve the output effect of the acoustic output device, that is, increase the sound intensity at the near-field listening position while reducing the volume of far-field leakage.
  • FIG. 14 is a schematic diagram of an exemplary distribution of baffles provided between two-point sound sources according to some embodiments of the present application.
  • the value difference increases, so that the degree of cancellation of the two sounds at the listening position decreases, and the volume at the listening position increases.
  • the sound waves generated by the point sound source a 1 and the point sound source a 2 can interfere in a larger space without bypassing the baffle (similar to the case of no baffle), which is compared to Without a baffle, the sound leakage in the far field will not increase significantly. Therefore, setting a baffle structure between the point sound source a 1 and the point sound source a 2 can significantly increase the volume of the near-field listening position without a significant increase in the volume of the far-field leakage sound.
  • the auricle when the two-point sound sources are located on both sides of the auricle, the auricle has the effect of a baffle, so for convenience, the auricle may also be called a baffle.
  • the result can be equivalent to that the near-field sound is produced by a two-point sound source with a spacing of D 1 (also called mode 1), and the far-field sound is produced by a two-point sound source with a spacing of D 2 Point sound source generation (also called mode 2), where D 1 >D 2 .
  • Fig. 15 is a graph showing changes in listening volume with frequency when the auricle is located between two-point sound sources according to some embodiments of the present application.
  • the volume of the near-field sound (that is, the sound heard by the user’s ears) when the two-point sound source is distributed on both sides of the auricle is the same as that of Mode 1.
  • the near-field sound volume is basically the same, and both are greater than the near-field sound volume of Mode 2, and are close to the near-field sound volume of a single point sound source.
  • the frequency increases (for example, when the frequency is between 2000 Hz and 7000 Hz)
  • the volume of the near-field sound when the mode 1 and two-point sound sources are distributed on both sides of the auricle is greater than that of the single-point sound source.
  • Fig. 16 is a graph showing the variation of the leakage sound volume with frequency when the auricle is located between two-point sound sources according to some embodiments of the present application.
  • the far-field leakage sound volume will increase, but when the two-point sound source is distributed on both sides of the auricle, the far-field leakage sound volume produced by it is the same as that of the far-field mode 2
  • the sound leakage volume is basically the same, and both are smaller than the far-field leakage sound volume of Mode 1 and the far-field sound leakage volume of a single-point sound source. This shows that when the user's auricle is located between the two-point sound source, the sound transmitted from the sound source to the far field can be effectively reduced, that is, the sound leakage from the sound source to the surrounding environment can be effectively reduced.
  • FIG. 17 is a graph of normalized parameters changing with frequency when the two-point sound sources of the acoustic output device according to some embodiments of the present application are distributed on both sides of the auricle.
  • the normalized parameter when the two-point sound source is distributed on both sides of the auricle is smaller than Mode 1 (there is no baffle structure between the two-point sound source, and the distance is D 1 ) , Mode 2 (no baffle structure between the two-point sound source, and the spacing is D 2 ) and the normalized parameters in the case of a single-point sound source, which shows that when the two-point sound source is located on both sides of the auricle,
  • the acoustic output device has a better ability to reduce leakage.
  • the near-field volume or/and far-field leakage of the listening position under different conditions The sound volume is specified.
  • Fig. 18 is a graph showing the variation of the listening volume and the leakage volume with frequency between two point sound sources with or without a baffle according to some embodiments of the present application.
  • the acoustic output device adds a baffle between two point sound sources (ie, two sound guide holes), in the near field, it is equivalent to increasing the distance between the two point sound sources.
  • the sound volume at the listening position is equivalent to being produced by a set of two-point sound sources with a large distance, so that the listening volume in the near field is significantly increased compared to the case without a baffle.
  • the sound leakage is equivalent to a set of two point sound sources with a small distance, so the sound leakage is in the presence or absence of baffles.
  • the situation does not change significantly. It can be seen that by setting a baffle between the two sound guide holes (two-point sound source), while effectively improving the sound output device's ability to reduce leakage, it can also significantly increase the near-field volume of the sound output device. Therefore, the requirements for components that play a sounding role in the acoustic output device are greatly reduced, and at the same time, the electrical loss of the acoustic output device can be reduced. Therefore, the use time of the acoustic output device can be greatly extended with a certain amount of power.
  • Fig. 19 is a graph showing the variation of the listening volume and the leakage volume with the distance between the two-point sound source when the frequency of the dual-point sound source is 300 Hz with or without a baffle according to some embodiments of the present application.
  • 20 is a graph showing the variation of the listening volume and leakage volume with the distance between the two-point sound source when the frequency of the two-point sound source is 1000 Hz with or without a baffle according to some embodiments of the present application.
  • the listening volume when there is a baffle between the two-point sound sources is always greater than that of the two-point sound source.
  • the baffle structure between the two point sound sources can effectively increase the listening volume in the near field.
  • the volume of the leakage sound when there is a baffle between the two-point sound sources is equivalent to the sound leakage volume when there is no baffle between the two-point sound sources, which indicates whether a baffle is set between the two-point sound sources at this frequency
  • the structure has little effect on the far-field leakage.
  • FIG. 21 is a graph showing the variation of the listening volume and the leakage volume with the distance between the two-point sound source when the frequency of the two-point sound source is 5000 Hz with or without a baffle according to some embodiments of the present application.
  • the listening volume when there is a baffle between the two-point sound sources is always greater than that between the two-point sound sources The listening volume when there is no baffle.
  • the leakage volume of the two-point sound source with and without the baffle fluctuates with the change of the distance d, but on the whole, it can be seen whether there is a baffle structure between the two-point sound source.
  • the far-field leakage has little effect.
  • FIG. 22 is a graph showing the variation of listening volume with frequency when the distance d between two-point sound sources is 1 cm according to some embodiments of the present application
  • FIG. 23 is a graph showing that the distance d between two-point sound sources according to some embodiments of the present application is The graph of listening volume changes with frequency at 2cm
  • Figure 24 is a graph showing the graphs of listening volume with frequency when the distance d between two-point sound sources is 4cm according to some embodiments of the application.
  • the normalized parameter of the far field varies with frequency when the distance d between the two-point sound sources is 1 cm shown in the embodiment.
  • FIG. 26 is a graph showing the distance between the two-point sound sources when the distance d is 2 cm according to some embodiments of the present application.
  • FIG. 27 is a graph of the normalized parameter of the far field with frequency when the distance d between two-point sound sources is 4 cm according to some embodiments of the present application.
  • d for different sound guide holes d (for example, 1cm, 2cm, 4cm)
  • two guide holes When the sound holes are arranged on both sides of the auricle (that is, when the “baffle effect” is shown in the figure), the volume provided is higher than that when the sound holes are not arranged on both sides of the auricle (that is, as shown in the figure) Shows the "no baffle effect" when the volume provided is loud.
  • the certain frequency mentioned here may be below 10000 Hz, or preferably, below 5000 Hz, or more preferably, below 1000 Hz.
  • the distance d between two sound guide holes or two-point sound sources cannot be too large.
  • the distance d between the two sound guide holes can be set to be no more than 20 cm.
  • the distance d between the two sound guide holes can be set to no more than 12 cm, more preferably, the distance d between the two sound guide holes can be set to no more than 10 cm, and further preferably, the distance between the two sound guide holes The distance d can be set to be no more than 6 cm.
  • the distance d between the two sound guide holes can be set to be not less than 1 cm and not more than 12 cm.
  • the two sound guide holes The distance d between the two sound guide holes can be set to not less than 1 cm and not more than 10 cm, more preferably, the distance d between the two sound guide holes can be set to not less than 1 cm and not more than 8 cm, more preferably, the two sound guide holes
  • the distance d between the two sound guide holes can be set to not less than 1 cm and not more than 6 cm. More preferably, the distance d between the two sound guide holes can be set to not less than 1 cm and not more than 3 cm.
  • the number of sound guide holes on both sides of the baffle is not limited to the above one, but may also be multiple, which may be the same or different.
  • the number of sound guide holes on one side of the baffle can be two, and the number of sound guide holes on the other side can be two or three.
  • the acoustic output device may be provided with at least two sound guide holes, and the at least two sound guide holes include two sound guide holes respectively located on the front and rear sides of the user's auricle. Sound guide hole.
  • the sound guide hole located on the front of the auricle is away from the user’s ear canal.
  • the acoustic path (that is, the acoustic distance from the sound guide hole to the entrance of the user's ear canal) is shorter than the acoustic path of the sound guide hole located at the back of the auricle from the user's ear.
  • listening position 1, listening position 2, and listening position 3 and point sound source a 1 is equal to r 1
  • the distance between listening position 4 and point sound source a 1 is r 2
  • point sound source a 1 and point sound source a 2 respectively produce sounds with opposite phases.
  • Figure 29 is a graph showing the variation of the listening volume with frequency of a two-point sound source without a baffle according to some embodiments of the present application at different listening positions in the near field.
  • Figure 30 is based on Figure 29, according to the formula (4) The obtained normalized parameters of different listening positions vary with frequency.
  • the two point sound sources are generated at the listening position 1.
  • the difference in the amplitude of the sound is small, so the sound of the two point sound sources interferes in the listening position 1, resulting in a lower listening volume compared to other listening positions.
  • listening position 2 For listening position 2, compared to listening position 1, the distance between the listening position and the point sound source a 1 has not changed, that is, the sound interval from the point sound source a 1 to the listening position 2 has not changed, but the listening position The distance between position 2 and point sound source a 2 increases, the sound path from point sound source a 2 to listening position 2 increases, and the difference in the amplitude of the sound produced by point sound source a 1 and point sound source a 2 at this position Increase, so the listening volume after the interference of the two point sound sources at listening position 2 is greater than the listening volume at listening position 1.
  • the listening volume at listening position 3 is the largest.
  • the listening volume of the near-field listening position will change with the relative position of the listening position and the two point sound sources.
  • the listening position When the listening position is on the line connecting two point sound sources and on the same side of the two point sound sources (for example, listening position 3), the sound path difference between the two point sound sources at the listening position is the largest (sound path The difference is the distance d) between the two point sound sources. In this case (that is, when the auricle is not used as a baffle), the listening volume at this listening position is greater than the listening volume at other positions.
  • formula (4) when the far-field leakage is constant, the normalized parameter corresponding to the listening position is the smallest, and the ability to reduce leakage is the strongest.
  • reducing the distance r 1 between the listening position and the point sound source a 1 (for example, listening position 4) can further increase the volume of the listening position, reduce the sound leakage index, and improve the ability of sound leakage reduction.
  • Figure 31 is a graph showing the variation of the listening volume with frequency at different listening positions of the near-field two-point sound source with baffles (as shown in Figure 28) according to some embodiments of the present application.
  • Figure 32 is On the basis of Fig. 31, the normalized parameters of different listening positions obtained according to formula (4) are graphs of changes with frequency. As shown in Figures 31 and 32, compared to the case of no baffle, the listening volume generated by the dual-point sound source at listening position 1 when there is a baffle increases significantly, and the listening volume at listening position 1 exceeds the listening volume The listening volume at position 2 and listening position 3.
  • the effect of the baffle on the sound field of point sound source a 2 reaching these two listening positions is not very obvious, so in listening position 2 and listening position 3
  • the volume increase effect of is smaller than the volume increase effect of listening position 1 and listening position 4 that are closer to the baffle.
  • the listening volume of the near-field listening position changes with the change of the listening position, so in different listening positions, according to formula (4) .
  • the normalized parameters of the acoustic output device are different. Among them, the listening position with higher listening volume (for example, listening position 1 and listening position 4), the normalization parameter is small, and the ability to reduce leakage is strong; the listening position with lower listening volume (for example, listening Tone position 2 and listening position 3), normalized parameters are larger, and the ability to reduce leakage is weak.
  • the user's auricle can be used as a baffle, and the two sound guide holes on the acoustic output device can be arranged on the front and rear sides of the auricle, and the ear canal is located at two listening positions. Between sound guide holes.
  • the distance from the sound guide hole on the front of the auricle to the ear canal is smaller than the distance from the sound guide hole on the back of the auricle to the ear canal.
  • the acoustic output device may include one or more contact points (for example, "inflection points" on the support structure to match the shape of the ear) that contact the auricle when worn.
  • the contact point may be located on the line of the two sound guide holes or on one side of the line of the two sound guide holes.
  • the ratio of the distance from the sound guide hole on the front side to the contact point to the distance from the sound guide hole on the back side to the contact point may be between 0.05-20, preferably between 0.1-10, more preferably, 0.2 -5, more preferably, 0.4-2.5.
  • Fig. 33 is an exemplary distribution diagram of a dual-point sound source and a baffle (for example, auricle) according to some embodiments of the present application.
  • the position of the baffle between the two sound guide holes also has a certain influence on the sound output effect.
  • a baffle is set between the point sound source a 1 and the point sound source a 2 , and the listening position is located on the line connecting the point sound source a 1 and the point sound source a 2 .
  • a 1 point sound source and the baffle spacing is L
  • a 1-point sound source and a point sound source distance is between 2 d
  • the point source The distance between a1 and the listening sound is L 1
  • the distance between the listening position and the baffle is L 2 .
  • FIG. 34 is a graph showing the variation of the listening volume of the near field with frequency when the baffle according to some embodiments of the present application is at different positions
  • FIG. 35 is a graph showing how the baffle according to some embodiments of the present application changes when the baffle is at different positions.
  • FIG. 36 is a graph of the normalized parameters of the baffle at different positions according to some embodiments of the present application. Combining Figure 34 to Figure 36, the far-field sound leakage varies little with the position of the baffle between the two-point sound sources.
  • the listening position is farther from the baffle, and the baffle has less influence on the sound path difference between the point sound source a 1 and the point sound source a 2 reaching the listening position, so the listening position is added after the baffle is added.
  • the volume changes less.
  • the position of the two sound guide holes can be designed so that when the user wears the acoustic output device, the sound guide hole on the front side of the auricle is connected to the auricle (or the acoustic output device is used for contact with the auricle).
  • the ratio of the distance between the dots) to the distance between the two sound guide holes is not more than 0.5.
  • the ratio of the distance from the sound guide hole on the front side of the auricle to the auricle (or the contact point on the acoustic output device for contacting the auricle) to the distance between the two sound guide holes is not greater than 0.3. More preferably, the ratio of the distance from the sound guide hole on the front side of the auricle to the auricle (or the contact point on the acoustic output device for contacting the auricle) to the distance between the two sound guide holes is not greater than 0.1.
  • the distance between the sound guide hole on the front side of the auricle and the auricle (or the contact point on the acoustic output device for contacting the auricle) and the distance between the two sound guide holes are not less than 0.05.
  • the ratio of the distance between the two sound guide holes to the height of the pinna is not less than 0.2.
  • the ratio of the distance between the two sound guide holes to the height of the pinna is not greater than 4.
  • the height of the auricle may refer to the length of the auricle in a direction perpendicular to the sagittal plane.
  • the sound path from the acoustic driver to the sound guide hole in the acoustic output device has a certain effect on the near-field volume and far-field leakage.
  • the sound path can be changed by adjusting the length of the cavity between the diaphragm and the sound guide hole in the acoustic output device.
  • the acoustic driver includes one diaphragm, and the front and rear sides of the diaphragm are respectively coupled to two sound guide holes through the front chamber and the rear chamber.
  • the sound path between the diaphragm and the two sound guide holes is different.
  • the sound path ratio of the diaphragm to the two sound guide holes is 0.5-2. More preferably, the sound path ratio of the diaphragm to the two sound guide holes is 0.6-1.5. Further preferably, the sound path ratio of the diaphragm to the two sound guide holes is 0.8-1.2.
  • the amplitude of the sound generated at the two sound guide holes may be changed on the premise of keeping the phases of the sounds generated at the two sound guide holes opposite to improve the output effect of the acoustic output device.
  • the purpose of adjusting the sound amplitude at the sound guide hole can be achieved by adjusting the impedance of the acoustic path between the two sound guide holes and the acoustic driver.
  • impedance may refer to the resistance to be overcome by the displacement of the medium during sound wave conduction.
  • the acoustic path may be filled with or not filled with damping materials (for example, tuning nets, tuning cotton, etc.) to achieve sound amplitude modulation.
  • a resonant cavity, a sound hole, an acoustic slit, a tuning net, or a tuning cotton may be provided in the acoustic path to adjust the acoustic resistance to change the impedance of the acoustic path.
  • the acoustic resistance of the acoustic path can also be changed by adjusting the apertures of the two sound guide holes.
  • the acoustic impedance ratio of the acoustic driver (the diaphragm) to the two sound guide holes is 0.5-2. More preferably, the ratio of the acoustic impedance of the acoustic driver (diaphragm) to the two sound guide holes is 0.8-1.2.
  • the listening position may not be on the line of the dual-point sound source, but may also be above, below, or in the extending direction of the line of the dual-point sound source.
  • the distance between the point sound source and the auricle and the measurement method of the height of the auricle can also be adjusted according to different scenarios. The above similar changes are all within the protection scope of this application.
  • Fig. 37 is a schematic structural diagram of yet another acoustic output device according to some embodiments of the present application.
  • the frequency band of listening is mainly concentrated in the middle and low frequency bands, and the optimization goal is mainly to increase the listening volume in this frequency band.
  • the parameters of the dual-point sound source can be adjusted by certain means to achieve a significant increase in listening volume while the leakage volume is basically unchanged (the increase in listening volume is greater than the increase in leakage volume).
  • the sound leakage reduction effect of the dual-point sound source becomes weaker.
  • the main objective is to reduce the sound leakage.
  • the acoustic output device 1000 may further include an acoustic driver 1030.
  • the acoustic driver 1030 outputs sound from the two second sound guide holes. Regarding the acoustic driver 1030 and the second sound guide hole and the structure between them, reference may be made to the detailed description of the acoustic driver 1020 and the first sound guide hole. In some embodiments, the acoustic driver 1030 and the acoustic driver 1020 can respectively output sounds of different frequencies.
  • the acoustic output device may further include a controller configured to cause the acoustic driver 1020 to output sound in a first frequency range and cause the acoustic driver 1030 to output sound in a second frequency range, wherein ,
  • the second frequency range includes frequencies higher than the first frequency range.
  • the range of the first frequency is 100 Hz-1000 Hz
  • the range of the second frequency is 1000 Hz-10000 Hz.
  • the acoustic driver 1020 is a low frequency speaker, and the acoustic driver 1030 is a mid to high frequency speaker. Due to the different frequency response characteristics of low frequency speakers and mid-to-high frequency speakers, the output sound frequency bands will also be different. By using low frequency speakers and mid-to-high frequency speakers, the high and low frequency sounds can be divided, and then the low frequency can be constructed separately. Double-point sound source and mid-high frequency double-point sound source are used for near-field sound output and far-field leakage reduction.
  • the acoustic driver 1020 can provide a two-point sound source that outputs low-frequency sound through the sound guide hole 1011 and the sound guide hole 1012, and is mainly used to output sound in the low frequency band.
  • Low-frequency dual-point sound sources can be distributed on both sides of the auricle to increase the volume near the ear in the near field.
  • the acoustic driver 1030 can provide a double-point sound source outputting a mid-to-high frequency band through the two second sound guide holes, and can reduce the mid-to-high frequency sound leakage by controlling the distance between the two second sound guide holes.
  • the mid-to-high frequency dual-point sound source can be distributed on both sides of the auricle, or on the same side of the auricle.
  • the acoustic driver 1020 may provide a two-point sound source outputting full-frequency sound through the sound guide hole 1011 and the sound guide hole 1012, so as to further increase the volume of the near-field sound.
  • the distance d 2 between the two second sound guide holes is smaller than the distance d 1 between the sound guide holes 1011 and 1012, that is, d 1 is greater than d 2 .
  • d 1 is greater than d 2 .
  • the sound guide holes of the acoustic output device are not limited to the two sound guide holes 1011 and 1012 corresponding to the acoustic driver 1720 shown in FIG. 37, which are distributed on both sides of the auricle and two corresponding to the acoustic driver 1030.
  • the second sound guide hole is distributed on the front side of the auricle.
  • the two second sound guide holes corresponding to the acoustic driver 1030 may be distributed on the same side of the auricle (for example, behind, above, or below the auricle).
  • the two second sound guide holes corresponding to the acoustic driver 1030 may be distributed on both sides of the auricle.
  • the sound guide hole 1011 is located between the two sound guide holes 1011 and 1012.
  • a baffle can be arranged occasionally/between the two second sound guide holes to further increase the listening volume in the near field and reduce the sound leakage in the far field.
  • the two sound guide holes corresponding to the acoustic driver 1020 may also be located on the same side of the auricle (for example, the front side, the back side, above, and below the auricle).
  • the acoustic output device may have, for example, glasses, earphones, bracelets, helmets, watches, clothing, or backpacks.
  • glasses and earphones with sound output functions as examples of acoustic output devices for description.
  • the glasses may include near-sighted glasses, sports glasses, far-sighted glasses, reading glasses, astigmatism glasses, sand-proof glasses, sunglasses, anti-ultraviolet glasses, welding glasses, anti-infrared glasses, virtual reality (VR) glasses, augmented reality ( Augmented Reality (AR) glasses, Mixed Reality (MR) glasses, Mediated Reality (Mediated Reality) glasses, etc., or a combination thereof.
  • the earphones may include open binaural earphones.
  • Fig. 38 is a schematic diagram of glasses according to some embodiments of the present application.
  • the glasses 3800 may include an acoustic output device 3810, a frame 3820, a temple 3830, a lens 3840, a communication module 3850, a power module 3860, and a control module 3870.
  • the acoustic output device 3810 may be configured to output sound.
  • the sound may include audio files (such as music, recording, etc.), real-time calls, broadcasts, prompt sounds, and the like.
  • the user can play audio or broadcast through the acoustic output device 3810.
  • the user can make a real-time call with an external device through the acoustic output device 3810 (in this case, the glasses 3800 may also include a microphone).
  • the acoustic output device 3810 may emit a prompt sound according to a user's operation or the state of the glasses 3800 or its components (for example, the acoustic output device 3810, the communication module 3850, the power module 3860, and the control module 3870).
  • the acoustic output device 3810 may be disposed inside the temple 3830.
  • the acoustic output device 3810 may include a first output device 3810-1 and a second output device 3810-2 located on the left and right temples 3830, respectively.
  • the first output device 3810-1 and the second output device 3810-2 can be connected to a signal source (for example, a computer, a mobile phone or other mobile devices) in a wired or wireless (for example, Bluetooth) manner through the communication module 3850.
  • a signal source for example, a computer, a mobile phone or other mobile devices
  • the first output device 3810-1 and the second output device 3810-2 may both be communicatively connected with the signal source through the communication module 3850.
  • the first output device 3810-1 can communicate with the signal source through the communication module 3850
  • the second output device 3810-2 can be wirelessly connected with the first output device 3810-1 through the communication module 3850 or through the mirror frame 3820 and the mirror.
  • the wires inside the leg 3830 are wiredly connected to the first output device 3810-1.
  • the first output device 3810-1 and the second output device 3810-2 may synchronize audio playback through one or more synchronization signals.
  • the acoustic output device 3810 may be disposed inside the frame 3820 or the lens 3840.
  • the acoustic output device 3810 may be independent of the glasses 3800, and can be detachably connected to the glasses 3800 (for example, plug-in, snap-fit, threaded connection).
  • each temple 3830 may carry one or more acoustic output devices 3810.
  • the temple 3830 may be a closed housing structure with a hollow inside, and the inside of each temple 3830 carries a plurality of first output devices 3810-1 or second output devices 3810-2 respectively.
  • the acoustic output device 3810 may be provided at any part of the temple 3830.
  • the acoustic output device 3810 may be provided at the head (for example, the part close to the lens 3840), the tail (for example, the part far away from the lens 3840), or the middle of the temple 3830.
  • a part of the plurality of acoustic output devices 3810 may be arranged at the head of the temple 3830, and another part may be arranged at the tail of the temple 3830.
  • the glasses 3800 or its components can communicate with each other or with external devices (for example, other glasses, signal sources (for example, computers, mobile phones or other mobile devices) through the communication module 3850.
  • external devices for example, other glasses, signal sources (for example, computers, mobile phones or other mobile devices)
  • the glasses 3800 can communicate with an external mobile phone (for example, Bluetooth connection) through the communication module 3850 to realize functions such as dialing and receiving calls and playing audio.
  • the glasses 3800 can communicate with other glasses through the communication module 3850 to realize audio sharing.
  • the communication may be wireless communication.
  • the wireless communication may include, but is not limited to, Bluetooth, local area network, wide area network, wireless personal area network, near field communication, etc., or any combination thereof.
  • the external device can view the information of the glasses 3800 (for example, position information, power information) and control the glasses 3800 to implement its functions, such as playing audio, calling, etc.
  • the communication module 3850 may be disposed at any position of the glasses 3800.
  • the communication module 3850 may be disposed inside the spectacle frame 3820, the temple 3830 or the lens 3840.
  • the communication module 3850 may be integrated in the acoustic output device 3810, the power module 3860, or the control module 3870 as a component.
  • the lens frame 3820 may be configured to support the lens 3840.
  • the spectacle frame 3820 has various shapes, such as a circle, a rectangle, an oval, a polygon (regular or irregular), etc. or the like.
  • the frame 3820 can be any shape that fits the lens 3840.
  • the material of the spectacle frame 3820 may include metal and/or non-metal.
  • the metal may include pure metal (ie, elemental metal), alloy, gold-clad, metal-plated, and the like.
  • the pure metal may include iron, copper, aluminum, titanium, silver, gold and the like.
  • the alloy may include stainless steel, copper alloy, nickel chromium alloy, manganese nickel alloy, nickel copper alloy, nickel titanium alloy, titanium alloy, and the like.
  • the metal plating may include gold plating, titanium plating, rhodium plating, palladium plating, nickel plating, chrome plating, and the like.
  • the non-metal may include plastic, fiber (for example, acetate fiber, nitrocellulose, nylon), polymer material (for example, plastic titanium, epoxy resin), wood, animal shell, animal horn, etc.
  • the plastics may include thermoplastics, thermosetting plastics, hybrid plastics, and the like.
  • the material of the temple 3830 and the material of the frame 3820 may be the same.
  • the material of the temple 3830 and the material of the frame 3820 are both plastic titanium.
  • the material of the temple 3830 and the material of the frame 3820 may be different.
  • the material of the temple 3830 is plastic, and the material of the mirror frame 3820 is metal.
  • the glasses 3800 may further include a bridge 3821.
  • the bridge 3821 can connect the left and right frames 3820 and the left and right lenses 3840.
  • the bridge 3821 may be integrally formed with the left and right spectacle frames 3820 or physically connected between the left and right spectacle frames 3820.
  • the material of the bridge 3821 may be the same as or different from the frame 3820.
  • the glasses 3800 may further include a nose pad 3822.
  • the nose pad 3822 may be used to support and stabilize the glasses 3800 when the user wears the glasses 3800.
  • the left and right nose pads 3822 can be integrally formed with the left and right lens frames 3820 or physically connected to the left and right lens frames 3820 respectively.
  • the material of the nose pad 3822 can be the same as or different from the frame 3820.
  • the spectacle frame 3820 may further include a stake 3823.
  • the pile head 3823 is the junction of the mirror frame 3820 and the mirror legs 3830.
  • the spectacle frame 3820 may be physically connected to the spectacle leg 3830 through the post 3823.
  • the physical connection may include hinged connection, snap connection, threaded connection, welding, etc.
  • the hinge 3880 used to connect the spectacle frame 3820 and the temple 3830 can be fixed at one end to the pile head 3823 and the other end to the temple 3830.
  • the left and right stakes 3823 can be integrally formed with the left and right mirror frames 3820 or physically connected to the left and right mirror frames 3820 respectively.
  • the material of the pile head 3823 can be the same as or different from the mirror frame 3820.
  • the material of the hinge 3880 may include pure metal, alloy, gold-plated, metal-plated (for example, gold-plated stainless steel), and the like.
  • the lens 3840 may have various shapes, such as a circle, a rectangle, an ellipse, a polygon (regular or irregular), etc. or the like.
  • the lens 3840 may include myopic lenses, presbyopic lenses, sunglasses lenses (for example, sunglasses), flat lenses, anti-blue lenses, polarized lenses, etc., or any combination thereof.
  • the material of the lens 3840 may include natural materials, optical glass, optical resin and so on.
  • the lens 3840 may have anti-scratch and anti-shatter protection.
  • the glasses 3800 may be used as AR (Augmented Reality) glasses or VR (Virtual Reality) glasses.
  • the light transmittance and/or haze of the lens 3840 can be automatically adjusted and the glasses 3800 can also call a mini projection device set near the lens 3840.
  • the light transmittance of the lens 3840 can be appropriately reduced, and the image or video that needs to be projected can be projected on the outside of the lens 3840 in the user's eye direction through the mini projection device.
  • the haze of the lens 3840 can be increased and the image or video to be projected can be projected on the inner side of the lens 3840 through the mini projection device.
  • the power module 3860 may be configured to provide power for other components of the glasses 3800 (for example, the acoustic output device 3810, the communication module 3850, and the control module 3870).
  • the charging mode of the power module 3860 may include wireless charging, wired charging, magnetic charging, and the like.
  • the wireless charging may include electromagnetic induction wireless charging, magnetic field resonance wireless charging, radio wave wireless charging, solar charging, etc., or any combination thereof.
  • the power module 3860 may include dry batteries, lead storage batteries, lithium batteries, solar batteries, etc., or any combination thereof.
  • the power module 3860 may be disposed inside the temple 3830.
  • the power module 3860 is disposed inside one of the left and right temples 3830, and supplies power to the first output device 3810-1 and the second output device 3810-2 of the two temples 3830.
  • a power supply module 3860 is provided inside the two temples 3830 and supplies power to the first output device 3810-1 and the second output device 3810-2, respectively.
  • the power supply module 3860 is not limited to the power supply module 3860 shown in FIG. 38 being provided at a position where the temple 3830 is close to the lens 3840.
  • the power module 3860 may be arranged at a position where the temple 3830 is away from the lens 3840.
  • the power supply module 3860 can also be arranged inside the frame 3820 or the lens 3840.
  • the power module 3860 can also be integrated into the acoustic output device 3810, the communication module 3850 or the control module 3870 as a component.
  • the control module 3870 may be configured to control the working state of other components of the glasses 3800 (for example, the acoustic output device 3810, the communication module 3850, and the power supply module 3860).
  • the control module 3870 can control the acoustic output device 3810 to turn on and off.
  • the control module 3870 can switch the audio output by the acoustic output device 3810 according to the user's instruction, play the audio or playlist of a specified category (for example, classical, pop) or a specified singer (for example, Michael Jackson, Jay Chou, etc.), and adjust the acoustics
  • the output device 3810 outputs the volume of sound and so on.
  • control module 3870 may directly communicate with other components of the glasses 3800 or communicate with other components of the glasses 3800 through the communication module 3850.
  • control module 3870 can automatically detect the status of other components of the glasses 3800 or automatically receive status information reported by other components of the glasses 3800. According to the status or status information, the control module 3870 can control other components. For example, the control module 3870 can automatically detect the power of the power module 3860, and when the power of the power module 3860 is lower than a critical value (for example, 20%), control the acoustic output device 3810 to output a charging prompt sound (for example, "low battery power", "Shutdown soon").
  • a critical value for example, 20%
  • control module 3870 can automatically detect whether the communication module 3850 is connected to an external device (for example, the user's mobile phone) (for example, Bluetooth connection), and when the communication module 3850 is not connected to the external device, control the communication module 3850 to connect to the external device And when the connection is successful, the acoustic output device 3810 is controlled to output a prompt sound (for example, "Bluetooth connection successful").
  • the control module 3870 may be further configured to control external devices communicating with the glasses 3800.
  • the control module 3870 can control the smart assistant (for example, Siri TM ) in the associated user's mobile phone through the communication module 3850.
  • the control module 3870 can wake up the smart assistant in the associated user's mobile phone through the communication module 3850, and control the user's mobile phone to perform operations through the smart assistant, such as checking the weather and turning on Navigation or voice control playback.
  • the control module 3870 may be arranged at any position of the temple 3830, the frame 3820, or the lens 3840.
  • the control module 3870 may also be integrated into the acoustic output device 3810, the communication module 3850, or the power module 3860 as a component.
  • the glasses 3800 may further include an acoustic receiving device (not shown).
  • the acoustic receiving device may be configured to receive external sounds, such as user's voice instructions, calls, and the like.
  • the acoustic receiving device may include a microphone, a microphone, a microphone, and the like.
  • the acoustic receiving device can be arranged at any position of the temple 3830, the lens frame 3820, or the lens 3840.
  • the acoustic receiving device may also be integrated into the acoustic output device 3810, the communication module 3850, the power module 3860, or the control module 3870 as a component.
  • the glasses 3800 may further include one or more detection modules (not shown).
  • the detection module may be configured to automatically detect the working status of the glasses 3800 and its components (for example, the acoustic output device 3810, the communication module 3850, and the power supply module 3860).
  • the control module 3870 may further control the glasses 3800 and its components according to the status information detected by the detection module (for example, the placement or wearing status, whether it has been tapped, the tilt angle, the power level, etc.). For example, when the detection module detects that the glasses 3800 are in a removed state, the control module 3870 may turn off one or more components (such as the acoustic output device 3810) of the glasses 3800 after a preset time (for example, 15s).
  • the control module 3870 can automatically pause the acoustic output device 3810 to output sound.
  • the control module 3870 may control the acoustic output device 3810 to output a prompt sound that requires charging.
  • the detection module can be set at any position of the temple 3830, the mirror frame 3820, or the lens 3840.
  • the detection module may include a detector, a sensor, a gyroscope, etc. or similar devices.
  • the detector may include a battery detector, a weight detector, an infrared detector, a mechanical detector, etc.
  • the sensors may include temperature sensors, humidity sensors, pressure sensors, displacement sensors, flow sensors, liquid level sensors, force sensors, speed sensors, torque sensors, etc., or any combination thereof.
  • the gyroscope may be configured to detect the placement direction of the glasses 3800. For example, when the gyroscope detects that the bottom of the glasses 3800 is placed upward, the control module 3870 may turn off the power module 3860 after a preset time (for example, 20s).
  • the gyroscope can also communicate with the gyroscope of an external device (for example, a mobile phone) directly or through the communication module 3850.
  • the glasses 3800 may further include a control switch (not shown).
  • the control switch may be configured to directly control the glasses 3800 and its components (for example, the acoustic output device 3810, the communication module 3850, and the power supply module 3860).
  • the form and operation of the control switch are only examples.
  • the user can press one or more buttons in the control switch at the same time or in sequence for multiple consecutive presses, a single short press, a single long press, touch, slide, etc., or any combination thereof. 5400 and its components are controlled. For example, the user can turn on or off the acoustic output device 3810 by long pressing the control switch.
  • the user can connect or disconnect the communication (for example, Bluetooth connection) between the glasses 3800 and the external device by long pressing the control switch.
  • the user can answer or hang up the call, play or pause audio, switch audio (for example, play the next audio or play the previous audio) by clicking the control switch for different times.
  • the user can also perform multiple continuous presses, single short-time presses, single long-time presses, touches, and slides simultaneously or sequentially on one or more buttons in the control switch. Etc. or any combination thereof to control external devices that communicate with the glasses 3800 (or referred to as associated).
  • the control switch can wake up the smart assistant in the associated user's mobile phone directly or through the communication module 3850.
  • the control module 3870 can wake up the smart assistant in the associated user's mobile phone.
  • the control switch may include physical buttons, optical buttons, electronic buttons, and the like.
  • the control switch can be set at any position of the temple 3830, the mirror frame 3820, or the lens 3840.
  • the glasses 3800 may include indicator lights (not shown).
  • the indicator light may be configured to indicate the working status of the components of the glasses 3800 (for example, the acoustic output device 3810, the communication module 3850, and the power supply module 3860).
  • the indicator light may emit light of one or more colors and/or flash different times to indicate different states of the acoustic output device 3810 (for example, on, off, volume, power, tone, speech rate, etc.). For example, when the acoustic output device 3810 is turned on, the indicator light emits green light, and when the acoustic output device 3810 is turned off, the indicator light emits red light.
  • the indicator light flashes 3 times, and when the acoustic output device 3810 is turned off, the indicator light flashes once.
  • the indicator light can also emit light of one or more colors and/or flash different times to indicate the connection status of the communication module 3850. For example, when the communication module 3850 is successfully connected to the external device, the indicator light emits green light, and when the communication module 3850 is unsuccessfully connected to the external device, the indicator light emits red light. For another example, when the communication module 3850 is unsuccessfully connected to the external device, the indicator light continues to flash.
  • the indicator light can also emit light of one or more colors and/or flash different times to indicate the power of the power module 3860.
  • the indicator light when the power supply module 3860 lacks power, the indicator light emits red light. For another example, when the power supply module 3860 lacks power, the indicator light continues to flash.
  • the indicator light can be arranged at any position of the temple 3830, the mirror frame 3820, or the lens 3840.
  • the glasses 3800 may include a positioning module (not shown).
  • the positioning module may be configured to obtain real-time position information of the glasses 3800.
  • Exemplary location information may include longitude data, latitude data, positioning information, surrounding environment information, etc., or any combination thereof.
  • the positioning module can be positioned through the Global Positioning System (GPS), Global Navigation Satellite System (GLONASS), Beidou Navigation System (COMPASS), Galileo Positioning System, Quasi-Zenith Satellite System (QZSS), and Wireless Fidelity (Wi-Fi)
  • GPS Global Positioning System
  • GLONASS Global Navigation Satellite System
  • COMPASS Beidou Navigation System
  • Galileo Positioning System Galileo Positioning System
  • Quasi-Zenith Satellite System QZSS
  • Wireless Fidelity Wi-Fi
  • the positioning of the glasses 3800 is realized by technology or any combination thereof.
  • an external device communicating with the glasses 3800 can view the position information of the glasses 3800.
  • the glasses 3800 may have a waterproof rating of IPX1, preferably, the glasses 3800 may have a waterproof rating of IPX2, more preferably, the glasses 3800 may have a waterproof rating of IPX3, and more preferably, the glasses 3800 may have a waterproof rating of IPX4. Waterproof rating, more preferably, the glasses 3800 may have a waterproof rating of IPX5, more preferably, the glasses 3800 may have a waterproof rating of IPX6, more preferably, the glasses 3800 may have a waterproof rating of IPX7, more preferably, the glasses 3800 may have IPX8 waterproof rating.
  • the glasses 3800 may have a dust-proof rating of IP1, preferably, the glasses 3800 may have a dust-proof rating of IP2, more preferably, the glasses 3800 may have a dust-proof rating of IP3, and more preferably, the glasses 3800 may It has a dustproof rating of IP4, more preferably, the glasses 3800 may have a dustproof rating of IP5, and more preferably, the glasses 3800 may have a dustproof rating of IP6.
  • the glasses 3800 may further include other modules, such as a noise reduction module.
  • the noise reduction module may be configured to reduce the noise of the sound output by the acoustic output device 3810. The above changes are all within the protection scope of this application.
  • Fig. 39 is a cross-sectional view of the temples of glasses according to some embodiments of the present application.
  • the temple 3830 may include a mounting cavity 3910.
  • the acoustic output device 3810 may be disposed in the installation cavity 3910.
  • the acoustic output device 3810 may include an acoustic path 3920 and an acoustic driver 3930 provided in the acoustic path 3920.
  • the acoustic path 3920 may be a shell structure of various shapes, such as circular ring, rectangle, ellipse, polygon (regular or irregular), U-shaped, V-shaped, semi-circular, and so on.
  • the acoustic path 3920 may be a part of the temple 3830 or physically connected to the temple 3830 (eg, snap connection, threaded connection, etc.). In some embodiments, the acoustic path 3920 may be constituted by a structure of one or any combination of a sound pipe, an acoustic cavity, a resonant cavity, a sound hole, an acoustic slit, a tuning net, etc.
  • acoustic output device 3810 reference may be made to other places in this application (as shown in FIGS. 4, 5, 6A-6B, 7A-7B, 10, 37 and their descriptions).
  • the acoustic path 3920 may be a sound pipe and have a certain size.
  • the size can be expressed by parameters such as tube radius, length, and aspect ratio.
  • the tube radius of the acoustic path 3920 may remain unchanged, or may be changed along the length of the acoustic path 3920.
  • the tube radius of the acoustic path 3920 may not be less than 5.0mm, preferably, the tube radius of the acoustic path 3920 may be not less than 4.5mm, more preferably, the tube radius of the acoustic path 3920 may be not less than 4.0mm, and more Preferably, the tube radius of the acoustic path 3920 may not be less than 3.5 mm, more preferably, the tube radius of the acoustic path 3920 may be not less than 3.0 mm, more preferably, the tube radius of the acoustic path 3920 may be not less than 2.5 mm, more preferably The tube radius of the acoustic path 3920 may not be less than 2.0mm, more preferably, the tube radius of the acoustic path 3920 may be not less than 1.5mm, more preferably, the tube radius of the acoustic path 3920 may not be less than 1.0mm, more preferably, the acoustic The tube radius of the path 3920 may not be less than
  • the tube radius of the acoustic path 3920 may not be greater than 9.0mm, preferably, the tube radius of the acoustic path 3920 may not be greater than 8.5mm, more preferably, the tube radius of the acoustic path 3920 may not be greater than 8.0mm, more Preferably, the pipe radius of the acoustic path 3920 may not be greater than 7.5mm, more preferably, the pipe radius of the acoustic path 3920 may not be greater than 7.0mm, more preferably, the pipe radius of the acoustic path 3920 may not be greater than 6.5mm, more preferably The tube radius of the acoustic path 3920 may not be greater than 6.0 mm, and more preferably, the tube radius of the acoustic path 3920 may not be greater than 5.5 mm.
  • the length of the acoustic path 3920 may not be greater than 500 mm.
  • the length of the acoustic path 3920 may not be greater than 450mm, more preferably, the length of the acoustic path 3920 may not be greater than 400mm, more preferably, the length of the acoustic path 3920 may not be greater than 350mm, more preferably, the length of the acoustic path 3920 It may be no greater than 300mm, more preferably, the length of the acoustic path 3920 may not be greater than 250mm, more preferably, the length of the acoustic path 3920 may not be greater than 200mm, and more preferably, the length of the acoustic path 3920 may not be greater than 150mm, more preferably , The length of the acoustic path 3920 may not be greater than 100mm, more preferably, the length of the acoustic path 3920 may not be greater than 50mm, more preferably, the length of the length of the acous
  • the aspect ratio (length to radius) of the acoustic path 3920 may not be greater than 200, preferably, the aspect ratio of the acoustic path 3920 may not be greater than 150, and more preferably, the aspect ratio of the acoustic path 3920 may be It is not more than 100, and more preferably, the aspect ratio of the acoustic path 3920 may be not more than 50.
  • the acoustic path 3920 please refer to other places in this application (as shown in Figs. 4, 5, 6A-6B, 8A-8C and their descriptions).
  • the acoustic path 3920 can also be provided with sound guide holes 3940 (for example, sound guide holes 3940-1 and sound guide holes 3940-2) for transmitting sound, and the acoustic driver 3930 can pass through the sound guide holes 3940-1 and sound guide holes 3940 -2 Output sound outward.
  • the sound guide hole 3940-1 and the sound guide hole 3940-2 may be respectively located on the surface 3950 of the temple 3830 and directly communicate with the outside. In this way, the sound guide hole 3940 for outputting sound in the acoustic output device 3810 is located on the temple 3830.
  • the sound guide hole 3940 is close to but does not block the ear canal, so that the user’s ears remain open.
  • the sound guide hole 3940 may have a variety of shapes, such as circular, circular, rectangular, elliptical, polygonal (regular or irregular), U-shaped, V-shaped, semi-circular, and so on.
  • the shape of the sound guide hole 3940-1 and the sound guide hole 3940-2 can be the same or different.
  • the sound guide hole 3940-1 and the sound guide hole 3940-2 can both be circular or one of them can be circular. , The other is oval.
  • the sound guide hole 3940 may have a certain size.
  • the size of the sound guide hole 3940-1 and the sound guide hole 3940-2 may be the same or different.
  • the sound guide hole may be referred to as a sound source (although it is the acoustic driver 3930 that actually emits the sound from a physical point of view).
  • a sound guide hole 3940 can be regarded as a point sound source (or single point sound source).
  • a pair of sound guide holes 3940 (for example, sound guide hole 3940-1 and sound guide hole 3940-2) corresponding to the same acoustic driver 3930 can be regarded as a pair of two-point sound sources.
  • the area of all the sound guide holes is not greater than 2 cm 2 , preferably, not greater than 1.5 cm 2 , preferably, not greater than 1.2 cm 2 , preferably, not greater than 1 cm 2 , preferably, not greater than 0.8 cm 2 , preferably, not greater than 0.5 cm 2 , preferably, not greater than 0.3 cm 2 , preferably, not greater than 0.2 cm 2 , preferably, not greater than 0.1 cm 2 , preferably, not greater than 0.05 cm 2 .
  • the area of part of the sound guide hole is not greater than 0.3 cm 2 , and the area of the part of the sound guide hole is not less than 0.3 cm 2 .
  • the area of part of the sound guide hole is not greater than 0.2 cm 2 , and the area of the part of the sound guide hole is not less than 0.2 cm 2 . In some embodiments, the area of part of the sound guide hole is not greater than 0.1 cm 2 , and the area of the part of the sound guide hole is not less than 0.3 cm 2 .
  • the acoustic path 3920 may carry one or more acoustic drivers 3930.
  • the one or more acoustic drivers 3930 may be located inside the acoustic path 3920.
  • the acoustic driver 3930 is an element that can receive electrical signals and convert them into sound signals for output.
  • distinguishing by frequency, the type of acoustic driver 3930 may include a low-frequency acoustic driver, a high-frequency acoustic driver, a full-frequency acoustic driver, or any combination thereof.
  • the acoustic driver 3930 may include, but is not limited to, a moving coil driver, a moving iron driver, a piezoelectric driver, an electrostatic driver, a magnetostrictive driver, and the like.
  • a moving coil driver a moving iron driver
  • a piezoelectric driver a piezoelectric driver
  • electrostatic driver a magnetostrictive driver
  • the acoustic driver 3930 may include a transducer.
  • the transducer can generate vibration under the drive of an electric signal, and generate a pair of sounds with equal amplitude, equal frequency, and opposite phase (180 degree phase difference).
  • the type of the transducer may include, but is not limited to, one or any combination of air conduction speakers, bone conduction speakers, underwater acoustic transducers, ultrasonic transducers, etc.
  • the working principle of the transducer may include, but is not limited to, one or any combination of moving coil type, moving iron type, piezoelectric type, electrostatic type, magnetostrictive type, etc.
  • the sound guide hole 3940 please refer to other places in this application (as shown in Figs. 4, 5, 6A-6B and their descriptions).
  • the transducer may include a diaphragm.
  • the diaphragm can be driven by an electric signal to generate vibration, and the front side and the back side of the diaphragm can output normal phase sound and reverse phase sound at the same time.
  • the position of the front side of the diaphragm in the acoustic path 3920 is provided with an antechamber for transmitting sound (ie, the front half of the acoustic path 3920).
  • the front chamber is acoustically coupled with the sound guide hole 3940-1, and the sound on the front side of the diaphragm can be emitted from the sound guide hole 3940-1 through the front chamber.
  • the position behind the diaphragm in the acoustic path 3920 is provided with a back chamber for transmitting sound (ie, the second half of the acoustic path 3920).
  • the back chamber is acoustically coupled with the sound guide hole 3940-2, and the sound on the back side of the diaphragm can be emitted from the sound guide hole 3940-2 through the back chamber.
  • the front and back sides of the diaphragm can simultaneously produce a set of opposite phase sounds. When the sound passes through the front and rear chambers, it will propagate outward from the sound guide hole 3940-1 and the sound guide hole 3940-2.
  • the structure of the front chamber and the rear chamber may be arranged so that the sound output by the acoustic driver 3930 at the sound guide hole 3940-1 and the sound guide hole 3940-2 meets specific conditions.
  • the length of the front chamber and the rear chamber can be designed so that the sound guide hole 3940-1 and sound guide hole 3940-2 can output a set of specific phase relationships (for example, opposite phase) (in the figure, "+" and "-” means), so that the acoustic output device 3810 has a lower listening volume in the near field and the problem of sound leakage in the far field is effectively improved.
  • phase relationships for example, opposite phase
  • the acoustic output device 3810 has a lower listening volume in the near field and the problem of sound leakage in the far field is effectively improved.
  • the front side of the diaphragm in the acoustic path 3920 may be provided with a plurality of front chambers for transmitting sound, and each of the plurality of front chambers may be coupled with a corresponding sound guide hole 3940-1.
  • the position on the back side of the diaphragm in the acoustic path 3920 may also be provided with multiple back chambers for transmitting sound.
  • Each of the multiple rear chambers may also be coupled with a corresponding sound guide hole 3940-2.
  • the acoustic path 3920 is provided with two front chambers at the front side of the diaphragm.
  • the acoustic driver 3930 may also include multiple diaphragms (for example, two diaphragms).
  • the multiple vibrating membranes vibrate respectively to generate sound, and respectively pass through different cavities connected to it in the acoustic path 3920 and then output from the corresponding sound guide hole 3940.
  • the multiple diaphragms can be controlled by the same or different controllers, and can generate sounds that meet certain phase and amplitude conditions (for example, sounds with the same amplitude and opposite phase, sounds with different amplitude and opposite phase, etc. )
  • phase and amplitude conditions for example, sounds with the same amplitude and opposite phase, sounds with different amplitude and opposite phase, etc.
  • the sound generated by the vibration of the diaphragm can be decomposed into two or more sounds containing different frequency components.
  • sounds with high-frequency sound components and sounds with low-frequency sound components can be further transmitted to the corresponding sound guide hole 3940.
  • the sound with high-frequency sound components is transmitted to the sound guide holes 3940-1 and 3940-2 and propagated to the outside through the sound guide holes 3940-1 and 3940-2
  • the sound with low-frequency sound components is transmitted to another A pair of sound guide holes 3940-3 and 3940-4 (not shown) and propagate to the outside through the sound guide holes 3940-3 and 3940-4.
  • frequency division please refer to other places in this application (as shown in Figure 2, Figure 4, Figure 8A-8C and its description).
  • the acoustic path 3920 may also be provided with a tuning net and/or tuning cotton to adjust the sound emitted by the acoustic driver 3930.
  • each sound guide hole 3940 may also be provided with a sound-permeable dust-proof net and/or a waterproof net to protect the components inside the temple 3830 of the glasses 3800.
  • the dustproof net and/or the waterproof net may be a high-density net cover material.
  • Fig. 40 is a distribution diagram of sound guide holes on temples according to some embodiments of the present application.
  • the sound guide holes 3940-1 and 3940-2 of the acoustic output device 3810 can be provided on the underside 3831 of the temple 3830.
  • the sound guide hole 3940-1 may be located on the temple 3830 and at the back of the user's auricle when worn, and the sound guide hole 3940-2 may be located on the temple 3830 and at the front of the user's auricle when worn.
  • the auricle has the effect of a baffle.
  • the sound guide hole 3940-1 and the sound guide hole 3940-2 may be equivalent to the point sound sources A1 and A2 in FIG. 40, respectively, and the auricle may be equivalent to the baffle in FIG. 40.
  • the listening position A0 may be the position of the ear hole.
  • the sound guide holes 3940 of the acoustic output device 3810 are not limited to the distribution shown in FIG. 40.
  • the sound guide hole 3940-1 can be located on the front side of the user’s auricle when worn and on the upper side 3834, the inner side 3832 or the outer side 3833 of the temple 3830, while the sound guide hole 3940-2 can be located on the user’s auricle when worn The back side and on the upper side 3834, the inner side 3832, or the outer side 3833 of the temple 3830.
  • a baffle may be provided between the sound guide holes 3940-1 and 3940-2.
  • the baffle can be located inside the temple 3830 or on the outer surface of the temple 3830.
  • the number of sound guide holes 3940-1 or 3940-2 on both sides of the user’s auricle and on the temple 3830 is not limited to the one shown in FIG. 40, but may also be more than one. Can be the same or different.
  • the number of sound guide holes 3940-2 on the front side of the user’s auricle and on the temple 3830 when worn can be two
  • the number of sound guide holes 3940-1 on the back of the user’s auricle and on the temple 3830 when worn It can be two or three.
  • Fig. 41 is a cross-sectional view of the temples of glasses according to some embodiments of the present application.
  • the acoustic output device 3810 may further include an acoustic driver 4130.
  • the acoustic driver 4130 outputs sound from two corresponding sound guide holes 4140 (for example, sound guide hole 4140-1, sound guide hole 4140-2).
  • the acoustic driver 4130 and the acoustic driver 3930 may respectively output sounds of different frequencies.
  • the acoustic output device 3810 may further include a controller (not shown), which may be configured to cause the acoustic driver 3930 to output sound in the first frequency range and cause the acoustic driver 4130 to output Sound in the second frequency range, wherein the second frequency range includes frequencies higher than the first frequency range.
  • the range of the first frequency is 100 Hz-1000 Hz
  • the range of the second frequency is 1000 Hz-10000 Hz.
  • the controller may also be configured to cause the acoustic driver 3930 to output sounds in multiple frequency ranges (for example, low frequency, medium low frequency, medium high frequency, high frequency).
  • the controller please refer to other places in this application (as shown in Fig. 4, Fig. 6A-6B, Fig. 37 and description thereof).
  • the acoustic driver 3930 may be a low frequency acoustic driver, and the acoustic driver 4130 may be a high frequency acoustic driver.
  • the acoustic driver 3930 may be a low frequency speaker (for example, a moving coil driver), and the acoustic driver 4130 may be a tweeter (for example, a moving iron driver). Due to the different frequency response characteristics of low-frequency speakers and tweeters, the output sound frequency bands will also be different. By using low-frequency speakers and high-frequency speakers, the high and low frequency sound can be divided, and then the low frequency can be constructed separately.
  • Double-point sound source and high-frequency double-point sound source to enhance near-field sound output and reduce far-field sound leakage can provide a two-point sound source that outputs low-frequency sound through the sound guide hole 3940-1 and the sound guide hole 3940-2, and is mainly used to output sound in the low frequency band.
  • the low-frequency dual-point sound source can be closer to the auricle and used to increase the volume near the ear in the near field.
  • the acoustic driver 4130 can provide a dual-point sound source that outputs high-frequency sound through the sound guide hole 4140-1 and the sound guide hole 4140-2, and is mainly used to output high-frequency sound.
  • the method of separately constructing low-frequency and high-frequency dual-point sound sources and their setting positions can be referred to elsewhere in this application (see Figure 42 and its description).
  • the acoustic driver 4130 may provide a dual-point sound source outputting full-frequency sound through the sound guide hole 4140-1 and the sound guide hole 4140-2 to further increase the volume of the near-field sound.
  • the acoustic output device 3810 may further include multiple acoustic drivers 3930 for generating sounds in multiple frequency ranges (for example, low frequency, medium low frequency, medium high frequency, high frequency).
  • the frequency band of listening is mainly concentrated in the low frequency band, and in the low frequency band, the leakage reduction effect of the dual-point sound source is stronger, so in this frequency band, the main goal is to increase the listening volume.
  • the sound leakage reduction effect of the dual-point sound source is weak.
  • the main objective is to reduce the leakage sound.
  • the parameters of the acoustic output device 3810 for example, the distance between the sound guide holes, the frequency band of the output sound, the length of the front and rear chambers in the acoustic paths 3920 and 4120, and the sound before and after the diaphragm can be adjusted by adjusting the parameters. Impedance) to achieve the effect of increasing listening volume, decreasing leakage volume (the increase in listening volume is greater than the increase in leakage volume) and the expansion of the leakage reduction audio segment.
  • the acoustic driver 3930 may be a mid-low frequency speaker that outputs mid- and low-frequency sound.
  • the acoustic driver 4130 may be a mid-to-high frequency speaker outputting mid-to-high frequency band sound. The above similar changes are all within the protection scope of this application.
  • Fig. 42 is a distribution diagram of sound guide holes on a temple according to some embodiments of the present application.
  • the sound guide holes 4140 (for example, sound guide holes 4140-1 and 4140-2) corresponding to the acoustic driver 4130 in the acoustic output device 3810 may be provided on the lower side 3831 of the temple 3830 on.
  • the acoustic driver 4130 is a high-frequency acoustic driver and the acoustic driver 3930 is a low-frequency acoustic driver as an example, but it does not constitute a limitation.
  • the distance between the two sets of sound guide holes 3940 and 4140 is controlled to increase the volume near the ears in the near field and reduce high-frequency leakage.
  • the distance d 2 between the sound guide hole 4140-1 and the sound guide hole 4140-2 corresponding to the acoustic driver 4130 may be smaller than the distance between the sound guide hole 3940-1 and the sound guide hole 3940-2 corresponding to the acoustic driver 3930 d 1 , that is, d 1 is greater than d 2 . Therefore, in the low frequency band, a larger distance d 1 can achieve a higher volume output of the acoustic output device 3810 in the low frequency band.
  • the larger spacing d 1 makes the leakage sound in the low frequency range slightly increased, but the leakage sound in the low frequency band is originally very small, and the leakage sound after a slight increase can still be kept low.
  • the smaller spacing d 2 overcomes the problem of too low cut-off frequency of high frequency leakage reduction and too narrow audio frequency range for leakage reduction, on the other hand, it has stronger ability to reduce leakage in higher frequency bands.
  • the frequency bands of the sound output by the sound guide holes 3940-1 and 3940-2 corresponding to the acoustic driver 3930 are the same as those output by the sound guide holes 4140-1 and 4140-2 corresponding to the acoustic driver 4130.
  • the frequency bands of the sound can overlap.
  • the phase of the sound guide hole 3940 corresponding to the acoustic driver 3930 and the phase of the sound guide hole 4140 corresponding to the acoustic driver 4130 may be the same or different.
  • the different phases of the sound guide hole 3940 and the sound guide hole 4140 can enhance the sound leakage reduction effect.
  • d 1 /d 2 when the frequency band of the sound output by the sound guide hole 3940-1 and the sound guide hole 3940-2 overlaps with the frequency band of the sound output by the sound guide hole 4140-1 and the sound guide hole 4140-2 and the sound guide
  • d 1 /d 2 can be set to 1-1.5, preferably, d 1 /d 2 can be set to 1-1.4, and more preferably, d 1 /d 2 can be set Set 1-1.3, more preferably, d 1 /d 2 can be set from 1-1.2, and more preferably, d 1 /d 2 can be set from 1-1.1.
  • the sound leakage can be reduced by controlling the length of the front chamber and the rear chamber corresponding to the sound guide hole.
  • the length of the rear chamber corresponding to the sound guide hole 3940-2 in the acoustic output device 3810 is different from the length of the front chamber corresponding to the sound guide hole 3940-1, and the length of the rear chamber corresponding to the sound guide hole 4140-2 and the corresponding guide hole
  • the length of the front chamber of the sound hole 4140-1 is the same to ensure that the phase difference between the two sound channels at the sound outlet is 180°.
  • the ratio of the length of the rear chamber corresponding to the sound guide hole 3940-2 to the length of the front chamber corresponding to the sound guide hole 3940-1 may be 0.5-2, preferably, the length of the sound guide hole 3940-2
  • the ratio of the length of the rear chamber to the length of the front chamber corresponding to the sound guide hole 3940-1 may be 0.6-1.5, and more preferably, the length of the rear chamber corresponding to the sound guide hole 3940-2 and the length of the sound guide hole 3940-1
  • the ratio of the length of the antechamber can be 0.8-1.2.
  • the sound leakage can be reduced by controlling the acoustic impedance before and after the diaphragm.
  • the acoustic impedance of the acoustic path (front chamber) corresponding to the sound guide hole 3940-2 in the acoustic output device 3810 is different from the acoustic impedance of the acoustic path (rear chamber) corresponding to the sound guide hole 3940-1, and at the same time corresponds to the sound guide hole
  • the acoustic impedance of the acoustic path (front room) of 4140-2 and the acoustic impedance of the acoustic path (rear room) corresponding to the sound guide hole 4140-1 are also different.
  • the acoustic impedance of the acoustic path (front chamber) corresponding to the sound guide hole 3940-2 is different from the acoustic impedance of the acoustic path (rear chamber) corresponding to the sound guide hole 3940-1, and the acoustic impedance corresponding to the sound guide hole 4140-2
  • the acoustic impedance of the acoustic path (front chamber) is the same as the acoustic impedance of the acoustic path (rear chamber) corresponding to the sound guide hole 4140-1.
  • the ratio of the acoustic impedance of the acoustic path (front chamber) corresponding to the sound guide hole 3940-2 to the acoustic impedance of the acoustic path (rear chamber) corresponding to the sound guide hole 3940-1 also referred to as acoustic impedance Ratio
  • the ratio of the acoustic impedance of the acoustic path (rear chamber) corresponding to the sound guide hole 3940-1 to the acoustic impedance of the acoustic path (front room) corresponding to the sound guide hole 3940-2 also called the acoustic impedance ratio
  • the acoustic impedance ratio may be 0.6-1.9, more preferably, the acoustic impedance ratio may be 0.7-1.8, more preferably, the acoustic impedance ratio may be 0.8-1.7, more preferably Preferably, the acoustic impedance ratio
  • the acoustic impedance ratio may be 0.8-1.3, more preferably, the acoustic impedance ratio may be 0.8-1.2, more preferably, the acoustic impedance ratio may be 0.85-1.15, and more preferably, the acoustic impedance ratio may be 0.9-1.1, more preferably, the acoustic impedance ratio may be 0.95-1.05, and more preferably, the acoustic impedance ratio may be 0.95-1.
  • the acoustic impedance of the acoustic paths 3920 and 4120 can be adjusted by disposing acoustic resistance materials (such as tuning nets and/or tuning cottons, etc.) in the acoustic paths 3920 and 4120.
  • the sound-adjusting net can be used as a waterproof layer, dust-proof net, etc. for the sound guide holes 3940 and 4140.
  • the acoustic driver 3930 may have only one sound guide hole 4140, which is a single point sound source. The above similar changes are all within the protection scope of this application.
  • Fig. 43 is a distribution diagram of sound guide holes on temples according to some embodiments of the present application.
  • the sound guide holes 3940-1 and the sound guide holes 3940-2 corresponding to the acoustic driver 3930 in the acoustic output device 3810 may also be distributed on the front side of the user's auricle and on the temple 3830 when worn. It should be noted that the distribution of the sound guide holes 3940 and 4140 of the acoustic output device 3810 is not limited to the situation shown in FIGS. 39-43.
  • the sound guide hole 3940-1, the sound guide hole 3940-2, the sound guide hole 4140-1 and the sound guide hole 4140-2 can be located at the lower side 3831 or the upper side 3834 of the temple 3830 at the same time or any one.
  • the sound guide hole 3940-1, the sound guide hole 3940-2, the sound guide hole 4140-1, and the sound guide hole 4140-2 may be located on the inner side 3832 or the outer side 3833 of the temple 3830 at the same time or at any one.
  • the sound guide hole 3940-1, sound guide hole 3940-2, sound guide hole 4140-1, and sound guide hole 4140-2 can be located at the same time or at the front side of the user’s auricle and on the temple 3830 when worn.
  • the sound guide hole 3940-1, the sound guide hole 3940-2, the sound guide hole 4140-1 and the sound guide hole 4140-2 can be located at the back of the user’s auricle and on the temple 3830 at the time of wearing. Anywhere.
  • the sound guide hole 3940-1, the sound guide hole 3940-2, the sound guide hole 4140-1 and the sound guide hole 4140-2 may be located on the frame 3820 or the lens 3840 at the same time or any one of them.
  • the acoustic output device 3810 may include three or more acoustic drivers, each of the three or more acoustic drivers may correspond to three or more sound guide holes, and each of the three or more sound guide holes may be located Any position of the glasses 3800.
  • the above similar changes are all within the protection scope of this application.
  • the acoustic output device may also include a radio function.
  • the acoustic output device can improve the sound reception effect through a microphone noise reduction system.
  • glasses with a sound output function and a microphone noise reduction system are taken as examples for description.
  • the glasses can be considered to include acoustic output devices (such as acoustic output device 100, acoustic output device 300, acoustic output device 400, acoustic output device 500, acoustic output device 600, etc.) and a microphone noise reduction system (eg , The microphone noise reduction system 4400, the microphone noise reduction system 4500A or 4500B), or can be directly used as an acoustic output device that includes a microphone noise reduction system, which is not limited in this application.
  • acoustic output devices such as acoustic output device 100, acoustic output device 300, acoustic output device 400, acoustic output device 500, acoustic output device 600, etc.
  • a microphone noise reduction system eg , The microphone noise reduction system 4400, the microphone noise reduction system 4500A or 4500B
  • Fig. 44 is a schematic diagram of a microphone noise reduction system according to some embodiments of the present application.
  • the microphone noise reduction system 4400 can be used to reduce or eliminate noise other than the required sound during microphone reception.
  • the noise may include background sounds existing when the user wears the audio device or sounds that are not desired to be collected (for example, traffic noise, wind noise, water noise, foreign voice, etc.).
  • the microphone noise reduction system 4400 can be applied to various fields and/or devices, for example, headsets, smart devices (for example, VR glasses, glasses), mufflers, anti-snoring devices, etc., or any combination thereof.
  • the microphone noise reduction system 4400 may be an active noise reduction system that reduces noise by generating a noise reduction signal aimed at reducing noise in speech (for example, a signal that has an inverse phase with the noise).
  • the microphone noise reduction system 4400 may be a passive noise reduction system that reduces noise by differentiating sound signals collected by two microphone arrays with different positions.
  • the microphone noise reduction system 4400 may include a microphone array 4410, a noise reduction device 4420, and a synthesis device 4430.
  • two or more components of the microphone noise reduction system 4400 may be connected and/or communicate with each other.
  • the noise reduction device 4420 may be electrically and/or wirelessly connected with each microphone in the microphone array 4410.
  • the connection between two components may include a wireless connection, a wired connection, any other communication connection that can enable data transmission and/or reception, and/or any combination of these connections.
  • the wireless connection may include, for example, a Bluetooth link, a Wi-Fi link, a WiMax link, a WLAN link, a Zigbee link, a mobile network link (for example, 3G, 4G, 5G, etc.), etc., or a combination thereof.
  • Wired connections may include, for example, coaxial cables, communication cables (for example, communication cables), flexible cables, spiral cables, non-metal sheathed cables, metal sheathed cables, multi-core cables, twisted pair cables, ribbon cables, Shielded cable, twin-strand cable, optical fiber, cable, optical cable, telephone line, etc., or any combination thereof.
  • the microphone array 4410 may include at least one low frequency microphone and at least one high frequency microphone.
  • the at least one low-frequency microphone may be used to collect low-frequency voice signals; the at least one high-frequency microphone may be used to collect high-frequency voice signals.
  • the low-frequency microphone and the high-frequency microphone may be integrated into one device as a whole.
  • the low-frequency microphone and/or the high-frequency microphone may be integrated and arranged as a microphone device in the form of a straight line, a ring, etc. to form a centralized microphone array.
  • the low-frequency microphone and/or the high-frequency microphone may be distributed in the audio device to form a distributed microphone array.
  • the low-frequency microphone and/or the high-frequency microphone may be arranged at various positions of the audio device, and the microphones at various positions may be connected wirelessly.
  • each microphone in the microphone array 4410 may be used to detect a voice signal (which may include both target voice and noise), and process the detected voice signal into at least two sub-band voice signals.
  • each microphone in the microphone array 4410 may correspond to one filter, and the voice signal is processed into at least two sub-band voice signals through the filter.
  • the voice signal may be an audio signal having a specific frequency band.
  • the sub-band speech signal generated after processing the speech signal may have a narrower frequency band than the frequency band of the speech signal but its frequency band is within the frequency band of the speech signal.
  • the speech signal may have a frequency band ranging from 10 Hz to 30 kHz.
  • the frequency band of the sub-band speech signal may be 100 Hz to 200 Hz, which is narrower than the frequency band of the speech signal but within the frequency band of the speech signal.
  • the combination of the frequency bands of the sub-band speech signal may cover the frequency band of the speech signal.
  • at least two of the sub-band speech signals may have different frequency bands.
  • each of the sub-band voice signals may have a characteristic frequency band different from that of other sub-band voice signals. Different sub-band speech signals can have the same frequency bandwidth or different frequency bandwidths.
  • two sub-band voice signals whose center frequencies are adjacent to each other can be considered to be adjacent to each other in the frequency domain.
  • the signal generated by the microphone array 4410 may be a digital signal or an analog signal.
  • each microphone in the microphone array 4410 may be a MEMS (Micro Electro Mechanical System) microphone. MEMS microphones have low operating current, relatively stable performance, and high voice quality. In some embodiments, some or all of the microphones in the microphone array 4410 may also be other types of microphones, which are not limited here.
  • the noise reduction device 4420 may be used to perform noise reduction processing on the sub-band speech signal collected by the microphone array 4410.
  • the noise reduction device 4420 can perform noise estimation, adaptive filtering, speech enhancement, etc. on the collected sub-band speech signals, so as to realize speech noise reduction.
  • the noise reduction device 4420 may estimate the sub-band noise signal according to the noise estimation algorithm, then generate the sub-band noise correction signal according to the sub-band noise signal, and generate the target sub-band voice signal from the sub-band voice signal and the sub-band noise correction signal to Reduce the noise in the sub-band speech signal.
  • the sub-band noise correction signal may be an analog signal or a digital signal having an opposite phase to the sub-band noise signal.
  • the noise estimation algorithm may include a time recursive average noise estimation algorithm, a minimum tracking noise estimation algorithm, etc. or a combination thereof.
  • the microphone array 4410 may include at least a pair of low frequency microphones and at least a pair of high frequency microphones. Each pair of microphones corresponds to a sub-band voice signal of the same frequency band.
  • the noise reduction device 4420 can use the sound signal collected by the microphone of each pair of microphones that is closer to the main sound source (such as the human mouth) as a subband voice signal, and collect the sound signal of the other microphone of the pair of microphones that is farther from the main sound source. The sound signal is used as a sub-band noise signal.
  • the noise reduction device 4420 can reduce the noise of the sub-band voice signal by using the differential sub-band voice signal and the sub-band noise signal.
  • the noise reduction device 4420 and the subband noise signal please refer to other places in this specification (for example, FIG. 45A, FIG. 47, and FIG. 48 and their descriptions).
  • the synthesis device 4430 can be used to combine the target subband voice signals to generate the target signal.
  • the synthesis device 4430 may include any component capable of combining at least two signals.
  • the synthesis device 4430 may generate a mixed signal (ie, a target signal) according to a signal combination technique such as a frequency division multiplexing technique.
  • the microphone noise reduction system 4400 may include one or more additional components. Additionally or alternatively, one or more components of the microphone noise reduction system 4400 described above may be omitted. For example, a residual noise reduction device may be added to the noise reduction device 4420. In addition, two or more components of the microphone noise reduction system 4400 can be integrated into a single component. For example only, in the microphone noise reduction system 4400, the synthesis device 4430 may be integrated into the noise reduction device 4420.
  • Figure 45A is a schematic diagram of an exemplary microphone noise reduction system according to some embodiments of the present application.
  • the microphone noise reduction system 4500A may include a microphone array 4510a, a noise reduction device 4520a, and a synthesis device 4530a.
  • the microphone array 4510a may include at least two microphones 4512a.
  • the number of microphones 4512a may be equal to the number of subband voice signals.
  • the number of sub-band speech signals (ie, n) is related to the frequency band of the speech signal S and the frequency band of the generated sub-band speech signal.
  • a certain number of microphones 4512a can be used, so that the combination of the frequency bands of the sub-band speech signals can cover the frequency bands of the speech signals.
  • overlap between frequency bands of any pair of adjacent sub-band voice signals in the sub-band voice signal can be avoided.
  • the microphone 4512a may have different frequency responses to the voice signal S, and may be used to process the voice signal S to generate a sub-band voice signal.
  • the microphone 4512a-1 responds to a voice signal with a frequency of 20 Hz to 3 kHz, and the full-band voice signal S (for example, 2 Hz to 30 kHz) is processed by the microphone 4512a-1, and the frequency band of the sub-band voice signal obtained is 20Hz ⁇ 3kHz.
  • the sub-band voice signal generated by the microphone array 4510a may be a digital signal or an analog signal.
  • the microphone 4512a may include an acoustic channel element and a sound sensitive element.
  • the acoustic channel element may form a path through which the voice signal S (for example, target voice signal, noise) is transmitted to the sound sensitive element.
  • the acoustic channel element may include one or more chamber structures, one or more duct structures, etc. or a combination thereof.
  • the sound sensitive element may convert the voice signal S sent from the acoustic channel element (for example, the original voice or the processed voice after the acoustic channel element) into an electrical signal.
  • the sound sensitive element may include a diaphragm, a plate, a cantilever, and the like.
  • the diaphragm can be used to convert sound pressure changes caused by voice signals on the surface of the diaphragm into mechanical vibration of the diaphragm.
  • the sound sensitive element can be made of one or more materials, including, for example, plastic, metal, piezoelectric material, etc., or any composite material.
  • the frequency response of the microphone 4512a may be associated with the acoustic structure of the acoustic channel element of the microphone 4512a.
  • the acoustic channel element of the microphone 4512a may have a specific acoustic structure that can process the sound before the sound reaches the sound sensitive element of the microphone 4512a.
  • the acoustic structure of the acoustic channel element may have a specific acoustic impedance, so that the acoustic channel element may be used as a filter for filtering speech to generate sub-band speech signals.
  • the sound sensitive element of the microphone 4512a can convert the sub-band into a sub-band voice electrical signal.
  • the acoustic impedance of the acoustic structure can be set according to the frequency band of the voice.
  • an acoustic structure mainly including a chamber structure may be used as a high-pass filter
  • an acoustic structure mainly including a pipe structure may be used as a low-pass filter.
  • the acoustic channel element may have a lumen structure.
  • the cavity structure can be a combination of sound capacity and acoustic quality in series, and can form an inductor-capacitor (LC) resonance circuit.
  • a resistor-inductor-capacitor (RLC) series loop can be formed, and the acoustic impedance of the RLC series loop can be determined according to formula (5), as follows:
  • Z refers to the acoustic impedance of the acoustic channel element
  • means the angular frequency of the pipe structure the cavity
  • j refers to the unit imaginary number
  • M a means is an acoustic mass
  • C a means the sound capacity
  • R a refers to the acoustic resistance RLC series circuit .
  • the lumen structure can be used as a bandpass filter (denoted as F1). May adjust the bandwidth of the bandpass filter F1 by adjusting the acoustic resistance R a.
  • M a can and / or sound capacity C a quality adjusted by adjusting the bandpass filter F1 acoustic center frequency ⁇ 0.
  • the center frequency ⁇ 0 of the band pass filter F1 can be determined as follows according to equation (6):
  • the frequency response of the microphone 4512a may be related to the physical characteristics (e.g., material, structure) of the sound-sensitive element of the microphone 4512a.
  • Sound sensitive components with specific physical characteristics may be sensitive to a certain frequency band of audio.
  • the mechanical vibration of one or more of the sound sensitive elements may cause changes in the electrical parameters of the sound sensitive elements.
  • the sound sensor may be sensitive to a certain frequency band of the speech signal.
  • the frequency band of the voice signal can cause corresponding changes in the electrical parameters of the sound sensitive element.
  • the microphone 4512a can be used as a filter for processing the subband of the voice signal S.
  • speech may be sent to the sound sensitive element through the acoustic channel element without (or substantially not) being filtered by the acoustic channel element.
  • the physical characteristics of the sound sensitive element can be adjusted, so that the sound sensitive element can be used as a filter for filtering voice and converting the filtered voice into a sub-band voice electrical signal.
  • the sound sensitive element may include a diaphragm, which may be used as a band pass filter (denoted as F2).
  • the center frequency ⁇ ′ 0 of the band-pass filter F2 can be determined as follows according to formula (7):
  • M m refers to the mass of the diaphragm
  • K m refers to the elastic coefficient of the diaphragm.
  • the bandwidth of the band pass filter F2 can be adjusted by adjusting the damping (R m ) of the diaphragm.
  • the center frequency ⁇ ′ 0 of the band pass filter F2 can be adjusted by adjusting the quality of the diaphragm and/or the elastic coefficient of the diaphragm.
  • the acoustic channel element or sound sensitive element of the microphone 4512a can be used as a filter.
  • 4512a microphone frequency response may be adjusted by modifying the parameters of the acoustic channel element (e.g., R a, M a, and / or C a), or a sound sensitive element (e.g., K m and / or R m) parameters.
  • a combination of acoustic channel elements and sound sensitive elements can be used as filters. By modifying the parameters of the acoustic channel element and the sound sensitive element, the frequency response of the combination of the acoustic channel element and the sound sensitive element can be adjusted accordingly.
  • acoustic channel components and/or sound sensitive components used as band-pass filters can be found in, for example, PCT with the name "SIGNAL PROCESSING DEVICE HAVING MULTIPLE ACOUSTIC-ELECTRIC TRANSDUCERS" and the application number PCT/CN2018/105161 Found in the application, its content is incorporated here as a reference.
  • the noise reduction device 4520a may include at least two sub-band noise reduction units 4522a. Each sub-band noise reduction unit 4522a may correspond to one microphone 4512a.
  • the sub-band noise reduction unit 4522a may be configured to generate a sub-band noise correction signal based on the noise in the sub-band voice signal for reducing noise in the sub-band voice signal, thereby generating a target sub-band voice signal.
  • the sub-band noise reduction unit 4522a-i (i is a positive integer equal to or less than n) can receive the sub-band speech signal Si from the microphone 4512a-i, and generate a sub-band noise correction signal Ci to reduce the sub-band speech signal Noise in Si.
  • the sub-band noise reduction unit 4522a may include a sub-band noise estimation sub-unit (not shown) and a sub-band noise suppression sub-unit (not shown).
  • the sub-band noise estimation sub-unit may be configured to estimate the noise in the sub-band speech signal.
  • the sub-band noise suppression sub-unit may be configured to receive the noise in the sub-band speech signal from the sub-band noise estimation sub-unit and generate a sub-band noise correction signal to reduce the sub-band noise signal in the sub-band speech signal.
  • the sub-band voice signal may be sent from the microphone 4512a to the sub-band noise reduction unit 4522a through a parallel transmitter.
  • the sub-band voice signal may be transmitted via the transmitter according to a specific communication protocol used to transmit the digital signal.
  • Exemplary communication protocols may include AES3 (Audio Engineering Society), AES/EBU (European Broadcasting Union), EBU (European Broadcasting Union), ADAT (Automatic Data Accumulator and Propagation), I2S (Inter-IC Sound), TDM ( Time Division Multiplexing), MIDI (Musical Instrument Digital Interface), CobraNet, Ethernet AVB (Ethernet Audio/Video Patch Cord), Dante, ITU (International Telecommunication Union)-T G.728, ITU-T G.711, ITU- T G.722, ITU-T G.722.1, ITU-T G.722.1 Annex C, AAC (Advanced Audio Coding)-LD, etc. or their combination.
  • AES3 Audio Engineering Society
  • AES/EBU European Broadcasting Union
  • EBU European Broadcasting Union
  • ADAT Automatic Data Accumulator and Propagation
  • I2S Inter-IC Sound
  • TDM Time Division Multiplexing
  • MIDI Musical Instrument Digital Interface
  • CobraNet CobraNet
  • Digital signals can be transmitted in certain formats, including CD (Compact Disc), WAVE, AIFF (Audio Interchange File Format), MPEG (Moving Picture Experts Group)-1, MPEG-2, MPEG-3, MPEG-4, MIDI (Musical Instrument) Digital interface), WMA (Windows Media Audio), RealAudio, VQF (transform domain weighted Nterleave vector quantization), AMR (Adaptibve multi-rate), APE, FLAC (free lossless audio codec), AAC (advanced audio coding), etc. Its combination.
  • the subband voice signal may be processed into a single channel signal using, for example, frequency division multiplexing technology, and sent to the subband noise reduction unit 4522a.
  • 4522a-i subband noise reduction unit may estimate the first sub-band noise signal N i, N i of the noise signal and performing phase modulation and / or amplitude modulation in the subband, to yield the corresponding subband noise correction Signal N′ i .
  • phase modulation, and amplitude modulation of the noise signal can take N i sub sequentially or simultaneously.
  • the subband noise reducing unit 4522a-i may first subband noise signal N i performs phase modulation to generate a phase modulation signal, phase modulation and amplitude-modulated signals to generate respective subband noise correction signal N 'i.
  • Phase modulation noise signal N i subband may include a sub-band inverted phase of noise signal N i.
  • phase of the noise may be shifted during propagation from the position of the microphone 4512a-i to the position of the subband noise reduction unit 4522a-i.
  • Phase modulation noise signal N i subband may further include signal propagation during the compensation phase-shifted sub-band of the noise signal N i.
  • the subband noise reducing unit 4522a-i may first noise signal N i subband amplitude-modulated, amplitude modulated signal generated, and then phase-modulated AM signal, the correction signal to generate the subband noise N 'i.
  • the subband noise reduction units 4522a-i please refer to other places in this specification (as shown in Figs. 47 and 48 and related descriptions).
  • the noise reduction device 4520a may use two sets of microphones with the same configuration (for example, two microphone arrays 4510a) to perform noise reduction according to the principle of dual microphone noise reduction.
  • Each group of microphones includes microphones corresponding to multiple sub-band voice signals of different frequency bands.
  • one of the two groups of microphones with the same configuration may be referred to as a first microphone group, and the other group of microphones may be referred to as a second microphone group.
  • the distance between the human mouth can be closer than the distance between the second microphone group and the main sound source.
  • the first microphone in the first microphone group may correspond to the second microphone in the second microphone group on a one-to-one basis.
  • a first microphone in the first microphone group with a corresponding frequency band of 20 Hz-3 kHz may correspond to a second microphone in the second microphone group with a corresponding frequency band of 20 Hz-3 kHz.
  • the signal collected by the first microphone in the first microphone group may be used as the sub-band voice signal
  • the signal collected by the second microphone in the corresponding second microphone group may be used as the sub-band noise signal.
  • the noise reduction device 4520a can generate the target sub-band voice signal according to the sub-band voice signal and the sub-band noise signal. For more description of using two microphone arrays for noise reduction, please refer to other places in this specification ( Figure 46A or 46B and related descriptions).
  • the synthesis device 4530a is configured to combine the target subband speech signals to generate a target signal S'.
  • the microphone array 4510a and/or the noise reduction device 4520a is intended to be illustrative, not to limit the scope of the present application. Many substitutions, modifications and changes are obvious to those of ordinary skill in the art.
  • the features, structures, methods, and other features of the exemplary embodiments described herein may be combined in various ways to obtain additional and/or alternative exemplary embodiments.
  • the microphone array 4510a and/or the noise reduction device 4520a may include one or more additional components. Additionally or alternatively, one or more components of the aforementioned microphone array 4510a and/or noise reduction device 4520a may be omitted.
  • two or more components of the microphone array 4510a and/or the noise reduction device 4520a may be integrated into a single component.
  • Figure 45B is a schematic diagram of an exemplary microphone noise reduction system according to some embodiments of the present application.
  • the microphone noise reduction system 4500B may include a microphone array 4510b, a noise reduction device 4520b, and a synthesis device 4530b.
  • the microphone array 4510b may include at least two microphones 4512b and at least two filters 4514b.
  • the number of microphones 4512b, the number of filters 4514b, and the number of subband voice signals can be equal.
  • the microphone 4512b may have the same configuration. In other words, each microphone 4512b may have the same frequency response to the voice signal S.
  • the microphone 4512b After the microphone 4512b receives the voice signal S, it transmits it to the corresponding filter 4514b, and the sub-band voice signal is generated through the filter 4514b.
  • the filter 4514b corresponding to each microphone 4512b may have a different frequency response to the voice signal S.
  • Exemplary filters 4514b may include passive filters, active filters, analog filters, digital filters, etc., or combinations thereof.
  • the noise reduction device 4520b may include at least two sub-band noise reduction units 4522b. Each sub-band noise reduction unit 4522b may correspond to a filter 4514b (or microphone 4512b). For more descriptions of the noise reduction device 4520b and the synthesis device 4530b, please refer to FIG. 45A and its description, which will not be repeated here.
  • Figure 46A shows an exemplary frequency response 4610 of a first microphone and an exemplary frequency response 4620 of a second microphone according to some embodiments of the application.
  • Figure 46B shows an exemplary frequency response 4610 of the first microphone and another exemplary frequency response 4630 of the second microphone according to some embodiments of the application.
  • the first microphone may be configured to process the voice signal to generate the first sub-band voice signal.
  • the second band microphone may be configured to process the voice signal to generate the second sub-band voice signal.
  • the second sub-band speech signal may be adjacent to the first sub-band speech signal in the frequency domain.
  • the frequency response of the first and second microphones may have the same frequency bandwidth.
  • the frequency response 4610 of the first microphone has a low half power point f1, a high half power point f2, and a center frequency f3.
  • the half power point of a certain frequency response may refer to a frequency point with a specific power suppression (for example, -3dB).
  • the frequency bandwidth of the frequency response 4610 may be equal to the difference between f2 and f1.
  • the frequency response 4620 of the second microphone has a low half power point f2, a high half power point f4 and a center frequency f5.
  • the frequency bandwidth of the frequency response 4620 may be equal to the difference between f4 and f2.
  • the frequency bandwidths of the first and second microphones may be equal to each other.
  • the frequency responses of the first and second microphones may have different frequency bandwidths.
  • the frequency response 4630 of the second microphone has a low half power point f2, a high half power point f7 (greater than f4), and a center frequency f6.
  • the frequency bandwidth of the frequency response 4630 of the second microphone may be equal to the difference between f7 and f2, and the difference may be greater than the frequency bandwidth of the frequency response 4610 of the first microphone. In this way, fewer microphones may be needed in the microphone array 4510a to generate sub-band voice signals to cover the frequency band of the original voice signal.
  • the frequency response of the first microphone and the second microphone may intersect at a specific frequency point.
  • the intersection of the frequency responses can cause a certain range of overlap between the first and second frequency responses.
  • there may be a certain overlap range which may cause an interference range between the first subband speech signal and the second subband speech signal, and affect the performance of the first subband speech signal and the second subband speech signal. quality.
  • the larger the overlap range the larger the interference range may be, and the lower the quality of the first and second sub-band speech signals may be.
  • the specific frequency point at which the frequency responses of the first and second microphones intersect may be close to the half power point of the frequency response of the first microphone and/or the half power point of the frequency response of the second microphone.
  • the frequency response 4610 and the frequency response 4620 intersect at the high half power point f2 of the frequency response 4610, and the intersection point is also the low half power point of the frequency response 4620.
  • the threshold for example, 2 dB
  • the overlap range can be considered to be relatively small.
  • the center frequency and/or bandwidth of the frequency response of the first and second microphones can be adjusted to obtain a narrower or appropriate overlap range between the frequency responses of the first and second microphones, so as to avoid the first and second microphones. The overlap between the frequency bands of the first and second sub-band speech signals.
  • one or more parameters of the frequency response of the first microphone and/or the second microphone may be variable.
  • FIG. 47 is a schematic diagram of an exemplary subband noise suppression subunit 4700 according to some embodiments of the present application.
  • the sub-band noise suppression sub-unit 4700 may be configured to receive the sub-band noise signal N i (n) from the sub-band noise estimation sub-unit and generate a sub-band noise correction signal A t N'i (n) to reduce the sub-band noise signal N i (n).
  • a t may refer to the amplitude associated with the noise suppression coefficient to be reduced.
  • the sub-band noise suppression sub-unit 4700 may include a phase modulator 4710 and an amplitude modulator 4720.
  • Phase modulator 4710 may be configured to receive the inverted sub-band noise signal by N i (n) sub-band noise signal N i (n) and generates a phase modulated signal N 'i (n).
  • the phase modulation signal N'i (n) can invert the subband noise signal N i (n).
  • the phase of the noise may be shifted during propagation from the position of the microphone 4512a-i to the position of the subband noise reduction unit 4522a-i. In some embodiments, the phase shift of noise can be ignored.
  • phase modulator 4710 may be generated by the sub-modulation signal N 'i (n) with only a noise signal N i (n) perform phase inversion.
  • the phase modulator 4710 when the phase shift of the sub-band noise is not negligible, the phase modulator 4710 needs to consider the phase shift of the sub-band noise when generating the modulation signal N′ i (n).
  • the subband noise signal N i (n) in the propagation phase shift device may have Phase shift It can be determined as follows according to formula (8):
  • f 0 refers to the center frequency of the subband noise signal N i (n), and may refer to the speed of sound c. If the noise is a near-field signal, ⁇ d may refer to the difference between the distance from the sound source to the microphone 4512a-i and the distance from the sound source to the sub-band noise reduction unit 4522a-i (or a part thereof).
  • ⁇ d may be equal to d cos ⁇ , where d may refer to the distance between the microphone 4512a-i and the subband noise reduction unit 4522a-i (or a part thereof), and ⁇ represents the sound source and the microphone 4512a-i Or the angle between the sound source and the sub-band noise reduction unit 4522a-i (or a part thereof).
  • Phase modulator 4710 may be sub-band noise signal N i (n) perform phase inversion and phase compensation, to generate a phase modulation signal.
  • the phase modulator 4710 may include an all-pass filter.
  • the filter function of the all-pass filter can be expressed as
  • can be equal to 1
  • the phase response of the all-pass filter can be equal to the phase shift
  • All-pass filter may be sub-band noise signal N i (n) delay time [Delta] T to perform phase compensation, ⁇ T can (9) is determined according to the following equation:
  • phase modulator 4710 can perform phase inversion and phase compensation on the subband noise signal N i (n) to generate a phase modulation signal N'i (n).
  • Amplitude modulator 4720 may be configured to receive the phase modulated signal N 'i (n), and phase modulation by the modulation signal N' i (n) to generate a target modulated signal A t N 'i (n) .
  • noise may be suppressed during its propagation from the position of the microphone 4512a-i to the position of the sub-band noise reduction unit 4522a-i (or a part thereof). It may determine amplitude suppression coefficient A t to measure the amplitude of noise suppression during propagation.
  • a t the amplitude suppression coefficient may be associated with one or more factors including: for example, the sound-transmitting material, an acoustic sound channel elements and / or structures, microphones 4512a-i with respect to sub-band noise reduction means 4522a-i (or a portion thereof ), etc. or any combination thereof.
  • the amplitude suppression coefficient A t may be a microphone noise reduction system default settings of the 4400A, previously determined by experiment or simulation or actual.
  • the amplitude suppression coefficient A t amplitude of the audio signal by comparing the vicinity of the microphone 4512a-i (e.g., before it enters the audio broadcast device) 4522a-i and transferred to the noise reducing unit in the sub-band audio signal The amplitude after the position is determined.
  • negligible amplitude of the noise suppression for example, when the amplitude during the propagation of noise suppression is less than the threshold value and / or the amplitude suppression coefficient A t 1 is substantially equal to the phase modulation signal N 'i (n) can be specified It is the sub-band noise correction signal of the sub-band noise signal N i (n) (ie, the target modulation signal A t N'i (n)).
  • the sub-band noise suppression sub-unit 4700 may include a sub-band speech signal generator (not shown).
  • Sub-band speech signal generator may t N 'speech signal S i (n) and the sub-band i (n) to generate a target sub-band speech signals C i (n), and transmitted to the synthesizing means 4430 according to the subband noise correction signal A .
  • the synthesis device 4430 can combine at least two target subband speech signals into one target signal S(n) according to formula (10), as follows:
  • the sub-band noise suppression sub-unit 4700 may include one or more additional components, for example, a signal synthesis unit. Additionally or alternatively, one or more components in the sub-band noise suppression sub-unit 4700 described above, for example, the amplitude modulator 4720 may be omitted.
  • the glasses 4900 may include a frame 4910, temples 4920 (for example, temples 4920-1 and 4920-2), and lenses 4930 (for example, lenses 4930-1 and 4930-2).
  • the mirror frame 4910 and the temple 4920 may be referred to as a mirror frame together.
  • the frame 4910 can be used to support the lens 4930.
  • a mirror beam 4912 is provided in the middle of the mirror frame 4910.
  • the bridge 4912 can straddle the bridge of the user's nose when worn.
  • the temple 4920 can be placed on the user's ear when worn, and cooperates with the bridge 4912 to support the mirror frame 4910.
  • the spectacle frame 4910 and the temples 4920 may be connected by the connecting structure 4940 to form glasses with the temples 4920 foldable.
  • the spectacle frame 4910 may be detachably connected to the temple 4920.
  • the exemplary connection structure 4940 may include a snap connection structure, a plug connection structure, a hinge structure, etc., or a combination thereof.
  • the spectacle frame 4910 and the temples 4920 may not be connected by a connecting structure. In other words, the spectacle frame may be integrally formed.
  • the lens 4930 can be any type of lens, which is not limited here.
  • the lens 4930 may be the same or similar to the lens 3840 described in FIG. 38.
  • the temple 4920 may include a front end 4922 connected with the spectacle frame, and a hook-shaped structure integrally formed with the front end 4922 and bent downward at the end.
  • the hook structure can be hooked on the rear end 4924 of the user's ear during use.
  • the cross-sectional area of the rear end 4424 may be smaller than the cross-sectional area of the front end 4922, that is, the rear end 4924 is thinner than the front end 4922.
  • a stable structure (such as the stable structure 5260 shown in FIG. 52A) may be provided in the middle of the temple 4920. The stable structure can be used to fix the glasses 4900 on the user's ears and is not easy to loosen.
  • the temples 4920 and/or the frame 4910 may be made of metal materials (for example, copper, aluminum, titanium, gold, etc.), alloy materials (for example, aluminum alloys, titanium alloys, etc.), and plastic materials (for example, poly It is made of ethylene, polypropylene, epoxy resin, nylon, etc.), fiber materials (for example, acetate fiber, propionic acid fiber, carbon fiber, etc.).
  • the preparation materials of the mirror frame 4910 and the temple 4920 may be the same or different.
  • the mirror frame 4910 may be made of plastic material, and the temple 4920 may be made of metal material.
  • the mirror frame 4910 may be made of plastic material, and the temple 4920 may be made of metal and plastic material.
  • a sheath is provided on the temple 4920-1 and/or the temple 4920-2.
  • the sheath can be made of a soft material with certain elasticity, such as soft silica gel, rubber, etc., to provide a better touch for users to wear.
  • the vertical distance h1 (as shown in FIG. 49B) between the center of symmetry of the mirror frame 4910 and the center points of the ends of the two temples 4920-1 and 4420-2 may range from 8 cm to 20 cm.
  • the range of h1 may be 8.5cm-19cm; more preferably, the range of h1 may be 9cm-18cm; more preferably, the range of h1 may be 9.5cm-17cm; more preferably, the range of h1 may be 10cm -16cm; more preferably, the range of h1 may be 10.5cm-15cm; more preferably, the range of h1 may be 11cm-14cm; more preferably, the range of h1 may be 11.5cm-13cm.
  • the distance h2 (as shown in FIG. 49B) between the center points of the connecting structure corresponding to the two temples 4920-1 and 4420-2 may range from 7 cm to 17 cm.
  • the range of h2 may be 7.5cm-16cm; more preferably, the range of h2 may be 8cm-15cm; more preferably, the range of h2 may be 8.5cm-14cm; more preferably, the range of h2 may be 9cm -13cm; more preferably, the range of h2 may be 9.5cm-12cm; more preferably, the range of h2 may be 10cm-11cm.
  • the frame may be a hollow structure.
  • Acoustic output device such as acoustic output device 100, acoustic output device 300, acoustic output device 400, acoustic output device 500, acoustic output device 600, etc.
  • microphone noise reduction system for example, microphone noise reduction system 4400, microphone noise reduction system 4500A Or 4500B
  • circuit boards for example, battery slots, etc.
  • the acoustic output device may be used to output sound to the user.
  • the acoustic output device may include at least one set of low-frequency acoustic drivers and at least one set of high-frequency acoustic drivers.
  • the distance between the sound guide holes corresponding to the high-frequency acoustic driver is smaller than the distance between the sound guide holes corresponding to the low-frequency acoustic driver, the sound volume that can be heard by the user's ears can be increased, and the sound volume can be reduced. Leaks the sound to prevent the sound from being heard by others near the user of the acoustic output device.
  • the acoustic output device may include at least one set of acoustic drivers.
  • the at least one set of acoustic drivers may include an acoustic driver 5240 and an acoustic driver 5250.
  • the temple 5200A is provided with a sound hole 5245 and a sound hole 5255 that cooperate with the acoustic driver 5240 and the acoustic driver 5250 respectively.
  • the acoustic driver 5250 and the sound hole 5255 may be arranged at the rear end 5224 of the temple 5200A.
  • the sound hole 5245 and the sound hole 5255 can be approximately regarded as two point sound sources.
  • setting a baffle structure between the two-point sound source can significantly increase the volume of the near-field listening position without significantly increasing the far-field leakage volume, thereby enhancing the user's listening effect.
  • the sound hole 5245 is located on the front side of the ear, and the sound hole 5255 is located on the back side of the ear.
  • the auricle can be seen as a baffle structure between the sound hole 5245 and the sound hole 5255.
  • the auricle increases the distance between the sound hole 5245 and the sound hole 5255.
  • the structure significantly increases the volume of the near-field listening position, thereby improving the user's listening effect.
  • the microphone noise reduction system may include a microphone array, a noise reduction device, a synthesis device, and the like.
  • the microphones in the microphone array can be used to collect sub-band voice signals.
  • the noise reduction device may be used to generate a phase modulation signal with a phase opposite to the sub-band noise signal according to the sub-band noise signal in the collected sub-band voice signal to reduce the noise of the sub-band voice signal.
  • the denoised sub-band speech signal can be transmitted to the synthesis device for synthesis to generate the target speech.
  • the microphone array may be provided on the temple 4920 and/or the mirror frame 4910.
  • the positions of the noise reduction device and the synthesis device in the glasses 4900 can be arbitrarily set, which is not limited here.
  • the noise reduction device and the synthesis device can be integrated together on the circuit board.
  • the noise reduction device and the synthesis device may be provided at the temple 4920 and the mirror frame 4910, respectively.
  • a Bluetooth module may be integrated on the circuit board.
  • the battery slot can be used to install batteries to provide power for the circuit board.
  • the glasses 4900 can realize functions such as making and answering calls and listening to music.
  • the temple 4920 may be a hollow structure.
  • a microphone array 5010 for example, the microphone array 4410 in the microphone noise reduction system 4400
  • a circuit board 5020 for example, the circuit board 5020
  • a battery slot 5030 for example, the battery slot 5030
  • an acoustic output device 5040 etc.
  • the hollow structure may further include a noise reduction device and a synthesis device (not shown).
  • the surface of the temple 4920 is also provided with a sound inlet 5015 (or sound inlet) matched with the microphone array 5010, and a sound outlet 5045 (or sound outlet) matched with the acoustic output device 5040 (as shown in FIG. 50B).
  • a sound inlet 5015 or sound inlet
  • a sound outlet 5045 or sound outlet
  • the acoustic output device 5040 as shown in FIG. 50B.
  • the positions of the microphone array 5010, the circuit board 5020, the battery slot 5030, and the acoustic driver 5040 can be adjusted in the hollow structure according to the needs during the setting, and do not need to be the same as in FIG. 50A.
  • the battery slot 5030 and the circuit board 5020 can exchange positions.
  • the microphone array 5010 may be provided at the back end 5024.
  • the microphone array may also be arranged in a mirror frame 4910 (such as a bridge 4912).
  • the microphone array 5110 may be disposed at the bridge 4912 in the middle of the mirror frame 4910.
  • the surface of the mirror beam 4912 is also provided with a sound inlet 5115 matching the microphone array 5110.
  • the distance D between the center point of the microphone array 5010 or 5110 and the center point of the user's mouth ie, the main sound source
  • the range can be 2cm-20cm.
  • the range of D may be 2.5cm-18cm; more preferably, the range of D may be 3cm-16cm; more preferably, the range of D may be 3.5cm-14cm; more preferably, the range of D may be 4cm -12cm; more preferably, the range of D may be 4.5cm-10cm; more preferably, the range of D may be 5cm-8cm; more preferably, the range of D may be 5.5cm-7.5cm; more preferably, D The range can be 6cm-7cm.
  • the microphone array may include at least a pair of low frequency microphones and at least a pair of high frequency microphones.
  • the configuration of each pair of microphones can be the same.
  • Each pair of microphones can correspond to sub-band voice signals of the same frequency band.
  • the distance between each pair of microphones can be the same. That is, the distance between each pair of low-frequency microphones is equal to the distance between each pair of high-frequency microphones.
  • the microphone in each pair of microphones that is closer to the main sound source for example, a human mouth
  • the microphone in the pair of microphones that is farther from the main sound source is called the second microphone. microphone.
  • Figure 52A is a schematic diagram of an exemplary temple according to some embodiments of the present application.
  • the hollow structure of the temple 5200A can be provided with two sets of microphones corresponding to each other (that is, the microphone array includes two sets of microphones corresponding to each other), for example, a first microphone group 5212 and a second microphone group 5214.
  • the first microphone group 5212 and the second microphone group 5214 each include microphones corresponding to multiple sub-band voice signals of different frequency bands.
  • the first microphone in the first microphone group 5212 may correspond to the second microphone in the second microphone group 5214 one-to-one.
  • Each microphone in the first microphone group 5212 and/or the second microphone group 5214 can decompose the voice signal into sub-band voice signals. For example, after the voice signal is processed by the corresponding first microphone and second microphone, the sub-band voice signal of the same frequency band can be obtained.
  • the distance between the first microphone group 5212 and the main sound source may be closer than the distance between the second microphone group 5214 and the main sound source.
  • the first microphone group 5212 and the second microphone group 5214 may be distributed in the temple 5200A in a specific manner, so that the main sound source is located in the second microphone group 5214 and points to the first microphone group 5214.
  • the mouth (the main sound source) is relative to the first microphone 5212-i.
  • the distance between i and the second microphone 5214-i is shorter than the distance between other sound sources (for example, noise sources) in the environment relative to the first microphone 5212-i and the second microphone 5214-i, and the mouth can be considered as the first microphone 5212 i and the near-field sound source of the second microphone 5214-i.
  • the size of the sound received by the group of microphones is related to the distance from the sound source.
  • the audio signal can be processed by the first microphone 5212-i to obtain a larger sub-band voice signal V J1 ; the second microphone 5214-i is far away from the main sound source Therefore, after the audio signal is processed by the second microphone 5214-i, a smaller sub-band voice signal V J2 can be obtained. That is, V J1> V J2 .
  • the noise source in the environment is relatively far away from the first microphone 5212-i and the second microphone 5214-i, it can be considered that the noise source in the environment is the first microphone 5212-i and the second microphone 5214-i far-field sound source.
  • the sub-band noise signals obtained are similar in size, namely V Y1 ⁇ V Y2 .
  • V 1 V J1 +V Y1 , (11)
  • V 2 V J2 +V Y2 , (12)
  • differential processing may be performed on the total sound signal of the first microphone 5212-i and the total sound signal of the second microphone 5214-i.
  • the form of difference processing can be as follows:
  • the difference result of each sub-band speech signal can be input to a synthesis device (not shown) for processing after being enhanced and amplified, and finally the target signal is obtained.
  • the target signal may be broadcast to the user via the acoustic driver 5240 and/or the acoustic driver 5250.
  • the first microphone group 5212 and/or the second microphone group 5214 may be disposed on the temple 5200A and/or the mirror frame 5270 (as shown in FIGS. 52A and 52B).
  • the difference result of the sub-band voice signal obtained in formula (13) should be made as large as possible, that is, V J1 >> V J2 .
  • the installation position of the first microphone group 5212 may be as close as possible to the main sound source (such as a person’s mouth), and the installation position of the second microphone group 5214 may be as far away as possible from the main sound source (such as a person’s mouth). unit).
  • a baffle or the like may be provided between the two microphone arrays.
  • the first microphone group 5212 may be arranged at the front end 5222 of the temple 5200A
  • the second microphone group 5214 may be arranged at the rear end of the temple 5224.
  • the auricle increases
  • the distance between a microphone group 5212 and the second microphone group 5214 can be regarded as a baffle between the first microphone group 5212 and the second microphone group 5214.
  • the distance between the first microphone group 5212 and the main sound source may be the same as the distance between the microphone array 5010 or the microphone array 5110 and the main sound source.
  • the distance d between the first microphone group 5212 and the second microphone group 5214 may not be less than 0.2 cm.
  • d may not be less than 0.4cm; more preferably, d may not be less than 0.6cm; more preferably, d may not be less than 0.8cm; more preferably, d may not be less than 1cm; more preferably, d may not be less than 2cm; more preferably, d may not be less than 3cm; more preferably, d may not be less than 4cm; more preferably, d may not be less than 5cm; more preferably, d may not be less than 6cm; more preferably, d may not be less than 7cm; more preferably, d may not be less than 8cm; more preferably, d may not be less than 9cm; more preferably, d may not be less than 10cm; more preferably, d may not be less than 11
  • the distance between each pair of microphones in the microphone array may be different.
  • the spacing of the low frequency microphones may be greater than the spacing of the high frequency microphones.
  • Fig. 53 is a schematic diagram of glasses according to some embodiments of the present application.
  • the microphone array in the glasses 5300 may include at least one pair of low frequency microphones (for example, low frequency microphone 5310 and low frequency microphone 5320) and at least one pair of high frequency microphones (for example, high frequency microphone 5330 and high frequency microphone 5340).
  • the distance between the low frequency microphones 5310 and 5320 can be longer than the distance between the high frequency microphones 5330 and 5340.
  • the low frequency sound has a low frequency and a long period.
  • Properly extending the distance between the low-frequency microphones 5310 and 5320 can significantly improve the near-field reception effect without significantly increasing the low-frequency noise in the far field (after all, the phase shift caused by the distance between the low-frequency microphones 5310 and 5320 only accounts for the period A small part); for high-frequency sounds, the frequency is high and the period is short.
  • the phase difference of the far-field high-frequency noise collected by the high-frequency microphones 5330 and 5340 gradually decreases, which can eliminate the long-range high-frequency noise well.
  • the far-field noise (which may include the far-field low-frequency noise and the far-field high-frequency noise) can be eliminated or approximately eliminated.
  • the positions of the low-frequency microphone 5310, the low-frequency microphone 5320, the high-frequency microphone 5330, and the high-frequency microphone 5340 shown in FIG. 53 are only exemplary, and each microphone can be set at other suitable positions of the glasses 4700.
  • the low-frequency microphone 5310 and the low-frequency microphone 5320 may be arranged in the mirror frame
  • the high-frequency microphone 5330 and the high-frequency microphone 5340 may be arranged in the temple.
  • the low frequency microphone 5310 may be arranged on the mirror frame, and the low frequency microphone 5320, the high frequency microphone 5330 and the high frequency microphone 5340 may be arranged on the temples.
  • the range of the distance d l between the low frequency microphone 5310 and the low frequency microphone 5320 may be 0.8 cm-20 cm; preferably, the range of d l may be 1 cm to 18 cm; more preferably, the range of d l may be It is 1.2cm-16cm; more preferably, the range of d l can be 1.4cm-14cm; more preferably, the range of d l can be 1.6cm-12cm; more preferably, the range of d l can be 1.8cm-10cm ; More preferably, the range of d l can be 2cm-8cm; more preferably, the range of d l can be 2.2cm-6cm; more preferably, the range of d l can be 2.4cm-4cm; more preferably
  • the high-frequency range of the distance between the microphone 5330 and microphone 5340 d h of the high frequency may be 1mm-12mm;
  • the range of d h may range 1.2mm-11mm; more preferably, the d h
  • the range may be 1.2mm-10mm; more preferably, the range of d h may be 1.4mm-9mm; more preferably, the range of d h may be 1.6mm-8mm; more preferably, the range of d h may be 1.8mm -7.5mm; more preferably, the range of d h may be 2mm-7mm; more preferably, the range of d h may be 2.5mm-6.5mm; more preferably, the range of d h may be 3mm-6mm; more preferably , the range of d h may be 3.5mm-5.5mm; more preferably, in the range of d h may be 4mm-5.3mm; more preferably, d h may be 5mm.
  • glasses for example, glasses 4900, glasses 5200B, glasses 5300
  • temples for example, temples 4920, temples 5200A
  • glasses 4900, glasses 5200B, glasses 5300 glasses 4900, glasses 5200B, glasses 5300
  • temples for example, temples 4920, temples 5200A
  • the lens 4930 may be omitted from the glasses 4900.
  • the glasses 4900 may include only one lens.
  • the stabilizing structure 5260 may be integrally formed with the temple 5200A, or may be detachably provided on the temple 5200A.
  • the microphone noise reduction system in glasses can pick up the voice signal of the user wearing the glasses through the sound hole, and process the generated target signal and transmit it to the The object or device that the glasses communicate with.
  • the acoustic output device in the glasses can receive an audio signal transmitted by an object or device communicating with the glasses, convert the audio signal into a sound signal, and output it to a user wearing the glasses through a sound hole.
  • the glasses may generate control instructions according to the received voice signal, and control one or more functions of the glasses. For example, the glasses can generate a control command according to the received voice to adjust the transmittance of the lens, so that light with different luminous flux can pass through.
  • the glasses can automatically adjust their light transmittance and/or haze according to the received user instruction, and call or turn off the mini projection device (not shown) to realize the normal mode, VR mode and AR mode. Switch freely.
  • the glasses can control the transmittance of the lens to decrease by an appropriate amount, and project the AR image or video in front of the user's line of sight by calling the mini projection device.
  • the haze of the lens can be controlled to rise to close to 100%, and the VR image or video can be projected on the inside of the lens by calling the mini projection device.
  • the acoustic output device in some embodiments of the present application can use microphones with different frequency responses to enable the microphone array to have better sensitivity to voice signals in various frequency bands.
  • Glasses It has a relatively stable frequency response curve for the sound signal of the full frequency band, and thus has a better sound reception effect.
  • a sub-band noise reduction technology is adopted, which can effectively reduce the noise in the voice signal.
  • the glasses can also adopt sub-band sound leakage reduction technology, which effectively reduces the sound leakage of the glasses and improves user experience.
  • FIG. 54 is a schematic diagram of still another kind of glasses shown in some embodiments of the present application.
  • the glasses 5400 may include a frame and lenses 5440.
  • the spectacle frame may include temples 5410, temples 5420, temples 5430, and bridges 5450.
  • the temples 5410 and 5420 are used to support the lens ring 5430 and the lens 5440, and fix the glasses 5400 on the user's face.
  • the lens ring 5430 is used to support the lens 5440.
  • the bridge 5450 is used to fix the glasses 5400 on the nose of the user.
  • exemplary components include a power supply component for supplying power, an acoustic driver for generating sound, a microphone for detecting external sound, a Bluetooth module for connecting other devices, a controller for controlling the operation of other components, etc., or Any combination of them.
  • the inside of the temple 5410 and/or the temple 5420 may be provided in a hollow structure for accommodating one or more of the aforementioned components.
  • a plurality of hole-shaped structures can be provided on the glasses 5400.
  • a sound guide hole 5411 is opened on the side of the temple 5410 and/or the temple 5420 that does not fit the user's face.
  • the sound guide hole 5411 can be connected to one or more acoustic drivers inside the glasses 5400 for deriving the sound generated by the acoustic drivers.
  • the sound guide hole 5411 may be provided at a position where the temple 5410 and/or the temple 5420 is close to the user's ear, for example, the temple 5410 and/or 5420 is away from the rear end of the temple 5430, and the temple is bent. 5460 and so on.
  • a power interface 5412 may be provided on the glasses 5400 to charge the power components in the glasses 5400.
  • the power interface 5412 may be provided on the temple 5410 and/or the side of the temple 5420 facing the user's face.
  • Exemplary power ports may include Dock charging ports, DC charging ports, USB charging ports, Lightning charging ports, wireless charging ports, etc., or a combination thereof.
  • the glasses 5400 are also provided with one or more sound inlets 5413 for transmitting external sounds (for example, the user's voice, environmental sounds, etc.) to the microphone in the glasses 5400.
  • the sound inlet 5413 can be set on the glasses 5400 where the user’s voice can be easily obtained, for example, the temple 5410 and/or 5420 close to the user’s mouth, the lower side of the lens ring 5430 near the user’s mouth, the nose pad 5450, etc. Location, or a combination thereof.
  • the shape, size, number, etc. of one or more hole-shaped structures on the glasses 5400 can be changed as required.
  • the shape of the hole-like structure includes, but is not limited to, square, rectangle, triangle, polygon, circle, ellipse, irregular shape, and the like.
  • one or more button structures are also provided on the glasses 5400 to realize the interaction between the user and the glasses 5400.
  • one or more button structures may include a power button 5421, a sound adjustment button 5422, a playback control button 5423, a Bluetooth button 5424, and the like.
  • the power button 5421 may include a power on button, a power off button, a power sleep button, etc., or a combination thereof.
  • the sound adjustment button 5422 may include a sound increase button, a sound decrease button, etc., or a combination thereof.
  • the play control button 5423 may include a play button, a pause play button, a resume play button, a play answer call button, a hang up call button, a hold call button, etc., or a combination thereof.
  • the Bluetooth button 5424 includes a Bluetooth connection button, a Bluetooth off button, a connection object selection button, etc., or a combination thereof.
  • the button structure may be provided on the glasses 5400.
  • the power button may be provided on the temple 5410, the temple 5420, or the temple 5430.
  • one or more key structures may be provided in one or more control devices.
  • the glasses 5400 are connected to the one or more control devices in a wired or wireless manner.
  • the control device may transmit the instruction input by the user to the glasses 5400, thereby controlling the operation of one or more components in the glasses 5400.
  • the glasses 5400 further includes one or more indicator lights to indicate information related to one or more components in the glasses 5400.
  • the indicator lights can be used to indicate power status, Bluetooth connection status, and playback status. Etc., or a combination thereof.
  • the indicator light may use different states (for example, different colors, different times, etc.) to indicate related information of the components. Just as an example, when the power indicator light shows red, it means that the power component is in a state of power shortage; when the power indicator light shows green, it means the power component is in a state of power saturation.
  • the Bluetooth indicator light can flash intermittently, indicating that Bluetooth is connecting; the Bluetooth indicator light can display blue, indicating that the Bluetooth connection is successful.
  • the temple 5410 and/or the temple 5420 are provided with a sheath.
  • the sheath can be made of a soft material with certain elasticity, such as silica gel, rubber, etc., to provide a better touch for users to wear.
  • the spectacle frame may be integrally formed, or may also be assembled by inserting, snapping, or the like.
  • the material of the frame may include, but is not limited to, steel, alloy, plastic, and single or composite materials.
  • steel materials include but are not limited to stainless steel and carbon steel. Alloys include but are not limited to aluminum alloys, chromium-molybdenum steels, scandium alloys, magnesium alloys, titanium alloys, magnesium-lithium alloys, nickel alloys, and the like.
  • Plastics include, but are not limited to, Acrylonitrile Butadiene Styrene (ABS), Polystyrene (PS), High Impact Polystyrene (HIPS), Polypropylene (Polypropylene) ,PP), Polyethylene terephthalate (PET), Polyester (PES), Polycarbonate (PC), Polyamides (PA), Polyvinyl chloride (Polyvinyl chloride) , PVC), polyethylene and blown nylon, etc.
  • ABS Acrylonitrile Butadiene Styrene
  • PS Polystyrene
  • HIPS High Impact Polystyrene
  • Polypropylene Polypropylene
  • PET Polyethylene terephthalate
  • PET Polyester
  • PET Polyester
  • PC Polycarbonate
  • PA Polyamides
  • Polyvinyl chloride Polyvinyl chloride
  • PVC polyethylene and blown nylon, etc.
  • single or composite materials including but not limited to reinforcing materials such as glass fiber, carbon fiber, boron fiber, graphite fiber, graphene fiber, silicon carbide fiber or aramid fiber; it can also be a composite of other organic and/or inorganic materials , Such as glass fiber reinforced unsaturated polyester, epoxy resin or phenolic resin matrix composed of various types of glass steel, etc.
  • the glasses 5400 may include one or more cameras for collecting environmental information (for example, photographing the scene in front of the user).
  • the glasses 5400 may also include one or more projectors for projecting images (for example, the images seen by the user through the glasses 5400) onto the display screen.
  • FIG. 55 is a schematic diagram of components in an acoustic output device (for example, glasses 5400).
  • the acoustic output device 5500 may include one or more of an earphone core 5510, a Bluetooth module 5520, a button module 5530, a power module 5540, a controller 5550, an auxiliary function module 5560, and a flexible circuit board 5570.
  • the earphone core 5510 is used to convert signals containing audio information into sound signals.
  • Audio information may include video, audio files with a specific data format, or data or files that can be converted into sound through a specific way.
  • the signal containing audio information may include one or a combination of electrical signals, optical signals, magnetic signals, and mechanical signals.
  • the conversion process may involve the coexistence and conversion of many different types of energy.
  • the electrical signal can be directly converted into mechanical vibration through the earphone core 5510 to generate sound.
  • audio information can be contained in optical signals, and a specific earphone core can realize the process of converting optical signals into vibration signals.
  • Other types of energy that can coexist and convert during the working process of the earphone core 5510 include thermal energy and magnetic field energy.
  • the earphone core 5510 may include one or more acoustic drivers.
  • the acoustic driver can be used to convert electrical signals into sounds for playback.
  • the earphone core 5510 may include at least two sets of acoustic drivers, including at least one set of high-frequency acoustic drivers and one set of low-frequency acoustic drivers. Each group of acoustic drivers can be used to generate sound with a certain frequency range, and propagate the sound outward through at least two acoustically coupled sound guide holes.
  • the earphone core 5510 may include at least one set of acoustic drivers, and the sound generated by the at least one set of acoustic drivers may be propagated outward through at least two sound guide holes acoustically coupled thereto.
  • the at least two sound guide holes may be distributed on both sides of the baffle (for example, auricle), so that the at least two sound guide holes have different acoustic paths to the user's ear canal. More details about the acoustic driver can be found elsewhere in this manual ( Figure 4 to Figure 7B and related descriptions).
  • the Bluetooth module 5520 is used to connect the acoustic output device 5500 and other terminal devices.
  • the acoustic output device 200 may establish a connection with the user's mobile phone through the Bluetooth module 5520.
  • Related information for example, songs, recordings, etc.
  • the Bluetooth module 5520 can receive and process the related information, and send the processed information to other components of the acoustic output device 5500 for further processing.
  • the terminal devices connected to the acoustic output device 5500 may include smart home devices, wearable devices, mobile devices, virtual reality devices, augmented reality devices, etc., or any combination thereof.
  • smart home devices may include smart lighting devices, control devices for smart electrical devices, smart monitoring devices, smart TVs, smart cameras, walkie-talkies, etc., or any combination thereof.
  • the wearable device may include a bracelet, helmet, watch, clothing, backpack, etc., or any combination thereof.
  • the mobile device may include a smart phone, a personal digital assistant (PDA), a gaming device, a navigation device, a point of sale (POS) device, a head unit on a vehicle, or the like, or any combination thereof.
  • the virtual reality device and/or the augmented reality device may include a virtual reality helmet, virtual reality glasses, augmented reality helmet, augmented reality glasses, etc., or any combination thereof.
  • the Bluetooth module 5520 can perform communication in the 2.4 GHz Industrial Scientific Medical (ISM) frequency band in the process of communicating using a wireless protocol.
  • ISM Industrial Scientific Medical
  • the ISM frequency band can be used freely without a separate license.
  • a guard band of 2 MHz and a guard band of 3.5 MHz can be set respectively to prevent interference with other devices.
  • the Bluetooth module 5520 may use a frequency hopping scheme when communicating with other devices, for example, the frequency may be hopped 1600 times per second.
  • the Bluetooth module 5520 may receive unique information of the device including the received signal strength indicator (RSSI) from the other devices.
  • the unique information includes the blocking unique identifier (OUI) of the cut-off access control (MAC) address, the Bluetooth address (BD_ADDR), the type of the device, the name of the device, and the like.
  • OPI blocking unique identifier
  • MAC cut-off access control
  • BD_ADDR Bluetooth address
  • the information and/or signal can be carried out in accordance with the Bluetooth transmission protocol.
  • Exemplary Bluetooth transmission protocols may include Logical Link Control and Adaptation Protocol (L2CAP), Radio Frequency Communication (RFCOMM), Service Search Protocol (SDP), and so on.
  • L2CAP Logical Link Control and Adaptation Protocol
  • RFIDM Radio Frequency Communication
  • SDP Service Search Protocol
  • the button module 5530 can be used to control the acoustic output device 5500, so as to realize the interaction between the user and the acoustic output device 5500.
  • the user can send commands to the acoustic output device 5500 through the key module 5530 to control the operation of the acoustic output device 5500.
  • the button module 5530 may include a power button, a playback control button, a sound adjustment button, a phone control button, a recording button, a noise reduction button, a Bluetooth button, a return button, etc., or a combination thereof.
  • the power button is used to control the power supply 240 to turn on, off, and sleep.
  • the playback control button is used to control the playback of the sound in the earphone core 5510, for example, playback information, pause playback information, continue playback information, play the previous item, play the next item, and play mode selection (for example, sports mode, work mode, entertainment Mode, stereo mode, folk mode, rock mode, heavy bass mode, etc.), playback environment (for example, indoor, outdoor, etc.) selection, etc., or a combination thereof.
  • the sound adjustment button is used to control the sound played by the earphone core, for example, increase the sound, decrease the sound, etc.
  • the telephone control buttons are used to control the answer, reject, hang up, call back, hold, storage, etc. of incoming calls.
  • the record button is used to record and store sound information.
  • the noise reduction button is used to select the degree of noise reduction.
  • the user can manually select the level or degree of noise reduction, or the acoustic output device 5500 can automatically select the level or degree of noise reduction according to the detected environmental sound or the playback mode selected by the user.
  • the Bluetooth button is used to turn on Bluetooth, turn off Bluetooth, Bluetooth matching, Bluetooth connection, connection device selection, etc., or a combination thereof.
  • the return key is used to return to the previous menu, interface, etc.
  • the button module 5530 may include two forms of physical buttons and virtual buttons.
  • the key module 5530 when the key module 5530 is a physical key, the key may be arranged outside the housing of the acoustic output device (for example, glasses 5400). When the user wears the acoustic output device, the keys are not in contact with human skin and are exposed on the outside to facilitate the user's operation of the keys.
  • the end surface of each key in the key module 5530 may be provided with an identification corresponding to its function.
  • the identification may include text (for example, Chinese and English), symbols (for example, the volume up key is marked with "+", and the volume down key is marked with "-").
  • the logo can be set at the button by means of laser printing, screen printing, pad printing, laser filling, thermal sublimation, and hollow text.
  • the logo on the button can also be provided on the surface of the housing on the peripheral side of the button, which can also serve as a label.
  • the control program installed in the acoustic output device may generate virtual keys on the touch screen with interactive functions. The user can select the function, volume, file, etc. of the acoustic output device through the virtual button.
  • the acoustic output device may also have a combination of a touch screen and physical keys.
  • the button module 5530 can implement different interactive functions based on different operations of the user. For example, click a button (physical button or virtual button) once to realize, for example, pause/start of music, recording, etc.; quick click Press twice to answer the call; click regularly (for example, click once every second, click twice in total) to achieve the recording function.
  • the user's operations may be operations such as clicking, sliding, and scrolling. For example, when the user's finger slides up and down on the surface of the button, the volume up/down function can be realized.
  • the function corresponding to the button module 5530 can be customized by the user.
  • the user can adjust the functions that the key module 5530 can implement through the settings of the application software.
  • the user can also set the operation mode (for example, the number of clicks, sliding gestures) for realizing specific functions through the application software.
  • the operation instruction corresponding to the answering call function is set from one tap to two taps
  • the operation instruction corresponding to the switch to the next/previous song function is set from two taps to three taps.
  • the acoustic output device may be connected to an external device through the key module 5530.
  • the acoustic output device can be connected to a mobile phone through a button for controlling wireless connection (for example, a button for controlling the Bluetooth module 5520).
  • the user can directly operate the acoustic output device on the external device (for example, a mobile phone) to implement one or more of the aforementioned functions.
  • the power module 5540 is used to provide electrical energy for components in the acoustic output device 5500.
  • the power module 5540 may include a flexible circuit board, a battery, and the like.
  • the flexible circuit board is used to connect the battery and other components in the acoustic output device (for example, earphone core 5510) to provide electrical energy for the operation of other components.
  • the power module 5540 may also transmit its own status information to the controller 5550 and receive instructions from the controller 5550 to perform corresponding operations.
  • the status information of the power module 5540 may include on/off status, remaining power, remaining power usage time, charging time, etc., or a combination thereof.
  • the controller 5550 may generate an instruction to control the power supply module 5540 according to information of one or more components of the acoustic output device 5500. For example, the controller 5550 can generate a control instruction to control the power supply module 5540 to provide the earphone core 5510 with power to generate sound. For another example, when the acoustic output device 5500 does not receive input information within a certain period of time, the controller 5550 will generate a control instruction to control the power module 5540 to enter the sleep state.
  • the battery of the power module 5540 may include a battery, a dry battery, a lithium battery, a Dannel battery, or a fuel cell, or a combination thereof.
  • the controller 5550 may receive a user's voice signal from the auxiliary function module 5560, for example, "play a song”. By processing this voice signal, the controller 5550 will generate control instructions related to the voice signal, for example, control the earphone core 5510 to obtain the song information to be played from the storage module (or other device), and generate and control the earphone core 5510 accordingly. Vibrating electrical signals, etc.
  • the controller 5550 may include one or more electronic frequency dividing modules.
  • the electronic frequency division module can perform frequency division processing on the audio source signal.
  • the sound source signal may come from one or more sound source devices integrated in the acoustic output device (for example, a memory for storing audio data), or may be an audio signal received by the sound output device in a wired or wireless manner (for example, The audio signal received from the auxiliary function module 5560).
  • the electronic frequency division module can decompose the input audio signal into two or more frequency division signals containing different frequency components. For example, the electronic frequency division module can decompose the audio source signal into a first frequency division signal with high frequency sound components and a second frequency division signal with low frequency sound components.
  • the signal processed by the electronic crossover module will be transmitted to the acoustic driver in the earphone core 5510 in a wired or wireless manner. More information about the electronic crossover module can be found elsewhere in this manual (see Figure 4 and its related description).
  • the controller 5550 may include a central processing unit (CPU), an application specific integrated circuit (ASIC), an application specific instruction set processor (ASIP), a graphics processing unit (GPU), a physical processing unit (PPU), and a digital signal Processor (DSP), field programmable gate array (FPGA), programmable logic device (PLD), controller, microcontroller unit, reduced instruction set computer (RISC), microprocessor, etc., or any combination thereof.
  • CPU central processing unit
  • ASIC application specific integrated circuit
  • ASIP application specific instruction set processor
  • GPU graphics processing unit
  • PPU physical processing unit
  • DSP digital signal Processor
  • FPGA field programmable gate array
  • PLD programmable logic device
  • controller microcontroller unit, reduced instruction set computer (RISC), microprocessor, etc., or any combination thereof.
  • the auxiliary function module 5560 is used to receive auxiliary signals and perform auxiliary functions.
  • the auxiliary function module 5560 includes one or more microphones, indicators, sensors, displays, etc. or a combination thereof.
  • the auxiliary signal may include the state signal of the auxiliary function module 5560 (for example, open state, closed state, sleep state, connection state, etc.), signals generated by user operations (for example, input and output signals generated by the user through keys, Voice input), etc., or a combination thereof.
  • the auxiliary function module 5560 may transmit the received auxiliary signal to other components of the acoustic output device 5500 in a wired or wireless manner for processing.
  • the sensor may be used to detect information related to the acoustic output device 5500.
  • the sensor may be used to detect the user's fingerprint and transmit the detected fingerprint to the controller 5550.
  • the controller 5550 may match the received fingerprint with the fingerprint stored in the acoustic output device 5500 in advance. If the matching is successful, the controller 5550 will generate an instruction to turn on the acoustic output device 5500, and the instruction will be transmitted to each component of the acoustic output device 5500 to perform the operation of turning on the acoustic output device 5500.
  • the sensor may be used to detect the position of the acoustic output device 5500.
  • exemplary sensors may include ranging sensors (eg, infrared ranging sensors, laser ranging sensors, etc.), speed sensors, gyroscopes, accelerometers, positioning sensors, displacement sensors, pressure sensors, gas sensors , Light sensor, temperature sensor, humidity sensor, fingerprint sensor, image sensor, iris sensor, image sensor (such as camera, camera, etc.), etc., or a combination thereof.
  • ranging sensors eg, infrared ranging sensors, laser ranging sensors, etc.
  • speed sensors e.g., speed sensors, gyroscopes, accelerometers, positioning sensors, displacement sensors, pressure sensors, gas sensors , Light sensor, temperature sensor, humidity sensor, fingerprint sensor, image sensor, iris sensor, image sensor (such as camera, camera, etc.), etc., or a combination thereof.
  • the flexible circuit board module 5570 is used to connect different components in the acoustic output device 5500.
  • the flexible circuit board module 5570 may be a flexible printed circuit (Flexible Printed Circuit, FPC).
  • the flexible circuit board module 5570 may include one or more pads and/or one or more flexible wires. One or more pads are used to connect one or more components of the acoustic output device 200 or other pads. One or more leads are used to connect components and pads, pads and pads, etc. of the acoustic output device 200.
  • the flexible circuit board module 5570 may include one or more flexible circuit boards. As an example only, the flexible circuit board module 5570 includes a first flexible circuit board and a second flexible circuit board.
  • the first flexible circuit board is used to connect two or more of the microphone, the earphone core 5510, and the controller 5550.
  • the second flexible circuit board is used to connect two or more of the power module 5540, the earphone core 5510, the controller 5550, and so on.
  • the flexible circuit board module 5570 may be an integral structure including one or more regions.
  • the flexible circuit board module 5570 includes a first area and a second area.
  • the first area is provided with flexible leads for connecting the pads on the flexible circuit board module 5570 and other components on the acoustic output device 200.
  • the second area is used to set one or more pads.
  • the power module 5540 and/or the auxiliary function module 5560 can be arranged on the flexible circuit board module 5570, and connected to the flexible circuit board module 5570 (for example, , The pad of the flexible circuit board module 5570). More information about flexible circuit board modules can be found elsewhere in this manual ( Figure 56 and Figure 57 and related descriptions).
  • one or more of the earphone core 5510, the Bluetooth module 5520, the button module 5530, the power module 5540, the controller 5550, the auxiliary function module 5560, and the flexible circuit board 5570 can be set in the frame of the glasses 5400 in.
  • one or more electronic components may be disposed in the hollow structure of the temple 5410 and/or the temple 5420.
  • the electronic components provided in the temple 5410 and/or the temple 5420 may be connected and/or communicated in a wired or wireless manner.
  • Wired connections can include metal cables, optical cables, hybrid cables, etc. or any combination thereof.
  • the wireless connection may include a local area network (LAN), a wide area network (WAN), Bluetooth, ZigBee, near field communication (NFC), etc., or any combination thereof.
  • the description of the above-mentioned acoustic output device 5500 is only for illustrative purposes, and is not intended to limit the scope of the present application.
  • various changes and modifications can be made based on the description of this application. These changes and modifications are still within the protection scope of this application.
  • the acoustic output device 5500 may also include an audio recognition function, an image recognition function, or a motion recognition function, or a combination thereof.
  • the acoustic output device 5500 may perform corresponding functions by recognizing the user's voice, motion, and the like.
  • the recognized actions may include the number and/or frequency of the user's eye blinks, the number, direction, and/or frequency of the user's head nodding and/or shaking, and the number, direction, frequency, and form of the user's hand movements.
  • the user may interact with the acoustic output device 5500 through the number and/or frequency of blinking. Specifically, the user blinks twice in a row to turn on the sound playing function of the acoustic output device 5500, and the user blinks three times to turn off the Bluetooth function of the acoustic output device 5500.
  • the user may realize the interaction with the acoustic output device 5500 through the number of nodding, direction, and/or frequency.
  • the user can answer the call once by nodding, and the user can reject the call or turn off the music playing by shaking the head once.
  • the user can interact with the acoustic output device through gestures and the like. Specifically, the user can open the acoustic output device by extending the palm of the hand, the user can close the acoustic output device by closing the fist, and the user can take pictures by extending the "scissors" gesture.
  • Fig. 56 is a schematic diagram of connection of components in an acoustic output device according to some embodiments of the present application.
  • the flexible circuit board module 5570 may include one or more first pads (that is, the first pads 5572-1, 5572-2, 5572-3, 5572-4, 5572-5, 5572-6), one or more second pads (ie, second pads 5574-1, 5574-2, 5574-3, 5574-4), one or more wires.
  • At least one first pad in the flexible circuit board module 5570 is respectively connected to at least one second pad in a wired manner.
  • first pad 5572-1 and the second pad 5574-1 are connected by a flexible wire
  • first pad 5572-2 and the second pad 5574-2 are connected by a flexible wire
  • first pad 5572-5 and the second pad 5574-3 are connected by a flexible wire
  • first pad 5572-5 and the second pad 5574-3 are connected by a flexible wire
  • the first pad 5572-6 is connected with the second pad 5574-4 is connected by flexible leads.
  • each of the partial components in the acoustic output device 5500 is connected to one or more pads, respectively.
  • the earphone core 5510 is electrically connected to the first pad 5572-1 and the first pad 5572-2 through the wire 5512-1 and the wire 5512-2, respectively.
  • the auxiliary function module 5560 is respectively connected to the first pad 5572-5 and the first pad 5572-6 through the wire 5562-1 and the wire 5562-2.
  • the controller 5550 is connected to the second pad 5574-1 through a wire 5552-2, to the second pad 5574-2 through a wire 5552-2, and to the first pad 5574-3 through a wire 5552-3, and through a wire 5552-4 is connected to the first pad 5572-4, connected to the second pad 5574-3 through a wire 5552-5, and connected to the second pad 5574-4 through a wire 5552-6.
  • the power module 5540 is connected to the first pad 5574-3 through the wire 5542-1, and is connected to the first pad 5572-4 through the wire 5542-2.
  • the wire is a flexible wire or an external wire.
  • the external wires may include audio signal wires, auxiliary signal wires, etc., or a combination thereof.
  • the audio signal wire may include a wire connected to the earphone core 5510 and transmitting audio signals to the earphone core 5510.
  • the auxiliary signal wire may include a wire that is connected to the auxiliary function module 5560 and performs signal transmission with the auxiliary function module 5560.
  • the wires 5512-1 and 5512-2 may be audio signal wires.
  • the wire 5562-1 and the wire 5562-2 may be auxiliary signal wires.
  • the wires 5552-1 to 5552-6 may include audio signal wires and auxiliary signal wires.
  • the acoustic output device 5500 is provided with one or more buried grooves for placing wires and/or flexible leads.
  • a user of an acoustic output device may send a signal (for example, a signal to play music) to the acoustic output device by pressing a button.
  • the signal is transmitted to the first pad 5572-5 and/or the first pad 5572-6 of the flexible circuit board module 5570 through the wire 5562-1 and/or the wire 5562-2, and then to the second pad through the flexible wire.
  • the signal is transmitted to the controller 5550 through the wire 5552-5 and/or the wire 5552-6 connected to the second pad 5574-3 and/or the second pad 5574-4.
  • the controller 5550 can analyze and process the received signal, and generate corresponding instructions according to the processed signal.
  • the instructions generated by the controller 5550 are transmitted to the flexible circuit board module 5570 through one or more wires among the wires 5552-1 to 5552-6.
  • the instructions generated by the controller 5550 are transmitted to the earphone core 5510 through the wires 5512-1 and/or the wires 5512-2 connected to the flexible circuit board module 5570, and control the earphone core 5510 to play related music.
  • the instructions generated by the controller 5550 are transmitted to the power supply module 5540 through the wires 5542-1 and/or the wires 5542-2 connected to the flexible circuit board module 5570, and the power supply module 5540 is controlled to provide other components with power required to play music.
  • connection method through the flexible circuit board module 5570 simplifies the wiring method between different components in the acoustic output device, reduces the mutual influence between the wires, and also saves the space occupied by the inner wires of the acoustic output device.
  • Fig. 57 is a schematic diagram of an exemplary power module according to some embodiments of the present application.
  • the power module 5700 includes a battery 5710 and a flexible circuit board 5720.
  • the battery 5710 and the flexible circuit board 5720 are disposed in the housing of the same acoustic output device (for example, the temple 5410 or the temple 5420).
  • the battery 5710 may include a body area 5712 and a sealing area 5714.
  • the sealing area 5714 is disposed between the flexible circuit board 5720 and the body area 5712, and is connected to the flexible circuit board 5720 and the body area 5712.
  • the connection mode of the sealing area 5714 with the flexible circuit board 5720 and the body area 5712 includes fixed connection and/or movable connection.
  • the sealing area 5714 and the body area 5712 are arranged flat, and the thickness of the sealing area 5714 is equal to or less than the thickness of the body area 5712, so that at least one side of the sealing area 5714 and the body area adjacent to this side
  • the face of 5712 is stepped.
  • the battery 5710 may include a positive terminal and a negative terminal. The positive terminal and the negative terminal are respectively directly connected or indirectly connected with other components in the acoustic output device (for example, through a flexible circuit board 5720).
  • the flexible circuit board 5720 includes a first board 5721 and a second board 5722.
  • the first board 5721 includes a first pad 5723, a second pad 5725, and flexible leads.
  • the first pad 5723 may include a third pad group 5723-1, a third pad group 5723-2, a third pad group 5723-3, and a third pad group 5723-4.
  • Each third pad group includes one or more fourth pads, for example, two fourth pads.
  • the second pad 5725 may include a second pad 5725-1 and a second pad 5725-2.
  • One or more fourth pads in each of the third pads in one or more sets of first pads 5723 may connect two or more components of the acoustic output device.
  • a fourth pad in the third pad group 5723-1 is connected to the headphone core (for example, the headphone core 5510) through an external wire, and a fourth pad is connected to the headphone core (for example, the headphone core 5510) through a flexible lead provided on the second board 5722
  • the other fourth pad in the third pad group 5723-1 is connected, and the other fourth pad in the third pad group 5723-1 is connected to the controller (for example, the controller 5550) through an external wire, thereby Connect the earphone core and the controller for communication.
  • a fourth pad in the third pad group 5723-2 is connected to the Bluetooth module 5520 through an external wire, and the fourth pad in the third pad group 5723-2 is connected to the third pad through a flexible wire.
  • the other fourth pad in the three pad group 5723-2 is connected, and the other fourth pad in the third pad group 5723-2 is connected to the headphone core 5510 through an external wire, thereby connecting the headphone core 5510 with
  • the Bluetooth module 5520 is connected so that the acoustic output device can play audio information through the Bluetooth connection.
  • One or more second pads (for example, second pads 5725-1, 2725-2) are used to connect one or more components of the acoustic output device to the battery 5710.
  • the second pad 5725-1 and/or the second pad 5725-2 are connected to the earphone core through an external wire, and the second pad 5725-1 and/or the second pad 5725-2 pass through the second board 5722
  • the flexible lead is connected to the battery 5710, thereby connecting the earphone core and the battery.
  • the first pads 5723 and the second pads 5725 can be arranged in multiple ways. For example, all the pads can be arranged at intervals along a straight line, or arranged at intervals in other shapes. In some embodiments, one or more sets of first pads 5723 are arranged at intervals along the length direction of the first board 5721. One or more fourth pads in each third bonding group in the one or more first pads 5723 are arranged along the width direction of the first board 5721. They are staggered and arranged at intervals along the length of the first plate 5721. One or more second pads 5725 are provided in the middle area of the first board 5721. One or more second pads 5725 are provided along the length direction of the first board 5721.
  • the second board 5722 is provided with one or more flexible leads 422 for connecting the pads on the first board 5721 and the battery 5710.
  • the second board 5722 includes two flexible leads. One end of the two flexible leads can be connected to the positive and negative terminals of the battery 5710, and the other end is connected to the pad on the first board 5721. . Therefore, there is no need to provide additional pads to lead the positive and negative electrodes of the battery 5710, which can reduce the number of pads and simplify the structure and process. Since only flexible leads are provided on the first plate 5721, in some embodiments, the second plate 5722 can be bent similarly according to specific conditions.
  • one end of the first plate 5721 can be fixed to the battery 5710 by bending the second plate 5722, thereby reducing the volume of the power module 5700, saving the space of the housing of the acoustic output device of the power module 5700, and improving Space utilization.
  • the first plate 5721 can be attached to the side surface of the battery 5710 by folding the second plate 5722, so that the second plate 5722 and the battery 5710 are stacked, thereby greatly reducing the space occupied by the power module 5700.
  • the flexible circuit board 5720 is a whole body, and the first board body 5721 and the second board body 5722 are two areas of the integral flexible circuit board. In some embodiments, the flexible circuit board 5720 is divided into two independent parts. For example, the first board 5721 and the second board 5722 are two independent boards. In some embodiments, the flexible circuit board 5720 can be disposed in the space formed by the body area 5712 and/or the sealing area 5714 of the battery 5710, so that there is no need to provide a separate space for the flexible circuit board 5720, which further improves space utilization. .
  • the battery module 5700 may further include a hard circuit board 5716.
  • the hard circuit board 5716 can be disposed in the sealing area 5714.
  • the positive and negative terminals of the specific battery 5710 can be arranged on the hard circuit board 5716.
  • a protection circuit is provided on the hard circuit board 5716 to protect the battery 5710 from overload.
  • the end of the second board 5722 away from the first board 5721 can be fixedly connected to the hard circuit board 5716, so that the flexible lead on the second board 5722 is connected to the positive and negative terminals of the battery 5710.
  • the second board 5722 and the rigid circuit board 5716 may be pressed together during manufacture.
  • the shape of the first plate 5721 and the second plate 5722 can be set according to actual conditions.
  • the shape of the first plate 5721 and the second plate 5722 may include a square, a rectangle, a triangle, a polygon, a circle, an ellipse, an irregular shape, and the like.
  • the shape of the second plate 5722 matches the shape of the sealing area 5714 of the battery 5710.
  • the shape of the sealing area 5714 and the second plate 5722 may be rectangular, and the shape of the first plate 5721 may also be rectangular.
  • first plate 5721 may be placed at one end of the second plate 5722 in the length direction and perpendicular to the second plate 5722 along the length direction.
  • second plate 5722 can be connected to the middle area in the length direction of the first plate 5721, so that the first plate 5721 and the second plate 5722 are arranged in a T shape.
  • the battery 5710 and the flexible circuit board 5720 in the power module 5700 of the acoustic output device is only a specific example, and should not be regarded as the only feasible implementation.
  • the acoustic output device may not deviate from this principle to implement the acoustic output device battery 5710 and flexible circuit board 5720 specific methods and Various corrections and changes in form and details are made in the steps, but these corrections and changes are still within the scope described above.
  • the acoustic output device may further contain auxiliary function modules such as a voice control module and a microphone module. Such deformations are all within the protection scope of this application.
  • the acoustic output device may also include a voice control system.
  • the voice control system can be used as a part of the auxiliary function module 5560, or can be integrated into the acoustic output device as a separate module.
  • the voice control system includes a receiving module 5802, a processing module 5804, a recognition module 5806, and a control module 5808.
  • the receiving module 5802 may be used to receive voice control instructions and send the voice control instructions to the processing module 5804.
  • the receiving module 5802 may be one or more microphones.
  • the voice control instruction is sent to the processing module 5804.
  • the processing module 5804 is in communication with the receiving module 5802, generates an instruction signal according to the voice control instruction, and sends the instruction signal to the recognition module 5806.
  • the processing module 5804 when the processing module 5804 receives a voice control instruction issued by the current user from the receiving module 5802 via a communication connection, it generates an instruction signal according to the voice control instruction.
  • the identification module 5806 may be in communication connection with the processing module 5804 and the control module 5808, identify whether the command signal matches the preset signal, and send the matching result to the control module 5808.
  • the identification module 5806 when the identification module 5806 determines that the command signal matches the preset signal, the identification module 5806 sends the matching result to the control module 5808.
  • the control module 5808 controls the operation of the speaker device according to the instruction signal. For example, when the receiving module 5802 receives a voice control instruction of "start playing", and the recognition module 5806 determines that the instruction signal corresponding to the voice control instruction matches the preset signal, the control module 5808 will automatically execute the voice control instruction, namely Start playing audio data immediately. When the instruction signal does not match the preset signal, the control module 5808 may not execute the control instruction.
  • the voice control system may further include a storage module, which is in communication connection with the receiving module 5802, the processing module 5804, and the recognition module 5806; the receiving module 5802 may receive a preset voice control instruction and send it to the processing module 5804; processing module The 5804 generates a preset signal according to the preset voice control instruction, and sends the preset signal to the storage module.
  • the storage module sends the preset signal to the identification module 5806 through the communication connection.
  • the processing module 5804 may further include removing environmental sounds included in the voice control instruction.
  • the processing module 5804 in the voice control system in this embodiment may further include denoising processing on the voice control command.
  • Denoising processing refers to removing the environmental sound contained in the voice control command.
  • the receiving module 5802 receives the voice control instruction and sends it to the processing module 5804.
  • the processing module 5804 generates a corresponding instruction signal according to the voice control instruction, in order to avoid environmental sound
  • the subsequent recognition module 5806 interferes with the recognition process, and the voice control command will be denoised first.
  • the receiving module 5802 when the receiving module 5802 receives a voice control instruction issued by the user when the user is on an outdoor road, the voice control instruction contains noisy environmental sounds such as vehicles driving on the road, whistling, etc., and the processing module 302 can reduce the noise through denoising processing. The influence of environmental sound on voice control commands.
  • the voice control system is only a specific example and should not be regarded as the only feasible implementation. Obviously, for professionals in the field, after understanding the basic principles of the voice control system, they may perform various forms and details on the specific methods and steps of implementing the voice control system without departing from this principle. Corrections and changes, but these corrections and changes are still within the scope described above.
  • the receiving module and the processing module may be independent modules or the same module. Such deformations are all within the protection scope of this application.
  • the acoustic output device in some embodiments of the present application can reduce the mutual influence between wires by simplifying the internal wiring of the acoustic output device, and improve the sound quality of the acoustic output device.
  • the acoustic output device in some embodiments of the present application can also be combined with Bluetooth to reduce the mutual entanglement of the lines of the acoustic output device, so that the acoustic output device is convenient to carry, operate, and use.
  • FIG. 59 is a schematic diagram of a cross-sectional structure of an exemplary open binaural headset according to some embodiments of the present application.
  • FIG. 60 is a schematic diagram of a sound emitting structure of an exemplary open binaural headset according to some embodiments of the present application.
  • FIG. 60 may be an enlarged view of the sounding structure 5905 in FIG. 59.
  • Fig. 61 is a schematic cross-sectional view of a partition structure of an exemplary open binaural earphone according to some embodiments of the present application.
  • FIG. 61 may be a schematic cross-sectional view of the partition structure in FIG. 59 along C-C.
  • the open binaural headset 5900 may include a housing 5910, at least one microphone 5920, an acoustic driver 5930, and a sound guide 5940 corresponding to the acoustic driver 5930 (for example, Sound guide tube 5940-1, sound guide tube 5940-2, sound guide tube 5940-3, sound guide tube 5940-4, etc.), partition 5950, circuit board 5960, Bluetooth module 5970, and power module 5980.
  • the open binaural earphone 5900 may further include an electronic frequency dividing module (not shown in the figure, please refer to the electronic frequency dividing module 110).
  • the electronic frequency dividing module, the acoustic driver 5930, and the sound pipe 5940 may be collectively referred to as an acoustic output device.
  • the acoustic output device please refer to the relevant acoustic output device (for example, acoustic output device 100, acoustic output device 300, acoustic output device 400, acoustic output device 500, acoustic output device 600, acoustic output device) in FIGS. 1 to 37 The description of the device 1000, etc.) will not be repeated here.
  • the electronic frequency dividing module may be disposed in the housing 5910.
  • Exemplary electronic crossover modules may include passive filters, active filters, analog filters, digital filters, etc., or combinations thereof.
  • acoustic drivers 5930 with different frequency response characteristics can be set to output transducers with different frequency responses.
  • the sound contains different frequency band components.
  • frequency division processing of audio signals can also be implemented in the acoustic path.
  • the acoustic driver 5930 can generate full-band sound, and the sound output by the acoustic driver 5930 can be acoustically filtered by setting acoustic paths with different acoustic impedances, so that the sounds output through different acoustic paths have different frequency components.
  • acoustic path frequency division please refer to Figs. 4, 8A to 8C and their descriptions, which will not be repeated here.
  • the frequency division processing of the audio signal can also be implemented by combining two or more of the above methods.
  • the sound signals of different frequencies generated by the acoustic driver 5930 can be transmitted from different sound guide holes 5942 (for example, sound guide holes 5942-1, sound guide holes 5942-2, sound guide holes 5942-3 through different sound guide tubes 5940. , Sound guide hole 5942-4, etc.) output to the user.
  • sound guide 5940 is only an exemplary embodiment of the acoustic path through which sound can propagate in the open binaural earphone 5900.
  • acoustic paths such as acoustic cavities, resonant cavities, acoustic holes, acoustic slits, tuning nets, etc., or any combination of structures
  • other acoustic paths such as acoustic cavities, resonant cavities, acoustic holes, acoustic slits, tuning nets, etc., or any combination of structures
  • the frequency-divided signal generated after processing the audio signal may have a narrower frequency band than the frequency band of the audio signal, but its frequency band is within the frequency band of the audio signal.
  • the frequency band of the audio signal may range from 10 Hz to 30 kHz.
  • the frequency band of the frequency division signal may be 100 Hz to 200 Hz, which is narrower than and within the frequency band range of the audio signal.
  • the combination of frequency bands of the frequency-divided signal may completely cover the frequency band of the audio signal. Additionally or alternatively, the combination of frequency bands of the frequency-divided signal may partially cover the frequency band of the audio signal.
  • At least two of the frequency-divided signals may have different frequency bands (different frequency bands refer to two frequency bands with different at least one parameter of the frequency band center value and the frequency bandwidth).
  • each frequency-divided signal may have a characteristic frequency band that is different from the frequency band of other frequency-divided signals (that is, includes a frequency band that does not overlap with the frequency band range of other frequency-divided signals).
  • Different frequency-divided signals can have the same frequency bandwidth or different frequency bandwidths.
  • the overlap between the frequency bands of a pair of adjacent frequency-divided signals in the frequency domain can be avoided, thereby improving the voice output effect.
  • two frequency-divided signals with close center frequencies can be considered to be adjacent to each other in the frequency domain.
  • the frequency bands of a pair of adjacent frequency-divided signals refer to FIGS. 63A and 63B and related descriptions.
  • the actual low-frequency and high-frequency sound output by the open binaural earphone 5900 may be generated in the frequency band near the crossover point. Certain overlap (aliasing). It is understandable that these overlaps will not affect the overall sound leakage reduction effect of the open binaural earphone 5900 provided in the embodiment of the present application.
  • the housing 5910 is the external structure of the open binaural earphone 5900, and its shape is set according to the wearing mode of the earphone (for example, ear-hook earphone and headband earphone) and specific usage requirements, and is not specifically limited here.
  • the housing 5910 may be a hollow structure.
  • a microphone 5920, an acoustic driver 5930, a sound pipe 5940, a partition 5950, a circuit board 5960, a Bluetooth module 5970, a power supply module 5980, etc. can be arranged in the hollow structure.
  • the microphone 5920 and the acoustic driver 5930 may be located at the front end of the housing 5910; the circuit board 5960 may be located at the middle section of the housing 5910; the Bluetooth module 5970 and the power module 5980 may be located at the rear end of the housing 5910.
  • the microphone 5920, the acoustic driver 5930, the sound tube 5940, the partition 5950, the circuit board 5960, the Bluetooth module 5970, and the power supply module 5980 may be located in any other suitable positions of the housing 5910.
  • the acoustic driver 5930-1, the microphone 5920, the circuit board 5960, etc. may be located at the front end of the housing 5910
  • the Bluetooth module 5970 may be located in the middle section of the housing 5910
  • the acoustic driver 5930-2, the battery module 5980 may be located at the rear of the housing 5910 end.
  • the Bluetooth module 5970 and the power module 5980 may be located at the front end of the housing 5910; the microphone 5920 and the circuit board 5960 may be located in the middle section of the housing 5910; the acoustic driver 5930-1 and the acoustic driver 5930-2 may both be located at the housing 5910 At the rear end, a sound guide hole can be provided at the front end of the housing 5910 through a sound guide tube.
  • the positions of the microphone 5920, acoustic driver 5930, sound pipe 5940, partition 5950, circuit board 5960, Bluetooth module 5970 and power module 5980 in the housing 5910 can be based on the open binaural headset 5900
  • the specific positions of the components in the drawings are only for illustrative purposes and do not limit the scope of protection of this application.
  • the acoustic driver 5930-1 and the acoustic driver 5930-2 may be separated by a partition 5950.
  • the housing 5910 may be integrally formed. In some embodiments, the housing 5910 can also be assembled by means of plug-in, snap-in, etc. In some embodiments, the housing 5910 may be made of metal materials (for example, copper, aluminum, titanium, gold, etc.), alloy materials (for example, aluminum alloys, titanium alloys, etc.), and plastic materials (for example, polyethylene, polypropylene, Epoxy resin, nylon, etc.), fiber materials (for example, acetate fiber, propionate fiber, carbon fiber, etc.). In some embodiments, a sheath may be provided outside the housing 5910. The sheath can be made of a soft material with certain elasticity, such as soft silica gel, rubber, etc., to provide a better touch for users to wear.
  • metal materials for example, copper, aluminum, titanium, gold, etc.
  • alloy materials for example, aluminum alloys, titanium alloys, etc.
  • plastic materials for example, polyethylene, polypropylene, Epoxy resin, nylon, etc.
  • fiber materials for
  • the surface of the shell 5910 can be provided with sound guide holes, for example, a first sound guide hole 5942-1, a second sound guide hole 5942-2, a third sound guide hole 5942-3, a fourth sound guide hole 5942-4, etc. .
  • the open binaural earphone 5900 can transmit sound to the user through the air through the sound guide hole.
  • the acoustic driver 5930 may convert the frequency-divided signal (for example, an electrical signal) into a sound signal, and transmit the sound signal to the corresponding sound guide hole through the corresponding sound guide tube, and then transmit the sound signal to the user through the sound guide hole.
  • the sound guide hole on the headset 5900 is regarded as a sound source for external output sound (of course, the actual sound source is still a sound emitting device).
  • each sound guide hole can be approximately regarded as a point sound source.
  • the microphone 5920 can be used to receive external sound signals (for example, a user's voice signal), and convert the received sound signals into electrical signals.
  • the sound signal received by the microphone 5920 is processed (for example, filtering, denoising, amplifying, smoothing and/or frequency division, etc.) to obtain an audio signal (or frequency division signal), and the audio signal is passed through the open binaural
  • Other components of the headset 5900 such as Bluetooth components and WIFI components are sent to the objects or devices that communicate with the open binaural headset 5900.
  • the acoustic driver 5930 can be used to convert the input electrical signal into a sound signal for output.
  • the conversion method may be a vibration and sound method.
  • the acoustic driver 5930 can process the received audio signals into frequency signals due to their different frequency responses, and convert them into sound signals of different frequency bands, and then output them to the open ears. Users of headset 5900.
  • the acoustic driver 5930 may directly receive frequency-divided signals of different frequency bands, convert the received frequency-divided signals into sound signals, and then respectively output them to users wearing the open binaural headphones 5900.
  • the acoustic driver 5930 may include at least two speaker units (or transducers). For example only, FIG.
  • the acoustic driver 5930 may include an air conduction speaker, a bone conduction speaker, a hydro-acoustic transducer, an ultrasonic transducer, etc., or a combination thereof.
  • the acoustic driver 5930 may include a moving coil speaker, a moving iron speaker, a piezoelectric speaker, an electrostatic speaker, a magnetostrictive speaker, a balanced armature speaker, etc., or a combination thereof.
  • each speaker unit may have the same frequency response characteristics. In some embodiments, each speaker unit may have different frequency response characteristics.
  • the specific speaker unit corresponding to the specific frequency division signal may mean that the frequency band of the frequency division signal input to the specific speaker unit may be the same as the frequency band of the specific frequency division signal, or it may mean that the specific speaker unit can generate
  • the specific sound signal may also mean that the frequency band of the sound signal transmitted through the sound guide hole after the signal transmitted by the specific speaker unit is the same as the specific frequency division signal.
  • Each speaker unit can be used to convert input electrical signals (such as different frequency-divided signals) into sound signals through vibration and sound, and then output them.
  • each speaker unit may correspond to two sound guide holes.
  • Each loudspeaker unit can output a group of sound signals with opposite phases and the same intensity, which are respectively transmitted to the user through the sound guide tube 5940 and the two corresponding sound guide holes 5942.
  • the speaker unit may include a diaphragm, which is driven by an electric signal to generate vibration, and the front and back of the diaphragm can simultaneously output normal phase sound and reverse phase sound.
  • the normal phase sound and the reverse phase sound can be superimposed in the same or similar phase at the listening position (ie, the near field such as the center position of the human ear hole); at the same time, the far field (The common leakage point in the surrounding environment)
  • the normal phase sound and the reverse phase sound are reversed in phase, which can improve the leakage reduction ability of the open binaural earphone 5900 while ensuring the volume of the near-field sound.
  • the two sound guide holes corresponding to the same speaker unit may be referred to as dual point sound sources.
  • the first sound guide hole 5942-1 and the second sound guide hole 5942-2 corresponding to the speaker unit 5930-1 may be referred to as a dual-point sound source; the third sound guide hole 5942 corresponding to the speaker unit 5930-2 -3 and the fourth sound guide hole 5942-4 can also be called a dual point sound source.
  • the frequency band and amplitude of the frequency-divided signal transmitted from each sound guide hole in the dual-point sound source may be the same, and the phase may be different (for example, it may be opposite).
  • the frequency band of the frequency-divided signal transmitted from each sound guide hole in the dual-point sound source may be the same, and the phase may be the same.
  • the speaker unit may only correspond to a unique sound guide hole. That is, the speaker unit corresponds to a single point sound source. In other words, the speaker unit can only output a unique frequency-divided signal.
  • the side of the speaker unit 5930-1 facing the sound guide hole 5942-2 may be closed.
  • a dual-point sound source can be constructed by using two speaker units (ie, two single-point sound sources).
  • two balanced armature speakers may be used to construct a high-frequency dual-point sound source (that is, the dual-point sound source corresponds to a high-frequency signal).
  • the frequency, phase, amplitude derivative and other parameters of the frequency-divided signal corresponding to each single-point sound source in each group of dual-point sound sources can be adjusted individually.
  • the frequency of each single-point sound source in each group of dual-point sound sources may be the same, and the phase may be the same or different.
  • the frequency of each single-point sound source in each group of dual-point sound sources may be the same, and the amplitude may be the same or different.
  • the higher the frequency band of the frequency-divided signal corresponding to the speaker unit the shorter the distance between the corresponding sound guide holes.
  • the first speaker unit 5930-1 can be used to output low-frequency signals
  • the second speaker unit 5930-2 can be used to output high-frequency signals.
  • the first speaker unit 5930-1 corresponds to the first sound guide hole 5942-1 and the second The distance between the two sound guide holes 5942-2 may be greater than the distance between the third sound guide hole 5942-3 and the fourth sound guide hole 5942-4 corresponding to the second speaker unit 5930-2.
  • the audio signal can be divided into three frequency bands such as low, medium and high.
  • different spacing to obtain low-frequency two-point sound source, mid-frequency two-point sound source and high-frequency two-point sound source.
  • the low-frequency two-point sound source has the largest distance
  • the intermediate-frequency two-point sound source has the middle distance
  • the high-frequency two-point sound source has the smallest distance.
  • the low frequency band since the increase in the listening sound is greater than the increase in the leakage volume after the sound source spacing is enlarged, a higher volume output can be achieved in the low frequency band.
  • the acoustic driver 5930 may only include a first speaker unit 5930-1 and a second speaker unit 5930-2, where the first speaker unit 5930-1 corresponds to a low frequency signal, and the second speaker unit 5930-2 corresponds to a high frequency signal. signal.
  • the crossover point between low frequency and high frequency may be between 600 Hz and 1.2 kHz.
  • the first speaker unit 5930-1 may correspond to two sound guide holes 5942-1 and 5942-2; the second speaker unit 5930-2 may correspond to two sound guide holes 5942-3 and 5942-4.
  • the sound guide hole distance d l and a sound guide hole 5942-3 and 5942-2 and 5942-1 between the distance d h between 5942-4 may be any value.
  • d l may be not greater than 40mm, e.g., in the range of 20mm-40mm, d h can be no greater than 12mm, and larger than d l d h.
  • d l may be not less than 12mm, d h may not be greater than 7mm, e.g., in the range of 3mm-7mm. More preferably, d l may be 30mm, d h may be 5mm.
  • d l may be at least twice d h .
  • d l may be at least 3 times d h .
  • the d l may be at least 5 times d h .
  • the range can be 2-10; preferably, The range of can be 2.5-9.5; more preferably, The range of can be 3-9; more preferably, The range of can be 3.5-8.5; more preferably, The range of can be 4-8; more preferably, The range of can be 4.5-7.5; more preferably, The range of can be 5-7; more preferably, The range of can be 5.5-6.5; more preferably, Can be 6.
  • each group of dual-point sound sources may include a near-ear point sound source and a far-ear point sound source.
  • the first sound guide hole 5942-1 is closer to the ear hole than the second sound guide hole 5942-2
  • the third sound guide hole 5942-3 is closer to the fourth sound guide hole.
  • the sound hole 5942-4 is closer to the ear hole, then the first sound guide hole 5942-1 and the third sound guide hole 5942-3 can be called a near-ear point sound source, the second sound guide hole 5942-2 and the fourth sound guide hole 5942-3
  • the sound hole 5942-4 may be referred to as a distant ear point sound source.
  • the distance L between the first sound guide hole 5942-1 and the third sound guide hole 5942-3 may not be greater than 20mm; alternatively, L may not be greater than 18mm; more preferably, L may not More than 16mm; more preferably, L may not be greater than 14mm; more preferably, L may not be greater than 12mm; more preferably, L may not be greater than 10mm; more preferably, L may not be greater than 9mm; more preferably, L may not be greater than More preferably, L may not be greater than 7mm; more preferably, L may not be greater than 6mm; more preferably, L may not be greater than 5mm; more preferably, L may not be greater than 4mm; more preferably, L may not be greater than More than 3 mm; more preferably, L may not be greater than 2 mm; more preferably, L may not be greater than 1 mm; more preferably, L may be equal to zero.
  • the near-ear point sound sources in each group of two-point sound sources can be combined into one sound guide hole, which can serve as the dominant sound hole to transmit sound to the ear hole of the user.
  • the first sound guide hole 5942-1 and the third sound guide hole 5942-3 can be combined into one sound guide hole (sound guide hole 5942-5 in FIG. 62).
  • at least a part of the structure of the at least one sound guide hole may face the user's ear. In this way, the sound from the sound guide hole can propagate toward the user's ear hole (as shown in FIG. 62).
  • the shape of the sound guide hole may include, but is not limited to, one of a bar, a circle, an ellipse, a square, a trapezoid, a rounded quadrilateral, a triangle, an irregular pattern, etc., or any combination thereof.
  • the shape of each sound guide hole may be the same or different.
  • the shape of the first sound guide hole 5942-1 and the third sound guide hole 5942-3 may be circular, and the shape of the second sound guide hole 5942-2 and the fourth sound guide hole 5942-4 may be oval.
  • the shape of the first sound guide hole 5942-1 may be a strip shape
  • the shape of the second sound guide hole 5942-2 may be an oval shape
  • the shape of the third sound guide hole 5942-3 may be a circle
  • the shape of the The shape of the four sound guide holes 5942-4 can be triangular.
  • the shapes of the first sound guide hole 5942-1, the second sound guide hole 5942-2, the third sound guide hole 5942-3, and the fourth sound guide hole 5942-4 may all be strip-shaped.
  • the apertures or sizes of the sound guide holes corresponding to different speaker units may be the same or different.
  • the volume of the corresponding listening sound and/or sound leakage may also be different.
  • the near-to-far aperture ratio ie, the ratio of the aperture size of the near-ear point sound guide hole to the far-ear point sound guide hole
  • the dual-point sound source can obtain stronger leakage reduction Tone capability.
  • the higher the frequency band of the crossover signal corresponding to the dual-point sound source the smaller the near-to-far aperture ratio may be.
  • the aperture of the near-ear point sound source and the aperture of the far-ear point sound source may gradually become the same.
  • the aperture of the near-ear point sound source can be set larger than that of the far-ear point;
  • the apertures of point sound sources are the same or similar.
  • the near-to-far aperture ratio may not be less than 1; optionally, the near-to-far aperture ratio may not be less than 5; more preferably, the near-to-far aperture ratio may not be less than 10. ; More preferably, the near-to-far aperture ratio may not be less than 15; more preferably, the near-to-far aperture ratio may not be less than 20; more preferably, the near-to-far aperture ratio may not be less than 25; more preferably, the near-to-far aperture ratio may not Less than 30;
  • the near-to-far aperture ratio may not be greater than 10; preferably, the near-to-far aperture ratio may not be greater than 8; more preferably, the near-far aperture ratio may not be greater than 6. ; More preferably, the near-distal aperture ratio may not be greater than 4; more preferably, the near-distal aperture ratio may not be greater than 3; more preferably, the near-distal aperture ratio may not be greater than 2; more preferably, the near-distal aperture ratio may be equal to 1.
  • the center point of the near-ear point sound source of each group of dual-point sound sources and the center point of the user’s ear hole 6210 The distance D n between may not be greater than 10 cm; preferably, the distance D n may not be greater than 9 cm; more preferably, the distance D n may not be greater than 8 cm; more preferably, the distance D n may not be greater than 7 cm; more preferably, The distance D n may not be greater than 6 cm; more preferably, the distance D n may not be greater than 5 cm; more preferably, the distance D n may not be greater than 4 cm; more preferably, the distance D n may not be greater than 3 cm; more preferably
  • the open binaural headset 5900 may include a low-frequency speaker unit and a tweeter unit, and the near-ear sound guide hole corresponding to the low-frequency speaker unit may be combined with the corresponding near-ear sound guide hole of the tweeter unit.
  • a sound guide hole For example, as shown in FIG. 62, the first sound guide hole 5942-1 and the third sound guide hole 5942-3 can be combined into a sound guide hole 5942-5.
  • one end of the sound guide hole 5942-5 may be disposed on the end surface 5912, and the other end of the sound guide hole 5942-5 may be disposed on the end surface 5914.
  • the second sound guide hole 5942-2 may be provided on the end surface 5912.
  • the fourth sound guide hole 5942-4 may be provided on the end surface 5916.
  • the first sound guide hole 5942-1, the second sound guide hole 5942-2, the third sound guide hole 5942-3 and the fourth sound guide hole 5942-4 can all be provided on the end surface 5912 (or end surface 5916) on.
  • the third sound guide hole 5942-3 may be provided on the end surface 5912 and the fourth sound guide hole 5942-4 may be provided on the opposite surface of the end surface 5912.
  • the first sound guide hole 5942-1 and the second sound guide hole 5942-2 may be provided at any part of the front end of the housing 5910 (for example, end face 5912, end face 5914 or end face 5916 ), the third sound guide hole 5942-3 and the fourth sound guide hole 5942-4 can be arranged at any part of the rear end of the housing 5910.
  • the first sound guide hole 5942-1 and the third sound guide hole 5942-3 may be provided at the front end of the housing 5910, and the second sound guide hole 5942-2 and the fourth sound guide hole 5942-4 may Set at the rear end of the housing 5910.
  • the distance D between the center point of the sound guide hole 5942-5 and the center point of the nearest ear hole may not be greater than 10 cm; preferably, the distance D may not be greater than 9cm; more preferably, the distance D may not be greater than 8cm; more preferably, the distance D may not be greater than 7cm; more preferably, the distance D may not be greater than 6cm; more preferably, the distance D may not be greater than 5cm; more preferably, The distance D may not be greater than 4cm; more preferably, the distance D may not be greater than 3cm; more preferably, the distance D may not be greater than 2.5cm; more preferably, the distance D may not be greater than 2cm; more preferably, the distance D may not be greater than 1.5cm; more preferably, the distance D may not be greater than 1cm; more preferably, the distance D may not be greater than 0.5cm; more preferably, the distance D may may not be greater than 10 cm; preferably, the distance D may not be greater than 9
  • a baffle structure may be provided between the two-point sound sources, and the volume of the near-field listening position can be significantly increased under the condition that the far-field leakage sound volume does not increase significantly, thereby enhancing the user's listening effect.
  • the low-frequency dual-point sound source may include a sound guide hole arranged at the near ear point, and the corresponding far ear sound guide hole may be arranged at the rear end of the housing 5910.
  • This setting can enable the user to wear the open binaural headset 5900 with the user’s ear contour separated between the near-ear point sound source and the far-ear point sound source.
  • the ear contour can act as a baffle, significantly increasing the volume of the near-field listening position, thereby enhancing the user's listening effect.
  • the diameter of the sound guide tube cannot be too small, otherwise it will easily cause excessive sound loss and reduce Output volume.
  • the diameter of the sound guide tube is too large, if the transmitted sound is greater than a certain frequency, high-order waves will be generated in the tube. Therefore, in order to prevent the sound guide tube from generating high-order waves within the sound range to be transmitted, but only plane waves propagating in the direction of the tube, the sound guide tube radius can be set reasonably.
  • the radius of the sound pipe may be 0.5mm-10mm; preferably, the radius of the sound pipe may be 0.5mm-9mm; more preferably, the radius of the sound pipe may be 0.7mm-8mm; more preferably, The radius of the sound pipe may be 0.9mm-7.5mm; more preferably, the radius of the sound pipe may be 1mm-7mm; more preferably, the radius of the sound pipe may be 1.5mm-6.5mm; more preferably, the radius of the sound pipe It can be 2mm-6mm; more preferably, the sound pipe radius can be 2.5mm-5.5mm; more preferably, the sound pipe radius can be 3mm-5mm; more preferably, the sound pipe radius can be 3.5mm-4.5 mm; More preferably, the radius of the sound pipe may be 3.7mm-4.2mm.
  • the radiation impedance of the sound guide tube and the nozzle can interact, so that the sound of a specific frequency forms a standing wave in the tube, which causes the output sound to form peaks at certain frequencies. / Valley, affect the sound output effect. The longer the length of the sound pipe, the lower the frequency of peaks/valleys and the greater the number of peaks/valleys.
  • the length of the sound pipe is not greater than 300mm; more preferably, the length of the sound pipe is not greater than 250mm; more preferably, the length of the sound pipe is not greater than 200mm; more preferably, the length of the sound pipe is not greater than 150mm; more preferably , The length of the sound guide tube is not more than 100mm; more preferably, the length of the sound guide tube is not more than 50mm; more preferably, the length of the sound guide tube is not more than 30mm; more preferably, the length of the sound guide tube is not more than 20mm; more preferably, the sound guide tube is not more than 20mm in length; The length of the sound tube is not more than 10mm.
  • an impedance matching layer may be provided at the sound guide hole to reduce the influence of peaks/valleys.
  • the length-to-diameter ratio (that is, the length to diameter) of the sound guide tube will also affect its internal sound. It has the effect of low-pass filtering and also has a damping effect, which will eventually cause the volume to change. Small, the lower the high frequency volume, the greater the attenuation of the frequency. In order to ensure that the sound attenuation is not too large to affect listening.
  • the length to diameter ratio of the sound guide tube may not be greater than 200; more preferably, the length to diameter ratio of the sound guide tube may not be greater than 180; more preferably, the length to diameter ratio of the sound guide tube may not be greater than 160; more preferably, the sound guide tube
  • the tube length to diameter ratio may not be greater than 150; more preferably, the sound guide tube may not be more than 130; more preferably, the sound tube length to diameter ratio may not be more than 110; more preferably, the sound tube length to diameter ratio may be More preferably, the length-to-diameter ratio of the sound guide tube may not be more than 50; more preferably, the tube length-to-diameter ratio may not be more than 30; more preferably, the tube length-to-diameter ratio may not be more than 10.
  • the parameters (for example, length, radius, aspect ratio, etc.) of each sound pipe may be the same or different.
  • the length of the first sound guide tube 5940-1 may be 5 mm
  • the length of the second sound guide tube 5940-2 may be 30 mm.
  • the length of the first sound guide tube 5940-1 and the third sound guide tube 5940-3 may both be 5 mm.
  • the acoustic driver 5930-1 can be made to generate amplitude at the first sound guide hole 5942-1 and the second sound guide hole 5942-2, respectively.
  • the higher the frequency band of the frequency-divided signal in the dual-point sound source the greater the phase difference.
  • phase difference of the low-frequency signal transmitted from the two point sound sources can be adjusted to be equal to or approximately equal to 0°;
  • phase difference of the high-frequency signals transmitted from the two point sound sources can be adjusted to be equal to or approximately equal to 180°.
  • the phase difference between the dual-point sound source and the near-field listening position (or the center point of the ear hole) is equal to or approximately equal to 0°
  • the dual-point sound source The phase difference arriving at the far field is equal to or approximately equal to 180°.
  • the phase difference of the two-point sound source may be equal to 5°, 10°, 20°, 50°, 70°, 90°, 100°, 120°, 130°, 150°, 170°, 175° , 180°, etc., or a combination thereof.
  • the circuit board 5960 can be used to integrate various components to realize various functions.
  • a frequency division processing unit may be integrated on the circuit board to realize frequency division processing of audio signals.
  • a signal processing unit may be integrated on the circuit board to adjust the phase and amplitude of the audio signal.
  • the Bluetooth module 5970 can be used to enable the open binaural headset 5900 to communicate with external devices.
  • the open binaural headset 5900 and external audio equipment can communicate through the Bluetooth module 5970.
  • the Bluetooth module 5970 may be integrated on the circuit board 5960.
  • the power supply module 5980 can be used to provide power to the various components of the open binaural earphone 5900.
  • the power supply module 5980 may include a battery, a dry battery, a lithium battery, a Danner battery, a fuel cell, and the like.
  • a battery a dry battery
  • a lithium battery a lithium battery
  • a Danner battery a fuel cell
  • other structures such as the circuit board 5960, the Bluetooth module 5970, and the power module 5980 of the open binaural earphone 5900, please refer to the settings of conventional earphones in the prior art, which will not be repeated here.
  • the open binaural earphone 5900 is intended to be illustrative, not to limit the scope of this application. Many substitutions, modifications and changes are obvious to those of ordinary skill in the art.
  • the features, structures, methods, and other features of the exemplary embodiments described herein may be combined in various ways to obtain additional and/or alternative exemplary embodiments.
  • the open binaural headset 5900 may include one or more additional components. Additionally or alternatively, one or more components of the open binaural earphone 5900 described above may be omitted.
  • a feedback microphone can be added to the open binaural headset 5900. The feedback microphone can be used to reduce residual noise (e.g., circuit current noise).
  • the partition 5950 can be omitted.
  • one or more keys (for example, a volume increase key, a volume decrease key, a power on/off key, a Bluetooth switch key, etc.) may be provided on the housing 5910.
  • the open binaural headset 5900 can be connected to the user terminal through the Bluetooth module 5970.
  • the user terminal can display a control interface, and the user can send control instructions through the control interface, for example, increase/decrease the volume, etc., and the control signal can be received by the Bluetooth module 5970 and further realize the control of the headset.
  • the Bluetooth module 5970 can be omitted.
  • the open binaural headset 5900 can communicate with external devices through a data cable.
  • Figure 63A illustrates an exemplary frequency response 6310 of the first speaker unit 5930-1 and an exemplary frequency response 6320 of the second speaker unit 5930-2 according to some embodiments of the present application.
  • FIG. 63B shows an exemplary frequency response 6310 of the first speaker unit 5930-1 and another exemplary frequency response 6330 of the second speaker unit 5930-2 according to some embodiments of the present application.
  • the first speaker unit 5930-1 may be configured to process an audio signal to generate a first frequency-divided signal.
  • the second speaker unit 5930-2 may be configured to process the audio signal to generate a second frequency-divided signal.
  • the second frequency division signal may be adjacent to the first frequency division signal in the frequency domain.
  • the frequency response of the first speaker unit 5930-1 and the second speaker unit 5930-2 may have the same frequency bandwidth.
  • the frequency response 6310 of the first speaker unit 5930-1 has a low half power point f1, a high half power point f2, and a center frequency f3.
  • the half power point of a certain frequency response may refer to a frequency point with a specific power rejection (e.g., -3dB).
  • the frequency bandwidth of the frequency response 6310 may be equal to the difference between f2 and f1.
  • the frequency response 6320 of the second speaker unit 5930-2 has a low half power point f2, a high half power point f4 and a center frequency f5.
  • the frequency bandwidth of the frequency response 6320 may be equal to the difference between f4 and f2.
  • the frequency bandwidths of the first speaker unit 5930-1 and the second speaker unit 5930-2 may be equal to each other.
  • the frequency response of the first speaker unit 5930-1 and the second speaker unit 5930-2 may have different frequency bandwidths.
  • the frequency response 6330 of the second speaker unit 5930-2 has a low half power point f2, a high half power point f7 (greater than f4), and a center frequency f6.
  • the frequency bandwidth of the frequency response 6330 of the second speaker unit 5930-2 may be equal to the difference between f7 and f2, and the difference may be greater than the frequency bandwidth of the frequency response 6310 of the first speaker unit 5930-1.
  • the frequency responses of the first speaker unit 5930-1 and the second speaker unit 5930-2 may intersect at a specific frequency point.
  • the intersection of the frequency responses can cause a certain range of overlap between the first and second frequency responses.
  • there may be a certain overlap range which may cause an interference range between the first frequency-divided signal and the second frequency-divided signal, and affect the quality of the first frequency-divided signal and the second frequency-divided signal.
  • the larger the overlap range the larger the interference range may be, and the lower the quality of the first and second frequency-divided signals may be.
  • the specific frequency point at which the frequency responses of the first speaker unit 5930-1 and the second speaker unit 5930-2 intersect may be close to the half power point of the frequency response of the first speaker unit 5930-1 and/or the second The half power point of the frequency response of the speaker unit 5930-2.
  • the frequency response 6310 and the frequency response 6320 intersect at the high half power point f2 of the frequency response 6310, and the intersection point is also the low half power point of the frequency response 6320.
  • the threshold for example, 2 dB
  • the frequency response of unit 5930-2 has a proper overlap range. For example, when the half power point is -3dB and the threshold is -2dB, if the frequency response intersects at a frequency point with a power level greater than -5dB and/or less than -1dB, the overlap range can be considered to be relatively small.
  • the center frequency and/or bandwidth of the frequency response of the first speaker unit 5930-1 and the second speaker unit 5930-2 can be adjusted to obtain the first speaker unit 5930-1 and the second speaker unit 5930- A narrower or appropriate overlap range between the frequency response of 2 to avoid overlap between the frequency bands of the first and second frequency-divided signals.
  • FIGS. 63A and 63B are intended to be illustrative, and not to limit the scope of the present application.
  • one or more parameters eg, frequency bandwidth, high half power point, low half power point, and/or center frequency
  • one or more parameters eg, frequency bandwidth, high half power point, low half power point, and/or center frequency
  • Fig. 64 is a schematic diagram of exemplary open binaural headphones according to some embodiments of the present application.
  • the open binaural earphone 6400 may be called a headband earphone.
  • the open binaural headset 6400 may have a similar configuration to the open binaural headset 5900.
  • the open binaural headset 6400 may include a housing 6410, a microphone, an acoustic driver (such as a speaker unit), a sound tube corresponding to the acoustic driver, a partition, a circuit board, a Bluetooth module, and a power supply module.
  • the housing 6410 may be provided with a first sound guide hole 6420-1, a second sound guide hole 6420-2, a third sound guide hole 6420-3, and a fourth sound guide hole 6420-4 corresponding to the acoustic driver.
  • the first sound guide hole 6420-1 and the second sound guide hole 6420-2 of the open binaural earphone 6400 correspond to the low frequency speaker unit; the third sound guide hole 6420-3 and the fourth sound guide hole 6420 -4 corresponds to the tweeter unit.
  • the first sound guide hole 6420-1 may be provided on the end surface 6414; the second sound guide hole 6420-2 may be provided on the end surface 6412 and located at the top of the housing 6410; the third sound guide hole 6420 -3 and the fourth sound guide hole 6420-4 may both be provided on the end surface 6412 and located at the left end and/or the middle of the right end of the housing 6410. More descriptions of the open binaural headset 6400 can be combined with the description of the open binaural headset 5900, which will not be repeated here.
  • the distance between the center point of the first sound guide hole 6420-1 and the center point of the user's ear hole on the nearest side may be the same as the sound guide hole 5942 in the open binaural headset 5900.
  • the distance between the center point of -5 and the center point of the user's ear hole on the nearest side is the same.
  • the shape and size of the first sound guide hole 6420-1, the second sound guide hole 6420-2, the third sound guide hole 6420-3, and the fourth sound guide hole 6420-4 in the open binaural earphone 6400 can be They are the same as the first sound guide hole 5942-1, the second sound guide hole 5942-2, the third sound guide hole 5942-3, and the fourth sound guide hole 5942-4 in the open binaural earphone 5900, respectively.
  • this application mainly uses ear-hook earphones as an example to explain the open binaural earphones disclosed in this application, but it should not limit the application scope of the present invention in other open binaural earphones.
  • the positions of the acoustic driver, sound guide tube, and sound guide hole in the open binaural earphone disclosed in this application are only examples, and do not limit the scope of this application. Many substitutions, modifications and changes are obvious to those of ordinary skill in the art.
  • the features, structures, methods, and other features of the exemplary embodiments described herein may be combined in various ways to obtain additional and/or alternative exemplary embodiments.
  • the open binaural earphone 5900 may include three speaker units, and the three speaker units respectively correspond to voice signals in three frequency bands, namely, low, medium, and high frequency speaker units.
  • the low frequency loudspeaker unit and its corresponding sound guide tube and sound guide hole can all be located at the front end of the housing, the mid-frequency speaker unit and its corresponding sound guide tube and sound guide hole can all be located in the middle of the housing, and the tweeter unit and its corresponding sound guide
  • the sound guide tube and the sound guide hole may both be located at the rear end of the housing.
  • the low, medium, and high frequency speaker units can be arranged at the rear end of the housing, and the sound guide holes are all located at the front end of the housing through the sound guide pipes corresponding to them.
  • the high frequency/low frequency speaker unit in the open binaural earphone 6400 can correspond to four sound guide tubes and sound guide holes.
  • the four sound guide holes may be provided in pairs on the left and right sides of the housing 6410 as low-frequency two-point sound sources for the left and right ears of the user.
  • the possible beneficial effects of the embodiments of this application include, but are not limited to: in one aspect of this application, (1) by setting a high-frequency double-point sound source and a low-frequency double-point sound source to achieve sound output in different frequency bands, it has better (2) By setting dual-point sound sources with different spacings, the acoustic output device has a stronger leakage reduction effect in higher frequency bands, and meets the needs of open binaural acoustic output devices; Another aspect of the application is to increase the sound path difference between the two-point sound source and the listening position by setting a baffle structure, increase the listening volume in the near field and reduce the volume of the far field leakage, which has a better sound output effect In another aspect of this application, (4) realize the open coupling of the acoustic output device and the ear hole, avoiding the problems of the user’s long-term wearing of traditional earphones, such as ear hearing loss and potential safety hazards; (5) from multiple Angle optimization of acoustic output devices of different product forms (for example, glasses
  • this application uses specific words to describe the embodiments of the application.
  • “one embodiment”, “an embodiment”, and/or “some embodiments” mean a certain feature, structure, or characteristic related to at least one embodiment of the present application. Therefore, it should be emphasized and noted that “one embodiment” or “one embodiment” or “an alternative embodiment” mentioned twice or more in different positions in this specification does not necessarily refer to the same embodiment. .
  • some features, structures, or characteristics in one or more embodiments of the present application can be appropriately combined.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Signal Processing (AREA)
  • Acoustics & Sound (AREA)
  • Health & Medical Sciences (AREA)
  • Otolaryngology (AREA)
  • General Health & Medical Sciences (AREA)
  • Theoretical Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Audiology, Speech & Language Pathology (AREA)
  • Human Computer Interaction (AREA)
  • Multimedia (AREA)
  • General Engineering & Computer Science (AREA)
  • Optics & Photonics (AREA)
  • Ophthalmology & Optometry (AREA)
  • Computational Linguistics (AREA)
  • Quality & Reliability (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Soundproofing, Sound Blocking, And Sound Damping (AREA)
  • Circuit For Audible Band Transducer (AREA)
  • Headphones And Earphones (AREA)
  • Stereophonic System (AREA)
  • Obtaining Desirable Characteristics In Audible-Bandwidth Transducers (AREA)
  • Fittings On The Vehicle Exterior For Carrying Loads, And Devices For Holding Or Mounting Articles (AREA)
  • Apparatuses For Generation Of Mechanical Vibrations (AREA)
  • Details Of Audible-Bandwidth Transducers (AREA)
  • Audible-Bandwidth Dynamoelectric Transducers Other Than Pickups (AREA)
  • Eyeglasses (AREA)

Abstract

本申请提供一种眼镜,所述眼镜可以包括镜框,镜片和镜腿。所述眼镜还可以包括:至少一个低频声学驱动器,所述至少一个低频声学驱动器可以从至少两个第一导声孔输出声音;至少一个高频声学驱动器,所述至少一个高频声学驱动器可以从至少两个第二导声孔输出声音;以及控制器,所述控制器可以被配置为使所述低频声学驱动器输出在第一频率范围内的声音,并且使所述高频声学驱动器输出在第二频率范围内的声音,其中,所述第二频率范围中可以包括高于所述第一频率范围的频率。

Description

一种声学输出装置
交叉引用
本申请要求2019年4月30日提交的中国申请号201910364346.2的优先权,2019年9月19日提交的中国申请号201910888762.2的优先权,以及2019年9月19日提交的中国申请号201910888067.6的优先权,全部内容通过引用并入本文。
技术领域
本申请涉及智能设备领域,特别涉及一种声学输出装置。
背景技术
随着声学输出技术的发展,声学输出装置得到了非常广泛的应用。开放双耳的声学输出装置是一种在特定范围内实现声传导的便携式音频输出设备。与传统的入耳式、耳罩式耳机相比,开放双耳的声学输出装置具有不堵塞、不覆盖耳道的特点,可以让用户在聆听音乐的同时,获取外界环境中的声音信息,提高安全性与舒适感。由于开放式结构的使用,开放双耳的声学输出装置的漏音情况较传统耳机更为严重。另外,随着语音和通讯技术的发展,一些声学输出装置还可以兼具收音功能。但是,现有的声学输出装置通常采用单麦克风进行收音。在该麦克风收音的过程中,外界噪声也会被麦克风收录,从而影响该声学输出装置的收音效果。
因此希望提供一种声学输出装置,一方面可以达到提高声学输出装置的听音音量和降低漏音的效果,另一方面可以提高该声学输出装置的收音效果。
发明内容
针对上述问题,本申请提供了一种声学输出装置。该声学输出装置可以通过多点声源的设置和高低分频的设置降低漏音,从而提升用户体验。另外,该声学输出装置还可以利用麦克风降噪系统,降低麦克风的收音噪音,从而进一步提升用户体验。
为了达到上述目的,本申请提供的技术方案如下:
本申请的一个方面提供一种眼镜,所述眼镜可以包括镜框,镜片和镜腿。所述眼镜还可以包括:至少一个低频声学驱动器,所述至少一个低频声学驱动器可以从至少两个第一导声孔输出声音;至少一个高频声学驱动器,所述至少一个高频声学驱动器可以从至少两个第二导声孔输出声音;以及控制器,所述控制器可以被配置为使所述低频声学驱动器输出在第一频率范围内的声音,并且使所述高频声学驱动器输出在第二频率范围内的声音,其中,所述第二频率范围中可以包括高于所述第一频率范围的频率。
在一些实施例中,所述两个第一导声孔之间可以具有第一间距,所述两个第二导声孔之间可以具有第二间距,且所述第一间距可以大于所述第二间距。
在一些实施例中,所述第一间距可以在20mm-40mm的范围内,所述第二间距可以在3mm-7mm的范围内。
在一些实施例中,所述第一间距可以至少是所述第二间距的2倍。
在一些实施例中,所述第一频率范围可以包括低于650Hz的频率,所述第二频率范围可以包括高于1000Hz的频率。
在一些实施例中,所述第一频率范围和所述第二频率范围可以存在交叠。
在一些实施例中,所述控制器可以包括电子分频模块。所述电子分频模块可以用于对音源信号分频以产生对应第一频率范围的低频信号和对应第二频率范围的高频信号,其中,所述低频信号可以驱动所述至少一个低频声学驱动器产生声音,所述高频信号可以驱动所述至少一个高频声学驱动器产生声音。
在一些实施例中,所述电子分频模块可以至少包括无源滤波器、有源滤波器、模拟滤波器、数字滤波器中的一种。
在一些实施例中,所述至少一个低频声学驱动器可以包括第一换能器,所述至少一个高频声学驱动器可以包括第二换能器,其中,所述第一换能器和所述第二换能器可以具有不同的频率响应特性。
在一些实施例中,所述第一换能器可以包括低频扬声器,所述第二换能器可以包括高频扬声器。
在一些实施例中,所述至少一个低频声学驱动器和所述至少两个第一导声孔之间可以形成第一声学路径,所述至少一个高频声学驱动器和所述至少两个第二导声孔之间可以形成第二声学路径,所述第一声学路径和所述第二声学路径可以具有不同的频率选择特性。
在一些实施例中,所述第一声学路径中可以包括声阻材料,所述声阻材料的声学阻抗可以在5MKS瑞利到500MKS瑞利的范围内。
在一些实施例中,所述眼镜还可以包括支撑结构。所述支撑结构可以适应于佩戴在用户身体上。所述支撑结构可以配置为承载所述至少一个高频声学驱动器和所述至少一个低频声学驱动器,且使得所述至少两个第一导声孔和至少两个第二导声孔可以位于离开用户耳朵的位置。
在一些实施例中,所述至少两个第二导声孔可以比所述至少两个第一导声孔更靠近用户的耳朵。
在一些实施例中,所述至少两个第一导声孔和所述至少两个第二导声孔可以位于所述支撑结构上。
在一些实施例中,所述低频声学驱动器可以被壳体封装,所述壳体可以限定所述低频声学驱动器的前室和后室。
在一些实施例中,所述低频声学驱动器的所述前室可以声学耦合到所述至少两个第一导声孔中的一个第一导声孔,所述后室可以被声学耦合到所述至少两个第一导声孔中的另一个第一导声孔。
在一些实施例中,所述高频声学驱动器可以被壳体封装,所述壳体可以限定所述高频声学驱动器的前室和后室。
在一些实施例中,所述高频声学驱动器的所述前室可以声学耦合到所述至少两个第二导声孔中的一个第二导声孔,所述高频声学驱动器的所述后室可以声学耦合到所述至少两个第二导声孔中的另一个第二导声孔。
在一些实施例中,从所述至少两个第一导声孔中输出的声音可以具有相反的相位。
附加的特征将在下面的描述中部分地阐述,并且对于本领域技术人员来说,通过查阅以下内容和附图将变得显而易见,或者可以通过实例的产生或操作来了解。本发明的特征可以通过实践或使用以下详细实例中阐述的方法、工具和组合的各个方面来实现和获得。
附图说明
本申请将以示例性实施例的方式进一步说明,这些示例性实施例将通过附图进行详细描述。这些实施例并非限制性的,在这些实施例中,相同的编号表示相同的结构,其中:
图1是根据本申请一些实施例所示的双点声源的示意图;
图2是根据本申请一些实施例所示的双点声源和单点声源的漏音随频率变化的曲线图;
图3A和3B是根据本申请一些实施例所示的近场听音音量和远场漏音音量随着双点声源间距变化的示例性曲线图;
图4是根据本申请一些实施例所示的声学输出装置的示例性结构框图;
图5是根据本申请一些实施例所示的声学输出示意图;
图6A和6B是根据本申请一些实施例所示的声音输出示意图;
图7A和7B是根据本申请一些实施例所示的声学输出装置的结构示意图;
图8A-8C是根据本申请一些实施例所示的声学路径的示意图;
图9是根据本申请一些实施例所示的在两组双点声源的共同作用下的漏音的示例性曲线图;
图10是根据本申请一些实施例所示的另一声学输出装置的示例性的结构示意图;
图11是根据本申请一些实施例所示的两个点声源与听音位置的示意图;
图12是根据本申请一些实施例所示的不同间距的双点声源的听音音量随频率变化的曲线 图;
图13是根据本申请一些实施例所示的不同间距的双点声源在远场的归一化参数随频率变化的曲线图;
图14是根据本申请一些实施例所示的双点声源之间设置挡板的示例性分布示意图;
图15是根据本申请一些实施例所示的耳廓位于双点声源之间时听音音量随频率变化的曲线图;
图16是根据本申请一些实施例所示的耳廓位于双点声源之间时漏音音量随频率变化的曲线图;
图17是根据本申请一些实施例所示的声学输出装置的双点声源分布在耳廓两侧时归一化参数随频率变化的曲线图;
图18是根据本申请一些实施例所示的两个点声源之间在有无挡板的情况下听音音量及漏音音量随频率变化的曲线图;
图19是根据本申请一些实施例所示的双点声源频率为300Hz时在有无挡板的情况下听音音量及漏音音量随双点声源间距变化的曲线图;
图20是根据本申请一些实施例所示的双点声源频率为1000Hz时在有无挡板的情况下听音音量及漏音音量随双点声源间距变化的曲线图;
图21是根据本申请一些实施例所示的双点声源频率为5000Hz时在有无挡板的情况下听音音量及漏音音量随双点声源间距变化的曲线图;
图22是根据本申请一些实施例所示的双点声源间距d为1cm时听音音量随频率变化的曲线图;
图23是根据本申请一些实施例所示的双点声源间距d为2cm时听音音量随频率变化的曲线图;
图24是根据本申请一些实施例所示的双点声源间距d为4cm时听音音量随频率变化的曲线图;
图25是根据本申请一些实施例所示的双点声源间距d为1cm时远场的归一化参数随频率变化的曲线图;
图26是根据本申请一些实施例所示的双点声源间距d为2cm时远场的归一化参数随频率变化的曲线图;
图27是根据本申请一些实施例所示的双点声源间距d为4cm时远场的归一化参数随频率变化的曲线图;
图28是根据本申请一些实施例所示的不同听音位置的示例性位置分布图;
图29是根据本申请一些实施例所示的无挡板的双点声源在近场不同听音位置的听音音量随频率变化的曲线图;
图30是根据本申请一些实施例所示的无挡板的双点声源在近场不同听音位置的归一化参数随频率变化的曲线图;
图31是根据本申请一些实施例所示的有挡板的双点声源在近场不同听音位置的听音音量随频率变化的曲线图;
图32是根据本申请一些实施例所示的有挡板的双点声源在不同听音位置的归一化参数随频率变化的曲线图;
图33是根据本申请一些实施例所示的双点声源与挡板的示例性分布示意图;
图34是根据本申请一些实施例所示的挡板在不同位置时近场的听音音量随频率变化的曲线图;
图35是根据本申请一些实施例所示的挡板在不同位置时远场漏音音量随频率变化的曲线图;
图36是根据本申请一些实施例所示的挡板在不同位置时的归一化参数随频率变化的曲线图;
图37是根据本申请一些实施例所示的又一种声学输出装置的示例性结构示意图;
图38是根据本申请一些实施例所示的眼镜的示意图;
图39是根据本申请一些实施例所示的眼镜的镜腿的剖视图;
图40是根据本申请一些实施例所示的镜腿上导声孔的分布图;
图41是根据本申请一些实施例所示的眼镜的镜腿的剖视图;
图42是根据本申请一些实施例所示的镜腿上导声孔的分布图;
图43是根据本申请一些实施例所示的镜腿上导声孔的分布图;
图44是根据本申请的一些实施例所示的麦克风降噪系统的示意图;
图45A是根据本申请的一些实施例所示的麦克风降噪系统的示意图;
图45B是根据本申请的一些实施例所示的麦克风降噪系统的示意图;
图46A是根据本申请的一些实施例的第一麦克风的频率响应和第二麦克风的频率响应;
图46B是根据本申请的一些实施例的第一麦克风的频率响应和第二麦克风的另一频率响应;
图47是根据本申请的一些实施例所示的子带噪声抑制子单元的示意图;
图48是根据本申请的一些实施例的相位调制信号的示意图;
图49A是根据本申请的一些实施例所示的另一种眼镜的示意图;
图49B是根据本申请的一些实施例所示的另一种眼镜的示意图;
图50A是根据本申请的一些实施例所示的镜腿的示意图;
图50B是根据本申请的一些实施例所示的镜腿的示意图;
图51A是根据本申请的一些实施例所示的另一种眼镜的示意图;
图51B是根据本申请的一些实施例所示的另一种眼镜的示意图;
图52A是根据本申请的一些实施例所示的镜腿的示意图;
图52B是根据本申请的一些实施例所示的另一种眼镜的示意图;
图53是根据本申请的一些实施例所示的另一种眼镜的示意图。
图54是根据本申请一些实施例所示的又一种眼镜的示意图;
图55是根据本申请一些实施例所示的声学输出装置中组件的示意图;
图56是根据本申请一些实施例所示的声学输出装置中组件的连接示意图;
图57是根据本申请一些实施例所示的示例性电源模块的示意图;
图58是根据本申请一些实施例所示的声学输出装置中语音控制系统的结构图;
图59是根据本申请一些实施例所示的开放双耳式耳机的剖面结构示意图;
图60是根据本申请一些实施例所示的开放双耳式耳机的发声结构的示意图;
图61是根据本申请一些实施例所示的开放双耳式耳机的隔板结构的截面示意图;
图62是根据本申请的一些实施例所示的导声孔位置示意图;
图63A示出了根据本申请的一些实施例的第一扬声器单元的频率响应和第二扬声器单元的频率响应;
图63B示出了根据本申请的一些实施例的第一扬声器单元的频率响应和第二扬声器单元的另一频率响应;以及
图64是根据本申请的一些实施例所示的示例性开放双耳式耳机的示意图。
具体实施方式
为了更清楚地说明本申请实施例的技术方案,下面将对实施例描述中所需要使用的附图作简单的介绍。显而易见地,下面描述中的附图仅仅是本申请的一些示例或实施例,对于本领域的普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图将本申请应用于其它类似情景。除非从语言环境中显而易见或另做说明,图中相同标号代表相同结构或操作。
应当理解,本文使用的“系统”、“装置”、“单元”和/或“模组”是用于区分不同级别的不同组件、元件、部件、部分或装配的一种方法。然而,如果其他词语可实现相同的目的,则可通过其他表达来替换所述词语。
如本申请和权利要求书中所示,除非上下文明确提示例外情形,“一”、“一个”、“一种”和/或“该”等词并非特指单数,也可包括复数。一般说来,术语“包括”与“包含”仅提示包括已明确标识的步骤和元素,而这些步骤和元素不构成一个排它性的罗列,方法或者设备也可能包含其它的步骤或元素。术语“基于”是“至少部分地基于”。术语“一个实施例”表示“至少一个实施例”;术语“另一实施例”表示“至少一个另外的实施例”。其他术语的相关定义将在下文描述中给出。以下,不失一般性,在描述本发明中关于传导相关技术时,将采用“声学输出装置”或“扬声器”的描述。该描述仅仅为传导应用的一种形式,对于该领域的普通技术人员来说,“声学输出装置”或“扬声器”也可用其他同类词语代替,比如“发声装置”、“助听器”或“扬声装置”等。事实上,本发明中的各种实现方式可以很方 便地应用到其它非扬声器类的听力设备上。例如,对于本领域的专业人员来说,在了解声学输出装置的基本原理后,可能在不背离这一原理的情况下,对实施声学输出装置的具体方式与步骤进行形式和细节上的各种修正和改变,特别地,在声学输出装置中加入环境声音拾取和处理功能,使该声学输出装置实现助听器的功能。例如,麦克风等传声器可以拾取使用者/佩戴者周围环境的声音,在一定的算法下,将声音处理后(或者产生的电信号)传送至声学输出部分。即声学输出装置可以经过一定的修改,加入拾取环境声音的功能,并经过一定的信号处理后通过声学输出模块将声音传递给使用者/佩戴者,从而同时实现声学输出装置和传统声学输出装置的功能。作为举例,这里所说的算法可以包括噪声消除、自动增益控制、声反馈抑制、宽动态范围压缩、主动环境识别、主动抗噪、定向处理、耳鸣处理、多通道宽动态范围压缩、主动啸叫抑制、音量控制等一种或多种的组合。
本申请中使用了流程图用来说明根据本申请的实施例的系统所执行的操作。应当理解的是,前面或后面操作不一定按照顺序来精确地执行。相反,可以按照倒序或同时处理各个步骤。同时,也可以将其他操作添加到这些过程中,或从这些过程移除某一步或数步操作。
本申请提供了一种声学输出装置。在用户佩戴所述声学输出装置时,所述声学输出装置至少位于用户头部一侧,靠近但不堵塞用户耳朵。该声学输出装置可以佩戴在用户头部(例如,以眼镜、头带或其它结构方式佩戴的非入耳式的开放式耳机),或者佩戴在用户身体的其他部位,例如用户的颈部/肩部区域。
在一些实施例中,该声学输出装置可以包括至少两组声学驱动器,其中包括至少一组高频声学驱动器和一组低频声学驱动。每组声学驱动器可以用来产生具有一定频率范围的声音,并通过至少两个与其声学耦合的导声孔向外传播所述声音。
在一些实施例中,该声学输出装置可以包括至少一组声学驱动器,所述至少一组声学驱动器产生的声音可以通过与其声耦合的至少两个导声孔向外传播。在一些实施例中,所述声学输出装置上可以设有挡板结构,使得所述至少两个导声孔分别分布于挡板的两侧。在一些实施例中,所述至少两个导声孔可以分布于用户耳廓的两侧,此时耳廓作为挡板,可以隔开所述至少两个导声孔,使得所述至少两个导声孔具有不同的到用户耳道的声学路径。
图1是根据本申请一些实施例所示的双点声源的示意图。为了进一步说明声学输出装置上导声孔的设置对声学输出装置声音输出效果的影响,且考虑到声音可以被看作是从导声孔处向外传播,本申请中可以将声学输出装置上的导声孔看作对外输出声音的声源进行描述。
仅仅为了方便描述和出于说明的目的,当声学输出装置上的导声孔尺寸较小时,每个导声孔可以近似视为一个点声源。在一些实施例中,开设在声学输出装置上的任一用于输出声音的导声孔,都可被近似成该声学输出装置上的一个单点声源。单点声源产生的声场声压p满足公式(1):
Figure PCTCN2020070542-appb-000001
其中,ω为角频率,ρ 0为空气密度,r为目标点与声源的距离,Q 0为声源体积速度,k为波数。可以看出点声源的声场声压的大小与到点声源的距离呈反比。需要说明的是,本申请中将输出声音的导声孔作为点声源仅作为原理和效果的说明,并不限制实际应用中导声孔的形状和大小。在一些实施例中,当导声孔的面积较大时,还可以等效成以面声源的形式向外辐射声音。在一些实施例中,点声源亦可由其他结构实现,如振动面、声辐射面等。对于本领域中的技术人员,在不付出创造性活动的情况下,可以获知导声孔、振动面、声辐射面等结构产生的声音在本申请所论述的空间尺度下均可等效成点声源,有一致的声音传播特性及相同的数学描述方式。进一步地,对于本领域中的技术人员,在不付出创造性活动的情况下,可以获知本申请中所述的“声学驱动器从至少两个第一导声孔输出声音”实现的声学效果亦可由上述其他声学结构实现相同的效果,例如“至少两个声学驱动器分别从至少一个声辐射面输出声音”。还可以根据实际情况,选择其他声学结构进行合理调整与组合,亦可实现相同的声学输出效果,上述以面声源等结构向外辐射声音的原理与上述点声源类似,在此不再赘述。
如上文所述,本说明书提供的声学输出装置上可以开设至少两个与同一声学驱动器对应的导声孔,以构造双点声源来减小声音输出装置向周围环境辐射的声音。为方便起见,声学输出装置向周围环境辐射的声音,由于可能会被环境中的其他人听到,故可以称为远场漏音。声学输出装置辐射到佩戴该装置的用户耳朵的声音,由于距离该用户的距离较近,因此也可以称为近场听音。在一些实施例中,两个导声孔(即,双点声源)输出的声音具有一定的相位差。当双点声源之间的位置、相位差等满足一定条件时,可以使得声学输出装置在近场(例如,用户耳朵的听音位置)和远 场表现出不同的声音效果。例如,当两个导声孔对应的点声源的相位相反,即两个点声源之间的相位差的绝对值为180度时,根据声波反相相消的原理,可实现远场漏音的削减。更多关于调节各点声源的幅值和/或相位来增强声学输出装置的描述请参见2019年12月31日递交的PCT申请PCT/CN2019/130884,其全部内容通过引用的方式添加在本申请中。
如图1所示,双点声源产生的声场声压p满足如下公式:
Figure PCTCN2020070542-appb-000002
其中,A 1、A 2分别为两个点声源的强度,
Figure PCTCN2020070542-appb-000003
分别为两个点声源的相位,d为两个点声源之间的间距,r 1与r 2满足公式(3):
Figure PCTCN2020070542-appb-000004
其中,r为空间中任一目标点与双点声源中心位置的距离,θ表示该目标点与双点声源中心的连线与双点声源所在直线的夹角。
通过公式(3)可知,声场中目标点的声压p的大小与各点声源的强度、点声源之间的间距d、相位以及与声源的距离有关。
通过不同的导声孔设置可以构造具有不同输出效果的双点声源,使得声学输出装置能够提高近场听音的音量,同时减少远场的漏音。例如,声学驱动器可以包括一个振膜。当振膜振动时,声音可以分别从该振膜的前侧和后侧发出。声学输出装置中振膜前侧的位置设有用于传递声音的前室。前室与一个导声孔声学耦合,振膜前侧的声音可以通过前室传递到该导声孔并进一步向外传播。声学输出装置中振膜后侧的位置设有用于传递声音的后室。后室与另一个导声孔声学耦合,振膜后侧的声音可以通过后室传递到该导声孔并进一步向外传播。需要知道的是,当振膜在振动时,振膜前侧和后侧可以分别产生一组相位相反的声音。在一些实施例中,可以通过设置前室和后室的结构,使得声学驱动器在不同导声孔处输出的声音满足特定的条件。例如,可以设计前室和后室的长度,使得两个导声孔处可以输出一组具有特定相位关系(例如,相位相反)的声音,使得声学输出装置近场的听音音量较小以及远场的漏音问题均得到有效改善。
在一定条件下,相对于单点声源的远场漏音量,双点声源产生的远场漏音会随频率的增加而增加,也就是说,双点声源在远场的降漏音能力随频率的增加而减弱。为更清楚的描述,将结合图2描述远场漏音随频率变化的曲线。
图2是根据本申请一些实施例所示的双点声源和单点声源的漏音随频率变化的曲线图。图2中所对应的双点声源间距固定,且两个点声源的幅值相同、相位相反。其中,虚线表示单点声源漏音量在不同频率下的变化曲线,实线表示双点声源漏音量在不同频率下的变化曲线。横坐标表示声音的频率(f),单位为赫兹(Hz),纵坐标采用归一化参数α作为评价漏音量的指标,α的计算公式如下:
Figure PCTCN2020070542-appb-000005
其中,P far表示声学输出装置在远场的声音声压(即,远场漏音声压),P ear表示佩戴者耳朵周围的声压(即,近场听音声压)。α值越大,则表示远场漏音相对于近场听音更大,即说明声学输出装置的远场降漏音能力越差。
如图2所示,当频率在6000Hz以下时,双点声源产生的远场漏音小于单点声源产生的远场漏音,且随频率的增加而增加;当频率接近10000Hz时(例如,在约8000Hz以上),双点声源产生的远场漏音大于单点声源产生的远场漏音。在一些实施例中,可以根据上述内容,将双点声源与单点声源随频率变化曲线的交点处的频率作为双点声源能够降漏音的上限频率。
仅仅作为说明的目的,当频率较小(例如,在100Hz–1000Hz范围内)时,双点声源的降漏音能力(即α值较小)较强(-80dB以下),所以在该频段可以以增加听音音量为优化目标;当频率较大(例如,在1000Hz-8000Hz范围内)时,双点声源的降漏音能力较弱(-80dB以上),所以在该频段可以以减小漏音为优化目标。
结合图2,可以通过双点声源降漏音能力的变化趋势,确定频率的分频点,并根据该分频 点调节双点声源的参数,以提高声学输出装置的降漏音效果。例如,可以将α值在特定数值(例如,-60dB,-70dB,-80dB,-90dB等)处对应的频率作为分频点。通过设立分频点以下的频率段以提高近场听音为主要目标,而分频点以上的频率段以降低远场漏音为主要目标来确定双点声源的参数。在一些实施例中,基于分频点可以确定声音频率较高(例如,高频声学驱动器输出的声音)的高频段与声音频率较低(例如,低频声学驱动器输出的声音)的低频段。关于分频点的更多内容可以参见本说明书其他地方(如图4及其相关描述)。
在一些实施例中,漏音的测量和计算方式可以根据实际情况进行合理调整。例如,可以取以双点声源中心为圆心,半径为r(例如,40cm)的球面上多个点的声压幅值的平均值作为漏音的值。其中,近场听音位置与点声源之间的距离远小于点声源与远场漏音测量球面的距离。可选地,近场听音位置到双点声源中心之间的距离与半径r之比小于0.3,0.2,0.15,或者0.1。又例如,可以取远场位置的一个点或一个以上的点作为测量漏音的位置,并以该位置的音量作为漏音的值。再例如,可以以双点声源中心为圆心,在远场处根据一定的空间角均匀地取两个或两个以上的点的声压幅值进行平均,作为漏音的值。这些测量和计算方式都可以被本领域的技术人员根据实际情况进行调整,在此不作限制。
通过图2可知,在高频段(根据分频点确定的较高频段)双点声源的降漏音能力较弱,在低频段(根据分频点确定的较低频段)双点声源的降漏音能力较强。而在一定声音频率下,双点声源的间距不同,其产生的降漏音能力不同,听音音量与漏音音量的差别也不同。为更清楚的描述,将结合图3A和3B描述远场漏音随双点声源间距变化的曲线。
图3A和3B是根据本申请一些实施例所示的近场听音音量和远场漏音音量随着双点声源间距变化的示例性曲线图。其中,图3B是对图3A进行归一化后的曲线图。
图3A中,实线表示双点声源的听音音量随双点声源间距变化的曲线,虚线表示双点声源的漏音音量随双点声源间距变化的曲线,横坐标表示双点声源的两个点声源之间的间距d与参考间距d 0的间距比d/d 0,纵坐标表示声音的音量(单位为分贝dB)。间距比d/d 0可以反映双点声源两个点声源之间间距的变化情况。在一些实施例中,参考间距d 0可以在特定范围内选取。例如,d 0可以是在2.5mm-10mm范围取的特定值,例如d 0可以是5mm。在一些实施例中,参考间距d 0可以基于听音位置确定。例如,可以取听音位置到最近点声源的距离值为参考间距d 0。需要知道的是,参考间距d 0可以根据实际场景灵活选取其他任意合适的值,在此不做限定。仅仅作为示例,图3A中取d 0等于5mm作为双点声源间距变化的参考值。
在声音频率一定的情况下,随着双点声源之间间距的增加,双点声源的听音音量和漏音音量均增加。当双点声源间距d与参考间距d 0的比值d/d 0小于比值阈值时,随着双点声源间距的增大,其听音音量的增量较漏音音量的增量大,即听音音量的增加较漏音音量的增加更显著。例如,图3A中所示,双点声源间距d与参考间距d 0的比值d/d 0为2时,听音音量与漏音音量的差值约为20dB;比值d/d 0为4时,听音音量与漏音音量的差值约为25dB。在一些实施例中,当双点声源间距d与参考间距d 0的比值d/d 0达到比值阈值时,双点声源的听音音量与漏音音量的比达到最大值。此时,随着双点声源间距的进一步增大,听音音量的曲线与漏音音量的曲线逐渐趋于平行,即听音音量的增量与漏音音量的增量保持相同。例如,如图3B中所示,双点声源间距比值d/d 0为5、或6、或7时,双点声源听音音量与漏音音量的差值保持一致,均约为25dB,即听音音量的增量与漏音音量的增量相同。在一些实施例中,双点声源间距的间距比d/d 0的比值阈值可以在0-7的范围内。例如,d/d 0的比值阈值可以设置在0.5-4.5的范围内。又例如,d/d 0的比值阈值可以设置在1-4的范围内。
在一些实施例中,可以基于图3A双点声源听音音量与漏音音量的差值变化确定所述比值阈值。例如,可以将听音音量和漏音音量之间产生最大差值时对应的比值确定为比值阈值。如图3B所示,当间距比d/d 0小于比值阈值(如,4)时,随着双点声源间距的增加,归一化的听音曲线呈上升趋势(曲线斜率大于0),即听音音量的增量大于漏音音量增量;当间距比d/d 0大于比值阈值时,随着双点声源间距的增加,归一化的听音曲线的曲线斜率逐渐趋近于0,与归一化的漏音曲线平行,即随着双点声源间距的增加,听音音量增量不再大于漏音音量增量。
通过上述内容可知,若听音位置固定,通过一定手段调节双点声源的参数,可以实现近场听音音量有显著增加而远场漏音音量仅略微增加的效果(即近场听音音量的增量大于远场漏音音量的增量)。例如,设置两组或两组以上双点声源(如一组高频双点声源和一组低频双点声源),通过一定手段分别调节每组双点声源的间距,使得高频双点声源之间的间距小于低频双点声源之间的间距。由于低频段双点声源漏音较小(降漏音能力较强),高频段双点声源漏音较大(降漏音能力 较弱),高频段选择更小的双点声源间距,可以使听音音量显著大于漏音音量,从而降低漏音。
本说明书实施例中,每组声学驱动器所对应的两个导声孔之间具有一定的间距,该距离会影响所述声学输出装置传递给佩戴者耳朵的近场听音音量及向环境传播的远场漏音音量。在一些实施例中,当高频声学驱动器对应的导声孔之间的间距小于低频声学驱动器对应的导声孔之间的间距时,可以提高用户耳朵能听到的声音音量,并且产生较小漏音,避免声音被声学输出装置用户附近的他人听见。根据以上的描述,该声学输出装置即使处于较为安静环境中,也可有效地作为开放双耳式耳机而使用。
图4是根据本申请一些实施例所示的声学输出装置的示例性结构框图。如图4所示,声学输出装置100可以包括电子分频模块110、声学驱动器140和声学驱动器150、声学路径145、声学路径155、至少两个第一导声孔147以及至少两个第二导声孔157。在一些实施例中,声学输出装置100还包括控制器(图中未示出),电子分频模块110作为控制器的一部分,用于生成输入到不同声学驱动器中的电信号。声学输出装置100中不同组件之间的连接可以是有线连接或无线连接。例如,电子分频模块110可以通过有线传输或者无线传输的方式向声学驱动器140和/或声学驱动器150发送信号。
电子分频模块110可以对音源信号进行分频处理。所述音源信号可以来自于一个或多个集成在声学输出装置100内的音源装置(例如,一个存储音频数据的存储器),也可以是声音输出装置100通过有线或者无线的方式接收的音频信号。在一些实施例中,电子分频模块110可以将输入的音源信号分解成两个或两个以上包含不同频率成分的分频信号。例如,电子分频模块110可以将音源信号分解成带有高频声音成分的第一分频信号(或分频信号1)和带有低频声音成分的第二分频信号(或分频信号2)。为方便起见,带有高频声音成分的分频信号可以直接被称为高频信号,带有低频声音成分的分频信号可以直接被称为低频信号。
仅仅为了描述的目的,本申请实施例所述的低频信号是指频率在较低的第一频率范围内的声音信号,而高频信号是指频率在较高的第二频率范围内的声音信号。所述第一频率范围和第二频率范围可以包含或不包含重叠的频率范围,且第二频率范围中包括高于所述第一频率范围的频率。仅作为示例,第一频率范围可以是指低于第一频率阈值的频率,第二频率范围可以是指高于第二频率阈值的频率。所述第一频率阈值可以低于、等于或者高于第二频率阈值。例如,第一频率阈值可以小于第二频率阈值(例如,第一频率阈值可以是600Hz,第二频率阈值是700Hz),这说明第一频率范围和第二频率范围之间没有交叠。再例如,第一频率阈值可以等于第二频率(例如,第一频率阈值和第二频率阈值都是650Hz或者其他任意频率值)。再例如,第一频率阈值可以大于第二频率阈值,这说明第一频率范围和第二频率范围之间存在交叠。在这种情况下,第一频率阈值和第二频率阈值的差值可以不超过第三频率阈值。所述第三频率阈值可以是固定的值,例如,20Hz,50Hz,100Hz,150Hz,200Hz,也可以是与第一频率阈值和/或第二频率阈值有关的值(例如,第一频率阈值的5%,10%,15%等),或者是用户根据实际场景灵活设置的值,在此不做限定。需要知道的是,所述第一频率阈值和第二频率阈值可以根据不同的情况灵活设置,在此不做限定。
在一些实施例中,电子分频模块110可以包括分频器115、信号处理器120和130。分频器115可以用于将音源信号分解成两个或两个以上包含不同频率成分的分频信号,例如,带有高频声音成分的分频信号1和带有低频声音成分的分频信号2。在一些实施例中,分频器115可以是任意可以实现信号分解功能的电子器件,包括但不限于无源滤波器、有源滤波器、模拟滤波器、数字滤波器等中的一种或其任意组合。在一些实施例中,分频器115可以基于一个或多个分频点对音源信号进行分频。分频点是指区分第一频率范围和第二频率范围的信号频率。例如,当第一频率范围和第二频率范围之间存在交叠频率时,分频点可以是交叠频率范围内的特征点(例如,交叠频率范围的低频率边界点、高频率边界点、中心频率点等)。在一些实施例中,可以根据频率与声学输出装置的漏音之间的关系(例如,图2、图3A和3B所示的曲线)确定分频点。例如,考虑到声学输出装置的漏音会随频率的变化而变化,可以选取满足一定条件的漏音音量所对应的频率点作为分频点,例如,图2中所示的1000Hz。关于漏音音量随着频率变化的更多细节可以参见图2及其相关描述,在此不再赘述。在一些替代性实施例中,用户可以直接指定特定频率作为分频点。例如,考虑到人耳可以听到的声音频率范围是在20Hz–20kHz,用户可以选取该范围的频率点作为分频点,例如分频点可以是600Hz、800Hz、1000Hz、1200Hz等。在一些实施例中,可以根据声学驱动器的性能确定分频点。例如,考虑到上述低频声学驱动器和高频声学驱动器具有不同的频率响应曲线,可以选择在高于低频声学驱动器上限频率的1/2,且低于高频声学驱动器下限频率的2倍的频率范围内选择分频点。更优选地,可以选择在高于低频声学驱动器上限频率的1/3,且低于高频声学驱动器 下限频率的1.5倍的频率范围内选择分频点。在一些实施例中,在交叠频率范围内,点声源之间的位置关系也会影响声学输出装置在近场和远场产生的音量,更多内容请参见2019年12月31日递交的PCT申请PCT/CN2019/130886,其全部内容通过引用的方式添加在本申请中。
信号处理器120和130可以分别对分频信号进行进一步处理,以满足后续声音输出的需求。在一些实施例中,信号处理器120或130可以包括一个或多个信号处理组件。例如,信号处理器可以包括但不限于放大器、调幅器、调相器、延时器、动态增益控制器等中的一种或其任意组合。仅仅作为示例,信号处理器120和/或130对声音信号进行的处理包括调整该声音信号中部分频率对应的幅值。具体地,在上述第一频率范围和第二频率范围存在交叠的情况下,信号处理器120和130可以分别调整交叠频率范围内对应的声音信号的强度(例如,减小交叠频率范围内信号的幅值),以避免后续输出的声音中由于多路声音信号的叠加而导致的交叠频率范围内的声音过大的后果。
信号处理器120或130对分频信号分别进行信号处理之后,可以分别将分频信号传输至声学驱动器140和150。在一些实施例中,传入声学驱动器140的声音信号可以为包含较低频率范围(例如,第一频率范围)的声音信号,因此声学驱动器140也可以称为低频声学驱动器。传入声学驱动器150的声音信号可以为包含较高频率范围(例如,第二频率范围)的声音信号,因此声学驱动器150也可以称为高频声学驱动器。声学驱动器140和声学驱动器150可以分别将各自的声音信号转换成低频声音和高频声音,并向外界传播。
在一些实施例中,声学驱动器140可以与至少两个第一导声孔(如两个第一导声孔147)声学耦合(例如,通过两条声学路径145分别与两个第一导声孔147连接),并从所述至少两个第一导声孔处将声音传播出去。声学驱动器150可以与至少两个第二导声孔(如两个第二导声孔157)声学耦合(例如,通过两条声学路径155分别与两个第二导声孔157连接),并从所述至少两个第二导声孔处将声音传播出去。所述导声孔可以是声学输出装置上形成的具有特定开口的且允许声音通过的小孔。导声孔的形状可以包括但不限于圆形、椭圆形、方形、梯形、圆角四边形、三角形、不规则图形等中的一种或其任意组合。此外地,与声学驱动器140或150相连接的导声孔的数量不限于两个,可以为任意值,例如,3个、4个、6个等。
在一些实施例中,为了减小声学输出装置100的远场漏音,可以使得声学驱动器140分别在至少两个第一导声孔处产生幅值相等(或近似相等)、相位相反(或近似相反)的低频声音,以及使得声学驱动器150分别在至少两个第二导声孔处产生幅值相等(或近似相等)、相位相反(或近似相反)的高频声音。这样,基于声波干涉相消的原理,低频声音(或高频声音)的远场漏音会降低。根据上述图2,图3A和3B描述的内容,进一步考虑到低频声音的波长大于高频声音的波长,且为了减少声音在近场(例如,用户耳朵的听音位置)的干涉相消,可以分别将第一导声孔之间的距离和第二导声孔之间的距离设置成不同的值。例如,假设两个第一导声孔之间具有第一间距,两个第二导声孔之间具有第二间距,可以使得所述第一间距大于所述第二间距。在一些实施例中,第一间距和第二间距可以为任意值。仅作为示例,第一间距可以不大于40mm,例如,在20mm–40mm的范围内,第二间距可以不大于12mm,且第一间距大于第二间距。优选地,第一间距可以不小于12mm,第二间距可以不大于7mm,例如,在3mm–7mm的范围内。更优选地,第一间距可以是30mm,第二间距可以是5mm。再例如,第一间距可以至少是第二间距的2倍。优选地,第一间距可以至少是第二间距的3倍。优选地,第一间距可以至少是第二间距的5倍。
如图4所示,声学驱动器140可以包括换能器143。换能器143通过声学路径145将声音传递到第一导声孔147。声学驱动器150可以包括换能器153。换能器153通过声学路径155将声音传递到第二导声孔157。在一些实施例中,换能器可以包括但不限于气传导扬声器的换能器、骨传导扬声器的换能器、水声换能器、超声换能器等中的一种或其任意组合。在一些实施例中,换能器的工作原理可以包括但不限于动圈式、动铁式、压电式、静电式、磁致伸缩式等中的一种或其任意组合。
在一些实施例中,声学驱动器(如低频声学驱动器140、高频声学驱动器150)可以包括具有不同性质或数量的换能器。例如,低频声学驱动器140和高频声学驱动器150可以分别包括一个具有不同频率响应特性的换能器(如低频扬声器单元和高频扬声器单元)。又例如,低频声学驱动器140可以包括两个换能器143(如两个低频扬声器单元),高频声学驱动器150可以包括两个换能器153(如两个高频扬声器单元)。
在一些可替代地实施例中,声学输出装置100可以通过其他方式生成具有不同频率范围的声音。例如,换能器分频、声学路径分频等。当声学输出装置100利用换能器或声学路径实现对声音的分频时,电子分频模块110结构(虚线框内部分)可以省略,音源信号可以分别输入声学驱动 器140和声学驱动器150。
在一些可替代的实施例中,声学输出装置100利用换能器实现信号分频,声学驱动器140和声学驱动器150可以将输入的音源信号分别转换为低频信号和高频信号。具体地,低频声学驱动器140可以通过换能器143(如低频扬声器)将音源信号转换为带有低频成分的低频声音;低频声音可以沿至少两个不同的声学路径145传递到至少两个第一导声孔147,并通过第一导声孔147向外界传播。高频声学驱动器150可以通过换能器153(如高频扬声器)将音源信号转换为带有高频成分的高频声音;高频声音可以沿至少两个不同的声学路径155传递到至少两个第二导声孔157,并通过第二导声孔157向外界传播。
在一些可替代的实施例中,连接换能器和导声孔的声学路径(如声学路径145和155)会影响所传递声音的性质。例如,声学路径会对所传递声音产生一定程度的衰减或者改变所传递声音的相位。在一些实施例中,声学路径可以由导声管、声腔、谐振腔、声孔、声狭缝、调音网等中的一种或其任意组合的结构所构成。在一些实施例中,声学路径中还可以包括声阻材料,所述声阻材料具有特定的声学阻抗。例如,声学阻抗的范围可以从5MKS瑞利到500MKS瑞利。声阻材料可以包括但不限于塑料、纺织品、金属、可渗透材料、编织材料、屏材料或网状材料、多孔材料、颗粒材料、高分子材料等,或其任意组合。通过设置具有不同声学阻抗的声学路径,可以对换能器输出的声音进行声学滤波,使得通过不同的声学路径输出的声音具有不同的频率成分。
在一些可替代的实施例中,声学输出装置100利用声学路径实现信号分频。具体地,音源信号输入特定声学驱动器中,转换为含有高低频成分的声音,该声音信号沿着具有不同频率选择特性的声学路径进行传播。例如,声音信号可以沿具有低通特性的声学路径传输至对应的导声孔后产生向外传播的低频声音,在这个过程中,高频声音被该具有低通特性的声学路径所吸收或衰减。同样地,声音信号可以沿具有高通特性的声学路径传输至对应的导声孔后产生向外传播的高频声音,在这个过程中,低频声音被该具有高通特性的声学路径所吸收或衰减。
在一些实施例中,声学输出装置100中的控制器可以使低频声学驱动器140输出在第一频率范围内的声音(即低频声音),并且使高频声学驱动器150输出在第二频率范围内的声音(即高频声音)。在一些实施例中,声学输出装置100还可以包括支撑结构。所述支撑结构可以用于承载声学驱动器(如高频声学驱动器150、低频声学驱动器140),使得声学驱动器被定位在离开用户耳朵的位置。在一些实施例中,与高频声学驱动器150声学耦合的导声孔可以更靠近用户耳部的预期位置(例如,耳道入口),而低频声学驱动器140声学耦合的导声孔则距离该预期位置更远。在一些实施例中,所述支撑结构可以用于封装声学驱动器。封装声学驱动器的支撑结构可以包括塑料、金属、布带等各种材料的壳体。所述壳体封装声学驱动器并形成对应声学驱动器的前室和后室,所述前室可以声学耦合到至少两个导声孔中的一个,所述后室可以声学耦合到至少两个导声孔中的另一个。例如,低频声学驱动器140的前室可以声学耦合到至少两个第一导声孔147中的一个,低频声学驱动器140的后室可以声学耦合到至少两个第一导声孔147中的另一个;高频声学驱动器150的前室可以声学耦合到至少两个第二导声孔157中的一个,高频声学驱动器150的后室可以声学耦合到至少两个第二导声孔157中的另一个。在一些实施例中,所述导声孔(如第一导声孔147、第二导声孔157)可以设置在所述壳体上。
以上对于声学输出装置100的描述仅作为示例性的说明,本领域的技术人员可以在理解其原理的情况下对声学驱动器的结构、数量等进行的调整和改变,本申请对此不做限制。在一些具体的实施例中,声学输出装置100可以包括任意数量的声学驱动器结构。例如,声学输出装置100可以包括两组高频声学驱动器150和两组低频声学驱动器140,或一组高频声学驱动150和两组低频声学驱动器140等,而且这些高频/低频驱动器可以分别用于生成特定频率范围的声音。再例如,声学驱动器140和/或声学驱动器150内部可以包括另外的信号处理器。该信号处理器可以与信号处理器120或130具有相同或不同的结构组件。
应当理解,图4所示的声学输出装置及其模块可以利用各种方式来实现。例如,在一些实施例中,系统及其模块可以通过硬件、软件或者软件和硬件的结合来实现。其中,硬件部分可以利用专用逻辑来实现;软件部分则可以存储在存储器中,由适当的指令执行系统,例如微处理器或者专用设计硬件来执行。本领域技术人员可以理解,上述的方法和系统可以使用计算机可执行指令和/或包含在处理器控制代码中来实现,例如在诸如磁盘、CD或DVD-ROM的载体介质、诸如只读存储器(固件)的可编程的存储器或者诸如光学或电子信号载体的数据载体上提供了这样的代码。本申请的系统及其模块不仅可以有诸如超大规模集成电路或门阵列、诸如逻辑芯片、晶体管等的半导体、或者诸如现场可编程门阵列、可编程逻辑设备等的可编程硬件设备的硬件电路实现,也可以用 例如由各种类型的处理器所执行的软件实现,还可以由上述硬件电路和软件的结合(例如,固件)来实现。
需要注意的是,以上对于声学输出装置100及其各组件的描述,仅为描述方便,并不能把本申请限制在所举实施例范围之内。可以理解,对于本领域的技术人员来说,在了解该装置的原理后,可能在不背离这一原理的情况下,对各个单元进行任意组合,或者构成子结构与其他单元连接。例如,电子分频模块110可以省略,音源信号的分频可以通过低频声学驱动器140和/或高频声学驱动器150的内部结构实现。又例如,信号处理器120或130可以为独立于电子分频模块110的一部分。诸如此类的变形,均在本申请的保护范围之内。
图5是根据本申请一些实施例所示的声学输出装置的示意图。出于说明的目的,将以同一换能器与不同导声孔耦合而形成向外传播的声音为例进行描述。在图5中,每个换能器具有前侧和后侧,在换能器的前侧或者后侧存在对应的前室(即第一声学路径)和后室(即第二声学路径)的结构。在一些实施例中,这些结构可以具有相同或者近似相同的等效声学阻抗,以使换能器被对称地负载。换能器的对称负载可以使得不同导声孔处形成满足幅值和相位关系的声源(如以上描述的幅值相等,相位相反的“双点声源”),从而在高频和/或低频范围内形成特定的辐射声场(例如,近场声音得到增强,而远场漏音得到抑制)。
如图5所示,声学驱动器(如声学驱动器140或150)可以包括换能器、以及与换能器相连接的声学路径和导声孔。为了更清楚地描述声学输出装置300的实际使用场景,图5中还示出了用户耳朵E的位置以作说明。其中,图5中左侧的图(a)主要示出声学驱动器140的应用场景。声学驱动器140包括换能器143,并通过声学路径145与两个第一导声孔147声学耦合。图3中右侧的图(b)主要示出声学驱动器150的应用场景。声学驱动器150包括换能器153,并通过声学路径155与两个第二导声孔157声学耦合。
换能器143或153可以在电信号的驱动下产生振动,且该振动会产生一组幅值相等、相位相反(180度反相)的声音。换能器类型可以包括但不限于气传导扬声器、骨传导扬声器、水声换能器、超声换能器等中的一种或其任意组合。换能器的工作原理可以包括但不限于动圈式、动铁式、压电式、静电式、磁致伸缩式等中的一种或其任意组合。优选地,换能器143或153可以包含振膜,该振膜在受到电信号的驱动而产生振动,振膜正面和背面可以同时输出正相声音和反相声音。图5中,利用“+”和“-”示例不同相位的声音,其中“+”代表正相声音,“-”代表反相声音。
在一些实施例中,换能器可以被支撑结构上的壳体封装,壳体内部可以分别设有连接到换能器的前侧和后侧的声音通道,从而形成声学路径。例如,换能器143的前腔通过第一声学路径(即,声学路径145的前半部分)耦合到两个第一导声孔147中的一个导声孔,换能器143的后腔通过第二声学路径(即,声学路径145的后半部分)声学耦合到两个第一导声孔147中的另一个导声孔。换能器143输出的正相声音和反相声音分别从两个第一导声孔147输出。又例如,换能器153的前腔通过第三声学路径(即,声学路径155的前半部分)耦合到两个第二导声孔157的其中一个导声孔,换能器153的后腔通过第四声学路径(即,声学路径155的后半部分)耦合到两个第二导声孔157的另一个导声孔。换能器153输出的正相声音和反相声音分别从两个第二导声孔157输出。
在一些实施例中,声学路径会影响所传递声音的性质。例如,声学路径会对所传递声音产生一定程度的衰减或者改变所传递声音的相位。在一些实施例中,声学路径可以由导声管、声腔、谐振腔、声孔、声狭缝、调音网等中的一种或其任意组合的结构所构成。在一些实施例中,声学路径中还可以包括声阻材料,所述声阻材料具有特定的声学阻抗。例如,声学阻抗的范围可以从5MKS瑞利到500MKS瑞利。在一些实施例中,声阻材料可以包括但不限于塑料、纺织品、金属、可渗透材料、编织材料、屏材料以及网状材料等中的一种或其任意组合。在一些实施例中,为使得声学驱动器前室与后室传输的声音不被干扰(或由干扰产生的变化相同),可以将声学驱动器对应的前室和后室设置成具有近似相同的等效声学阻抗。例如,使用相同的声阻材料、设置相同大小或形状的导声孔等。
低频声学驱动器的两个第一导声孔147之间的间距可以表示为d 1(即第一间距),高频声学驱动器的两个第二导声孔157之间的间距可以表示为d 2(即第二间距)。通过设置低频声学驱动器和高频声学驱动器所对应的导声孔之间的距离,例如,使得两个第一导声孔147之间的间距大于两个第二导声孔157之间的间距(即,d 1>d 2),可实现在低频段有较高的音量输出,在高频段有更强的降漏音能力。
在一些实施例中,换能器143和换能器153共同容纳在声学输出装置的壳体内,并经由壳体内的结构隔绝放置。
在一些实施例中,声学输出装置300可以包括多组高频声学驱动器和低频声学驱动器。例如,声学输出装置可以包含一组高频声学驱动器和一组低频声学驱动器,同时用于对左耳和/或右耳输出声音。又例如,声学输出装置可以包含两组高频声学驱动器和两组低频声学驱动器,其中一组高频声学驱动器和一组低频声学驱动器用于对用户左耳输出声音,另一组高频声学驱动器和低频声学驱动器用于对用户右耳输出声音。
在一些实施例中,高频声学驱动器和低频声学驱动器可以被配置为具有不同的功率。在一些实施例中,低频声学驱动器可以被配置为具有第一功率,高频声学驱动器可以被配置为具有第二功率,且第一功率大于第二功率。在一些实施例中,第一功率和第二功率可以为任意值。
图6A和6B是根据本申请一些实施例所示的声音输出示意图。
在一些实施例中,声学输出装置可以通过两个或两个以上的换能器产生同一频率范围的声音,并通过不同的导声孔向外传播。在一些实施例中,不同换能器可以分别由相同或不同的控制器进行控制,并可以产生具有满足一定相位和幅值条件的声音(例如,振幅相同但相位相反的声音、振幅不同且相位相反的声音等)。例如,控制器可以使得输入到声学驱动器的两个低频换能器中的电信号具有相同的幅值和相反的相位,这样,当形成声音时,两个低频换能器可以输出幅值相同但相位相反的低频声音。
具体地,声学驱动器(如低频声学驱动器140、高频声学驱动器150)中的两个换能器可以并列设置在声学输出装置内,其中一个用于输出正相声音,另一个用于输出反相声音。如图6A所示,右侧的声学驱动器140可以包括两个换能器143、两条声学路径145和两个第一导声孔147,左侧的声学驱动器150可以包括两个换能器153、两条声学路径155和两个第二导声孔157。在相位相反的电信号驱动下,两个换能器143可以产生一组相位相反(180度反相)的低频声音。两个换能器143中的一个输出正相声音(如位于下方的换能器),另一个输出反相声音(如位于上方的换能器),两组相位相反的低频声音分别沿两条声学路径145传递至两个第一导声孔147,并通过两个第一导声孔147向外传播。类似地,在相位相反的电信号驱动下,两个换能器153可以产生一组相位相反(180度反相)的高频声音。两个换能器153中的其中一个输出正相高频声音(如位于下方的换能器),另一个输出反相高频声音(如位于上方的换能器),两组相位相反的高频声音分别沿两条声学路径155传递至两个第二导声孔157,并通过两个第二导声孔157向外传播。
在一些实施例中,声学驱动器(如低频声学驱动器140、高频声学驱动器150)中两个换能器可以沿着同一直线相对紧邻设置,且其中一个用于输出正相声音,另一个用于输出反相声音。如图6B所示,左侧为声学驱动器140,右侧为声学驱动器150。声学驱动器140的两个换能器143分别在控制器控制下产生一组幅值相等、相位相反的低频声音。其中一个换能器输出正相的低频声音并沿第一声学路径传输至一个第一导声孔147,另一个换能器输出反相的低频声音并沿第二声学路径传输至另一个第一导声孔147。声学驱动器150的两个换能器153分别在控制器控制下产生一组幅值相等、相位相反的高频声音。其中一个换能器输出正相高频声音并沿第三声学路径传输至一个第二导声孔157,另一个换能器输出反相的高频声音并沿第四声学路径传输至另一个第二导声孔157。
在一些实施例中,换能器143和/或换能器153可以是各种合适的类型。例如,换能器143和换能器153可以是动圈式扬声器,其具有低频灵敏度高、低频下潜深度大、失真小的特点。再例如,换能器143和换能器153可以是动铁式扬声器,其具有尺寸小、灵敏度高、高频范围大的特点。再例如,换能器143和换能器153可以是气导扬声器,或骨导扬声器。再例如,换能器143和换能器153可以为平衡电枢式扬声器。在一些实施例中,换能器143和换能器153可以是不同类型的换能器。例如,换能器143可以为动铁式扬声器,换能器153可以为动圈式扬声器。再例如,换能器143可以为动圈式扬声器,换能器153可以为动铁式扬声器。
图6A和6B中,声学驱动器140的双点声源间距为d 1,声学驱动器150的双点声源间距为d 2,且d 1大于d 2。如图6B所示,听音位置(即,用户佩戴声学输出装置时耳道的位置)可以位于一组双点声源的连线上。在一些替代性实施例中,听音位置可以为任意合适的位置。例如,听音位置可以位于以双点声源中心点为圆心的圆周上。再例如,听音位置可以位于两组双点声源连线的同一侧,或者位于两组双点声源连线的中间。
可以理解,图6A和6B中示出的声学输出装置的简化结构仅作为示例,并不是对本申请的限制。在一些实施例中,声学输出装置400和/或声学输出装置500可以包括支撑结构、控制器、信号处理器等一种或多种的组合结构。
图7A和7B是根据本申请一些实施例所示的声学输出装置的示意图。
在一些实施例中,声学驱动器(如声学驱动器140或150)可以包括多组窄带扬声器。如 图7A所示,声学输出装置可以包括多组窄带扬声器单元和信号处理模块。在用户左侧或右侧的位置,该声学输出装置分别包括n组,共2*n个窄带扬声器单元。每组窄带扬声器单元具有不同的频率响应曲线,各组的频率响应互补,且共同覆盖可听声音频段。这里所说的窄带扬声器可以是相对于上述低频声学驱动器和高频声学驱动器而言,具有更窄频率响应范围的声学驱动器。以图7A中所示的位于用户左侧的扬声器单元为例:A1~An分别与B1~Bn一起构成n组双点声源。当输入同一电信号时,每组双点声源分别产生具有不同频率范围的声音。通过设定每组双点声源的间隔d n来调控各频段的近场与远场的声音。例如,为了增强近场听音音量,减小远场漏音音量,可以使得较高频的双点声源间距小于较低频的双点声源间距。
在一些实施例中,信号处理模块可以包括均衡(Equalizer,EQ)处理模块和数字信号处理(DSP)模块。信号处理模块可以用于实现信号均衡以及其他通用的数字信号处理算法(如调幅、调相等)。处理后的信号可以通过与相应的声学驱动器(例如,窄带扬声器)结构相连输出声音。优选地,窄带扬声器可以为动圈式扬声器或动铁式扬声器。更优选地,窄带扬声器可以为平衡电枢式扬声器。可以使用两个平衡电枢式扬声器构造双点声源,且两个扬声器输出声音的相位相反。
在一些实施例中,声学驱动器(如声学驱动器140或150)可以包括多组全频带扬声器。如图7B所示,声学输出装置可以包括多组全频带扬声器单元和信号处理模块。在用户左侧或右侧的位置,该声学输出装置分别包括n组,共2*n个全频带扬声器单元。每组全频带扬声器单元都具有相同或类似的频率响应曲线,且能覆盖较广的频率范围。
以图7B中所示的位于用户左侧的扬声器单元为例:A1~An分别与B1~Bn一起构成n个双点声源。与图7A不同的地方在于,图7B中的信号处理模块包含至少一组滤波器,用来对声源信号进行分频,再将对应不同频率范围的电信号分别输入到各组全频带扬声器。这样,每组扬声器单元(类似于上述双点声源),可以分别产生具有不同频率范围的声音。
图8A-8C是根据本申请一些实施例所示的声学路径的示意图。
如上所述,可以通过在声学路径中设置声管、声腔、声阻等结构来构造相应的声学滤波网络,以实现对声音的分频。图8A-8C中示出了利用声学路径对声音信号进行分频的结构示意图。需要注意的是,图8A-8C仅作为利用声学路径对声音信号进行分频时,声学路径设置的示例,并非对本申请的限制。
如图8A所示,可以由一组或者一组以上的管腔结构串联组成声学路径,在管腔中设置声阻材料以调节整个结构的声阻抗,以实现滤波效果。在一些实施例中,可以通过调节官腔中各结构的尺寸和声阻材料对声音进行带通滤波或低通滤波,以实现对声音的分频。如图8B所示,可以在声学路径支路构造由一组或者一组以上的共振腔(例如,亥姆霍兹共振腔)结构,并通过调节各结构的尺寸和声阻材料实现滤波效果。如图8C所示,可以在声学路径构造管腔和共振腔(例如,亥姆霍兹共振腔)结构的组合,并通过调节各结构的尺寸和声阻材料实现滤波效果。
图9是根据本申请一些实施例所示的在两组双点声源的共同作用下的漏音的示例性曲线图。
图9示出了两组双点声源(一组高频双点声源和一组低频双点声源)共同作用下的声学输出装置(如声学输出装置100、声学输出装置300、声学输出装置400、声学输出装置500、声学输出装置600等)的漏音曲线。图中两组双点声源的分频点在700Hz左右。
采用归一化参数α作为评价漏音量的指标(α的计算参见公式(4)),如图9所示,相对于单点声源的情况,双点声源的降漏音能力更强。此外地,相对于只设置一组双点声源的声学输出装置,通过两组双点声源分别输出高频声音和低频声音,并使得低频双点声源的间距大于高频双点声源的间距。在低频范围内,通过设置较大的双点声源间距(d 1),使得近场听音音量增量大于远场漏音音量增量,可以实现在低频段有较高的近场音量输出。同时由于在低频范围内,双点声源的漏音原本就很少,在增大双点声源间距后,稍有上升的漏音仍可保持较低水平。在高频范围内,通过设置较小的双点声源间距(d 2),克服了高频降漏音截止频率过低,降漏音频段过窄的问题。因此,本申请实施例提供的声学输出装置通过在低频段设置双点声源间距d 1,高频段设置双点声源间距d 2,可以获得较单点声源、以及一组双点声源更强的降漏音能力。
在一些实施例中,受实际电路滤波特性、换能器频率特性、声通道频率特性等因素的影响,声学输出装置实际输出的低频、高频声音可能与图9所示存在差别。此外地,低频、高频声音可能会在分频点附近频带产生一定的重叠(混叠),导致声学输出装置的总降漏音不会如图9所示的在分频点处有突变,而是在分频点附近频段有渐变和过渡,如图9细实线所示意的。可以理解的,这些差异并不会影响本申请实施例提供声学输出装置的整体降漏音效果。
根据图4至图9及其相关描述,本申请提供的声学输出装置可以通过设置高频双点声源和 低频双点声源实现不同频段下的声音输出,从而达到更好的声音输出效果;另外,可以通过设置不同间距的双点声源,使该声学输出装置在更高的频段有更强的降漏音能力的效果,满足开放双耳声学输出装置的需求。
在本申请的另一方面提供了另一声学输出装置。该声学输出装置可以包括至少一组声学驱动器,所述至少一组声学驱动器产生的声音可以通过与其声耦合的至少两个导声孔向外传播。在一些实施例中,所述声学输出装置上可以设有挡板结构,使得所述至少两个导声孔分别分布于挡板的两侧。在一些实施例中,所述至少两个导声孔可以分布于用户耳廓的两侧,此时耳廓作为挡板,可以隔开所述至少两个导声孔,使得所述至少两个导声孔具有不同的到用户耳道的声学路径。更多关于双点声源和挡板的描述,请参见2019年12月31日递交的PCT申请PCT/CN2019/130921和PCT/CN2019/130942,其全部内容通过引用的方式添加在本申请中。
图10是根据本申请一些实施例所示的另一声学输出装置的示例性的结构示意图。如图10所示,声学输出装置1000可以包括支撑结构1010以及设置在支撑结构内的声学驱动器1020。在一些实施例中,声学输出装置1000可以通过支撑结构1010佩戴在用户身体上(例如,人体的头部、颈部或者上部躯干),同时支撑结构1010和声学驱动器1020可以靠近但不堵塞耳道,使得用户耳朵保持开放的状态,在用户既能听到声学输出装置1000输出的声音的同时,又能获取外部环境的声音。例如,声学输出装置1000可以环绕设置或者部分环绕设置在用户耳朵的周侧,并可以通过气传导或骨传导的方式进行声音的传递。
支撑结构1010可以用于佩戴在用户的身体上,并可以承载一个或多个声学驱动器1020。在一些实施例中,支撑结构1010可以是内部中空的封闭式壳体结构,且所述一个或多个声学驱动器1020位于支撑结构1010的内部。在一些实施例中,声学输出装置1000可以与眼镜、头戴式耳机、头戴式显示装置、AR/VR头盔等产品相结合,在这种情况下,支撑结构1010可以采用悬挂或夹持的方式固定在用户的耳朵的附近。在一些可替代的实施例中,支撑结构1010上可以设有挂钩,且挂钩的形状与耳廓的形状相匹配,从而声学输出装置1000可以通过挂钩独立佩戴在用户的耳朵上。独立佩戴使用的声学输出装置1000可以通过有线或无线(例如,蓝牙)的方式与信号源(例如,电脑、手机或其他移动设备)通信连接。例如,左右耳处的声学输出装置1000可以均通过无线的方式与信号源直接通信连接。又例如,左右耳处的声学输出装置1000可以包括第一输出装置和第二输出装置,其中第一输出装置可以与信号源进行通信连接,第二输出装置可以通过无线方式与第一输出装置无线连接,第一输出装置和第二输出装置之间通过一个或多个同步信号实现音频播放的同步。无线连接的方式可以包括但不限于蓝牙、局域网、广域网、无线个域网、近场通讯等或其任意组合。
在一些实施例中,支撑结构1010可以为具有人体耳朵适配形状的壳体结构,例如圆环形、椭圆形、多边形(规则或不规则)、U型、V型、半圆形,以便支撑结构1010可以直接挂靠在用户的耳朵处。在一些实施例中,支撑结构1010还可以包括一个或多个固定结构。所述固定结构可以包括耳挂、头梁或弹性带,使得声学输出装置1000可以更好地固定在用户身上,防止用户在使用时发生掉落。仅作为示例性说明,例如,弹性带可以为头带,头带可以被配置为围绕头部区域佩戴。又例如,弹性带可以为颈带,被配置为围绕颈/肩区域佩戴。在一些实施例中,弹性带可以是连续的带状物,并可以被弹性地拉伸以佩戴在用户的头部,同时弹性带还可以对用户的头部施加压力,使得声学输出装置1000牢固地固定在用户的头部的特定位置上。在一些实施例中,弹性带可以是不连续的带状物。例如,弹性带可以包括刚性部分和柔性部分,其中,刚性部分可以由刚性材料(例如,塑料或金属)制成,刚性部分可以与声学输出装置1000的支撑结构1010通过物理连接(例如,卡接、螺纹连接等)的方式进行固定。柔性部分可以由弹性材料制成(例如,布料、复合材料或/和氯丁橡胶)。
在一些实施例中,当用户佩戴声学输出装置1000时,支撑结构1010可以位于耳廓的上方或下方。支撑结构1010上还可以开设有用于传递声音的导声孔1011和导声孔1012。在一些实施例中,导声孔1011和导声孔1012可以分别位于用户耳廓的两侧,且声学驱动器1020可以通过导声孔1011和导声孔1012向外输出声音。
声学驱动器1020是一个可以接收电信号,并将其转换为声音信号进行输出的元件。在一些实施例中,按频率进行区分,声学驱动器1020的类型可以包括低频声学驱动器、高频声学驱动器或全频声学驱动器,或其任意组合。在一些实施例中,按原理进行区分,声学驱动器1020还可以包括但不限于动圈式、动铁式、压电式、静电式、磁致伸缩式等驱动器。
在一些实施例中,声学驱动器1020可以包括一个振膜。当振膜振动时,声音可以分别从该振膜的前侧和后侧发出。在一些实施例中,支撑结构1010内振膜前侧的位置设有用于传递声音的前 室1013。前室1013与导声孔1011声学耦合,振膜前侧的声音可以通过前室1013从导声孔1011中发出。支撑结构1010内振膜后侧的位置设有用于传递声音的后室1014。后室1014与导声孔1012声学耦合,振膜后侧的声音可以通过后室1014从导声孔1012中发出。需要知道的是,当振膜在振动时,振膜前侧和后侧可以同时产生一组相位相反的声音。当声音分别通过前室1013和后室1014后,会从导声孔1011和导声孔1012的位置向外传播。在一些实施例中,可以通过设置前室1013和后室1014的结构,使得声学驱动器1020在导声孔1011和导声孔1012处输出的声音满足特定的条件。例如,可以设计前室1013和后室1014的长度,使得导声孔1011和导声孔1012处可以输出一组具有特定相位关系(例如,相位相反)的声音,使得声学输出装置1000近场的听音音量较小和远场的漏音问题均得到有效改善。
在一些可替代的实施例中,声学驱动器1020也可以包括多个振膜(例如,两个振膜)。所述多个振膜分别振动产生声音,并分别通过支撑结构内与之相连的不同的腔体后从对应的导声孔处传出。所述多个振膜可以分别由相同或不同的控制器进行控制,并可以产生具有满足一定相位和幅值条件的声音(例如,振幅相同当相位相反的声音、振幅不同且相位相反的声音等)。
如上文所述(例如,图3A、3B及其相关描述),在声音频率一定的情况下,随着两个点声源之间间距的增加,与两个点声源对应的听音音量和漏音音量均增加。为更清楚的描述,将结合图11至图13进一步说明听音音量和漏音音量与点声源间距d的关系。
图11是根据本申请一些实施例所示的两个点声源与听音位置的示意图。如图11所示,点声源a 1和点声源a 2位于听音位置的同一侧,且点声源a 1更靠近听音位置,点声源a 1和点声源a 2分别输出幅值相同但相位相反的声音。
图12是根据本申请一些实施例所示的不同间距的双点声源的听音音量随频率变化的曲线图。其中,横坐标表示双点声源输出声音的频率(f),单位为赫兹(Hz),纵坐标表示声音的音量,单位为分贝(dB)。如图12所示,随着点声源a 1和点声源a 2间距的逐渐增加(例如,由d增加到10d),听音位置的音量逐渐增大。这是由于随着点声源a 1和点声源a 2的间距增大,到达听音位置的两路声音的声压幅值差(即声压差)变大,声程差更大,使得声音相消的效果变弱,进而使得听音位置的音量增加。但由于声音相消的情况仍存在,听音位置处的音量在中低频段(例如,频率小于1000Hz的声音)仍小于同位置同强度的单点声源产生的音量。但在高频段(例如,频率接近10000Hz的声音),由于声音波长的变小,会出现满足声音相互增强的条件,使得双点声源产生的声音比单点声源的声音大。在本说明书的实施例中,声压幅值,即声压,可以是指声音通过空气的振动所产生的压强。
在一些实施例中,通过增加双点声源(例如,点声源a 1和点声源a 2)的间距可以提高听音位置处的音量,但随着间距的增加,双点声源声音相消的能力变弱,进而导致远场漏音的增加。仅仅作为说明,图13是根据本申请一些实施例提供的不同间距的双点声源在远场的归一化参数随频率变化的曲线图。其中,横坐标表示声音的频率(f),单位为赫兹(Hz),纵坐标采用归一化参数α作为评价漏音量的指标,单位为分贝(dB)。如图13所示,以单点声源的远场归一化参数α作为参照,随着双点声源的间距由d增加到10d,远场的归一化参数α逐渐升高,说明漏音逐渐变大。关于归一化参数α的具体内容可以参考公式(4)及其相关描述。
在一些实施例中,在声学输出装置中加入挡板结构,有利于提高声学输出装置的输出效果,即增大近场听音位置的声音强度,同时减小远场漏音的音量。仅仅作为说明,图14是根据本申请一些实施例提供的双点声源之间设置挡板的示例性分布示意图。如图14所示,当点声源a 1和点声源a 2之间设有挡板时,在近场,点声源a 2的声场需要绕过挡板才能与点声源a 1的声波在听音位置处产生干涉,相当于增加了点声源a 2到听音位置的声程。因此,假设点声源a 1和点声源a 2具有相同的幅值,则相比于没有设置挡板的情况,点声源a 1和点声源a 2在听音位置的声波的幅值差增大,从而两路声音在听音位置进行相消的程度减少,使得听音位置的音量增大。在远场,由于点声源a 1和点声源a 2产生的声波在较大的空间范围内都不需要绕过挡板就可以发生干涉(类似于无挡板情形),则相比于没有挡板的情况,远场的漏音不会明显增加。因此,在点声源a 1和点声源a 2之间设置挡板结构,可以在远场漏音音量不显著增加的情况下,显著提升近场听音位置的音量。
在本申请中,当双点声源分别位于耳廓的两侧时,耳廓具有挡板的效果,因此为方便起见,耳廓也可以被称作挡板。作为示例性说明,由于耳廓的存在,其结果可等效为近场声音由间距为D 1的双点声源产生(也称为模式1),而远场声音由间距为D 2的双点声源产生(也称为模式2),其中D 1>D 2。图15是根据本申请一些实施例所示的耳廓位于双点声源之间时听音音量随频率变化的曲线图。如图15所示,当频率较低时(例如,频率小于1000Hz时),双点声源分布在耳廓两侧时 的近场声音(即用户耳朵听到的声音)的音量与模式1的近场声音音量基本相同,均大于模式2的近场声音音量,且接近单点声源的近场声音音量。随着频率的增加(例如,频率在2000Hz-7000Hz时),模式1和双点声源分布在耳廓两侧时的近场声音的音量大于单点声源。由此说明当用户的耳廓位于在双点声源之间时,可以有效地增强声源传递到用户耳朵的近场声音音量。图16是根据本申请一些实施例所示的耳廓位于双点声源之间时漏音音量随频率变化的曲线图。如图16所示,随着频率的增加,远场漏音音量都会有所增加,但是当双点声源分布在耳廓两侧时,其产生的远场漏音音量与模式2的远场漏音音量基本相同,均小于模式1的远场漏音音量和单点声源的远场漏音音量。由此说明当用户的耳廓位于双点声源之间时,可以有效地降低声源传递到远场的声音,即可以有效减少声源向周围环境发出的漏音。图17是根据本申请一些实施例所示的声学输出装置的双点声源分布在耳廓两侧时归一化参数随频率变化的曲线图。如图17所示,在频率小于10000Hz时,双点声源分布在耳廓两侧时的归一化参数要小于模式1(双点声源之间无挡板结构,且间距为D 1)、模式2(双点声源之间无挡板结构,且间距为D 2)以及单点声源情况下的归一化参数,由此说明在双点声源分别位于耳廓两侧时,声学输出装置具有更好地降漏音能力。
为了进一步说明双点声源或两个导声孔之间有无挡板时对声学输出装置的声音输出效果的影响,现以不同条件下的听音位置的近场音量或/和远场漏音音量作具体说明。
图18是根据本申请一些实施例所示的两个点声源之间在有无挡板的情况下听音音量及漏音音量随频率变化的曲线图。如图18所示,声学输出装置在两个点声源(即两个导声孔)之间增加挡板以后,在近场,相当于增大了两个点声源的间距,在近场听音位置的音量相当于由一组距离较大的双点声源产生,使得近场的听音音量相对于无挡板的情况明显增加。在远场,由于两个点声源产生的声波的干涉受挡板的影响很小,漏音相当于是由一组距离较小的双点声源产生,故漏音在有/无挡板的情况下并变化不明显。由此可知,通过在两个导声孔(双点声源)之间设置挡板,在有效提升声音输出装置降漏音能力的同时,还可以显著增加声音输出装置的近场音量。因而对声学输出装置中起到发声作用的组件要求大大降低,同时能够减少声学输出装置的电损耗,故在电量一定的情况下,还能大大延长声学输出装置的使用时间。
图19是根据本申请一些实施例所示的双点声源频率为300Hz时在有无挡板的情况下听音音量及漏音音量随双点声源间距变化的曲线图。图20是根据本申请一些实施例所示的双点声源频率为1000Hz时在有无挡板的情况下听音音量及漏音音量随双点声源间距变化的曲线图。如图19和图20所示,在近场,当频率为300Hz或1000Hz时,随着双点声源间距d的增大,双点声源之间存在挡板时的听音音量始终大于双点声源之间无挡板时的听音音量,这说明在该频率下,双点声源之间设置挡板结构可以有效地提高近场的听音音量。在远场,双点声源之间有挡板时漏音音量与双点声源之间无挡板时漏音音量相当,这说明在该频率下,双点声源之间是否设置挡板结构对远场漏音的影响不大。
图21是根据本申请一些实施例所示的双点声源频率为5000Hz时在有无挡板的情况下听音音量及漏音音量随双点声源间距变化的曲线图。如图21所示,在近场,当频率为5000Hz时,随着双点声源间距d的增大,双点声源之间存在挡板时的听音音量始终大于双点声源之间无挡板时的听音音量。在远场,有挡板和无挡板的双点声源的漏音音量随间距d的变化而呈现波动性变化,但整体上可以看出,双点声源之间是否设置挡板结构对远场漏音的影响不大。
图22是根据本申请一些实施例所示的双点声源间距d为1cm时听音音量随频率变化的曲线图,图23是根据本申请一些实施例所示的双点声源间距d为2cm时听音音量随频率变化的曲线图,图24是根据本申请一些实施例所示的双点声源间距d为4cm时听音音量随频率变化的曲线图,图25是根据本申请一些实施例所示的双点声源间距d为1cm时远场的归一化参数随频率变化的曲线图,图26是根据本申请一些实施例所示的双点声源间距d为2cm时远场的归一化参数随频率变化的曲线图,图27是根据本申请一些实施例所示的双点声源间距d为4cm时远场的归一化参数随频率变化的曲线图。如图22至图24所示,对于不同的导声孔的间距d(例如,1cm、2cm、4cm),在一定的频率下,在近场听音位置(例如,用户耳朵),两个导声孔分别设置于耳廓两侧(即,图中所示“有挡板作用”的情况)时提供的音量都要比两个导声孔未设置于耳廓两侧(即,图中所示“无挡板作用”的情况)时提供的音量大。这里所说的一定频率可以是在10000Hz以下,或者优选地,在5000Hz以下,或者更优选地,在1000Hz以下。
如图25至27所示,对于不同的导声孔的间距d(例如,1cm、2cm、4cm),在一定的频率下,在远场位置(例如,远离用户耳朵的环境位置),两个导声孔分别设置于耳廓两侧时产生的漏音音量都要比两个导声孔未设置于耳廓两侧时产生的漏音音量小。需要知道的是,随着两个导 声孔或者双点声源的间距增加,远场位置处声音相消干涉会减弱,导致远场的漏音逐渐增加,降漏音能力变弱。因此两个导声孔或者双点声源的间距d不能太大。在一些实施例中,为了保持声音输出装置在近场可以输出尽可能大的声音,同时抑制远场的漏音,两个导声孔之间的间距d可以设置为不大于20cm,优选地,两个导声孔之间的间距d可以设置为不大于12cm,更优选地,两个导声孔之间的间距d可以设置为不大于10cm,进一步优选地,两个导声孔之间的间距d可以设置为不大于6cm。在一些实施例中,考虑到声学输出装置的尺寸以及导声孔的结构要求,两个导声孔之间的间距d可以设置为不小于1cm且不大于12cm,优选地,两个导声孔之间的间距d可以设置为不小于1cm且不大于10cm,更优选地,两个导声孔之间的间距d可以设置为不小于1cm且不大于8cm,更优选地,两个导声孔之间的间距d可以设置为不小于1cm且不大于6cm,更优选地,两个导声孔之间的间距d可以设置为不小于1cm且不大于3cm。
需要注意的是,以上描述仅为描述方便,并不用于限制本申请。可以理解,对于本领域的技术人员来说,在了解本申请的原理后,可以在不违背这一原理的情况下,对上述声学输出装置进行形式和细节上的各种修正和改变,例如,在一些实施例中,挡板两侧的导声孔数量不限于上述的一个,还可以为多个,可以相同或不同。例如挡板一侧的导声孔数量可以为两个,另一侧的导声孔数量可以为两个或三个。以上这些改变均在本申请的保护范围内。
在一些实施例中,在保持双点声源间距一定的前提下,听音位置相对于双点声源的位置对于近场听音音量和远场降漏音具有一定影响。为了提高声学输出装置的输出效果,在一些实施例中,声学输出装置上可以设置至少两个导声孔,且该至少两个导声孔包括两个分别位于用户耳廓前后两侧的两个导声孔。在一些特定的实施例中,考虑到位于用户耳廓后侧的导声孔传出的声音需要绕开耳廓才能到达用户的耳道,位于耳廓前侧的导声孔距离用户耳道的声学路径(即,导声孔到用户耳道入口位置的声学距离)短于位于耳廓后侧的导声孔距离用户耳朵的声学路径。为了进一步说明听音位置对声音输出效果的影响,作为示例性说明,在本说明书的实施例中,如图28所示,选取了四个有代表性的听音位置(听音位置1、听音位置2、听音位置3、听音位置4),对听音位置选取的效果和原理做阐述。其中,听音位置1、听音位置2和听音位置3与点声源a 1的间距相等,为r 1,听音位置4与点声源a 1的间距为r 2,且r 2<r 1,点声源a 1和点声源a 2分别产生相位相反的声音。
图29是根据本申请一些实施例所示的无挡板的双点声源在近场不同听音位置的听音音量随频率变化的曲线图,图30是在图29的基础上,根据公式(4)求得的不同听音位置的归一化参数随频率变化的曲线图。如图29和30所示,对于听音位置1,由于点声源a 1和点声源a 2在听音位置1的声程差较小,两个点声源在听音位置1产生的声音的幅值差较小,所以两个点声源的声音在听音位置1干涉以后导致听音音量相比于其他听音位置要更小。对于听音位置2,相比于听音位置1,该听音位置与点声源a 1的间距未变,即点声源a 1到听音位置2的声程没有发生变化,但是听音位置2与点声源a 2的间距变大,点声源a 2到达听音位置2的声程增大,点声源a 1和点声源a 2在该位置产生的声音的幅值差增加,所以两个点声源的声音在听音位置2干涉后的听音音量大于听音位置1处的听音音量。由于在所有以r 1为半径的圆弧位置中,点声源a 1和点声源a 2到听音位置3的声程差最大,所以相比于听音位置1和听音位置2,听音位置3的听音音量最大。对于听音位置4,由于听音位置4与点声源a 1的间距较小,点声源a 1在该位置的声音幅值较大,所以该听音位置的听音音量较大。综上可知,近场听音位置的听音音量会随着听音位置与两个点声源的相对位置的变化而变化。当听音位置处于两个点声源的连线上且位于两个点声源同侧(例如,听音位置3)时,两个点声源在听音位置的声程差最大(声程差为两个点声源的间距d),则在这种情况下(即,耳廓不作为挡板时),此听音位置的听音音量比其他位置听音音量大。根据公式(4),在远场漏音一定的情况下,该听音位置对应的归一化参数最小,降漏音能力最强。同时,减小听音位置与点声源a 1的间距r 1(例如,听音位置4),可以进一步增加听音位置的音量,同时减小漏音指数,提高降漏音能力。
图31是根据本申请一些实施例所示的有挡板的双点声源(如图28所示的情况)在近场不同听音位置的听音音量随频率变化的曲线图,图32是在图31的基础上,根据公式(4)求得的不同听音位置的归一化参数随频率变化的曲线图。如图31和32所示,相对于无挡板的情况,有挡板时双点声源在听音位置1产生的听音音量显著增加,且听音位置1的听音音量超过了听音位置2和听音位置3处的听音音量。这是由于在两个点声源之间加入挡板以后,点声源a 2到达听音位置1的声程增加,导致两个点声源到达听音位置1的声程差显著增大,两个点声源在听音位置1上产生的声音的幅值差增大,不易产生声音的干涉相消,从而导致在听音位置1产生的听音音量显著增加。在听音位置4,由于听音位置与点声源A 1的间距进一步减小,点声源a 1在该位置的声音幅值较大,所 以听音位置4的听音音量在所取的4个听音位置中仍然是最大的。对于听音位置2和听音位置3,挡板对于点声源a 2的声场到达此两处听音位置的声程增加效果并不是很明显,所以在听音位置2和听音位置3处的音量增加效果要小于距离挡板较近的听音位置1和听音位置4的音量增加效果。
由于远场的漏音音量不随听音位置的改变而发生变化,而近场听音位置的听音音量随听音位置的改变而发生变化,故在不同的听音位置,根据公式(4),声学输出装置的归一化参数不同。其中,听音音量较大的听音位置(例如,听音位置1和听音位置4),归一化参数小,降漏音能力强;听音音量较小的听音位置(例如,听音位置2和听音位置3),归一化参数较大,降漏音能力较弱。
因此,根据声学输出装置的实际应用场景,可以将用户的耳廓作为挡板,将声学输出装置上两个导声孔分别设置在耳廓的前后两侧,耳道作为听音位置位于两个导声孔之间。在一些实施例中,通过设计两个导声孔在声学输出装置上的位置,使得耳廓前侧的导声孔到耳道的距离比耳廓后侧的导声孔到耳道的距离小,此时由于耳廓前侧的导声孔距离耳道的距离较近,耳廓前侧导声孔在耳道处产生的声音幅值较大,而耳廓后侧导声孔在耳道处产生的声音幅值较小,避免了两个导声孔处的声音在耳道处的干涉相消,从而确保耳道处的听音音量较大。在一些实施例中,声学输出装置上可以包括一个或多个在佩戴时与耳廓接触的接触点(例如,支撑结构上用于匹配耳朵形状的“拐点”)。所述接触点可以位于两个导声孔的连线上或者位于两个导声孔连线的一侧。且前侧的导声孔到接触点的距离与后侧的导声孔到接触点的距离之比可以在0.05-20之间,优选地,在0.1-10之间,更优选地,在0.2-5之间,进一步优选地,在0.4-2.5之间。
图33是根据本申请一些实施例所示的双点声源与挡板(例如,耳廓)的示例性分布示意图。在一些实施例中,挡板在两个导声孔间的位置也对声音的输出效果具有一定影响。仅仅作为示例性说明,如图33所示,在点声源a 1和点声源a 2之间设置挡板,听音位置位于点声源a 1和点声源a 2的连线上,且听音位置位于点声源a 1与挡板之间,点声源a 1与挡板的间距为L,点声源a 1与点声源a 2之间的间距为d,点声源a1与听音的间距为L 1,听音位置与挡板之间的间距为L 2。当听音位置与点声源a 1的间距L 1不变时,移动挡板的位置,使得点声源a 1与挡板的间距L和双点声源间距d具有不同的比例关系,可以获得在该不同比例关系下听音位置的听音音量和远场漏音音量。
图34是根据本申请一些实施例所示的挡板在不同位置时近场的听音音量随频率变化的曲线图,图35是根据本申请一些实施例所示的挡板在不同位置时远场漏音音量随频率变化的曲线图,图36是根据本申请一些实施例所示的挡板在不同位置时的归一化参数随频率变化的曲线图。结合图34至图36,远场的漏音随挡板在双点声源间的位置变化很小。在点声源a 1和点声源a 2的间距d保持不变时,当L减小时,听音位置的音量增加,归一化参数减小,降漏音能力增强;当L增大时,听音位置的音量增加,漏音指数变大,降漏音能力减弱。产生以上结果的原因是当L较小时,听音位置距离挡板较近,挡板增加了点声源a 2的声波传播到听音位置的声程,从而增大了点声源a 1和点声源a 2到达听音位置的声程差,减少了声音的干涉相消,所以加挡板以后听音位置的音量增加更大。当L较大时,听音位置距离挡板较远,挡板对点声源a 1和点声源a 2到达听音位置的声程差的影响较小,所以加挡板以后听音位置的音量变化较小。
由以上可知,通过设计声学输出装置上导声孔的位置,使得在用户佩戴声学输出装置时,将人体的耳廓作为挡板来隔开不同的导声孔,在简化声学输出装置的结构的同时,可以进一步提到声学输出装置的输出效果。在一些实施例中,可以设计两个导声孔的位置,使得当用户佩戴声学输出装置时,耳廓前侧的导声孔到耳廓(或者声学输出装置上用于与耳廓接触的接触点)的距离与两个导声孔之间的间距的比值不大于0.5。优选地,位于耳廓前侧的导声孔到耳廓(或者声学输出装置上用于与耳廓接触的接触点)的距离与两个导声孔间距的比值不大于0.3。更优选地,位于耳廓前侧的导声孔到耳廓(或者声学输出装置上用于与耳廓接触的接触点)的距离与两个导声孔间距的比值不大于0.1。在一些实施例中,耳廓前侧的导声孔到耳廓(或者声学输出装置上用于与耳廓接触的接触点)的间距与两个导声孔之间的间距不小于0.05。在一些实施例中,两个导声孔的间距与耳廓的高度的比值不小于0.2。优选地,两个导声孔的间距与耳廓的高度的比值不大于4。在本说明书的实施例中,耳廓的高度可以是指沿着垂直于矢状面的方向的耳廓的长度。
需要知道的是,声学输出装置中声学驱动器到导声孔的声程对近场音量和远场漏音具有一定影响。该声程可以通过调整声学输出装置内振膜和导声孔之间的腔体长度来改变。在一些实施例中,声学驱动器包括一个振膜,且振膜的前后侧分别通过前室和后室耦合到两个导声孔。所述振膜到两个导声孔之间的声程不同。优选地,所述振膜到两个导声孔的声程比为0.5-2。更优选地,所述振膜到两个导声孔的声程比为0.6-1.5。进一步优选地,所述振膜到两个导声孔的声程比为0.8-1.2。
在一些实施例中,可以在保持两个导声孔处产生的声音的相位相反的前提下,改变两个导声孔处产生的声音的幅值来提高声学输出装置的输出效果。具体地,可以通过调节两个导声孔与声学驱动器之间声学路径的阻抗来达到调节导声孔处声音幅值的目的。在本说明书的实施例中,阻抗可以是指声波传导时介质位移需要克服的阻力。所述声学路径中可以填充或者不填充阻尼材料(例如,调音网、调音棉等)来实现声音的调幅。例如,在一些实施例中,声学路径中可以设置谐振腔、声孔、声狭缝、调音网或调音棉来调整声阻,以改变声学路径的阻抗。再例如,在一些实施例中,还可以通过调节两个导声孔的孔径以改变声学路径的声阻。优选地,声学驱动器(的振膜)至两个导声孔的声阻抗之比为0.5-2。更优选地,声学驱动器(的振膜)至两个导声孔的声阻抗之比为0.8-1.2。
需要注意的是,以上描述仅为描述方便,并不用于限制本申请。可以理解,对于本领域的技术人员来说,在了解本申请的原理后,可以在不违背这一原理的情况下,对上述声学输出装置进行形式和细节上的各种修正和改变,例如,听音位置可以不在双点声源的连线上,也可以在双点声源连线的上方、下方或延伸方向上。又例如,点声源至耳廓的间距、耳廓的高度的测量方式还可以根据不同的场景进行调整。以上类似的改变均在本申请的保护范围内。
图37是根据本申请一些实施例所示的又一种声学输出装置的示例性结构示意图。
对于人耳听音来说,听音的频段主要集中于中低频段,在该频段主要以增加听音音量为优化目标。若听音位置固定,通过一定手段调节双点声源的参数,可以实现听音音量有显著增加而漏音音量基本不变的效果(听音音量的增量大于漏音音量的增量)。在高频段,双点声源的降漏音效果变弱,在该频段主要以减小漏音为优化目标。通过一定手段调节不同频率的双点声源的参数,可以实现漏音的进一步减小以及降漏音频段的扩大。在一些实施例中,声学输出装置1000还可以包括声学驱动器1030。声学驱动器1030从两个第二导声孔输出声音。关于声学驱动器1030与第二导声孔以及二者之间的结构,可以参考声学驱动器1020以及第一导声孔的具体描述。在一些实施例中,声学驱动器1030与声学驱动器1020可以分别输出不同频率的声音。在一些实施例中,声学输出装置还可以包括控制器,控制器被配置为使声学驱动器1020输出在第一频率范围内的声音,并且使声学驱动器1030输出在第二频率范围内的声音,其中,第二频率范围中包括高于第一频率范围的频率。例如,第一频率的范围为100Hz-1000Hz,第二频率的范围为1000Hz-10000Hz。
在一些实施例中,声学驱动器1020为低频扬声器,声学驱动器1030为中高频扬声器。由于低频扬声器和中高频扬声器自身频率响应特性的不同,其输出的声音频段也会有所不同,通过使用低频扬声器和中高频扬声器可以实现对高低频段的声音进行分频,进而可以通过分别构建低频双点声源和中高频双点声源来进行近场声音的输出和远场降漏音。例如,声学驱动器1020可以通过导声孔1011和导声孔1012提供输出低频声音的双点声源,主要用于输出低频频段的声音。低频双点声源可以分布于耳廓的两侧,用来增加近场耳朵附近的音量。声学驱动器1030可以通过两个第二导声孔提供输出中高频频段的双点声源,并通过控制两个第二导声孔的间距,可以降低中高频的漏音。中高频双点声源可以分布于耳廓的两侧,也可以分布在耳廓的同一侧。可替代地,声学驱动器1020可以通过导声孔1011和导声孔1012提供输出全频声音的双点声源,用来进一步增加近场声音的音量。
进一步地,两个第二导声孔的间距d 2小于导声孔1011和导声孔1012的间距d 1,即d 1大于d 2。仅仅作为说明,如图9所示,通过设置两组间距不同的低频双点声源和高频双点声源可以获得较单点声源、以及一组双点声源更强的降漏音能力。
需要说明的是,声学输出装置的导声孔不局限于图37所示的声学驱动器1720对应的两个导声孔1011和导声孔1012分布于耳廓的两侧以及声学驱动器1030对应的两个第二导声孔分布于耳廓的前侧的情况。例如,在一些实施例中,声学驱动器1030对应的两个第二导声孔可以分布于耳廓的同一侧(例如,耳廓的后侧、上方或下方)。又例如,在一些实施例中,声学驱动器1030对应的两个第二导声孔可以分布于耳廓的两侧。在其他的实施例中,当两个导声孔1011、导声孔1012或/和两个第二导声孔位于耳廓的同一侧时,在两个导声孔1011、导声孔1012之间或/和两个第二导声孔之间可以设置挡板,以进一步提高近场的听音音量和降低远场漏音。再例如,在一些实施例中,声学驱动器1020对应的两个导声孔还可以位于耳廓的同一侧(例如,耳廓的前侧、后侧、上方、下方)。
在实际使用中,声学输出装置可以具有,例如,眼镜、耳机、手环、头盔、手表、服装、或背包等产品形态。为了更清楚地描述,本申请以带有声音输出功能的眼镜和耳机作为声学输出装置的示例进行说明。所述眼镜可以包括近视镜、运动眼镜、远视镜、老花镜、散光镜、防风沙镜、 太阳镜、防紫外线镜、电焊镜、防红外线镜、虚拟现实(Virtual Reality,VR)眼镜、增强现实(Augmented Reality,AR)眼镜、混合现实(Mixed Reality,MR)眼镜、介导现实(Mediated Reality)眼镜等,或其组合。所述耳机可以包括开放双耳式耳机。
图38是根据本申请一些实施例所示的眼镜的示意图。如图38所示,眼镜3800可以包括声学输出装置3810、镜框3820、镜腿3830、镜片3840、通讯模块3850、电源模块3860、和控制模块3870。
声学输出装置3810可以被配置为输出声音。所述声音可以包括音频文件(如音乐、录音等)、实时通话、广播、提示音等。例如,用户可以通过声学输出装置3810播放音频或者广播。又例如,用户可以通过声学输出装置3810与外部设备进行实时通话(此情况下眼镜3800还可能包括麦克风)。又例如,声学输出装置3810可以根据用户的操作或者是眼镜3800或其部件(例如,声学输出装置3810、通讯模块3850、电源模块3860、控制模块3870)的状态发出提示音。更多的关于声学输出装置3810的描述可以参考本申请其他地方(如图1至图37中声学输出装置100、声学输出装置300、声学输出装置400、声学输出装置500、声学输出装置600、声学输出装置1000等及其描述)。在一些实施例中,所述声学输出装置3810可以设置在镜腿3830内部。在一些实施例中,声学输出装置3810可以包括分别位于左右镜腿3830的第一输出装置3810-1和第二输出装置3810-2。第一输出装置3810-1和第二输出装置3810-2可以通过通讯模块3850以有线或无线(例如,蓝牙)的方式与信号源(例如,电脑、手机或其他移动设备)通信连接。例如,第一输出装置3810-1和第二输出装置3810-2可以均通过通讯模块3850与信号源通信连接。又例如,第一输出装置3810-1可以通过通讯模块3850与信号源进行通信连接,第二输出装置3810-2可以通过通讯模块3850与第一输出装置3810-1无线连接或通过镜框3820和镜腿3830内部的电线与第一输出装置3810-1有线连接。第一输出装置3810-1和第二输出装置3810-2之间可以通过一个或多个同步信号实现音频播放的同步。在一些可替代的实施例中,声学输出装置3810可以设置在镜框3820或镜片3840内部。在一些可替代的实施例中,声学输出装置3810可以独立于眼镜3800,与眼镜3800可拆卸连接(例如,插接、卡接、螺纹连接)。
在一些实施例中,每个镜腿3830均可以承载一个或多个声学输出装置3810。例如,镜腿3830可以是内部中空的封闭式壳体结构,且所述每个镜腿3830的内部均分别承载多个第一输出装置3810-1或第二输出装置3810-2。在一些实施例中,声学输出装置3810可以设置在镜腿3830的任何部位。例如,声学输出装置3810可以设置在镜腿3830的头部(例如,靠近镜片3840的部分)、尾部(例如,远离镜片3840的部分)、或中部。又例如,多个声学输出装置3810中的一部分可以设置在镜腿3830的头部,另一部分可以设置在镜腿3830的尾部。
眼镜3800或其部件(例如,声学输出装置3810、电源模块3860、控制模块3870)可以通过通讯模块3850相互或与外部设备(例如,其他眼镜、信号源(例如,电脑、手机或其他移动设备)等等)通讯。例如,眼镜3800可以通过通讯模块3850与外部手机通讯(例如,蓝牙连接)以实现拨接电话、播放音频等功能。又例如,眼镜3800可以通过通讯模块3850与其他眼镜通讯以实现音频共享。在一些实施例中,所述通讯可以为无线通讯。所述无线通讯可以包括但不限于蓝牙、局域网、广域网、无线个域网、近场通讯等或其任意组合。在一些实施例中,当通讯模块3850与外部设备通讯,外部设备可以查看眼镜3800的信息(例如,位置信息、电量信息)和控制眼镜3800实现其功能,例如播放音频、通话等。在一些实施例中,通讯模块3850可以设置在眼镜3800的任意位置,例如,通讯模块3850可以设置在镜框3820、镜腿3830或镜片3840内部。又例如,通讯模块3850可以作为一个部件集成在声学输出装置3810、电源模块3860或控制模块3870中。
镜框3820可以被配置为支撑镜片3840。在一些实施例中,镜框3820具有多种形状,例如圆形、矩形、椭圆形、多边形(规则或不规则)等或类似形状。在一些实施例中,镜框3820可以是与镜片3840相适配的任何形状。例如,当镜片3840为长方形时,镜框3820也可为长方形。又例如,当镜片3840为椭圆形时,镜框3820可为椭圆形。在一些实施例中,镜框3820的材质可以包括金属和/或非金属。所述金属可以包括纯金属(即金属单质)、合金、包金、镀金属等。所述纯金属可以包括铁、铜、铝、钛、银、金等。所述合金可以包括不锈钢、铜合金、镍铬合金、锰镍合金、镍铜合金、镍钛合金、钛合金等。所述镀金属可以包括镀金、镀钛、镀铑、镀钯、镀镍、镀铬等。所述非金属可以包括塑料、纤维(例如,醋酸纤维、硝酸纤维、尼龙)、高分子材质(例如,塑胶钛、环氧树脂)、木头、动物壳、动物角等。所述塑料可以包括热塑性塑料、热固性塑料、混合塑料等等。在一些实施例中,镜腿3830的材质和镜框3820的材质可以相同。例如,镜腿3830的材质和镜框3820的材质均为塑胶钛。在一些可替代的实施例中,镜腿3830的材质和镜框3820的材质 可以不同。例如,镜腿3830的材质为塑料,镜框3820的材质为金属。
在一些实施例中,眼镜3800可以进一步包括镜梁3821。镜梁3821可以连接左右镜框3820以及左右镜片3840。镜梁3821可以与左右镜框3820一体成型或物理连接在左右镜框3820之间。镜梁3821的材质可以与镜框3820相同也可以不同。在一些实施例中,眼镜3800可以进一步包括鼻托3822。鼻托3822可以用于在用户佩戴眼镜3800时支撑和稳定眼镜3800。左右鼻托3822可以分别与左右镜框3820一体成型或物理连接在左右镜框3820上。鼻托3822的材质可以与镜框3820相同也可以不同。在一些实施例中,镜框3820可以进一步包括桩头3823。桩头3823为镜框3820和镜腿3830的连接处。镜框3820可以通过桩头3823物理连接至镜腿3830。所述物理连接可以包括铰链连接、卡接、螺纹连接、焊接等。例如,用于连接镜框3820和镜腿3830的铰链3880可以一头固定在桩头3823上,另一头固定在镜腿3830上。左右桩头3823可以分别与左右镜框3820一体成型或物理连接在左右镜框3820上。桩头3823的材质可以与镜框3820相同也可以不同。所述铰链3880的材质可以包括纯金属、合金、包金、镀金属(例如,镀金不锈钢)等。
在一些实施例中,镜片3840可以具有多种形状,例如圆形、矩形、椭圆形、多边形(规则或不规则)等或类似形状。在一些实施例中,镜片3840的可以包括近视镜片、老花镜片、太阳镜片(例如,墨镜)、平面镜片、防蓝光镜片、偏光镜片等或其任意组合。所述镜片3840的材质可以包括天然材质、光学玻璃、光学树脂等等。在一些实施例中,镜片3840可以具有抗划和防碎保护。在一些实施例中,眼镜3800可以用作AR(Augmented Reality)眼镜或VR(Virtual Reality)眼镜。此时,镜片3840的透光率和/或雾度可以自动调整并且眼镜3800还可以调用设置在镜片3840附近的迷你投影设备。例如,在AR模式下,可以适当降低镜片3840的透光率并通过所述迷你投影设备将需要投影的图像或视频投影在镜片3840外侧用户目光方向。又例如,在VR模式下,可以提高镜片3840的雾度并通过所述迷你投影设备将需要投影的图像或视频投影在镜片3840的内侧。
电源模块3860可以被配置为为眼镜3800的其他部件(例如,声学输出装置3810、通讯模块3850、控制模块3870)提供电源。在一些实施例中,电源模块3860的充电方式可以包括无线充电、有线充电、磁吸式充电等。所述无线充电可以包括电磁感应式无线充电、磁场共振无线充电、无线电波式无线充电、太阳能充电等或其任意组合。在一些实施例中,电源模块3860可以包括干电池、铅蓄电池、锂电池、太阳能电池等或其任意组合。在一些实施例中,所述电源模块3860可以设置在镜腿3830内部。例如,电源模块3860设置在左右两个镜腿3830中的一个的内部,且为所述两个镜腿3830中的第一输出装置3810-1和第二输出装置3810-2供电。又例如,所述两个镜腿3830内部均设置有电源模块3860且分别为所述第一输出装置3810-1和所述第二输出装置3810-2供电。需要说明的是,电源模块3860不局限于图38所示的电源模块3860设置在镜腿3830靠近镜片3840的位置。例如,电源模块3860可以设置在镜腿3830远离镜片3840的位置。又例如,电源模块3860还可以设置在镜框3820或镜片3840内部。再例如,电源模块3860还可以作为一个部件集成在声学输出装置3810、通讯模块3850或控制模块3870中。
控制模块3870可以被配置为控制眼镜3800的其他部件(例如,声学输出装置3810、通讯模块3850、电源模块3860)的工作状态。例如,控制模块3870可以控制声学输出装置3810开启和关闭。又例如,控制模块3870可以根据用户的指令切换声学输出装置3810输出的音频,播放指定类别(例如古典、流行)或者指定歌手(例如,迈克尔.杰克逊、周杰伦等)的音频或歌单,调整声学输出装置3810输出声音的音量等等。在一些实施例中,控制模块3870可以与眼镜3800的其他部件直接通讯或通过通讯模块3850与眼镜3800的其他部件通讯。在一些实施例中,控制模块3870可以自动检测眼镜3800的其他部件的状态或自动接收来自眼镜3800的其他部件上报的状态信息。根据所述状态或状态信息,控制模块3870可以控制其他部件。例如,控制模块3870可以自动检测电源模块3860的电量,当电源模块3860的电量低于临界值(例如,20%)时,控制声学输出装置3810输出充电提示音(例如,“电池电量低”、“即将关机”)。又例如,控制模块3870可以自动检测通讯模块3850与外部设备(例如,用户的手机)是否连接(例如,蓝牙连接),当通讯模块3850与外界设备未连接时,控制通讯模块3850与外部设备连接并在连接成功时控制声学输出装置3810输出提示音(例如,“蓝牙连接成功”)。在一些实施例中,控制模块3870可以进一步被配置为控制与眼镜3800通讯的外部设备。例如,控制模块3870可以通过通讯模块3850控制关联的用户手机中的智能助手(例如,Siri TM)。进一步的,根据用户的指令(例如语音指令,敲击指令),控制模块3870可以通过通讯模块3850唤醒关联的用户手机中的智能助手,并通过智能助手控制用户手机执行操作,例如查天气、开启导航或语音控制播放。在一些实施例中,控制模块3870可以设置在镜腿3830、镜框3820、或镜片3840的任意位置。在一些可替代的实施例中,控制模块3870还可以作 为一个部件集成在声学输出装置3810、通讯模块3850或电源模块3860中。
在一些实施例中,眼镜3800还可以包括声学接收装置(未示出)。所述声学接收装置可以被配置为接收外界声音,例如用户的语音指令、通话等。所述声学接收装置可以包括麦克风、话筒、送话器等。所述声学接收装置可以设置在镜腿3830、镜框3820、或镜片3840的任意位置。在一些可替代的实施例中,所述声学接收装置还可以作为一个部件集成在声学输出装置3810、通讯模块3850、电源模块3860或控制模块3870中。
在一些实施例中,眼镜3800还可以包括一个或以上检测模块(未示出)。所述检测模块可以被配置为自动检测眼镜3800及其部件(例如,声学输出装置3810、通讯模块3850、电源模块3860)的工作状态。在一些实施例中,控制模块3870可以根据检测模块检测到的状态信息(例如,放置或佩戴状态、是否被敲击、倾斜角度、电量等)进一步控制眼镜3800及其部件。例如,当检测模块检测到眼镜3800处于摘下的状态时,控制模块3870可以在预设时间(例如,15s)后关闭眼镜3800的一个或多个部件(如声学输出装置3810)。又例如,当检测模块检测到外界对眼镜3800的镜腿3830的规律敲击(例如,快速的连续2次敲击),控制模块3870可以自动暂停声学输出装置3810输出声音。再例如,当检测到电源模块3860电量不足时,控制模块3870可以控制声学输出装置3810输出需求充电的提示音。所述检测模块可以设置在镜腿3830、镜框3820、或镜片3840的任意位置。所述检测模块可以包括检测器、传感器、陀螺仪等或类似设备。所述检测器可以包括电池检测器、重量检测器、红外检测器、力学检测器等或其任意组合。所述传感器可以包括温度传感器、湿度传感器、压力传感器、位移传感器、流量传感器、液位传感器、力传感器、速度传感器、转矩传感器等或其任意组合。所述陀螺仪可以被配置为检测眼镜3800的放置方向。例如,当陀螺仪检测到眼镜3800底部朝上放置时,控制模块3870可以在预设时间(例如,20s)后关闭电源模块3860。所述陀螺仪还可以与外部设备(例如,手机)的陀螺仪直接或通过通讯模块3850通讯。
在一些实施例中,眼镜3800还可以包括控制开关(未示出)。所述控制开关可以被配置为对眼镜3800及其部件(例如,声学输出装置3810、通讯模块3850、电源模块3860)进行直接控制。所述控制开关的形式和操作方式仅为示例。用户可以通过对所述控制开关中的一个或多个按键同时或依次进行多次的连续按动、单次短时间按动、单次长时间按动、触摸、滑动等或其任意组合对眼镜5400及其部件进行控制。例如,用户可以通过长按控制开关来开启或关闭声学输出装置3810。再例如,用户可以通过长按控制开关连接或断开眼镜3800与外部设备的通讯(例如,蓝牙连接)。再例如,用户可以通过点击控制开关不同次数实现接听或挂断电话、播放或暂停音频、切换音频(例如播放下一个音频或播放上一个音频)等等。在一些实施例中,用户还可以通过对所述控制开关中的一个或多个按键同时或依次进行多次的连续按动、单次短时间按动、单次长时间按动、触摸、滑动等或其任意组合控制与眼镜3800通讯(或称为关联的)的外部设备。例如,当用户按压所述控制开关时,所述控制开关可以直接或通过通讯模块3850唤醒关联的用户手机中的智能助手。又例如,当所述检测模块监测到所述控制开关被按压时,控制模块3870可以唤醒关联的用户手机中的智能助手。所述控制开关可以包括物理按钮、光学按钮、电子按钮等。所述控制开关可以设置在镜腿3830、镜框3820、或镜片3840的任意位置。
在一些实施例中,眼镜3800可以包括指示灯(未示出)。所述指示灯可以被配置为指示眼镜3800的部件(例如,声学输出装置3810、通讯模块3850、电源模块3860)的工作状态。所述指示灯可以发出一种或以上颜色的光和/或闪烁不同的次数以指示声学输出装置3810的不同状态(例如,开启、关闭、音量、电量、音调、语速等)。例如,当声学输出装置3810开启时,所述指示灯发出绿颜色的光,当声学输出装置3810关闭时,所述指示灯发出红颜色的光。又例如,当声学输出装置3810开启时,所述指示灯闪烁3次,当声学输出装置3810关闭时,所述指示灯闪烁1次。所述指示灯还可以发出一种或以上颜色的光和/或闪烁不同的次数以指示通讯模块3850的连接状态。例如,当通讯模块3850与外部设备连接成功时,所述指示灯发出绿颜色的光,当通讯模块3850与外部设备连接不成功时,所述指示灯发出红颜色的光。又例如,当通讯模块3850与外部设备连接不成功时,所述指示灯持续闪烁。所述指示灯还可以发出一种或以上颜色的光和/或闪烁不同的次数以指示电源模块3860的电量。例如,当电源模块3860缺电时,所述指示灯发出红颜色的光。又例如,当电源模块3860缺电时,所述指示灯持续闪烁。所述指示灯可以设置在镜腿3830、镜框3820、或镜片3840的任意位置。
在一些实施例中,眼镜3800可以包括定位模块(未示出)。所述定位模块可以被配置为获取眼镜3800的实时位置信息。示例性的位置信息可以包括经度数据、纬度数据、定位信息和周围环境信息等或其任意组合。所述定位模块可以通过全球定位系统(GPS)、全球卫星导航系统 (GLONASS)、北斗导航系统(COMPASS)、伽利略定位系统、准天顶卫星系统(QZSS)、无线保真(Wi-Fi)定位技术等或其任意组合实现眼镜3800的定位。在一些实施例中,与眼镜3800通讯的外部设备可以查看眼镜3800的位置信息。
在一些实施例中,眼镜3800可以具有IPX1的防水等级,优选地,眼镜3800可以具有IPX2的防水等级,更优选地,眼镜3800可以具有IPX3的防水等级,更优选地,眼镜3800可以具有IPX4的防水等级,更优选地,眼镜3800可以具有IPX5的防水等级,更优选地,眼镜3800可以具有IPX6的防水等级,更优选地,眼镜3800可以具有IPX7的防水等级,更优选地,眼镜3800可以具有IPX8的防水等级。在一些实施例中,眼镜3800可以具有IP1的防尘等级,优选地,眼镜3800可以具有IP2的防尘等级,更优选地,眼镜3800可以具有IP3的防尘等级,更优选地,眼镜3800可以具有IP4的防尘等级,更优选地,眼镜3800可以具有IP5的防尘等级,更优选地,眼镜3800可以具有IP6的防尘等级。
需要注意的是,以上描述仅为描述方便,并不用于限制本申请。可以理解,对于本领域的技术人员来说,在了解本申请的原理后,可以在不违背这一原理的情况下,对上述眼镜3800进行形式和细节上的各种修正和改变。例如,眼镜3800还可以进一步包括其他模块,例如降噪模块。所述降噪模块可以被配置为对声学输出装置3810输出的声音进行降噪。以上这些改变均在本申请的保护范围内。
图39是根据本申请一些实施例所示的眼镜的镜腿的剖视图。如图39所示,镜腿3830可以包括安装腔3910。声学输出装置3810可以设置在安装腔3910内。声学输出装置3810可以包括声学路径3920以及设置在声学路径3920内的声学驱动器3930。在一些实施例中,声学路径3920可以为各种形状的壳体结构,例如圆环形、矩形、椭圆形、多边形(规则或不规则)、U型、V型、半圆形等等。在一些实施例中,声学路径3920可以是镜腿3830的一部分或者与镜腿3830物理连接(例如,卡接、螺纹连接等)。在一些实施例中,声学路径3920可以由导声管、声腔、谐振腔、声孔、声狭缝、调音网等中的一种或其任意组合的结构所构成。关于声学输出装置3810的详细描述可以参考本申请其他地方(如图4、图5、图6A-6B、图7A-7B、图10、图37及其描述)。
在一些实施例中,声学路径3920可以为导声管并具有一定的尺寸。该尺寸可以用例如管半径、长度和长径比等等参数来表示。在一些实施例中,声学路径3920的管半径可以保持不变,也可以沿着声学路径3920的长度改变。在一些实施例中,声学路径3920的管半径可以不小于5.0mm,优选地,声学路径3920的管半径可以不小于4.5mm,更优选地,声学路径3920的管半径可以不小于4.0mm,更优选地,声学路径3920的管半径可以不小于3.5mm,更优选地,声学路径3920的管半径可以不小于3.0mm,更优选地,声学路径3920的管半径可以不小于2.5mm,更优选地,声学路径3920的管半径可以不小于2.0mm,更优选地,声学路径3920的管半径可以不小于1.5mm,更优选地,声学路径3920的管半径可以不小于1.0mm,更优选地,声学路径3920的管半径可以不小于0.5mm。在一些实施例中,声学路径3920的管半径可以不大于9.0mm,优选地,声学路径3920的管半径可以不大于8.5mm,更优选地,声学路径3920的管半径可以不大于8.0mm,更优选地,声学路径3920的管半径可以不大于7.5mm,更优选地,声学路径3920的管半径可以不大于7.0mm,更优选地,声学路径3920的管半径可以不大于6.5mm,更优选地,声学路径3920的管半径可以不大于6.0mm,更优选地,声学路径3920的管半径可以不大于5.5mm。在一些实施例中,声学路径3920的长度可以不大于500mm。优选地,声学路径3920的长度可以不大于450mm,更优选地,声学路径3920的长度可以不大于400mm,更优选地,声学路径3920的长度可以不大于350mm,更优选地,声学路径3920的长度可以不大于300mm,更优选地,声学路径3920的长度可以不大于250mm,更优选地,声学路径3920的长度可以不大于200mm,更优选地,声学路径3920的长度可以不大于150mm,更优选地,声学路径3920的长度可以不大于100mm,更优选地,声学路径3920的长度可以不大于50mm,更优选地,声学路径3920的长度可以不大于30mm,更优选地,声学路径3920的长度可以不大于10mm。在一些实施例中,声学路径3920的长径比(长度比半径)可以不大于200,优选地,声学路径3920的长径比可以不大于150,更优选地,声学路径3920的长径比可以不大于100,更优选地,声学路径3920的长径比可以不大于50。关于声学路径3920的详细描述可以参考本申请其他地方(如图4、图5、图6A-6B、图8A-8C及其描述)。
声学路径3920上还可以开设有用于传递声音的导声孔3940(例如,导声孔3940-1和导声孔3940-2),声学驱动器3930可以通过导声孔3940-1和导声孔3940-2向外输出声音。在一些实施例中,导声孔3940-1和导声孔3940-2可以分别位于镜腿3830的表面3950上并直接与外界相通。如此,声学输出装置3810中用于输出声音的导声孔3940位于镜腿3830上,当用户佩戴眼镜3800 时,所述导声孔3940靠近但不堵塞耳道,使得用户耳朵保持开放的状态,在用户既能听到声学输出装置3810输出的声音的同时,又能获取外部环境的声音。在一些实施例中,导声孔3940可以具有多种形状,例如圆形、圆环形、矩形、椭圆形、多边形(规则或不规则)、U型、V型、半圆形等等。导声孔3940-1和导声孔3940-2的形状可以相同也可以不同,仅作为示例,导声孔3940-1和导声孔3940-2可以都为圆形,也可以一个为圆形,另一个为椭圆形。在一些实施例中,导声孔3940可以具有一定的尺寸。导声孔3940-1和导声孔3940-2的尺寸可以相同也可以不同。在一些实施例中,导声孔可以被称为声源(尽管从物理学角度实际发出声音的还是声学驱动器3930)。一个导声孔3940可以被看作是一个点声源(或单点声源)。与同一个声学驱动器3930对应的一对导声孔3940(例如,导声孔3940-1和导声孔3940-2)可以被看作是一对双点声源。在一些实施例中,所有导声孔的面积都不大于2cm 2,优选地,不大于1.5cm 2,优选地,不大于1.2cm 2,优选地,不大于1cm 2,优选地,不大于0.8cm 2,优选地,不大于0.5cm 2,优选地,不大于0.3cm 2,优选地,不大于0.2cm 2,优选地,不大于0.1cm 2,优选地,不大于0.05cm 2。在一些实施例中,部分导声孔的面积不大于0.3cm 2,部分导声孔的面积不小于0.3cm 2。在一些实施例中,部分导声孔的面积不大于0.2cm 2,部分导声孔的面积不小于0.2cm 2。在一些实施例中,部分导声孔的面积不大于0.1cm 2,部分导声孔的面积不小于0.3cm 2
在一些实施例中,声学路径3920可以承载一个或多个声学驱动器3930。所述一个或多个声学驱动器3930可以位于声学路径3920的内部。声学驱动器3930是一个可以接收电信号,并将其转换为声音信号进行输出的元件。在一些实施例中,按频率进行区分,声学驱动器3930的类型可以包括低频声学驱动器、高频声学驱动器、全频声学驱动器或其任意组合。在一些实施例中,按原理进行区分,声学驱动器3930可以包括但不限于动圈式驱动器、动铁式驱动器、压电式驱动器、静电式驱动器、磁致伸缩式驱动器等。关于声学驱动器3930的详细描述可以参考本申请其他地方(如图4、图5、图6A-6B、图10、图37及其描述)。
在一些实施例中,声学驱动器3930可以包括换能器。所述换能器可以在电信号的驱动下产生振动,并产生一对幅值相等、频率相等、相位相反(180度相位差)的声音。所述换能器的类型可以包括但不限于气传导扬声器、骨传导扬声器、水声换能器、超声换能器等中的一种或其任意组合。所述换能器的工作原理可以包括但不限于动圈式、动铁式、压电式、静电式、磁致伸缩式等中的一种或其任意组合。关于导声孔3940的详细描述可以参考本申请其他地方(如图4、图5、图6A-6B及其描述)。
在一些实施例中,所述换能器可以包含振膜。所述振膜可以受到电信号的驱动而产生振动,且所述振膜前侧和后侧可以同时输出正相声音和反相声音。在一些实施例中,声学路径3920内振膜前侧的位置设有用于传递声音的前室(即,声学路径3920的前半部分)。前室与导声孔3940-1声学耦合,振膜前侧的声音可以通过前室从导声孔3940-1中发出。声学路径3920内振膜后侧的位置设有用于传递声音的后室(即,声学路径3920的后半部分)。后室与导声孔3940-2声学耦合,振膜后侧的声音可以通过后室从导声孔3940-2中发出。需要知道的是,当振膜在振动时,振膜前侧和后侧可以同时产生一组相位相反的声音。当声音分别通过前室和后室后,会从导声孔3940-1和导声孔3940-2的位置向外传播。在一些实施例中,可以通过设置前室和后室的结构,使得声学驱动器3930在导声孔3940-1和导声孔3940-2处输出的声音满足特定的条件。例如,可以设计前室和后室的长度,使得导声孔3940-1和导声孔3940-2处可以输出一组具有特定相位关系(例如,相位相反)(图中分别用“+”和“-”表示)的声音,使得声学输出装置3810近场的听音音量较小和远场的漏音问题均得到有效改善。关于双点声源降漏音的详细描述可以参考本申请其他地方(如图2及其描述)。
在一些实施例中,声学路径3920内振膜前侧的位置可以设有用于传递声音的多个前室,多个前室中的每一个可以耦合有与其相对应的导声孔3940-1。声学路径3920内振膜后侧的位置也可以设有用于传递声音的多个后室。多个后室中的每一个也可以耦合有与其相对应的导声孔3940-2。例如,声学路径3920内振膜前侧的位置设有两个前室。当振膜在振动时,振膜前侧产生的声音分别通过所述两个前室传递到与其相对应的两个导声孔3940-1。此时,与振膜前侧对应的两个导声孔3940-1和与振膜后室对应的一个导声孔3940-2可以构成三点声源。
在一些实施例中,声学驱动器3930也可以包括多个振膜(例如,两个振膜)。所述多个振膜分别振动产生声音,并分别通过声学路径3920内与之相连的不同的腔体后从对应的导声孔3940处传出。所述多个振膜可以分别由相同或不同的控制器进行控制,并可以产生具有满足一定相位和幅值条件的声音(例如,振幅相同且相位相反的声音、振幅不同且相位相反的声音等)关于振膜的详细描述可以参考本申请其他地方(如图1、图5、图10及其描述)。
在一些实施例中,振膜振动产生声音可以被分解成两个或两个以上包含不同频率成分的声音。例如,带有高频声音成分的声音和带有低频声音成分的声音。所述包含不同频率成分的声音可以被进一步传输到对应的导声孔3940。例如,带有高频声音成分的声音被传输到导声孔3940-1和3940-2并通过导声孔3940-1和3940-2向外界传播,带有低频声音成分的声音被传输到另一对导声孔3940-3和3940-4(未示出)并通过该导声孔3940-3和3940-4向外界传播。关于分频的详细描述可以参考本申请其他地方(如图2、图4、图8A-8C及其描述)。
需要注意的是,以上描述仅为描述方便,并不用于限制本申请。可以理解,对于本领域的技术人员来说,在了解本申请的原理后,可以在不违背这一原理的情况下,对上述眼镜3800进行形式和细节上的各种修正和改变。例如,声学路径3920的内部还可以设置有调声网和/或调声棉以对声学驱动器3930发出的声音进行调节。又例如,每个导声孔3940还可以设置有透音防尘网和/或防水网以保护眼镜3800镜腿3830内部的部件。所述防尘网和/或防水网可以为高密度的网罩材料。且这些改变均在本申请的保护范围内。
图40是根据本申请一些实施例所示的镜腿上导声孔的分布图。如图40所示,声学输出装置3810的导声孔3940-1和3940-2可以设置镜腿3830的下侧3831上。导声孔3940-1可以位于镜腿3830上且在佩戴时处于用户耳廓后侧,导声孔3940-2可以位于镜腿3830上且在佩戴时处于用户耳廓前侧。使用时,声学输出装置3810的导声孔3940-1和导声孔3940-2分别位于耳廓的两侧时,耳廓具有挡板的效果。如此,导声孔3940-1和导声孔3940-2可以分别等效为图40中的点声源A1和A2,耳廓可以等效为图40中的挡板。听音位置A0可以为耳孔的位置。
需要说明的是,声学输出装置3810的导声孔3940不局限于图40所示的分布情况。例如,导声孔3940-1可以位于佩戴时处于用户耳廓前侧且在镜腿3830的上侧3834、内侧3832或外侧3833上,同时导声孔3940-2可以位于佩戴时处于用户耳廓后侧且在镜腿3830的上侧3834、内侧3832或外侧3833上。在一些实施例中,当导声孔3940-1和3940-2同时位于佩戴时处于用户耳廓前侧且在镜腿3830的表面3950上时,耳廓无法起到挡板的作用。在该实施例中,可以在导声孔3940-1和3940-2之间设置挡板。所述挡板可以位于镜腿3830内部也可以位于镜腿3830外表面上。关于所述挡板的详细描述可以参考本申请其他地方(如图14、图18-21、图29-36及其描述)。
需要注意的是,以上描述仅为描述方便,并不用于限制本申请。可以理解,对于本领域的技术人员来说,在了解本申请的原理后,可以在不违背这一原理的情况下,对上述眼镜3800进行形式和细节上的各种修正和改变。例如,在一些实施例中,佩戴时处于用户耳廓两侧且在镜腿3830上的导声孔3940-1或3940-2数量不限于图40所示的一个,还可以为多个,数量可以相同或不同。例如佩戴时处于用户耳廓前侧且在镜腿3830上的导声孔3940-2数量可以为两个,佩戴时处于用户耳廓后侧且在镜腿3830上的导声孔3940-1数量可以为两个或三个。以上这些改变均在本申请的保护范围内。
图41是根据本申请一些实施例所示的眼镜的镜腿的剖视图。如图41所示,声学输出装置3810还可以包括声学驱动器4130。声学驱动器4130从两个与其对应的导声孔4140(例如,导声孔4140-1、导声孔4140-2)输出声音。在一些实施例中,声学驱动器4130与声学驱动器3930可以分别输出不同频率的声音。在一些实施例中,声学输出装置3810还可以包括控制器(未示出),所述控制器可以被配置为使声学驱动器3930输出在第一频率范围内的声音,并且使声学驱动器4130输出在第二频率范围内的声音,其中,第二频率范围中包括高于第一频率范围的频率。例如,第一频率的范围为100Hz-1000Hz,第二频率的范围为1000Hz-10000Hz。在一些可替代的实施例中,所述控制器还可以被配置为使声学驱动器3930输出多个频率段(例如,低频、中低频、中高频、高频)的声音。关于所述控制器的详细描述可以参考本申请其他地方(如图4、图6A-6B、图37及其描述)。
在一些实施例中,声学驱动器3930可以为低频声学驱动器,声学驱动器4130可以为高频声学驱动器。例如,声学驱动器3930可以为低频扬声器(例如,动圈式驱动器),声学驱动器4130可以为高频扬声器(例如,动铁式驱动器)。由于低频扬声器和高频扬声器自身频率响应特性的不同,其输出的声音频段也会有所不同,通过使用低频扬声器和高频扬声器可以实现对高低频段的声音进行分频,进而可以通过分别构建低频双点声源和高频双点声源来增强近场声音的输出和降低远场漏音。例如,声学驱动器3930可以通过导声孔3940-1和导声孔3940-2提供输出低频声音的双点声源,主要用于输出低频频段的声音。低频双点声源可以更接近耳廓,用来增加近场耳朵附近的音量。声学驱动器4130可以通过导声孔4140-1和导声孔4140-2提供输出高频声音的双点声源,主要用于输出高频频段的声音。具体地分别构建低频高频双点声源的方法及其设置位置可以参见本申请 其他地方(如图42及其描述)。在一些实施例中,声学驱动器4130可以通过导声孔4140-1和导声孔4140-2提供输出全频声音的双点声源,用来进一步增加近场声音的音量。在一些可替代的实施例中,声学输出装置3810还可以包括多个声学驱动器3930用于产生多个频率段(例如,低频、中低频、中高频、高频)的声音。
对于人耳听音来说,听音的频段主要集中于低频段,且在低频段,双点声源的降漏音效果较强,所以在该频段主要以增加听音音量为优化目标。在高频段,双点声源的降漏音效果较弱,在该频段主要以减小漏音为优化目标。在一些实施例中,可以通过调节声学输出装置3810的参数(例如,导声孔之间的间距、输出声音的频段、声学路径3920和4120中前室和后室的长度、振膜前后的声阻抗),以实现听音音量增加、漏音音量下降(听音音量的增量大于漏音音量的增量)以及降漏音频段扩大的效果。
需要注意的是,以上描述仅为描述方便,并不用于限制本申请。可以理解,对于本领域的技术人员来说,在了解本申请的原理后,可以在不违背这一原理的情况下,对上述眼镜3800进行形式和细节上的各种修正和改变。例如,声学驱动器3930可以为输出中低频段声音的中低频扬声器。又例如,声学驱动器4130可以为输出中高频段声音的中高频扬声器。以上类似的改变均在本申请的保护范围内。
图42是根据本申请一些实施例所示的镜腿上导声孔的分布图。如图41和图42所示,声学输出装置3810中对应声学驱动器4130的导声孔4140(例如,导声孔4140-1和导声孔4140-2)可以设置在镜腿3830的下侧3831上。以下以声学驱动器4130为高频声学驱动器而声学驱动器3930为低频声学驱动器为例进行描述,但其不构成限定。在一些实施例中,通过控制两组导声孔3940和4140各自的间距,以增加近场耳朵附近的音量并降低高频的漏音。在一些实施例中,声学驱动器4130对应的导声孔4140-1和导声孔4140-2的间距d 2可以小于声学驱动器3930对应的导声孔3940-1和导声孔3940-2的间距d 1,即d 1大于d 2。由此,在低频段,较大的间距d 1可以实现声学输出装置3810在低频段有较高的音量输出。同时较大的间距d 1使在低频段的漏音稍有上升,但是在低频段的漏音原本就很少,稍有上升后的漏音仍可保持较低水平。在高频段,较小的间距d 2一方面克服了高频降漏音截止频率过低,降漏音频段过窄的问题,另一方面使在更高的频段有更强的降漏音能力,满足开放双耳声学输出装置的需求。关于调整双点声源间距降漏音的详细描述可以参考本申请其他地方(如图9、图12-13及其描述)。
在一些实施例中,声学驱动器3930对应的导声孔3940-1和导声孔3940-2输出的声音的频段与声学驱动器4130对应的导声孔4140-1和导声孔4140-2输出的声音的频段可以有交叠。在该实施例中,声学驱动器3930对应的导声孔3940的相位与声学驱动器4130对应的导声孔4140的相位可以相同也可以不同。导声孔3940与导声孔4140不同的相位可以增强降漏音效果。在一些实施例中,当导声孔3940-1和导声孔3940-2输出的声音的频段与导声孔4140-1和导声孔4140-2输出的声音的频段有交叠且导声孔3940的相位与导声孔4140的相位不同时,d 1/d 2可以设置1-1.5,优选地,d 1/d 2可以设置为1-1.4,更优选地,d 1/d 2可以设置1-1.3,更优选地,d 1/d 2可以设置1-1.2,更优选地,d 1/d 2可以设置1-1.1。关于所述频段交叠的详细描述可以参考本申请其他地方(如图4及其描述)。
在一些实施例中,通过控制导声孔对应的前室和后室的长度可以降低漏音。例如,声学输出装置3810中对应导声孔3940-2的后室的长度和对应导声孔3940-1的前室的长度不同,同时对应导声孔4140-2的后室的长度和对应导声孔4140-1的前室的长度相同以保证出声口处的两路声音相位差为180°。在该实施例中,对应导声孔3940-2的后室的长度和对应导声孔3940-1的前室的长度的比值可以为0.5-2,优选地,对应导声孔3940-2的后室的长度和对应导声孔3940-1的前室的长度的比值可以为0.6-1.5,更优选地,对应导声孔3940-2的后室的长度和对应导声孔3940-1的前室的长度的比值可以为0.8-1.2。关于所述调节前室和后室的长度降漏音的详细描述可以参考本申请其他地方(如图34-36及其描述)。
在一些实施例中,通过控制振膜前后的声阻抗可以降低漏音。优选地,声学输出装置3810中对应导声孔3940-2的声学路径(前室)的声阻抗和对应导声孔3940-1的声学路径(后室)的声阻抗不同,同时对应导声孔4140-2的声学路径(前室)的声阻抗和对应导声孔4140-1的声学路径(后室)的声阻抗也不同。更优选地,对应导声孔3940-2的声学路径(前室)的声阻抗和对应导声孔3940-1的声学路径(后室)的声阻抗不同,同时对应导声孔4140-2的声学路径(前室)的声阻抗和对应导声孔4140-1的声学路径(后室)的声阻抗相同。在该实施例中,对应导声孔3940-2的声学路径(前室)的声阻抗与对应导声孔3940-1的声学路径(后室)的声阻抗的比(也可以称为声阻抗比)或对应导声孔3940-1的声学路径(后室)的声阻抗与对应导声孔3940-2的声学路径(前 室)的声阻抗的比(也可以称为声阻抗比)可以为0.5-2,优先地,所述声阻抗比可以为0.6-1.9,更优选地,所述声阻抗比可以为0.7-1.8,更优选地,所述声阻抗比可以为0.8-1.7,更优选地,所述声阻抗比可以为0.8-1.6,更优选地,所述声阻抗比可以为0.8-1.5,更优选地,所述声阻抗比可以为0.8-1.4,更优选地,所述声阻抗比可以为0.8-1.3,更优选地,所述声阻抗比可以为0.8-1.2,更优选地,所述声阻抗比可以为0.85-1.15,更优选地,所述声阻抗比可以为0.9-1.1,更优选地,所述声阻抗比可以为0.95-1.05,更优选地,所述声阻抗比可以为0.95-1。在一些实施例中,可以通过在声学路径3920和4120中设置声阻材料(例如调声网和/或调声棉等)来调节声学路径3920和4120的声阻抗。在一些可替代的实施例中,所述调声网可以用作导声孔3940和4140的防水层、防尘网等。关于所述声阻抗的详细描述可以参考本申请其他地方(如图34-36及其描述)。
需要注意的是,以上描述仅为描述方便,并不用于限制本申请。可以理解,对于本领域的技术人员来说,在了解本申请的原理后,可以在不违背这一原理的情况下,对上述眼镜3800进行形式和细节上的各种修正和改变。例如,为了进一步增强低频段的音量,声学驱动器3930可以只具有一个导声孔4140,即为单点声源。以上类似的改变均在本申请的保护范围内。
图43是根据本申请一些实施例所示的镜腿上导声孔的分布图。如图43所示,声学输出装置3810中对应声学驱动器3930的导声孔3940-1和导声孔3940-2也可以均分布在佩戴时处于用户耳廓前侧且在镜腿3830上。需要说明的是,声学输出装置3810的导声孔3940和4140的分布不局限于图39-43所示的情况。例如,导声孔3940-1、导声孔3940-2、导声孔4140-1和导声孔4140-2可以同时或任一个位于镜腿3830的下侧3831或上侧3834。又例如,导声孔3940-1、导声孔3940-2、导声孔4140-1和导声孔4140-2可以同时或任一个位于镜腿3830的内侧3832或外侧3833。再例如,导声孔3940-1、导声孔3940-2、导声孔4140-1和导声孔4140-2可以同时或任一个位于佩戴时处于用户耳廓前侧且在镜腿3830的任意位置。再例如,导声孔3940-1、导声孔3940-2、导声孔4140-1和导声孔4140-2可以同时或任一个位于佩戴时处于用户耳廓后侧且在镜腿3830的任意位置。在一些可替代的实施例中,导声孔3940-1、导声孔3940-2、导声孔4140-1和导声孔4140-2可以同时或任一个位于镜框3820或镜片3840上。
需要注意的是,以上描述仅为描述方便,并不用于限制本申请。可以理解,对于本领域的技术人员来说,在了解本申请的原理后,可以在不违背这一原理的情况下,对上述眼镜3800进行形式和细节上的各种修正和改变。例如,声学输出装置3810可以包括三个或以上声学驱动器,所述三个或以上声学驱动器中的每一个可以对应三个或以上导声孔,三个或以上导声孔中的每一个可以位于眼镜3800的任意位置。以上类似的改变均在本申请的保护范围内。
在一些实施例中,声学输出装置还可以包括收音功能。在一些实施例中,该声学输出装置可以通过麦克风降噪系统提高收音效果。本申请的一些实施例以带有声音输出功能以及麦克风降噪系统的眼镜作为示例进行说明。可以理解,该眼镜可以被认为包含声学输出装置声学输出装置(如声学输出装置100、声学输出装置300、声学输出装置400、声学输出装置500、声学输出装置600等)以及麦克风降噪系统(例如,麦克风降噪系统4400、麦克风降噪系统4500A或4500B),或者可以直接被当做一个声学输出装置,该声学输出装置包括麦克风降噪系统,本申请对此不做限制。
图44是根据本申请的一些实施例所示的麦克风降噪系统的示意图。麦克风降噪系统4400可以用于减少或消除麦克风收音时所需声音之外的噪声。在一些实施例中,所述噪声可以包括当用户佩戴音频设备时存在的背景声音或不希望被收集的声音(例如,交通噪声、风噪声、水噪声、外来语音等)。麦克风降噪系统4400可以应用于各种领域和/或设备,例如,耳机、智能设备(例如,VR眼镜、眼镜)、消声器、防打鼾设备等,或其任意组合。在一些实施例中,麦克风降噪系统4400可以是有源降噪系统,其通过生成旨在降低语音中噪声的降噪信号来降低噪声(例如,与噪声具有反相的信号)。在一些实施例中,麦克风降噪系统4400可以是无源降噪系统,其通过差分两个位置不同的麦克风阵列收集的声音信号来降低噪声。
如图44所示,麦克风降噪系统4400可包括麦克风阵列4410、降噪装置4420和合成装置4430。在一些实施例中,麦克风降噪系统4400的两个或以上组件可以彼此连接和/或通信。例如,降噪装置4420可以与麦克风阵列4410中的每一个麦克风电连接和/或无线连接。如这里所使用的,两个组件之间的连接可以包括无线连接、有线连接、可以实现数据传播和/或接收的任何其他通信连接,和/或这些连接的任何组合。无线连接可以包括例如蓝牙链路、Wi-Fi链路、WiMax链路、WLAN链路、紫蜂链路、移动网络链路(例如3G、4G、5G等)等或其组合。有线连接可以包括,例如,同轴电缆、通信电缆(例如,通信电缆)、柔性电缆、螺旋电缆、非金属护套电缆、金属护套电缆、多芯电缆、双绞线电缆、带状电缆、屏蔽电缆、双股电缆、光纤、电缆、光缆、电话线等,或其任 意组合。
麦克风阵列4410可以包括至少一个低频麦克风和至少一个高频麦克风。所述至少一个低频麦克风可以用于采集低频语音信号;所述至少一个高频麦克风可以用于采集高频语音信号。在一些实施例中,所述低频麦克风和所述高频麦克风可以作为整体集成在一个装置中。例如,所述低频麦克风和/或所述高频麦克风可以以直线、环形等形式集成设置为一个麦克风装置,形成集中式麦克风阵列。在一些实施例中,所述低频麦克风和/或所述高频麦克风可以分布式地布置在音频设备中,形成分布式麦克风阵列。例如,所述低频麦克风和/或所述高频麦克风可设置在音频设备的各个位置,各个位置的麦克风可以无线连接。
在一些实施例中,麦克风阵列4410中的每个麦克风可以用于检测语音信号(可能同时包括目标语音和噪声),并将检测到的语音信号处理为至少两个子带语音信号。在一些实施例中,麦克风阵列4410中的每个麦克风可以与一个滤波器对应,并通过滤波器将语音信号处理为至少两个子带语音信号。如这里所使用的,语音信号可以是具有特定频带的音频信号。将语音信号处理后生成的子带语音信号可以具有比语音信号的频带更窄的频带但其频带位于语音信号的频带范围内。例如,语音信号可以具有范围从10Hz到30kHz的频带。子带语音信号的频带可以是100Hz到200Hz,其比语音信号的频带范围窄但在语音信号的频带范围内。在一些实施例中,子带语音信号的频带的组合可以覆盖语音信号的频带。附加地或替代地,子带语音信号中的至少两个可以具有不同的频带。可选地,子带语音信号中的每一个可以具有与其他子带语音信号的频带不同的特征频带。不同的子带语音信号可以具有相同的频率带宽或不同的频率带宽。在子带语音信号中,中心频率彼此相邻的两个子带语音信号可以被认为在频域中彼此相邻。关于一对相邻子带语音信号的频带的更多描述可以参见图46A和46B及其相关描述。
在一些实施例中,麦克风阵列4410生成的信号可以是数字信号或模拟信号。在一些实施例中,麦克风阵列4410中的每一个麦克风可以是MEMS(微型机电系统)麦克风。MEMS麦克风工作电流小,性能较为稳定,且产生的语音质量高。在一些实施例中,麦克风阵列4410中的部分或者全部麦克风还可以为其他类型的麦克风,在此不作限定。
降噪装置4420可用于对所述麦克风阵列4410采集到的子带语音信号进行降噪处理。在一些实施例中,降噪装置4420可以对采集到的子带语音信号进行噪声估计、自适应滤波、语音增强等,从而实现对语音进行降噪。具体地,降噪装置4420可以根据噪声估计算法估计子带噪声信号,然后根据子带噪声信号生成子带噪声修正信号,并通过子带语音信号和子带噪声修正信号生成目标子带语音信号,以减少子带语音信号中的噪声。子带噪声修正信号可以是具有与子带噪声信号相反相位的模拟信号或数字信号。在一些实施例中,噪声估计算法可以包括时间递归平均噪声估计算法、最小值跟踪噪声估计算法等或其组合。在一些实施例中,麦克风阵列4410可以包括至少一对低频麦克风和至少一对高频麦克风。所述每对麦克风对应相同频段的子带语音信号。降噪装置4420可以将每对麦克风中距离主声源(如人嘴)较近的麦克风采集的声音信号作为子带语音信号,将该对麦克风中距离主声源较远的另一麦克风采集的声音信号作为子带噪声信号。降噪装置4420可以通过差分子带语音信号和子带噪声信号对子带语音信号进行降噪。关于降噪装置4420及子带噪声信号的更多描述可以的描述可以参见本说明书其他地方(例如,图45A、图47以及图48及其描述)。
合成装置4430可用于组合目标子带语音信号以生成目标信号。合成装置4430可以包括能组合至少两个信号的任何组件。例如,合成装置4430可以根据诸如频分复用技术的信号组合技术生成混合信号(即,目标信号)。
应当注意以上对麦克风降噪系统4400的描述旨在说明,而不是限制本申请的范围。许多替代、修改和变化对于本领域普通技术人员来说是显而易见的。本文描述的示例性实施例的特征、结构、方法和其他特征可以以各种方式组合以获得附加和/或替代示例性实施例。例如,麦克风降噪系统4400可以包括一个或以上附加组件。附加地或替代地,可以省略上述麦克风降噪系统4400的一个或以上组件。例如,可以在降噪装置4420中增加残余噪声降噪装置。另外,麦克风降噪系统4400的两个或以上组件可以集成到单个组件中。仅作为示例,在麦克风降噪系统4400中,合成装置4430可以集成到降噪装置4420中。
图45A是根据本申请的一些实施例所示的示例性麦克风降噪系统的示意图。如图45A所示,麦克风降噪系统4500A可以包括麦克风阵列4510a、降噪装置4520a和合成装置4530a。麦克风阵列4510a可包括至少两个麦克风4512a。麦克风4512a数量可以等于子带语音信号的个数。子带语音信号的个数(即,n)与语音信号S的频带和所生成的子带语音信号的频带相关。例如,可以使用一定数量的麦克风4512a,使得子带语音信号的频带的组合可以覆盖语音信号的频带。可选地, 可以避免子带语音信号中的任意一对相邻子带语音信号的频带之间的重叠。
麦克风4512a对语音信号S可以具有不同的频率响应,并且可用于通过处理语音信号S来生成子带语音信号。例如,麦克风4512a-1对频率在20Hz~3kHz的语音信号具有响应,则全频带的语音信号S(例如,2Hz~30kHz)经麦克风4512a-1处理后,得到的子带语音信号的频带范围为20Hz~3kHz。在一些实施例中,由麦克风阵列4510a生成的子带语音信号可以是数字信号或模拟信号。
在一些实施例中,麦克风4512a可包括声学通道元件和声音敏感元件。声学通道元件可以形成路径,通过该路径将语音信号S(例如,目标语音信号、噪声)传输到声音敏感元件。例如,声学通道元件可包括一个或以上腔室结构、一个或以上管道结构等或其组合。声音敏感元件可以将从声学通道元件发送的语音信号S(例如,原始语音或经过声学通道元件之后的处理后的语音)转换为电信号。例如,声音敏感元件可包括隔膜、板、悬臂等。隔膜可用于将由隔膜表面上的语音信号引起的声压变化转换成隔膜的机械振动。声音敏感元件可以由一种或多种材料制成,包括例如塑料、金属、压电材料等,或任何复合材料。
在一些实施例中,麦克风4512a的频率响应可以与麦克风4512a的声学通道元件的声学结构相关联。例如,麦克风4512a的声学通道元件可以具有特定的声学结构,该声学结构可以在声音到达麦克风4512a的声音敏感元件之前处理声音。在一些实施例中,声学通道元件的声学结构可以具有特定的声学阻抗,使得声学通道元件可以用作过滤语音以生成子带语音信号的滤波器。麦克风4512a的声音敏感元件可以将子带转换为子带语音电信号。
在一些实施例中,可以根据语音的频带设置声学结构的声学阻抗。在一些实施例中,主要包括腔室结构的声学结构可以用作高通滤波器,而主要包括管道结构的声学结构可以用作低通滤波器。仅作为示例,声学通道元件可具有腔管结构。腔管结构可以是声音容量和声学质量串联的组合,并且可以形成电感器-电容器(LC)谐振电路。如果在腔管结构中使用声学电阻材料,则可以形成电阻器-电感器-电容器(RLC)串联环路,并且可以根据公式(5)确定RLC串联环路的声学阻抗,如下:
Figure PCTCN2020070542-appb-000006
其中,Z指声学通道元件的声学阻抗,ω指腔管结构的角频率,j指单元虚数,M a指的是声学质量,C a是指声音容量,R a是指RLC系列回路的声学电阻。腔管结构可以用作带通滤波器(表示为F1)。可以通过调节声学电阻R a来调节带通滤波器F1的带宽。可以通过调整声学质量M a和/或声音容量C a来调整带通滤波器F1的中心频率ω 0。例如,带通滤波器F1的中心频率ω 0可以根据公式(6)确定如下:
Figure PCTCN2020070542-appb-000007
在一些实施例中,麦克风4512a的频率响应可以与麦克风4512a的声音敏感元件的物理特性(例如,材料、结构)相关联。具有特定物理特性的声音敏感元件可能对音频的某个频带敏感。例如,声音敏感元件中的一个或以上元件的机械振动可能导致声音敏感元件的电参数的变化。声音敏感元件可能对语音信号的某个频带敏感。语音信号的频带可以引起声音敏感元件的电参数的相应变化。换句话说,麦克风4512a可以用作处理语音信号S的子带的滤波器。在一些实施例中,语音可以通过声学通道元件发送到声音敏感元件,而不会(或基本上不会)被声学通道元件过滤。可以调整声音敏感元件的物理特性,使得声音敏感元件可以用作过滤语音并将滤波后的语音转换为子带语音电信号的滤波器。
仅作为示例,声音敏感元件可以包括光阑,其可以用作带通滤波器(表示为F2)。带通滤波器F2的中心频率ω′ 0可以根据公式(7)确定如下:
Figure PCTCN2020070542-appb-000008
其中,M m是指膜片的质量,K m是指膜片的弹性系数。在一些实施例中,可以通过调整膜片的阻尼(R m)来调整带通滤波器F2的带宽。可以通过调节膜片的质量和/或膜片的弹性系数来调节带通滤波器F2的中心频率ω′ 0
如上所述,麦克风4512a的声学通道元件或声音敏感元件可以用作滤波器。麦克风4512a 的频率响应可以通过修改声学通道元件的参数(例如,R a、M a和/或C a)或声音敏感元件(例如,K m和/或R m)的参数来调整。在一些实施例中,声学通道元件和声音敏感元件的组合可以用作滤波器。通过修改声学通道元件和声音敏感元件的参数,可以相应地调整声学通道元件和声音敏感元件的组合的频率响应。关于用作带通滤波器的声学通道元件和/或声音敏感元件的更多描述可以在,例如,名称为“SIGNAL PROCESSING DEVICE HAVING MULTIPLE ACOUSTIC-ELECTRIC TRANSDUCERS”,申请号为PCT/CN2018/105161的PCT申请中找到,其内容在此引入作为参考。
降噪装置4520a可包括至少两个子带降噪单元4522a。每个子带降噪单元4522a可与一个麦克风4512a对应。子带降噪单元4522a可被配置为基于子带语音信号中的噪声生成子带噪声修正信号以用于减少子带语音信号中的噪声,从而生成目标子带语音信号。例如,子带降噪单元4522a-i(i是等于或小于n的正整数)可以从麦克风4512a-i接收子带语音信号Si,并生成子带噪声修正信号Ci,用于减少子带语音信号Si中的噪声。在一些实施例中,子带降噪单元4522a可包括子带噪声估计子单元(未示出)和子带噪声抑制子单元(未示出)。子带噪声估计子单元可被配置为估计子带语音信号中的噪声。子带噪声抑制子单元可以被配置为从子带噪声估计子单元接收子带语音信号中的噪声,并生成子带噪声修正信号以减少子带语音信号中的子带噪声信号。
在一些实施例中,子带语音信号可以通过并行发送器从麦克风4512a发送到子带降噪单元4522a。可选地,子带语音信号可以根据用于发送数字信号的特定通信协议经由发送器发送。示例性通信协议可以包括AES3(音频工程学会)、AES/EBU(欧洲广播联盟))、EBU(欧洲广播联盟)、ADAT(自动数据累加器和传播)、I2S(Inter—IC Sound)、TDM(时分复用)、MIDI(乐器数字接口)、CobraNet、以太网AVB(以太网音频/视频跳线)、Dante、ITU(国际电信联盟)-T G.728、ITU-T G.711、ITU-T G.722、ITU-T G.722.1、ITU-T G.722.1 Annex C、AAC(高级音频编码)-LD等或其组合。数字信号可以以某种格式传播,包括CD(光盘)、WAVE、AIFF(音频交换文件格式)、MPEG(运动图像专家组)-1、MPEG-2、MPEG-3、MPEG-4、MIDI(乐器数字接口)、WMA(Windows Media Audio)、RealAudio、VQF(变换域加权Nterleave矢量量化)、AMR(Adaptibve多速率)、APE、FLAC(自由无损音频编解码器)、AAC(高级音频编码)等或其组合。在一些实施例中,可以使用例如频分复用技术将子带语音信号处理为单通道信号,并将其发送到子带降噪单元4522a。
在一些实施例中,子带降噪单元4522a-i可以先估计子带噪声信号N i,然后在子带噪声信号N i上执行相位调制和/或幅度调制,以生成相应的子带噪声修正信号N′ i。在一些实施例中,相位调制和幅度调制可以在子带噪声信号N i上依次或同时执行。例如,子带降噪单元4522a-i可以首先对子带噪声信号N i执行相位调制以生成相位调制信号,然后对相位调制信号进行幅度调制,以生成相应的子带噪声修正信号N′ i。子带噪声信号N i的相位调制可以包括子带噪声信号N i的相位的反转。在一些实施例中,噪声在从麦克风4512a-i处的位置传播到子带降噪单元4522a-i处的位置期间其相位可以发生偏移。子带噪声信号N i的相位调制还可以包括在信号传播期间补偿子带噪声信号N i的相位移动。或者,子带降噪单元4522a-i可以首先对子带噪声信号N i进行幅度调制,生成调幅信号,然后对调幅信号进行相位调制,生成子带噪声修正信号N′ i。关于子带降噪单元4522a-i的更多描述可以参见本说明书其他地方(如图47和48及其相关描述)。
在一些实施例中,降噪装置4520a可以根据双麦克风降噪原理,利用两组配置相同的麦克风(例如,两个麦克风阵列4510a)来进行降噪。每组麦克风包括对应多个不同频段的子带语音信号的麦克风。为便于描述,将所述两组相同配置的麦克风中一组麦克风可以称为第一麦克风组,另一组麦克风可以称为第二麦克风组,其中,第一麦克风组距主声源(例如,人嘴)的距离可以比第二麦克风组距主声源的距离更近。第一麦克风组中的第一麦克风可以与第二麦克风组中的第二麦克风一一对应。例如,第一麦克风组中对应频段为20Hz-3kHz的第一麦克风与第二麦克风组中对应频段为20Hz-3kHz的第二麦克风可以对应。可以将第一麦克风组中的第一麦克风采集的信号作为子带语音信号,将对应的第二麦克风组中的第二麦克风采集的信号作为子带噪声信号。降噪装置4520a可以根据子带语音信号和子带噪声信号,生成目标子带语音信号。关于使用两个麦克风阵列来进行降噪的更多描述可以参见本说明书其他地方(如图46A或46B及其相关描述)。
合成装置4530a被配置为将目标子带语音信号进行组合以生成目标信号S’。
应当注意以上对麦克风阵列4510a和/或降噪装置4520a的描述旨在说明,而不是限制本申请的范围。许多替代、修改和变化对于本领域普通技术人员来说是显而易见的。本文描述的示例性实施例的特征,结构,方法和其他特征可以以各种方式组合以获得附加和/或替代示例性实施例。例如,麦克风阵列4510a和/或降噪装置4520a可以包括一个或以上附加组件。附加地或替代地,可以 省略上述麦克风阵列4510a和/或降噪装置4520a的一个或以上组件。又例如,麦克风阵列4510a和/或降噪装置4520a的两个或以上组件可以集成到单个组件中。
图45B是根据本申请的一些实施例所示的示例性麦克风降噪系统的示意图。如图45B所示,麦克风降噪系统4500B可以包括麦克风阵列4510b、降噪装置4520b和合成装置4530b。麦克风阵列4510b可包括至少两个麦克风4512b和至少两个滤波器4514b。麦克风4512b数量、滤波器4514b的数量以及子带语音信号的个数可以相等。麦克风4512b可以具有相同配置。换而言之,每个麦克风4512b对语音信号S可以具有相同的频率响应。麦克风4512b接收到语音信号S后之间将其传输至与其对应的滤波器4514b,通过滤波器4514b来生成子带语音信号。与每个麦克风4512b对应的滤波器4514b可以对语音信号S具有不同的频率响应。示例性的滤波器4514b可以包括无源滤波器、有源滤波器、模拟滤波器、数字滤波器等,或其组合。
降噪装置4520b可以包括至少两个子带降噪单元4522b。每个子带降噪单元4522b可以与一个滤波器4514b(或麦克风4512b)对应。关于降噪装置4520b和合成装置4530b的更多描述可以参见图45A及其描述,在此不再赘述。
图46A示出了根据本申请的一些实施例的第一麦克风的示例性频率响应4610和第二麦克风的示例性频率响应4620。图46B示出了根据本申请的一些实施例的第一麦克风的示例性频率响应4610和第二麦克风的另一示例性频率响应4630。第一麦克风可以被配置为处理语音信号以生成第一子带语音信号。第二带麦克风可以被配置为处理语音信号以生成第二子带语音信号。在子带语音信号中,第二子带语音信号可以与第一子带语音信号在频域中相邻。
在一些实施例中,第一和第二麦克风的频率响应可以具有相同的频率带宽。例如,如图46A所示,第一麦克风的频率响应4610具有低半功率点f1,高半功率点f2和中心频率f3。如这里所使用的,某个频率响应的半功率点可以指具有特定功率抑制(例如,-3dB)的频率点。频率响应4610的频率带宽可以等于f2与f1之间的差。第二麦克风的频率响应4620具有低半功率点f2,高半功率点f4和中心频率f5。频率响应4620的频率带宽可以等于f4与f2之间的差。第一和第二麦克风的频率带宽可以彼此相等。
在一些实施例中,第一和第二麦克风的频率响应可以具有不同的频率带宽。例如,如图46B所示,第二麦克风的频率响应4630具有低半功率点f2,高半功率点f7(大于f4)和中心频率f6。第二麦克风的频率响应4630的频率带宽可以等于f7与f2之间的差,该差值可以大于第一麦克风的频率响应4610的频率带宽。以这种方式,在麦克风阵列4510a中可能需要较少的麦克风来生成子带语音信号以覆盖原始语音信号的频带。
在一些实施例中,第一麦克风和第二麦克风的频率响应可以在特定频率点相交。频率响应的相交点可以导致第一和第二频率响应之间出现一定的重叠范围。在理想情况下,第一和第二麦克风的频率响应之间可能没有重叠范围。然而,实际上,可能存在一定的重叠范围,这可能导致第一子带语音信号和第二子带语音信号之间出现干扰范围,并影响第一子带语音信号和第二子带语音信号的质量。例如,重叠范围越大,干扰范围可能越大,并且第一和第二子带语音信号的质量可能越低。
在一些实施例中,第一和第二麦克风的频率响应相交的特定频率点可以接近第一麦克风的频率响应的半功率点和/或第二麦克风的频率响应的半功率点。以图46A为例,频率响应4610和频率响应4620在频率响应4610的高半功率点f2处相交,该相交点也是频率响应4620的低半功率点。如这里所使用的,如果频率点和半功率点之间的功率电平差不大于阈值(例如,2dB),则可以认为频率点接近半功率点。在这种情况下,在第一和第二麦克风的频率响应中可能存在较少的能量损失或重复,这可能导致第一和第二麦克风的频率响应之间出现适当重叠范围。例如,当半功率点为-3dB,阈值为-2dB时,若频率响应在大于-5dB和/或小于-1dB的功率电平的频率点相交时,可以认为重叠范围相对较小。在一些实施例中,可以调整第一和第二麦克风的频率响应的中心频率和/或带宽,来获得第一和第二麦克风的频率响应之间的更窄或适当的重叠范围,以避免第一和第二子带语音信号的频带之间的重叠。
图46A和46B中所示的应当注意示例旨在说明,而不是限制本申请的范围。对于本领域的普通技术人员,可以在本申请的教导下进行多次变化与修改。然而,这些变化和修改不会背离本申请的范围。例如,第一麦克风和/或第二麦克风的频率响应的一个或以上参数(例如,频率带宽、高半功率点、低半功率点和/或中心频率)可以是可变的。
图47是根据本申请的一些实施例所示的示例性子带噪声抑制子单元4700的示意图。子带噪声抑制子单元4700可以被配置为从子带噪声估计子单元接收子带噪声信号N i(n)并生成子带噪声 修正信号A tN’ i(n)以减少子带噪声信号N i(n)。A t可以指与要减小的噪声有关的幅度抑制系数。
如图47所示,子带噪声抑制子单元4700可包括相位调制器4710和幅值调制器4720。相位调制器4710可以被配置为通过反相子带噪声信号N i(n)来接收子带噪声信号N i(n)和生成相位调制信号N′ i(n)。例如,如图48所示,相位调制信号N′ i(n)可以反转子带噪声信号N i(n)。在一些实施例中,噪声在从麦克风4512a-i处的位置传播到子带降噪单元4522a-i处的位置期间其相位可以发生偏移。在一些实施例中,可以忽略噪声的相位偏移。例如,如果噪声在从麦克风4512a-i的位置传播到子带降噪单元4522a-i(或其一部分)的位置时沿着单一方向以平面波的形式传播,传播期间的相位偏移小于阈值时,可以认为噪声的相位未发生偏移,此时在生成相位调制信号N′ i(n)时可以忽略。若相位偏移大于阈值时,则认为噪声的相位发生偏移。在一些实施例中,当子带噪声的相位偏移可以忽略时,相位调制器4710可以仅通过对子带噪声信号N i(n)执行相位反转来生成调制信号N′ i(n)。
在一些实施例中,当子带噪声的相位偏移不可以忽略时,相位调制器4710在生成调制信号N′ i(n)需要同时考虑子带噪声的相位偏移。仅作为示例,子带噪声信号N i(n)的相位在传播器件可以具有相位偏移
Figure PCTCN2020070542-appb-000009
相位偏移
Figure PCTCN2020070542-appb-000010
可以根据公式(8)确定如下:
Figure PCTCN2020070542-appb-000011
其中,f 0指子带噪声信号N i(n)的中心频率,并且c可以指声速。如果噪声是近场信号,Δd可以指从声源到麦克风4512a-i的距离与从声源到子带降噪单元4522a-i(或其一部分)的距离之间的差。如果噪声是远场信号,则Δd可以等于d cosθ,其中d可以指麦克风4512a-i和子带降噪单元4522a-i(或其一部分)之间的距离,并且θ表示声源与麦克风4512a-i或声源与子带降噪单元4522a-i(或其一部分)之间的角度。
为了补偿相位移动
Figure PCTCN2020070542-appb-000012
相位调制器4710可以对子带噪声信号N i(n)执行相位反转以及相位补偿,以生成相位调制信号。在一些实施例中,相位调制器4710可以包括全通滤波器。全通滤波器的滤波器功能可以表示为|H(w)|,其中w表示角频率。在理想情况下,全通滤波器的幅度响应|H(w)|可以等于1,并且全通滤波器的相位响应可以等于相位移动
Figure PCTCN2020070542-appb-000013
全通滤波器可以将子带噪声信号N i(n)延迟时间延迟ΔT以执行相位补偿,ΔT可以根据公式(9)确定如下:
Figure PCTCN2020070542-appb-000014
在这种情况下,相位调制器4710可以对子带噪声信号N i(n)进行相位反转和相位补偿,生成相位调制信号N′ i(n)。
幅值调制器4720可以被配置为接收相位调制信号N′ i(n),并通过调制相位调制信号N′ i(n)来生成目标调制信号A tN’ i(n)。在一些实施例中,可以在噪声从麦克风4512a-i的位置传播到子带降噪单元4522a-i(或其一部分)的位置期间对其进行抑制。可以确定幅度抑制系数A t以测量传播期间噪声的幅度抑制。幅度抑制系数A t可以与一个或以上因素相关联,包括:例如,传声发声的声学通道元件的材料和/或结构、麦克风4512a-i相对于子带降噪单元4522a-i(或其一部分)的位置等或其任何组合。
在一些实施例中,幅度抑制系数A t可以是麦克风降噪系统4400A的默认设置,或者先前通过实际或模拟的实验确定。仅作为示例,幅度抑制系数A t可以通过比较麦克风4512a-i附近的音频信号的幅度(例如,在它进入音频广播设备之前)和在音频信号被传送到子带降噪单元4522a-i处的位置之后的幅度来确定。在一些替代实施例中,可以忽略噪声的幅度抑制,例如,当噪声传播期间的幅度抑制小于阈值和/或幅度抑制系数A t基本上等于1时,相位调制信号N′ i(n)可以指定为子带噪声信号N i(n)的子带噪声修正信号(即,目标调制信号A tN’ i(n))。
在一些实施例中,子带噪声抑制子单元4700可以包括子带语音信号生成器(未示出)。子带语音信号生成器可以根据子带噪声修正信号A tN’ i(n)和子带语音信号S i(n)生成目标子带语音信号C i(n),并将其传输到合成装置4430。合成装置4430可根据公式(10),将至少两个目标子带语音信号组合成一个目标信号S(n),如下:
Figure PCTCN2020070542-appb-000015
应当注意以上对图47和48的描述旨在说明,而不是限制本申请的范围。许多替代、修改和变化对于本领域普通技术人员来说是显而易见的。本文描述的示例性实施例的特征、结构、方法和其他特征可以以各种方式组合以获得附加和/或替代示例性实施例。例如,子带噪声抑制子单元 4700可以包括一个或以上附加组件,例如,信号合成单元。附加地或替代地,可以省略上述的子带噪声抑制子单元4700中的一个或以上组件,例如,幅值调制器4720。
图49A和49B是根据本申请的一些实施例所示的另一种眼镜的示意图。眼镜4900可包括镜框4910、镜腿4920(例如,镜腿4920-1和4920-2)和镜片4930(例如,镜片4930-1和4930-2)。镜框4910和镜腿4920可以一起被称为镜架。镜框4910可用于支撑镜片4930。镜框4910中间处设有镜梁4912。镜梁4912可在佩戴时跨放在用户的鼻梁上。镜腿4920可在佩戴时跨放在用户耳朵上,与镜梁4912配合,用于支撑镜框4910。在一些实施例中,镜框4910与镜腿4920可通过连接结构4940连接,形成镜腿4920可折叠的眼镜。在一些实施例中,镜框4910可以可拆卸地与镜腿4920连接。示例性的连接结构4940可以包括卡接结构、插接结构、铰链结构等或其组合。在一些实施例中,镜框4910和镜腿4920可以不通过连接结构连接,换而言之,镜架可以是一体成型的。
镜片4930可以是任意类型的镜片,在此处不做限定。例如,镜片4930可以与图38所述的镜片3840相同或相似。
镜腿4920(例如,镜腿4920-2)可包括与镜框连接的前端4922,以及与前端4922一体成型、末端为下弯的钩状结构。该钩状结构可以在使用时勾设在用户耳朵的后端4924。在一些实施例中,为了节省材料并提高佩戴的舒适度,后端4424的横截面积可小于前端4922的横截面积,也就是说后端4924较前端4922更细。在一些实施例中,可在镜腿4920中间部位设置稳固结构(如图52A所示的稳固结构5260)。稳固结构可用于将眼镜4900固定在用户耳朵上,不容易松动。
在一些实施例中,镜腿4920和/或镜框4910可以由金属材料(例如,铜、铝、钛、金等),合金材料(例如,铝合金、钛合金等),塑料材料(例如,聚乙烯、聚丙烯、环氧树脂、尼龙等)、纤维材料(例如,醋酸纤维、丙酸纤维、碳纤维等)等制成。在一些实施例中,镜框4910和镜腿4920的制备材料可以相同或不同。例如,镜框4910可以由塑料材料制成,镜腿4920可以由金属材料制成。又例如,镜框4910可以由塑料材料制成,镜腿4920可以由金属与塑料材料共同制成。在一些实施例中,镜腿4920-1和/或镜腿4920-2上设置有护套。护套可由具有一定弹性的软质材料制成,例如软质的硅胶、橡胶等,为用户佩戴提供较好的触感。
在一些实施例中,镜框4910的对称中心点到两个镜腿4920-1和4420-2末端中心点的连线的垂直距离h1(如图49B所示)的范围可以为8cm-20cm。优选地,h1的范围可以为8.5cm-19cm;更优选地,h1的范围可以为9cm-18cm;更优选地,h1的范围可以为9.5cm-17cm;更优选地,h1的范围可以为10cm-16cm;更优选地,h1的范围可以为10.5cm-15cm;更优选地,h1的范围可以为11cm-14cm;更优选地,h1的范围可以为11.5cm-13cm。两条镜腿4920-1和4420-2对应的连接结构的中心点之间的距离h2(如图49B所示)的范围可以为7cm-17cm。优选地,h2的范围可以为7.5cm-16cm;更优选地,h2的范围可以为8cm-15cm;更优选地,h2的范围可以为8.5cm-14cm;更优选地,h2的范围可以为9cm-13cm;更优选地,h2的范围可以为9.5cm-12cm;更优选地,h2的范围可以为10cm-11cm。
镜架(如,镜框4910和/或镜腿4920)可以为中空结构。声学输出装置(如声学输出装置100、声学输出装置300、声学输出装置400、声学输出装置500、声学输出装置600等)、麦克风降噪系统(例如,麦克风降噪系统4400、麦克风降噪系统4500A或4500B)、电路板、电池槽等可以设置在该中空结构中。
所述声学输出装置可用于向用户输出声音。在一些实施例中,所述声学输出装置可以包括至少一组低频声学驱动器和至少一组高频声学驱动器。在一些实施例中,当高频声学驱动器对应的导声孔之间的间距小于低频声学驱动器对应的导声孔之间的间距时,可以提高用户耳朵能听到的声音音量,并且产生较小漏音,避免声音被声学输出装置用户附近的他人听见。在一些实施例中,所述声学输出装置可以包括至少一组声学驱动器。例如,如图52A所示,所述至少一组声学驱动器可以包括声学驱动器5240及与声学驱动器5250。镜腿5200A上设置有分别与声学驱动器5240和声学驱动器5250配合的出声孔5245和出声孔5255。其中,声学驱动器5250和出声孔5255可以设置在镜腿5200A后端5224。出声孔5245和出声孔5255可近似看作两个点声源。一般情况下,在双点声源之间设置挡板结构,可以在远场漏音音量不显著增加的情况下,显著提升近场听音位置的音量,从而提升用户的听音效果。当用户佩戴的眼镜装有镜腿5200A时,出声孔5245位于耳朵前侧,出声孔5255位于耳朵后侧。这时,耳廓可看作为出声孔5245与出声孔5255中间的挡板结构,耳廓增大了出声孔5245与出声孔5255的距离,当该眼镜在播放语音时,这种结构显著提升近场听音位置的音量,从而可以提升用户的听音效果。关于声学输出装置的更多内容可以参见本说明书其他地方(如图1至图37及其相关描述)。
所述麦克风降噪系统可以包括麦克风阵列、降噪装置、合成装置等。所述麦克风阵列中的麦克风可用于采集子带语音信号。所述降噪装置可以用于根据采集到的子带语音信号中的子带噪声信号生成相位与子带噪声信号相反的相位调制信号以对子带语音信号进行降噪。降噪后的子带语音信号可以传输至合成装置进行合成生成目标语音。关于麦克风降噪系统的更多内容可以参见本说明书其他地方的内容(例如,图44、图45A和/或图45B及其描述)。在一些实施例中,麦克风阵列可以设置在镜腿4920和/或镜框4910。更多关于麦克风阵列的位置设置可以参见图50A、图50B、图51A以及图51B及其描述。在一些实施例中,降噪装置和合成装置在眼镜4900里的位置可以任意设置,此处不做限定。例如,降噪装置和合成装置可以一起集成在电路板上。又例如,降噪装置和合成装置可以分别设置在镜腿4920和镜框4910处。在一些实施例中,电路板上可以集成有蓝牙模块。电池槽可用于安装电池,为电路板提供电力。通过集成的蓝牙模块,所述眼镜4900可以实现打、接电话和收听音乐等功能。
图50A和图50B是根据本申请的一些实施例所示的示例性镜腿的示意图。如图50A和50B所示,镜腿4920可为中空结构。该中空结构内可以设置麦克风阵列5010(例如,麦克风降噪系统4400中的麦克风阵列4410)、电路板5020、电池槽5030以及声学输出装置5040等。在一些实施例中,该中空结构还可以包括降噪装置和合成装置(未示出)。镜腿4920的表面还设有与麦克风阵列5010配合的声音入口5015(或入声孔),以及与声学输出装置5040配合的声音出口5045(或出声孔)(如图50B所示)。需要指出的是,麦克风阵列5010、电路板5020、电池槽5030以及声学驱动器5040等部件的位置在设置时可根据需要在中空结构内调整,无需与图50A相同。例如,电池槽5030与电路板5020可以交换位置。又例如,麦克风阵列5010可以设置在后端5024处。在一些实施例中,麦克风阵列还可以设置在镜框4910(如镜梁4912)中。
图51A和图51B是根据本申请的一些实施例所示的示例性眼镜的示意图。如图51A和51B所示,所述麦克风阵列5110可以设置在镜框4910中间的镜梁4912处。镜梁4912表面还设有与麦克风阵列5110配合的入声孔5115。
在一些实施例中,当用户佩戴所述眼镜4900后,所述麦克风阵列5010或5110的中心点与所述用户的嘴巴(即,主声源)中心点之间的距离D(如图51A)的范围可以为2cm-20cm。优选地,D的范围可以为2.5cm-18cm;更优选地,D的范围可以为3cm-16cm;更优选地,D的范围可以为3.5cm-14cm;更优选地,D的范围可以为4cm-12cm;更优选地,D的范围可以为4.5cm-10cm;更优选地,D的范围可以为5cm-8cm;更优选地,D的范围可以为5.5cm-7.5cm;更优选地,D的范围可以为6cm-7cm。
在一些实施例中,所述麦克风阵列可以包括至少一对低频麦克风和至少一对高频麦克风。每对麦克风的配置可以相同。每对麦克风可以对应相同频段的子带语音信号。每对麦克风之间的距离可以相同。即,每对低频麦克风之间的距离等于每对高频麦克风之间的距离。为便于描述,在本说明书中可以将每对麦克风中距离主声源(例如,人嘴)较近的麦克风称为第一麦克风,该对麦克风中距离主声源较远的麦克风称为第二麦克风。图52A是根据本申请的一些实施例所示的示例性镜腿的示意图。如图52A所示,在镜腿5200A的中空结构可以设置两组相互对应的麦克风(即,麦克风阵列包括两组相互对应的麦克风),例如,第一麦克风组5212和第二麦克风组5214。第一麦克风组5212和第二麦克风组5214各自包括对应多个不同频段的子带语音信号的麦克风。第一麦克风组5212中的第一麦克风可以与第二麦克风组5214中的第二麦克风一一对应。第一麦克风组5212和/或第二麦克风组5214中每个麦克风可以将语音信号分解成子带语音信号。例如,语音信号经对应的第一麦克风和第二麦克风处理后,可得到相同频段的子带语音信号。
第一麦克风组5212与主声源(例如,人的嘴巴)之间的距离可以比第二麦克风组5214与主声源的距离近。在一些实施例中,所述第一麦克风组5212和所述第二麦克风组5214可以按照特定的方式分布在镜腿5200A中,使得主声源位于所述第二麦克风组5214指向所述第一麦克风组5212的方向上。
在一些实施例中,针对相互对应的第一麦克风5212-i和第二麦克风5214-i,当用户佩戴配有镜腿5200A的眼镜时,由于嘴巴(主声源)相对于第一麦克风5212-i和第二麦克风5214-i的距离比环境中其他声源(例如,噪声源)相对于第一麦克风5212-i和第二麦克风5214-i的距离近,可以认为嘴巴是第一麦克风5212-i和第二麦克风5214-i的近场声源。对于近场声源,该组麦克风所接收到的声音大小与距声源的距离相关。由于第一麦克风5212-i距离主声源较近,因此音频信号经第一麦克风5212-i处理后可得到较大的子带语音信号V J1;第二麦克风5214-i距离主声源较远,因此音频信号经第二麦克风5214-i处理后可得到较小的子带语音信号V J2。即,V J1>V J2
在一些实施例中,由于环境中的噪声源相对于第一麦克风5212-i和第二麦克风5214-i的距离较远,可以认为环境中的噪声源是第一麦克风5212-i和第二麦克风5214-i的远场声源。对于远场声源,噪声经该组麦克风处理后,得到的子带噪声信号大小相近,即V Y1≈V Y2
因此,经第一麦克风5212-i处理,得到的声音总信号为:
V 1=V J1+V Y1,   (11)
经第二麦克风5214-i处理,得到的声音总信号为:
V 2=V J2+V Y2,   (12)
为排除接收到的声音信号中的噪声,可以对第一麦克风5212-i声音总信号与第二麦克风5214-i声音总信号做差分处理。差分处理的形式可以是按照如下形式:
V=V 1-V 2=(V J1-V J2)+(V Y1-V Y2)≈V J1-V J2,   (13)
进一步地,根据公式(13)获得的子带语音信号的差分结果,结合第一麦克风5212-i和第二麦克风5214-i相对于主声源的距离,可以进一步获得第一麦克风5212-i和/或第二麦克风5214-i实际获得的主声源发出的子带语音信号,即V J1或V J2。在一些实施例中,各个子带语音信号的差分结果经增强放大后可输入到合成装置(未示出)进行处理,最终得到目标信号。目标信号可经由声学驱动器5240和/或声学驱动器5250播送给用户。
在一些实施例中,第一麦克风组5212和/或第二麦克风组5214可以设置在镜腿5200A和/或镜框5270(如图52A和图52B所示)上。为保证最终获得的子带语音信号的质量,应使公式(13)中获得的子带语音信号的差分结果尽可能大,即V J1>>V J2。在一些实施例中,可以使第一麦克风组5212的安装位置尽可能靠近主声源(如人的嘴部),使第二麦克风组5214的安装位置尽可能远离主声源(如人的嘴部)。在一些实施例中,可以在两个麦克风阵列之间设置挡板等。例如,第一麦克风组5212可以设置在镜腿5200A的前端5222,第二麦克风组5214可以设置在镜腿5224的后端,当用户佩戴配有镜腿5200A的眼镜时,耳廓增大了第一麦克风组5212与第二麦克风组5214之间的距离,耳廓可以看做是第一麦克风组5212与第二麦克风组5214之间的挡板。在一些实施例中,第一麦克风组5212距离主声源的距离可以与麦克风阵列5010或麦克风阵列5110距主声源的距离相同。在一些实施例中,第一麦克风组5212与第二麦克风组5214之间的距离d(如图52A或52B所示)可以不小于0.2cm。优选地,d可以不小于0.4cm;更优选地,d可以不小于0.6cm;更优选地,d可以不小于0.8cm;更优选地,d可以不小于1cm;更优选地,d可以不小于2cm;更优选地,d可以不小于3cm;更优选地,d可以不小于4cm;更优选地,d可以不小于5cm;更优选地,d可以不小于6cm;更优选地,d可以不小于7cm;更优选地,d可以不小于8cm;更优选地,d可以不小于9cm;更优选地,d可以不小于10cm;更优选地,d可以不小于11cm;更优选地,d可以不小于12cm;更优选地,d可以不小于13cm;更优选地,d可以不小于14cm;更优选地,d可以不小于15cm;更优选地,d可以不小于17cm;更优选地,d可以不小于19cm;更优选地,d可以不小于20cm。
在一些实施例中,麦克风阵列中每对麦克风之间的距离可以不同。低频麦克风的间距可以大于高频麦克风的间距。图53是根据本申请一些实施例所示的眼镜的示意图。如图53所示,眼镜5300中的麦克风阵列可以包括至少一对低频麦克风(例如,低频麦克风5310和低频麦克风5320)和至少一对高频麦克风(例如,高频麦克风5330和高频麦克风5340),其中,低频麦克风5310和5320的间距可以长于高频频麦克风5330和5340的间距。通过针对不同频率,设置不同的麦克风间距,可以提高眼镜5300的收音效果。这是因为:当远场声源位置一定时,对于低频声音,其频率低、周期长。适当拉开低频麦克风5310和5320的距离可以显著提高近场收音效果而并不会明显导致远场低频噪音的增大(毕竟拉开低频麦克风5310和5320的距离导致的相位偏移只占周期的一小部分);对于高频声音,其频率高、周期短。随着高频麦克风5330和5340的间距减小,高频麦克风5330和5340采集到的远场高频噪声的相位差逐渐减小,可以很好地消除远程高频噪音。因此,通过设置高频麦克风间距小于低频麦克风间距再利用差分处理进行消噪时,可以将远场噪声(可以包括远场低频噪声和远场高频噪声)消除或近似消除。需要注意的是,图53所示的低频麦克风5310、低频麦克风5320、高频麦克风5330和高频麦克风5340的位置只是示例性的,各个麦克风可以设置在眼镜4700的其他合适位置。例如,低频麦克风5310和低频麦克风5320可以设置在镜框,高频麦克风5330和高频麦克风5340可以设置在镜腿。又例如,低频麦克风5310可以设置在镜框,低频麦克风5320、高频麦克风5330和高频麦克风5340可以设置在镜腿。在一些实施例中,低频麦克风5310和低频麦克风5320之间的距离d l的范围可以为0.8cm-20cm;优选地,d l的范围可以为1cm- 18cm;更优选地,d l的范围可以为1.2cm-16cm;更优选地,d l的范围可以为1.4cm-14cm;更优选地,d l的范围可以为1.6cm-12cm;更优选地,d l的范围可以为1.8cm-10cm;更优选地,d l的范围可以为2cm-8cm;更优选地,d l的范围可以为2.2cm-6cm;更优选地,d l的范围可以为2.4cm-4cm;更优选地,d l的范围可以为2.6cm-3.8cm;更优选地,d l的范围可以为2.8cm-3.6cm;更优选地,d l可以为3cm。在一些实施例中,高频麦克风5330和高频麦克风5340之间的距离d h的范围可以为1mm-12mm;优选地,d h的范围可以为1.2mm-11mm;更优选地,d h的范围可以为1.2mm-10mm;更优选地,d h的范围可以为1.4mm-9mm;更优选地,d h的范围可以为1.6mm-8mm;更优选地,d h的范围可以为1.8mm-7.5mm;更优选地,d h的范围可以为2mm-7mm;更优选地,d h的范围可以为2.5mm-6.5mm;更优选地,d h的范围可以为3mm-6mm;更优选地,d h的范围可以为3.5mm-5.5mm;更优选地,d h的范围可以为4mm-5.3mm;更优选地,d h可以为5mm。在一些实施例中,对于人声来说,人声的频段主要集中于中低频段,可以设置低频段低频麦克风5310比高频麦克风5330距主声源的距离更近,使拾取的中低频段的信号更强。低频麦克风5310与主声源的距离可以与麦克风阵列5010距主声源的距离相同,此处不再赘述。
需要注意的是,以上对眼镜(例如,眼镜4900、眼镜5200B、眼镜5300)和/或镜腿(例如,镜腿4920、镜腿5200A)等的描述,仅为描述方便,并不能把本申请限制在所举实施例范围之内。可以理解,对于本领域的技术人员来说,在了解该系统的原理后,可以在不背离这一原理的情况下,对实施上述方法和系统的应用领域进行形式和细节上的各种修正和改变。然而,这些变化和修改不脱离本申请的范围。例如,镜片4930可以从眼镜4900中省略。再例如,眼镜4900可以只包括一个镜片。稳固结构5260可以与镜腿5200A一体成型,也可以可分离地设置在镜腿5200A上。
在一些实施例中,眼镜(例如,眼镜4900、眼镜5200B、眼镜5300)中的麦克风降噪系统可以通过入声孔拾取佩戴所述眼镜的用户的语音信号,并处理生成目标信号后传输至与该眼镜进行通讯的对象或设备。眼镜中的声学输出装置可以接收与该眼镜进行通讯的对象或设备传输的音频信号,并将音频信号转换为声音信号后通过出声孔输出给佩戴所述眼镜的用户。在一些实施例中,眼镜可以根据接收到语音信号生成控制指令,并控制该眼镜的一个或多个功能。例如,眼镜可以根据接收到的语音生成控制指令来调节镜片的透光率,从而使不同光通量的光线通过。在一些实施例中,眼镜可以自动根据接收到的用户指令调节其透光率和/或雾度,并调用或关闭迷你投影设备(未示出)实现普通模式、VR模式与AR模式之间的自由切换。例如,眼镜在收到切换至AR模式的指令后,可以控制镜片的透光率进行适量下降,并通过调用迷你投影设备将AR图像或视频投射在用户视线的前方。又例如,眼镜在收到切换至VR模式的指令后,可以控制镜片的雾度上升至接近100%,并通过调用迷你投影设备将VR图像或视频投射在镜片内侧。
本申请一些实施例中的声学输出装置(例如,眼镜4900、眼镜5200B、眼镜5300)可以通过利用具有不同频率响应的麦克风,使麦克风阵列能够对各个频段的语音信号有更好的灵敏度,使用眼镜对全频段的声音信号具有较稳定的频响曲线,从而具有较好的收音效果。在使用所述眼镜时,采用了子带降噪技术,可以有效降低语音信号中的噪音。另外,所述眼镜还可以采用分频段的降漏音技术,有效降低眼镜的漏音,提升用户体验。
图54是本申请一些实施例所示的又一种眼镜的示意图。如图54所示,眼镜5400可以包括镜架和镜片5440。镜架可以包括镜腿5410、镜腿5420、镜圈5430、以及镜梁5450等。镜腿5410和5420用于支持镜圈5430和镜片5440,并且将眼镜5400固定于用户脸上。镜圈5430用于支撑镜片5440。镜梁5450用于将眼镜5400固定于用户的鼻子上边。
眼镜5400内部设有多个可以实现不同功能的组件。示例性的组件包括用于提供电源的电源组件、用于产生声音的声学驱动器、用于检测外部声音的麦克风、用于连接其它设备的蓝牙模块、用于控制其它组件运行的控制器等,或其中任意组合。在一些实施例中,镜腿5410和/或镜腿5420内部可以设置成中空结构,用于容纳上述一个或多个组件。
眼镜5400上可以开设多个孔状结构。例如,如图54所示,镜腿5410和/或镜腿5420的非贴合用户脸部的一侧开设有导声孔5411。导声孔5411可以连接到眼镜5400内部一个或多个声学驱动器,用于导出声学驱动器产生的声音。在一些实施例中,导声孔5411可以设置在镜腿5410和/或镜腿5420靠近用户耳朵的位置,例如,镜腿5410和/或5420远离镜圈5430的后端,镜腿弯折部位5460等。再例如,眼镜5400上还可以开设有电源接口5412,用来为眼镜5400中的电源组件充电。电源接口5412可以设置在镜腿5410和/或镜腿5420的面朝用户脸部的一侧。示例性的电源接口可以包括Dock充电接口、直流充电接口、USB充电接口、Lightning充电接口、无线充电接口等,或其组合。在一些实施例中,眼镜5400上还设置有一个或多个入声孔5413,用来将外界声音(例如, 用户的语音、环境声音等)传递到眼镜5400中的麦克风。入声孔5413可以设置在眼镜5400上易于获取用户语音的位置,例如,镜腿5410和/或5420上靠近用户嘴部的位置、镜圈5430下侧靠近用户嘴部的位置、鼻托5450等的位置,或其组合。在一些实施例中,眼镜5400上的一个或多个孔状结构的形状、大小以及数量等是可以根据需要变化的。例如,孔状结构的形状包括但不局限于正方形、矩形、三角形、多边形、圆形、椭圆形、不规则形状等。
在一些实施例中,眼镜5400上还设置有一个或多个按键结构,用来实现用户和眼镜5400的交互。如图54所示,一个或多个按键结构可以包括电源按键5421、声音调节按键5422、播放控制按键5423、蓝牙按键5424等。电源按键5421可以包括电源打开按键、电源关闭按键、电源休眠按键等,或其组合。声音调节按键5422可以包括声音增大按键、声音调小按键等,或其组合。播放控制按键5423可以包括播放按键、暂停播放按键、继续播放按键、播放接听来电按键、挂断来电按键、保持来电按键等,或其组合。蓝牙按键5424包括蓝牙连接按键、蓝牙关闭按键、连接对象选择按键等,或其组合。在一些实施例中,所述按键结构可以设置在眼镜5400上。例如,电源按键可以设置在镜腿5410、镜腿5420、或镜圈5430上。在一些实施例中,一个或多个按键结构可以设置在一个或多个控制设备中。眼镜5400通过有线或者无线的方式与所述一个或多个控制设备相连接。所述控制设备可以将用户输入的指令传送到眼镜5400,从而控制眼镜5400中一个或多个组件的运行。
在一些实施例中,眼镜5400还包括一个或多个指示灯,用来指示与眼镜5400中一个或多个组件有关的信息,例如,指示灯可以用来指示电源状态、蓝牙连接状态、播放状态等,或其组合。在一些实施例中,指示灯可以用不同的状态(例如,不同的颜色、不同的时间等)来指示组件的相关信息。仅作为示例,当电源指示灯显示红色时,说明电源组件处于电量短缺的状态;当电源指示灯显示绿色时,说明电源组件处于电量饱和的状态。又例如,蓝牙指示灯可以间歇闪烁,说明蓝牙正在连接;蓝牙指示灯可以显示蓝色,说明蓝牙连接成功。
在一些实施例中,镜腿5410和/或镜腿5420上设置有护套。护套可由具有一定弹性的软质材料制成,例如硅胶、橡胶等,为用户佩戴提供较好的触感。
在一些实施例中,镜架可以是一体成型,或者还可以通过插接、卡接等方式装配而成。在一些实施例中,制备镜架的材料可以包括但不限于,钢材、合金、塑胶和单一或复合材料。其中,钢材包括但不限于不锈钢、碳素钢等。合金包括但不限于铝合金、铬钼钢、钪合金、镁合金、钛合金、镁锂合金、镍合金等。塑胶包括但不限于丙烯腈-丁二烯-苯乙烯共聚物(Acrylonitrile butadiene styrene,ABS)、聚苯乙烯(Polystyrene,PS)、高冲击聚苯乙烯(High impact polystyrene,HIPS)、聚丙烯(Polypropylene,PP)、聚对苯二甲酸乙二酯(Polyethylene terephthalate,PET)、聚酯(Polyester,PES)、聚碳酸酯(Polycarbonate,PC)、聚酰胺(Polyamides,PA)、聚氯乙烯(Polyvinyl chloride,PVC)、聚乙烯和吹塑尼龙等。对于,单一或复合材料,包括但不限于玻璃纤维、碳纤维、硼纤维、石墨纤维、石墨烯纤维、碳化硅纤维或芳纶纤维等增强材料;也可以是其他有机和/或无机材料的复合物,例如玻璃纤维增强不饱和聚酯、环氧树脂或酚醛树脂基体组成的各类玻璃钢等。
关于上述眼镜5400的描述仅是出于阐述的目的,并不旨在限制本申请的范围。对于本领域的普通技术人员来说,可以根据本申请的描述,做出各种各样的变化和修改。例如,眼镜5400可以包括一个或多个摄像头,用来采集环境信息(例如,拍摄用户眼前的场景)。又例如,眼镜5400还可以包括一个或多个投影仪,用来将画面(例如,用户通过眼镜5400看到的画面)投射到显示屏上。
图55为声学输出装置(例如,眼镜5400)中组件的示意图。如图55所示,声学输出装置5500可以包括耳机芯5510、蓝牙模块5520、按键模块5530、电源模块5540、控制器5550、辅助功能模块5560以及软性电路板5570等中的一个或多个。
耳机芯5510用于将含有音频信息的信号转化为声音信号。音频信息可以包括具有特定数据格式的视频、音频文件或可以通过特定途径转化为声音的数据或文件。所述含有音频信息的信号可以包括电信号、光信号、磁信号、机械信号等一种或多种的组合。转换的过程中可能包含多种不同类型能量的共存和转换。例如,电信号通过耳机芯5510可以直接转换成机械振动,产生声音。再例如,音频信息可以包含在光信号中,一种特定的耳机芯可以实现由光信号转换为振动信号的过程。其它可以在耳机芯5510工作过程中共存和转换的能量类型包括热能、磁场能等。
在一些实施例中,耳机芯5510可以包括一个或多个声学驱动器。所述声学驱动器可以用于将电信号转换成声音进行播放。例如,耳机芯5510可以包括至少两组声学驱动器,其中包括至少一组高频声学驱动器和一组低频声学驱动。每组声学驱动器可以用来产生具有一定频率范围的声音,并通过至少两个与其声学耦合的导声孔向外传播所述声音。又例如,耳机芯5510可以包括至少一组 声学驱动器,所述至少一组声学驱动器产生的声音可以通过与其声耦合的至少两个导声孔向外传播。可选地,所述至少两个导声孔分别可以分布于挡板(例如,耳廓)的两侧,使得所述至少两个导声孔具有不同的到用户耳道的声学路径。更多关于声学驱动器的更多内容可以参见本说明书其他地方(如图4至图7B及其相关描述)。
蓝牙模块5520用于连接声学输出装置5500和其它终端设备。例如,声学输出装置200可以通过蓝牙模块5520与用户的手机建立连接。用户手机中相关信息(例如,歌曲、录音等)可以通过蓝牙协议传送到蓝牙模块5520。蓝牙模块5520可以接收并处理该相关信息,并将处理后的信息发送到声学输出装置5500的其它组件进行进一步处理。在一些实施例中,与声学输出装置5500连接的终端设备可以包括智能家居设备,可穿戴设备,移动设备,虚拟现实设备,增强现实设备等,或其任意组合。在一些实施例中,智能家居设备可以包括智能照明设备,智能电气设备的控制设备,智能监控设备,智能电视,智能摄像机,对讲机等,或其任意组合。在一些实施例中,可穿戴设备可以包括手环,头盔,手表,服装,背包等,或其任意组合。在一些实施例中,移动设备可以包括智能电话,个人数字助理(PDA),游戏设备,导航设备,销售点(POS)设备,车辆上的音响主机,或类似的,或其任意组合。在一些实施例中,虚拟现实设备和/或增强现实设备可以包括虚拟现实头盔,虚拟现实眼镜,增强现实头盔,增强现实眼镜等,或其任何组合。
蓝牙模块5520在使用无线协议进行通信的过程中,可以在2.4GHz的工业科学医疗(ISM)频带内执行通信。ISM频带具有可自由使用而无需单独许可证的特征。在一些实施例中,在ISM频带以下和以上的频率范围内,可以分别设置2MHz的保护频带和3.5MHz的保护频带,以防止与其它装置的干扰。在一些实施例中,蓝牙模块5520与其它设备进行通信时可以采用跳频的方案,例如,使频率跳变每秒1600次。
为了与其它装置进行连接,蓝牙模块5520可以从其它装置接收包括接收信号强度指示(RSSI)的装置的唯一信息。所述唯一信息包括截止访问控制(MAC)地址的阻止唯一标识符(OUI)、蓝牙地址(BD_ADDR)、装置的种类、装置的名称等。当建立连接后,信息和/或信号可以按照蓝牙传输协议进行。示例性的蓝牙传输协议可以包括逻辑链路控制和适配协议(L2CAP)、无线射频通信(RFCOMM)和业务搜索协议(SDP)等。
按键模块5530可以用来控制声学输出装置5500,从而实现用户与声学输出装置5500的交互。用户可以通过按键模块5530向声学输出装置5500发出命令,控制声学输出装置5500的运行。在一些实施例中,按键模块5530可以包括电源按键、播放控制按键、声音调节按键、电话控制按键、录音按键、降噪按键、蓝牙按键、返回键等,或其组合。电源按键用来控制电源240的打开、关闭、休眠等。播放控制按键用来控制耳机芯5510中声音的播放,例如,播放信息、暂停播放信息、继续播放信息,播放上一个项目、播放下一个项目,播放模式选择(例如,运动模式、工作模式、娱乐模式、立体声模式、民谣模式、摇滚模式、重低音模式等),播放环境(例如,室内、室外等)选择等,或其组合。声音调节按键用来控制耳机芯播放的声音,例如,增大声音、降低声音等。电话控制按键用来控制来电的接听、拒绝、挂断、回拨、保持、存储等。录音按键用来记录和存储声音信息。降噪按键用来进行降噪程度的选择。例如,用户可以手动选择降噪的等级或程度,或者声学输出装置5500可以根据检测的环境声音或者用户选择的播放模式自动选择降噪的等级或程度。蓝牙按键用于打开蓝牙、关闭蓝牙、蓝牙匹配、蓝牙连接、连接设备选择等,或其组合。返回键用来返回上一级菜单、界面等。
在一些实施例中,按键模块5530可以包括物理按键和虚拟按键两种形式。例如,当按键模块5530为物理按键时,按键可以设置在声学输出装置(例如,眼镜5400)的壳体外侧。当用户佩戴声学输出装置时,按键不与人体皮肤相接触,并裸露在外侧,以便于用户对按键的操作。在一些实施例中,按键模块5530中各个按键的端部表面可以设置有与其功能对应的标识。在一些实施例中,标识可以包括文字(例如,中文和英文)、符号(例如音量加键用“+”标示、音量减键用“-”标示)。在一些实施例中,标识可以通过激光印刷、丝网印刷、移印法、激光填料、热升华法、镂空文字法等方式设置于按键处。在一些实施例中,按键上的标识也可以设置在位于按键周侧的壳体的表面,同样可以起到标示的作用。在一些实施例中,声学输出装置中安装的控制程序可以在具有交互功能的触摸屏上生成虚拟按键。用户可以通过该虚拟按键对声学输出装置的功能、音量、文件等进行选择。此外,声学输出装置也可以具有触摸屏和物理按键的结合。
在一些实施例中,按键模块5530可以基于用户的不同操作实现不同的交互功能,例如:点击一次按键(物理按键或虚拟按键),可以实现,例如,音乐、录音等的暂停/开始;快速点击两次按键,可以实现接听电话;有规律地点击(例如,隔一秒点击一次,总共点击两次),可以实现录 音功能。在一些实施例中,用户的操作可以是点击、滑动、滚动等操作。例如,当用户的手指在按键的表面上下滑动时,可以实现调高/低音量的功能。
在一些实施例中,按键模块5530对应的功能可以由用户自定义。例如,用户可以通过应用软件的设置,对按键模块5530所能实施的功能进行调整。此外,对于实现特定功能的操作方式(例如点击次数、滑动手势),用户同样可以通过应用软件进行设置。例如,将接听电话功能对应的操作指令由点击一次设置为点击两次,将切换下一首/上一首歌曲功能对应的操作指令由点击两次设置为点击三次。通过以上用户自定义的方式,可以更符合用户操作习惯,一定程度上避免操作失误,提高用户体验。
在一些实施例中,声学输出装置可以通过按键模块5530和外部设备连接。例如,声学输出装置可以通过一个控制无线连接的按键(例如,控制蓝牙模块5520的按键)与手机相连。可选地,当建立连接后,用户可以直接在所述外部设备(例如,手机)对声学输出装置进行操作,实现一个或多个上述提到的功能。
电源模块5540用于为声学输出装置5500中的组件提供电能。在一些实施例中,电源模块5540可以包括软性电路板、电池等。软性电路板用来连接电池和声学输出装置中的其它组件(例如,耳机芯5510),为其它组件的运行提供电能。在一些实施例中,电源模块5540也可以将自身的状态信息传送到控制器5550并接收控制器5550的指令,执行相应操作。电源模块5540的状态信息可以包括开/关状态、剩余电量、剩余电量使用时间、充电时间等,或其组合。
控制器5550可以根据声学输出装置5500的一个或多个组件的信息生成控制电源模块5540的指令。例如,控制器5550可以生成控制指令,控制电源模块5540为耳机芯5510提供产生声音的电能。再例如,当声学输出装置5500在一定时间内没有接收到输入信息时,控制器5550将产生控制指令,控制电源模块5540进入休眠状态。在一些实施例中,电源模块5540的电池可以包括蓄电池、干电池、锂电池、丹聂耳电池、或燃料电池,或其组合。
仅仅作为示例,控制器5550可以从辅助功能模块5560接收用户的语音信号,例如,“播放歌曲”。通过处理此语音信号,控制器5550将产生与此语音信号相关的控制指令,例如,控制耳机芯5510从存储模块(或其它设备中)获取需要播放的歌曲信息,并据此产生控制耳机芯5510振动的电信号等。
在一些实施例中,控制器5550中可以包括一个或多个电子分频模块。电子分频模块可以对音源信号进行分频处理。所述音源信号可以来自于一个或多个集成在声学输出装置内的音源装置(例如,一个存储音频数据的存储器),也可以是声音输出装置通过有线或者无线的方式接收的音频信号(例如,从辅助功能模块5560接收的音频信号)。在一些实施例中,电子分频模块可以将输入的音源信号分解成两个或两个以上包含不同频率成分的分频信号。例如,电子分频模块可以将音源信号分解成带有高频声音成分的第一分频信号和带有低频声音成分的第二分频信号。电子分频模块处理后的信号将通过有线或者无线的方式传送到耳机芯5510中的声学驱动器。更多关于电子分频模块的更多内容可以参见本说明书其他地方(如图4及其相关描述)。
在一些实施例中,控制器5550可以包括中央处理单元(CPU),专用集成电路(ASIC),专用指令集处理器(ASIP),图形处理单元(GPU),物理处理单元(PPU),数字信号处理器(DSP),现场可编程门阵列(FPGA),可编程逻辑设备(PLD),控制器,微控制器单元,精简指令集计算机(RISC),微处理器等,或其任何组合。
辅助功能模块5560用于接收辅助信号,执行辅助功能。辅助功能模块5560包括一个或多个麦克风、指示灯、传感器、显示器等或其组合。具体地,辅助信号可以包括辅助功能模块5560的状态信号(例如,打开状态、关闭状态、休眠状态、连接状态等)、用户操作产生的信号(例如,用户通过按键产生的输入输出信号、用户的语音输入)等,或其组合。在一些实施例中,辅助功能模块5560可以将接收到的辅助信号通过有线或无线的方式传送到声学输出装置5500的其它组件进行处理。
传感器可以用于检测与声学输出装置5500有关的信息。例如,传感器可以用来检测用户的指纹,并将检测到的指纹传送给控制器5550。控制器5550可以将接收到的指纹与提前存储在声学输出装置5500中的指纹进行匹配。如果匹配成功,控制器5550将产生打开声学输出装置5500的指令,该指令将传送到声学输出装置5500的各个组件,进行打开声学输出装置5500的操作。又例如,传感器可以用来检测声学输出装置5500的位置。当传感器检测到声学输出装置5500脱离用户脸部时,会将检测到的信息传送给控制器5550,控制器5550将生成指令来暂停或者关闭声学输出装置5500的播放。在一些实施例中,示例性的传感器可以包括测距传感器(如,红外测距传感器、 激光测距传感器等),速度传感器,陀螺仪,加速计,定位传感器,位移传感器,压力传感器,气体传感器,光传感器,温度传感器,湿度传感器,指纹传感器,图像传感器,虹膜传感器,图像传感器(如,摄像头、相机等)等,或其组合。
软性电路板模块5570用于连接声学输出装置5500中的不同组件。软性电路板模块5570可以为柔性电路板(Flexible Printed Circuit,FPC)。在一些实施例中,软性电路板模块5570可以包括一个或多个焊盘和/或一条或多条软性导线。一个或多个焊盘用于连接一个或多个声学输出装置200的组件或其他焊盘。一条或多条引线用于连接声学输出装置200的组件和焊盘、焊盘和焊盘等。在一些实施例中,软性电路板模块5570可以包括一个或多个软性电路板。仅作为实施例,软性电路板模块5570包括第一软性电路板和第二软性电路板。第一软性电路板用来连接麦克风、耳机芯5510以及控制器5550等中的两个或多个。第二软性电路板用来连接电源模块5540、耳机芯5510、控制器5550等中的两个或多个。在一些实施例中,软性电路板模块5570可以是包括一个或多个区域的整体结构。例如,软性电路板模块5570包括第一区域和第二区域。第一区域设置有软性引线,用于连接软性电路板模块5570上的焊盘和声学输出装置200上的其他组件。第二区域用来设置一个或多个焊盘。在一些实施例中,电源模块5540和/或辅助功能模块5560可以设置在软性电路板模块5570上,并且通过软性电路板模块5570上的软性引线连接至软性电路板模块5570(例如,软性电路板模块5570的焊盘)上。更多关于软性电路板模块的更多内容可以参见本说明书其他地方(如图56和图57及其相关描述)。
在一些实施例中耳机芯5510、蓝牙模块5520、按键模块5530、电源模块5540、控制器5550、辅助功能模块5560以及软性电路板5570等中的一个或多个可以设置在眼镜5400的镜架中。具体地,一个或多个电子组件可以设置于镜腿5410和/或镜腿5420的中空结构中。设置在镜腿5410和/或镜腿5420中电子组件可以通过有线或者无线的方式进行连接和/或通信。有线连接可以包括金属电缆,光缆,混合电缆等或它们的任意组合。无线连接可以包括局域网(LAN),广域网(WAN),蓝牙,ZigBee,近场通信(NFC)等,或其任何组合。
关于上述声学输出装置5500的描述仅是出于阐述的目的,并不旨在限制本申请的范围。对于本领域的普通技术人员来说,可以根据本申请的描述,做出各种各样的变化和修改。这些变化和修改仍在本申请的保护范围内。例如,声学输出装置5500还可以包括音频识别功能,图像识别功能,或动作识别功能,或其组合。在这种情况下,声学输出装置5500可以通过识别用户的语音、动作等执行相应的功能。在一些实施例中,识别的动作可以包括用户的眨眼次数和/或频率,用户的点头和/或摇头次数、方向和/或频率,用户的手部动作的次数、方向、频率、形式等。例如,用户可以通过眨眼的次数和/或频率等实现与声学输出装置5500的交互。具体地,用户连续眨眼两次可以打开声学输出装置5500的声音播放功能、用户眨眼三次可以关闭声学输出装置5500的蓝牙功能等。又例如,用户可以通过点头的次数、方向和/或频率等实现与声学输出装置5500的交互。具体地,用户点头一次可以接听电话,用户摇头一次可以拒接电话或关闭音乐播放等。再例如,用户可以通过手势等实现与声学输出装置的交互。具体地,用户伸出手掌可以打开声学输出装置,用户握起拳头可以关闭声学输出装置,用户伸出“剪刀”手势可以进行拍照等。
图56是根据本申请一些实施例所示的声学输出装置中组件的连接示意图。仅仅作为示例,图56中示出了部分组件的连接。如图56所示,软性电路板模块5570可以包括一个或多个第一焊盘(也就是,第一焊盘5572-1、5572-2、5572-3、5572-4、5572-5、5572-6),一个或多个第二焊盘(也就是,第二焊盘5574-1、5574-2、5574-3、5574-4),一条或多条导线。软性电路板模块5570中的至少一个第一焊盘分别与至少一个第二焊盘通过有线方式连接。仅作为示例,第一焊盘5572-1与第二焊盘5574-1通过软性引线连接,第一焊盘5572-2与第二焊盘5574-2通过软性引线连接,第一焊盘5572-5与第二焊盘5574-3通过软性引线连接,第一焊盘5572-5与第二焊盘5574-3通过软性引线连接,第一焊盘5572-6与第二焊盘5574-4通过软性引线连接。
在一些实施例中,声学输出装置5500中的部分组件中的每一个分别与一个或多个焊盘连接。例如,耳机芯5510通过导线5512-1和导线5512-2与第一焊盘5572-1、第一焊盘5572-2分别电连接。辅助功能模块5560通过导线5562-1和导线5562-2与第一焊盘5572-5、第一焊盘5572-6分别连接。控制器5550通过导线5552-1与第二焊盘5574-1连接,通过导线5552-2与第二焊盘5574-2连接,通过导线5552-3与第一焊盘5574-3连接,通过导线5552-4与第一焊盘5572-4连接,通过导线5552-5与第二焊盘5574-3连接,以及通过导线5552-6与第二焊盘5574-4连接。电源模块5540通过导线5542-1与第一焊盘5574-3连接,通过导线5542-2与第一焊盘5572-4连接。导线为软性引线或者外部导线。外部导线可以包括音频信号导线、辅助信号导线等,或其组合。 音频信号导线可以包括与耳机芯5510连接并向耳机芯5510传输音频信号的导线。辅助信号导线可以包括与辅助功能模块5560连接并与辅助功能模块5560进行信号传输的导线。例如,导线5512-1和导线5512-2可以为音频信号导线。又例如,导线5562-1和导线5562-2可以为辅助信号导线。再例如,导线5552-1至导线5552-6可以包括音频信号导线和辅助信号导线。在一些实施例中,声学输出装置5500中设置有一个或多个埋线槽,用于放置导线和/或软性引线。
仅作为示例,声学输出装置(例如,眼镜5400)的用户可以通过按键向该声学输出装置发出信号(例如,播放音乐的信号)。该信号通过导线5562-1和/或导线5562-2传送到软性电路板模块5570的第一焊盘5572-5和/或第一焊盘5572-6,再经过软性导线传到第二焊盘5574-3和/或第二焊盘5574-4。该信号经过与第二焊盘5574-3和/或第二焊盘5574-4连接的导线5552-5和/或导线5552-6传送给控制器5550。控制器5550可以分析处理接收到的信号,并根据处理后的信号,生成相应的指令。控制器5550生成的指令通过导线5552-1到导线5552-6中的一条或多条导线传送到软性电路板模块5570。控制器5550生成的指令通过与软性电路板模块5570连接的导线5512-1和/或导线5512-2传送到耳机芯5510,控制耳机芯5510播放相关音乐。控制器5550生成的指令通过与软性电路板模块5570连接的导线5542-1和/或导线5542-2传送到电源模块5540,控制电源模块5540为其他组件提供播放音乐所需的电能。上述通过软性电路板模块5570的连接方式简化了声学输出装置中不同组件之间的走线方式,减少了导线之间的相互影响,也节约了声学输出装置内部导线所占用的空间。
图57是根据本申请一些实施例所示的示例性电源模块的示意图。如图57所示,电源模块5700包括电池5710、软性电路板5720。在一些实施例中,电池5710和软性电路板5720设置于同一声学输出装置的壳体(例如,镜腿5410或镜腿5420)中。
电池5710可以包括本体区5712和封口区5714。在一些实施例中,封口区5714设置于软性电路板5720和本体区5712之间,并且与软性电路板5720和本体区5712相连接。封口区5714与软性电路板5720以及本体区5712的连接方式包括固定连接和/或活动连接。在一些实施例中,封口区5714和本体区5712平铺设置,并且封口区5714的厚度等于或者小于本体区5712的厚度,从而使得封口区5714的至少一个侧面和于此侧面相邻的本体区5712的面成阶梯状。在一些实施例中,电池5710可以包括正极端和负极端。正极端与负极端分别与声学输出装置中的其它组件直接连接或间接连接(例如,通过软性电路板5720)。
在一些实施例中,软性电路板5720包括第一板体5721和第二板体5722。第一板体5721包括第一焊盘5723、第二焊盘5725、软性引线。第一焊盘5723可以包括第三焊盘组5723-1、第三焊盘组5723-2、第三焊盘组5723-3、以及第三焊盘组5723-4。每组第三焊盘组包括一个或多个第四焊盘,例如,两个第四焊盘。第二焊盘5725可以包括第二焊盘5725-1、第二焊盘5725-2。一组或多组第一焊盘5723中的每一组第三焊盘中组的一个或多个第四焊盘可以将两个或以上声学输出装置的组件连接起来。例如,第三焊盘组5723-1中的一个第四焊盘通过外部导线与耳机芯(例如,耳机芯5510)连接,一个第四焊盘通过第二板体5722上设置的软性引线与第三焊盘组5723-1中的另一个第四焊盘连接,第三焊盘组5723-1中的另一个第四焊盘通过外部导线与控制器连接(例如,控制器5550),从而将耳机芯和控制器连接起来进行通信。又例如,第三焊盘组5723-2中的一个第四焊盘通过外部导线与蓝牙模块5520连接,第三焊盘组5723-2中的所述一个第四焊盘通过软性引线与第三焊盘组5723-2中的另一个第四焊盘连接,第三焊盘组5723-2中的所述另一个第四焊盘通过外部导线与耳机芯5510连接,从而将耳机芯5510与蓝牙模块5520连接,以使声学输出装置可以通过蓝牙连接播放音频信息。一个或多个第二焊盘(例如,第二焊盘5725-1、2725-2)用于将一个或多个声学输出装置的组件和电池5710连接。例如,第二焊盘5725-1和/或第二焊盘5725-2通过外部导线与耳机芯连接,第二焊盘5725-1和/或第二焊盘5725-2通过第二板体5722上设置的软性引线与电池5710连接,从而将耳机芯和电池连接起来。
第一焊盘5723、第二焊盘5725的排列方式可以为多种,例如,所有焊盘可以均沿直线间隔排列,或者按照其它形状间隔设置。在一些实施例中,一组或多组第一焊盘5723沿第一板体5721的长度方向间隔设置。在一个或多个第一焊盘5723中的每组第三焊组中的一个或多个第四焊盘沿第一板体5721的宽度方向设置。并沿第一板体5721的长度方向错开成阶梯状间隔设置。一个或多个第二焊盘5725设置于第一板体5721的中间区域。一个或多个第二焊盘5725沿第一板体5721的长度方向设置。通过这种方式,一方面,能够避免相邻的两组第一焊盘5723之间形成平齐的间隔区域,从而能够使得第一板体5721上的强度分布均匀化,减少相邻两组第三焊盘之间弯折的发生,降低第一板体5721由于弯折而折断的几率,以对第一板体5721起到保护作用;另一方 面,能够拉大焊盘之间的距离,便于焊接,并减少不同焊盘之间发生短路。
在一些实施例中,第二板体5722设置有一条或多条软性引线422,用于将第一板体5721上的焊盘和电池5710连接。仅作为示例,第二板体5722包括两条软性引线,两条软性引线的一端可以分别与电池5710的正极端和负极端分别连接,另一端与第一板体5721上的焊盘连接。从而无需设置额外的焊盘以将电池5710的正极及负极引出,能够减少焊盘的数量,简化结构及工艺。由于第一板体5721上仅设置软性引线,在一些实施例中,第二板体5722是可以根据具体情况相近弯折。例如,可以通过弯折第二板体5722将第一板体5721一端固定于电池5710上,从而可以减小电源模块5700的体积,节省容纳电源模块5700的声学输出装置的壳体的空间,提高空间利用率。再例如,通过翻折第二板体5722可以使第一板体5721贴合于电池5710的侧表面上,使得第二板体5722与电池5710层叠设置,从而大大减少电源模块5700占用的空间。
在一些实施例中,软性电路板5720为一个整体,第一板体5721和第二板体5722为该整体软性电路板的两个区域。在一些实施例中,软性电路板5720分为两个独立的部分,例如,第一板体5721和第二板体5722为两个独立的板体。在一些实施例中,软性电路板5720可以设置于电池5710的本体区5712和/或封口区5714形成的空间中,从而可以无需设置单独的空间放置软性电路板5720,进一步提高空间利用率。
在一些实施例中,电池模块5700还可以包括硬质电路板5716。该硬质电路板5716可以设置在封口区5714中。具体的电池5710的正极端和负极端可以设置在硬质电路板5716上。进一步地,该硬质电路板5716上设置有保护电路来对电池5710进行过载保护。第二板体5722远离第一板体5721的一端可以和硬质电路板5716固定连接,从而使得第二板体5722上的软性引线和电池5710的正极端和负极端连接。在一些实施例中,第二板体5722可以和硬质电路板5716在制作时压合在一起。
在一些实施例中,第一板体5721和第二板体5722的形状可根据实际情况进行设置。第一板体5721和第二板体5722的形状可以包括正方形、矩形、三角形、多边形、圆形、椭圆形、不规则形状等。在一些实施例中,第二板体5722的形状与电池5710的封口区5714的形状匹配。例如,封口区5714和第二板体5722的形状都可以为矩形,第一板体5721的形状也可以为矩形。并且第一板体5721可以置于第二板体5722的长度方向上的一端,并沿长度方向与第二板体5722互相垂直。进一步地,第二板体5722可连接于第一板体5721长度方向上的中间区域,从而使得第一板体5721和第二板体5722呈T形设置。
需要注意的是,以上对声学输出装置的电源模块5700中电池5710和软性电路板5720的描述仅仅是具体的示例,不应该被视为是唯一可行的实施方案。显然,对于本领域的专业人员来说,在了解声学输出装置的基本原理后,可能在不背离这一原理的情况下,对实施声学输出装置的电池5710和软性电路板5720的具体方式和步骤进行形式和细节上的各种修正和改变,但是这些修正和改变仍在以上描述的范围之内。例如,声学输出装置中还可以进一步容纳有语音控制模块、麦克风模块等辅助功能模块。诸如此类的变形,均在本申请的保护范围之内。
在一些实施例中,声学输出装置(例如,眼镜5400)还可以包括语音控制系统。所述语音控制系统可以作为辅助功能模块5560中的一部分,也可以作为单独的模块集成在所述声学输出装置中。如图58所示,在一些实施例中,语音控制系统包括接收模块5802、处理模块5804、识别模块5806、控制模块5808。
在一些实施例中,接收模块5802可以用于接收语音控制指令,并将语音控制指令发送至处理模块5804。在一些实施例中,接收模块5802可以为一个或者多个麦克风。在一些实施例中,当接收模块5802接收到由用户发出的语音控制指令时,如接收模块5802接收到“开始播放”的语音控制指令时,会发送该语音控制指令至处理模块5804中。
在一些实施例中,处理模块5804与接收模块5802通讯连接,根据语音控制指令生成指令信号,并发送指令信号至识别模块5806。
在一些实施例中,当处理模块5804通过通讯连接从接收模块5802中接收到由当前用户发出的语音控制指令时,会根据该语音控制指令生成指令信号。
在一些实施例中,识别模块5806可以与处理模块5804、控制模块5808通讯连接,识别指令信号是否与预设信号匹配,并发送匹配结果至控制模块5808。
在一些实施例中,当识别模块5806判断指令信号与预设信号匹配时,识别模块5806会将匹配结果发送到控制模块5808。控制模块5808会根据指令信号控制扬声器装置的运行。例如,当接收模块5802接收到“开始播放”的语音控制指令时,经识别模块5806判定该语音控制指令对应的 指令信号与预设信号匹配时,控制模块5808会自动执行该语音控制指令,即立刻开始播放音频资料。当指令信号与预设信号不匹配时,控制模块5808可以不执行控制指令。
在一些实施例中,语音控制系统可以进一步包含储存模块,与接收模块5802、处理模块5804、识别模块5806通讯连接;接收模块5802可以接收一预设语音控制指令并发送至处理模块5804;处理模块5804根据预设语音控制指令生成预设信号,并将预设信号发送至储存模块。当识别模块5806需要将接收模块5802接收所得的指令信号与预设信号进行匹配时,储存模块通过通讯连接将预设信号发送到识别模块5806中。
在一些实施例中,处理模块5804可以进一步包含去除语音控制指令中包含的环境声音。
在一些实施例中,本实施例中的语音控制系统中的处理模块5804可以进一步包含对语音控制指令进行去噪处理。去噪处理,是指去除语音控制指令中所包含的环境声音。在一些实施例中,例如,当处于复杂环境中时,接收模块5802接收到语音控制指令并发送到处理模块5804,处理模块5804根据该语音控制指令生成相应的指令信号之前,为了避免环境声音对后续识别模块5806的识别过程产生干扰,会先对语音控制指令进行去噪处理。例如,当接收模块5802接收到由用户处于室外马路上时发出的语音控制指令,该语音控制指令包含了马路上车辆行驶、鸣笛等嘈杂的环境声音,处理模块302可以通过去噪处理降低该环境声音对语音控制指令的影响。
需要注意的是,以上对语音控制系统的描述仅仅是具体的示例,不应被视为是唯一可行的实施方案。显然,对于本领域的专业人员来说,在了解语音控制系统的基本原理后,可能在不背离这一原理的情况下,对实施语音控制系统的具体方式与步骤进行形式和细节上的各种修正和改变,但是这些修正和改变仍在以上描述的范围之内。例如,接收模块和处理模块可以为相互独立的模块,也可以为同一模块。诸如此类的变形,均在本申请的保护范围之内。
本申请一些实施例中的声学输出装置(例如,眼镜5400)可以通过简化声学输出装置内部的走线方式来减小导线之间的相互影响,提高声学输出装置的发声质量。另外,本申请一些实施例中的声学输出装置还可以通过与蓝牙结合来减少声学输出设备的线的相互缠绕,使声学输出装置携带、操作、使用方便。
图59是根据本申请的一些实施例所示的示例性开放双耳式耳机的剖面结构示意图。图60是根据本申请一些实施例所示的示例性开放双耳式耳机的发声结构的示意图。例如,图60可以是图59中发声结构5905的放大图。图61是根据本申请一些实施例所示的示例性开放双耳式耳机的隔板结构的截面示意图。例如,图61可以为图59中隔板结构沿C-C的截面示意图。如图59、图60和/或图61所示,所述开放双耳式耳机5900可以包括壳体5910、至少一个麦克风5920、声学驱动器5930、与声学驱动器5930对应的导声管5940(例如,导声管5940-1、导声管5940-2、导声管5940-3、导声管5940-4等)、隔板5950、电路板5960、蓝牙模块5970,以及电源模块5980。在一些实施例中,所述开放双耳式耳机5900还可以包括电子分频模块(图中未示出,可以参见电子分频模块110)。在一些实施例中,所述电子分频模块、所述声学驱动器5930、以及导声管5940可以一起被称为声学输出装置。更多关于声学输出装置的描述可以参见图1至图37中有关声学输出装置(例如,声学输出装置100、声学输出装置300、声学输出装置400、声学输出装置500、声学输出装置600、声学输出装置1000等)的描述,此处不在赘述。
在一些实施例中,所述电子分频模块可以设置于壳体5910中。示例性的电子分频模块可以包括无源滤波器、有源滤波器、模拟滤波器、数字滤波器等,或其组合。在一些实施例中,可通过设置不同频率响应特性的声学驱动器5930(例如,设置低频换能器、中频换能器和/或高频换能器),使具有不同频率响应的换能器输出的声音包含不同的频段成分。在一些实施例中,还可以在声学路径中实现音频信号的分频处理。例如,声学驱动器5930可以产生全频带声音,通过设置具有不同声学阻抗的声学路径可对声学驱动器5930输出的声音进行声学滤波,使得通过不同声学路径输出的声音具有不同的频率成分。更多关于声学路径分频的描述可以参见图4、8A至8C及其描述,此处不再赘述。在一些实施例中,音频信号的分频处理也可以通过上述两种或两种以上的方式进行组合实现。
所述声学驱动器5930产生的不同频率的声音信号可以经由不同的导声管5940从不同的导声孔5942(例如,导声孔5942-1、导声孔5942-2、导声孔5942-3、导声孔5942-4等)输出给用户。需要注意的是,导声管5940仅仅是声音能够在开放双耳式耳机5900中传播的声学路径的一种示例性实施方式。本领域技术人员还可以想到通过其他声学路径(如声腔、谐振腔、声孔、声狭缝、调音网等中的一种或其任意组合的结构)或其他方式使声音在开放双耳式耳机5900中传播,此处不做限定。
在一些实施例中,将音频信号处理后生成的分频信号可以具有比音频信号的频带更窄的频带但其频带位于音频信号的频带范围内。例如,音频信号的频带范围可以是10Hz到30kHz。分频信号的频带可以是100Hz到200Hz,其比音频信号的频带范围窄且在音频信号的频带范围内。在一些实施例中,分频信号的频带的组合可以完全覆盖音频信号的频带。附加地或替换地,分频信号的频带的组合可以部分覆盖音频信号的频带。在一些实施例中,分频信号中的至少两个可以具有不同的频带(不同的频带指的是频带中心值和频带宽度中至少一个参数不同的两个频带)。可选地,每个分频信号可以具有与其他分频信号的频带不同的特征频带(即包含与其他分频信号的频带范围均未重叠的频带)。不同的分频信号可以具有相同的频率带宽或不同的频率带宽。在一些实施例中,可以避免频域中一对相邻分频信号的频带之间的重叠,从而提高语音输出效果。在处理后生成的分频信号中,中心频率接近的两个分频信号可以被认为在频域中彼此相邻。关于一对相邻分频信号的频带的更多描述可以参见图63A和63B及其相关描述。在一些实施例中,受实际电路滤波特性、换能器频率特性、声通道频率特性等因素的影响,开放双耳式耳机5900实际输出的低频、高频声音可能会在分频点附近频带产生一定的重叠(混叠)。可以理解的,这些重叠并不会影响本申请实施例提供的开放双耳式耳机5900的整体降漏音效果。
壳体5910为开放双耳式耳机5900的外部结构,其形状根据耳机的佩戴方式(例如,耳挂式耳机和头箍式耳机)及具体使用要求相应设置,此处不做具体限定。
所述壳体5910可为中空结构。麦克风5920、声学驱动器5930、导声管5940、隔板5950、电路板5960、蓝牙模块5970,以及电源模块5980等可被设置在该中空结构中。如图59所示,麦克风5920和声学驱动器5930可位于在壳体5910的前端;电路板5960可位于壳体5910的中段;蓝牙模块5970和电源模块5980可以位于壳体5910的后端。在一些实施例中,所述麦克风5920、声学驱动器5930、导声管5940、隔板5950、电路板5960、蓝牙模块5970和电源模块5980可位于壳体5910的任何其他合适的位置,此处不做具体限定。例如,声学驱动器5930-1、麦克风5920、电路板5960等可以位于壳体5910的前端,蓝牙模块5970可以位于壳体5910的中段;声学驱动器5930-2、电池模块5980可以位于壳体5910的后端。又例如,蓝牙模块5970和电源模块5980可以位于壳体5910的前端;麦克风5920和电路板5960可以位于壳体5910的中段;声学驱动器5930-1和声学驱动器5930-2都可以位于壳体5910的后端,其可以通过导声管使导声孔设置在壳体5910的前端。需要注意的是,所述麦克风5920、声学驱动器5930、导声管5940、隔板5950、电路板5960、蓝牙模块5970和电源模块5980等部件在壳体5910中位置可以依据开放双耳式耳机5900的需求而设置,附图中各部件的具体位置只是为了说明的目的,并不限制本申请的保护范围。如图61所示,声学驱动器5930-1和声学驱动器5930-2可以由隔板5950隔开。
在一些实施例中,所述壳体5910可以是一体成型的。在一些实施例中,所述壳体5910也可以是通过插接、卡接等方式装配而成的。在一些实施例中,壳体5910可以由金属材料(例如,铜、铝、钛、金等),合金材料(例如,铝合金、钛合金等),塑料材料(例如,聚乙烯、聚丙烯、环氧树脂、尼龙等)、纤维材料(例如,醋酸纤维、丙酸纤维、碳纤维等)等制成。在一些实施例中,壳体5910外部可以设置有护套。护套可由具有一定弹性的软质材料制成,例如软质的硅胶、橡胶等,为用户佩戴提供较好的触感。
所述壳体5910表面可设置导声孔,例如,第一导声孔5942-1、第二导声孔5942-2、第三导声孔5942-3、第四导声孔5942-4等。所述开放双耳式耳机5900可通过导声孔将声音通过空气输送给用户。声学驱动器5930可以将分频信号(例如,电信号)转换成声音信号,通过对应的导声管将声音信号传输到对应的导声孔,再由导声孔传输给用户。为了进一步说明壳体5910上导声孔的设置对开放双耳式耳机5900声音输出效果的影响,且考虑到声音可以被看作是从导声孔处向外传播,本申请中将开放双耳式耳机5900上的导声孔看作对外输出声音的声源进行描述(当然实际上的声源还是发声装置)。仅仅为了方便描述和出于说明的目的,当开放双耳式耳机5900上的导声孔尺寸较小时,每个导声孔可以近似视为一个点声源。
麦克风5920可用于接收外部的声音信号(例如,用户的语音信号),并将接收到的声音信号转化成电信号。麦克风5920接收到的声音信号经处理(例如,过滤、去噪、放大、平滑和/或分频等)后可以得到音频信号(或分频信号),并将所述音频信号通过开放双耳式耳机5900其他组件(如蓝牙组件、WIFI组件)发送给与开放双耳式耳机5900进行通讯的对象或设备。
声学驱动器5930可用于将输入的电信号转换成声音信号后输出。所述转换的方法可以是振动发声的方法。在一些实施例中,声学驱动器5930可以因为其各自频率响应的不同将接收到的音频信号处理成分频信号后,并转换成不同频段的声音信号,再分别将其输出给佩戴所述开放双耳式 耳机5900的用户。在一些实施例中,声学驱动器5930可以直接接收不同频段的分频信号,将接收到的分频信号转换成声音信号后,再分别将其输出给佩戴所述开放双耳式耳机5900的用户。在一些实施例中,所述声学驱动器5930可以包括至少两个扬声器单元(或换能器)。仅作为示例,图59、图60以及图61均只描述出两个扬声器单元,即,第一扬声器单元5930-1和第二扬声器单元5930-2。其中,第一扬声器单元5930-1对应低频信号,第二扬声器单元5930-2对应高频信号。在一些实施例中,声学驱动器5930可以包括气导扬声器、骨导扬声器、水声换能器、超声换能器等,或其组合。在一些实施例中,声学驱动器5930可以包括动圈式扬声器、动铁式扬声器、压电式扬声器、静电式扬声器、磁致伸缩式扬声器、平衡电枢式扬声器等,或其组合。在一些实施例中,每个扬声器单元可以具有相同的频响特性。在一些实施例中,每个扬声器单元可以具有不同的频响特性。
值得注意的是,特定扬声器单元与特定分频信号对应可以指输入所述特定扬声器单元的分频信号的频段可以与所述特定分频信号的频段相同,也可以指所述特定扬声器单元可以产生所述特定声音信号,还可以指通过所述特定扬声器单元处理后传出的信号经导声孔传出的声音信号的频段与所述特定分频信号相同。
每个扬声器单元可用于将输入的电信号(如不同的分频信号)通过振动发声的方法转换成声音信号后输出。在一些实施例中,每个扬声器单元可对应两个导声孔。每个扬声器单元可输出一组相位相反且强度相同的声音信号,并分别通过导声管5940和对应的两个导声孔5942传播给用户。例如,扬声器单元可包含振膜,其受到电信号驱动而产生振动,振膜正面和背面可以同时输出正相声音和反相声音。在一些实施例中,通过设置导声孔位置,可以使得正相声音和反相声音在听音位置(即,近场如人耳耳孔中心位置)的相位相同或相近而叠加;同时使得远场(周围环境中常见的漏音点)的正相声音和反相声音相位相反而抵消,这样可以在保证近场声音音量的前提下提高开放双耳式耳机5900的降漏音能力。在一些实施例中,对应于同一个扬声器单元的两个导声孔可以被称为双点声源。例如,与扬声器单元5930-1对应的第一导声孔5942-1和第二导声孔5942-2可以被称为双点声源;与扬声器单元5930-2对应的第三导声孔5942-3和第四导声孔5942-4也可以被称为双点声源。在一些实施例中,从双点声源中的每个导声孔传出的分频信号的频带和振幅可以相同,相位可以不同(例如,可以相反)。在一些实施例中,从双点声源中的每个导声孔传出的分频信号的频带可以相同,相位可以相同。在一些实施例中,扬声器单元可以只对应唯一的导声孔。即,扬声器单元对应一个单点声源。也就是说,所述扬声器单元可以只输出唯一的分频信号。例如,扬声器单元5930-1的朝向导声孔5942-2的一面可以是封闭的。可以通过使用两个扬声器单元(即两个单点声源)构造双点声源。例如,可以使用两个平衡电枢式扬声器构造高频双点声源(即,该双点声源对应高频信号)。在一些实施例中,每组双点声源中每个单点声源对应的分频信号的频率、相位、振幅导等参数可以各自调节。例如,每组双点声源中每个单点声源的频率可以相同,相位可以相同或不同。又例如,每组双点声源中每个单点声源的频率可以相同,振幅可以相同或不同。
在一些实施例中,扬声器单元所对应的分频信号的频段越高,则与其对应的导声孔之间的距离可以越短。例如,第一扬声器单元5930-1可用于输出低频信号,第二扬声器单元5930-2可用于输出高频信号,其中,第一扬声器单元5930-1对应的第一导声孔5942-1和第二导声孔5942-2之间的距离可以大于第二扬声器单元5930-2对应的第三导声孔5942-3和第四导声孔5942-4之间的距离。通过如此对扬声器单元所对应的导声孔距离的设置,可以提高开放双耳式耳机5900的降漏音能力。这是因为在双点声源间距固定的情况下,双点声源产生的漏音会随音频频率的增加而增加,降漏音能力随音频频率的增加而减弱。当频率大于某值时其产生的漏音会大于单点声源,此频率即为双点声源能够降漏音的上限频率。关于频率与双点声源距离以及降漏音的上限频率的更多描述可以参见本说明书其他地方(如图2和图3及其相关描述)。针对不同的分频信号,通过设置多组间距不同的双点声源,可获得较单点声源更强的降漏音能力。例如,可将音频信号分为如低、中、高3个频段。通过设置不同的间距以获得低频双点声源、中频双点声源和高频双点声源。其中,低频双点声源间距最大,中频双点声源间距居中,高频双点声源间距最小。在低频段,由于扩大声源间距后听音增量大于漏音音量增量,可实现在低频段有较高的音量输出。同时,由于在低频段双点声源的漏音原本就很少,在扩大声源间距后,稍有上升的漏音仍可保持较低水平。在高频段,通过减小声源间距,克服了高频降漏音上限频率过低,降漏音频段过窄的问题。其在更高的频段有更强的降漏音能力的效果,可以满足开放双耳的需求。
在一些实施例中,声学驱动器5930可以只包括第一扬声器单元5930-1和第二扬声器单元5930-2,其中第一扬声器单元5930-1对应低频信号,第二扬声器单元5930-2对应高频信号。在一些实施例中,低频与高频的分频点可以在600Hz-1.2kHz之间。在一些实施例中,第一扬声器单元 5930-1可以对应两个导声孔5942-1和5942-2;第二扬声器单元5930-2可以对应两个导声孔5942-3和5942-4。所述导声孔5942-1和5942-2之间的距离d l以及导声孔5942-3和5942-4之间的距离d h可以是任意值。仅作为示例,d l可以不大于40mm,例如,在20mm–40mm的范围内,d h可以不大于12mm,且d l大于第d h。优选地,d l可以不小于12mm,d h可以不大于7mm,例如,在3mm–7mm的范围内。更优选地,d l可以是30mm,d h可以是5mm。再例如,d l可以至少是d h的2倍。优选地,d l可以至少是d h的3倍。优选地,第d l可以至少是d h的5倍。在一些实施例中,
Figure PCTCN2020070542-appb-000016
的范围可以为2-10;优选地,
Figure PCTCN2020070542-appb-000017
的范围可以为2.5-9.5;更优选地,
Figure PCTCN2020070542-appb-000018
的范围可以为3-9;更优选地,
Figure PCTCN2020070542-appb-000019
的范围可以为3.5-8.5;更优选地,
Figure PCTCN2020070542-appb-000020
的范围可以为4-8;更优选地,
Figure PCTCN2020070542-appb-000021
的范围可以为4.5-7.5;更优选地,
Figure PCTCN2020070542-appb-000022
的范围可以为5-7;更优选地,
Figure PCTCN2020070542-appb-000023
的范围可以为5.5-6.5;更优选地,
Figure PCTCN2020070542-appb-000024
可以为6。
在一些实施例中,每组双点声源可以包括近耳点声源和远耳点声源。例如,当使用者佩戴开放双耳式耳机5900时,第一导声孔5942-1相对于第二导声孔5942-2距离耳孔更近,第三导声孔5942-3相对于第四导声孔5942-4距离耳孔更近,则第一导声孔5942-1和第三导声孔5942-3可以被称为近耳点声源,第二导声孔5942-2和第四导声孔5942-4可以被称为远耳点声源。在一些实施例中,第一导声孔5942-1和第三导声孔5942-3之间的距离L可以不大于20mm;可选地,L可以不大于18mm;更优选地,L可以不大于16mm;更优选地,L可以不大于14mm;更优选地,L可以不大于12mm;更优选地,L可以不大于10mm;更优选地,L可以不大于9mm;更优选地,L可以不大于8mm;更优选地,L可以不大于7mm;更优选地,L可以不大于6mm;更优选地,L可以不大于5mm;更优选地,L可以不大于4mm;更优选地,L可以不大于3mm;更优选地,L可以不大于2mm;更优选地,L可以不大于1mm;更优选地,L可以等于0。当L可以等于0时,各组双点声源中的近耳点声源可以合并成一个导声孔,其可作为主导声孔将声音传播给使用者的耳孔。例如,第一导声孔5942-1和第三导声孔5942-3可以合并成一个导声孔(如图62中的导声孔5942-5)。在一些实施例中,至少一个导声孔的至少一部分结构可朝向使用者的耳朵。这样,从该导声孔传出的声音能够向着使用者耳孔传播(如图62所示)。
在一些实施例中,导声孔的形状可以包括但不限于条形、圆形、椭圆形、方形、梯形、圆角四边形、三角形、不规则图形等中的一种或其任意组合。在一些实施例中,各个导声孔的形状可以相同或不同。例如,第一导声孔5942-1和第三导声孔5942-3的形状可呈圆形,第二导声孔5942-2和第四导声孔5942-4的形状可呈椭圆形。又例如,第一导声孔5942-1的形状可呈条形,第二导声孔5942-2的形状可呈椭圆形,第三导声孔5942-3的形状可呈圆形,而第四导声孔5942-4的形状可呈三角形。再例如,第一导声孔5942-1、第二导声孔5942-2、第三导声孔5942-3以及第四导声孔5942-4的形状均可呈条形。
在一些实施例中,不同扬声器单元对应的导声孔孔径或大小可以相同或不同。在一些实施例中,各个导声孔的大小不同时可能会使得相应的听音和/或漏音的音量也不同。在一些实施例中,通过设置近远孔径比(即,近耳点导声孔的孔径大小与远耳点导声孔的孔径的大小的比值),双点声源可获得更强的降漏音能力。在一些实施例中,双点声源对应的分频信号频段越高,其近远孔径比可以越小。也就是说,随着双点声源对应的分频信号频段变高,近耳点声源的孔径与远耳点声源的孔径可以逐渐趋于相同。例如,对应低频信号的双点声源,近耳点声源孔径可设置为大于远耳点声源孔径;对应高频信号的双点声源,近耳点声源孔径可设置为与远耳点声源孔径相同或相近。
在一些实施例中,对应于低频信号的双点声源,近远孔径比可以不小于1;可选地,近远孔径比可以不小于5;更优选地,近远孔径比可以不小于10;更优选地,近远孔径比可以不小于15;更优选地,近远孔径比可以不小于20;更优选地,近远孔径比可以不小于25;更优选地,近远孔径比可以不小于30;
在一些实施例中,对应于高频信号的双点声源,近远孔径比可以不大于10;优选地,近远孔径比可以不大于8;更优选地,近远孔径比可以不大于6;更优选地,近远孔径比可以不大于4;更优选地,近远孔径比可以不大于3;更优选地,近远孔径比可以不大于2;更优选地,近远孔径比可以等于1。
在一些实施例中,通过调节不同的导声孔的位置,可以使使用者获得的不同的听音效果。关于导声孔位置与听音位置的更多描述可以参见本说明书其他地方(如图28及其相关描述)。在一些实施例中,为了保证用户有较好的听音效果,当用户佩戴开放双耳式耳机5900时,每组双点声源的近耳点声源的中心点与用户耳孔6210的中心点之间的距离D n可以不大于10cm;优选地,距离D n 可以不大于9cm;更优选地,距离D n可以不大于8cm;更优选地,距离D n可以不大于7cm;更优选地,距离D n可以不大于6cm;更优选地,距离D n可以不大于5cm;更优选地,距离D n可以不大于4cm;更优选地,距离D n可以不大于3cm;更优选地,距离D n可以不大于2.5cm;更优选地,距离D n可以不大于2cm;更优选地,距离D n可以不大于1.5cm;更优选地,距离D n可以不大于1cm;更优选地,距离D n可以不大于0.5cm;更优选地,距离D n可以不大于0.4cm;更优选地,距离D n可以不大于0.3cm;更优选地,距离D n可以不大于0.2cm;更优选地,距离D n可以不大于0.1cm。
在一些实施例中,开放双耳式耳机5900可以包括一个低频扬声器单元和一个高频扬声器单元,低频扬声器单元对应的近耳导声孔可以与高频扬声器单元的对应的近耳导声孔合并成一个导声孔。例如,如图62所示,第一导声孔5942-1和第三导声孔5942-3可以合并成导声孔5942-5。在一些实施例中,导声孔5942-5的一端可以设置在端面5912上,导声孔5942-5的另一端可以设置在端面5914上。这样设置可以使用户佩戴开放双耳式耳机5900时,第一导声孔5942-1和第三导声孔5942-3(即,近耳点声源)朝向用户耳孔,使用户听到的声音(即,听音)音量更高。在一些实施例中,第二导声孔5942-2可以设置在端面5912上。第四导声孔5942-4可设置在端面5916上。在一些实施例中,第一导声孔5942-1、第二导声孔5942-2、第三导声孔5942-3和第四导声孔5942-4都可以设置在端面5912(或端面5916)上。在一些实施例中,第三导声孔5942-3可以设置在端面5912上和第四导声孔5942-4可以设置在端面5912的对立面。在一些实施例中,如图59所示,第一导声孔5942-1和第二导声孔5942-2可以设置在壳体5910的前端的任何部位(例如端面5912、端面5914或端面5916),第三导声孔5942-3和第四导声孔5942-4可以设置在壳体5910的后端任何部位。在一些实施例中,第一导声孔5942-1和第三导声孔5942-3可以设置在壳体5910的前端,第二导声孔5942-2和第四导声孔5942-4可以设置在壳体5910的后端。在一些实施例中,当用户佩戴开放双耳式耳机5900时,导声孔5942-5的中心点与最近一侧的耳孔中心点的距离D可以不大于10cm;优选地,距离D可以不大于9cm;更优选地,距离D可以不大于8cm;更优选地,距离D可以不大于7cm;更优选地,距离D可以不大于6cm;更优选地,距离D可以不大于5cm;更优选地,距离D可以不大于4cm;更优选地,距离D可以不大于3cm;更优选地,距离D可以不大于2.5cm;更优选地,距离D可以不大于2cm;更优选地,距离D可以不大于1.5cm;更优选地,距离D可以不大于1cm;更优选地,距离D可以不大于0.5cm;更优选地,距离D可以不大于0.4cm;更优选地,距离D可以不大于0.3cm;更优选地,距离D可以不大于0.2cm;更优选地,距离D可以不大于0.1cm。
在一些实施例中,可以在双点声源之间设置挡板结构,在远场漏音音量不显著增加的情况下,显著提升近场听音位置的音量,从而提升用户的听音效果。关于双点声源中设置挡板来提升听音效果的更多内容可以参见本说明书其他地方(如图11至图34及其相关描述)。在一些实施例中,低频段的双点声源可以包括一个设置于近耳点的导声孔,与其对应的远耳点导声孔可以设置在壳体5910的后端。这样设置可以使用户佩戴开放双耳式耳机5900时,近耳点声源和远耳点声源之间相隔用户耳朵轮廓。此时,耳朵轮廓可以起到挡板的作用,显著提升近场听音位置的音量,从而提升用户的听音效果。
在一些实施例中,由于导声管内媒质的内摩擦力或粘滞力可以对声传播造成较大影响,因此导声管的管径不能过小,否则容易导致声音产生过多损失,减小输出音量。然而,当导声管管径过大时,若传递的声音大于某一频率,管内会产生高次波。因此为了使导声管在所要传递的声音范围内不产生高次波,而只存在沿管方向传播的平面波,可以合理设置导声管半径。在一些实施例中,导声管半径可以为0.5mm-10mm;优选地,导声管半径可以为0.5mm-9mm;更优选地,导声管半径可以为0.7mm-8mm;更优选地,导声管半径可以为0.9mm-7.5mm;更优选地,导声管半径可以为1mm-7mm;更优选地,导声管半径可以为1.5mm-6.5mm;更优选地,导声管半径可以为2mm-6mm;更优选地,导声管半径可以为2.5mm-5.5mm;更优选地,导声管半径可以为3mm-5mm;更优选地,导声管半径可以为3.5mm-4.5mm;更优选地,导声管半径可以为3.7mm-4.2mm。
在一些实施例中,导声管与管口(即,导声孔)辐射阻抗能够相互作用,使得特定频率的声音在管中形成驻波,从而导致输出的声音会在某些频率上形成峰/谷,影响声音输出效果。导声管长度越长,产生峰/谷的频率越低,峰/谷的数量越多。优选地,导声管长度不大于300mm;更优选地,导声管长度不大于250mm;更优选地,导声管长度不大于200mm;更优选地,导声管长度不大于150mm;更优选地,导声管长度不大于100mm;更优选地,导声管长度不大于50mm;更优选地,导声管长度不大于30mm;更优选地,导声管长度不大于20mm;更优选地,导声管长度不大于10mm。在一些实施例中,可以在导声孔处设置阻抗匹配层以减小峰/谷的影响。
在一些实施例中,导声管的长径比(即,长度比直径)也会对其内部的声音产生影响,其具有低通滤波的效果,同时也具有阻尼的效果,最终会导致音量变小,高频音量较低频的削弱更大。为了保证声音衰减不至于过大而影响听音。优选地,导声管长径比可以不大于200;更优选地,导声管长径比可以不大于180;更优选地,导声管长径比可以不大于160;更优选地,导声管长径比可以不大于150;更优选地,导声管长径比可以不大于130;更优选地,导声管长径比可以不大于110;更优选地,导声管长径比可以不大于80;更优选地,导声管长径比可以不大于50;更优选地,导管长径比可以不大于30;更优选地,导管长径比可以不大于10。
在一些实施例中,各个导声管的参数(例如,长度、半径、长径比等)可以相同或不同。例如,第一导声管5940-1的长度可以为5mm,第二导声管5940-2的长度可以为30mm。又例如,第一导声管5940-1和第三导声管5940-3的长度可以均为5mm。
在一些实施例中,由于各点声源对应的分频信号的相位不同,听音及漏音的音量也可以不同,因此可以通过调节各点声源的相位来实现不同的输出效果。在一些实施例中,为了减小开放双耳式耳机5900的远场漏音,可以使得声学驱动器5930-1分别在第一导声孔5942-1和第二导声孔5942-2处产生幅值相等(或近似相等)、相位相反(或近似相反)的低频声音,以及使得声学驱动器5930-2分别在第三导声孔5942-3和第四导声孔5942-4处产生幅值相等(或近似相等)、相位相反(或近似相反)的高频声音。在一些实施例中,对应双点声源中的分频信号的频段越高,其相位差可以越大。例如,在通过设置两个扬声器单元构成的双点声源中,对于对应低频信号的双点声源,可以调节从两个点声源传出的低频信号的相位差等于或近似等于0°;对于对应高频信号的双点声源,可以调节从两个点声源传出的高频信号的相位差等于或近似等于180°。在一些实施例中,可以通过调节双点声源的相位,使双点声源到达近场听音位置(或耳孔中心点)处的相位差等于或近似等于0°,同时使双点声源到达远场处的相位差等于或近似等于180°。在一些实施例中,双点声源的相位差可以等于5°、10°、20°、50°、70°、90°、100°、120°、130°、150°、170°、175°、180°等,或其组合。
电路板5960可用于集成各种元器件,从而实现各种功能。例如,电路板上可以集成有分频处理单元,实现对音频信号的分频处理。再例如,电路板上可以集成有信号处理单元,来调节音频信号的相位、振幅等。蓝牙模块5970可用于使开放双耳式耳机5900与外部设备进行通信。例如,开放双耳式耳机5900与外部音响设备可以通过蓝牙模块5970进行通信。在一些实施例中,蓝牙模块5970可以集成在电路板5960上。电源模块5980可用于为开放双耳式耳机5900的各个部件提供电能。在一些实施例中,电源模块5980可以包括蓄电池、干电池、锂电池、丹聂耳电池、燃料电池等。开放双耳式耳机5900的电路板5960、蓝牙模块5970、电源模块5980等其他结构可参考现有技术中常规耳机的设置,此处不再赘述。
应当注意以上对开放双耳式耳机5900的描述旨在说明,而不是限制本申请的范围。许多替代、修改和变化对于本领域普通技术人员来说是显而易见的。本文描述的示例性实施例的特征、结构、方法和其他特征可以以各种方式组合以获得附加和/或替代示例性实施例。例如,开放双耳式耳机5900可以包括一个或以上附加组件。附加地或替代地,可以省略上述开放双耳式耳机5900的一个或以上组件。例如,可以在开放双耳式耳机5900中增加反馈麦克风。反馈麦克风可以用于降低残余噪声(例如,电路电流噪声)。又例如,隔板5950可以省略。再例如,壳体5910上可以设置有一个或多个按键(例如,音量增加键、音量减小键、开关机键、蓝牙切换键等)。再例如,开放双耳式耳机5900可以通过蓝牙模块5970与用户终端连接。用户终端可以显示控制界面,用户可以通过控制界面发出控制指令,例如,增大/减小音量等,控制信号可以被蓝牙模块5970接收并进一步实现对耳机的控制。在一些实施例中,蓝牙模块5970可以省略。开放双耳式耳机5900可以通过数据线与外部设备进行通信。
图63A示出了根据本申请的一些实施例的第一扬声器单元5930-1的示例性频率响应6310和第二扬声器单元5930-2的示例性频率响应6320。图63B示出了根据本申请的一些实施例的第一扬声器单元5930-1的示例性频率响应6310和第二扬声器单元5930-2的另一示例性频率响应6330。第一扬声器单元5930-1可以被配置为处理音频信号以生成第一分频信号。第二带扬声器单元5930-2可以被配置为处理音频信号以生成第二分频信号。在分频信号中,第二分频信号可以与第一分频信号在频域中相邻。
在一些实施例中,第一扬声器单元5930-1和第二扬声器单元5930-2的频率响应可以具有相同的频率带宽。例如,如图63A所示,第一扬声器单元5930-1的频率响应6310具有低半功率点f1,高半功率点f2和中心频率f3。如这里所使用的,某个频率响应的半功率点可以指具有特定功率 抑制(例如,-3dB)的频率点。频率响应6310的频率带宽可以等于f2与f1之间的差。第二扬声器单元5930-2的频率响应6320具有低半功率点f2,高半功率点f4和中心频率f5。频率响应6320的频率带宽可以等于f4与f2之间的差。第一扬声器单元5930-1和第二扬声器单元5930-2的频率带宽可以彼此相等。
在一些实施例中,第一扬声器单元5930-1和第二扬声器单元5930-2的频率响应可以具有不同的频率带宽。例如,如图63B所示,第二扬声器单元5930-2的频率响应6330具有低半功率点f2,高半功率点f7(大于f4)和中心频率f6。第二扬声器单元5930-2的频率响应6330的频率带宽可以等于f7与f2之间的差,该差值可以大于第一扬声器单元5930-1的频率响应6310的频率带宽。
在一些实施例中,第一扬声器单元5930-1和第二扬声器单元5930-2的频率响应可以在特定频率点相交。频率响应的相交点可以导致第一和第二频率响应之间出现一定的重叠范围。在理想情况下,第一扬声器单元5930-1和第二扬声器单元5930-2的频率响应之间可能没有重叠范围。然而,实际上,可能存在一定的重叠范围,这可能导致第一分频信号和第二分频信号之间出现干扰范围,并影响第一分频信号和第二分频信号的质量。例如,重叠范围越大,干扰范围可能越大,并且第一和第二分频信号的质量可能越低。
在一些实施例中,第一扬声器单元5930-1和第二扬声器单元5930-2的频率响应相交的特定频率点可以接近第一扬声器单元5930-1的频率响应的半功率点和/或第二扬声器单元5930-2的频率响应的半功率点。以图63A为例,频率响应6310和频率响应6320在频率响应6310的高半功率点f2处相交,该相交点也是频率响应6320的低半功率点。如这里所使用的,如果频率点和半功率点之间的功率电平差不大于阈值(例如,2dB),则可以认为频率点接近半功率点。在这种情况下,在第一扬声器单元5930-1和第二扬声器单元5930-2的频率响应中可能存在较少的能量损失或重复,这可能导致第一扬声器单元5930-1和第二扬声器单元5930-2的频率响应之间出现适当重叠范围。例如,当半功率点为-3dB,阈值为-2dB时,若频率响应在大于-5dB和/或小于-1dB的功率电平的频率点相交时,可以认为重叠范围相对较小。在一些实施例中,可以调整第一扬声器单元5930-1和第二扬声器单元5930-2的频率响应的中心频率和/或带宽,来获得第一扬声器单元5930-1和第二扬声器单元5930-2的频率响应之间的更窄或适当的重叠范围,以避免第一和第二分频信号的频带之间的重叠。
图63A和63B中所示的应当注意示例旨在说明,而不是限制本申请的范围。对于本领域的普通技术人员,可以在本申请的教导下进行多次变化与修改。然而,这些变化和修改不会背离本申请的范围。例如,第一扬声器单元5930-1和/或第二扬声器单元5930-2的频率响应的一个或以上参数(例如,频率带宽、高半功率点、低半功率点和/或中心频率)可以改变。
图64是根据本申请一些实施例所示的示例性开放双耳式耳机的示意图。如图64所示,开放双耳式耳机6400可以称为头箍式耳机。所述开放双耳式耳机6400可以与所述开放双耳式耳机5900具有类似的配置。例如,所述开放双耳式耳机6400可以包括壳体6410、麦克风、声学驱动器(如扬声器单元)、与声学驱动器对应的导声管、隔板、电路板、蓝牙模块以及电源模块等。在所述壳体6410上可以设置有与声学驱动器对应的第一导声孔6420-1、第二导声孔6420-2、第三导声孔6420-3以及第四导声孔6420-4。如图64所示,开放双耳式耳机6400的第一导声孔6420-1和第二导声孔6420-2对应低频扬声器单元;第三导声孔6420-3和第四导声孔6420-4对应高频扬声器单元。在一些实施例中,第一导声孔6420-1可以设置在端面6414上;第二导声孔6420-2可以设置在端面6412上,且位于壳体6410的顶部;第三导声孔6420-3和第四导声孔6420-4可以均设置在端面6412上,且位于壳体6410的左端和/或右端的中部。更多关于开放双耳式耳机6400的描述,可以结合开放双耳式耳机5900的描述,此处不再赘述。例如,当用户佩戴开放双耳式耳机6400时,第一导声孔6420-1的中心点与最近一侧的用户耳孔中心点之间的距离可以和开放双耳式耳机5900中导声孔5942-5的中心点与最近一侧的用户耳孔中心点之间的距离相同。再例如,开放双耳式耳机6400中第一导声孔6420-1、第二导声孔6420-2、第三导声孔6420-3以及第四导声孔6420-4的形状和大小可以分别与开放双耳式耳机5900中第一导声孔5942-1、第二导声孔5942-2、第三导声孔5942-3以及第四导声孔5942-4相同。
需要说明的是,本申请主要以耳挂式耳机为例对本申请所披露的开放双耳式耳机进行了解释,但不应限定本发明在其他开放双耳式耳机中的使用范围。本申请所披露的开放双耳式耳机中声学驱动器、导声管、导声孔的位置也仅为示例,而不是限制本申请的范围。许多替代、修改和变化对于本领域普通技术人员来说是显而易见的。本文描述的示例性实施例的特征,结构,方法和其他特征可以以各种方式组合以获得附加和/或替代示例性实施例。例如,开放双耳式耳机5900可以包 括三个扬声器单元,三个扬声器单元分别对应低、中、高三个频段的语音信号(即,低、中、高频扬声器单元)。低频扬声器单元及与其对应的导声管和导声孔可以均位于壳体前端,中频扬声器单元及与其对应的导声管和导声孔可以均位于壳体中部,高频扬声器单元及与其对应的导声管和导声孔可以均位于壳体后端。又例如,低、中、高频扬声器单元可以设置在壳体后端,而通过与其分别对应的导声管使各个导声孔均位于壳体的前端。再例如,开放双耳式耳机6400中的高频/低频扬声器单元可以对应四个导声管及导声孔。所述四个导声孔可以两两分别设置在壳体6410左右两侧作为用户左右耳的低频双点声源。
本申请实施例可能带来的有益效果包括但不限于:在本申请的一个方面,(1)通过设置高频双点声源和低频双点声源实现不同频段下的声音输出,具有更好的声音输出效果;(2)通过设置不同间距的双点声源,使得声学输出装置在更高的频段有更强的降漏音能力的效果,满足开放双耳声学输出装置的需求;在本申请的另一方面,(3)通过设置挡板结构增加双点声源到听音位置的声程差,提高近场的听音音量并降低远场漏音音量,具有更好的声音输出效果;在本申请的又一方面,(4)实现声学输出装置与耳孔的开放式耦合,避免了使用者长期佩戴传统耳机而造成的耳朵听力下降、存在安全隐患等问题;(5)从多个角度优化不同产品形态(例如,眼镜、耳机)的声学输出装置,例如,通过麦克风降噪系统提高收音效果、利用FPC转接简化声学输出装置的走线,减小导线之间的相互干扰、结合蓝牙技术、按键技术提高声学输出装置的便携性和可操作性等等。需要说明的是,不同实施例可能产生的有益效果不同,在不同的实施例里,可能产生的有益效果可以是以上任意一种或几种的组合,也可以是其他任何可能获得的有益效果。
上文已对基本概念做了描述,显然,对于本领域技术人员来说,上述详细披露仅仅作为示例,而并不构成对本申请的限定。虽然此处并没有明确说明,本领域技术人员可能会对本申请进行各种修改、改进和修正。该类修改、改进和修正在本申请中被建议,所以该类修改、改进、修正仍属于本申请示范实施例的精神和范围。
同时,本申请使用了特定词语来描述本申请的实施例。如“一个实施例”、“一实施例”、和/或“一些实施例”意指与本申请至少一个实施例相关的某一特征、结构或特点。因此,应强调并注意的是,本说明书中在不同位置两次或多次提及的“一实施例”或“一个实施例”或“一个替代性实施例”并不一定是指同一实施例。此外,本申请的一个或多个实施例中的某些特征、结构或特点可以进行适当的组合。
一些实施例中使用了描述成分、属性数量的数字,应当理解的是,此类用于实施例描述的数字,在一些示例中使用了修饰词“大约”、“近似”或“大体上”来修饰。除非另外说明,“大约”、“近似”或“大体上”表明所述数字允许有±20%的变化。相应地,在一些实施例中,说明书和权利要求中使用的数值参数均为近似值,该近似值根据个别实施例所需特点可以发生改变。在一些实施例中,数值参数应考虑规定的有效数位并采用一般位数保留的方法。尽管本申请一些实施例中用于确认其范围广度的数值域和参数为近似值,在具体实施例中,此类数值的设定在可行范围内尽可能精确。
最后,应当理解的是,本申请中所述实施例仅用以说明本申请实施例的原则。其他的变形也可能属于本申请的范围。因此,作为示例而非限制,本申请实施例的替代配置可视为与本申请的教导一致。相应地,本申请的实施例不仅限于本申请明确介绍和描述的实施例。

Claims (20)

  1. 一种眼镜,包括镜框,镜片和镜腿,其特征在于,所述眼镜还包括:
    至少一个低频声学驱动器,所述至少一个低频声学驱动器从至少两个第一导声孔输出声音;
    至少一个高频声学驱动器,所述至少一个高频声学驱动器从至少两个第二导声孔输出声音;以及
    控制器,被配置为使所述低频声学驱动器输出在第一频率范围内的声音,并且使所述高频声学驱动器输出在第二频率范围内的声音,其中,所述第二频率范围中包括高于所述第一频率范围的频率。
  2. 如权利要求1所述的眼镜,其特征在于,所述两个第一导声孔之间具有第一间距,所述两个第二导声孔之间具有第二间距,且所述第一间距大于所述第二间距。
  3. 如权利要求2所述的眼镜,其特征在于,所述第一间距在20mm-40mm的范围内,所述第二间距在3mm-7mm的范围内。
  4. 如权利要求2所述的眼镜,其特征在于,所述第一间距至少是所述第二间距的2倍。
  5. 如权利要求1所述的眼镜,其特征在于,所述第一频率范围包括低于650Hz的频率,所述第二频率范围包括高于1000Hz的频率。
  6. 如权利要求1所述的眼镜,其特征在于,所述第一频率范围和所述第二频率范围存在交叠。
  7. 如权利要求1所述的眼镜,其特征在于,所述控制器包括:
    电子分频模块,用于对音源信号分频以产生对应第一频率范围的低频信号和对应第二频率范围的高频信号,其中,所述低频信号驱动所述至少一个低频声学驱动器产生声音,所述高频信号驱动所述至少一个高频声学驱动器产生声音。
  8. 如权利要求7所述的眼镜,其特征在于,所述电子分频模块至少包括无源滤波器、有源滤波器、模拟滤波器、数字滤波器中的一种。
  9. 如权利要求1所述的眼镜,其特征在于,所述至少一个低频声学驱动器包括第一换能器,所述至少一个高频声学驱动器包括第二换能器,其中,所述第一换能器和所述第二换能器具有不同的频率响应特性。
  10. 如权利要求9所述的眼镜,其特征在于,所述第一换能器包括低频扬声器,所述第二换能器包括高频扬声器。
  11. 如权利要求1所述的眼镜,其特征在于,所述至少一个低频声学驱动器和所述至少两个第一导声孔之间形成第一声学路径,所述至少一个高频声学驱动器和所述至少两个第二导声孔之间形成第二声学路径,所述第一声学路径和所述第二声学路径具有不同的频率选择特性。
  12. 如权利要求11所述的眼镜,其特征在于,所述第一声学路径中包括声阻材料,所述声阻材料的声学阻抗在5MKS瑞利到500MKS瑞利的范围内。
  13. 如权利要求1所述的眼镜,其特征在于,包括:
    支撑结构,适应于佩戴在用户身体上,所述支撑结构被配置为承载所述至少一个高频声学驱动器和所述至少一个低频声学驱动器,且使得所述至少两个第一导声孔和至少两个第二导声孔位于离开用户耳朵的位置。
  14. 如权利要求13所述的眼镜,其特征在于,所述至少两个第二导声孔比所述至少两个第一导声孔更靠近用户的耳朵。
  15. 如权利要求13所述的眼镜,其特征在于,所述至少两个第一导声孔和所述至少两个第二导声孔位于所述支撑结构上。
  16. 如权利要求13所述的眼镜,其特征在于,所述低频声学驱动器被壳体封装,所述壳体限定所述低频声学驱动器的前室和后室。
  17. 如权利要求13所述的眼镜,其特征在于,所述低频声学驱动器的所述前室声学耦合到所述至少两个第一导声孔中的一个第一导声孔,所述后室被声学耦合到所述至少两个第一导声孔中的另一个第一导声孔。
  18. 如权利要求13所述的眼镜,其特征在于,所述高频声学驱动器被壳体封装,所述壳体限定所述高频声学驱动器的前室和后室。
  19. 如权利要求18所述的眼镜,其特征在于,所述高频声学驱动器的所述前室声学耦合到所述至少两个第二导声孔中的一个第二导声孔,所述高频声学驱动器的所述后室声学耦合到所述至少两个第二导声孔中的另一个第二导声孔。
  20. 如权利要求1-19任一项所述的眼镜,其特征在于,从所述至少两个第一导声孔中输出的声音具有相反的相位。
PCT/CN2020/070542 2019-04-30 2020-01-06 一种声学输出装置 WO2020220735A1 (zh)

Priority Applications (10)

Application Number Priority Date Filing Date Title
KR1020217038992A KR102533573B1 (ko) 2019-04-30 2020-01-06 음향 출력 디바이스
EP20798417.0A EP3952331A4 (en) 2019-04-30 2020-01-06 ACOUSTIC EXIT DEVICE
JP2021564592A JP7333829B2 (ja) 2019-04-30 2020-01-06 音響出力装置
BR112021021750A BR112021021750A2 (pt) 2019-04-30 2020-01-06 Dispositivo de saída acústica
US17/226,109 US11503395B2 (en) 2019-04-30 2021-04-09 Acoustic output device
US18/053,376 US11985465B2 (en) 2019-04-30 2022-11-08 Acoustic output device
US18/150,179 US11985466B2 (en) 2019-04-30 2023-01-04 Acoustic output device
US18/150,187 US12075207B2 (en) 2019-04-30 2023-01-04 Acoustic output device
US18/151,397 US11838712B2 (en) 2019-04-30 2023-01-06 Acoustic output device
US18/151,460 US11838713B2 (en) 2019-04-30 2023-01-08 Acoustic output device

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
CN201910364346.2 2019-04-30
CN201910364346 2019-04-30
CN201910888762.2 2019-09-19
CN201910888067.6 2019-09-19
CN201910888067 2019-09-19
CN201910888762 2019-09-19

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/226,109 Continuation US11503395B2 (en) 2019-04-30 2021-04-09 Acoustic output device

Publications (1)

Publication Number Publication Date
WO2020220735A1 true WO2020220735A1 (zh) 2020-11-05

Family

ID=73028591

Family Applications (19)

Application Number Title Priority Date Filing Date
PCT/CN2019/130921 WO2020220722A1 (zh) 2019-04-30 2019-12-31 一种声学输出装置
PCT/CN2019/130944 WO2020220724A1 (zh) 2014-01-06 2019-12-31 一种声学输出装置
PCT/CN2019/130942 WO2020220723A1 (zh) 2019-04-30 2019-12-31 一种声学输出装置
PCT/CN2019/130880 WO2020220719A1 (zh) 2014-01-06 2019-12-31 一种声学输出装置
PCT/CN2019/130886 WO2020220721A1 (zh) 2019-04-30 2019-12-31 一种声学输出装置
PCT/CN2019/130884 WO2020220720A1 (zh) 2014-01-06 2019-12-31 一种声学输出装置
PCT/CN2020/070551 WO2020220738A1 (zh) 2019-04-30 2020-01-06 一种声学输出装置及其按键
PCT/CN2020/070539 WO2020220733A1 (zh) 2014-01-06 2020-01-06 一种开放双耳式耳机
PCT/CN2020/070545 WO2020220736A1 (zh) 2019-04-30 2020-01-06 一种声学输出装置及其组件
PCT/CN2020/070550 WO2020220737A1 (zh) 2019-04-30 2020-01-06 一种麦克风降噪系统及使用该系统的智能眼镜
PCT/CN2020/070540 WO2020220734A1 (zh) 2019-04-30 2020-01-06 一种音频眼镜
PCT/CN2020/070542 WO2020220735A1 (zh) 2019-04-30 2020-01-06 一种声学输出装置
PCT/CN2020/083631 WO2020220947A1 (en) 2011-12-23 2020-04-08 Acoustic output apparatus and method thereof
PCT/CN2020/084161 WO2020220970A1 (en) 2011-12-23 2020-04-10 Acoustic output apparatus and methods thereof
PCT/CN2020/087034 WO2020221169A1 (en) 2014-01-06 2020-04-26 Acoustic device
PCT/CN2020/087002 WO2020221163A1 (en) 2011-12-23 2020-04-26 Acoustic output apparatus and method thereof
PCT/CN2020/087526 WO2020221254A1 (en) 2011-12-23 2020-04-28 Acoustic output apparatus
PCT/CN2020/088482 WO2020221359A1 (en) 2011-12-23 2020-04-30 Open earphone
PCT/CN2020/088190 WO2020221337A1 (zh) 2019-04-30 2020-04-30 一种声学输出装置和降噪传声装置

Family Applications Before (11)

Application Number Title Priority Date Filing Date
PCT/CN2019/130921 WO2020220722A1 (zh) 2019-04-30 2019-12-31 一种声学输出装置
PCT/CN2019/130944 WO2020220724A1 (zh) 2014-01-06 2019-12-31 一种声学输出装置
PCT/CN2019/130942 WO2020220723A1 (zh) 2019-04-30 2019-12-31 一种声学输出装置
PCT/CN2019/130880 WO2020220719A1 (zh) 2014-01-06 2019-12-31 一种声学输出装置
PCT/CN2019/130886 WO2020220721A1 (zh) 2019-04-30 2019-12-31 一种声学输出装置
PCT/CN2019/130884 WO2020220720A1 (zh) 2014-01-06 2019-12-31 一种声学输出装置
PCT/CN2020/070551 WO2020220738A1 (zh) 2019-04-30 2020-01-06 一种声学输出装置及其按键
PCT/CN2020/070539 WO2020220733A1 (zh) 2014-01-06 2020-01-06 一种开放双耳式耳机
PCT/CN2020/070545 WO2020220736A1 (zh) 2019-04-30 2020-01-06 一种声学输出装置及其组件
PCT/CN2020/070550 WO2020220737A1 (zh) 2019-04-30 2020-01-06 一种麦克风降噪系统及使用该系统的智能眼镜
PCT/CN2020/070540 WO2020220734A1 (zh) 2019-04-30 2020-01-06 一种音频眼镜

Family Applications After (7)

Application Number Title Priority Date Filing Date
PCT/CN2020/083631 WO2020220947A1 (en) 2011-12-23 2020-04-08 Acoustic output apparatus and method thereof
PCT/CN2020/084161 WO2020220970A1 (en) 2011-12-23 2020-04-10 Acoustic output apparatus and methods thereof
PCT/CN2020/087034 WO2020221169A1 (en) 2014-01-06 2020-04-26 Acoustic device
PCT/CN2020/087002 WO2020221163A1 (en) 2011-12-23 2020-04-26 Acoustic output apparatus and method thereof
PCT/CN2020/087526 WO2020221254A1 (en) 2011-12-23 2020-04-28 Acoustic output apparatus
PCT/CN2020/088482 WO2020221359A1 (en) 2011-12-23 2020-04-30 Open earphone
PCT/CN2020/088190 WO2020221337A1 (zh) 2019-04-30 2020-04-30 一种声学输出装置和降噪传声装置

Country Status (6)

Country Link
US (46) US11425481B2 (zh)
EP (3) EP3952336A4 (zh)
JP (4) JP7524219B2 (zh)
KR (3) KR102533570B1 (zh)
BR (3) BR112021021746A2 (zh)
WO (19) WO2020220722A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2807021C1 (ru) * 2021-04-25 2023-11-08 Шэньчжэнь Шокз Ко., Лтд. Наушники

Families Citing this family (62)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11716575B2 (en) 2011-12-23 2023-08-01 Shenzhen Shokz Co., Ltd. Bone conduction speaker and compound vibration device thereof
US11641551B2 (en) 2011-12-23 2023-05-02 Shenzhen Shokz Co., Ltd. Bone conduction speaker and compound vibration device thereof
US11595760B2 (en) 2011-12-23 2023-02-28 Shenzhen Shokz Co., Ltd. Bone conduction speaker and compound vibration device thereof
US11589171B2 (en) 2014-01-06 2023-02-21 Shenzhen Shokz Co., Ltd. Systems and methods for suppressing sound leakage
US11706574B2 (en) 2014-01-06 2023-07-18 Shenzhen Shokz Co., Ltd. Systems and methods for suppressing sound leakage
US11832060B2 (en) 2014-01-06 2023-11-28 Shenzhen Shokz Co., Ltd. Systems and methods for suppressing sound leakage
US11622209B2 (en) 2014-01-06 2023-04-04 Shenzhen Shokz Co., Ltd. Systems and methods for suppressing sound leakage
US11627419B2 (en) 2014-01-06 2023-04-11 Shenzhen Shokz Co., Ltd. Systems and methods for suppressing sound leakage
GB2536650A (en) 2015-03-24 2016-09-28 Augmedics Ltd Method and system for combining video-based and optic-based augmented reality in a near eye display
US10757501B2 (en) 2018-05-01 2020-08-25 Facebook Technologies, Llc Hybrid audio system for eyewear devices
WO2019211741A1 (en) 2018-05-02 2019-11-07 Augmedics Ltd. Registration of a fiducial marker for an augmented reality system
WO2020021877A1 (ja) * 2018-07-27 2020-01-30 ソニー株式会社 音響出力装置
US11766296B2 (en) 2018-11-26 2023-09-26 Augmedics Ltd. Tracking system for image-guided surgery
CN109547906B (zh) 2019-01-05 2023-12-08 深圳市韶音科技有限公司 骨传导扬声装置
WO2020220722A1 (zh) 2019-04-30 2020-11-05 深圳市韶音科技有限公司 一种声学输出装置
US11980506B2 (en) 2019-07-29 2024-05-14 Augmedics Ltd. Fiducial marker
US20210152907A1 (en) * 2019-08-09 2021-05-20 Sds Asia Limited, Bvi #1748971 Speaker apparatus
US20210105556A1 (en) * 2019-10-08 2021-04-08 Soniphi Llc Systems & Methods For Expanding Sensation Using Isobaric Chambers
US11382712B2 (en) 2019-12-22 2022-07-12 Augmedics Ltd. Mirroring in image guided surgery
KR20210089292A (ko) 2020-01-07 2021-07-16 삼성전자주식회사 음성 인식 시스템 및 이를 이용한 디스플레이 장치
DE102020201533A1 (de) * 2020-02-07 2021-08-12 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Vorrichtung zur schallwandlung mit einem akustischen filter
US11304006B2 (en) * 2020-03-27 2022-04-12 Bose Corporation Systems and methods for broadcasting audio
US20230175883A1 (en) * 2020-04-29 2023-06-08 Aeromon Oy Method for measuring noise and apparatus for noise measurement
US11686947B2 (en) * 2020-05-27 2023-06-27 Microsoft Technology Licensing, Llc Structural fiber component for injection molding in head mounted displays
US11494160B1 (en) * 2020-06-30 2022-11-08 Apple Inc. Methods and systems for manipulating audio properties of objects
CA198230S (en) * 2020-07-01 2022-02-02 Shenzhen Voxtech Co Ltd Hearing aid
CN112135216A (zh) * 2020-10-16 2020-12-25 深圳市喜来喜科技有限公司 一种可适配不同头型的蓝牙耳机
JP2023542151A (ja) * 2020-11-26 2023-10-05 シェンツェン・ショックス・カンパニー・リミテッド ウェアラブル装置
CN114545655A (zh) * 2020-11-26 2022-05-27 深圳市韶音科技有限公司 可穿戴设备及其佩戴件
CN112738680A (zh) * 2020-12-24 2021-04-30 王鑫洪 一种挂耳式个人音响设备
WO2022170604A1 (zh) * 2021-02-10 2022-08-18 深圳市韶音科技有限公司 一种听力辅助装置
CN116918350A (zh) * 2021-04-25 2023-10-20 深圳市韶音科技有限公司 声学装置
JP2024511098A (ja) * 2021-04-27 2024-03-12 シェンチェン ショックス カンパニー リミテッド 音響入出力装置
US11841554B2 (en) * 2021-04-29 2023-12-12 Brandon Gaynor Eyewear interface assembly
US11896445B2 (en) 2021-07-07 2024-02-13 Augmedics Ltd. Iliac pin and adapter
WO2023022863A1 (en) * 2021-08-19 2023-02-23 Apple Inc. Flexible speakers
JP2024531576A (ja) 2021-09-10 2024-08-29 ミルウォーキー エレクトリック ツール コーポレイション バッテリパック
US11678103B2 (en) * 2021-09-14 2023-06-13 Meta Platforms Technologies, Llc Audio system with tissue transducer driven by air conduction transducer
USD1022018S1 (en) * 2021-09-15 2024-04-09 Shenzhen Shokz Co., Ltd. Glasses with headphones
USD1022016S1 (en) * 2021-09-15 2024-04-09 Shenzhen Shokz Co., Ltd. Glasses with headphones
USD1022019S1 (en) * 2021-09-15 2024-04-09 Shenzhen Shokz Co., Ltd. Glasses with headphones
USD1022017S1 (en) * 2021-09-15 2024-04-09 Shenzhen Shokz Co., Ltd. Glasses with headphones
USD1022023S1 (en) 2021-09-15 2024-04-09 Shenzhen Shokz Co., Ltd. Endpieces of glasses with headphones
USD1022011S1 (en) 2021-09-15 2024-04-09 Shenzhen Shokz Co., Ltd. V-shaped part of glasses with headphones
USD1022020S1 (en) * 2021-09-15 2024-04-09 Shenzhen Shokz Co., Ltd. Glasses with headphones
KR20240074817A (ko) * 2021-11-09 2024-05-28 니폰 덴신 덴와 가부시끼가이샤 음향 신호 출력 장치
WO2023084574A1 (ja) * 2021-11-09 2023-05-19 日本電信電話株式会社 音響信号出力装置
EP4210350A4 (en) * 2021-11-19 2023-12-13 Shenzhen Shokz Co., Ltd. OPEN ACOUSTIC DEVICE
CN114157954B (zh) * 2021-11-29 2023-10-17 昆山海菲曼科技集团股份有限公司 一种平板低音增强耳机
CN114554340B (zh) * 2022-01-07 2022-12-30 深圳市丰景晟电子科技有限公司 一种具有新型气导传感结构的开放式耳机
CN114401476B (zh) * 2022-01-24 2024-09-17 高创(苏州)电子有限公司 一种分频式扬声器及其控制方法、电子设备
WO2023188345A1 (ja) * 2022-03-31 2023-10-05 日本電信電話株式会社 音響信号出力装置
WO2024004089A1 (ja) * 2022-06-29 2024-01-04 日本電信電話株式会社 音響信号出力装置
WO2024057210A1 (en) 2022-09-13 2024-03-21 Augmedics Ltd. Augmented reality eyewear for image-guided medical intervention
CN220067647U (zh) 2022-10-28 2023-11-21 深圳市韶音科技有限公司 一种耳机
CN116939418A (zh) 2022-10-28 2023-10-24 深圳市韶音科技有限公司 一种开放式耳机
WO2024100816A1 (ja) * 2022-11-10 2024-05-16 日本電信電話株式会社 音響信号出力装置
WO2024100817A1 (ja) * 2022-11-10 2024-05-16 日本電信電話株式会社 音響信号出力装置
WO2024100815A1 (ja) * 2022-11-10 2024-05-16 日本電信電話株式会社 音響信号出力装置
JP7546707B2 (ja) * 2023-02-03 2024-09-06 任天堂株式会社 情報処理プログラム、情報処理方法、情報処理システム、および、情報処理装置
USD1034516S1 (en) * 2023-03-03 2024-07-09 Xiamen Mairdi Electronic Technology Co., Ltd. Bone conduction headphones
USD1034520S1 (en) * 2023-03-03 2024-07-09 Xiamen Mairdi Electronic Technology Co., Ltd. Bone conduction headphones

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130169513A1 (en) * 2012-01-04 2013-07-04 Google Inc. Wearable computing device
CN206193360U (zh) * 2016-11-17 2017-05-24 厦门轻居科技有限公司 一种头戴式vr设备
CN108702561A (zh) * 2016-01-12 2018-10-23 伯斯有限公司 耳机
CN109417662A (zh) * 2016-04-28 2019-03-01 D·E·格贝尔 用于电子设备的可延展式耳机

Family Cites Families (222)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2327320A (en) 1941-11-12 1943-08-17 Sonotone Corp Amplifying hearing aid
US5327506A (en) 1990-04-05 1994-07-05 Stites Iii George M Voice transmission system and method for high ambient noise conditions
US5450061A (en) 1994-04-08 1995-09-12 Detection Systems, Inc. Glass break detection using temporal sequence of selected frequency characteristics
US5572594A (en) 1994-09-27 1996-11-05 Devoe; Lambert Ear canal device holder
US5775855A (en) 1995-06-08 1998-07-07 Valenite Inc. Cutting insert and cutter for milling
JP3153113B2 (ja) 1995-09-28 2001-04-03 富士通テン株式会社 ヘッドホン装置
DE19616870A1 (de) 1996-04-26 1997-10-30 Sennheiser Electronic Am Körper eines Benutzers lagerbare Schallwiedergabevorrichtung
NL1011538C2 (nl) 1999-03-11 2000-09-12 Stertil Bv Voertuighefinrichting.
CN1121809C (zh) * 1999-04-09 2003-09-17 张凡 扬声器
EP1045544A1 (fr) 1999-04-13 2000-10-18 Koninklijke Philips Electronics N.V. Réduction des clics pour signaux vocaux codés MICDA (ADPCM)
EP1145592A3 (en) 1999-12-02 2002-07-03 Tokin Corporation Vibration actuator having an elastic member between a suspension plate and a magnetic circuit device
KR100371496B1 (ko) * 2000-02-26 2003-02-11 엠엠기어 주식회사 다채널헤드폰
KR100344091B1 (ko) 2000-04-18 2002-07-24 주식회사 도우미텍 골도 진동자 및 이것을 이용한 골도 스피커 헤드셋
KR100335171B1 (en) 2000-09-25 2002-05-11 Mm Gear Multi-channel headphone system
US20020164041A1 (en) 2001-03-27 2002-11-07 Sensimetrics Corporation Directional receiver for hearing aids
KR20040011859A (ko) * 2002-07-31 2004-02-11 주식회사 디유전자 알파벳 유자 모양의 어깨 착용형 진동 우퍼 스피커
KR100390003B1 (en) 2002-10-02 2003-07-04 Joo Bae Kim Bone-conduction speaker using vibration plate and mobile telephone using the same
US20040105568A1 (en) * 2002-12-03 2004-06-03 Po-Hsiung Lee Speaker with enhanced magnetic flux
JP2004274593A (ja) 2003-03-11 2004-09-30 Temuko Japan:Kk 骨伝導スピーカ
WO2004095878A2 (en) 2003-04-23 2004-11-04 Rh Lyon Corp Method and apparatus for sound transduction with minimal interference from background noise and minimal local acoustic radiation
JP4079827B2 (ja) 2003-05-14 2008-04-23 富士通テン株式会社 スピーカ装置
CA2432832A1 (en) 2003-06-16 2004-12-16 James G. Hildebrandt Headphones for 3d sound
US7327850B2 (en) 2003-07-15 2008-02-05 Bose Corporation Supplying electrical power
US7019605B2 (en) * 2003-10-30 2006-03-28 Larson Iii John D Stacked bulk acoustic resonator band-pass filter with controllable pass bandwidth
US7570777B1 (en) * 2004-01-13 2009-08-04 Step Labs, Inc. Earset assembly
AU2005214622A1 (en) 2004-02-20 2005-09-01 Temco Japan Co., Ltd. Bone-conduction handset
JP2006157464A (ja) * 2004-11-29 2006-06-15 Kyocera Corp 音響装置
US20060252978A1 (en) * 2005-05-09 2006-11-09 Vesely Michael A Biofeedback eyewear system
JP4631070B2 (ja) 2005-05-23 2011-02-16 並木精密宝石株式会社 骨伝導スピーカ
JP2006352367A (ja) * 2005-06-14 2006-12-28 Sony Corp 音響装置
US8457324B2 (en) * 2005-08-16 2013-06-04 Honeywell International Inc. Directional speaker system
US7945297B2 (en) * 2005-09-30 2011-05-17 Atmel Corporation Headsets and headset power management
US7890377B2 (en) 2005-10-31 2011-02-15 Phonak Ag Method for producing an order and ordering apparatus
FR2892886B1 (fr) * 2005-11-03 2008-01-25 Bernard Richoux Transducteur electrodynamique, applications aux haut-parleurs et geophones
US8111854B2 (en) 2006-11-29 2012-02-07 Yan-Ru Peng Methods and apparatus for sound production
GB2434708B (en) * 2006-01-26 2008-02-27 Sonaptic Ltd Ambient noise reduction arrangements
US7957541B2 (en) * 2006-01-27 2011-06-07 Sony Ericsson Mobile Communications Ab Acoustic compliance adjuster
CN101022678A (zh) * 2006-02-13 2007-08-22 致胜科技股份有限公司 骨传导多声道装置
JP2007251358A (ja) 2006-03-14 2007-09-27 Nec Tokin Corp 骨伝導スピーカ
JP5315506B2 (ja) 2006-03-22 2013-10-16 ボーン・トーン・コミュニケイションズ・リミテッド 骨伝導音伝播のための方法及びシステム
US20070223735A1 (en) 2006-03-27 2007-09-27 Knowles Electronics, Llc Electroacoustic Transducer System and Manufacturing Method Thereof
US8170249B2 (en) * 2006-06-19 2012-05-01 Sonion Nederland B.V. Hearing aid having two receivers each amplifying a different frequency range
CN101098353A (zh) * 2006-06-27 2008-01-02 明基电通股份有限公司 能与移动通讯装置通讯的耳机装置
US7933427B2 (en) * 2006-06-27 2011-04-26 Motorola Solutions, Inc. Method and system for equal acoustics porting
US7916888B2 (en) * 2006-06-30 2011-03-29 Bose Corporation In-ear headphones
KR101135396B1 (ko) 2006-07-03 2012-04-17 아이필유(주) 다기능 초소형 스피커
WO2008011719A1 (en) * 2006-07-28 2008-01-31 Hildebrandt James G Headphone improvements
CN101513081A (zh) 2006-09-07 2009-08-19 株式会社坦姆科日本 骨传导扬声器
US7925307B2 (en) * 2006-10-31 2011-04-12 Palm, Inc. Audio output using multiple speakers
US8175316B2 (en) * 2006-12-05 2012-05-08 Sony Corporation Ear speaker device
US9118990B2 (en) * 2007-01-06 2015-08-25 Apple Inc. Connectors designed for ease of use
KR20080103334A (ko) * 2007-05-23 2008-11-27 (주) 지비테크 휴대용 오디오기기의 리모콘 및 이침 다이어트 이어폰
US8391534B2 (en) 2008-07-23 2013-03-05 Asius Technologies, Llc Inflatable ear device
WO2009075834A1 (en) 2007-12-10 2009-06-18 Klipsch, Llc In-ear headphones
US8270637B2 (en) 2008-02-15 2012-09-18 Sonitus Medical, Inc. Headset systems and methods
KR20090091378A (ko) 2008-02-25 2009-08-28 정상일 골전도 마이크로폰
US8660289B2 (en) * 2008-02-29 2014-02-25 Apple Inc. Multiple receiver venting system
JP2009260524A (ja) 2008-04-15 2009-11-05 Sony Corp スピーカー装置
JP4355359B1 (ja) * 2008-05-27 2009-10-28 パナソニック株式会社 マイクを外耳道開口部に設置する耳掛型補聴器
GB0813115D0 (en) * 2008-07-17 2008-08-27 Strong Pacific Hong Kong Ltd Earphone
CN101729955B (zh) 2008-10-15 2014-03-26 诸爱道 安全耳塞机
US8682021B2 (en) * 2009-02-09 2014-03-25 Sanyo Electric Co., Ltd. Speaker unit and portable information terminal
KR101039813B1 (ko) 2009-03-30 2011-06-13 주식회사 보니아코퍼레이션 골전도와 공기전도 기능을 갖는 듀얼 이어폰
CN201426167Y (zh) * 2009-04-17 2010-03-17 富祐鸿科技股份有限公司 具导音管的开放式结构耳机
CN201774654U (zh) 2010-07-16 2011-03-23 深圳市中兴移动通信有限公司 基于手机上四段式连接的线控耳机电路
US9198561B2 (en) 2011-01-31 2015-12-01 Boston Scientific Scimed, Inc. Articulation section with locking
US9185491B2 (en) * 2011-04-12 2015-11-10 Harman International Industries, Incorporated Reinforced diaphragm for a low profile loudspeaker transducer with two sets of inner and outer magnets
US8934647B2 (en) * 2011-04-14 2015-01-13 Bose Corporation Orientation-responsive acoustic driver selection
JP2012249097A (ja) * 2011-05-27 2012-12-13 Kyocera Corp 音声出力装置
US8256566B1 (en) * 2011-08-19 2012-09-04 Rogersound Labs, LLC Speaker enclosure
US9020168B2 (en) * 2011-08-30 2015-04-28 Nokia Corporation Apparatus and method for audio delivery with different sound conduction transducers
CN202307119U (zh) 2011-09-05 2012-07-04 歌尔声学股份有限公司 一种多麦克风阵列噪声消除装置及系统
JP5667018B2 (ja) 2011-09-06 2015-02-12 Kddi株式会社 携帯電話端末、携帯電話端末の音声伝達方法、携帯電話端末の音声伝達プログラム
JP4953490B1 (ja) 2011-09-12 2012-06-13 音茶楽株式会社 ツィンドライバーイヤホン
US9350832B2 (en) 2011-09-30 2016-05-24 Kyocera Corporation Mobile electronic device
US20130108068A1 (en) 2011-10-27 2013-05-02 Research In Motion Limited Headset with two-way multiplexed communication
CN104011788B (zh) 2011-10-28 2016-11-16 奇跃公司 用于增强和虚拟现实的系统和方法
JP5926950B2 (ja) 2011-12-22 2016-05-25 京セラ株式会社 電子機器
CN102497612B (zh) 2011-12-23 2013-05-29 深圳市韶音科技有限公司 一种骨传导扬声器及其复合振动装置
CN108873372B (zh) * 2018-08-24 2024-06-14 深圳市韶音科技有限公司 一种铰链及眼镜
WO2020051786A1 (en) 2018-09-12 2020-03-19 Shenzhen Voxtech Co., Ltd. Signal processing device having multiple acoustic-electric transducers
WO2017024595A1 (zh) * 2015-08-13 2017-02-16 深圳市韶音科技有限公司 一种骨传导扬声器
CN202435598U (zh) 2011-12-23 2012-09-12 深圳市韶音科技有限公司 一种骨传导扬声器及其复合振动装置
WO2013111298A1 (ja) * 2012-01-26 2013-08-01 パイオニア株式会社 ヘッドホン
CN102647646B (zh) 2012-04-06 2016-03-30 惠州Tcl移动通信有限公司 手镯式蓝牙耳机以及手镯式蓝牙耳机电路
JP5812925B2 (ja) 2012-04-12 2015-11-17 京セラ株式会社 電子機器
CN102780938B (zh) 2012-06-06 2015-04-15 歌尔声学股份有限公司 蓝牙耳机电路板
CN202679440U (zh) 2012-06-08 2013-01-16 瑞声光电科技(常州)有限公司 带骨传导功能的通信装置
CN202710871U (zh) 2012-06-28 2013-01-30 黄明传 具有接口传输处理功能的眼镜
CN102760938B (zh) 2012-07-20 2013-08-07 深圳市龙侨华实业有限公司 一种增强型全向天线振子
JP6006598B2 (ja) 2012-09-27 2016-10-12 京セラ株式会社 電子機器
EP2765786A1 (en) 2013-02-06 2014-08-13 Nagravision S.A. Method to enhance a video content in a receiving device
CN103108268B (zh) 2013-02-07 2016-08-24 歌尔声学股份有限公司 扬声器模组及其使用该扬声器模组的电子装置
TWI535302B (zh) * 2013-02-08 2016-05-21 Jian-Quan Pan Multi-channel headphones
US20140253867A1 (en) * 2013-03-05 2014-09-11 Tao Jiang Pair of Projector Glasses
CN103179483B (zh) * 2013-03-12 2016-06-08 中名(东莞)电子有限公司 具有多动态驱动单元的入耳式耳机
CN103209377B (zh) 2013-03-19 2016-02-17 歌尔声学股份有限公司 多功能扬声器
CN203233520U (zh) * 2013-03-27 2013-10-09 特通科技有限公司 具接近感测模组的头戴式耳机
CN103167390B (zh) 2013-04-09 2017-04-19 苏州逸巛声学科技有限公司 具有气导作用的骨传导受话器
US9118996B1 (en) * 2013-05-01 2015-08-25 Miguel A. Garcia Head band with wirelessly engaged music player
US9992568B2 (en) * 2013-05-02 2018-06-05 Nokia Technologies Oy Method and apparatus for audio playback
US8757317B1 (en) * 2013-05-03 2014-06-24 Longinesteno Technology Complex Corporation Barrel-shaped multidirectional loudspeaker enclosure structure
CN103260117A (zh) 2013-05-08 2013-08-21 歌尔声学股份有限公司 一种低音扬声器及其应用该低音扬声器的电子装置
CN203301726U (zh) 2013-05-08 2013-11-20 歌尔声学股份有限公司 一种低音扬声器及其应用该低音扬声器的电子装置
JP6359807B2 (ja) * 2013-06-12 2018-07-18 京セラ株式会社 音響再生機器
EP2819429B1 (en) * 2013-06-28 2016-06-22 GN Netcom A/S A headset having a microphone
US9571941B2 (en) * 2013-08-19 2017-02-14 Knowles Electronics, Llc Dynamic driver in hearing instrument
GR1008382B (el) * 2013-12-13 2014-12-19 Βασιλειος Γεωργιου Τσακιρης Ηχεια ισορροπημενης κατευθυντικοτητας
CN106303861B (zh) 2014-01-06 2018-06-12 深圳市韶音科技有限公司 一种能够抑制漏音的骨传导扬声器
US9380374B2 (en) 2014-01-17 2016-06-28 Okappi, Inc. Hearing assistance systems configured to detect and provide protection to the user from harmful conditions
US8891800B1 (en) 2014-02-21 2014-11-18 Jonathan Everett Shaffer Earbud charging case for mobile device
CN104883635B (zh) * 2014-02-28 2019-08-16 宁波升亚电子有限公司 一种近头式扬声器装置及其应用
US9762199B2 (en) * 2014-03-31 2017-09-12 Bitwave Pte Ltd. Facilitation of headphone audio enhancement
EP3152919B1 (en) * 2014-06-03 2020-02-19 Dolby Laboratories Licensing Corporation Passive and active virtual height filter systems for upward firing drivers
US20150381333A1 (en) * 2014-06-26 2015-12-31 Harris Corporation Novel approach for enabling mixed mode behavior using microphone placement on radio terminal hardware
US9578412B2 (en) * 2014-06-27 2017-02-21 Apple Inc. Mass loaded earbud with vent chamber
JP6431973B2 (ja) 2014-07-18 2018-11-28 ボーズ・コーポレーションBose Corporation 音響装置
JP6645437B2 (ja) * 2014-10-20 2020-02-14 ソニー株式会社 音響再生装置
WO2016063462A1 (ja) 2014-10-24 2016-04-28 ソニー株式会社 イヤホン
JP5759641B1 (ja) * 2014-10-24 2015-08-05 太陽誘電株式会社 電気音響変換装置及び電子機器
CN104540076B (zh) 2014-11-20 2018-09-07 歌尔股份有限公司 扬声器模组
KR102362727B1 (ko) * 2014-12-18 2022-02-15 엘지이노텍 주식회사 맥박 측정 장치 및 이를 이용한 컴퓨팅 장치
CN107005759A (zh) * 2014-12-24 2017-08-01 株式会社坦姆科日本 骨传导耳机
CN104581483A (zh) * 2014-12-24 2015-04-29 青岛歌尔声学科技有限公司 一种开放式耳机
TWM500412U (zh) * 2015-01-14 2015-05-01 Jetvox Acoustic Corp 具有導音管之耳機結構
CN204377095U (zh) * 2015-01-22 2015-06-03 邹士磊 偶极高辐射抗型耳机
US9648412B2 (en) 2015-02-06 2017-05-09 Skullcandy, Inc. Speakers and headphones related to vibrations in an audio system, and methods for operating same
CN104863635B (zh) 2015-04-21 2017-04-05 西南石油大学 一种隧道沉降的自动监测报警装置及其使用方法
CN204810512U (zh) * 2015-06-01 2015-11-25 深圳市贝多福科技有限公司 具有独立音腔的导音结构
CN106303779B (zh) * 2015-06-03 2019-07-12 阿里巴巴集团控股有限公司 耳机
CN104869515A (zh) * 2015-06-08 2015-08-26 西安康弘新材料科技有限公司 动圈扬声器配合压电扬声器高保真音箱
US9613615B2 (en) * 2015-06-22 2017-04-04 Sony Corporation Noise cancellation system, headset and electronic device
US10375479B2 (en) 2015-08-04 2019-08-06 Curtis E. Graber Electric motor
CN204859471U (zh) 2015-08-24 2015-12-09 嘉善豪声电子有限公司 使用fpc引线的手机扬声器腔体及包括该腔体的扬声器
CN204948328U (zh) * 2015-08-26 2016-01-06 成都优逸工业设计有限公司 三单元动铁耳机分频电路
CN204948329U (zh) * 2015-08-26 2016-01-06 成都优逸工业设计有限公司 四单元动铁耳机分频电路
CN205081951U (zh) 2015-09-01 2016-03-09 深圳市冠旭电子有限公司 一种线控耳机电路及线控耳机
CN204948313U (zh) * 2015-09-06 2016-01-06 深圳市韶音科技有限公司 骨传导无线耳机
CN105208480B (zh) 2015-09-24 2019-07-02 厦门宇特信息技术有限公司 滑动导电式头戴耳机
CN106792304A (zh) * 2015-11-21 2017-05-31 王永明 一种多驱动器入耳式耳机
WO2017102253A1 (en) * 2015-12-14 2017-06-22 Harman Becker Automotive Systems Gmbh Headphone arrangement
CN205336486U (zh) * 2015-12-15 2016-06-22 深圳市韶音科技有限公司 一种骨传导无线耳机
EP3185589B1 (en) 2015-12-22 2024-02-07 Oticon A/s A hearing device comprising a microphone control system
US20170195795A1 (en) * 2015-12-30 2017-07-06 Cyber Group USA Inc. Intelligent 3d earphone
US9794676B2 (en) * 2016-01-12 2017-10-17 Bose Corporation Headphone
US9905244B2 (en) 2016-02-02 2018-02-27 Ebay Inc. Personalized, real-time audio processing
US10391935B2 (en) 2016-02-10 2019-08-27 Panasonic Intellectual Property Management Co., Ltd. Vehicle approach notification device
DE102016103477A1 (de) * 2016-02-26 2017-08-31 USound GmbH Audiosystem mit strahlformenden Lautsprechern sowie Brille mit einem derartigen Audiosystem
TWM524028U (zh) 2016-03-25 2016-06-11 Jetvox Acoustic Corp 具有集流管之耳機裝置
CN107231585A (zh) * 2016-03-25 2017-10-03 富祐鸿科技股份有限公司 耳机结构
EP3439316A4 (en) 2016-03-29 2019-03-27 Sony Corporation SOUND REPRODUCTION DEVICE
JP6783541B2 (ja) * 2016-03-30 2020-11-11 株式会社バンダイナムコエンターテインメント プログラム及び仮想現実体験提供装置
CN205510154U (zh) * 2016-04-13 2016-08-24 广东欧珀移动通信有限公司 一种移动终端
CN205754812U (zh) * 2016-05-12 2016-11-30 深圳市盛佳丽电子有限公司 一种动铁耳机的分频电路
US10129647B2 (en) * 2016-05-25 2018-11-13 Lg Electronics Inc. Wireless sound equipment
KR101812227B1 (ko) * 2016-05-26 2017-12-27 (주)인시그널 동작 인식 기반의 스마트 글래스 장치
US9838787B1 (en) * 2016-06-06 2017-12-05 Bose Corporation Acoustic device
US9949030B2 (en) 2016-06-06 2018-04-17 Bose Corporation Acoustic device
CN106231462A (zh) * 2016-08-08 2016-12-14 珠海声浪科技有限公司 一种耳机
KR101830246B1 (ko) * 2016-08-09 2018-03-29 주식회사 이엠텍 넥밴드형 무선 음향 변환 장치
US10757503B2 (en) * 2016-09-01 2020-08-25 Audeze, Llc Active noise control with planar transducers
US10075783B2 (en) * 2016-09-23 2018-09-11 Apple Inc. Acoustically summed reference microphone for active noise control
CN106375915B (zh) 2016-10-31 2024-04-16 深圳市冠旭电子股份有限公司 一种扬声器及耳机
CN106324849B (zh) 2016-11-07 2018-11-27 东莞市松研智达工业设计有限公司 3d智能眼镜
CN106341752A (zh) * 2016-11-24 2017-01-18 深圳市雷森贝尔听力技术有限公司 一种仿生全开放式耳甲增益导声装置及其使用方法
TWI683580B (zh) * 2016-12-09 2020-01-21 美律實業股份有限公司 耳機
US10397681B2 (en) 2016-12-11 2019-08-27 Base Corporation Acoustic transducer
GB2558284B (en) 2016-12-23 2021-12-08 Sony Interactive Entertainment Inc Virtual reality
CN107071607A (zh) * 2017-01-19 2017-08-18 诸爱道 防辐射的蓝牙耳机
US10555106B1 (en) 2017-01-27 2020-02-04 Facebook Technologies, Llc Gaze-directed audio enhancement
KR102671346B1 (ko) * 2017-02-08 2024-06-03 삼성전자 주식회사 전자 장치
CN206640738U (zh) * 2017-02-14 2017-11-14 歌尔股份有限公司 降噪耳机以及电子设备
TWM564298U (zh) 2017-03-03 2018-07-21 樂軒 許 一種可穿戴式立體聲設備
CN206575566U (zh) * 2017-03-06 2017-10-20 深圳市冠旭电子股份有限公司 一种入耳式耳机
AU2018243565B2 (en) * 2017-03-30 2023-03-16 Magic Leap, Inc. Non-blocking dual driver earphones
WO2018187663A1 (en) * 2017-04-07 2018-10-11 Correlated Magnetics Research, Llc Loudspeaker magnet and earphone assembly
CN206885707U (zh) 2017-05-09 2018-01-16 硅湖职业技术学院 一体式手机包装盒
US9985596B1 (en) * 2017-05-15 2018-05-29 Bose Corporation Acoustic device
CN107094273A (zh) 2017-05-23 2017-08-25 诸爱道 安全的耳机
CN107105363A (zh) * 2017-06-08 2017-08-29 歌尔科技有限公司 颈戴式智能音箱
CN206865707U (zh) * 2017-06-20 2018-01-09 李阳君 一种新型的耳机导音结构
CN207340117U (zh) 2017-07-18 2018-05-08 深圳市深印柔性电路有限公司 用于耳机的异形fpc板
WO2019017036A1 (ja) * 2017-07-21 2019-01-24 ソニー株式会社 音響出力装置
CN207070281U (zh) * 2017-08-18 2018-03-02 深圳市韶音科技有限公司 一种骨传导耳机
CN207075075U (zh) * 2017-09-01 2018-03-06 珠海煌荣集成电路科技有限公司 一种虚拟低音生成电路及音频设备
CN207340125U (zh) * 2017-09-06 2018-05-08 深圳市冠旭电子股份有限公司 一种运动耳机
CN107509147B (zh) * 2017-09-21 2023-12-12 惠州迪芬尼声学科技股份有限公司 一种具有u形短路环的扬声器磁路系统
CN109379654B (zh) 2017-10-05 2020-08-04 诸爱道 一种降噪空气导管麦克风、降噪安全耳机及降噪安全蓝牙耳机
EP3468228B1 (en) * 2017-10-05 2021-08-11 GN Hearing A/S Binaural hearing system with localization of sound sources
CN107820169A (zh) * 2017-10-18 2018-03-20 深圳精拓创新科技有限公司 扬声器及提高扬声器灵敏度的方法
CN208210280U (zh) * 2018-01-08 2018-12-07 深圳市韶音科技有限公司 一种骨传导扬声器的磁路组件
US10555071B2 (en) 2018-01-31 2020-02-04 Bose Corporation Eyeglass headphones
US10380989B1 (en) * 2018-02-22 2019-08-13 Cirrus Logic, Inc. Methods and apparatus for processing stereophonic audio content
WO2019173577A1 (en) 2018-03-08 2019-09-12 Bose Corporation Audio content engine for audio augmented reality
WO2019173573A1 (en) 2018-03-08 2019-09-12 Bose Corporation User-interfaces for audio-augmented-reality
CN207939700U (zh) * 2018-03-14 2018-10-02 东莞市和乐电子有限公司 一种独立分频的多单元耳机
US10904667B1 (en) * 2018-03-19 2021-01-26 Amazon Technologies, Inc. Compact audio module for head-mounted wearable device
CN108650597B (zh) * 2018-04-12 2020-06-05 Oppo广东移动通信有限公司 一种密封组件、壳体组件及电子设备
CN108535585B (zh) 2018-04-18 2023-05-02 丹阳市精通眼镜技术创新服务中心有限公司 一种光电复合式线盘断线检测眼镜及其制作方法
CN208297647U (zh) 2018-04-18 2018-12-28 丹阳市精通眼镜技术创新服务中心有限公司 一种光电复合式线盘断线检测眼镜
CN108712695B (zh) * 2018-05-18 2021-02-12 维沃移动通信有限公司 一种麦克风模组、印制电路板pcb的制造方法及终端
CN108898516B (zh) 2018-05-30 2020-06-16 贝壳找房(北京)科技有限公司 在虚拟三维空间讲房模式进功能间的方法、服务器和终端
CN208572417U (zh) * 2018-06-28 2019-03-01 维沃移动通信有限公司 一种移动终端
CN109032558B (zh) * 2018-07-23 2021-08-17 Oppo广东移动通信有限公司 发声控制方法、装置、电子装置及计算机可读介质
CN109151680B (zh) * 2018-07-27 2020-09-04 Oppo广东移动通信有限公司 电子设备
US11113884B2 (en) 2018-07-30 2021-09-07 Disney Enterprises, Inc. Techniques for immersive virtual reality experiences
CN208783039U (zh) * 2018-08-24 2019-04-23 深圳市韶音科技有限公司 一种骨传导耳机及眼镜
CN209267805U (zh) 2019-01-05 2019-08-16 深圳市韶音科技有限公司 骨传导耳机芯及骨传导扬声装置
US10609465B1 (en) 2018-10-04 2020-03-31 Bose Corporation Acoustic device
US10506362B1 (en) 2018-10-05 2019-12-10 Bose Corporation Dynamic focus for audio augmented reality (AR)
CN208675298U (zh) * 2018-10-12 2019-03-29 上海闻泰信息技术有限公司 导音结构及便携式电子设备
US10631075B1 (en) * 2018-11-12 2020-04-21 Bose Corporation Open ear audio device with bone conduction speaker
WO2020116333A1 (ja) * 2018-12-04 2020-06-11 株式会社アイゾーンジャパン 眼鏡
CN209184799U (zh) 2019-01-05 2019-07-30 深圳市韶音科技有限公司 电池组件及骨传导扬声装置
CN114679656A (zh) 2019-01-05 2022-06-28 深圳市韶音科技有限公司 电池组件及骨传导扬声装置
CN117528315A (zh) 2019-01-05 2024-02-06 深圳市韶音科技有限公司 骨传导扬声装置
CN117528319A (zh) * 2019-01-05 2024-02-06 深圳市韶音科技有限公司 骨传导扬声装置
CN109547906B (zh) 2019-01-05 2023-12-08 深圳市韶音科技有限公司 骨传导扬声装置
CN209358728U (zh) 2019-01-05 2019-09-06 深圳市韶音科技有限公司 骨传导扬声装置
CN109640209B (zh) * 2019-01-24 2021-02-09 合肥星空物联信息科技有限公司 一种基于传感器智能操作的蓝牙耳机
US10812896B2 (en) 2019-03-21 2020-10-20 Facebook Technologies, Llc High compliance microspeakers for vibration mitigation in a personal audio device
WO2020220722A1 (zh) * 2019-04-30 2020-11-05 深圳市韶音科技有限公司 一种声学输出装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130169513A1 (en) * 2012-01-04 2013-07-04 Google Inc. Wearable computing device
CN108702561A (zh) * 2016-01-12 2018-10-23 伯斯有限公司 耳机
CN109417662A (zh) * 2016-04-28 2019-03-01 D·E·格贝尔 用于电子设备的可延展式耳机
CN206193360U (zh) * 2016-11-17 2017-05-24 厦门轻居科技有限公司 一种头戴式vr设备

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2807021C1 (ru) * 2021-04-25 2023-11-08 Шэньчжэнь Шокз Ко., Лтд. Наушники

Also Published As

Publication number Publication date
WO2020221169A1 (en) 2020-11-05
US20230145038A1 (en) 2023-05-11
US11838712B2 (en) 2023-12-05
US11671737B2 (en) 2023-06-06
US11856351B2 (en) 2023-12-26
US11445281B2 (en) 2022-09-13
WO2020220734A1 (zh) 2020-11-05
US11178477B2 (en) 2021-11-16
US11985465B2 (en) 2024-05-14
US20240073579A1 (en) 2024-02-29
US20230007380A1 (en) 2023-01-05
US20210289281A1 (en) 2021-09-16
US20210168500A1 (en) 2021-06-03
US20220070570A1 (en) 2022-03-03
US12096176B2 (en) 2024-09-17
BR112021021750A2 (pt) 2021-12-28
JP2022531254A (ja) 2022-07-06
US11838713B2 (en) 2023-12-05
US20210168495A1 (en) 2021-06-03
US20230156390A1 (en) 2023-05-18
EP3952336A4 (en) 2022-05-18
US20240205582A1 (en) 2024-06-20
US20230070507A1 (en) 2023-03-09
US20230141946A1 (en) 2023-05-11
WO2020220738A1 (zh) 2020-11-05
US11689837B2 (en) 2023-06-27
US20210377645A1 (en) 2021-12-02
US11818529B2 (en) 2023-11-14
KR102511669B1 (ko) 2023-03-21
WO2020220724A1 (zh) 2020-11-05
US20210127200A1 (en) 2021-04-29
US11930314B2 (en) 2024-03-12
BR112021021739A2 (pt) 2021-12-28
US12075207B2 (en) 2024-08-27
WO2020220721A1 (zh) 2020-11-05
US20240171892A1 (en) 2024-05-23
EP3952331A1 (en) 2022-02-09
WO2020220723A1 (zh) 2020-11-05
US20210160606A1 (en) 2021-05-27
WO2020221337A1 (zh) 2020-11-05
US11503395B2 (en) 2022-11-15
US11595745B2 (en) 2023-02-28
KR20220017908A (ko) 2022-02-14
EP3942844A1 (en) 2022-01-26
US20230109699A1 (en) 2023-04-13
US11689838B2 (en) 2023-06-27
US20210160610A1 (en) 2021-05-27
US20210160602A1 (en) 2021-05-27
WO2020220733A1 (zh) 2020-11-05
WO2020221254A1 (en) 2020-11-05
US11985466B2 (en) 2024-05-14
US11540037B2 (en) 2022-12-27
US20210223577A1 (en) 2021-07-22
US20210227306A1 (en) 2021-07-22
US11706556B2 (en) 2023-07-18
US11425481B2 (en) 2022-08-23
US20210112329A1 (en) 2021-04-15
US20230396912A1 (en) 2023-12-07
WO2020220736A1 (zh) 2020-11-05
US11678098B2 (en) 2023-06-13
US20210168498A1 (en) 2021-06-03
US11122359B2 (en) 2021-09-14
US11496824B2 (en) 2022-11-08
US11917352B2 (en) 2024-02-27
US20230276161A1 (en) 2023-08-31
JP2022530813A (ja) 2022-07-01
US20230066263A1 (en) 2023-03-02
US11115774B2 (en) 2021-09-07
WO2020221163A1 (en) 2020-11-05
US20210271115A1 (en) 2021-09-02
US20210243518A1 (en) 2021-08-05
US11743627B2 (en) 2023-08-29
US20230171528A1 (en) 2023-06-01
US20220264212A1 (en) 2022-08-18
US11622186B2 (en) 2023-04-04
US20230232145A1 (en) 2023-07-20
US20220021963A1 (en) 2022-01-20
US20210274281A1 (en) 2021-09-02
US20210235181A1 (en) 2021-07-29
US20230156391A1 (en) 2023-05-18
KR20220017905A (ko) 2022-02-14
US11457301B2 (en) 2022-09-27
US20210274278A1 (en) 2021-09-02
JP2022531256A (ja) 2022-07-06
EP3952331A4 (en) 2022-05-18
US20210168554A1 (en) 2021-06-03
US12010475B2 (en) 2024-06-11
EP3942844A4 (en) 2022-08-10
US20230336902A1 (en) 2023-10-19
WO2020221359A1 (en) 2020-11-05
US20220386012A1 (en) 2022-12-01
KR20220017904A (ko) 2022-02-14
JP7524219B2 (ja) 2024-07-29
US11570536B2 (en) 2023-01-31
US20230012124A1 (en) 2023-01-12
US11490188B2 (en) 2022-11-01
WO2020220737A1 (zh) 2020-11-05
WO2020220947A1 (en) 2020-11-05
WO2020220722A1 (zh) 2020-11-05
WO2020220970A1 (en) 2020-11-05
BR112021021746A2 (pt) 2021-12-28
US11653134B2 (en) 2023-05-16
US11356763B2 (en) 2022-06-07
US11671738B2 (en) 2023-06-06
US20210168485A1 (en) 2021-06-03
WO2020220720A1 (zh) 2020-11-05
KR102533573B1 (ko) 2023-05-19
KR102533570B1 (ko) 2023-05-19
US20210185421A1 (en) 2021-06-17
US20210168494A1 (en) 2021-06-03
WO2020220719A1 (zh) 2020-11-05
US20230276160A1 (en) 2023-08-31
US20210127197A1 (en) 2021-04-29
US20220030347A1 (en) 2022-01-27
JP7333829B2 (ja) 2023-08-25
US11540038B2 (en) 2022-12-27
US11516572B2 (en) 2022-11-29
US11425482B2 (en) 2022-08-23
EP3952336A1 (en) 2022-02-09
US11159870B2 (en) 2021-10-26
JP2023179772A (ja) 2023-12-19
US20210274276A1 (en) 2021-09-02
US20210274280A1 (en) 2021-09-02

Similar Documents

Publication Publication Date Title
WO2020220735A1 (zh) 一种声学输出装置
RU2783567C1 (ru) Акустическое выходное устройство
US20240323579A1 (en) Acoustic output device and components thereof
US12101587B2 (en) Acoustic output apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20798417

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021564592

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020798417

Country of ref document: EP

Effective date: 20211026

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112021021750

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112021021750

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20211028