WO2017024595A1 - 一种骨传导扬声器 - Google Patents

一种骨传导扬声器 Download PDF

Info

Publication number
WO2017024595A1
WO2017024595A1 PCT/CN2015/086907 CN2015086907W WO2017024595A1 WO 2017024595 A1 WO2017024595 A1 WO 2017024595A1 CN 2015086907 W CN2015086907 W CN 2015086907W WO 2017024595 A1 WO2017024595 A1 WO 2017024595A1
Authority
WO
WIPO (PCT)
Prior art keywords
vibration
contact surface
bone conduction
sound
contact
Prior art date
Application number
PCT/CN2015/086907
Other languages
English (en)
French (fr)
Inventor
廖风云
郑金波
陈迁
陈皞
齐心
Original Assignee
深圳市韶音科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市韶音科技有限公司 filed Critical 深圳市韶音科技有限公司
Priority to BR112018002854-1A priority Critical patent/BR112018002854B1/pt
Priority to EP15900793.9A priority patent/EP3337185B1/en
Priority to PCT/CN2015/086907 priority patent/WO2017024595A1/zh
Priority to PT159007939T priority patent/PT3337185T/pt
Priority to PL15900793T priority patent/PL3337185T3/pl
Priority to US15/752,452 priority patent/US10609496B2/en
Priority to ES15900793T priority patent/ES2884329T3/es
Priority to KR1020227003237A priority patent/KR102586268B1/ko
Priority to KR1020187007115A priority patent/KR102359696B1/ko
Priority to DK15900793.9T priority patent/DK3337185T3/da
Priority to EP21186537.3A priority patent/EP3920551A1/en
Priority to JP2018506985A priority patent/JP6651608B2/ja
Publication of WO2017024595A1 publication Critical patent/WO2017024595A1/zh
Priority to HK18116341.2A priority patent/HK1257092A1/zh
Priority to US16/833,852 priority patent/US11323830B2/en
Priority to US16/833,877 priority patent/US11140497B2/en
Priority to US16/833,839 priority patent/US11399245B2/en
Priority to US17/161,717 priority patent/US11399234B2/en
Priority to US17/169,477 priority patent/US11438717B2/en
Priority to US17/169,512 priority patent/US11343623B2/en
Priority to US17/169,514 priority patent/US11343624B2/en
Priority to US17/169,469 priority patent/US11611833B2/en
Priority to US17/169,475 priority patent/US11323832B2/en
Priority to US17/169,583 priority patent/US11343625B2/en
Priority to US17/170,874 priority patent/US11363392B2/en
Priority to US17/170,879 priority patent/US11343626B2/en
Priority to US17/170,885 priority patent/US11540066B2/en
Priority to US17/170,840 priority patent/US11528561B2/en
Priority to US17/170,817 priority patent/US11395072B2/en
Priority to US17/170,847 priority patent/US11659335B2/en
Priority to US17/170,931 priority patent/US11368801B2/en
Priority to US17/170,913 priority patent/US11368800B2/en
Priority to US17/170,904 priority patent/US11375324B2/en
Priority to US17/170,925 priority patent/US11418895B2/en
Priority to US17/219,777 priority patent/US11665482B2/en
Priority to US17/218,677 priority patent/US11638099B2/en
Priority to US17/218,599 priority patent/US11716575B2/en
Priority to US17/218,549 priority patent/US11540057B2/en
Priority to US17/218,713 priority patent/US11641552B2/en
Priority to US17/218,645 priority patent/US11641551B2/en
Priority to US17/218,804 priority patent/US11463814B2/en
Priority to US17/218,292 priority patent/US11575994B2/en
Priority to US17/218,528 priority patent/US11601761B2/en
Priority to US17/218,279 priority patent/US11611834B2/en
Priority to US17/218,494 priority patent/US11528562B2/en
Priority to US17/219,814 priority patent/US11595760B2/en
Priority to US17/218,745 priority patent/US11483661B2/en
Priority to US17/241,041 priority patent/US11463823B2/en
Priority to US17/445,197 priority patent/US11570560B2/en
Priority to US17/657,365 priority patent/US11611837B2/en
Priority to US17/658,824 priority patent/US20220240029A1/en
Priority to US17/804,850 priority patent/US11632636B2/en
Priority to US17/804,611 priority patent/US11659341B2/en
Priority to US17/807,154 priority patent/US11632637B2/en
Priority to US17/813,324 priority patent/US20220360906A1/en
Priority to US17/823,951 priority patent/US11638105B2/en
Priority to US18/182,414 priority patent/US20230224643A1/en
Priority to US18/185,419 priority patent/US20230224644A1/en
Priority to US18/187,693 priority patent/US11917373B2/en
Priority to US18/305,368 priority patent/US11991500B2/en
Priority to US18/308,760 priority patent/US20230269547A1/en
Priority to US18/349,116 priority patent/US12035108B2/en
Priority to US18/349,118 priority patent/US12003922B2/en
Priority to US18/361,807 priority patent/US20230370791A1/en
Priority to US18/361,844 priority patent/US20230379639A1/en
Priority to US18/366,104 priority patent/US20230379640A1/en
Priority to US18/472,180 priority patent/US20240015452A1/en
Priority to US18/472,442 priority patent/US20240015453A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R5/00Stereophonic arrangements
    • H04R5/033Headphones for stereophonic communication
    • H04R5/0335Earpiece support, e.g. headbands or neckrests
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R11/00Transducers of moving-armature or moving-core type
    • H04R11/02Loudspeakers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R25/00Deaf-aid sets, i.e. electro-acoustic or electro-mechanical hearing aids; Electric tinnitus maskers providing an auditory perception
    • H04R25/60Mounting or interconnection of hearing aid parts, e.g. inside tips, housings or to ossicles
    • H04R25/604Mounting or interconnection of hearing aid parts, e.g. inside tips, housings or to ossicles of acoustic or vibrational transducers
    • H04R25/606Mounting or interconnection of hearing aid parts, e.g. inside tips, housings or to ossicles of acoustic or vibrational transducers acting directly on the eardrum, the ossicles or the skull, e.g. mastoid, tooth, maxillary or mandibular bone, or mechanically stimulating the cochlea, e.g. at the oval window
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R9/00Transducers of moving-coil, moving-strip, or moving-wire type
    • H04R9/06Loudspeakers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R9/00Transducers of moving-coil, moving-strip, or moving-wire type
    • H04R9/06Loudspeakers
    • H04R9/066Loudspeakers using the principle of inertia
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R2460/00Details of hearing devices, i.e. of ear- or headphones covered by H04R1/10 or H04R5/033 but not provided for in any of their subgroups, or of hearing aids covered by H04R25/00 but not provided for in any of its subgroups
    • H04R2460/13Hearing devices using bone conduction transducers

Definitions

  • the present invention relates to a high performance bone conduction speaker and a method for improving the sound quality of a bone conduction speaker by a specific design, particularly a mid-bass quality, reducing leakage phenomena, and increasing the wearing comfort of a bone conduction speaker.
  • a person can hear the sound because air transmits vibration to the eardrum through the ear canal of the ear, and the vibration formed by the eardrum drives the human auditory nerve, thereby perceiving the vibration of the sound.
  • the bone conduction speaker When the bone conduction speaker is working, it can be transmitted to the human auditory nerve usually through the human skin, subcutaneous tissue and bones, so that the human hears the sound.
  • the present invention relates to a high performance bone conduction speaker or bone conduction earphone and a method of improving the sound quality of a bone conduction speaker or a bone conduction earphone by a specific design.
  • the bone conduction speaker or the bone conduction earphone comprises a vibration unit, an earphone holder/headphone strap connected to the vibration unit; the vibration unit includes at least one contact surface, and the contact surface is at least partially in direct or indirect contact with the user,
  • the pressure between the contact surface of the vibration unit and the user is greater than a first threshold, the pressure between the contact surface of the vibration unit and the user is less than a second threshold, and the pressure between the contact surface of the vibration unit and the user More than a third threshold; the pressure between the contact surface of the vibration unit and the user is less than a fourth threshold; optionally, the first threshold is greater than the third threshold, and the first threshold can improve the high frequency signal
  • the transmission efficiency improves the sound quality of the high frequency signal; optionally, the third threshold is a minimum force that causes
  • the pressure between the contact surface and the user is from 0.1 N to 5 N, preferably, the pressure is from 0.2 N to 4 N, more preferably, the pressure is from 0.2 N to 3 N, and further preferably, the pressure is 0.2N-1.5N, still more preferably, the pressure is from 0.3N to 1.5N.
  • the present invention is directed to a bone conduction speaker that improves leakage, the speaker including a vibration unit.
  • the vibration unit includes at least one contact surface, and the contact surface is at least partially in direct contact or indirect contact with the user; the contact surface includes at least a first contact surface area and a second contact surface area;
  • the first contact surface area includes a sound guiding hole, and the sound sounding hole is derived from the sound wave in the vibration unit casing, and is superimposed with the sound leakage sound wave.
  • at least one side surface is disposed on the side surface of the vibration unit outer casing. a sound hole, the sound hole is derived from the sound wave in the outer casing of the vibration unit, and superimposed with the sound sound wave; optionally, a cavity is below the first contact surface area, and the vibration panel is connected below the second contact surface area.
  • the vibrating panel is a second contact surface area; optionally, the second contact surface area convex portion is higher than the first contact surface area, and the first contact surface area is at least partially not in contact with the user, The portion not in contact with the user has a sound introducing hole.
  • the second contact surface area is more closely attached to the user, and the contact force is larger; optionally, the area and shape of the vibration panel and the second contact surface area are the same; optionally, the vibration panel Different from the area and shape of the second contact surface area, the projected area of the vibrating panel in the second contact surface area is not greater than the area of the second contact surface area.
  • the present invention provides a bone conduction speaker for improving sound quality, comprising a housing, a transducer, and a first vibration transmitting sheet; and the first vibration transmitting sheet and the transducer are passed through Physically connecting; the first vibration transmitting piece and the outer casing are physically connected; the energy transducing device can generate at least one resonance peak;
  • the transducing device comprises at least one vibrating plate and a second transmitting plate, the transducing device capable of generating at least two resonance peaks; optionally, the transducing device comprises at least one voice coil and at least a magnetic circuit system; the voice coil is physically connected to the vibrating plate, the magnetic circuit system is physically connected to the second vibration transmitting piece; optionally, the vibration plate has a stiffness coefficient greater than the second a stiffness coefficient of the vibration transmitting sheet; optionally, the first vibration transmitting sheet and the second vibration transmitting sheet are elastic sheets; optionally, the first vibration transmitting sheet radiates at least two first poles toward the center
  • the first vibration-transmitting sheet has a thickness of 0.005 mm to 3 mm, more preferably, a thickness of 0.01 mm to 2 mm, still more preferably, a thickness of 0.01 mm to 1 mm, and further preferably, the thickness is 0.02mm-0.5mm.
  • the present invention provides a bone conduction speaker for improving sound quality, comprising a vibration unit, the vibration unit including at least one contact layer, the contact layer being at least partially in direct or indirect contact with a user;
  • the surface has a gradient structure such that the pressure distribution on the contact layer is not uniform;
  • the gradient structure of the contact layer makes the pressure distribution in contact with the user uneven, resulting in different contact curves of different contact points; the overall frequency response curve of the contact layer is superimposed by the frequency response curve of each point.
  • a gradient structure is disposed on a side of the contact layer facing the user; optionally, the gradient structure includes at least one protrusion; optionally, the gradient structure includes at least one groove; The gradient structure is located at the center or edge of the user facing side.
  • a gradient structure is disposed on a side of the contact layer facing the user; optionally, the gradient structure includes at least one protrusion; optionally, the gradient structure includes at least one groove; The gradient structure is located at the center or edge of the side facing away from the user.
  • Figure 1 shows the process by which a bone conduction speaker causes the human ear to produce hearing.
  • FIG. 2-A is an external view of a vibration generating portion of a bone conduction speaker according to an embodiment of the present invention.
  • FIG. 2-B is a structural diagram of a vibration generating portion of a bone conduction speaker according to an embodiment of the present invention.
  • FIG. 2-C is a structural diagram of a vibration generating portion of a bone conduction speaker according to an embodiment of the present invention.
  • FIG. 3-A is an equivalent vibration model of a vibration generating portion of a bone conduction speaker according to an embodiment of the present invention.
  • FIG. 3-B is a vibration response curve of a bone conduction speaker according to an embodiment of the present invention.
  • FIG. 4 is a schematic diagram of a bone vibration speaker transmitting sound vibration transmission system according to an embodiment of the present invention.
  • Figures 5-A and 5-B are top and side views, respectively, of a method of bonding a bone conduction speaker panel in accordance with an embodiment of the present invention.
  • Fig. 6 is a structural view showing a vibration generating portion of a bone conduction speaker according to an embodiment of the present invention.
  • FIG. 7 is a vibration response curve of a bone conduction speaker according to an embodiment of the present invention.
  • FIG. 8 is a vibration response curve of a bone conduction speaker according to an embodiment of the present invention.
  • Fig. 9 is a structural view showing a vibration generating portion of a bone conduction speaker according to an embodiment of the present invention.
  • Figure 10 is a graph showing the frequency response of a bone conduction speaker in accordance with an embodiment of the present invention.
  • Figure 11 is an equivalent model of a bone conduction speaker vibration generation and delivery system in accordance with an embodiment of the present invention.
  • FIG. 12 is a structural diagram of a bone conduction speaker according to an embodiment of the present invention.
  • 13-A and 13-B are vibration response curves of a bone conduction speaker to which the embodiment of the present invention is applied.
  • 14-A and 14-B illustrate a method of measuring the clamping force of a bone conduction speaker according to an embodiment of the present invention.
  • 14-C is a vibration response curve of a bone conduction speaker to which the embodiment of the present invention is applied.
  • Figure 15 is a perspective view of a method of adjusting the clamping force in accordance with an embodiment of the present invention.
  • 16-A is a schematic view showing a contact surface of a vibration unit of a bone conduction speaker according to an embodiment of the present invention.
  • 16-B is a vibration response curve of a bone conduction speaker to which the embodiment of the present invention is applied.
  • 17 is a schematic view of a contact surface of a vibration unit of a bone conduction speaker according to an embodiment of the present invention.
  • 18-A and 18-B are structural views of a bone conduction speaker and a composite vibration device thereof according to an embodiment of the present invention.
  • 19 is a frequency response curve of a bone conduction speaker to which the embodiment of the present invention is applied.
  • FIG. 20 is a structural diagram of a bone conduction speaker and a composite vibration device thereof according to an embodiment of the present invention.
  • 21-A is an equivalent model diagram of a vibration generating portion of a bone conduction speaker according to an embodiment of the present invention.
  • Figure 21-B is a vibration response curve of a bone conduction speaker to which a specific embodiment is applied.
  • Figure 21-C is a vibration response curve of a bone conduction speaker to which a specific embodiment is applied.
  • Fig. 22-A is a structural view showing a vibration generating portion of a bone conduction speaker in a specific embodiment.
  • Fig. 22-B is a vibration response curve of a vibration generating portion of a bone conduction speaker in a specific embodiment.
  • Figure 22-C is a leaky curve of a bone conduction speaker in a particular embodiment.
  • Figure 23 is a structural view showing a vibration generating portion of a bone conduction speaker in a specific embodiment.
  • Figure 24-A is an application scenario of a bone conduction speaker in a specific embodiment.
  • Fig. 24-B is a vibration response curve of a vibration generating portion of a bone conduction speaker in a specific embodiment.
  • Figure 25 is a structural view showing a vibration generating portion of a bone conduction speaker in a specific embodiment.
  • Figure 26 is a schematic view showing the structure of a bone conduction speaker panel in a specific embodiment.
  • Figure 27 is a gradient structure outside the contact surface of a bone conduction speaker in a specific embodiment.
  • 28-A and 28-B are vibration response curves in a specific embodiment.
  • Figure 29 is a gradient structure inside the contact surface of a bone conduction speaker in a specific embodiment.
  • Figure 30 is a structural view showing a vibration generating portion of a bone conduction speaker in a specific embodiment.
  • bone conduction speaker or “bone conduction earphone”
  • This description is only one form of bone conduction application, and for those of ordinary skill in the art, “speakers” or “headphones” may be replaced with other similar words, such as “players,” “hearing aids,” and the like.
  • the various implementations of the present invention can be readily applied to other non-speaker type hearing devices.
  • it will be apparent to those skilled in the art that after understanding the basic principles of a bone conduction speaker, it is possible to carry out various forms and details of the specific manner and steps of implementing the bone conduction speaker without departing from this principle.
  • Modifications and changes, in particular, incorporating an ambient sound pickup and processing function into the bone conduction speaker to enable the speaker to function as a hearing aid For example, a microphone such as a microphone can pick up the sound of the user/wearer's surroundings and, under a certain algorithm, transmit the sound processed (or generated electrical signal) to the bone conduction speaker portion. That is, the bone conduction speaker can be modified to add the function of picking up the ambient sound, and after a certain signal processing, the sound is transmitted to the user/wearer through the bone conduction speaker portion, thereby realizing the function of the bone conduction hearing aid.
  • a microphone such as a microphone can pick up the sound of the user/wearer's surroundings and, under a certain algorithm, transmit the sound processed (or generated electrical signal) to the bone conduction speaker portion. That is, the bone conduction speaker can be modified to add the function of picking up the ambient sound, and after a certain signal processing, the sound is transmitted to the user/wearer through the bone conduction speaker portion, thereby realizing the function of the
  • the algorithms described herein may include noise cancellation, automatic gain control, acoustic feedback suppression, wide dynamic range compression, active environmental recognition, active noise immunity, directional processing, tinnitus processing, multi-channel wide dynamic range compression, active howling One or more combinations of suppression, volume control, and the like.
  • the bone conduction speaker transmits sound through the bone to the hearing system, thereby producing hearing.
  • 1 is a process of generating hearing of a bone conduction speaker, mainly comprising the following steps: in step 101, a bone conduction speaker acquires or generates a signal containing sound information; and in step 102, a bone conduction speaker generates vibration according to the signal; At step 103, vibration is transmitted to the sensing terminal 104 by the delivery system.
  • the bone conduction speaker picks up or generates a signal containing sound information, converts the sound information into sound vibrations through the transducer, transmits the sound to the sensory organ through the delivery system, and finally hears the sound.
  • the subject of the hearing system, sensory organ, and the like described above may be a human or an animal having a hearing system. It should be noted that the following description of the use of bone conduction loudspeakers by humans does not constitute a limitation on the use of bone conduction loudspeakers, and similar descriptions are equally applicable to other animals.
  • an additional vibration enhancement or correction step may be added between the vibration generation of step 102 and the vibration transmission step of 103.
  • This step can be enhanced or corrected using the acoustic signal of 101 or the vibration generated by 102 based on environmental parameters.
  • the vibration enhancement or correction step can be completed between steps 103 and 104, such as noise reduction, acoustic feedback suppression, wide dynamic range compression, automatic gain control, active environment recognition, active noise suppression, directional processing, Tinnitus processing, multi-channel wide dynamic range compression, active howling suppression, volume control, or other similar, or any combination of the above, are still within the scope of the claims of the present invention.
  • the methods and steps described herein can be implemented in any suitable order, or concurrently, where appropriate.
  • individual steps may be eliminated from any one method without departing from the spirit and scope of the subject matter described herein. Aspects of any of the examples described above can be combined with aspects of any of the other examples described to form further examples without losing the effect sought.
  • the bone conduction speaker can acquire or generate a signal containing sound information according to different manners.
  • Sound information can refer to video or audio files with a specific data format, and can also refer to data or files that can be generally converted into sounds by a specific means.
  • the signal containing the acoustic information may be from a storage unit of the bone conduction speaker itself, or may be derived from an information generation, storage or delivery system other than the bone conduction speaker.
  • the sound signals discussed herein are not limited to electrical signals, but may include other forms than electrical signals such as optical signals, magnetic signals, mechanical signals, and the like. in principle As long as the signal contains sound information that the speaker can use to generate vibration, it can be processed as a sound signal.
  • Sound signals are also not limited to one source and can come from multiple sources. These multiple sources can be related or independent of each other.
  • the manner in which the sound signal is transmitted or generated may be wired or wireless, and may be real-time or delayed.
  • the bone conduction speaker can receive an electrical signal containing sound information by wire or wirelessly, or can directly acquire data from the storage medium to generate a sound signal; a component with sound collection function can be added to the bone conduction hearing aid through the picking environment.
  • the sound in the sound converts the mechanical vibration of the sound into an electrical signal, which is processed by the amplifier to obtain an electrical signal that meets specific requirements.
  • wired connections include, but are not limited to, the use of metal cables, optical cables or hybrid cables of metal and optics, such as: coaxial cable, communication cable, flexible cable, spiral cable, non-metallic sheath cable, metal sheath cable, and more Core cable, twisted pair cable, ribbon cable, shielded cable, telecommunication cable, twin cable, parallel twin conductor, and twisted pair.
  • metal cables such as: coaxial cable, communication cable, flexible cable, spiral cable, non-metallic sheath cable, metal sheath cable, and more Core cable, twisted pair cable, ribbon cable, shielded cable, telecommunication cable, twin cable, parallel twin conductor, and twisted pair.
  • Wireless connections include, but are not limited to, radio communications, free space optical communications, acoustic communications, and electromagnetic induction.
  • radio communication includes, but is not limited to, IEEE802.11 series standards, IEEE802.15 series standards (such as Bluetooth technology and Zigbee technology), first generation mobile communication technologies, second generation mobile communication technologies (such as FDMA, TDMA, SDMA).
  • CDMA, and SSMA, etc. general packet radio service technology, third-generation mobile communication technologies (such as CDMA2000, WCDMA, TD-SCDMA, and WiMAX), and fourth-generation mobile communication technologies (such as TD-LTE and FDD-LTE) Etc.), satellite communications (eg GPS technology, etc.), near field communication (NFC) and other technologies operating in the ISM band (eg 2.4 GHz, etc.); free-space optical communications including but not limited to visible light, infrared signals, etc.; However, it is not limited to sound waves, ultrasonic signals, etc.; electromagnetic induction includes but is not limited to near field communication technology.
  • third-generation mobile communication technologies such as CDMA2000, WCDMA, TD-SCDMA, and WiMAX
  • fourth-generation mobile communication technologies such as TD-LTE and FDD-LTE) Etc.
  • satellite communications eg GPS technology, etc.
  • NFC near field communication
  • free-space optical communications including but not limited to visible light, infrare
  • the wirelessly connected medium may be of other types, such as Z-wave technology, other paid civilian radio bands, and military radio bands.
  • the bone conduction speaker can acquire the signal containing the sound information from other devices through the Bluetooth technology, or directly obtain the data directly from the storage unit provided by the bone conduction speaker, and then generate the sound signal.
  • the storage device/storage unit referred to herein includes a storage device on a storage system such as a Direct Attached Storage, a Network Attached Storage, and a Storage Area Network.
  • Storage devices include, but are not limited to, common types of storage devices such as solid state storage. Storage devices (solid state drives, solid state hybrid drives, etc.), mechanical hard drives, USB flash drives, memory sticks, memory cards (such as CF, SD, etc.), other drivers (such as CD, DVD, HD DVD, Blu-ray, etc.), random access memory (RAM) and read only memory (ROM).
  • RAM is, but not limited to, decimal counting tube, counting tube, delay line memory, Williams tube, dynamic random access memory (DRAM), static random access memory (SRAM), thyristor random access memory (T-RAM), and zero.
  • ROM is but not limited to: bubble memory, magnetic button line memory, thin film memory, magnetic plate line memory, magnetic core memory, drum memory, optical disk drive, hard disk, tape, early NVRAM (nonvolatile memory), phase change memory, magnetoresistive random storage memory, ferroelectric random access memory, nonvolatile SRAM, flash memory, electronic erasable rewritable read only memory, erasable programmable read only Memory, programmable read-only memory, shielded heap read memory, floating connection gate random access memory, nano random access memory, track memory, variable resistive memory, and programmable metallization cells.
  • the above-mentioned storage device/storage unit is exemplified by some examples, and the storage device that
  • a bone conduction speaker can convert a signal containing sound information into vibration and produce sound.
  • the generation of vibration is accompanied by the conversion of energy
  • the bone conduction speaker can convert the signal to mechanical vibration using a specific transducer.
  • the process of conversion may involve the coexistence and conversion of many different types of energy.
  • an electrical signal can be directly converted into mechanical vibration by a transducer to generate sound.
  • the sound information is included in the optical signal, and a particular transducer device can implement a process of converting the optical signal into a vibration signal.
  • Other types of energy that can coexist and convert during the operation of the transducer include thermal energy, magnetic field energy, and the like.
  • the energy conversion mode of the transducer device includes, but is not limited to, a moving coil type, an electrostatic type, a piezoelectric type, a moving iron type, a pneumatic type, an electromagnetic type, and the like.
  • the frequency response range of the bone conduction speaker and the sound quality are affected by the different modes of transduction and the performance of the various physical components in the transducer.
  • a moving coil type transducing device a wound cylindrical coil is connected to a vibrating plate, and a coil driven by a signal current drives a vibrating plate to vibrate in a magnetic field, and the material of the vibrating plate is stretched and contracted, and the wrinkles are deformed, sized, and shaped.
  • the vibrating plate may be a mirror-symmetrical structure, a centrally symmetric structure or an asymmetric structure; the vibrating plate may be provided with a discontinuous hole-like structure to cause a larger displacement of the vibrating plate, thereby enabling the bone conduction speaker to be realized.
  • the high sensitivity increases the output power of the vibration and the sound; for example, the vibrating plate is a torus structure, and a plurality of struts that are radiated toward the center are disposed in the ring body, and the number of the struts may be two or more.
  • Sound quality can be understood to reflect the quality of the sound, and refers to the fidelity of the audio after processing, transmission, and the like. Sound quality is mainly described by three elements: loudness, tone and tone. Loudness is the subjective feeling of the human ear to the strength of the sound, which is proportional to the logarithm of the sound intensity. The louder the sound, the louder it sounds. It is also related to the frequency and waveform of the sound. Tone, also known as pitch, refers to the subjective feeling of the human ear on the frequency of sound vibration. The pitch is mainly determined by the fundamental frequency of the sound. The higher the fundamental frequency, the higher the pitch, and it is also related to the intensity of the sound.
  • Tone is the subjective feeling of the human ear on the characteristics of the sound.
  • the tone depends mainly on the spectral structure of the sound and is related to the loudness, duration, build-up process and decay process of the sound.
  • the spectral structure of the sound is described by the fundamental frequency, the number of harmonic frequencies, the harmonic distribution, the magnitude of the amplitude, and the phase relationship. Different spectral structures have different timbres. Even if the fundamental frequency and loudness are the same, if the harmonic structure is different, the tone is different.
  • FIGS 2-A and 2-B are structural views of a vibration-generating portion of a bone conduction speaker in a specific embodiment, including a housing 210, a panel 220, a transducer 230, and a connector 240.
  • the vibration of the panel 220 is transmitted to the auditory nerve through the tissue and the bone, so that the human hears the sound.
  • the panel 220 may be in direct contact with the human skin, or may be in contact with the skin by a vibration transmitting layer (described in detail below) composed of a specific material.
  • the specific materials mentioned here can be selected from low-density materials such as plastics (such as but not limited to high molecular polyethylene, blown nylon, engineering plastics, etc.), rubber, or other single or similar properties.
  • Composite material For the type of rubber, such as but not limited to general-purpose rubber and special-type rubber.
  • General purpose rubbers include, but are not limited to, natural rubber, isoprene rubber, styrene butadiene rubber, butadiene rubber, neoprene, and the like. Special rubbers include but are not limited to nitrile rubber, silicone rubber, fluoro rubber, polysulfide rubber, urethane rubber, chlorohydrin rubber, acrylate rubber, propylene oxide rubber, and the like.
  • styrene-butadiene rubber is not limited to emulsion-polymerized styrene-butadiene rubber and solution-polymerized styrene-butadiene rubber
  • composite materials such as, but not limited to, glass fibers, carbon fibers, boron fibers, graphite fibers, fibers, graphene fibers, silicon carbide fibers, or aramid fibers. It may also be a composite of other organic and/or inorganic materials, such as a glass fiber reinforced unsaturated polyester, an epoxy resin or a phenolic resin matrix. Glass-like steel.
  • the transducer 230 is a component that converts electrical signals to mechanical vibration based on a certain principle.
  • the panel 220 is connected to the transducer 230 and is vibrated by the transducer 230.
  • the connector 240 connects the panel 220 and the housing 210 for positioning the transducer 230 in the housing.
  • the manner in which the transducer device and the panel are fixed in the housing is not limited to the connection manner described in FIG. 2-B. Obviously, whether the connector 240 is used or made of different materials is used by those skilled in the art.
  • the connecting member 240, the adjusting transducer 230 or the manner in which the panel 220 is connected to the outer casing 210, etc., all exhibit different mechanical impedance characteristics, and different vibration transmission effects are generated, thereby affecting the vibration efficiency of the vibration system as a whole, and generating different Sound quality.
  • the panel can be directly attached to the housing by glue, or it can be attached to the housing by snapping or soldering.
  • the connecting member having a moderate elastic force has a shock absorbing effect in the process of transmitting vibration, and the vibration energy transmitted to the outer casing can be reduced, thereby effectively suppressing the leakage of the bone conduction speaker caused by the vibration of the outer casing, and also It can help to avoid the occurrence of abnormal sound caused by possible abnormal resonance and achieve the effect of improving sound quality.
  • the connectors located at different locations inside/on the housing also have different effects on the transmission efficiency of the vibration.
  • the connectors may cause the transducer to be in a different state such as suspension or support.
  • connection An example of a connection is shown in FIG. 2-B, and the connector 240 can be coupled to the top end of the housing 210.
  • 2-C is an example of another type of connection.
  • the panel 220 extends from the opening of the outer casing 210, and the panel 220 and the transducer 230 are connected by a connecting portion 250 and connected to the outer casing 210 by a connecting member 240.
  • the transducing device can also be fixed inside the housing in other connection manners.
  • the transducing device can be fixed on the inner bottom surface of the outer casing through the connecting member, or the bottom of the transducing device can be replaced.
  • the side where the device can be connected to the panel is the top, and the side opposite to the bottom is the bottom.
  • the spring is suspended and fixed inside the casing.
  • the top of the transducer can also be connected to the casing or pass between the transducer and the casing. A plurality of connectors located at different positions are connected, or any combination of the above various connection methods.
  • the connector has a certain elasticity.
  • the elasticity of the connector is determined by various aspects such as the material, thickness, and structure of the connector.
  • the material of the connector such as but not limited to, steel (example Such as, but not limited to, stainless steel, carbon steel, etc.), light alloys (such as, but not limited to, aluminum alloys, beryllium copper, magnesium alloys, titanium alloys, etc.), plastics (such as but not limited to high molecular polyethylene, blown nylon, engineering Plastics, etc., can also be other single or composite materials that achieve the same properties.
  • the material constituting the connecting member may also be a composite of other organic and/or inorganic materials, such as various types of glass reinforced plastics composed of a glass fiber reinforced unsaturated polyester, an epoxy resin or a phenolic resin matrix.
  • the thickness of the connecting member is not less than 0.005 mm, preferably, the thickness is from 0.005 mm to 3 mm, more preferably, the thickness is from 0.01 mm to 2 mm, further preferably, the thickness is from 0.01 mm to 1 mm, and further preferably, the thickness is 0.02 mm. -0.5mm.
  • the structure of the connecting member may be set to be annular, preferably comprising at least one ring, preferably comprising at least two rings, which may be concentric rings or non-concentric rings, with at least two rings passing between the rings
  • the struts are connected, the struts radiating from the outer ring to the inner ring center, further preferably comprising at least one elliptical ring, further preferably comprising at least two elliptical rings, different elliptical rings having different radii of curvature, round
  • the rings are connected by struts and, more preferably, comprise at least one square ring.
  • the connector structure may also be set in a sheet shape, and preferably, a hollow pattern is provided on the sheet shape, and more preferably, the area of the hollow pattern is not smaller than the area of the non-hollow portion of the joint member.
  • the materials, thicknesses, and structures of the connectors in the above description may be combined into different connectors in any manner.
  • the annular connectors may have different thickness distributions, preferably the struts are equal to the thickness of the ring, further preferably, the struts are thicker than the torus thickness, and further preferably, the inner ring has a thickness greater than the thickness of the outer ring.
  • the connector described above is not necessarily required, and the panel may be directly attached to the outer casing or bonded to the outer casing by glue.
  • the shape, size, proportion, and the like of the vibration-generating portion of the bone conduction speaker in practical use are not limited to those described in FIG. 2A, FIG. 2B or FIG. 2C, and the bone conduction speaker may take into consideration other factors that may affect bone conduction. Factors of the sound quality of the speaker, such as the degree of leakage of the bone conduction speaker, the resulting multiplier, the manner of wearing, etc., can be changed to some extent by those skilled in the art based on the description.
  • bone conduction speakers are prone to leakage.
  • the leaking sound mentioned here refers to the bone conduction
  • the vibration of the speaker produces a sound that is transmitted to the surrounding environment.
  • other people in the environment can hear the sound from the speaker.
  • the leakage phenomenon including the vibration of the transducer and the panel transmitted to the outer casing through the connecting member to cause vibration of the outer casing, or the vibration of the transducing device causes the air in the casing to vibrate, and the vibration of the air is transmitted to the outer casing to cause the outer casing to vibrate. This produces a leak.
  • an equivalent vibration model of a vibration-generating portion of a bone conduction speaker includes a fixed end 301, a housing 311 and a panel 321, and an equivalent between the fixed end 301 and the outer casing 311 is through an elastic body 331 and damping.
  • the members 332 are connected, and the outer casing 311 and the panel 321 are equivalently connected by an elastic body 341.
  • the fixed end 301 may be a point where the bone conduction speaker is relatively fixed during vibration or a relatively fixed position (described in detail below).
  • the elastic body 331 and the damping 332 are determined by the connection between the earphone holder/headphone strap and the outer casing, and the influencing factors include the rigidity, shape, composition material of the earphone holder/headphone strap, and the earphone holder/headphone strap and the outer casing. The material properties of the part.
  • the earphone holder/headphone strap described herein provides the pressure between the bone conduction speaker and the user.
  • the elastic body 341 is determined by the connection between the panel 321 (or the system of the panel and the transducer) and the outer casing 311, and the influencing factors include the connector 240 mentioned above. Then the vibration equation can be expressed as:
  • n is the mass of the outer casing 311
  • x 1 is the displacement of the panel 321
  • x 2 is the displacement of the outer casing 311
  • R is the vibration damping
  • k 1 is the stiffness coefficient of the elastic body 341
  • k 2 is the stiffness of the elastic body 331 coefficient.
  • the ratio of shell vibration to panel vibration x 2 /x 1 can be derived:
  • the ratio of the shell vibration to the panel vibration x 2 /x 1 described here can reflect the size of the bone conduction speaker leakage.
  • the larger the value of x 2 /x 1 the greater the vibration of the outer casing compared to the effective vibration transmitted to the hearing system, and the greater the leakage at the same volume; x 2 /x 1
  • the smaller the value the smaller the vibration of the outer casing compared to the effective vibration transmitted to the hearing system, and the smaller the leakage at the same volume.
  • the factors affecting the leakage sound of the bone conduction speaker include the connection between the panel 321 (or the system composed of the panel and the transducer) and the outer casing 311 (the stiffness coefficient k 1 of the elastic body 341), the earphone Rack/earphone strap and housing system (k 2 , R, m), etc.
  • the stiffness coefficient k 1 , the outer shell mass m, and the damping R of the elastomer 331 are related to the shape and wearing manner of the speaker. After k 1 , m, R are determined, x 2 /x 1 and the elastomer 341 The relationship between the stiffness coefficients k 1 is shown in Figure 3-B.
  • stiffness coefficients k 1 will affect the ratio of the vibration amplitude of the casing to the amplitude of the panel vibration, ie x 2 /x 1 .
  • the frequency f is greater than 200 Hz
  • the vibration of the outer casing is smaller than the vibration of the panel (x 2 /x 1 ⁇ 1), and as the frequency increases, the vibration of the outer casing becomes smaller.
  • the stiffness coefficients are sequentially set to 5, 10, 20, 40, 80, and 160 times k 2 ) .
  • the vibration of the casing is already less than 1/10 of the vibration of the panel (x 2 /x 1 ⁇ 0.1).
  • reducing the value of the stiffness coefficient k 1 can effectively reduce the vibration of the outer casing, thereby reducing leakage.
  • the use of a particular material and connection means can reduce leakage.
  • the panel, the transducer device and the outer casing are connected by a connector having a certain elasticity, and the vibration amplitude of the casing is small under the vibration of the panel under a large amplitude, and the sound leakage is reduced.
  • a connector having a certain elasticity
  • the vibration amplitude of the casing is small under the vibration of the panel under a large amplitude, and the sound leakage is reduced.
  • the connector including, but not limited to, stainless steel, beryllium copper, plastic (eg, polycarbonate), and the like.
  • the shape of the connector can be set in a wide variety.
  • the connecting member may be a toroidal body in which at least two struts are radiated toward the center, the annular body having a thickness of not less than 0.005 mm, preferably, a thickness of 0.005 mm to 3 mm, more preferably, The thickness is from 0.01 mm to 2 mm, and more preferably, the thickness is from 0.01 mm to 1 mm, and further preferably, the thickness is from 0.02 mm to 0.5 mm.
  • the connecting member may be a ring piece, and the ring piece may be further provided with a plurality of intermittent ring holes, and a discontinuous space is formed between each ring hole.
  • a certain number of sound holes satisfying certain conditions may be opened on the outer casing or the panel (or the vibration transmission layer on the outer side of the panel, which will be described in detail below), and the sound waves in the shell can be vibrated during the vibration of the transducer.
  • the guide propagates to the outside of the shell and interacts with the sound-absorbing sound waves formed by the vibration of the outer casing to achieve the effect of suppressing the leakage of the bone conduction speaker.
  • an outer casing made of a sound absorbing material may be selected, or a sound absorbing material may be used on at least a portion of the casing.
  • the sound absorbing material can be used for one or more of the inner/outer surfaces on the housing or a portion of the inner/outer surface of the housing.
  • a sound absorbing material refers to a material that is capable of absorbing the incident sound energy by one or more mechanisms of physical properties of the material itself, such as, but not limited to, porosity, film action, and resonance.
  • the sound absorbing material may be a porous material or a material having a porous structure including, but not limited to, organic fiber materials (such as, but not limited to, natural plant fibers, organic synthetic fibers, etc.), inorganic fiber materials (such as, but not limited to, glass) Cotton, slag wool, aluminum silicate cotton and rock wool, etc., metal sound absorbing materials (such as, but not limited to, metal fiber sound absorbing panels, foam metal materials, etc.), rubber sound absorbing materials, foam plastic sound absorbing materials (such as Not limited to, polyurethane foam, polyvinyl chloride foam, polyacrylate polystyrene foam, phenolic resin foam, etc.); or may be soft through resonance sound absorption Materials, including but not limited to closed cell foam; film materials, including but not limited to plastic film,
  • the sound absorbing material may be a combination of one or more of them, or may be a composite material.
  • the sound absorbing material may be disposed on the outer casing or may be separately disposed on the vibration transmitting layer or the outer casing of the vibrating outer casing.
  • the outer casing, the vibration transmitting layer, and the panel that is bonded to the vibration transmitting layer together constitute a vibration unit of the bone conduction speaker.
  • the transducer is located in the vibration unit and transmits vibration to the vibration unit through a connection to the panel and the housing.
  • at least more than 1% of the vibration unit is a sound absorbing material, more preferably, the vibration unit has at least 5% of the sound absorbing material, and further preferably, the vibration unit has at least more than 10% of the sound absorbing material.
  • At least more than 5% of the outer casing is a sound absorbing material, more preferably, at least more than 10% of the outer casing is a sound absorbing material, further preferably more than 40% of the outer casing is a sound absorbing material, still more preferably At least 80% of the outer casing is sound absorbing material.
  • a compensation circuit can be introduced to actively control the nature of the leaky sound to produce an inverted signal that is opposite in phase to the sound of the leak, thereby suppressing leakage. It should be noted that the manner of altering the sound quality of the bone conduction speaker described above can be selected or used in combination to obtain various embodiments, and these embodiments are still within the scope of the present invention.
  • the attachment portion 250 of Figures 2-B, 2-C can be a portion of the panel 220 that is glued to the transducer 230; or it can be part of the transducer 230 (e.g., on the diaphragm)
  • the raised portion is glued to the panel 220; it can also be a separate component that is glued to the panel 220 and the transducer 230 simultaneously.
  • connection portion 250 is not limited to bonding, and other connections known to those skilled in the art are also applicable to the present invention, for example, snapping or soldering may be employed. the way.
  • the panel 220 and the outer casing 210 may be directly bonded by glue, more preferably, may be connected by an assembly similar to the elastic member 240, and further preferably, a vibration transmitting layer may be added to the outside of the panel 220 ( The manner of which will be described in detail below is connected to the outer casing 210.
  • connection portion 250 is for describing the connection between different components. The schematics of those skilled in the art can be replaced by components having similar functions and different shapes, and these alternatives and modifications are still within the scope of the above described protection.
  • the sound is transmitted to the hearing system through the delivery system.
  • the delivery system may transmit sound vibration directly to the hearing system through the medium, or may be transmitted to the hearing system after a certain process in the sound transmission process.
  • the speaker 401 contacts the back of the ear, the cheek or the forehead, etc., and transmits the sound vibration to the skin 402 through the subcutaneous tissue 403.
  • the bone 404 is delivered to the cochlea 405 and ultimately transmitted to the brain by the cochlear auditory nerve.
  • the sound quality experienced by the human body is affected by the transmission medium and other factors that affect the physical properties of the transmission medium. For example, the density and thickness of the skin and subcutaneous tissue, the shape and density of the bone, and other tissues of the human body through which vibration may pass during transmission may affect the final sound quality. Further, during the transmission of the vibration, the vibration transmission efficiency of the part of the bone conduction speaker that is in contact with the human body and the human tissue also affects the final sound effect.
  • the panel of a bone conduction speaker transmits vibration through the body tissue to the hearing system of the human body, changing the material, contact area, shape and/or size of the panel, and the interaction force between the panel and the skin, all of which can affect the passage of sound through the medium. Passing efficiency, which affects sound quality.
  • the vibration transmitted by different sized panels has different distributions on the wearer's fit surface, which in turn leads to differences in volume and sound quality.
  • the area of the panel is not less than 0.15cm 2, more preferably not less than an area of 0.5cm 2, more preferably, the area not less than 2cm 2.
  • the panel is vibrated by the transducer device, and the bonding point of the panel and the transducer is at the center of the panel vibration.
  • the mass distribution of the panel around the vibration center is uniform (ie, the vibration center is the panel). Physical center), and more preferably, the panel is unevenly distributed around the mass in the vibration (ie, the center of vibration is offset from the physical center of the panel).
  • a vibrating plate can be connected to a plurality of panels, and the shapes and materials between the plurality of panels can be the same or different, and the plurality of panels can be connected or disconnected, and the plurality of panels transmit sound vibrations by using multiple channels. The vibration transmission modes between different paths are different from each other, and the position transmitted to the panel is also different.
  • the vibration signals between different panels can complement each other to generate a relatively flat frequency response. For example, dividing a large-sized vibrating plate into two or more vibrating plates with a small area can effectively improve the uneven vibration caused by the deformation of the panel at a high frequency, and the frequency response is more ideal.
  • the physical properties of the panel such as mass, size, shape, stiffness, vibration damping Etc. will affect the efficiency of panel vibration.
  • a person skilled in the art can select a panel made of a suitable material according to actual needs, or mold the panel into different shapes using different molds.
  • the shape of the panel can be set to be rectangular, circular or elliptical, and more preferably, The shape of the panel may be a pattern obtained by cutting a rectangular, circular or elliptical edge (for example, but not limited to, cutting a circular symmetry to obtain an elliptical shape, etc.), and further preferably, the panel may be set to be hollowed out of.
  • the panel materials referred to herein include, but are not limited to, Acrylonitrile butadiene styrene (ABS), Polystyrene (PS), High impact polystyrene (HIPS). , Polypropylene (PP), Polyethylene terephthalate (PET), Polyester (PES), Polycarbonate (PC), Polyamide (PA), Poly Polyvinyl chloride (PVC), Polyurethanes (PU), Polyvinylidene chloride, Polyethylene (PE), Polymethyl methacrylate (PMMA), Polyetheretherketone (Polyetheretherketone, PEEK), Phenolics (PF), Urea-formaldehyde (UF), Melamine formaldehyde (MF) and some metals and alloys (such as aluminum alloy, chrome molybdenum steel, niobium) Alloy, magnesium alloy, titanium alloy, magnesium lithium alloy, nickel alloy, etc.) or composite materials.
  • ABS Acrylonitrile butadiene styrene
  • PS
  • the panel material has a relative density of from 1.02 to 1.50, more preferably, a relative density of from 1.14 to 1.45, and even more preferably, a relative density of from 1.15 to 1.20.
  • the tensile strength of the panel is not less than 30 MPa, more preferably, the tensile strength is from 33 MPa to 52 MPa, and further preferably, the tensile strength is not less than 60 MPa.
  • the panel material may have an elastic modulus of from 1.0 GPa to 5.0 GPa, more preferably, an elastic modulus of from 1.4 GPa to 3.0 GPa, and further preferably, an elastic modulus of from 1.8 GPa to 2.5 GPa.
  • the panel material may have a hardness (Rockwell hardness) of 60 to 150, more preferably, the hardness may be 80 to 120, and further preferably, the hardness may be 90 to 100.
  • the relative density may be 1.02-1.1, the tensile strength is 33 MPa-52 MPa, and more preferably, the relative density of the panel material is 1.20-1.45, and the tensile strength is 56-66 MPa. .
  • the outer side of the panel of the bone conduction speaker encloses the vibration transmitting layer, the vibration transmitting layer is in contact with the skin, and the vibration system composed of the panel and the vibration transmitting layer transmits the generated sound vibration to the human body tissue.
  • the outer side of the panel is wrapped with a vibration transmitting layer, and more preferably, the outer side of the panel is wrapped with a plurality of vibration transmitting layers;
  • the vibration transmitting layer may be made of one or more materials, and the material composition of different vibration transmitting layers may be the same. It may also be different; the multilayer vibration transmission layers may be superimposed on each other in the direction perpendicular to the panel, or may be arranged in the horizontal direction of the panel, or a combination of the above two arrangements.
  • the area of the vibration transmission layer may be set to a different size.
  • the area of the vibration transmission layer is not less than 1 cm 2 , and more preferably, the area of the vibration transmission layer is not less than 2 cm 2 , and further preferably, the area of the vibration transmission layer is not Less than 6cm 2 .
  • the vibration transmission layer may be composed of a material having certain adsorptivity, flexibility, and chemistry, such as plastic (such as, but not limited to, high molecular polyethylene, blown nylon, engineering plastics, etc.), rubber, or the same performance. Other single or composite materials.
  • plastic such as, but not limited to, high molecular polyethylene, blown nylon, engineering plastics, etc.
  • rubber or the same performance.
  • Other single or composite materials such as but not limited to general-purpose rubber and special-type rubber.
  • General purpose rubbers include, but are not limited to, natural rubber, isoprene rubber, styrene butadiene rubber, butadiene rubber, neoprene, and the like.
  • Special rubbers include but are not limited to nitrile rubber, silicone rubber, fluoro rubber, polysulfide rubber, urethane rubber, chlorohydrin rubber, acrylate rubber, propylene oxide rubber, and the like.
  • styrene-butadiene rubber is not limited to emulsion-polymerized styrene-butadiene rubber and solution-polymerized styrene-butadiene rubber
  • composite materials such as, but not limited to, glass fibers, carbon fibers, boron fibers, graphite fibers, fibers, graphene fibers, silicon carbide fibers, or aramid fibers.
  • Other materials that can be used to form the vibration transmitting layer include a combination of one or more of silica gel, polyurethane, and polycarbonate.
  • the presence of the vibration transfer layer can affect the frequency response of the system, change the sound quality of the bone conduction speaker, and also protect the components inside the shell.
  • the vibration transmitting layer can change the vibration mode of the panel, making the overall frequency response of the system more gradual.
  • the vibration mode of the panel is affected by the properties of the panel itself, the connection mode of the panel and the vibration plate, the connection mode of the panel and the vibration transmission layer, and the vibration frequency.
  • the properties of the panel itself include, but are not limited to, the quality, size, shape, stiffness, vibration damping, etc. of the panel.
  • a panel having a non-uniform thickness such as, but not limited to, a panel center thickness greater than an edge thickness may be employed.
  • the connection mode of the panel and the vibration plate includes but is not limited to glue bonding, snapping or welding; the connection of the panel and the vibration transmission layer includes but is not limited to a glue connection; different vibration frequencies correspond to different vibration modes of the panel, including the panel as a whole.
  • the translation and the varying degrees of torsional translation, selecting a panel with a specific vibration pattern in a particular frequency range can change the sound quality of the bone conduction speaker.
  • the specific frequency range referred to herein may be 20 Hz to 20,000 Hz, and more preferably, the frequency range may be 400 Hz to 10000 Hz, and further preferably, the frequency range may be 500 Hz to 2000 Hz, and still more preferably, the frequency range may be 800Hz-1500Hz.
  • the vibration transmitting layer described above is wrapped on the outside of the panel to constitute one side of the vibration unit. Different regions of the vibration transmission layer have different effects on vibration transmission. For example, the first contact surface region and the second contact surface region are present on the vibration transmitting layer.
  • the first contact surface region is not attached to the panel, and the second contact surface region is attached to the panel; more preferably, the vibration transmitting layer
  • the clamping force on the first contact surface area is smaller than the clamping force on the second contact surface area (the clamping force referred to herein refers to the contact surface of the vibration unit and the user) Further pressure);
  • the first contact surface area is not in direct contact with the user, and the second contact surface area is in direct contact with the user and transmits vibration.
  • the area of the first contact surface area and the area of the second contact surface area are not equal.
  • the area of the first contact surface area is smaller than the area of the second contact surface area, and more preferably, the first contact surface area is small.
  • the hole further reduces the area of the first contact area;
  • the outer side surface of the vibration transmitting layer ie, facing the user surface
  • the regions are not on the same plane; more preferably, the second contact surface region is higher than the first contact surface region; further preferably, the second contact surface region and the first contact surface region constitute a stepped structure; still more preferably, the second contact
  • the face area is in contact with the user and the first contact area is not in contact with the user.
  • the constituent materials of the first contact surface region and the second contact surface region may be the same or different, and may be a combination of one or more of the vibration transmitting layer materials described above.
  • the vibration transmitting layer may not be necessary, the panel may be in direct contact with the user, and different contact surface regions may be disposed on the panel, and the different contact surface regions have similar to the first contact surface region and the second contact surface region described above.
  • a third contact surface region may be disposed on the contact surface, and a structure different from the first contact surface region and the second contact surface region may be disposed on the third contact surface region, and these structures can reduce the vibration of the outer casing and suppress leakage. A certain effect is obtained in terms of sound, improving the frequency response curve of the vibration unit, and the like.
  • Figures 5-A and 5-B are a front view and a side view, respectively, of the panel and the vibration transmitting layer.
  • the panel 501 and the vibration transmitting layer 503 are bonded by the glue 502, the glue bonding is located at both ends of the panel 501, and the panel 501 is located in the casing formed by the vibration transmitting layer 503 and the casing 504.
  • the projection of the panel 501 on the vibration transmitting layer 503 is a second contact surface area, and the area around the second contact surface area is a first contact surface area.
  • the glue can be completely adhered between the panel and the vibration transmission layer, which equivalently changes the quality, size, shape, stiffness, vibration damping, vibration mode and other properties of the panel, and also makes the vibration transmission efficiency higher; the panel and the transmission layer It is also possible to use only the glue part to bond, and there is gas conduction in the non-sticking area between the panel and the transfer layer, which can enhance the transmission of low frequency vibration and improve the effect of low frequency in the sound.
  • the glue area accounts for 1% of the panel area - 98%, more preferably, the glue area accounts for 5%-90% of the panel area, and more preferably, the glue area accounts for 10%-60% of the panel area, and even more preferably, the glue area accounts for 20% of the panel area -40 %; there is no glue bond between the panel and the transfer layer, and the vibration transmission efficiency of the panel and the transfer layer is different from that of the glue bond, which also changes the sound quality of the bone conduction speaker.
  • changing the manner in which the glue is applied can change the manner in which the corresponding components of the bone conduction speaker vibrate, thereby changing the sound generation and delivery effects.
  • the nature of the glue also affects the sound quality of the bone conduction speaker, such as the hardness, shear strength, tensile strength and ductility of the glue.
  • the tensile strength of the glue is not less than 1 MPa, more preferably, the tensile strength is not less than 2 MPa, further preferably, the tensile strength is not less than 5 MPa; preferably, the elongation at break of the glue is 100% to 500 %, more preferably, the elongation at break is 200% to 400%; preferably, the shear strength of the glue is not less than 2 MPa, more preferably, the shear strength is not less than 3 MPa; preferably, the Shore hardness of the glue is 25-30, more preferably, the Shore hardness is 30-50.
  • the bonding strength between the glue and the panel and between the glue and the plastic can also be set within a certain range, such as, but not limited to, within 8 MPa to 14 MPa.
  • the vibration transmitting layer material in the embodiment is not limited to silica gel, and plastic, biological materials or other materials having certain adsorptivity, flexibility, and chemistry may also be used. Those skilled in the art can also determine the type and properties of the glue, the panel material and the vibration transmission layer material bonded to the glue according to actual needs, and determine the sound quality of the bone conduction speaker to some extent.
  • Fig. 6 is a specific embodiment of the manner in which the components of the bone conduction speaker vibration generating portion are connected.
  • the transducer 610 is coupled to the housing 620, and the panel 630 is bonded to the vibration transmitting layer 640 by glue 650.
  • the edge of the vibration transmitting layer 640 is coupled to the housing 620.
  • the frequency response of the bone conduction speaker can be altered by varying the distribution, stiffness or amount of glue 650, or by changing the stiffness of the delivery layer 640, etc., thereby changing the sound quality.
  • the glue may not be applied between the panel and the vibration transmitting layer, more preferably, the panel and the vibration transmitting layer may be coated with glue, and further preferably, the panel and the vibration transmitting interlayer portion are coated with glue, and further preferably, the panel
  • the area of the area where the glue is applied to the vibration transmitting layer is not larger than the area of the panel.
  • the effect of different glue connections on the frequency response of the bone conduction speaker is reflected.
  • the three curves correspond to the vibration-free transfer layer and glue, the vibration transfer layer and the panel are not coated with glue, and the frequency response when the vibration transfer layer and the panel are coated with glue.
  • the resonant frequency of the bone conduction speaker is shifted to the low frequency when a small amount of glue is applied or not applied between the vibration transmitting layer and the panel with respect to the application of the glue.
  • the adhesion of the vibration transmission layer and the panel through the glue can reflect the influence of the vibration transmission layer on the vibration system. Therefore, changing the bonding mode of the glue can make a significant change in the frequency response curve of the bone conduction speaker.
  • Figure 8 reflects the effect of the hardness of the different vibration transmitting layers on the vibration response curve.
  • the solid line is the vibration response curve corresponding to the bone conduction speaker with a harder transmission layer
  • the broken line is the vibration response curve corresponding to the bone conduction speaker with a softer transmission layer.
  • vibration transfer layers of different materials can obtain a better bass effect
  • a vibration transmitting layer made of 75-degree silica gel can obtain a better high-pitched effect.
  • the low frequency referred to herein refers to sounds of less than 500 Hz
  • the intermediate frequency refers to sounds in the range of 500 Hz to 4000 Hz
  • the high frequency refers to sounds of more than 4000 Hz.
  • the above description of the glue and vibration transmitting layer is merely an embodiment that can affect the sound quality of the bone conduction speaker and should not be considered as the only feasible implementation.
  • the various devices in the vibration generating portion of the bone conduction speaker and the connection manner without departing from this principle. Changes, but these adjustments and changes are still within the scope of protection described above.
  • the material of the vibration transmission layer may be arbitrary or customized according to the user's usage habits.
  • the use of glue with different hardness after curing between the vibration transmitting layer and the panel may also affect the sound quality of the bone conduction speaker.
  • the transfer layer has a thickness of from 0.1 mm to 10 mm, more preferably, a thickness of from 0.3 mm to 5 mm, still more preferably, a thickness of from 0.5 mm to 3 mm, further preferably, a thickness of from 1 mm to 2 mm.
  • the tensile strength, viscosity, hardness, tear strength, elongation, etc. of the transfer layer also have an effect on the sound quality of the system.
  • the tensile strength of the material of the transfer layer refers to the force required per unit range when the transfer layer sample is torn.
  • the tensile strength is from 3.0 MPa to 13 MPa, and more preferably, the tensile strength is from 4.0 MPa to 12.5 MPa. Further preferably, the tensile strength is from 8.7 MPa to 12 MPa.
  • the transfer layer has a Shore hardness of from 5 to 90, more preferably, a Shore hardness of from 10 to 80, and even more preferably, a Shore hardness of from 20 to 60.
  • the elongation of the transfer layer refers to the percentage of the transfer layer that is relatively increased from the original length when it is broken.
  • the elongation is between 90% and 1200%, and more preferably, the elongation is between 160% and 700%.
  • the elongation is between 300% and 900%.
  • the tear strength of the transfer layer refers to the resistance that hinders the enlargement of the slit or the score when a force is applied to the transfer layer having the slit, preferably, the tear strength is between 7 kN/m and 70 kN/m, and more preferably, the tear The strength is between 11 kN/m and 55 kN/m, and further preferably, the tear strength is between 17 kN/m and 47 kN/m.
  • the performance of the bone conduction speaker can be changed from other aspects.
  • a well-designed vibration generating portion including a vibration transmitting layer can further effectively reduce leakage of the bone conduction speaker.
  • perforating the surface of the vibration transmitting layer can reduce leakage.
  • the vibration transmitting layer 940 is bonded to the panel 930 via the glue 950, and the bonding area on the vibration transmitting layer and the panel is raised more than the non-bonding area on the vibration transmitting layer 940, and is not bonded. Below the area is a cavity. The sound-inducing hole 960 is opened on the non-adhesive area of the vibration transmitting layer 940 and the surface of the outer casing 920, respectively.
  • the non-adhesive area in which part of the sound introducing hole is opened is not in contact with the user.
  • the sound introducing hole 960 can effectively reduce the area of the non-bonded area on the vibration transmitting layer 940, can make the air inside and outside the vibration transmitting layer transparent, reduce the difference between the inner and outer air pressure, thereby reducing the vibration of the non-bonded area;
  • the sound introducing hole 960 can extract sound waves formed by the vibration of the air inside the outer casing 920 to the outside of the outer casing 920, and cancel out the sound leakage sound waves formed by the outer casing 920 vibrating the outer air of the outer casing to reduce the amplitude of the sound leakage sound.
  • the leakage sound of the bone conduction speaker at any point in the space is proportional to the sound pressure P at the point,
  • P 0 is the sound pressure generated at the above point of the outer casing (including the portion of the vibration transmitting layer that is not in contact with the skin)
  • P 1 is the sound pressure transmitted by the sound introducing hole on the side of the outer casing at the above point
  • P 2 is the vibration The sound pressure transmitted by the sound hole on the transfer layer is at the sound pressure at the above point
  • P 0 , P 1 , and P 2 are:
  • k is the wave vector
  • ⁇ 0 is the air density
  • is the angular frequency of the vibration
  • R(x', y') is the distance from the point on the sound source to a point in the space
  • S 0 is the outer shell that is not in contact with the human face.
  • S 1 is the opening area of the sound hole on the side of the casing
  • S 2 is the opening area of the sounding hole on the vibration transmission layer
  • W(x, y) represents the sound source intensity per unit area. Indicates the phase difference of the sound pressure generated by different sound sources at a point in space.
  • the vibration transmitting layer there is a partial area on the vibration transmitting layer that is not in contact with the skin (for example, the edge area where the sound introducing hole 960 is located on the vibration transmitting layer 940 in Fig. 9), which is affected by the vibration of the panel and the outer casing.
  • the vibration is generated to radiate sound to the outside, and the above-mentioned outer casing area should include a portion of such a vibration transmission layer that is not in contact with the skin.
  • the sound pressure at any point in space (when the angular frequency is ⁇ ) can be expressed as:
  • the coefficient A1, A2 can be adjusted by adjusting the size and number of the sound hole, and the position of the sound hole can be adjusted to adjust the phase.
  • the value After understanding the principle that the vibration system composed of the panel, the transducer device, the vibration transmission layer and the outer casing affects the sound quality of the bone conduction speaker, those skilled in the art can adjust the shape, position, number and size of the sound hole according to actual needs. And the damping on the hole, etc., so as to achieve the purpose of suppressing leakage.
  • the sound holes may be one or more, preferably a plurality.
  • the number of sound introducing holes in each of the laying areas may be one or more, for example, 4-8.
  • the shape of the sound hole may be circular, elliptical, rectangular or elongated.
  • the sound-inducing holes on a bone-conducting speaker can be made of sound-absorbing holes of the same shape or a combination of sound-absorbing holes of various shapes.
  • the vibration transmitting layer and the side of the outer casing are respectively arranged with different shapes and numbers of sound introducing holes, and the number density of the sound introducing holes on the vibration transmitting layer is larger than the number density of the sound introducing holes on the side of the outer casing.
  • the area of the portion of the vibration transmitting layer that is not in contact with the skin can be effectively reduced, thereby reducing the leakage sound generated by the portion.
  • the addition of a damping material or a sound absorbing material to the sounding hole on the side of the vibration transmission layer/housing can further enhance the purpose of suppressing leakage.
  • the sound hole can be expanded into other materials or structures that facilitate the transmission of air vibrations within the outer casing out of the outer casing.
  • a phase adjustment material such as, but not limited to, a sound absorbing material
  • a phase adjustment material is used as a part of the material of the outer casing, so that the phase of the air vibration transmitted from the phase of the vibration of the other parts of the outer casing is in the range of 90° to 270°, thereby functioning as a sound phase.
  • the role of elimination A description of the arrangement of the sound-emitting holes of the outer casing is disclosed in Chinese Patent Application No. 201410005804.0 filed on Jan. 6, 2014, entitled "A method for suppressing leakage of a bone conduction speaker and a bone conduction speaker", the entire patent document The reference is hereby incorporated by reference.
  • an elastic connecting member is used between the transducer and the outer casing, and the material of the connecting member is, for example but not limited to, steel (such as but not limited to stainless steel, carbon steel, etc.), light alloy (such as but not limited to aluminum alloy, tantalum).
  • plastics such as, but not limited to, high molecular polyethylene, blown nylon, engineering plastics, etc.
  • plastics can also be other single or composite materials that can achieve the same properties.
  • composite materials such as, but not limited to, glass fibers, carbon fibers, boron fibers, graphite fibers, graphene fibers, silicon carbide fibers, or aramid fibers.
  • the material constituting the connecting member may also be a composite of other organic and/or inorganic materials, such as various types of glass reinforced plastics composed of a glass fiber reinforced unsaturated polyester, an epoxy resin or a phenolic resin matrix.
  • the thickness of the connecting member is not less than 0.005 mm, preferably, the thickness is from 0.005 mm to 3 mm, more preferably, the thickness is from 0.01 mm to 2 mm, further preferably, the thickness is from 0.01 mm to 1 mm, and further preferably, the thickness is 0.02 mm. -0.5mm.
  • the structure of the connecting member may be set to be annular, preferably comprising at least one ring, preferably comprising at least two rings, which may be concentric rings or non-concentric rings, with at least two rings passing between the rings
  • the struts are connected, the struts radiating from the outer ring to the inner ring center, further preferably comprising at least one elliptical ring, further preferably comprising at least two elliptical rings, different elliptical rings having different radii of curvature, round
  • the rings are connected by struts and, more preferably, comprise at least one square ring.
  • the connector structure may also be set in a sheet shape, and preferably, a hollow pattern is provided on the sheet shape, and more preferably, the area of the hollow pattern is not smaller than the area of the non-hollow portion of the joint member.
  • the materials, thicknesses, and structures of the connectors in the above description may be combined into different connectors in any manner.
  • the annular connectors may have different thickness distributions, preferably the struts are equal to the thickness of the ring, further preferably, the struts are thicker than the torus thickness, and further preferably, the inner ring has a thickness greater than the thickness of the outer ring.
  • the sound hole is only opened on the vibration transmission layer, and more preferably, the sound hole only starts to transmit vibration It is further preferred that the layer is not overlapped with the panel. Further preferably, the sound hole is opened in a region that is not in contact with the user. Further preferably, the sound hole is opened in a cavity inside the vibration unit.
  • the sound introducing hole may also be opened on the bottom wall of the outer casing, and the number of sound introducing holes formed in the bottom wall may be one, and may be disposed at the center of the bottom wall, or may be plural, and arranged to be annular around the center of the bottom wall. Uniform distribution.
  • the sound introducing hole may be opened on the side wall of the outer casing, and the number of sound introducing holes formed in the side wall of the outer casing may be one or plural, and is evenly distributed in the circumferential direction.
  • an implantable bone conduction hearing aid can directly attach to the bones of the human body and transmit sound vibration directly to the bone without passing through the skin or subcutaneous tissue, so that the skin or subcutaneous tissue can be avoided to some extent during the vibration transmission process. Attenuation and change in frequency response.
  • the conductive portion may be a tooth, that is, the bone conduction device may be attached to the tooth, the sound vibration is transmitted to the bone and the surrounding tissue through the tooth, and the skin may be reduced to some extent during the vibration process.
  • the effect of the frequency response may be only for descriptive purposes. After understanding the basic principles of bone conduction, those skilled in the art can apply the bone conduction technology to different scenes. In these scenarios, the sound transmission can be Some of the changes in the delivery routes described above are still within the scope of protection described above.
  • the sound quality perceived by the human body is also related to the hearing system of the human body, and different people may be sensitive to sounds of different frequency ranges.
  • the sensitivity of the human body to sounds of different frequencies can be reflected by an equal response curve.
  • Some people are insensitive to sound in a specific frequency range in the sound signal, and the response intensity of the corresponding frequency on the equal-impedance curve is lower than that in other frequencies.
  • some people are insensitive to high-frequency sound signals, that is, on the equal-curve curve, the intensity response at the intensity response of the corresponding high-frequency signal is lower than other frequencies; some people are not sensitive to the low- and medium-frequency sound signals.
  • the equal-impedance curve appears as an intensity response at which the intensity response of the corresponding medium-low frequency signal is lower than at other frequencies.
  • the low frequency referred to herein refers to sounds of less than 500 Hz
  • the intermediate frequency refers to sounds in the range of 500 Hz to 4000 Hz
  • the high frequency refers to sounds of more than 4000 Hz.
  • the low frequency and high frequency of the sound can be relative, and the hearing system for some special people is not
  • the different responses of the sound in the same frequency range selectively alter or adjust the distribution of the sound intensity produced by the bone conduction speaker within the corresponding frequency range, enabling the corresponding population to obtain different sound experiences.
  • the high frequency, intermediate frequency or low frequency part of the sound signal discussed above may be a description of the corresponding part of the hearing range of the normal human ear, or a description of the corresponding part of the sound range of the natural world to be expressed by the speaker. .
  • the equal-acoustic curve of the hearing system of some people is as shown by curve 3 in FIG. 10, and a peak appears near the frequency of point A, indicating that the population is more sensitive to sounds near the frequency of point A than other frequency points. (point B in the figure).
  • Curve 4 in the figure is a bone conduction speaker frequency response curve correspondingly compensated for the hearing curve 3, and a resonance peak exists near the frequency of point B.
  • the frequency of point A can be selected at about 500 Hz, and the frequency of point B can be selected at about 2000 Hz. It should be noted that the above example of performing corresponding frequency compensation on the bone conduction speaker should not be regarded as the only feasible implementation. Those skilled in the art can set appropriate peaks for the actual application scenario after understanding the principle. Value and compensation method.
  • the bone conduction hearing aid is also suitable for the frequency response compensation method of the above bone conduction speaker, that is, the frequency response characteristic of the corresponding one or several hearing aids can be designed to compensate for the possible performance of the hearing response curve of the hearing impaired population. Incompatibility to a specific frequency range, in practical applications, the bone conduction hearing aid can intelligently select or adjust the frequency response according to the user's input information.
  • the system automatically obtains or the user inputs its own equal-tone curve, and adjusts the frequency response of the bone conduction speaker according to the curve to compensate for the sound of a specific frequency.
  • the frequency response amplitude of the bone conduction speaker near the frequency corresponding to the point can be increased to achieve a desired sound quality.
  • the frequency response amplitude of the bone conduction speaker near the frequency corresponding to the point can be reduced.
  • the corresponding compensation curve may also correspond to multiple maxima or Minimum value.
  • the "equal loudness curve” can be replaced by the same type of words, for example, “equal loudness curve", "hearing response curve” and the like.
  • the human body's sensitivity to hearing can also be regarded as a frequency response of sound.
  • the bone is finally embodied. Conductive speaker sound quality.
  • Each component portion of the bone conduction speaker itself includes a component that generates vibration (such as, but not limited to, a transducer device), a component that fixes the speaker (such as, but not limited to, a headphone holder/headphone strap), a component that transmits vibration (such as, but not limited to, a panel) , vibration transmission layer, etc.).
  • a component that generates vibration such as, but not limited to, a transducer device
  • a component that fixes the speaker such as, but not limited to, a headphone holder/headphone strap
  • a component that transmits vibration such as, but not limited to, a panel
  • vibration transmission layer such as, but not limited to, etc.
  • an equivalent schematic diagram of a vibration generating and transmitting system of a bone conduction speaker including an equivalent system of a bone conduction speaker, includes a fixed end 1101, a sensing terminal 1102, a vibration unit 1103, and a transduction Device 1104.
  • the fixed end 1101 is connected to the vibration unit 1103 by a transfer relationship K1 (k 4 in FIG. 4), and the sensing terminal 1102 is connected to the vibration unit 1103 by a transfer relationship K2 (R 3 , k 3 in FIG. 4 ), and the vibration unit 1103 passes
  • the transfer relationship K3 (R 4 , k 5 in Fig. 4) is connected to the transducer 1104.
  • the vibrating unit referred to herein is a vibrating body composed of a panel and a transducer, and the transfer relationships K1, K2 and K3 are descriptions of the relationship between corresponding portions in the equivalent system of the bone conduction speaker (which will be described later in detail).
  • the vibration equation of an equivalent system can be expressed as:
  • m 3 is the equivalent mass of the vibration unit 1103, m 4 is the equivalent mass of the transducer 1104, x 3 is the equivalent displacement of the vibration unit 1103, x 4 is the equivalent displacement of the transducer 1104, k 3 It is an equivalent elastic coefficient between the sensing terminal 1102 and the vibration unit 1103, k 4 is an equivalent elastic coefficient between the fixed end 1101 and the vibration unit 1103, and k 5 is between the transducer 1104 and the vibration unit 1103.
  • Effective elastic coefficient, R 3 is the equivalent damping between the sensing terminal 1102 and the vibration unit 1103, R 4 is the equivalent damping between the transducer 1104 and the vibration unit 1103, and f 3 and f 4 are the vibration unit 1103, respectively The interaction force with the transducer device 1104.
  • the equivalent amplitude A 3 of the vibration unit in the system is:
  • f 0 represents the unit driving force and ⁇ represents the vibration frequency.
  • the factors affecting the frequency response of the bone conduction speaker include the vibration generating part (such as but not limited to the vibration unit, the transducer, the outer casing and the interconnection manner, such as m 3 , m 4 , k 5 in the formula (10), R 4 , etc.), vibration transmitting part (such as, but not limited to, contact with the skin, the properties of the earphone holder/headphone lanyard, such as k 3 , k 4 , R 3 , etc. in formula (10)).
  • the vibration generating part such as but not limited to the vibration unit, the transducer, the outer casing and the interconnection manner, such as m 3 , m 4 , k 5 in the formula (10), R 4 , etc.
  • vibration transmitting part such as, but not limited to, contact with the skin, the properties of the earphone holder/headphone lanyard, such as k 3 , k 4 , R
  • Changing the structure of each part of the bone conduction speaker and the parameters of the connection between the components for example, changing the clamping force is equivalent to changing the size of k 4
  • changing the bonding mode of the glue is equivalent to changing the size of R 4 and k 5
  • Changing the hardness, elasticity, damping, etc. of the relevant material is equivalent to changing the magnitude of k 3 and R 3 , which can change the frequency response and sound quality of the bone conduction speaker.
  • the fixed end 1101 may be a point where the bone conduction speaker is relatively fixed during the vibration or a relatively fixed position, and the point or area may be regarded as a fixed end of the bone conduction speaker during the vibration process.
  • the fixed end may be composed of a specific component or a position determined according to the overall structure of the bone conduction speaker.
  • the bone conduction speaker can be suspended, bonded or adsorbed near the human ear by a specific device, and the structure and shape of the bone conduction speaker can be designed so that the bone conduction portion can be attached to the human skin.
  • the sensing terminal 1102 is a hearing system for receiving a sound signal from a human body
  • the vibration unit 1103 is a portion for protecting, supporting, and connecting the transducer device on the bone conduction speaker, and includes a vibration transmission layer or a panel for transmitting vibration to the user, and the like.
  • the transducer device 1104 is a sound vibration generating device and may be a combination of one or more of the transducer devices discussed above.
  • the transfer relationship K1 connects the fixed end 1101 and the vibration unit 1103, and represents a vibration transmission relationship between the vibration generating portion and the fixed end of the bone conduction speaker during operation, and K1 depends on the shape and configuration of the bone conduction device.
  • the bone conduction speaker can be fixed to the human head in the form of a U-shaped earphone holder/headphone lanyard, or it can be used on a helmet, a fire mask or other special-purpose masks, glasses, etc., and the shape of different bone conduction speakers. Both the structure and the structure have an influence on the vibration transmission relationship K1.
  • the configuration of the speaker also includes physical properties such as material composition and quality of different parts of the bone conduction speaker.
  • the transfer relationship K2 connects the sensing terminal 402 and the vibration unit 1103.
  • K2 depends on the composition of the delivery system, including but not limited to transmitting sound vibrations through the user tissue to the hearing system. For example, sound is transmitted to the hearing through the skin, subcutaneous tissue, bones, etc. In the system, the physical properties and interconnections of different human tissues will have an impact on K2. Further, the vibration unit 1103 is in contact with the human body tissue. In different embodiments, the contact surface on the vibration unit may be a vibration transmission layer or a side surface of the panel, the surface shape and size of the contact surface, and interaction with human tissue. Force will affect the transfer coefficient K2.
  • the transmission relationship K3 of the vibration unit 1103 and the transducing device 1104 is determined by the connection property inside the bone conduction speaker vibration generating device, and the transducer device and the vibration unit are connected by rigid or elastic means, or the connecting member is changed in the transducer device and the vibration unit.
  • the relative position between the two changes the transmission efficiency of the transducer to the vibration unit, especially the panel, thereby affecting the transmission relationship K3.
  • K1, K2, and K3 are only a representation of different device parts or system connection methods during vibration transmission, and may include, but are not limited to, physical connection mode, force transmission mode, and sound transmission efficiency. Wait.
  • K1, K2, and K3 described above may be simple vibration or mechanical transmission methods, or may include a complex nonlinear transmission system, and the transmission relationship may be formed by direct connection of various parts, or may be performed by a non-contact method. transfer.
  • the structure of the bone conduction speaker is as shown in FIG. 12, and includes a headphone holder/headphone strap 501, a vibration unit 1202, and a transducer device 1203.
  • the vibration unit 1202 includes a contact surface 1202a, a housing 1202b, and a transducer 1203 is located inside and connected to the vibration unit 1202.
  • the vibration unit 502 is a panel and a vibration transmission layer including the above described
  • the contact surface 1202a is a surface of the vibration unit 1202 in contact with a user, preferably an outer surface of the vibration transmission layer.
  • the earphone holder/headphone strap 1201 secures the bone conduction speaker to a particular portion of the user (eg, the head) to provide a clamping force between the vibration unit 1202 and the user.
  • the contact surface 1202a is coupled to the transducer 1203 and is in contact with the user to transmit sound to the user via vibration.
  • the fixed end 1101 shown in Figure 11 can approximate the point at which the position of the bone conduction speaker is relatively fixed when it is in operation. If the bone conduction speaker has a symmetrical structure and assumes that the driving forces provided by the two side transducers are equal in the working direction and the directions are opposite, then the center point position on the earphone holder/headphone strap can be selected as an equivalent fixed end, for example, as shown by 1204.
  • the bone conduction speaker can provide stereo sound, that is, the instantaneous driving force provided by the two transducers is different, or the bone conduction speaker is structurally asymmetrical, then the earphone holder/headphone lanyard or earphone can be selected Other points or areas other than the rack/earphone strap are equivalent fixed ends.
  • the fixed end referred to herein can be regarded as the equivalent end of the bone conduction speaker which is relatively fixed in the process of generating vibration.
  • the fixed end 1101 and the vibrating unit 1202 are connected by the earphone holder/headphone strap 1201, and the transmission relationship K1 is related to the clamping force provided by the earphone holder/headphone strap 1201 and the earphone holder/headphone strap 1201, depending on the earphone holder/ The physical properties of the headset lanyard 1201.
  • changing the physical force of the clamping force provided by the earphone holder/headphone strap, the quality of the earphone holder/headphone strap, etc. can change the sound transmission efficiency of the bone conduction speaker and affect the frequency response of the system in a specific frequency range.
  • a headphone stand/headphone lanyard made of a higher-strength material and a headphone stand/headphone lanyard made of a lower-strength material may provide different clamping forces or change the earphone frame/headphone lanyard.
  • the auxiliary device that can provide elastic force on the earphone holder/headphone lanyard can also change the clamping force, thus affecting the sound transmission efficiency; the change of the size of the earphone holder/headphone lanyard when wearing also affects the clamping force.
  • the size and clamping force increase as the distance between the vibration units at both ends of the earphone holder/headphone strap increases.
  • the earphone holder/headphone lanyard that meets the specific clamping force conditions, those skilled in the art can select the material with different rigidity and different modulus according to the actual situation to make the earphone holder/headphone lanyard or adjust the earphone holder/headphone.
  • the size and size of the lanyard It should be noted that the clamping force of the earphone holder/headphone lanyard not only affects the sound transmission efficiency, but also affects the user's sound experience in the low frequency range.
  • the clamping force referred to herein is the pressure between the contact surface and the user, preferably between 0.1 N and 5 N, more preferably between 0.2 N and 4 N, further preferably, The clamping force is between 0.2 N and 3 N, and more preferably, the clamping force is between 0.2 N and 1.5 N, and even more preferably, the clamping force is between 0.3 N and 1.5 N.
  • the material of the earphone holder/headphone strap can determine the amount of clamping force.
  • the material of the earphone holder/headphone strap can be selected from a plastic having a certain hardness.
  • a plastic having a certain hardness For example, but not limited to, Acrylonitrile butadiene styrene (ABS), Polystyrene (PS), High impact polystyrene (HIPS), Polypropylene (Polypropylene, PP), polyethylene terephthalate (PET), polyester (Polyester, PES), Polycarbonate (PC), Polyamides (PA), Polyvinyl chloride (PVC), Polyurethanes (PU), Polyvinylidene chloride, Polyethylene (PE) Polymethyl methacrylate (PMMA), polyetheretherketone (PEEK), phenolic resin (Phenolics, PF), urea-formaldehyde (UF), melamine-formaldehyde resin (Melamine formaldeh
  • the material constituting the earphone holder/headphone lanyard may include some metals, alloys (such as aluminum alloy, chrome molybdenum steel, niobium alloy, magnesium alloy, titanium alloy, magnesium lithium alloy, nickel alloy, etc.) or composite materials.
  • the material of the earphone holder/headphone strap can be selected from materials having a memory function.
  • Memory materials include, but are not limited to, memory alloy materials, polymeric memory materials, inorganic non-memory materials, and the like.
  • Memory alloys include, but are not limited to, titanium-nickel-copper memory alloys, titanium-nickel-iron memory alloys, titanium-nickel-chromium memory alloys, copper-nickel-based memory alloys, copper-aluminum-based memory alloys, copper-zinc-based memory alloys, and iron-based memory alloys.
  • Polymer memory materials include, but are not limited to, polynorbornene, trans polyisoprene, styrene-butadiene copolymer, crosslinked polyethylene, polyurethane, polylactone, fluoropolymer, polyamide, Cross-linking polyolefins, polyesters, and the like.
  • Inorganic non-memory materials include, but are not limited to, memory ceramics, memory glass, garnet, mica, and the like.
  • the memory material of the earphone holder/headphone strap has a selected memory temperature, preferably, the memory temperature may be selected to be not lower than 10 ° C, and more preferably, the memory temperature is selected to be not lower than 40 ° C, further preferably Preferably, the memory temperature is selected to be not lower than 60 ° C, and further preferably, the memory temperature is selected to be not lower than 100 ° C.
  • the ratio of the memory material to the earphone holder/headphone lanyard material is not less than 5%, preferably, the ratio is not less than 7%, more preferably, the ratio is not less than 15%, and further preferably, the ratio is not less than 30%, and more preferably, the ratio is not less than 50%.
  • the earphone holder/headphone lanyard referred to herein refers to a rear-hanging structure that causes the bone conduction speaker to generate a clamping force.
  • the memory material is in different positions of the earphone holder/headphone strap.
  • the memory material is in a concentrated position on the earphone holder/headphone strap, such as but not limited to the connection portion of the earphone holder/headphone strap and the vibration unit, and the earphone holder / Near the center of symmetry of the headphone lanyard or the location where the lines in the earphone holder/headphone lanyard are densely distributed.
  • the earphone holder/headphone strap is made of a memory alloy, and the difference in clamping force provided by the user's head of different sizes is small, so that the wearing consistency is higher and the sound quality is affected by the clamping force. The consistency is also higher.
  • the earphone holder/earphone backrest made of memory alloy has good elasticity, can be restored to the original shape after undergoing large deformation, and can be stably stabilized after undergoing long-term deformation. Maintain the amount of clamping force.
  • the headphone holder/headphone made of memory alloy is light in weight and can provide a large degree of freedom of deformation, so that it can be better fitted. user.
  • the clamping force provides the pressure between the contact surface of the vibration-generating portion of the bone conduction speaker and the user.
  • Figures 13-A and 13-B are vibration response curves of a bone conduction speaker at different pressures between the contact surface and the user in one embodiment.
  • the clamping force is lower than a certain threshold, which is not conducive to the transmission of intermediate frequency and high frequency vibration.
  • a for the same vibration source (sound source), when the clamping force is 0.1N, the vibration (sound) received by the wearer, the intermediate frequency and high frequency portion are significantly less than the clamping force of 0.2N.
  • the vibration (sound) received at 1.5N that is, in the sound quality, when the clamping force is 0.1N, the intermediate frequency and high frequency portions are weaker than the clamping force at 0.2N-1.5N.
  • the clamping force is greater than a certain threshold and is not conducive to the transmission of low frequency vibration.
  • the low-frequency part of the vibration (sound) received by the wearer is significantly less than the clamping force of 0.2N and 1.5N.
  • the received vibration (sound), that is, in the sound quality, when the clamping force is 5.0N the low-frequency portion is weaker than the performance of the clamping force at 0.2N-1.5N.
  • the pressure between the contact surface and the user is maintained within an appropriate range by selecting the appropriate earphone holder/headphone strap material and setting the appropriate earphone holder/headphone strap result.
  • the pressure between the contact surface and the user is greater than a certain threshold, preferably, the threshold is 0.1N, more preferably, the threshold is 0.2N, further preferably, the threshold is 0.3N, and more preferably, the threshold is 0.5N.
  • the pressure between the contact surface and the user is less than another threshold, preferably the threshold is 5.0N, more preferably the threshold is 4N, further preferably the threshold is 3N, and more preferably, the threshold is 1.5N .
  • FIG. 14-A and 14-B are a specific embodiment of measuring the clamping force of a bone conduction speaker.
  • Points A and B are two points on the bone conduction speaker earphone holder/headphone lanyard in the present embodiment near the vibration unit. During the test, point A or point B is fixed, and the other point is connected to the dynamometer. When the distance L between point A and point B is between 125 mm and 155 mm, the clamping force is measured.
  • Fig. 14-C is a frequency vibration response curve of a bone conduction speaker under different clamping force states, and the clamping forces corresponding to the three curves are 0N, 0.61N and 1.05N, respectively.
  • Figure 14-C shows the vibration unit of the face-to-bone conduction speaker as the clamping force of the bone conduction speaker increases (for example, The load generated by the panel, the vibration transmission layer connected to the panel, etc., increases, and the vibration of the vibration surface is weakened. If the clamping force is too small or too large, the bone conduction speaker will have a large frequency response during the vibration process (such as the range of 500 Hz-800 Hz on the curve of the clamping force of 0 N and 1.05 N).
  • the clamping force is too large (such as the corresponding curve when the clamping force is 1.05N), the wearer will feel discomfort, and the vibration of the speaker will become weaker and the sound will become smaller; if the clamping force is too small (such as clamping force) When the curve is 0N, the wearer will feel a more obvious vibration.
  • the bone conduction speaker stand can use a memory-enabled material (such as memory metal), can adjust the opening curvature according to the person's head shape, and has good elasticity, can maximize the wearing comfort, adjust the clamping Force size.
  • a memory-enabled material such as memory metal
  • an elastic bandage 1501 for adjusting the clamping force can be installed on the bone conduction speaker frame. As shown in FIG. 15, the elastic bandage can be performed during the process of shrinking or pulling off the earphone frame/earphone lanyard from the equilibrium position. Provide extra resilience.
  • the transfer relationship K2 between the sensing terminal 1102 and the vibration unit 1103 also affects the frequency response of the bone conduction system.
  • the sound heard by the human ear depends on the energy received by the cochlea. This energy is affected by different physical quantities during the transmission process and can be expressed by the following formula:
  • P is proportional to the energy received by the cochlea
  • S is the area of contact between the contact surface 502a and the face
  • is a coefficient of dimension conversion
  • f(a, R) represents the acceleration a of the contact surface and the contact surface and The degree of tightness of skin contact R on the energy transfer
  • L is the impedance transmitted by mechanical waves at any contact point, ie the transmission impedance per unit area.
  • the transmission of sound is affected by the transmission impedance L.
  • the vibration transmission efficiency of the bone conduction system is related to L, and the frequency response curve of the bone conduction system is a superposition of the frequency response curves of the points on the contact surface.
  • the term "contact surface” may be a surface that is at least partially in direct or indirect contact with the user, or may be at least partially in direct or indirect contact with the user. , a "contact layer” having a certain thickness.
  • the factors that affect the impedance include the size of the energy transfer area, Shape, roughness, force or force distribution.
  • the sound transmission effect is changed by changing the structure and shape of the vibration unit 1202, thereby changing the sound quality of the bone conduction speaker.
  • the effect of changing the sound transmission can be achieved.
  • a well-designed contact surface is provided with a gradient structure, which refers to a region of varying height of the contact surface.
  • the gradient structure may be a convex/concave or stepped structure existing on the outer side of the contact surface (the side that is attached to the user), or may be a protrusion existing on the inner side of the contact surface (the side facing away from the user)/ Concave or stepped structure.
  • a vibrating unit of a bone conduction speaker is embodied, for example, as shown in Fig. 16-A, and a contact surface 1601 (outside of the contact surface) has a portion that is convex or concave (not shown in Fig. 16-A).
  • the convex or concave portion is in contact with the skin of the human face, and the pressure at the different positions on the contact surface 1601 in contact with the human face is changed.
  • the convex portion is in closer contact with the human face, and the skin and subcutaneous tissue in contact therewith are subjected to greater pressure than the other portions; accordingly, the skin and subcutaneous tissue in contact with the concave portion are subjected to less pressure than the other portions.
  • the skin at the three points A, B, C is subjected to a clamping force F C > F A > F B .
  • the clamping force at point B is zero, ie point B is not in contact with the skin.
  • Human skin and subcutaneous tissue exhibit different impedance and response to sound under different pressures.
  • the part with high pressure has a small impedance ratio, and the sound wave has a high-pass filter characteristic.
  • the small pressure portion has a large impedance ratio and has a low-pass filter characteristic.
  • the impedance characteristics L of each part of the contact surface 1601 are different.
  • the response of the different parts to the frequency of the sound transmission is different, and the effect of the sound transmitted through the full contact surface is equivalent to the sum of the sound transmission of each part, and finally the sound is transmitted to the brain.
  • a smooth frequency response curve is formed, which avoids the occurrence of excessive resonance peaks at low or high frequencies, thereby obtaining an ideal frequency response over the entire audio bandwidth.
  • the material and thickness of the contact surface 1601 also affect the transmission of sound, thereby affecting the sound quality. For example, when the contact surface material is soft, the sound wave transmission effect in the low frequency range is better than the sound wave transmission in the high frequency range, and when the contact surface material is hard, the sound wave transmission effect in the high frequency range is better than the sound wave transmission in the low frequency range.
  • Figure 16-B shows the frequency response of a bone conduction loudspeaker with different contact faces.
  • the dotted line corresponds to the frequency response of the bone conduction speaker with a convex structure on the contact surface
  • the solid line corresponds to the frequency response of the bone conduction speaker without the convex structure on the contact surface.
  • the vibration of the non-raised structure is significantly weakened relative to the vibration of the convex structure, forming a "deep pit" on the frequency response curve, which is manifested as unreasonable.
  • the desired frequency response which affects the sound quality of the bone conduction speaker.
  • FIG. 16-B is merely an explanation for a specific example.
  • various structures and components of the bone conduction speaker can be performed. Correct and change to get different frequency response effects.
  • the shape and structure of the contact surface 1601 are not limited to the above description, and other specific requirements may be met by those skilled in the art.
  • the raised or recessed portions of the contact surface may be distributed at the edges of the contact faces or may be distributed at the intermediate portions of the contact faces.
  • the contact surface may contain one or more raised or recessed portions, and the raised and recessed portions may be simultaneously distributed on the contact surface.
  • the material of the convex or concave portion on the contact surface may be other materials different from the contact surface material, and may be flexible, steel, or a material more suitable for generating a specific pressure gradient; may be a memory material, or It is a non-memory material; it can be a single material or a composite material.
  • the structural pattern of the convex or concave portion of the contact surface includes, but is not limited to, an axisymmetric figure, a center symmetrical figure, a rotationally symmetrical figure, an asymmetrical figure, and the like.
  • the convex or concave portion structural pattern of the contact surface may be a pattern or a combination of two or more types.
  • Contact surface surfaces include, but are not limited to, having a certain degree of smoothness, roughness, waviness, and the like.
  • the positional distribution of the raised or concave portions of the contact surface includes, but is not limited to, axisymmetric, centrally symmetric, rotationally symmetric, asymmetrically distributed, and the like.
  • the raised or recessed portion of the contact surface may be at the edge of the contact surface or may be distributed inside the contact surface.
  • the projections may be constructed of the same or similar materials as the rest of the panel, or may be of a different material than the other portions.
  • the protrusion may be composed of a memory material and a vibration transmission layer material, wherein the ratio of the memory material is not less than 10%, and preferably, the ratio of the memory material in the protrusion is not less than 50%.
  • the area of the individual protrusions is from 1% to 80% of the total area, preferably, the ratio of the total area is from 5% to 70%, and more preferably, the ratio of the total area is from 8% to 40%.
  • the total area of all the projections is 5% to 80% of the total area, and preferably, the ratio is 10% to 60%.
  • the projections may have at least one, preferably one projection, more preferably two projections, and more preferably, at least five projections.
  • the shape of the protrusion may be a circle, an ellipse, a triangle, a rectangle, a trapezoid, an irregular polygon, or the like, wherein the structure of the convex portion may be symmetrical or asymmetrical, and the positional distribution of the convex portion may also be Symmetrical or asymmetrical, the number of convex portions may be one or more, and the height of the convex portions may be the same or different The height and distribution of the bulges can form a certain gradient.
  • the structure of the convex portion of the contact surface is a combination of two or more patterns, wherein the number of protrusions of the different patterns may be one or more.
  • the two or more convex shapes may be any one or a combination of two or more of a circular shape, an elliptical shape, a triangular shape, a rectangular shape, a trapezoidal shape, an irregular polygonal shape, or the like.
  • the material, amount, area, symmetry, etc. of the protrusions are similar to those in Figure 1704.
  • the convex portions of the contact faces are distributed on the edges and the inside of the contact faces, wherein the number of the convex portions is not limited to that shown in the drawing.
  • the number of projections located at the edge of the contact surface is from 1% to 80% of the total number of projections, preferably, the ratio is from 5% to 70%, more preferably, the ratio is from 10% to 50%, further preferably, the ratio The ratio is 30%-40%.
  • the material, amount, area, shape, symmetry, etc. of the protrusions are similar to those in Figure 1704.
  • 1707 is a structural pattern of a concave portion of the contact surface, and the structure of the concave portion may be symmetrical or asymmetrical, and the positional distribution of the concave portion may also be symmetrical or asymmetrical, and the number of the concave portions may be One or more, the shape of the recessed portions may be the same or different, and the recessed portions may be hollowed out.
  • the area of a single depression accounts for 1% to 80% of the total area, preferably, the ratio of the total area is 5% to 70%, and more preferably, the ratio of the total area is 8% to 40%.
  • the total area of all the depressions is 5% to 80% of the total area, and preferably, the ratio is 10% to 60%.
  • the concave shape may be a circle, an ellipse, a triangle, a rectangle, a trapezoid, an irregular polygon, or the like.
  • the contact surface has both a convex portion and a concave portion
  • the number of the convex and concave portions is not limited to one or more.
  • the ratio of the number of depressions to the number of projections is from 0.1 to 100, preferably, the ratio is from 1 to 80, more preferably, the ratio is from 5 to 60, and further preferably, the ratio is from 10 to 20.
  • the material, area, shape, symmetry, etc. of a single protrusion/recess is similar to that of Figure 1704.
  • the corrugations are formed by two or more projections/recesses or a combination of two, preferably, the distance between adjacent projections/concavities is equal, and more preferably, the distance between the projections/recessions is equal. arrangement.
  • 1710 is an example of a bump having a large area on the contact surface.
  • the area of the protrusion accounts for 30%-80% of the total area of the contact surface.
  • a portion of the edge of the projection and a portion of the edge of the contact surface are in substantially mutual contact.
  • 1711 is a projection having a first larger area on the contact surface, and a second projection having a smaller area on the first projection.
  • the larger area of the protrusion accounts for 30%-80% of the total area of the contact surface, and the smaller area of the protrusion accounts for 1%-30% of the total area of the contact surface, preferably, the ratio is 5%-20%.
  • the smaller area occupies 5% to 80% of the larger area, and preferably, the ratio is 10% to 30%.
  • the bone conduction speaker contact surface structure is merely a specific example and should not be considered as the only feasible embodiment.
  • the bone conduction speaker contact surface structure will affect the sound quality of the bone conduction speaker, it may be possible to implement the bone conduction speaker contact surface without departing from this principle.
  • the number of protrusions or depressions is not limited to that shown in Fig. 17, and the above-described convex, concave or contact surface pattern may be modified to some extent, and these modifications are still within the scope of protection described above.
  • the contact faces of the one or more vibration units included in the bone conduction speaker may use the same or different shapes and materials as described above, and the vibration effects transmitted on the different contact surfaces may also vary according to the nature of the contact surfaces, and finally Get different sound effects.
  • the vibration mode of the transducer device 1104 in the bone conduction speaker vibration system and the manner K3 connected to the vibration unit 1103 also affect the sound effect of the system.
  • the transducer comprises a vibrating plate, a vibrating plate, a set of coils and a magnetic circuit system.
  • the transducing device comprises a composite vibrating device consisting of a plurality of vibrating plates and a vibrating plate. The frequency response of the sound generated by the system is affected by the physical properties of the vibrating plate and the vibrating plate. The size, shape, material, thickness, and vibration transmission mode of the specific vibrating plate and the transmitting plate can be selected to produce sound effects that meet the actual requirements.
  • An embodiment of a composite vibration device includes a composite vibration member composed of a vibration transmission plate 1801 and a vibration plate 1802, and the vibration transmission plate 1801 is disposed as a first annular body 1813. And three first struts 1814 that converge toward the center are disposed in the first annular body, and the center position of the convection is fixed to the center of the vibration plate 1802.
  • the center of the vibrating plate 1802 is a groove 1820 that fits the center of the spoke and the first strut.
  • the vibrating plate 1802 is provided with a second torus 1821 having a different radius from the vibration transmitting piece 1801, and three second struts 1822 different in thickness from the first strut 1814, which are described in the assembly.
  • the first leg 1814 and the second strut 1822 are staggered and may, but are not limited to, at an angle of 60 degrees.
  • the first rod and the second rod may be straight rods or set to other specific requirements.
  • the shape and the number of struts can be set to two or more, and the symmetrical or asymmetric arrangement can be adopted to meet the requirements of economy and practical effects.
  • the vibration transmitting sheet 1801 has a thin thickness and can increase the elastic force, and the vibration transmitting sheet 1801 is stuck in the center of the groove 1820 of the vibration plate 1802.
  • a voice coil 1808 is disposed on the lower side of the second annular body 1821 of the vibrating plate 1802.
  • the composite vibration device further includes a bottom plate 1812, on which the ring magnet 1810 is disposed, in which the inner magnet 1811 is concentrically disposed; and the inner surface of the inner magnet 1811 is provided with an inner magnetic plate 1809, An annular magnetic conductive plate 1807 is disposed on the annular magnet 1810, and a gasket 1806 is fixedly disposed above the annular magnetic conductive plate 1807.
  • the first annular body 1813 of the vibration transmitting piece 1801 is fixedly connected with the gasket 1806. .
  • the entire composite vibration device is connected to the outside through a panel 1830.
  • the panel 1830 is fixed to the center of the center of the vibration transmission piece 1801 and is engaged and fixed at a central position of the vibration transmission plate 1801 and the vibration plate 1802.
  • the frequency response as shown in Fig. 19 is obtained, and two resonance peaks are generated by the double composite vibration, and the resonance is adjusted by adjusting the parameters of the two components and the materials.
  • the stiffness coefficient of the vibration plate is greater than the stiffness coefficient of the vibration transmission plate.
  • the range of these resonance peaks can be set within the frequency range of the sound that can be heard by the human ear, or Not in it, preferably, the two resonance peaks are not within the frequency range of the sound audible to the human ear; more preferably, one resonance peak is within the frequency range of the sound audible to the human ear, and the other resonance peak is More preferably, both resonant peaks are within the frequency range of the sound audible to the human ear; and even more preferably, both resonant peaks are in the human ear.
  • both resonance peaks are within the frequency range of the sound audible to the human ear, and the peak value is between 200 Hz and 15000 Hz. Further preferably, both resonance peaks are within the frequency range of the sound available to the human ear, and the peak value is between 500 Hz and 12000 Hz; still more preferably, both resonance peaks are available in the human ear. Frequency of sound Within the range of rates, and its peak value is between 800Hz-11000Hz.
  • the peak of the resonance peak has a frequency difference, for example, the peaks of the two resonance peaks differ by at least 500 Hz; preferably, the peaks of the two resonance peaks differ by at least 1000 Hz; more preferably, the peaks of the two resonance peaks are different. At least 2000 Hz; still more preferably, the peaks of the two resonance peaks differ by at least 5000 Hz.
  • both resonance peaks may be within the human ear audible range, and the peak frequencies of the resonance peaks differ by at least 500 Hz; preferably, two resonance peaks The peaks of the two resonance peaks may differ by at least 1000 Hz; further preferably, both resonance peaks may be within the audible range of the human ear, and the peaks of the two resonance peaks differ by at least 2000 Hz. And further preferably, both resonance peaks may be within the human ear audible range, and the peaks of the two resonance peaks differ by at least 3000 Hz; and it may still be further preferred that both resonance peaks are audible in the human ear Within the range, the peaks of the two resonance peaks differ by at least 4000 Hz.
  • One of the two resonance peaks may be within the human ear audible range, the other is outside the human ear audible range, and the peak frequencies of the two resonance peaks differ by at least 500 Hz; preferably, one resonance peak is audible in the human ear Within the range, the other is outside the human ear audible range, and the peak frequencies of the two resonance peaks differ by at least 1000 Hz; more preferably, one resonance peak is within the human ear audible range and the other is audible to the human ear.
  • the peak frequencies of the two resonance peaks differ by at least 2000 Hz; further preferably, one resonance peak is within the human ear audible range, the other is outside the human ear audible range, and the peaks of the two resonance peaks The frequencies differ by at least 3000 Hz; still more preferably, one resonant peak is within the human ear audible range and the other is outside the human ear audible range, and the peak frequencies of the two resonant peaks differ by at least 4000 Hz.
  • Both resonant peaks may be between 5 Hz and 30000 Hz, and the peak frequencies of the two resonant peaks differ by at least 400 Hz; preferably, both resonant peaks may be between 5 Hz and 30 000 Hz, and the peaks of the two resonant peaks The frequencies differ by at least 1000 Hz; more preferably, both resonant peaks may be between 5 Hz and 30 000 Hz, and the peak frequencies of the two resonant peaks differ by at least 2000 Hz; further preferably, both resonant peaks may be at a frequency of 5 Hz - 30 000 Hz Between, and the peak frequencies of the two resonance peaks differ by at least 3000 Hz; still more preferably, both resonance peaks may be between frequencies 5 Hz - 30 000 Hz, and the peak frequencies of the two resonance peaks differ by at least 4000 Hz.
  • Both resonant peaks may be between 20 Hz and 20,000 Hz, and the peak frequencies of the two resonant peaks differ by at least 400 Hz; preferably, both resonant peaks may be between 20 Hz and 20 000 Hz, and the peaks of the two resonant peaks The frequencies differ by at least 1000 Hz; more preferably, both resonant peaks may be between 20 Hz and 20,000 Hz, and the peak frequencies of the two resonant peaks differ by at least 2000 Hz; further preferably, both resonant peaks may be at a frequency of 20 Hz to 20,000 Hz.
  • both resonance peaks may be between frequencies 20 Hz and 20,000 Hz, and the peak frequencies of the two resonance peaks differ by at least 4000 Hz.
  • Both resonant peaks may be between 100 Hz and 18000 Hz, and the peak frequencies of the two resonant peaks differ by at least 400 Hz; preferably, both resonant peaks may be between 100 Hz and 18000 Hz, and the peaks of the two resonant peaks
  • the frequencies differ by at least 1000 Hz; more preferably, both resonant peaks may be between 100 Hz and 18000 Hz, and The peak frequencies of the two resonance peaks differ by at least 2000 Hz; further preferably, both resonance peaks may be between 100 Hz and 18000 Hz, and the peak frequencies of the two resonance peaks differ by at least 3000 Hz; more preferably, two resonance peaks Both may be at frequencies between 100 Hz and 18000 Hz, and the peak frequencies of the two resonance peaks differ by at least 3000 Hz; more preferably, two resonance
  • Both resonant peaks may be between 200 Hz and 12000 Hz, and the peak frequencies of the two resonant peaks differ by at least 400 Hz; preferably, both resonant peaks may be between 200 Hz and 12000 Hz, and the peaks of the two resonant peaks The frequencies differ by at least 1000 Hz; more preferably, both resonant peaks may be between 200 Hz and 12000 Hz, and the peak frequencies of the two resonant peaks differ by at least 2000 Hz; further preferably, both resonant peaks may be at frequencies between 200 Hz and 12000 Hz.
  • both resonance peaks may be between frequencies 200 Hz - 12000 Hz, and the peak frequencies of the two resonance peaks differ by at least 4000 Hz.
  • Both resonance peaks may be between 500 Hz and 10000 Hz, and the peak frequencies of the two resonance peaks differ by at least 400 Hz; preferably, both resonance peaks may be between 500 Hz and 10000 Hz, and the peaks of the two resonance peaks
  • the frequencies differ by at least 1000 Hz; more preferably, both resonant peaks may be between 500 Hz and 10000 Hz, and the peak frequencies of the two resonant peaks differ by at least 2000 Hz; further preferably, both resonant peaks may be at a frequency of 500 Hz - 10000 Hz Between, and the peak frequencies of the two resonance peaks differ by at least 3000 Hz; still more preferably, both resonance peaks may be between 500 Hz and 10000 Hz, and the peak frequencies of the
  • multiple vibration transmitting plates and vibration plates can be set to form a multi-layer vibration structure, which respectively correspond to different frequency response ranges, and realize full-range full-range sounding and high-quality speaker vibration, or
  • the frequency response curve is used to meet the requirements of use in certain frequency ranges.
  • one or more vibrating plates and transducers having a resonant frequency in the range of 100 Hz to 10000 Hz may be selected.
  • the vibration system includes a vibration plate 2002, a first vibration transmission plate 2003 and a second vibration transmission plate 2001, and the first vibration transmission plate 2003 transmits the vibration plate 2002 and the second transmission.
  • the vibration plate 2001 is fixed on the outer casing 2019, and is composed of a vibration plate 2002, a first vibration transmitting piece 2003, and a second vibration transmitting piece 2001.
  • the composite vibration system can generate no less than two resonance peaks and produce a flatter frequency response curve in the audible range of the hearing system, thereby improving the sound quality of the bone conduction speaker.
  • the equivalent model of the vibration system is shown in Figure 21-A:
  • 2101 is the outer casing
  • 2102 is the panel
  • 2103 is the voice coil
  • 2104 is the magnetic circuit vibration
  • 2105 is the first vibration transmission piece
  • 2106 is the second vibration transmission piece
  • 2107 is the vibration plate, wherein the first vibration transmission piece,
  • the second vibration absorbing plate and the vibration plate are abstracted into elastic and damped components, and the outer casing, the panel, the voice coil and the magnetic circuit system can all be abstracted into equivalent masses.
  • the vibration equation of the system can be expressed as:
  • k 6 is the equivalent stiffness coefficient of the second transmission plate
  • k 7 is the equivalent stiffness coefficient of the vibrating plate
  • k 8 is the equivalent stiffness coefficient of the first transmission plate
  • R 6 For the equivalent damping of the second vibration-transmitting plate
  • R 7 is the equivalent damping of the vibration plate
  • R 8 is the equivalent damping of the first vibration-transmitting plate
  • m 5 is the mass of the panel
  • m 6 is the mass of the magnetic circuit system
  • m 7 is the voice coil mass
  • x 5 is the panel displacement
  • x 6 is the magnetic circuit system displacement
  • x 7 is the voice coil displacement.
  • represents the angular frequency of the vibration and f 0 represents the unit driving force.
  • the vibration system of the bone conduction speaker transmits the vibration to the user through the panel.
  • the vibration efficiency of the system is related to the stiffness coefficient and the vibration damping of the vibration plate, the first vibration transmission piece, the second vibration transmission piece,
  • the stiffness coefficient k 7 of the vibrating plate is greater than the second vibration coefficient k 6
  • the stiffness coefficient k 7 of the vibrating plate is greater than the first vibration coefficient k 8 .
  • the triple composite vibration system having the first vibration-transmitting sheet generates more resonance peaks than the composite vibration system without the first vibration-transmitting sheet, preferably at least three resonance peaks; more preferably, at least One resonance peak is not within the range audible to the human ear; more preferably, the resonance peak is within the range audible to the human ear; still more preferably, the resonance peak is within the range audible to the human ear And its peak frequency is not higher than 18000 Hz; still more preferably, the resonance peaks are all within the frequency range of the sound audible to the human ear, and the peak value is between 100 Hz and 15000 Hz; more preferably, the resonance peaks are all The frequency range of the sound that the human ear can reach, and its peak value is between 200 Hz and 12000 Hz; further preferably, the resonance peak is in the frequency range of the sound that can be heard by the human ear, and the peak value is between 500 Hz and 11,000 Hz.
  • the frequency of the peak of the resonant peak can be different.
  • at least two peaks of the two resonant peaks differ by at least 200 Hz; preferably, at least two peaks of the two resonant peaks differ by at least 500 Hz; more preferably, there are at least two The peaks of the resonance peaks differ by at least 1000 Hz; still more preferably, at least the peaks of the two resonance peaks differ by at least 2000 Hz; and still more preferably, at least the peaks of the two resonance peaks differ by at least 5000 Hz.
  • the resonance peaks may all be within the human ear audible range, and at least the peak frequencies of the two resonance peaks differ by at least 500 Hz; preferably, the resonance peaks may all be within the human ear audible range, The peaks of at least two resonance peaks differ by at least 1000 Hz; more preferably, the resonance peaks may all be within the human ear audible range, and at least two resonance peaks have a peak difference of at least 1000 Hz; further preferably, the resonance peaks may both Within the audible range of the human ear, at least two peaks of the resonance peaks differ by at least 2000 Hz; and even more preferably, the resonance peaks may all be within the audible range of the human ear, and at least two peaks of the resonance peaks differ by at least 3000 Hz; Still further preferably, the resonance peaks may all be within the audible range of the human ear, and at least the peaks of the two resonance peaks differ by at least 4000 Hz.
  • the resonance peaks within the human ear audible range there may be two of the resonance peaks within the human ear audible range, the other outside the human ear audible range, and at least two resonance peaks have peak frequencies that differ by at least 500 Hz; preferably, two resonance peaks are in the human Within the ear audible range, another resonance peak is outside the human ear audible range, and at least two resonance peaks have peak frequencies that differ by at least 1000 Hz; more preferably, two resonance peaks are within the human ear audible range The other is outside the human ear audible range, and the peak frequencies of at least two resonance peaks differ by at least 2000 Hz; further preferably, the two resonance peaks are within the human ear audible range and the other is audible to the human ear.
  • the peak frequencies of the two resonance peaks differ by at least 3000 Hz; still more preferably, the two resonance peaks are within the human ear audible range, the other is outside the human ear audible range, and at least exists The peak frequencies of the two resonance peaks differ by at least 4000 Hz.
  • One of the resonance peaks may be within the human ear audible range, the other two are outside the human ear audible range, and at least two resonance peaks have a peak frequency that differs by at least 500 Hz; preferably, one resonance peak is in the human ear Within the audible range, the other two resonance peaks are outside the human ear audible range, and at least two resonance peaks have peak frequencies that differ by at least 1000 Hz; more preferably, one resonance peak is within the human ear audible range, The other two are outside the human ear audible range, and the peak frequencies of at least two resonance peaks differ by at least 2000 Hz; further preferably, one resonance peak is within the human ear audible range, and the other two are audible in the human ear.
  • the peak frequencies of the two resonance peaks differ by at least 3000 Hz; still more preferably, one resonance peak is within the human ear audible range, the other two are outside the human ear audible range, and at least exist The peak frequencies of the two resonance peaks differ by at least 4000 Hz.
  • the resonance peaks may all be between frequencies 5 Hz - 30000 Hz, and at least the peak frequencies of the two resonance peaks differ by at least 400 Hz; preferably, the resonance peaks may all be between frequencies 5 Hz - 30 000 Hz, and at least two peaks of the resonance peaks
  • the frequencies differ by at least 1000 Hz; more preferably, the resonant peaks may all be between frequencies 5 Hz and 30000 Hz, and at least the peak frequencies of the two resonant peaks differ by at least 2000 Hz; further preferably, the resonant peaks may all be between 5 Hz and 30 000 Hz.
  • At least two resonant peaks have peak frequencies that differ by at least 3000 Hz; still more preferably, the resonant peaks may all be between frequencies 5 Hz - 30 000 Hz, and at least the peak frequencies of the two resonant peaks differ by at least 4000 Hz.
  • the resonance peaks may all be between frequencies 20 Hz to 20,000 Hz, and at least the peak frequencies of the two resonance peaks differ by at least 400 Hz; preferably, the resonance peaks may all be between frequencies 20 Hz to 20,000 Hz, and at least two peaks of resonance peaks exist.
  • the frequencies differ by at least 1000 Hz; more preferably, the resonant peaks may all be between frequencies 20 Hz and 20,000 Hz, and at least the peak frequencies of the two resonant peaks differ by at least 2000 Hz; further preferably, the resonant peaks may all be between 20 Hz and 20 000 Hz. And at least two resonance peaks have peak frequencies that differ by at least 3000 Hz; still more preferably, the resonance peaks may all be between frequencies 20 Hz to 20,000 Hz, and at least two resonance peaks have peak frequencies that differ by at least 4000 Hz.
  • the resonance peaks may all be between frequencies of 100 Hz to 18000 Hz, and at least the peak frequencies of the two resonance peaks differ by at least 400 Hz; preferably, the resonance peaks may all be between frequencies of 100 Hz to 18000 Hz, and at least two peaks of resonance peaks exist.
  • the frequencies differ by at least 1000 Hz; more preferably, the resonant peaks may all be between 100 Hz and 18000 Hz, and at least the peak frequencies of the two resonant peaks differ by at least 2000 Hz; further preferably, the resonant peaks may all be between 100 Hz and 18000 Hz.
  • At least two resonance peaks have peak frequencies that differ by at least 3000 Hz; still more preferably, the resonance peaks may all be between frequencies of 100 Hz to 18000 Hz, and at least two resonance peaks have peak frequencies that differ by at least 4000 Hz.
  • the resonance peaks may all be between frequencies 200 Hz-12000 Hz, and at least the peak frequencies of the two resonance peaks differ by at least 400 Hz; preferably, the resonance peaks may all be between frequencies 200 Hz-12000 Hz, and at least two peaks of resonance peaks exist.
  • the frequencies differ by at least 1000 Hz; more preferably, the resonant peaks may both be between 200 Hz and 12000 Hz, and at least the peak frequencies of the two resonant peaks differ by at least 2000 Hz; further preferably, the resonant peaks may all be between 200 Hz and 12000 Hz. And at least two resonant peaks have peak frequencies that differ by at least 3000 Hz; still more preferably, the resonant peaks may all be between frequencies 200 Hz - 12000 Hz, and at least the peak frequencies of the two resonant peaks differ by at least 4000 Hz.
  • the resonance peaks may all be between frequencies of 500 Hz and 10000 Hz, and at least the peak frequencies of the two resonance peaks differ by at least 400 Hz; preferably, the resonance peaks may all be between frequencies of 500 Hz and 10000 Hz, and at least two peaks of the resonance peaks exist.
  • the frequencies differ by at least 1000 Hz; more preferably, the resonant peaks may all be between 500 Hz and 10000 Hz, and at least the peak frequencies of the two resonant peaks differ by at least 2000 Hz; further preferably, the resonant peaks may all be between 500 Hz and 10000 Hz.
  • the resonance peaks differ by at least 3000 Hz; more preferably, the resonance peaks may all be between frequencies of 500 Hz and 10000 Hz, and at least the peak frequencies of the two resonance peaks differ by at least 4000 Hz.
  • At least two resonance peaks may be within the human ear audible range, and the resonance peak generated by the first vibration transmission sheet is not higher than 20000 Hz, preferably, at least two resonance peaks may be in the human Within the ear audible range, and the resonance peak generated by the first vibration-transmitting sheet is not higher than 10000 Hz, preferably, at least two resonance peaks may be within the audible range of the human ear, and are generated by the first vibration-transmitting sheet.
  • the resonance peak is not higher than 5000 Hz, preferably, at least two resonance peaks may be within the human ear audible range, and the resonance peak generated by the first vibration transmission sheet is not higher than 2000 Hz, preferably, at least two resonance peaks may be Within the audible range of the human ear, and the resonance peak generated by the first vibration-transmitting sheet is not higher than 1000 Hz, preferably, at least two resonance peaks may be within the audible range of the human ear, and the first vibration-transmitting sheet
  • the resulting resonance peak is not higher than 500 Hz, preferably, at least two resonance peaks may be within the human ear audible range, and the resonance peak generated by the first vibration transmission sheet is not higher than 300 Hz, preferably, at least two resonances
  • the peak can be within the audible range of the human ear And the resonance peak generated by the first vibration-transmitting sheet is not higher than 200 Hz; preferably, at least two resonance peaks may be within the audible range of the human ear,
  • At least two resonance peaks are within the human ear audible range, and the resonance peak generated by the first vibration transmission plate is in the range of 20-10000 Hz, preferably, at least two resonance peaks are audible in the human ear.
  • the resonance peak generated by the first vibration-transmitting sheet is in the range of 20-5000 Hz, preferably, at least two resonance peaks may be within the human ear audible range, and the resonance peak generated by the first vibration-transmitting sheet In the range of 20-2000 Hz, preferably, at least two resonance peaks may be within the human ear audible range, and the resonance peak generated by the first vibration-transmitting sheet is in the range of 20-1000 Hz, preferably, at least two resonance peaks may Within the audible range of the human ear, and the resonance peak generated by the first vibration-transmitting sheet is in the range of 20-500 Hz, preferably, at least two resonance peaks may be within the audible range of the human ear, and the first vibration-transmitting sheet
  • the transducer device generates at least two resonance peaks in the human ear audible range, and is first
  • the resonant peak generated by the vibration transmitting sheet is not higher than 1000 Hz, and more preferably, the transducer device generates at least two resonance peaks in the human ear audible range, and the resonance peak generated by the first vibration transmitting sheet is not higher than 500 Hz, more preferably Ground
  • the transducer produces at least two resonance peaks In the human ear audible range, and the resonance peak generated by the first vibration-transmitting sheet is not higher than 300 Hz, more preferably, the transducer device generates at least two resonance peaks in the human ear audible range, and is composed of the first vibration-transmitting sheet
  • the resulting resonant peak is no higher than 200 Hz; more preferably, the transducer device produces at least two resonant peaks in the human ear audible range, and the resonant peak produced by the first vibration transmitting sheet is in the range of 20-20
  • the listening range, and the resonance peak generated by the first vibration-transmitting sheet is in the range of 20-5000 Hz, and more preferably, the transducer device generates at least two resonance peaks in the human ear audible range, and the resonance generated by the first vibration-transmitting sheet
  • the peak is in the range of 20-2000 Hz, more preferably, the transducer means produces at least two resonance peaks in the human ear audible range, and the resonance peak produced by the first vibration transmission plate is in the range of 20-1000 Hz, more preferably, the transducer The device produces at least two resonance peaks in the human ear.
  • the resonance peak generated by the first vibration-transmitting sheet is in the range of 20-500 Hz, and more preferably, the transducer device generates at least two resonance peaks in the human ear audible range, and the resonance peak generated by the first vibration-transmitting sheet is In the range of 20-300 Hz, more preferably, the transducer device produces at least two resonance peaks in the human ear audible range, and the resonance peak generated by the first vibration transmission plate is in the range of 20-200 Hz.
  • a triple composite vibration system composed of a vibrating plate, a first vibration transmitting plate, and a second vibration transmitting plate, a frequency response as shown in FIG. 21-B can be obtained, and a triple of the first vibration transmitting plate is obtained.
  • the composite vibration system produces three distinct resonant peaks that produce a flatter frequency response and improved sound quality.
  • the resonance peak can be moved to finally obtain the frequency response under ideal conditions.
  • reducing the stiffness coefficient of the first vibration transmission plate to the design value allows the resonance peak to move to the design position at a low frequency, which can greatly improve the sensitivity of the bone conduction speaker frequency response in the low frequency range, and is easy to obtain better. Sound quality.
  • the first vibration-transmitting sheet has a stiffness coefficient
  • the resonance peak shifts toward the low frequency direction, and the sensitivity of the bone conduction speaker frequency response in the low frequency range is remarkably improved.
  • the first vibration transmitting sheet is an elastic sheet.
  • the elasticity is determined by the material, thickness, structure and the like of the first vibration-transmitting sheet.
  • the material of the first vibration-transmitting sheet is, for example but not limited to, steel (such as but not limited to stainless steel, carbon steel, etc.), light alloy (such as but not limited to aluminum alloy, beryllium copper, magnesium alloy, titanium alloy, etc.), plastic (For example, but not limited to, high molecular polyethylene, blown nylon, engineering plastics, etc.), it can also be other single or composite materials that can achieve the same properties.
  • composite materials such as, but not limited to, glass fibers, carbon fibers, boron fibers, graphite fibers, graphene fibers, silicon carbide fibers or aramid fibers
  • composite materials such as glass, such as glass, may also be used as composite materials for other organic and/or inorganic materials.
  • the thickness of the first vibration-transmitting sheet is not less than 0.005 mm, preferably, the thickness is from 0.005 mm to 3 mm, more preferably, the thickness is from 0.01 mm to 2 mm, and further preferably, the thickness is from 0.01 mm to 1 mm, further preferably, the thickness It is 0.02mm-0.5mm.
  • the structure of the first vibration-transmitting sheet may be set to be annular, preferably comprising at least one ring, preferably comprising at least two rings, which may be concentric rings or non-concentric rings, passing between the rings At least two struts are connected, the struts radiating from the outer ring to the inner ring center, further preferably comprising at least one elliptical ring, further preferably comprising at least two elliptical rings, the different elliptical rings having different curvatures
  • the radius, the rings are connected by a strut, and even more preferably, the first vibrating plate comprises at least one square ring.
  • the first vibration-transmitting sheet structure may also be set in a sheet shape.
  • the hollow pattern is provided on the surface, and the area of the hollow pattern is not less than the area without voiding.
  • the materials, thicknesses, and structures in the above description can be combined into different vibration transmitting sheets.
  • the annular vibration-transmitting sheets have different thickness distributions, preferably the thickness of the struts is equal to the thickness of the ring, further preferably, the thickness of the struts is greater than the thickness of the ring, and even more preferably, the thickness of the inner ring is greater than the thickness of the outer ring .
  • a bone conduction speaker comprises: a U-shaped earphone holder/headphone lanyard, two sound vibration units, and a transducer device fixedly connected to the sound vibration unit.
  • the vibration unit includes a contact surface and an outer casing, the contact surface being the outer side of the silicone transfer layer.
  • the earphone holder/headphone strap provides a clamping force that the contact surface contacts the skin, and the clamping force is unevenly distributed on the contact surface.
  • the gradient structure portion and the non-gradient structure portion have different sound transmissions Delivery efficiency.
  • the earphone holder/headphone lanyard includes an alloy with a memory function, and the earphone holder/headphone lanyard can match the curve of different users' heads. It has good elasticity and better wearing comfort. After the earphone holder/headphone strap has undergone a certain period of deformation, it can still be restored to its original shape. A certain time here may mean ten minutes, thirty minutes, one hour, two hours, five hours, or may be one day, two days, ten days, one month, one year or longer. The clamping force provided by the earphone holder/headphone lanyard remains stable, and the clamping force does not gradually decrease as the wearing time becomes longer.
  • the pressure of the bone conduction speaker in contact with the surface of the human body is within a certain range, so that the human body does not feel excessive pressure when wearing the pain or a sense of vibration.
  • the clamping force of the bone conduction speaker is in the range of 0.2N to 1.5N.
  • the difference between the embodiment and the first embodiment or the second embodiment is that the elastic coefficient of the earphone holder/headphone strap is kept within a specific range, so that the frequency response curve of the bone conduction speaker is low frequency (for example, below 500 Hz) during use.
  • the value in the vicinity is higher than the value near the high frequency (for example, above 4000 Hz).
  • This embodiment differs from the first embodiment in that the bone conduction speaker is integrated on the spectacle frame or inside the special-purpose helmet or mask.
  • the vibration unit of the bone conduction speaker comprises two or more panels, and the vibration transmission layers of the different panels or the panel are different from the gradient structure on the contact surface of the user.
  • one of the contact faces is a convex structure, and the other contact face is a groove mechanism; or the gradient structures on the two contact faces are both convex or grooved structures, but the shape and number of the convex structures are both There is at least one difference between them.
  • a portable bone conduction hearing aid can select multiple frequency response curves, and the user or tester can select an appropriate hearing aid response curve to compensate according to the actual response curve of the hearing system.
  • the vibration device in the bone conduction hearing aid enables the hearing aid to generate a relatively ideal frequency response in a specific frequency range, for example, the frequency range is from 500 Hz to 4000 Hz.
  • the transducer device includes a magnetic circuit system composed of a magnetic conductive plate 2210, a magnet 2211 and a magnetic conductor 2212, a vibration plate 2214, a coil 2215, a first vibration transmitting plate 2216 and a second vibration transmitting plate 2217.
  • the panel 2213 protrudes from the outer casing 2219, and the vibrating piece 2214 is bonded by glue.
  • the first vibration transmitting piece 2216 connects and fixes the transducing device to the outer casing 2219 to form a suspension structure.
  • the triple vibration system consisting of the vibration plate 2214, the first vibration transmission plate 2216 and the second vibration transmission plate 2217 can produce a flatter frequency response curve, thereby improving the sound quality of the bone conduction speaker.
  • the first vibration transmitting piece 2216 elastically connects the transducing device to the outer casing 2219, which can reduce the vibration transmitted by the transducing device to the outer casing, thereby effectively reducing the leakage sound caused by the vibration of the casing, and reducing the vibration of the casing to the bone.
  • the effect of the sound quality of the conductive speaker is a graph showing the response of the vibration-generating portion of the casing vibration intensity and the panel vibration intensity with frequency.
  • the thick line shows the frequency response of the vibration generating portion after the first vibration transmitting sheet 2216 is used
  • the thin line shows the frequency response of the vibration generating portion after the first vibration transmitting sheet 2216 is not used.
  • the vibration of the speaker casing is greater than the device using the first vibration transmission plate 2216 in the frequency range of 500 Hz or more without the device using the first vibration transmission plate 2216.
  • Fig. 22-C shows a comparison of the leaks in the case where the first vibration-transmitting sheet 2216 is used in the vibration generating portion and the first vibration-transmitting sheet 2216 is not used.
  • the device using the first vibration-transmitting sheet 2216 has a leakage sound in the range of the intermediate frequency (for example, about 1000 Hz) smaller than that of the device not using the first vibration-transmitting sheet 2216 in the corresponding frequency range. It can be seen that the use of the first vibration-transmitting sheet between the panel and the outer casing can effectively reduce the vibration of the outer casing, thereby reducing leakage.
  • the intermediate frequency for example, about 1000 Hz
  • the first vibration-transmitting sheet may be, for example, but not limited to, stainless steel, beryllium copper, plastic, polycarbonate, or the like, and has a thickness in the range of 0.01 mm to 1 mm.
  • This embodiment differs from the seventh embodiment in that, as shown in FIG. 23, a vibration transmitting layer 2320 (such as, but not limited to, silica gel) is added to the panel 2313, and the vibration transmitting layer 2320 can generate a certain deformation to adapt to the skin shape.
  • the portion of the vibration transmitting layer 2320 that is in contact with the panel 2313 is higher than the portion of the vibration transmitting layer 2320 that is not in contact with the panel 2313, forming a stepped structure.
  • One or more small holes 2321 are designed in a portion where the vibration transmitting layer 2320 is not in contact with the face plate 2313 (a portion where the vibration transmitting layer 2320 is not convex in FIG. 23).
  • Designing a small hole in the vibration transmission layer can reduce leakage: the panel 2313 passes through the vibration transmission layer 2320 and the outer casing The connection of 2319 is weakened, the vibration transmitted from the vibration transmission layer 2320 to the outer casing 2319 by the panel 2313 is reduced, thereby reducing the leakage sound caused by the vibration of the outer casing 2319; the area where the vibration transmission layer 2320 is not convex is provided with the small hole 2321 and the area is reduced.
  • the air that can be driven is reduced, and the leakage noise caused by the air vibration is reduced; after the small hole 2321 is not protruded from the vibration transmitting layer 2320, the sound waves in the casing formed by the vibration of the air in the casing are guided out of the casing, and the casing The leakage sound waves formed by the air vibration induced by 2319 cancel each other out, reducing the leakage sound.
  • the difference between this embodiment and the seventh embodiment is that since the panel protrudes from the speaker casing and the first vibration-transmitting sheet is used to connect the panel to the speaker casing, the coupling degree between the panel and the casing is greatly reduced, and the first vibration-transmitting sheet can provide
  • the certain deformation makes the panel have a higher degree of freedom in fitting with the user, and can better adapt to the complicated fitting surface (shown in the right figure in FIG. 24-A), and the first vibration transmitting sheet can be
  • the panel is angled relative to the outer casing. Preferably, the angle of inclination does not exceed 5 ⁇ .
  • the vibration efficiency of the speaker varies depending on the fitting state.
  • a good fit state has a higher vibration transfer efficiency.
  • the thick line shows the vibration transmission efficiency in a state where the bonding is good
  • the thin line shows the vibration transmission efficiency in a state in which the bonding is not good. It can be seen that the vibration transmission is better in the fitting state. higher efficiency.
  • a rim is added to the edge of the outer casing. During the process of the outer casing contacting the skin, the rim can make the force distribution more uniform and increase the comfort of the bone conduction speaker. As shown in FIG. 25, there is a height difference d 0 between the rim 2510 and the panel 2513.
  • the force of the skin acting on the panel 2513 causes the distance d between the panel 2513 and the rim 2510 to decrease, when the pressure between the bone conduction speaker and the user is greater than the force experienced when the first vibration absorbing sheet 2516 becomes d 0 Excessive clamping force is transmitted to the skin via the rim 2510 without affecting the clamping force of the vibrating portion, so that the consistency of the clamping force is higher, thereby ensuring sound quality.
  • the shape of the panel is as shown in Fig. 26.
  • the connecting member 2620 of the panel 2610 and the transducer (not shown in Fig. 26) is shown by a broken line.
  • the transducer is transmitted to the panel 2610 by the connecting member 2620, and the position at which the connecting member 2620 is located is the center of vibration of the panel 2610.
  • the distance between the center O of the connecting member 2620 and the two sides of the panel 2610 is L 1 and L 2 , respectively .
  • the ratio of L 1 and L 2 is set to be greater than 1, more preferably, the ratio of L 1 and L 2 is set to be greater than 1.61, and further preferably, the ratio of L 1 and L 2 is set to be greater than 2.
  • a large panel, a middle panel, and a small panel may be used to act on the vibration device.
  • the large panel referred to herein refers to the panel described in FIG. 26, the panel 2610 has a larger area than the connecting member 2620, the middle panel finger panel 2610 is the same size as the connecting member 2620, and the small panel finger panel 2610 has a smaller area than the connecting member 2620.
  • the positions of the differently sized panels and the different connecting members 2620 have different distributions of vibrations on the wearer's mating surface, which in turn leads to differences in volume and sound quality.
  • This embodiment relates to various configurations of the gradient structure on the outer side of the contact surface of the bone conduction speaker vibration unit.
  • the gradient structure is a different number of protrusions, and the protrusions are located at different positions outside the contact surface.
  • the scheme 1 there is a protrusion near the edge of the contact surface; in the scheme 2, there is a protrusion located at the center of the contact surface; in the scheme 3, there are two protrusions on the contact surface, respectively, near the edge of the contact surface;
  • the number and position of the projections have different effects on the vibration transmission efficiency of the contact surface.
  • the contact surface of the non-embossed structure and the contact surface of the convex structure in Schemes 1-5 exhibit different frequency response curves. It can be seen that after the gradient structure (protrusion) is added to the bonding surface, the frequency response curve has a significant elevation in the range of 300 Hz to 1100 Hz, indicating that the middle and low frequency parts of the sound are obviously increased after the gradient structure is increased. Improvement.
  • This embodiment relates to various configurations of the gradient structure of the inner side of the vibrating contact surface of the bone conduction speaker.
  • the gradient structure of the contact surface is located inside the contact surface, i.e., the side facing away from the user.
  • the inner side of the vibration transmission layer is attached to the panel, and the bonding surface and the vibration transmission layer have a certain inclination angle;
  • the scheme B there is a step structure inside the vibration transmission layer, and the step is located at the edge of the vibration transmission layer;
  • the position of the contact surface and the different points on the bonding surface of the panel have different vibration transmission efficiency, which can widen the frequency response curve of the vibration and make the frequency response more "flat” in a certain frequency range. , thereby improving the sound quality of the bone conduction speaker.
  • the difference between this embodiment and the eighth embodiment is that, as shown in FIG. 30, the vibration transmission layer 3020 And the sound-emitting holes are designed on the outer casing 3019, and the sound waves in the shell formed by the vibration of the air in the casing are guided out of the casing through the sound-inducing holes, and the sound waves formed by the air vibration caused by the outer casing 3019 cancel each other to reduce the leakage sound. .

Landscapes

  • Physics & Mathematics (AREA)
  • Signal Processing (AREA)
  • Engineering & Computer Science (AREA)
  • Acoustics & Sound (AREA)
  • General Health & Medical Sciences (AREA)
  • Otolaryngology (AREA)
  • Health & Medical Sciences (AREA)
  • Neurosurgery (AREA)
  • Electromagnetism (AREA)
  • Details Of Audible-Bandwidth Transducers (AREA)
  • Obtaining Desirable Characteristics In Audible-Bandwidth Transducers (AREA)
  • Headphones And Earphones (AREA)
  • Soundproofing, Sound Blocking, And Sound Damping (AREA)

Abstract

一种改善骨传导扬声器(401)音质的方法和装置,通过设计骨传导扬声器(401)的振动产生方式、振动传递结构等,从而调节骨传导扬声器(401)在声音的产生、传递和接收过程中对音质的影响。

Description

一种骨传导扬声器 技术领域
本发明涉及一种高性能的骨传导扬声器及通过特定设计来提高骨传导扬声器的音质,尤其是中低音质量,减少漏音现象,以及增加骨传导扬声器佩戴舒适度的方法。
背景技术
一般情况下,人能够听见声音是因为空气通过外耳耳道把振动传递到耳膜,通过耳膜形成的振动驱动人的听觉神经,由此感知声音的振动。骨传导扬声器在工作时,可以通常通过人的皮肤、皮下组织及骨骼传递到人的听觉神经,从而使人听到声音。
发明内容
本发明涉及一种高性能的骨传导扬声器或骨传导耳机以及通过特定设计提高骨传导扬声器或骨传导耳机音质的方法。所述骨传导扬声器或骨传导耳机包括振动单元、连接振动单元的耳机架/耳机挂带;所述振动单元至少包括一接触面,所述接触面至少部分与使用者直接或间接接触,所述振动单元的接触面与使用者之间的压力大于第一阈值,所述振动单元的接触面与使用者之间的压力小于第二阈值,所述振动单元的接触面与使用者之间的压力大于第三阈值;所述振动单元的接触面与使用者之间的压力小于第四阈值;可选的,所述第一阈值大于所述第三阈值,所述第一阈值能提高高频信号的传递效率,改善高频信号的音质;可选的,所述第三阈值是使得振动单元接触面与使用者接触的最小力;可选的,所述第四阈值是振动单元接触面使得使用者产生痛觉的最小力;可选的,所述第二阈值小于所述第四阈值,所述第二阈值能提高低频信号的传递效率,改善低频信号的音质;可选的,所述第一阈值为0.2N;所述第二阈值为1.5N;所述第三阈值 对应的压力为0.1N:所述第四阈值对应的压力为5N;骨传导扬声器或骨传导耳机的音质与所述振动单元的接触面上的受力分布有关,骨传导系统的频响曲线为所述接触面上各点的频响曲线的叠加。在具体实施例中,所述接触面与使用者之间的压力为0.1N-5N,优选地,压力为0.2N-4N,更优选地,压力为0.2N-3N,进一步优选地,压力为0.2N-1.5N,更进一步优选地,压力为0.3N-1.5N。
在一个实施例中,本发明涉及一种改善漏音的骨传导扬声器,该扬声器包括振动单元。该振动单元至少包括一接触面,所述接触面至少部分与使用者直接接触或间接接触;所述接触面上至少包含第一接触面区域和第二接触面区域;
可选的,该第一接触面区域包含引声孔,该引声孔将振动单元外壳内的声波导出,与漏音声波叠加;可选的,振动单元外壳的侧面上设置有至少一个侧面引声孔,该引声孔将振动单元的外壳内的声波导出,与漏音声波叠加;可选的,所述第一接触面区域下方为一空腔,所述第二接触面区域下方连接振动面板,或者振动面板是第二接触面区域;可选的,所述第二接触面区域凸起部分高于第一接触面区域,所述第一接触面区域至少有部分不与使用者接触,在所述不与使用者接触的部分上有引声孔。所述第二接触面区域与使用者贴合更紧密,接触力更大;可选的,所述振动面板与所述第二接触面区域的面积与形状相同;可选的,所述振动面板与所述第二接触面区域的面积与形状不同,所述振动面板在所述第二接触面区域的投影面积不大于所述第二接触面区域面积。
在另一个实施例中,本发明提供一种改善音质的骨传导扬声器,包括一外壳、一换能装置、一第一传振片;所述第一传振片与所述换能装置间通过物理方式连接;所述第一传振片与所述外壳间通过物理方式连接;所述换能装置可以产生至少一个谐振峰;
可选的,所述换能装置包含至少一振动板和一第二传振片,该换能装置能产生至少两个谐振峰;可选的,所述换能装置包含至少一个音圈和至少一个磁路系统;所述音圈与所述振动板物理连接,所述磁路系统与所述第二传振片物理连接;可选的,所述振动板的劲度系数大于所述第二传振片的劲度系数;可选的,所述第一传振片和第二传振片为弹性片;可选的,所述第一传振片向中心辐辏至少两个第一支杆;优选的,所述第一传振片厚度为0.005mm-3mm,更优选地,厚度为0.01mm-2mm,再优选地,厚度为0.01mm-1mm,进一步优选地,厚度为 0.02mm-0.5mm。
在另一个实施例中,本发明提供一种改善音质的骨传导扬声器,包含振动单元,所述振动单元至少包括一接触层,该接触层至少部分与使用者直接或间接接触;所述接触层表面具有梯度结构,使得接触层上压力分布不均匀;
可选的,所述接触层的梯度结构使得与使用者接触的压力分布不均匀,导致各个接触点具有不同的频响曲线;所述接触层整体的频响曲线由各点的频响曲线叠加而成;可选的,所述接触层面向使用者的一面设置梯度结构;可选的,所述梯度结构包括至少一个凸起;可选的,所述梯度结构包括至少一个凹槽;可选的,所述梯度结构位于面向使用者的一面的中心或者边缘。可选的,所述接触层背向使用者的一面设置梯度结构;可选的,所述梯度结构包括至少一个凸起;可选的,所述梯度结构包括至少一个凹槽;可选的,所述梯度结构位于背向使用者的一面的中心或者边缘。
附图说明
图1为骨传导扬声器导致人耳产生听觉的过程。
图2-A为本发明实施例提供的一种骨传导扬声器的振动产生部分的外形图。
图2-B为本发明实施例提供的一种骨传导扬声器的振动产生部分的结构图。
图2-C为本发明实施例提供的一种骨传导扬声器的振动产生部分的结构图。
图3-A为本发明实施例中一种骨传导扬声器振动产生部分的等效振动模型。
图3-B为本发明实施例所适用的一种骨传导扬声器的振动响应曲线。
图4为本发明实施例中一种骨传导扬声器将声音振动传递系统的示意图。
图5-A和5-B分别为本发明实施例中一种骨传导扬声器面板粘结方式的俯视图和侧视图。
图6为本发明实施例中一种骨传导扬声器的振动产生部分的结构图。
图7为本发明实施例所适用的一种骨传导扬声器工作的振动响应曲线。
图8为本发明实施例所适用的一种骨传导扬声器工作的振动响应曲线。
图9为本发明实施例中一种骨传导扬声器的振动产生部分的结构图。
图10为本发明实施例中的一种骨传导扬声器的频率响应曲线。
图11为本发明实施例中一种骨传导扬声器振动产生和传递系统的等效模型。
图12为本发明实施例提供的一种骨传导扬声器的结构图。
图13-A和图13-B为本发明实施例所适用的一种骨传导扬声器的振动响应曲线。
图14-A和图14-B为本发明实施例中提供的一种测量骨传导扬声器夹紧力的方法。
图14-C为本发明实施例所适用的一种骨传导扬声器振动响应曲线。
图15为本发明实施例中一种调节夹紧力的方式。
图16-A为本发明实施例中一种骨传导扬声器振动单元接触面的示意图。
图16-B为本发明实施例所适用的一种骨传导扬声器的振动响应曲线。
图17为本发明实施例中骨传导扬声器振动单元接触面的示意图。
图18-A和图18-B为本发明实施例提供的一种骨传导扬声器及其复合振动装置的结构图。
图19为本发明实施例所适用的一种骨传导扬声器的频率响应曲线。
图20为本发明实施例提供的一种骨传导扬声器及其复合振动装置的结构图。
图21-A为本发明实施例中一种骨传导扬声器振动产生部分的等效模型图。
图21-B为一个具体实施例中所适用的一种骨传导扬声器的振动响应曲线。
图21-C为一个具体实施例中所适用的一种骨传导扬声器的振动响应曲线。
图22-A为一个具体实施例中的一种骨传导扬声器的振动产生部分的结构图。
图22-B为一个具体实施例中骨传导扬声器振动产生部分的振动响应曲线。
图22-C为一个具体实施例中骨传导扬声器的漏音曲线。
图23为一个具体实施例中骨传导扬声器振动产生部分的结构图。
图24-A为一个具体实施例中骨传导扬声器的应用场景。
图24-B为一个具体实施例中骨传导扬声器振动产生部分的振动响应曲线。
图25为一个具体实施例中骨传导扬声器振动产生部分的结构图。
图26为一个具体实施例中骨传导扬声器面板的结构示意图。
图27为具体实施例中骨传导扬声器接触面外侧的梯度结构。
图28-A和图28-B为具体实施例中的振动响应曲线。
图29为具体实施例中骨传导扬声器接触面内侧的梯度结构。
图30为一个具体实施例中骨传导扬声器振动产生部分的结构图。
具体实施方式
为了更清楚地说明本发明实施例的技术方案,下面将对实施例描述中所需要使用的附图作简单介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,并不限定本发明的应用范围,对于本领域的普通技术人员来讲,在不付出创造性劳动的前提下,可以根据这些附图将本发明应用于其他类似场景。
如本说明书和权利要求书中所示,除非上下文明确提示例外情形,“一”、“一个”、“一种”和/或“该”等词并非特指单数,也可包括复数。一般说来,术语“包括”与“包含”仅提示包括已明确标识的步骤和元素,而这些步骤和元素不构成一个排它性的罗列,方法或者设备也可能包含其它的步骤或元素。术语“基于”是“至少部分地基于”。术语“一个实施例”表示“至少一个实施例”;术语“另一实施例”表示“至少一个另外的实施例”。其他术语的相关定义将在下文描述中给出。
以下,不失一般性,在描述本发明中骨传导相关技术时,将采用“骨传导扬声器”或“骨传导耳机”的描述。该描述仅仅为骨传导应用的一种形式,对于该领域的普通技术人员来说,“扬声器”或“耳机”也可用其他同类词语代替,比如“播放器”、“助听器”等。事实上,本发明中的各种实现方式可以很方便地应用到其它非扬声器类的听力设备上。例如,对于本领域的专业人员来说,在了解骨传导扬声器的基本原理后,可能在不背离这一原理的情况下,对实施骨传导扬声器的具体方式与步骤进行形式和细节上的各种修正和改变,特别地,在骨传导扬声器中加入环境声音拾取和处理功能,使该扬声器实现助听器的功能。例如,麦克风等传声器可以拾取使用者/佩戴者周围环境的声音,在一定的算法下,将声音处理后(或者产生的电信号)传送至骨传导扬声器部分。即骨传导扬声器可以经过一定的修改,加入拾取环境声音的功能,并经过一定的信号处理后通过骨传导扬声器部分将声音传递给使用者/佩戴者,从而实现骨传导助听器的功能。作为举例,这里所说的算法可以包括噪声消除、自动增益控制、声反馈抑制、宽动态范围压缩、主动环境识别、主动抗噪、定向处理、耳鸣处理、多通道宽动态范围压缩、主动啸叫抑制、音量控制等一种或多种的组合。
骨传导扬声器将声音通过骨头传递给听力系统,从而产生听觉。图1是骨传导扬声器产生听觉的过程,主要包括以下几个步骤:在步骤101,骨传导扬声器获取或产生含有声音信息的信号;在步骤102,骨传导扬声器根据信号产生振动; 在步骤103,通过传递系统将振动传递给传感终端104。在一种工作场景中,骨传导扬声器拾取或产生含有声音信息的信号,通过换能装置将声音信息转换成声音振动,并通过传递系统将声音传递给感觉器官,最终听到声音。不失一般性,以上描述的听力系统、感觉器官等的主体可以是人,也可以是具有听力系统的动物。需要注意的是,以下对于人类使用骨传导扬声器的描述并不构成对骨传导扬声器使用场景的限制,类似的描述同样可以适用于其它动物。
以上对骨传导扬声器大致流程的描述仅仅是具体的示例,不应被视为是唯一可行的实施方案。显然,对于本领域的专业人员来说,在了解骨传导扬声器的基本原理后,可能在不背离这一原理的情况下,对实施骨传导扬声器的具体方式与步骤进行形式和细节上的各种修正和改变,但是这些修正和改变仍在以上描述的范围之内。例如,在步骤101获取含有声音信息的信号和步骤102振动产生之间,可以额外加入信号修正或强化步骤,该步骤可以将101中获取的信号根据特定的算法或参数进行强化或者修正。更进一步的,在步骤102振动产生和103振动传递步骤之间,可以额外加入振动强化或修正步骤。该步骤可以利用101的声音信号或者根据环境参数对102所产生的振动进行强化或者修正。同理,该振动强化或修正步骤可以在步骤103与104之间完成,例如对信号进行降噪、声反馈抑制、宽动态范围压缩、自动增益控制、主动环境识别、主动抗噪、定向处理、耳鸣处理、多通道宽动态范围压缩、主动啸叫抑制、音量控制,或其它类似的,或以上任意组合的处理,这些修正和改变仍在本发明的权利要求保护范围之内。此处所描述的方法和步骤可以在适当的情况下以任何合适的顺序,或同时实现。另外,在不偏离此处所描述的主题的精神和范围的情况下,可以从任何一个方法中删除各单独的步骤。上文所描述的任何示例的各方面可以与所描述的其他示例中的任何示例的各方面相结合,以构成进一步的示例,而不会丢失寻求的效果。
具体的,在步骤101中,骨传导扬声器可以根据不同的方式获取或者产生含有声音信息的信号。声音信息可以指具有特定数据格式的视频、音频文件,也可以指一般意义上能够携带最终可通过特定途径转化为声音的数据或文件。含有声音信息的信号可以来自于骨传导扬声器本身的存储单元,也可以来自于骨传导扬声器以外的信息产生、存储或者传递系统。此处所讨论的声音信号并不局限于电信号,也可包括电信号之外的其它形式的如光信号、磁信号、机械信号等。原则 上,只要该信号包含有扬声器可以用以产生振动的声音信息,均可作为声音信号进行处理。声音信号也不局限于一个信号源,可以来自于多个信号源。这些多个信号源可以相关也可以相互无关。声音信号传递或产生的方式可以是有线的也可以是无线的,可以是实时的也可以是延时的。例如,骨传导扬声器可以通过有线或者无线的方式接收含有声音信息的电信号,也可以直接从存储介质上获取数据,产生声音信号;骨传导助听器中可以加入具有声音采集功能的组件,通过拾取环境中的声音,将声音的机械振动转换成电信号,通过放大器处理后获得满足特定要求的电信号。其中,有线连接包括但不限于使用金属电缆、光学电缆或者金属和光学的混合电缆,例如:同轴电缆、通信电缆、软性电缆、螺旋电缆、非金属护皮电缆、金属护皮电缆、多芯电缆、双绞线电缆、带状电缆、屏蔽电缆、电信电缆、双股电缆、平行双芯导线、和双绞线。
以上描述的例子仅作为方便说明之用,有线连接的媒介还可以是其它类型,例如,其它电信号或光信号等的传输载体。无线连接包括但不限于无线电通信、自由空间光通信、声通讯、和电磁感应等。其中无线电通讯包括但不限于,IEEE802.11系列标准、IEEE802.15系列标准(例如蓝牙技术和紫蜂技术等)、第一代移动通信技术、第二代移动通信技术(例如FDMA、TDMA、SDMA、CDMA、和SSMA等)、通用分组无线服务技术、第三代移动通信技术(例如CDMA2000、WCDMA、TD-SCDMA、和WiMAX等)、第四代移动通信技术(例如TD-LTE和FDD-LTE等)、卫星通信(例如GPS技术等)、近场通信(NFC)和其它运行在ISM频段(例如2.4GHz等)的技术;自由空间光通信包括但不限于可见光、红外线讯号等;声通讯包括但不限于声波、超声波讯号等;电磁感应包括但不限于近场通讯技术等。以上描述的例子仅作为方便说明之用,无线连接的媒介还可以是其它类型,例如,Z-wave技术、其它收费的民用无线电频段和军用无线电频段等。例如,作为本技术的一些应用场景,骨传导扬声器可以通过蓝牙技术从其他设备获取含有声音信息的信号,也可以直接从骨传导扬声器自带的存储单元中直接获取数据,再产生声音信号。
这里所说的存储设备/存储单元,包括直接连接存储(Direct Attached Storage),网络附加存储(Network Attached Storage)和存储区域网络(Storage Area Network)等存储系统上的存储设备。存储设备包括但不限于常见的各类存储设备如固态存 储设备(固态硬盘、固态混合硬盘等)、机械硬盘、USB闪存、记忆棒、存储卡(如CF、SD等)、其他驱动(如CD、DVD、HD DVD、Blu-ray等)、随机存储器(RAM)和只读存储器(ROM)。其中RAM有但不限于:十进计数管、选数管、延迟线存储器、威廉姆斯管、动态随机存储器(DRAM)、静态随机存储器(SRAM)、晶闸管随机存储器(T-RAM)、和零电容随机存储器(Z-RAM)等;ROM又有但不限于:磁泡存储器、磁钮线存储器、薄膜存储器、磁镀线存储器、磁芯内存、磁鼓存储器、光盘驱动器、硬盘、磁带、早期NVRAM(非易失存储器)、相变化内存、磁阻式随机存储式内存、铁电随机存储内存、非易失SRAM、闪存、电子抹除式可复写只读存储器、可擦除可编程只读存储器、可编程只读存储器、屏蔽式堆读内存、浮动连接门随机存取存储器、纳米随机存储器、赛道内存、可变电阻式内存、和可编程金属化单元等。以上提及的存储设备/存储单元是列举了一些例子,该存储设备/存储单元可以使用的存储设备并不局限于此。
在102中,骨传导扬声器可以将含有声音信息的信号转换成振动并产生声音。振动的产生伴随着能量的转换,骨传导扬声器可以使用特定的换能装置实现信号向机械振动转换。转换的过程中可能包含多种不同类型能量的共存和转换。例如,电信号通过换能装置可以直接转换成机械振动,产生声音。再例如,声音信息包含在光信号中,一种特定的换能装置可以实现由光信号转换为振动信号的过程。其它可以在换能装置工作过程中共存和转换的能量类型包括热能、磁场能等。换能装置的能量转换方式包括但不限于动圈式、静电式、压电式、动铁式、气动式、电磁式等。骨传导扬声器的频率响应范围以及音质会受到不同换能方式以及换能装置中各个物理组件性能的影响。例如,在动圈式换能装置中,缠绕的柱状线圈与振动板相连,受信号电流驱动的线圈在磁场中带动振动板振动发声,振动板材质的伸展和收缩、褶皱的变形、大小、形状以及固定方式,永磁体的磁密度等,都会对骨传导扬声器最终的音效质量带来很大的影响。再例如,振动板可以是镜面对称的结构、中心对称的结构或者非对称的结构;振动板上可以设置有间断的孔状结构,使振动板产生更大的位移,从而让骨传导扬声器实现更高的灵敏度,提高振动与声音的输出功率;又例如,振动板是圆环体结构,在圆环体内设置向中心辐辏的多个支杆,支杆的个数可以是两个或者更多。
显然,对于本领域的专业人员来说,在了解换能方式及具体装置能够影响骨传导扬声器音效质量的基本原理后,可能在不背离这一原理的情况下,对上述提及的影响因素进行适当的取舍、组合、修正或改变,从而获得理想的音质。例如,采用高磁密度的永磁体,更理想的振动板材料以及设计,能够获得更好的音质。
这里使用的术语“音质”可以理解为能够反映出声音的质量,指经处理、传输等过程后音频的保真度。音质主要由响度、音调和音色三要素来描述。响度是人耳对声音强弱的主观感受,其正比于声音强度的对数值,声音强度越大听起来感到越响亮。而且与声音的频率和波形有关。音调,又称音高,是指人耳对声音振动频率高低的主观感受。音调主要取决于声音的基波频率,基频越高,音调越高,同时它还与声音的强度有关。音色是指人耳对声音特色的主观感觉。音色主要取决于声音的频谱结构,还与声音的响度、持续时间、建立过程及衰变过程等因素有关。声音的频谱结构是用基频、谐频数目、谐频分布情况、幅度大小以及相位关系来描述的。不同的频谱结构,就有不同的音色。即使基频和响度相同,如果谐波结构不同,音色也不相同。
骨传导扬声器振动的实现方法很多,图2-A和图2-B是一个具体实施例中骨传导扬声器振动产生部分的结构图,包括外壳210、面板220、换能装置230和连接件240。
面板220的振动通过组织与骨骼传递到听觉神经,从而使人听到声音。面板220与人体皮肤可以是直接接触的,也可以通过由特定材料组成的振动传递层(下文中会详细描述)与皮肤接触。这里所说的特定材料可以从低密度的材料中进行选择,例如塑料(例如但不限于高分子聚乙烯、吹塑尼龙、工程塑料等),橡胶,也可以是能达到同样性能的其他单一或复合材料。对于橡胶的种类,例如但不限于通用型橡胶和特种型橡胶。通用型橡胶包含但不限于天然橡胶、异戊橡胶、丁苯橡胶、顺丁橡胶、氯丁橡胶等。特种型橡胶又包含但不限于丁腈橡胶、硅橡胶、氟橡胶、聚硫橡胶、聚氨酯橡胶、氯醇橡胶、丙烯酸酯橡胶、环氧丙烷橡胶等。其中,丁苯橡胶包含并不限于乳液聚合丁苯橡胶和溶液聚合丁苯橡胶。对于复合材料,例如但不限于玻璃纤维、碳纤维、硼纤维、石墨纤维、纤维、石墨烯纤维、碳化硅纤维或芳纶纤维等增强材料。也可以是其它有机和/或无机材料的复合物,例如玻璃纤维增强不饱和聚酯、环氧树脂或酚醛树脂基体组成的各 类玻璃钢。其他可用于制成振动传递层的材料还包括硅胶、聚氨酯(Poly Urethane)、聚碳酸酯(Poly Carbonate)中的一种或多种的组合。换能装置230是基于某种原理实现电信号向机械振动转换的组件。面板220与换能装置230相连,在换能装置230的带动下振动。连接件240连接面板220和外壳210,用于将换能装置230定位在外壳中。在换能装置230将振动传递给面板220时,振动会同时通过连接件240传递给外壳,引起外壳210振动,也会相应改变面板220的振动方式,从而影响面板220传递给人体皮肤的振动。
需要注意的是,将换能装置和面板固定在外壳中的方式不限于图2-B描述的连接方式,显然,对于本领域的技术人员而言,是否采用连接件240,或者采用不同材料制成的连接件240、调整换能装置230或者面板220连接到外壳210的方式等,都会表现出不同的力学阻抗特性,产生不同的振动传递效果,从而影响振动系统整体的振动效率,产生不同的音质。
例如,若不采用连接件,面板可以通过胶水直接粘贴在外壳上,也可以采用卡接或焊接的方式连接在外壳上。若采用连接件,则具有适度弹性力的连接件在传递振动的过程中有减震的效果,可以减少传递到外壳的振动能量,从而有效抑制外壳振动导致的骨传导扬声器向外界漏音,也可以帮助避免可能的异常共振导致的异常声音的发生,达到改善音质的效果。位于外壳内/上不同位置的连接件对振动的传递效率也会产生不同程度的影响,优选地,连接件可以使得换能装置处于悬吊或支撑等不同的状态。
图2-B所示为一种连接方式的实例,连接件240可以与外壳210顶端相连。图2-C为另一种连接方式的实例,面板220从外壳210的开口伸出,面板220和换能装置230之间通过连接部分250连接,并与外壳210通过连接件240相连。
在另外一些实施例中,也可以以其他的连接方式将换能装置固定在壳体内部,例如,可以将换能装置通过连接件固定在外壳内底面上,或者将换能装置的底部(换能装置与面板连接的一侧是顶部,与之相反的一侧是底部)通过弹簧悬空固定在壳体内部,也可以将换能装置的顶部连接在外壳上,或者换能装置和外壳间通过多个位于不同位置的连接件相连,或者以上多种连接方式的任意组合。
在一些具体的实施例中,连接件具有一定的弹性。连接件的弹性由连接件的材料、厚度、结构等多方面决定。对于连接件的材料,例如但不限于,钢材(例 如但不限于不锈钢、碳素钢等)、轻质合金(例如但不限于铝合金、铍铜、镁合金、钛合金等)、塑胶(例如但不限于高分子聚乙烯、吹塑尼龙、工程塑料等),也可以是能达到同样性能的其他单一或复合材料。对于复合材料,例如但不限于玻璃纤维、碳纤维、硼纤维、石墨纤维、石墨烯纤维、碳化硅纤维或芳纶纤维等增强材料。构成连接件的材料也可以是其它有机和/或无机材料的复合物,例如玻璃纤维增强不饱和聚酯、环氧树脂或酚醛树脂基体组成的各类玻璃钢。连接件的厚度不低于0.005mm,优选地,厚度为0.005mm-3mm,更优选地,厚度为0.01mm-2mm,再优选地,厚度为0.01mm-1mm,进一步优选地,厚度为0.02mm-0.5mm。
连接件的结构可以设定成环状,优选地,包含至少一个圆环,优选地,包含至少两个圆环,可以是同心圆环,也可以是非同心圆环,圆环间通过至少两个支杆相连,支杆从外环向内环中心辐射,进一步优选地,包含至少一个椭圆圆环,进一步优选地,包含至少两个椭圆圆环,不同的椭圆圆环有不同的曲率半径,圆环之间通过支杆相连,更进一步优选地,包括至少一个方形环。连接件结构也可以设定成片状,优选地,在片状上设置镂空图案,更优选地,镂空图案的面积不小于连接件非镂空部分的面积。值得注意的是,以上描述中连接件的材料、厚度、结构可以以任意方式组合成不同的连接件。例如,环状连接件可以具有不同的厚度分布,优选地,支杆厚度等于圆环厚度,进一步优选地,支杆厚度大于圆环厚度,进一步优选地,内环的厚度大于外环的厚度。
本领域的普通技术人员可以根据不同的实际应用决定连接件的材料、位置以及连接方式等,或者将上述不同的连接件属性进行修正、改进或者组合使用,但这些修正和改进仍然在以上描述的范围之内。例如,以上描述的连接件不一定是必须的,面板可以直接架接在外壳上,也可以通过胶水与外壳粘结。需要注意的是,实际应用中的骨传导扬声器振动产生部分的形状、尺寸、比例等不限于图2A、图2B或图2C中所描述的内容,骨传导扬声器在考虑到其他可能会影响骨传导扬声器音质的因素,例如骨传导扬声器的漏音程度、产生的倍频音、佩戴方式等,本领域的技术人员可以根据图中所描述的内容做出一定程度的改变。
精心设计和调试换能装置与面板可以解决很多骨传导扬声器经常面临的问题。例如,骨传导扬声器容易产生漏音现象。这里所说的漏音指的是,骨传导扬 声器工作的过程中,扬声器的振动会产生向周围环境传递的声音,除了扬声器的佩戴者外,环境中的其他人也能够听到扬声器发出的声音。漏音现象出现的原因很多,包括换能装置和面板的振动通过连接件传递到外壳而引起外壳的振动,或者换能装置的振动引起壳内空气振动,空气振动传导到外壳上引起外壳振动,从而产生漏音。如图3-A所示,一种骨传导扬声器振动产生部分的等效振动模型,包括固定端301,外壳311和面板321,固定端301和外壳311之间等效为通过弹性体331和阻尼件332连接,外壳311和面板321之间等效为通过弹性体341连接。固定端301可以是骨传导扬声器在振动过程中位置相对固定的点或者位置相对固定的区域(下文中会详细描述)。弹性体331和阻尼332由耳机架/耳机挂带和外壳之间的连接方式决定,影响因素包括耳机架/耳机挂带的刚度、形状、组成材料等,以及耳机架/耳机挂带与外壳连接部位的材料属性。这里所说的耳机架/耳机挂带提供骨传导扬声器与使用者之间相互接触的压力。弹性体341由面板321(或者面板与换能装置所组成的系统)和外壳311之间的连接方式决定,影响因素包括以上提到的连接件240。则振动方程可以表示为:
mx2″+Rx2′-k1(x1-x2)+k2x2=0   (1)
其中,m为外壳311的质量,x1为面板321的位移,x2为外壳311的位移,R为振动阻尼,k1为弹性体341的劲度系数,k2为弹性体331的劲度系数。在稳定振动的情况下(不考虑瞬态响应),可以导出外壳振动与面板振动的比值x2/x1
Figure PCTCN2015086907-appb-000001
这里所说的外壳振动与面板振动的比值x2/x1可以反映出骨传导扬声器漏音大小。一般而言,x2/x1的值越大,说明外壳的振动相比于传递给听力系统的有效振动就越大,在相同的音量下,漏音就越大;x2/x1的值越小,说明外壳的振动相比于传递给听力系统的有效振动就越小,在相同的音量下,漏音就越小。由此可见,影响骨传导扬声器漏音大小的因素包括,面板321(或者面板与换能装置所组成的系统)和外壳311之间的连接方式(弹性体341的劲度系数k1),耳机架/耳机挂带和外壳系统(k2,R,m)等。在一个实施例中,弹性体331的劲度系数k1,外壳质量m以及阻尼R与扬声器的形状和佩戴方式相关,在k1,m,R确定后,x2/x1和弹性体341的劲度系数k1之间的关系如图3-B所示。由图中可看出, 不同劲度系数k1会影响外壳振动幅度与面板振动幅度的比值,即x2/x1。当频率f大于200Hz时,外壳的振动都小于面板的振动(x2/x1<1),且随着频率的增加,外壳的振动逐渐变小。特别的,如图3-B所示,对于不同的k1的值(从左向右依次设定劲度系数为k2的5倍、10倍、20倍、40倍、80倍和160倍),当频率大于400Hz时,外壳振动已经小于面板振动的1/10(x2/x1<0.1)。在具体实施例中,减小劲度系数k1的值(例如,选用劲度系数小的连接件240),可以有效地减少外壳的振动,从而降低漏音。
在具体实施例中,使用特定材料和连接方式的连接件可以降低漏音。例如,面板、换能装置和外壳之间采用具有一定弹性的连接件连接,可以在面板在较大幅度的振动下,外壳的振动幅度较小,降低漏音。可用于制作连接件的材料有很多种,包括但不限于,不锈钢、铍铜、塑胶(例如,聚碳酸酯)等。连接件的形状可以设置成很多种。例如,连接件可以是一种圆环体,圆环体中向中心辐辏至少两个支杆,圆环体的厚度不低于0.005mm,优选地,厚度为0.005mm-3mm,更优选地,厚度为0.01mm-2mm,再优选地,厚度为0.01mm-1mm,进一步优选地,厚度为0.02mm-0.5mm。在另一个实例中,连接件可以是一种圆环片,圆环片上可以进一步设置有多圈间断的环孔,每圈环孔之间形成间断间隔。再例如,可以在外壳或者面板(或者在面板外侧的振动传递层,下文中会详细描述)上开设一定数量的满足一定条件的引声孔,在换能装置振动过程中能够将壳内声波振动引导传播至壳外,与外壳振动所形成的漏音声波相互作用,达到抑制骨传导扬声器漏音的效果。又如,可以选择吸声材料做成的外壳,或者在至少一部分壳体上使用吸声材料。吸声材料可以用于壳体上的一个或多个内/外表面,也可以是壳体上一个内/外表面上的一部分区域。吸声材料是指能够借助材料自身的物理属性(例如但不限于多孔性)、薄膜作用、共振作用中一种或多种机制而对入射的声音能量具有吸收的作用的材料。特别地,吸声材料可以是多孔材料或者具有多孔结构的材料,包括但不限于有机纤维材料(例如但不限于,天然植物纤维、有机合成纤维等)、无机纤维材料(例如但不限于,玻璃棉、矿渣棉、硅酸铝棉和岩棉等)、金属吸声材料(例如但不限于,金属纤维吸声板、泡沫金属材料等)、橡胶吸声材料、泡沫塑料吸声材料(例如但不限于,聚氨酯泡沫、聚氯乙烯泡沫、聚丙烯酸酯聚苯乙烯泡沫、酚醛树脂泡沫等)等,;也可以是通过共振吸声的柔 性材料,包括但不限于闭孔型泡沫塑料;膜状材料,包括但不限于塑料膜、布、帆布、漆布或人造革;板状材料,包括但不限于如硬质纤维板、石膏板、塑料板、金属板)或穿孔板(如在板状材料上打孔制得)。吸声材料可以是一种或者多种的组合,也可以是复合材料。吸声材料可以设置在外壳上,也可以分别设置在振动外壳的振动传递层或外壳上。
这里所说的外壳、振动传递层以及与振动传递层贴合的面板共同构成骨传导扬声器的振动单元。换能装置位于该振动单元中,并且通过与面板和外壳的连接将振动传递到振动单元上。优选的,振动单元至少有超过1%是吸声材料,更优选的,振动单元至少有超过5%的吸声材料,进一步优选地,振动单元至少有超过10%的吸声材料。优选地,外壳上至少有超过5%是吸声材料,更优选地,外壳上至少有超过10%是吸声材料,进一步优选地,外壳上有超过40%是吸声材料,再进一步优选地,外壳上至少有超过80%是吸声材料。在进一步的实施例中,可以引入补偿电路,根据漏音声音的性质进行主动控制,产生与漏音声音相位相反的的反向信号,从而抑制漏音。应当注意的是,以上描述的改变骨传导扬声器音质的方式可以进行选择或组合使用,得到多种实施方案,这些实施方案也仍在本发明的保护范围内。
以上对骨传导扬声器振动产生部分结构的描述仅仅只是具体的示例,不应被视为是唯一可行的实施方案。显然,对于本领域的专业人员来说,在了解基本原理后,可能在不背离这一原理的情况下,对实施振动的具体结构和连接方式进行各种修正和改变,但是这些修正和改变仍在以上描述的范围之内。例如,图2-B,2-C中的连接部分250可以是面板220上的一部分,采用胶水粘结在换能装置230上;也可以是换能装置230的一部分(例如,振动板上的凸起部分),采用胶水粘结在面板220上;也可以是独立的一个组件,采用胶水同时粘结在面板220和换能装置230上。当然,连接部分250和面板220或者换能装置230之间的连接方式并不限于粘结,本领域的技术人员可以获知的其他连接方式也适用于本发明,例如,可以采用卡接或者焊接的方式。优选地,面板220与外壳210之间可以直接采用胶水粘结的方式,更优选地,可以通过类似于弹性件240的组件连接,进一步优选地,可以通过在面板220外侧加上振动传递层(下文中会详细描述)的方式连接在外壳210上。需要注意的是,连接部分250是描述不同组件间连接 的示意图,本领域的技术人员可以采用具有类似功能和不同形状的组件来替代,这些替代和改变仍然在上述描述的保护范围之内。
在步骤103,声音通过传递系统传递给听力系统。传递系统可以是通过介质将声音振动直接传递给听力系统,也可以包括在声音传递过程中经过一定的处理后再传递给听力系统。
图4是一种声音传递系统的具体实施例,该实施例中的骨传导扬声器在工作时,扬声器401接触在耳后、面颊或额头等部位,将声音振动传递给皮肤402,经皮下组织403、骨骼404传递到耳蜗405,最终由耳蜗听觉神经传递给大脑。人体感受到的音质会受到传输介质以及影响传输介质物理性能的其它因素的影响。例如,皮肤和皮下组织的疏密、厚度,骨骼的形状、密度以及振动在传递过程中可能经由的人体其它组织等,都会对最终的音质产生影响。进一步的,在振动的传递过程中,骨传导扬声器与人体接触的部分、人体组织的振动传递效率也会影响最终的音效。
例如,骨传导扬声器的面板将振动通过人体组织传递给人体的听力系统,改变面板的材质、接触面积、形状和/或大小,以及面板和皮肤间的相互作用力,都可以影响声音通过介质的传递效率,从而影响音质。例如,在相同的驱动下,不同大小的面板传递的振动在佩戴者贴合面上有不同的分布,进而会带来音量和音质的差异。优选地,面板的面积不小于0.15cm2,更优选地,面积不小于0.5cm2,进一步优选地,面积不小于2cm2。再例如,面板受换能装置的带动而振动,面板与换能装置的粘结点在面板振动的中心,优选地,面板围绕所述振动中心的质量分布是均匀的(即振动中心是面板的物理中心),更优选地,使面板围绕所述振动中的质量不均匀分布(即振动中心偏离面板的物理中心)。又例如,一个振动板可以连接到多个面板上,多个面板间的形状、材质可以彼此相同也可以不同,多个面板间可以相连也可以不相连,多个面板利用多个途径传递声音振动,不同路径间的振动传递方式互不相同,传递到面板的位置也不相同,不同面板之间的振动信号可以互补,生成较为平坦的频率响应。再例如,将一块面积较大的振动板分割为两块或多块面积较小的振动板,可以有效地改善在高频时面板形变引起的不均匀振动,使频率响应更为理想。
值得注意的是,面板的物理属性,例如质量、大小、形状、刚度、振动阻尼 等都会影响面板振动的效率。本领域的技术人员可以根据实际需要选择适当材料做成的面板,或者使用不同模具将面板注塑成不同的形状,优选地,面板的形状可以设置成长方形、圆形或椭圆形,更优选地,面板的形状可以是将长方形、圆形或椭圆形的边缘进行切割后所获得的图形(例如但不限于,将圆形对称切割获得类似椭圆的形状等),进一步优选地,面板可以设置成镂空的。这里所说的面板材料包括但不限于丙烯腈-丁二烯-苯乙烯共聚物(Acrylonitrile butadiene styrene,ABS)、聚苯乙烯(Polystyrene,PS)、高冲击聚苯乙烯(High impact polystyrene,HIPS)、聚丙烯(Polypropylene,PP)、聚对苯二甲酸乙二酯(Polyethylene terephthalate,PET)、聚酯(Polyester,PES)、聚碳酸酯(Polycarbonate,PC)、聚酰胺(Polyamides,PA)、聚氯乙烯(Polyvinyl chloride,PVC)、聚氨酯(Polyurethanes,PU)、聚二氯乙烯(Polyvinylidene chloride)、聚乙烯(Polyethylene,PE)、聚甲基丙烯酸甲酯(Polymethyl methacrylate,PMMA)、聚醚醚酮(Polyetheretherketone,PEEK)、酚醛树脂(Phenolics,PF)、尿素甲醛树脂(Urea-formaldehyde,UF)、三聚氰胺-甲醛树脂(Melamine formaldehyde,MF)以及一些金属、合金(如铝合金、铬钼钢、钪合金、镁合金、钛合金、镁锂合金、镍合金等)或复合材料等。相关参数包括材料的相对密度,拉伸强度,弹性模量,洛氏硬度等。优选的,面板材料的相对密度为1.02-1.50,更优选地,相对密度为1.14-1.45,进一步优选地,相对密度为1.15-1.20。面板的拉伸强度不小于30MPa,更优选地,拉伸强度为33MPa-52MPa,进一步优选地,拉伸强度不小于60MPa。面板材料的弹性模量可以在1.0GPa-5.0GPa内,更优选地,弹性模量在1.4GPa-3.0GPa,进一步优选地,弹性模量在1.8GPa-2.5GPa。类似的,面板材料的硬度(洛氏硬度)可以是60-150,更优选地,硬度可以是80-120,进一步优选地,硬度可以是90-100。特别的,同时考虑面板材料和拉伸强度,可以是相对密度为1.02-1.1,拉伸强度为33MPa-52MPa,更优选地,面板材料的相对密度为1.20-1.45,拉伸强度为56-66MPa。
在其他一些实施例中,骨传导扬声器的面板外侧包裹着振动传递层,振动传递层与皮肤接触,面板和振动传递层组成的振动体系将产生的声音振动传递给人体组织。优选地,面板外侧包裹一层振动传递层,更优选地,面板外侧包裹多层振动传递层;振动传递层可以是由一种或多种材料制成,不同振动传递层的材料 构成可以相同,也可以不同;多层振动传递层之间可以是在面板垂直的方向上相互叠加,也可以是在面板水平的方向上铺开排列,或者以上两种排列方式的组合。振动传递层的面积可以设定为不同的大小,优选地,振动传递层的面积不小于1cm2,更优选地,振动传递层的面积不小于2cm2,进一步优选地,振动传递层的面积不小于6cm2
振动传递层的构成可以是具有一定吸附性、柔性、化学性的材料,例如塑料(例如但不限于高分子聚乙烯、吹塑尼龙、工程塑料等),橡胶,也可以是能达到同样性能的其他单一或复合材料。对于橡胶的种类,例如但不限于通用型橡胶和特种型橡胶。通用型橡胶包含但不限于天然橡胶、异戊橡胶、丁苯橡胶、顺丁橡胶、氯丁橡胶等。特种型橡胶又包含但不限于丁腈橡胶、硅橡胶、氟橡胶、聚硫橡胶、聚氨酯橡胶、氯醇橡胶、丙烯酸酯橡胶、环氧丙烷橡胶等。其中,丁苯橡胶包含并不限于乳液聚合丁苯橡胶和溶液聚合丁苯橡胶。对于复合材料,例如但不限于玻璃纤维、碳纤维、硼纤维、石墨纤维、纤维、石墨烯纤维、碳化硅纤维或芳纶纤维等增强材料。也可以是其它有机和/或无机材料的复合物,例如玻璃纤维增强不饱和聚酯、环氧树脂或酚醛树脂基体组成的各类玻璃钢。其他可用于制成振动传递层的材料还包括硅胶、聚氨酯(Poly Urethane)、聚碳酸酯(Poly Carbonate)中的一种或多种的组合。
振动传递层的存在能够影响系统的频率响应,改变骨传导扬声器的音质,同时也能起到对壳内元件的保护作用。例如,振动传递层能够改变面板的振动方式,使得系统整体的频率响应更平缓。面板的振动方式受到面板本身属性、面板和振动板的连接方式、面板和振动传递层的连接方式、振动频率等因素的影响。面板本身属性包括但不限于面板的质量、大小、形状、刚度、振动阻尼等。优选地,可以采用厚度不均匀的面板(例如但不限于,面板中心厚度大于边缘厚度)。面板和振动板的连接方式包括但不限于胶水粘结、卡接或焊接等;面板和振动传递层的连接包括但不限于胶水连接;不同的振动频率会对应面板不同的振动方式,包括面板整体的平移以及不同程度的扭转平移,选择在特定频率范围内具有特定振动方式的面板可以改变骨传导扬声器的音质。优选地,这里所说的特定的频率范围可以是20Hz-20000Hz,更优选地,频率范围可以是400Hz-10000Hz,进一步优选地,频率范围可以是500Hz-2000Hz,再进一步优选地,频率范围可以是 800Hz-1500Hz。
优选地,以上所描述的振动传递层包裹在面板外侧,构成振动单元的一个侧面。振动传递层上不同区域对振动的传递效果不同。例如,振动传递层上存在第一接触面区域和第二接触面区域,优选地,第一接触面区域不与面板贴合,第二接触面区域与面板贴合;更优选地,振动传递层与使用者直接或间接接触时,第一接触面区域上的夹紧力小于第二接触面区域上的夹紧力(这里所说的夹紧力是指在振动单元的接触面与使用者之间的压力);进一步优选地,第一接触面区域不与使用者直接接触,第二接触面区域与使用者直接接触并传递振动。第一接触面区域的面积大小和第二接触面区域的面积大小不等,优选地,第一接触面区域的面积小于第二接触面区域的面积,更优选地,第一接触面区域存在小孔,进一步减小第一接触区域的面积;振动传递层的外侧表面(即面向使用者面)可以是平坦的,也可以是不平坦的,优选地,第一接触面区域和第二接触面区域不在同一平面上;更优选地,第二接触面区域高于第一接触面区域;进一步优选地,第二接触面区域和第一接触面区域构成台阶结构;更进一步优选地,第二接触面区与使用者接触,第一接触面区域不与使用者接触。第一接触面区域和第二接触面区域的组成材料可以是相同也可以是不同的,可以是以上描述的振动传递层材料中的一种或多种的组合。以上对于接触面上夹紧力的描述只是本发明的一种表现形式,本领域内的技术人员可以根据实际需要对以上描述的结构和方式进行修改,而这些修改仍然在本发明的保护范围之内。例如,振动传递层可以不是必须的,面板可以直接与使用者接触,面板上可以设置不同的接触面区域,不同的接触面区域拥有与以上描述的第一接触面区域和第二接触面区域类似的性质。再例如,接触面上可以设置第三接触面区域,第三接触面区域上可以设置不同于第一接触面区域和第二接触面区域的结构,并且这些结构能够在减小外壳振动、抑制漏音、改善振动单元的频率响应曲线等方面获得一定的效果。
作为一个具体的实施例,图5-A和5-B分别是面板和振动传递层相连的正视图和侧视图。其中,面板501与振动传递层503通过胶水502粘结,胶水粘结处位于面板501两端,面板501位于振动传递层503和壳体504形成的外壳内。优选地,面板501在振动传递层503上的投影为第二接触面区域,位于第二接触面区域周围的区域是第一接触面区域。
面板和振动传递层之间可以采用胶水完全粘贴,则等效地改变了面板的质量、大小、形状、刚度、振动阻尼、振动模态等属性,也使得振动传递效率更高;面板和传递层之间也可以只使用胶水部分粘结,则面板和传递层间非粘贴区域存在气体传导,可以增强低频振动的传递,改善声音中低频的效果,优选地,胶水面积占面板面积的1%-98%,更优选地,胶水面积占面板面积的5%-90%,再优选地,胶水面积占面板面积的10%-60%,更进一步优选地,胶水面积占面板面积的20%-40%;面板和传递层之间也可以不使用胶水粘结,则面板和传递层的振动传递效率不同于使用胶水粘结的情况,也会改变骨传导扬声器的音质。在具体的实施例中,改变胶水的粘贴方式能够改变骨传导扬声器中相应组件的振动方式,从而改变声音的产生和传递效果。进一步的,胶水的性质也会影响骨传导扬声器的音质,例如胶水的硬度、剪切强度、抗拉强度和延展性等。例如,优选地,胶水抗拉强度不小于1MPa,更优选地,抗拉强度不小于2MPa,进一步优选地,抗拉强度不小于5MPa;优选地,胶水的扯断伸长率是100%-500%,更优选地,扯断伸长率是200%-400%;优选地,胶水的剪切强度不小于2MPa,更优选地,剪切强度不小于3MPa;优选地,胶水的邵氏硬度在25-30,更优选地,邵氏硬度在30-50。可以使用一种胶水,也可以将不同属性的胶水组合使用。胶水与面板以及胶水与塑胶间的粘结强度也可以设置在一定范围,例如但不限于,8MPa-14MPa内。应当注意的是,实施例中的振动传递层材料不限于硅胶,也可以采用塑料、生物材料或者其它具有一定吸附性、柔性、化学性的材料。本领域的技术人员也可以根据实际需要决定选用胶水的类型和属性,以及与胶水粘结的面板材料和振动传递层材料,从一定程度上决定骨传导扬声器的音质。
图6是骨传导扬声器振动产生部分中各部件连接方式的一个具体实施例。换能装置610连接在外壳620上,面板630与振动传递层640之间通过胶水650粘结,振动传递层640的边缘与壳体620连接。在不同实施例中,可以通过改变胶水650的分布、硬度或数量,或者改变传递层640的硬度等来改变骨传导扬声器的频率响应,从而改变音质。优选地,面板和振动传递层间可以不涂抹胶水,更优选地,面板和振动传递层间可以涂满胶水,进一步优选地,面板和振动传递层间部分区域涂抹胶水,再进一步优选地,面板和振动传递层间涂抹胶水的区域面积不大于面板的面积。
本领域的技术人员可以根据实际需要决定选用胶水的数量,从而达到调节扬声器音质的效果。如图7所示,在一个实施例中,反映出不同的胶水连接方式对骨传导扬声器的频率响应的影响。三条曲线分别对应无振动传递层和胶水,振动传递层和面板间未涂满胶水,以及振动传递层和面板间涂满胶水时的频率响应。可以看出,相对于涂满胶水的情况,在振动传递层和面板间涂上少量胶水或者不涂胶水时,骨传导扬声器的谐振频率会向低频偏移。振动传递层和面板间通过胶水的粘结情况,可以反映出振动传递层对振动系统的影响。因此,改变胶水的粘结方式,可以使得骨传导扬声器的频率响应曲线有明显的变化。
本领域的工作人员可以根据实际的频率响应需求,调整和改进胶水的粘结方式、数量,从而改善系统的音质。类似的,在另一个实施例中,图8反映出不同振动传递层的硬度对振动响应曲线的影响。实线是采用较硬的传递层的骨传导扬声器所对应的振动响应曲线,虚线是采用较软的传递层的骨传导扬声器所对应的振动响应曲线。可以看出,采用不同硬度的振动传递层可以使骨传导扬声器获得不同的频率响应。振动传递层的硬度越大,传递高频振动的能力越强;振动传递层的硬度越小,则传递低频振动的能力越强。选择不同材料的振动传递层(不限于硅胶、塑料等)可以获得不同音质。例如,骨传导扬声器上使用45度硅胶做成的振动传递层可以获得较好的低音效果,使用75度硅胶做成的振动传递层可以获得较好的高音效果。这里所说的低频指的是小于500Hz的声音,中频指的是500Hz-4000Hz范围的声音,高频是指大于4000Hz的声音。
当然,以上对胶水和振动传递层的描述仅仅是一种可以影响骨传导扬声器音质的实施例,不应被视为唯一可行的实施方案。显然,对本领域的专业人员来说,在了解影响骨传导扬声器音质的基本原理后,可能在不背离这一原理的情况下,对骨传导扬声器上振动产生部分中各个器件以及连接方式进行调整和改变,但这些调整和改变仍在以上描述的保护范围之内。例如,振动传递层的材料可以是任意的,也可以是根据用户的使用习惯定制的。在振动传递层和面板间使用固化后具有不同硬度的胶水,也可能对骨传导扬声器的音质产生影响。此外,增加振动传递层的厚度可以等效为增加了组成的振动系统中的质量,也可以达到是系统的谐振频率下降的效果。优选地,传递层的厚度为0.1mm-10mm,更优选地,厚度为0.3mm-5mm,再优选地,厚度为0.5mm-3mm,进一步优选地,厚度为1mm-2mm。 传递层的拉伸强度、粘度、硬度、撕裂强度、伸长率等也会对系统的音质产生影响。传递层材料的拉伸强度是指造成传递层样品撕裂时单位范围上所需的力,优选的,拉伸强度为3.0MPa-13MPa,更优选地,拉伸强度为4.0MPa-12.5MPa,进一步优选地,拉伸强度为8.7MPa-12MPa。优选地,传递层的邵氏硬度为5-90,更优选地,邵氏硬度为10-80,进一步优选地,邵氏硬度为20-60。传递层的伸长率指传递层断裂时相对与原长度所增长的百分比,优选地,伸长率在90%-1200%之间,更优选地,伸长率在160%-700%之间,进一步优选地,伸长率在300%-900%之间。传递层的撕裂强度指在有切口的传递层上施加力量时阻碍切口或刻痕扩大的抵抗力,优选地,撕裂强度在7kN/m-70kN/m之间,更优选地,撕裂强度在11kN/m-55kN/m之间,进一步优选地,撕裂强度在17kN/m-47kN/m之间。
以上描述的面板与振动传递层组成的振动系统中,除了改变面板和传递层的物理属性,以及面板与振动传递层的粘结方式等方面,也可以从其他方面改变骨传导扬声器的性能。
一种精心设计的包含振动传递层的振动产生部分可以进一步有效地降低骨传导扬声器漏音。优选地,在振动传递层表面打孔可以降低漏音。一个实施例如图9所示,振动传递层940通胶水950与面板930粘结,振动传递层上与面板的粘结区域凸起程度高于振动传递层940上非粘结区域,在非粘合区域下方为一空腔。振动传递层940上非粘合区域和外壳920表面分别开设有引声孔960。优选地,开设部分引声孔的非粘合区域不与使用者接触。一方面,引声孔960可以有效地减小振动传递层940上非粘合区域面积,可以使得振动传递层内外空气通透,减小内外气压差,从而减少非粘合区域的振动;另一方面,引声孔960可以将外壳920内部空气振动所形成的声波引出至外壳920的外部,与外壳920振动推动壳外空气所形成的漏音声波相消,以降低漏音声波的振幅。具体的,骨传导扬声器在空间中任一点的漏音大小正比于该点处的声压P,
其中,
P=P0+P1+P2   (3)
P0是外壳(包括振动传递层上不与皮肤接触的部分)在上述点所生成的声压,P1是外壳侧面的引声孔所传递的声音在上述点的声压,P2是振动传递层上的引声孔所传递的声音在上述点的声压,P0、P1、P2分别是:
Figure PCTCN2015086907-appb-000002
Figure PCTCN2015086907-appb-000003
Figure PCTCN2015086907-appb-000004
其中,k表示波矢,ρ0表示空气密度,ω表示振动的角频率,R(x’,y’)表示声源上一点到空间中一点的距离,S0是未与人脸接触的外壳面域,S1是外壳侧面引声孔的开孔面域,S2是振动传递层上引声孔的开孔面域,W(x,y)表示单位面积的声源强度,
Figure PCTCN2015086907-appb-000005
表示不同声源在空间一点产生的声压的相位差。值得注意的是,振动传递层上存在不与皮肤接触的部分区域(例如图9中,振动传递层940上的引声孔960所处的边缘区域),所述区域受到面板和外壳振动的影响而产生振动,从而对外界辐射声音,以上所提到的外壳面域应包含此类振动传递层上不与皮肤接触的部分。空间中任一点声压(角频率为ω时)可以表示为:
Figure PCTCN2015086907-appb-000006
我们的目标是尽可能降低P的取值,从而达到降低漏音的效果。在实际使用中,通过调整引声孔的大小和数量可以调节系数A1,A2,调整引声孔的位置可以调节相位
Figure PCTCN2015086907-appb-000007
的取值。在了解面板、换能装置、振动传递层和外壳组成的振动系统会影响骨传导扬声器音质的原理后,本领域的技术人员可以根据实际需要,调整引声孔的形状、开设位置、数量、尺寸及孔上阻尼等,从而达到抑制漏音的目的。例如,引声孔可以是一个或多个,优选是有多个。对于在外壳侧面环状布设的引声孔,每个布设区域的引声孔数量可以是一个或多个,例如4-8个。引声孔的形状可以为圆形、椭圆形、矩形或长条形。一个骨传导扬声器上的引声孔可以采用形状相同的引声孔,也可以采用多种不同形状的引声孔的组合。例如,振动传递层与外壳侧面分别布设不同形状和数量的引声孔,振动传递层上的引声孔数量密度大于外壳侧面的引声孔数量密度。又例如,在振动传递层上布设付多个小孔,可以有效减小振动传递层不与皮肤接触部分的面积,从而降低由该部分产生的漏音。再例如,振动传递层/外壳侧面上的引声孔内增加阻尼材料或吸声材料,可以进一步加强抑制漏音的目的。进一步地,所述引声孔可扩展为其它便于将外壳内的空气振动传导出外壳的材料或结构。例如,使用相位调节材料(例如但不限于吸声材料)作为外壳的部分材料,使其传导出的空气振动相位与外壳 其他部分的振动相位在90°至270°范围内,从而起到声音相消的作用。关于外壳布设引声孔的描述出现于2014年1月6日提交的中国专利申请号201410005804.0中披露的,名称为“一种抑制骨传导扬声器漏音的方法及骨传导扬声器”,该专利文献全文引用在此作为参考。再进一步地,通过调节换能装置与外壳之间的连接方式,可以改变外壳其他部分振动的相位,也可使其与引声孔传导出的声音的相位差在90°至270°范围内,从而起到声音相消的作用。例如,换能装置与外壳间采用弹性连接件,对于连接件的材料,例如但不限于,钢材(例如但不限于不锈钢、碳素钢等)、轻质合金(例如但不限于铝合金、铍铜、镁合金、钛合金等)、塑胶(例如但不限于高分子聚乙烯、吹塑尼龙、工程塑料等),也可以是能达到同样性能的其他单一或复合材料。对于复合材料,例如但不限于玻璃纤维、碳纤维、硼纤维、石墨纤维、石墨烯纤维、碳化硅纤维或芳纶纤维等增强材料。构成连接件的材料也可以是其它有机和/或无机材料的复合物,例如玻璃纤维增强不饱和聚酯、环氧树脂或酚醛树脂基体组成的各类玻璃钢。连接件的厚度不低于0.005mm,优选地,厚度为0.005mm-3mm,更优选地,厚度为0.01mm-2mm,再优选地,厚度为0.01mm-1mm,进一步优选地,厚度为0.02mm-0.5mm。连接件的结构可以设定成环状,优选地,包含至少一个圆环,优选地,包含至少两个圆环,可以是同心圆环,也可以是非同心圆环,圆环间通过至少两个支杆相连,支杆从外环向内环中心辐射,进一步优选地,包含至少一个椭圆圆环,进一步优选地,包含至少两个椭圆圆环,不同的椭圆圆环有不同的曲率半径,圆环之间通过支杆相连,更进一步优选地,包括至少一个方形环。连接件结构也可以设定成片状,优选地,在片状上设置镂空图案,更优选地,镂空图案的面积不小于连接件非镂空部分的面积。值得注意的是,以上描述中连接件的材料、厚度、结构可以以任意方式组合成不同的连接件。例如,环状连接件可以具有不同的厚度分布,优选地,支杆厚度等于圆环厚度,进一步优选地,支杆厚度大于圆环厚度,进一步优选地,内环的厚度大于外环的厚度。
以上对吸声孔的描述是本发明的一个实施例,并不构成对骨传导扬声器在改善音质、抑制漏音等方面的限制,本领域的发明人可以通过对以上描述的实施方式进行各种修正和改进,这些修正和改进仍然在以上所描述的保护范围之内。例如,优选地,引声孔只开设在振动传递层上,更优选地,引声孔只开始在振动传 递层不与面板重合的区域,进一步优选地,引声孔开口于不与使用者接触的区域,再优选地,引声孔在振动单元内侧开口于一空腔。再例如,引声孔也可以开设在外壳底壁上,开设在底壁的引声孔数量可以为一个,设置在底壁中心,也可以是多个,设置成围绕底壁中心呈环状周向均匀分布。再例如,引声孔可以开设在外壳侧壁上,开设在外壳侧壁的引声孔数量可以为一个,也可以为多个,呈周向均匀分布。
以上对骨传导扬声器的振动传递描述仅仅是具体的示例,不应被视为是唯一可行的实施方案。显然,对于本领域的专业人员来说,在了解骨传导扬声器的基本原理后,可能在不背离这一原理的情况下,对骨传导扬声器的振动描述进行形式和细节上的各种修正和改变,但是这些修正和改变仍在以上描述的范围之内。例如,采用植入式的骨传导助听器可以直接贴紧人体的骨骼,将声音振动直接传递给骨骼,而不经过皮肤或者皮下组织,这样可以一定程度上避免由皮肤或皮下组织在振动传递过程中对频率响应产生的衰减和改变。又如,在一些应用中,传导部位可以是牙齿,即骨传导装置可以贴合在牙齿上,将声音振动通过牙齿传递给骨骼和周边组织,也可以在一定程度上减少皮肤在振动过程中对频率响应的影响。以上对骨传导应用场景的介绍只是起到描述性的目的,本领域的技术人员在了解骨传导的基本原理后,可以将骨传导技术应用在不同的场景,这些场景中声音的传递可以是对以上描述的传递途径的部分改变,这些改变仍然在以上描述的保护范围内。
在步骤104,人体感受到的音质也和人体的听力系统有关,不同人群可能对不同频率范围的声音的敏感程度不同。在一些实施例中,人体的对不同频率的声音的敏感程度可以通过等响曲线来反映。某些人群对声音信号中特定频率范围内的声音不敏感,则表现出在等响曲线上对应频率的响应强度低于其他频率内的响应强度。例如,某些人群对高频声音信号不敏感,即在等响曲线上表现为在相应高频信号的强度响应低于其它频率处的强度响应;某些人群对中低频声音信号不敏感,在等响曲线上则表现为在相应中低频信号的强度响应低于其它频率处的强度响应。这里所说的低频指的是小于500Hz的声音,中频指的是500Hz-4000Hz范围的声音,高频是指大于4000Hz的声音。
当然,声音的低频和高频可以是相对的,针对某些特殊人群的听力系统对不 同频率范围内声音的不同响应,选择性地改变或调整骨传导扬声器产生的声音强度在相应频率范围内的分布,能够使得对应人群获得不同的声音体验。值得注意的是,以上讨论的声音信号中的高频、中频或低频部分可以是对正常人耳的听力范围内相应部分的描述,也可以是扬声器所要表达的自然界的声音范围内相应部分的描述。
在一个实施例中,某些人群的听力系统的等响曲线如图10中曲线3所示,A点频率附近出现峰值,表明该人群对A点附近频率的声音的敏感程度高于其他频率点(如图中B点)。在设计骨传导扬声器时,可以对人耳听力系统中不敏感的频率部分进行补偿。图中曲线4是一种针对听力曲线3进行相应补偿的骨传导扬声器频率响应曲线,在B点频率附近存在谐振峰。结合人耳接收声音时的等响曲线3和骨传导扬声器产生的频率响应曲线4,使最终人体听到的声音更为理想,声音感受更为宽广。作为一个具体的例子,A点的频率可以选在500Hz左右,B点的频率可以选在2000Hz左右。需要注意的是,以上对骨传导扬声器进行相应频率补偿的示例,不应被视为是唯一可行的实施方案,本领域的技术人员在了解其原理后,可以针对实际应用场景设定合适的峰值取值和补偿方式。
显然,对于本领域的专业人员来说,在了解相关基本原理后,可能在不背离这一原理的情况下,对实施骨传导扬声器的具体方式与选择进行形式和细节上的各种修正和改变,但是这些修正和改变仍在以上描述的范围之内。例如,骨传导助听器同样适用于以上骨传导扬声器进行频率响应补偿的方法,即可以针对听力受损的人群的听力响应曲线,设计对应的一种或几种助听器的频率响应特征来弥补其可能表现出来的对特定频率范围的不敏感性,在实际应用中,骨传导助听器可以智能选择或者根据用户的输入信息进行频率响应的调整。例如,系统自动获得或者用户输入自身的等响曲线,并根据该曲线调整骨传导扬声器的频率响应,对特定频率的声音进行补偿。在一个实施例中,针对等响曲线上响度比较低的点(例如,曲线上的极小点),可以增大该点对应的频率附近骨传导扬声器的频率响应幅度,从而获得理想的音质。类似的,针对等响曲线上响度比较高的点(例如,曲线上的极大点),可以减小该点对应的频率附近骨传导扬声器的频率响应幅度。进一步的,以上描述的频率响应曲线或者人耳的等响曲线上的极大点或极小点可以有多个,相应的补偿曲线(频率响应曲线)也可以对应有多个极大值或 极小值。对本领域的技术人员来说,以上对人体听力敏感程度的描述中,“等响曲线”可以用同类词语代替,例如,“等响度曲线”,“听力响应曲线”等。事实上,人体对听力敏感程度也可以看作是一种声音的频率响应,在本发明中各个实施例的描述中,结合人体对声音的敏感程度和骨传导扬声器的频率响应,最终体现出骨传导扬声器的音质。
在正常情况下,骨传导扬声器的音质受到扬声器本身各组成部分的物理性质、各组成部分间振动传递关系、扬声器与外界的振动传递关系以及振动传递系统在传递振动时的效率等多方面的影响因素。骨传导扬声器本身的各组件部分包括产生振动的组件(例如但不限于换能装置),固定扬声器的组件(例如但不限于耳机架/耳机挂带),传递振动的组件(例如但不限于面板、振动传递层等)。各组成部分间振动传递关系以及扬声器与外界的振动传递关系由扬声器与使用者间的接触方式(例如但不限于夹紧力、接触面积、接触形状等)决定。如图11所示,一种骨传导扬声器的振动产生和传递系统的的等效示意图,包括一种骨传导扬声器的等效系统包括固定端1101,传感终端1102,振动单元1103,以及换能装置1104。其中,固定端1101通过传递关系K1(图4中k4)与振动单元1103相连,传感终端1102通过传递关系K2(图4中R3,k3)与振动单元1103相连,振动单元1103通过传递关系K3(图4中R4,k5)与换能装置1104相连。
这里所说的振动单元是面板和换能装置组成的振动体,传递关系K1,K2和K3是骨传导扬声器等效系统中相应部分之间作用关系的描述(将在下文中详细描述)。等效系统的振动方程可以表示为:
m3x3″+R3x3′-R4x4′+(k3+k4)x3+k5(x3-x4)=f3   (8)
m4x4″+R4x4″-k5(x3-x4)=f4   (9)
其中,m3是振动单元1103的等效质量,m4是换能装置1104的等效质量,x3是振动单元1103的等效位移,x4是换能装置1104的等效位移,k3是传感终端1102和振动单元1103之间的等效弹性系数,k4是固定端1101和振动单元1103之间的等效弹性系数,k5是换能装置1104和振动单元1103之间的等效弹性系数,R3是传感终端1102和振动单元1103之间的等效阻尼,R4是换能装置1104和振动单元1103之间的等效阻尼,f3和f4分别是振动单元1103和换能装置1104之间的相互作用力。系统中振动单元的等效振幅A3为:
Figure PCTCN2015086907-appb-000008
其中,f0表示单位驱动力,ω表示振动频率。由此可见,影响骨传导扬声器频率响应的因素包括振动的产生部分(例如但不限于振动单元、换能装置、外壳以及相互连接方式,如公式(10)中m3,m4,k5,R4等),振动传递部分(例如但不限于,与皮肤接触方式,耳机架/耳机挂带的属性,如公式(10)中k3,k4,R3等)。改变骨传导扬声器各部分的结构和各组件之间连接的参数,例如,改变夹紧力的大小相当于改变k4的大小、改变胶水的粘结方式相当于改变R4和k5的大小、改变相关材料的硬度、弹性、阻尼等相当于改变k3和R3的大小,这些都可以改变骨传导扬声器的频率响应和音质。
在一个具体的实施例中,固定端1101可以是骨传导扬声器在振动过程中位置相对固定的点或者位置相对固定的区域,这些点或区域可以看做是骨传导扬声器在振动过程中的固定端,固定端可以是由特定的部件组成,也可以是根据骨传导扬声器整体结构确定的位置。例如,可以通过特定的装置将骨传导扬声器悬挂、粘接或吸附在人耳附近,也可以设计骨传导扬声器的结构和外形使得骨传导部位能够贴住人体皮肤。
传感终端1102是人体接收声音信号的听力系统,振动单元1103是骨传导扬声器上用于保护、支撑、连接换能装置的部分,包含将振动传递给使用者的振动传递层或者面板等与使用者直接或间接接触的部分,以及保护、支撑其他振动产生元件的外壳等。换能装置1104是声音振动的产生装置,可以是以上讨论的换能装置中一种或几种的组合。
传递关系K1连接固定端1101和振动单元1103,表示骨传导扬声器在工作过程中振动产生部分和固定端的振动传递关系,K1取决于骨传导装置的形状和构造。例如,骨传导扬声器可以以U型耳机架/耳机挂带形式固定在人体头部,也可以装置在头盔、消防面罩或者其他特殊用途的面具、眼镜等设备上使用,不同的骨传导扬声器的形状和构造都会对振动传递关系K1产生影响,进一步地,扬声器的构造还包括骨传导扬声器不同部分的组成材质、质量等物理性能。传递关系K2连接传感终端402和振动单元1103。
K2取决于传递系统的组成,所述传递系统包括但不限于将声音振动通过使用者组织传递给听力系统。例如,声音通过皮肤、皮下组织、骨骼等传递给听力 系统时,不同人体组织的物理性质以及相互连接关系都会对K2产生影响。进一步地,振动单元1103和人体组织接触,在不同实施例中,振动单元上的接触面可以是振动传递层或者是面板的一个侧面,接触面的表面形状、大小、与人体组织间的相互作用力等都会影响传递系数K2。
振动单元1103和换能装置1104的传递关系K3是由骨传导扬声器振动产生装置内部的连接属性决定,换能装置和振动单元通过刚性或弹性方式相连,或者改变连接件在换能装置和振动单元间的相对位置,都会改变换能装置将振动传递给振动单元,尤其是面板的传递效率,从而影响传递关系K3。
在骨传导扬声器的使用过程中,声音的产生和传递过程都会影响到最终人体感受到的音质。例如以上提到的固定端、人体感觉终端、振动单元、换能装置以及传递关系K1、K2和K3等,都可能对骨传导扬声器的音效质量产生影响。需要注意的是,此处K1、K2、K3只是对振动传递过程中涉及到不同装置部分或系统连接方式的一种表示,可以包含但不限于物理连接方式、力的传导方式、声音的传递效率等。
以上对骨传导扬声器等效系统的描述仅仅是具体的示例,不应被视为是唯一可行的实施方案。显然,对于本领域的专业人员来说,在了解骨传导扬声器的基本原理后,可能在不背离这一原理的情况下,对影响骨传导扬声器振动传递的具体方式与步骤进行形式和细节上的各种修正和改变,但是这些修正和改变仍在以上描述的范围之内。例如,以上描述的K1、K2、K3可以是简单的振动或者力学传递方式,也可以包含复杂的非线性传递系统,传递关系可以是由各个部分直接连接形成,也可以是通过非接触式方式进行传递。
在一个具体的实施例中,骨传导扬声器的结构如图12所示,包括耳机架/耳机挂带501、振动单元1202和换能装置1203。振动单元1202包含接触面1202a,外壳1202b,换能装置1203位于振动单元1202内部并与之连接。优选地,振动单元502是包括以上描述的面板和振动传递层,接触面1202a是振动单元1202与使用者接触的表面,优选地,是振动传递层的外侧表面。
在使用过程中,耳机架/耳机挂带1201将骨传导扬声器固定在使用者的特定部位(例如,头部),为振动单元1202和使用者之间提供夹紧力。接触面1202a和换能装置1203连接,并与使用者保持接触,将声音通过振动传递给使用者。 图11中所示的固定端1101可以近似选择在骨传导扬声器工作时位置相对固定的点。如果骨传导扬声器呈对称结构,并假设工作过程中两边换能装置提供的驱动力大小相等,方向相反,那么可以选择耳机架/耳机挂带上中心点位置为等效固定端,例如1204所示位置;如果骨传导扬声器能够提供立体声音,即两处换能装置提供的即时驱动力大小不等,或者骨传导扬声器在结构上存在非对称性,则可以选取耳机架/耳机挂带上或耳机架/耳机挂带以外其它点或者区域作为等效固定端。这里所说的固定端可以看作是骨传导扬声器在产生振动的过程中位置相对固定的等效端。固定端1101和振动单元1202之间通过耳机架/耳机挂带1201相连,传递关系K1与耳机架/耳机挂带1201以及耳机架/耳机挂带1201提供的夹紧力有关,取决于耳机架/耳机挂带1201的物理属性。优选地,改变耳机架/耳机挂带提供的夹紧力、耳机架/耳机挂带的质量等物理量可以改变骨传导扬声器的声音传递效率,影响系统在特定频率范围内的频率响应。例如,采用强度较高的材料做成的耳机架/耳机挂带与采用强度较低的材料做成的耳机架/耳机挂带会提供不同的夹紧力,或者改变耳机架/耳机挂带的结构,在耳机架/耳机挂带上加入可以提供弹性力的辅助装置也可以改变夹紧力,从而影响声音的传递效率;佩戴时耳机架/耳机挂带尺寸的变化也会影响夹紧力的大小,夹紧力随着耳机架/耳机挂带两端振动单元间距离的增大而增大。
为获得满足特定夹紧力条件的耳机架/耳机挂带,本领域的普通技术人员可以根据实际情况选用具有不同刚性、不同模量的材料做成耳机架/耳机挂带或者调整耳机架/耳机挂带的尺寸和大小。需要注意的是,耳机架/耳机挂带的夹紧力不但会影响声音的传递效率,也会影响用户在低音频率范围内的声音感受。这里所说的夹紧力是接触面与使用者之间的压力,优选地,夹紧在0.1N-5N之间,更优选地,夹紧力在0.2N-4N之间,进一步优选地,夹紧力在0.2N-3N之间,再优选地,夹紧力在0.2N-1.5N之间,更进一步优选地,夹紧力在0.3N-1.5N之间。
耳机架/耳机挂带的材料可以决定夹紧力的大小。优选地,耳机架/耳机挂带的材料可以选用具有一定硬度的塑料。例如但不限于丙烯腈-丁二烯-苯乙烯共聚物(Acrylonitrile butadiene styrene,ABS)、聚苯乙烯(Polystyrene,PS)、高冲击聚苯乙烯(High impact polystyrene,HIPS)、聚丙烯(Polypropylene,PP)、聚对苯二甲酸乙二酯(Polyethylene terephthalate,PET)、聚酯(Polyester,PES)、 聚碳酸酯(Polycarbonate,PC)、聚酰胺(Polyamides,PA)、聚氯乙烯(Polyvinyl chloride,PVC)、聚氨酯(Polyurethanes,PU)、聚二氯乙烯(Polyvinylidene chloride)、聚乙烯(Polyethylene,PE)、聚甲基丙烯酸甲酯(Polymethyl methacrylate,PMMA)、聚醚醚酮(Polyetheretherketone,PEEK)、酚醛树脂(Phenolics,PF)、尿素甲醛树脂(Urea-formaldehyde,UF)、三聚氰胺-甲醛树脂(Melamine formaldehyde,MF)等。更优选地,构成耳机架/耳机挂带的材料可以包括一些些金属、合金(如铝合金、铬钼钢、钪合金、镁合金、钛合金、镁锂合金、镍合金等)或复合材料等。进一步优选地,耳机架/耳机挂带的材料可以选用具有记忆功能的材料。记忆材料包括但不限于记忆合金材料、高分子记忆材料、无机非记忆材料等。记忆合金包括但不限于钛镍铜记忆合金、钛镍铁记忆合金、钛镍铬记忆合金、铜镍系记忆合金、铜铝系记忆合金、铜锌系记忆合金、铁系记忆合金等。高分子记忆材料包括但不限于聚降冰片烯、反式聚异戊二烯、苯乙烯-丁二烯共聚物、交联聚乙烯、聚氨酯、聚内酯、含氟高聚物、聚酰胺、交联聚烯烃、聚酯等。无机非记忆材料包括但不限于记忆陶瓷、记忆玻璃、石榴石、云母等。进一步优选地,耳机架/耳机挂带的记忆材料具有选定的记忆温度,优选地,记忆温度可以选为不低于10℃,更优选地,记忆温度选为不低于40℃,进一步优选地,记忆温度选为不低于60℃,再优选地,记忆温度选为不低于100℃。记忆材料占耳机架/耳机挂带材料的比例不少于5%,优选地,该比例不少于7%,更优选地,该比例不少于15%,进一步优选地,该比例不少于30%,再优选地,该比例不少于50%。这里所说的耳机架/耳机挂带指的是使骨传导扬声器产生夹紧力的后挂式结构。记忆材料处于耳机架/耳机挂带不同的位置,优选地,记忆材料处于耳机架/耳机挂带上应力集中的位置,例如但不限于耳机架/耳机挂带与振动单元的连接部位,耳机架/耳机挂带的对称中心附近或者耳机架/耳机挂带内线路分布密集的位置等。在一个实施例中,采用记忆合金做成耳机架/耳机挂带,对于大小不同的使用者头部,其提供的夹紧力差异小,使得佩戴一致性更高,受夹紧力影响的音质一致性也更高。在另一个实施例中,采用记忆合金制成的耳机架/耳机后挂具有良好的弹性,在经受大的形变后能够正常地恢复到原始形状,而且其在经历长时间形变后仍可以稳定地保持夹紧力的大小。在另一个实施例中,采用记忆合金制成的耳机架/耳机后挂重量轻,能够提供自由度较大的形变,使得其能够更好地贴合 使用者。
夹紧力提供骨传导扬声器振动产生部分的接触面与使用者之间的压力。图13-A和图13-B为一个实施例中接触面与使用者之间不同压力下的骨传导扬声器的振动响应曲线。在振动传递过程中,夹紧力低于一定阈值后不利于中频和高频振动的传递。如(a)所示,对于同一振动源(声源),当夹紧力为0.1N时,佩戴者接收到的振动(声音)中,中频和高频部分明显少于夹紧力为0.2N和1.5N时所接受到的振动(声音),即在音质上,夹紧力在0.1N时,中频和高频部分表现弱于夹紧力在0.2N-1.5N时的表现。类似的,在振动传递过程中,夹紧力大于一定阈值后不利于低频振动的传递。如(b)所示,对于同一振动源(声源),当夹紧力为5.0N时,佩戴者接受到的振动(声音)的低频部分明显少于夹紧力为0.2N和1.5N时所接受到的振动(声音),即在音质上,夹紧力在5.0N时,低频部分表现弱于夹紧力在0.2N-1.5N时的表现。
在具体的实施例中,通过选择合适的耳机架/耳机挂带材料和设定适当的耳机架/耳机挂带结果,使得接触面与使用者之间的压力保持在适当的范围内。接触面与使用者之间的压力大于某一阈值,优选地,该阈值为0.1N,更优选地,该阈值为0.2N,进一步优选地,该阈值为0.3N,再优选地,该阈值为0.5N。接触面与使用者之间的压力小于另一阈值,优选地,该阈值为5.0N,更优选地,该阈值为4N,进一步优选地,该阈值为3N,再优选地,该阈值为1.5N。本领域的技术人员在了解骨传导扬声器的夹紧力改变骨传导系统频率响应的基本原理后,可以在此基础上,通过对耳机架/耳机挂带材料、结构的修改和替换,从而设定满足不同音质要求的夹紧力范围,而这些修改和替换仍然在本说明书的保护范围内。
骨传导扬声器的夹紧力可以通过特定的设备或方法进行测量。图14-A和图14-B是一种测量骨传导扬声器夹紧力的具体实施例。A点和B点是本实施例中骨传导扬声器耳机架/耳机挂带上靠近振动单元的两点。在测试过程中,固定A点或B点,另一点连接测力计,当A点和B点之间的距离L在125mm~155mm之间时,测得夹紧力。图14-C是一种骨传导扬声器处于不同夹紧力状态下的频率振动响应曲线,三条曲线对应的夹紧力分别为0N、0.61N和1.05N。图14-C表明随着骨传导扬声器夹紧力的增加,人脸对骨传导扬声器的振动单元(例如, 面板、与面板相连的振动传递层等)产生的负载会随之增大,振动面的振动会被削弱。夹紧力过小或过大会引起骨传导扬声器在振动过程中频率响应较大的不平坦(如夹紧力为0N和1.05N的曲线上500Hz-800Hz范围内)。若夹紧力过大(如夹紧力为1.05N时对应的曲线),会使佩戴者感受到不适,同时扬声器的振动变弱,声音变小;若夹紧力过小(如夹紧力为0N时对应的曲线),则佩戴者会感受到较为明显的振动感。
需要注意的是,以上对改变骨传导扬声器夹紧力方法的描述仅仅是具体的示例,不应被视为是唯一可行的实施方案。显然,对于本领域的专业人员来说,在了解骨传导扬声器的基本原理后,可能在不背离这一原理的情况下,针对不同形状和结构的骨传导扬声器,对改变骨传导扬声器夹紧力的方式进行改变,但这些改变仍在以上描述的范围之内。例如,骨传导扬声器架可以使用具有记忆功能的材料(例如记忆金属),能够根据人的头型调整张开的弧度,并且具备良好的弹性,能够最大限度的提高佩戴的舒适度,调整夹紧力大小。进一步的,在骨传导扬声器架上可以安装用于调节夹紧力的弹性绷带1501,如图15所示,在耳机架/耳机挂带偏离平衡位置进行收缩或者拉开的过程中,弹性绷带能够提供额外的回复力。
传感终端1102和振动单元1103间的传递关系K2也会影响到骨传导系统的频率响应。人耳听到的声音,取决于耳蜗接收到的能量,该能量受到传递过程中不同物理量的影响,可由以下公式表示:
P=∫∫Sα·f(a,R)·L·ds   (11)
其中,P正比于耳蜗接收到的能量,S是接触面502a与人脸接触的面积,α是一个量纲转换的系数,f(a,R)表示接触面上一点的加速度a和接触面与皮肤接触的紧密程度R对能量传递的影响,L是任一接触点上机械波传递的阻抗,即单位面积的传递阻抗。
由(11)可知,声音的传递受到传递阻抗L的影响,骨传导系统的振动传递效率与L有关,骨传导系统的频响曲线为接触面上各点的频响曲线的叠加。不失一般性地,在描述骨传导系统接触面结构时,术语“接触面”可为至少部分直接或间接与使用者进行接触的表面,也可为至少部分直接或间接与使用者进行接触的,具有一定厚度的“接触层”。改变影响阻抗的因素包括能量传递面积的大小、 形状、粗糙程度、受力大小或受力分布等。例如,通过改变振动单元1202的结构和外形来改变声音的传递效果,进而改变骨传导扬声器的音质。仅仅是作为示例,改变振动单元1202接触面1202a的相应物理特性,可以达到改变声音传递的效果。
一种精心设计的接触面表面设有梯度结构,所述梯度结构指的是接触面表面存在高度变化的区域。梯度结构可以是接触面外侧(与使用者贴合的一侧)存在的凸起/凹下或者台阶状等结构,也可以是接触面内侧(背向使用者的一侧)存在的凸起/凹下或者台阶状等结构。一种骨传导扬声器的振动单元实施例如图16-A所示,接触面1601(接触面外侧)存在凸起或凹下(未在图16-A中显示)部分。在骨传导扬声器工作的过程中,凸起或凹下部分与人脸皮肤接触,改变接触面1601上不同位置与人脸接触时的压力。凸起部分与人脸接触更紧密,与之接触的皮肤和皮下组织受到比其它部分更大的压力;相应的,与下凹部分接触的皮肤和皮下组织受到比其它部分更小的压力。例如,图16-A中的接触面1601上存在A,B,C三点,分别位于接触面1601非凸起部分,凸起部分边缘和凸起部分上。在与皮肤接触的过程中,A,B,C三点处皮肤所受的夹紧力大小FC>FA>FB。在一些实施例中,B点的夹紧力大小为0,即B点不与皮肤接触。人脸皮肤与皮下组织在不同压力下表现出对声音的阻抗和响应不同。压力大的部位阻抗率小,对声波有偏向高通的滤波特性,压力小的部位阻抗率大,有偏向低通的滤波特性。接触面1601各部位的阻抗特性L不同,根据公式(11),不同部位对声音传递时频率的响应不同,声音通过全接触面传递的效果相当于各部位声音传递的总和,最终声音传递到大脑时形成平滑的频率响应曲线,避免了在低频或高频有过高的谐振峰的出现,从而获得整个音频带宽内理想的频率响应。同样的,接触面1601的材质和厚度也会对声音的传递产生影响,从而影响音质效果。例如,接触面材质柔软时,低频范围的声波传递效果好于高频范围的声波传递,接触面材质较硬时,高频范围的声波传递效果好于低频范围的声波传递。
图16-B显示含有不同接触面的骨传导扬声器的频率响应。虚线对应接触面上存在凸起结构的骨传导扬声器的频率响应,实线对应接触面上不存在凸起结构的骨传导扬声器的频率响应。在中低频范围内,无凸起结构的振动相对于存在凸起结构的振动有明显的削弱,在频率响应曲线上形成一个“深坑”,表现为不太理 想的频率响应,从而影响骨传导扬声器的音质。
以上对图16-B的描述仅仅是针对具体示例的解释,对于本领域的专业人员来说,在了解影响骨传导扬声器频率响应的基本原理后,可以对骨传导扬声器的结构、组件进行各种修正和改变,从而获得不同的频率响应效果。
需要注意的是,对于本技术领域的普通技术人员来说,接触面1601的形状和结构不限于以上描述,也可以是满足其它特定的要求。例如,接触面上的凸起或凹下部分可以分布在接触面的边缘,也可以分布在接触面的中间部位。接触面可能包含一个或多个凸起或凹下部分,凸起和凹下部分可以同时分布在接触面上。接触面上的凸起或凹下部分的材料可以是和接触面材料不同的其它材料,可以是柔性的、钢性的、或者更适合产生特定压力梯度的材料;可以是记忆性材料,也可以是非记忆性材料;可以是单种性质的材料,也可以是复合材料。接触面的凸起或凹下部分的结构图形包括但不限于轴对称图形、中心对称图形、旋转对称图形、非对称图形等。接触面的凸起或凹下部分结构图形可以是一种图形,也可以是两种或者两种以上组合的图形。接触面表面包括但不限于于具有一定的光滑度、粗糙度、波纹度等。接触面的凸起或凹下部分的位置分布包括但不限于轴对称、中心对称、旋转对称、非对称分布等。接触面的凸起或凹下部分可以是在接触面边缘,也可以分布在接触面内部。
图17中1704-1709是以上描述的接触面结构的具体实施例。
其中,图中1704所示是接触面上包含多个形状结构相似的凸起的示例。凸起可以用与面板其它部分相同或类似的材料构成,也可以用与其它部分不同的材料。特别的,凸起可以由记忆材料和振动传递层材料共同组成,其中记忆材料的比例不少于10%,优选地,凸起中记忆材料的比例不少于50%。单个凸起的面积占总面积的1%-80%,优选的,占总面积的比例为5%-70%,更优选地,占总面积的比例为8%-40%。所有凸起的面积总合占总面积的5%-80%,优选地,该比例为10%-60%。凸起可以有至少1个,优选地,凸起为1个,更优选地,凸起有2个,进一步优选地,凸起至少有5个。凸起的形状可以是圆形、椭圆形、三角形、长方形、梯形、不规则多边形、或者其他类似图形,其中凸起部分的结构可以是对称或非对称的,凸起部分的位置分布也可以是对称或者非对称的,凸起部分的数量可以是一个或者多个,凸起部分的高度可以是相同也可以是不相同 的,凸起的高度和分布可以构成一定的梯度。
图中1705所示是一种接触面凸起部分的结构是两种以上图形组合的示例,其中不同图形的凸起的数量可以是一个或者多个。两种以上的凸起形状可以是圆形、椭圆形、三角形、长方形、梯形、不规则多边形、或者其他类似图形中的任意两种或两种以上的组合。凸起的材料、数量、面积、对称性等与图1704中类似。
图中1706是一种接触面凸起部分分布在接触面边缘和内部的示例,其中凸起部分的数量不限于图中所示。位于接触面边缘的凸起数量占所有凸起数量的1%-80%,优选地,该比例为5%-70%,更优选地,该比例为10%-50%,进一步优选地,该比例为30%-40%。凸起的材料、数量、面积、形状、对称性等与图1704中类似。
图中1707是一种接触面凹下部分的结构图形,凹下部分的结构可以是对称或非对称的,凹下部分的位置分布也可以是对称或非对称的,凹下部分的数量可以是一个或多个,凹下部分的形状可以是相同或不同的,凹下的部分可以是镂空的。单个凹下的面积占总面积的1%-80%,优选的,占总面积的比例为5%-70%,更优选地,占总面积的比例为8%-40%。所有凹下的面积总合占总面积的5%-80%,优选地,该比例为10%-60%。凹下可以有至少1个,优选地,凹下为1个,更优选地,凹下有2个,进一步优选地,凹下至少有5个。凹下的形状可以是圆形、椭圆形、三角形、长方形、梯形、不规则多边形、或者其他类似图形。
图中1708是一种接触面既存在凸起部分又存在凹下部分的示例,凸起和凹下部分的数量不限于一个或多个。凹下的数量和凸起的数量的比例为0.1-100,优选地,该比例为1-80,更优选地,该比例为5-60,进一步优选地,该比例为10-20。单个凸起/凹下的材料、面积、形状、对称性等与图1704中类似。
图中1709是一种接触面具有一定波纹度的示例。波纹由两个以上的凸起/凹下或者两个的组合排列而成,优选地,相邻凸起/凹下间的距离相等,更优选地,凸起/凹下间的距离呈等差排列。
图中1710是一种接触面存在一块较大面积的凸起的示例。凸起的面积占接触面总面积的30%-80%。优选地,凸起的一部分边缘和接触面的一部分边缘基本相互接触。
图中1711是一种接触面存在第一个面积较大的凸起,在第一个凸起上存在第二个面积较小的凸起。较大面积的凸起占接触面总面积的30%-80%,较小面积的凸起占接触面总面积的1%-30%,优选地,该比例为5%-20%。较小面积占较大面积的5%-80%,优选地,该比例为10%-30%。
以上对骨传导扬声器接触面结构的描述仅仅是具体的示例,不应被视为是唯一可行的实施方案。显然,对于本领域的专业人员来说,在了解骨传导扬声器接触面结构会影响骨传导扬声器音质的基本原理后,可能在不背离这一原理的情况下,对实施骨传导扬声器接触面的具体方式形式和细节上的各种修正和改变,但是这些修正和改变仍在以上描述的范围之内。例如,凸起或凹下的数量不限于图17中所显示的,也可以对上述描述的凸起、凹下或者接触面表面图案进行一定程度的修改,这些修改仍然在以上描述的保护范围内。而且,骨传导扬声器至少含有的一个或多个振动单元的接触面可以使用上述相同或者不同的形状和材料,不同接触面上传递的振动效果也会随着接触面性质的不同而产生差异,最终获得不同的音质效果。
由图11可知,骨传导扬声器振动系统中换能装置1104的振动方式,以及与振动单元1103相连的方式K3也会对系统的音效产生影响。优选地,换能装置包含一个振动板、一个传振片、一组线圈和一个磁路系统,更优选地,换能装置包含由多个振动板和传振片组成的复合振动装置。系统产生声音的频率响应受到振动板和传振片的物理性质的影响,选择特定的振动板和传振片的大小、形状、材质、厚度以及振动传递方式等,可以产生满足实际要求的音效。
一个复合振动装置的实施例如图18-A和图18-B所示,包括:传振片1801和振动板1802组成的复合振动部件,所述传振片1801设置为一第一圆环体1813,并在该第一圆环体内设置有向中心辐辏的三个第一支杆1814,其辐辏中心位置与所述振动板1802的中心固定。所述振动板1802的中心为配合所述辐辏中心及第一支杆的凹槽1820。所述振动板1802设置具有与所述传振片1801半径不同的第二圆环体1821,以及与所述第一支杆1814不同粗厚的三个第二支杆1822,在装配时所述第一支杆1814和所述第二支杆1822错开设置,可以但不限于呈60度角。
上述第一支杆和第二支杆都可以采用直杆或者设置成其它符合特定要求的 形状,支杆数目可以设置为两个以上,采用对称或非对称排布,以满足经济、实用效果等方面的要求。所述传振片1801具有薄的厚度并且可增加弹力,传振片1801是卡在振动板1802的凹槽1820中心的。粘接在振动板1802的第二圆环体1821下侧设置有音圈1808。复合振动装置还包括底板1812,在该底板1812上设置有环形磁体1810,在该环形磁体1810内同心设置有内磁体1811;在所述内磁体1811的顶面设置有内导磁板1809,同时在所述环形磁体1810上设置有环形导磁板1807,在所述环形导磁板1807上方固定设置有垫圈1806,所述传振片1801的第一圆环体1813与该垫圈1806相固定连接。该整个复合振动装置通过一面板1830与外部连接,所述面板1830固连所述传振片1801的辐辏中心位置,并卡合固定在传振片1801和振动板1802的中心位置。
利用振动板和传振片组成的复合振动装置,得到如图19所示的频率响应,由二重的复合振动产生了两个谐振峰,通过调节两个部件的尺寸和材料等参数,让谐振峰发生移动,低频的谐振峰向越低频移动,高频的谐振峰向越高频移动,优选地,振动板的劲度系数大于传振片的劲度系数。最终可以拟合成图19所示的虚线的频率响应曲线,也就是理想状态下的平坦的频率响应,这些谐振峰的范围可以设置在人耳可听到的声音的频率范围之内,也可以不在其中,优选地,两个谐振峰都不在人耳可听到的声音的频率范围内;更优选地,一个谐振峰在人耳可听到的声音的频率范围之内,另一个谐振峰在人耳可听到的声音的频率范围之外;更优选的,两个谐振峰都在人耳可听到的声音的频率范围内;以及更进一步优选地,两个谐振峰都在人耳可听到的声音的频率范围内,且其峰值频率在80Hz-18000Hz之间;更进一步优选地,两个谐振峰都在人耳可听到的声音的频率范围内,且其峰值在200Hz-15000Hz之间;更进一步优选地,两个谐振峰都在人耳可到的声音的频率范围内,且其峰值在500Hz-12000Hz之间;更进一步优选地,两个谐振峰都在人耳可到的声音的频率范围内,且其峰值在800Hz-11000Hz之间。谐振峰的峰值的频率最好能有一定差距,例如,两个谐振峰的峰值相差至少500Hz;优选地,两个谐振峰的峰值相差至少1000Hz;更进一步优选地,两个谐振峰的峰值相差至少2000Hz;再更进一步优选地,两个谐振峰的峰值相差至少5000Hz。为了达到比较好的效果,两个谐振峰可以都在人耳可听范围之内,并且谐振峰的峰值频率相差至少500Hz;优选地,两个谐振峰 可以都在人耳可听范围之内,两个谐振峰的峰值相差至少1000Hz;再进一步优选地,两个谐振峰可以都在人耳可听范围之内,两个谐振峰的峰值相差至少2000Hz;以及更进一步优选地,两个谐振峰可以都在人耳可听范围之内,两个谐振峰的峰值相差至少3000Hz;还可以更进一步优选地,两个谐振峰可以都在人耳可听范围之内,两个谐振峰的峰值相差至少4000Hz。两个谐振峰中可以一个在人耳可听范围之内,另一个在人耳可听范围之外,并且两个谐振峰的峰值频率相差至少500Hz;优选地,一个谐振峰在人耳可听范围之内,另一个在人耳可听范围之外,并且两个谐振峰的峰值频率相差至少1000Hz;更优选地,一个谐振峰在人耳可听范围之内,另一个在人耳可听范围之外,并且两个谐振峰的峰值频率相差至少2000Hz;进一步优选地,一个谐振峰在人耳可听范围之内,另一个在人耳可听范围之外,并且两个谐振峰的峰值频率相差至少3000Hz;更进一步优选地,一个谐振峰在人耳可听范围之内,另一个在人耳可听范围之外,并且两个谐振峰的峰值频率相差至少4000Hz。两个谐振峰可以都在频率5Hz-30000Hz之间,并且两个谐振峰的峰值频率相差至少400Hz;优选地,两个谐振峰可以都在频率5Hz-30000Hz之间,并且两个谐振峰的峰值频率相差至少1000Hz;更优选地,两个谐振峰可以都在频率5Hz-30000Hz之间,并且两个谐振峰的峰值频率相差至少2000Hz;进一步优选地,两个谐振峰可以都在频率5Hz-30000Hz之间,并且两个谐振峰的峰值频率相差至少3000Hz;更进一步优选地,两个谐振峰可以都在频率5Hz-30000Hz之间,并且两个谐振峰的峰值频率相差至少4000Hz。两个谐振峰可以都在频率20Hz-20000Hz之间,并且两个谐振峰的峰值频率相差至少400Hz;优选地,两个谐振峰可以都在频率20Hz-20000Hz之间,并且两个谐振峰的峰值频率相差至少1000Hz;更优选地,两个谐振峰可以都在频率20Hz-20000Hz之间,并且两个谐振峰的峰值频率相差至少2000Hz;进一步优选地,两个谐振峰可以都在频率20Hz-20000Hz之间,并且两个谐振峰的峰值频率相差至少3000Hz;更进一步优选地,两个谐振峰可以都在频率20Hz-20000Hz之间,并且两个谐振峰的峰值频率相差至少4000Hz。两个谐振峰可以都在频率100Hz-18000Hz之间,并且两个谐振峰的峰值频率相差至少400Hz;优选地,两个谐振峰可以都在频率100Hz-18000Hz之间,并且两个谐振峰的峰值频率相差至少1000Hz;更优选地,两个谐振峰可以都在频率100Hz-18000Hz之间,并且 两个谐振峰的峰值频率相差至少2000Hz;进一步优选地,两个谐振峰可以都在频率100Hz-18000Hz之间,并且两个谐振峰的峰值频率相差至少3000Hz;更进一步优选地,两个谐振峰可以都在频率100Hz-18000Hz之间,并且两个谐振峰的峰值频率相差至少4000Hz。两个谐振峰可以都在频率200Hz-12000Hz之间,并且两个谐振峰的峰值频率相差至少400Hz;优选地,两个谐振峰可以都在频率200Hz-12000Hz之间,并且两个谐振峰的峰值频率相差至少1000Hz;更优选地,两个谐振峰可以都在频率200Hz-12000Hz之间,并且两个谐振峰的峰值频率相差至少2000Hz;进一步优选地,两个谐振峰可以都在频率200Hz-12000Hz之间,并且两个谐振峰的峰值频率相差至少3000Hz;更进一步优选地,两个谐振峰可以都在频率200Hz-12000Hz之间,并且两个谐振峰的峰值频率相差至少4000Hz。两个谐振峰可以都在频率500Hz-10000Hz之间,并且两个谐振峰的峰值频率相差至少400Hz;优选地,两个谐振峰可以都在频率500Hz-10000Hz之间,并且两个谐振峰的峰值频率相差至少1000Hz;更优选地,两个谐振峰可以都在频率500Hz-10000Hz之间,并且两个谐振峰的峰值频率相差至少2000Hz;进一步优选地,两个谐振峰可以都在频率500Hz-10000Hz之间,并且两个谐振峰的峰值频率相差至少3000Hz;更进一步优选地,两个谐振峰可以都在频率500Hz-10000Hz之间,并且两个谐振峰的峰值频率相差至少4000Hz。这样就拓宽了扬声器的谐振响应范围,得到满足条件的音质。值得注意的是,在实际的使用过程中,可以设置多个传振片和振动板,形成多层振动结构,分别对应不同的频响范围,实现全音域全频响高品质的扬声器振动,或者使频率响应曲线在某些特定频率范围内达到使用要求。例如,在骨传导助听器中,为了满足正常听力要求,可以选择谐振频率在100Hz-10000Hz的范围内的一个或多个振动板、传振片构成的换能装置。关于振动板和传振片构成的复合振动装置的描述出现于2011年12月23日提交的中国专利申请号201110438083.9中披露的,名称为“一种骨传导扬声器及其复合振动装置”的专利申请中,该专利文献全文引用在此作为参考。
如图20所示,在另一个实施例中,振动系统中包含一个振动板2002,第一传振片2003和第二传振片2001,第一传振片2003将振动板2002和第二传振片2001固定在外壳2019上,由振动板2002、第一传振片2003和第二传振片2001 组成的复合振动系统可以产生不少于两个谐振峰,在听力系统可听范围内产生更加平坦的频率响应曲线,从而改善骨传导扬声器的音质。振动系统等效模型如图21-A所示:
其中,2101为外壳,2102为面板,2103为音圈,2104为磁路振动,2105为第一传振片,2106为第二传振片,2107为振动板,其中,第一传振片、第二传振片和振动板均抽象成含弹性和阻尼的元件,外壳、面板、音圈和磁路系统能够均抽象成等效质量块。系统的振动方程可以表示为:
m6x6″+R6(x6-x5)′+k6(x6-x5)=F   (12)
m7x7″+R7(x7-x5)′+k7(x7-x5)=-F   (13)
m5x5″-R6(x6-x5)′-R7(x7-x5)′+R8x5′+k8x5-k6(x6-x5)-k7(x7-x5)=0   (14)
其中F为驱动力,k6为第二传振片的等效劲度系数,k7为振动板的等效劲度系数,k8为第一传振片的等效劲度系数,R6为第二传振片的等效阻尼,R7为振动板的等效阻尼,R8为第一传振片的等效阻尼,m5为面板的质量,m6为磁路系统的质量,m7为音圈质量,x5为面板位移,x6为磁路系统位移,x7为音圈位移。则可以得出面板2102的振幅为:
Figure PCTCN2015086907-appb-000009
其中,ω表示振动的角频率,f0表示单位驱动力。
骨传导扬声器的振动系统通过面板将振动传递给使用者,由公式(15)可知,系统的振动效率与振动板、第一传振片、第二传振片的劲度系数和振动阻尼相关,优选地,振动板的劲度系数k7大于第二振动系数k6,振动板的劲度系数k7大于第一振动系数k8。其中,有第一传振片的三重复合振动系统产生的谐振峰数多于没有第一传振片的复合振动系统产生的谐振峰,优选地,至少有三个谐振峰;更优选地,至少有一个谐振峰不在人耳可听到的范围之内;更优选地,谐振峰都在人耳可听到的范围之内;更进一步优选地,谐振峰都在人耳可听到的范围之内,且其峰值频率不高于18000Hz;更进一步优选地,谐振峰都在人耳可听到的声音的频率范围内,且其峰值在100Hz-15000Hz之间;更进一步优选地,谐振峰都在人耳可到的声音的频率范围内,且其峰值在200Hz-12000Hz之间;更进一步优 选地,谐振峰都在人耳可到的声音的频率范围内,且其峰值在500Hz-11000Hz之间。谐振峰的峰值的频率最好能有一定差距,例如,至少存在两个谐振峰的峰值相差至少200Hz;优选地,至少存在两个谐振峰的峰值相差至少500Hz;更优选地,至少存在两个谐振峰的峰值相差至少1000Hz;再进一步优选地,至少存在两个谐振峰的峰值相差至少2000Hz;再更进一步优选地,至少存在两个谐振峰的峰值相差至少5000Hz。为了达到比较好的效果,谐振峰可以都在人耳可听范围之内,并且至少存在两个谐振峰的峰值频率相差至少500Hz;优选地,谐振峰可以都在人耳可听范围之内,至少存在两个谐振峰的峰值相差至少1000Hz;更优选地,谐振峰可以都在人耳可听范围之内,至少存在两个谐振峰的峰值相差至少1000Hz;再进一步优选地,谐振峰可以都在人耳可听范围之内,至少存在两个谐振峰的峰值相差至少2000Hz;以及更进一步优选地,谐振峰可以都在人耳可听范围之内,至少存在两个谐振峰的峰值相差至少3000Hz;还可以更进一步优选地,谐振峰可以都在人耳可听范围之内,至少存在两个谐振峰的峰值相差至少4000Hz。谐振峰中可以有两个在人耳可听范围之内,另一个在人耳可听范围之外,并且至少存在两个谐振峰的峰值频率相差至少500Hz;优选地,两个谐振峰在人耳可听范围之内,另一个谐振峰在人耳可听范围之外,并且至少存在两个谐振峰的峰值频率相差至少1000Hz;更优选地,两个谐振峰在人耳可听范围之内,另一个在人耳可听范围之外,并且至少存在两个谐振峰的峰值频率相差至少2000Hz;进一步优选地,两个谐振峰在人耳可听范围之内,另一个在人耳可听范围之外,并且至少存在两个谐振峰的峰值频率相差至少3000Hz;更进一步优选地,两个谐振峰在人耳可听范围之内,另一个在人耳可听范围之外,并且至少存在两个谐振峰的峰值频率相差至少4000Hz。谐振峰中可以有一个在人耳可听范围之内,另外两个在人耳可听范围之外,并且至少存在两个谐振峰的峰值频率相差至少500Hz;优选地,一个谐振峰在人耳可听范围之内,另外两个谐振峰在人耳可听范围之外,并且至少存在两个谐振峰的峰值频率相差至少1000Hz;更优选地,一个谐振峰在人耳可听范围之内,另外两个在人耳可听范围之外,并且至少存在两个谐振峰的峰值频率相差至少2000Hz;进一步优选地,一个谐振峰在人耳可听范围之内,另外两个在人耳可听范围之外,并且至少存在两个谐振峰的峰值频率相差至少3000Hz;更进一步优选地,一个谐振峰在人耳可听范围 之内,另外两个在人耳可听范围之外,并且至少存在两个谐振峰的峰值频率相差至少4000Hz。谐振峰可以都在频率5Hz-30000Hz之间,并且至少存在两个谐振峰的峰值频率相差至少400Hz;优选地,谐振峰可以都在频率5Hz-30000Hz之间,并且至少存在两个谐振峰的峰值频率相差至少1000Hz;更优选地,谐振峰可以都在频率5Hz-30000Hz之间,并且至少存在两个谐振峰的峰值频率相差至少2000Hz;进一步优选地,谐振峰可以都在频率5Hz-30000Hz之间,并且至少存在两个谐振峰的峰值频率相差至少3000Hz;更进一步优选地,谐振峰可以都在频率5Hz-30000Hz之间,并且至少存在两个谐振峰的峰值频率相差至少4000Hz。谐振峰可以都在频率20Hz-20000Hz之间,并且至少存在两个谐振峰的峰值频率相差至少400Hz;优选地,谐振峰可以都在频率20Hz-20000Hz之间,并且至少存在两个谐振峰的峰值频率相差至少1000Hz;更优选地,谐振峰可以都在频率20Hz-20000Hz之间,并且至少存在两个谐振峰的峰值频率相差至少2000Hz;进一步优选地,谐振峰可以都在频率20Hz-20000Hz之间,并且至少存在两个谐振峰的峰值频率相差至少3000Hz;更进一步优选地,谐振峰可以都在频率20Hz-20000Hz之间,并且至少存在两个谐振峰的峰值频率相差至少4000Hz。谐振峰可以都在频率100Hz-18000Hz之间,并且至少存在两个谐振峰的峰值频率相差至少400Hz;优选地,谐振峰可以都在频率100Hz-18000Hz之间,并且至少存在两个谐振峰的峰值频率相差至少1000Hz;更优选地,谐振峰可以都在频率100Hz-18000Hz之间,并且至少存在两个谐振峰的峰值频率相差至少2000Hz;进一步优选地,谐振峰可以都在频率100Hz-18000Hz之间,并且至少存在两个谐振峰的峰值频率相差至少3000Hz;更进一步优选地,谐振峰可以都在频率100Hz-18000Hz之间,并且至少存在两个谐振峰的峰值频率相差至少4000Hz。谐振峰可以都在频率200Hz-12000Hz之间,并且至少存在两个谐振峰的峰值频率相差至少400Hz;优选地,谐振峰可以都在频率200Hz-12000Hz之间,并且至少存在两个谐振峰的峰值频率相差至少1000Hz;更优选地,谐振峰可以都在频率200Hz-12000Hz之间,并且至少存在两个谐振峰的峰值频率相差至少2000Hz;进一步优选地,谐振峰可以都在频率200Hz-12000Hz之间,并且至少存在两个谐振峰的峰值频率相差至少3000Hz;更进一步优选地,谐振峰可以都在频率200Hz-12000Hz之间,并且至少存在两个谐振峰的峰值频率相差至少4000Hz。 谐振峰可以都在频率500Hz-10000Hz之间,并且至少存在两个谐振峰的峰值频率相差至少400Hz;优选地,谐振峰可以都在频率500Hz-10000Hz之间,并且至少存在两个谐振峰的峰值频率相差至少1000Hz;更优选地,谐振峰可以都在频率500Hz-10000Hz之间,并且至少存在两个谐振峰的峰值频率相差至少2000Hz;进一步优选地,谐振峰可以都在频率500Hz-10000Hz之间,并且至少存在两个谐振峰的峰值频率相差至少3000Hz;更进一步优选地,谐振峰可以都在频率500Hz-10000Hz之间,并且至少存在两个谐振峰的峰值频率相差至少4000Hz。为了进一步获得比较好的效果,至少两个谐振峰可以在人耳可听范围之内,并且由第一传振片产生的谐振峰不高于20000Hz,优选地,至少两个谐振峰可以在人耳可听范围之内,并且由第一传振片产生的谐振峰不高于10000Hz,优选地,至少两个谐振峰可以在人耳可听范围之内,并且由第一传振片产生的谐振峰不高于5000Hz,优选地,至少两个谐振峰可以在人耳可听范围之内,并且由第一传振片产生的谐振峰不高于2000Hz,优选地,至少两个谐振峰可以在人耳可听范围之内,并且由第一传振片产生的谐振峰不高于1000Hz,优选地,至少两个谐振峰可以在人耳可听范围之内,并且由第一传振片产生的谐振峰不高于500Hz,优选地,至少两个谐振峰可以在人耳可听范围之内,并且由第一传振片产生的谐振峰不高于300Hz,优选地,至少两个谐振峰可以在人耳可听范围之内,并且由第一传振片产生的谐振峰不高于200Hz;优选地,至少两个谐振峰可以在人耳可听范围之内,并且由第一传振片产生的谐振峰在20-20000Hz范围,优选地,至少两个谐振峰可以在人耳可听范围之内,并且由第一传振片产生的谐振峰在20-10000Hz范围,优选地,至少两个谐振峰可以在人耳可听范围之内,并且由第一传振片产生的谐振峰在20-5000Hz范围,优选地,至少两个谐振峰可以在人耳可听范围之内,并且由第一传振片产生的谐振峰在20-2000Hz范围,优选地,至少两个谐振峰可以在人耳可听范围之内,并且由第一传振片产生的谐振峰在20-1000Hz范围,优选地,至少两个谐振峰可以在人耳可听范围之内,并且由第一传振片产生的谐振峰在20-500Hz范围,优选地,至少两个谐振峰可以在人耳可听范围之内,并且由第一传振片产生的谐振峰在20-300Hz范围,优选地,至少两个谐振峰可以在人耳可听范围之内,并且由第一传振片产生的谐振峰在20-200Hz范围;更优选地,换能装置产生至少两个谐振峰在人耳可听范围,并 且由第一传振片产生的谐振峰不高于20000Hz,更优选地,换能装置产生至少两个谐振峰在人耳可听范围,并且由第一传振片产生的谐振峰不高于10000Hz,更优选地,换能装置产生至少两个谐振峰在人耳可听范围,并且由第一传振片产生的谐振峰不高于5000Hz,更优选地,换能装置产生至少两个谐振峰在人耳可听范围,并且由第一传振片产生的谐振峰不高于2000Hz,更优选地,换能装置产生至少两个谐振峰在人耳可听范围,并且由第一传振片产生的谐振峰不高于1000Hz,更优选地,换能装置产生至少两个谐振峰在人耳可听范围,并且由第一传振片产生的谐振峰不高于500Hz,更优选地,换能装置产生至少两个谐振峰在人耳可听范围,并且由第一传振片产生的谐振峰不高于300Hz,更优选地,换能装置产生至少两个谐振峰在人耳可听范围,并且由第一传振片产生的谐振峰不高于200Hz;更优选地,换能装置产生至少两个谐振峰在人耳可听范围,并且由第一传振片产生的谐振峰在20-20000Hz范围,更优选地,换能装置产生至少两个谐振峰在人耳可听范围,并且由第一传振片产生的谐振峰在20-10000Hz范围,更优选地,换能装置产生至少两个谐振峰在人耳可听范围,并且由第一传振片产生的谐振峰在20-5000Hz范围,更优选地,换能装置产生至少两个谐振峰在人耳可听范围,并且由第一传振片产生的谐振峰在20-2000Hz范围,更优选地,换能装置产生至少两个谐振峰在人耳可听范围,并且由第一传振片产生的谐振峰在20-1000Hz范围,更优选地,换能装置产生至少两个谐振峰在人耳可听范围,并且由第一传振片产生的谐振峰在20-500Hz范围,更优选地,换能装置产生至少两个谐振峰在人耳可听范围,并且由第一传振片产生的谐振峰在20-300Hz范围,更优选地,换能装置产生至少两个谐振峰在人耳可听范围,并且由第一传振片产生的谐振峰在20-200Hz范围。在一个实施例中,通过利用振动板、第一传振片和第二传振片组成的三重复合振动系统,可以得到如图21-B所示的频率响应,有第一传振片的三重复合振动系统产生了三个明显的谐振峰,产生了更加平坦的频率响应,提高了音质。
通过改变第一传振片的尺寸和材料等参数,可以让谐振峰发生移动,最终获得理想状态下的频率响应。例如,将第一传振片的劲度系数降低至设计值,可让谐振峰向低频移动至设计位置,能够使骨传导扬声器频响在低频范围的灵敏度得到较大提升,易于获得更好的音质。如图21-C所示,当第一传振片的劲度系数 逐渐降低时(即所述第一传振片由硬变软),谐振峰向低频方向移动,骨传导扬声器频响在低频范围内的灵敏度得到显著提升。优选地,第一传振片为一弹性片。该弹性由第一传振片的材料、厚度、结构等多方面决定。第一传振片的材料,例如但不限于,钢材(例如但不限于不锈钢、碳素钢等)、轻质合金(例如但不限于铝合金、铍铜、镁合金、钛合金等)、塑胶(例如但不限于高分子聚乙烯、吹塑尼龙、工程塑料等),也可以是能达到同样性能的其他单一或复合材料。对于复合材料,例如但不限于玻璃纤维、碳纤维、硼纤维、石墨纤维、石墨烯纤维、碳化硅纤维或芳纶纤维等增强材料,也可以是其它有机和/或无机材料的复合物,例如玻璃纤维增强不饱和聚酯、环氧树脂或酚醛树脂基体组成的各类玻璃钢。第一传振片的厚度不低于0.005mm,优选地,厚度为0.005mm-3mm,更优选地,厚度为0.01mm-2mm,再优选地,厚度为0.01mm-1mm,进一步优选地,厚度为0.02mm-0.5mm。第一传振片的结构可以设定成环状,优选地,包含至少一个圆环,优选地,包含至少两个圆环,可以是同心圆环,也可以是非同心圆环,圆环间通过至少两个支杆相连,支杆从外环向内环中心辐射,进一步优选地,包含至少一个椭圆圆环,进一步优选地,包含至少两个椭圆圆环,不同的椭圆圆环有不同的曲率半径,圆环之间通过支杆相连,更进一步优选地,第一传振片包含至少一个方形环。第一传振片结构也可以设定成片状,优选地,上面设置镂空图案,镂空图案的面积不小于没有镂空的面积。以上描述中材料、厚度、结构可以组合成不同的传振片。例如,环状传振片具有不同的厚度分布,优选地,支杆厚度等于圆环厚度,进一步优选地,支杆厚度大于圆环厚度,更进一步优选地,内环的厚度大于外环的厚度。
具体实施例
实施例一
一种骨传导扬声器,包括:一个U型耳机架/耳机挂带,两个声音振动单元,声音振动单元中固定连接一个换能装置。振动单元包含一个接触面和一个外壳,所述接触面是硅胶传递层的外侧。接触面上存在梯度结构,所述梯度结构包含一个凸起结构。耳机架/耳机挂带提供的接触面与皮肤接触的夹紧力,所述夹紧力在接触面上不均匀分布。所述梯度结构部分与非梯度结构部分具有不同的声音传 递效率。
实施例二
本实施例与实施例一的不同之处在于:耳机架/耳机挂带的构成中包含一种带记忆功能的合金,所述耳机架/耳机挂带能够与不同使用者的头部曲线契合,并具备良好的弹性,具有更好的佩戴舒适度。在耳机架/耳机挂带经历一定时间的形变后,仍然可以恢复到原始形状。这里的一定时间,可以是指十分钟、三十分钟、一个小时、两个小时、五个小时,也可以是指一天、两天、十天、一个月、一年或者更长的时间。耳机架/耳机挂带提供的夹紧力大小保持稳定,不会随着佩戴时间变长后夹紧力逐渐下降的情况。骨传导扬声器与人体表面接触的压强在某一个适当的范围内,使得人体佩戴的时候感受不到过分的压力而产生痛感或明显的振动感。在使用的过程中,骨传导扬声器的夹紧力处于0.2N~1.5N范围内。
实施例三
本实施例与实施例一或实施例二不同之处在于:耳机架/耳机挂带的弹性系数保持在特定范围内,使得骨传导扬声器在使用过程中,频率响应曲线在低频(例如,500Hz以下)附近的值高于高频(例如,4000Hz以上)附近的值。
实施例四
本实施例与实施例一不同之处在于:骨传导扬声器集成在眼镜架上或者特殊作用的头盔、面具内部。
实施例五
本实施例与实施例一不同之处在于:骨传导扬声器的振动单元包含两个或两个以上的面板,不同面板或与面板连接的振动传递层与使用者的接触面上的梯度结构不同。例如,其中一个接触面上是凸起结构,另一个接触面上是凹槽机构;或者两个接触面上的梯度结构都是凸起或凹槽结构,但凸起结构的形状、数量二者之间至少有一个不同。
实施例六
一种便携式的骨传导助听器中可选择采用多种频率响应曲线,使用者或测试人员可以根据听力系统的实际响应曲线来选择适当的助听器响应曲线进行补偿。另外,根据实际需要,骨传导助听器中的振动装置,使得助听器在特定频率范围内能够产生比较理想的频率响应,例如频率范围在500Hz~4000Hz。
实施例七
一种骨传导扬声器的振动产生部分如图22-A所示。其中,换能装置包括由导磁板2210,磁铁2211和导磁体2212组成的磁路系统,振动板2214,线圈2215,第一传振片2216和第二传振片2217。面板2213突出外壳2219,和振动片2214通过胶水粘结,第一传振片2216将换能装置连接固定在外壳2219上,形成悬挂结构。
在骨传导扬声器工作的过程中,由振动板2214,第一传振片2216和第二传振片2217组成的三重振动系统能够产生更为平坦的频率响应曲线,从而改善骨传导扬声器的音质。第一传振片2216将换能装置弹性连接在外壳2219上,可以减低换能装置传递给外壳的振动,从而有效地降低由于壳体振动导致的漏音,也减少了壳体的振动对骨传导扬声器音质的影响。图22-B所示是振动产生部分外壳振动强度和面板振动强度随着频率的响应曲线。其中,粗线显示的是使用第一传振片2216后振动产生部分的频率响应,细线显示的是不使用第一传振片2216后振动产生部分的频率响应。可以看出,没有使用第一传振片2216的装置在500Hz以上的频率范围内,扬声器外壳的振动均大于使用第一传振片2216的装置。图22-C所示是在振动产生部分使用第一传振片2216和不使用第一传振片2216两种情况下的漏音比较。其中,使用第一传振片2216的装置在中频(例如1000Hz左右)范围的漏音小于不使用第一传振片2216的装置在对应频率范围的漏音。由此可以看出,面板和外壳间使用第一传振片后可以有效地降低外壳的振动,从而降低漏音。
所述第一传振片可以采用例如,但不限于,不锈钢、铍铜、塑胶、聚碳酸酯等材料,其厚度在0.01mm-1mm的范围内。
实施例八
本实施例与实施例七不同之处在于:如图23所示,在面板2313上增加振动传递层2320(例如但不限于硅胶),振动传递层2320能够产生一定的形变适应皮肤形状。振动传递层2320上与面板2313接触的部分高于振动传递层2320上不与面板2313接触的部分,形成台阶结构。在振动传递层2320不与面板2313接触的部分(图23中振动传递层2320未凸出的部分)设计一个或多个小孔2321。在振动传递层设计小孔可以降低漏音:面板2313通过振动传递层2320与外壳 2319的连接变弱,面板2313通过振动传递层2320传递到外壳2319的振动减少,从而减少了外壳2319振动带来的漏音;振动传递层2320未凸出的部分设置小孔2321后面积减小,能够带动的空气减少,由空气振动引起的漏音减小;振动传递层2320未凸出部分设置小孔2321后,壳体内的空气振动形成的壳内声波被导引出壳外,与外壳2319引发的空气振动形成的漏音声波相互抵消,减小漏音。
实施例九
本实施例与实施例七不同之处在于:由于面板凸出扬声器外壳,同时使用第一传振片将面板与扬声器外壳连接,面板与外壳的耦合程度大大降低,并且第一传振片能够提供一定的形变,使得面板在与使用者贴合是具有更高的自由度,能够更好地适应复杂的贴合面(图24-A中右图所示),所述第一传振片可以使得面板相对于外壳产生一定角度的倾斜。优选的,倾斜角度不超过5゜。
进一步的,扬声器的振动效率随着贴合状态的不同而不同。良好的贴合状态具有更高的振动传递效率。如图24-B所示,粗线显示贴合较好的状态下的振动传递效率,细线显示贴合不好的状态下的振动传递效率,可以看出,较好的贴合状态振动传递效率更高。
实施例十
本实施例与实施例七的不同之处在于:在外壳的边缘增加一个围边,在外壳与皮肤接触的过程中,围边可以使得作用力分布更加均匀,增加骨传导扬声器佩戴的舒适度。如图25所示,围边2510和面板2513之间存在高度差d0。皮肤作用在面板2513上的力使得面板2513与围边2510之间的距离d减小,当骨传导扬声器与使用者间的压力大于第一传振片2516形变为d0时所受的力时,多余的夹紧力会经由围边2510传递到皮肤,而不对振动部分的夹紧力产生影响,使得夹紧力的一致性更高,从而保证音质。
实施例十一
面板形状如图26所示,面板2610与换能装置(未在图26中画出)的连接部件2620如虚线所示。换能装置通过连接部件2620将振动传递给面板2610,则连接部件2620所处的位置为面板2610的振动中心。连接部件2620的中心O距离面板2610两边的距离分别为L1和L2。通过改变面板2610的大小,连接部件2620在面板2610上的位置可以改变面板与皮肤的贴合性能以及振动的传递效 率。优选地,L1和L2的比值设定为大于1,更优选地,L1和L2的比值设定为大于1.61,进一步优选地,L1和L2的比值设定为大于2。再例如,可以选用大面板、中面板和小面板作用于振动装置中。这里所说的大面板指图26所描述的面板,面板2610面积大于连接部件2620的面积,中面板指面板2610与连接部件2620大小相同,小面板指面板2610的面积小于连接部件2620的情况。不同大小的面板以及不同连接部件2620的位置,其传递的振动在佩戴者贴合面上有不同的分布,进而会带来音量、音质的差异。
实施例十二
本实施例涉及骨传导扬声器振动单元接触面外侧梯度结构的多种构型。如图27所示,梯度结构为不同数量的凸起,且凸起位于接触面外侧不同位置。方案1中有一个凸起,靠近接触面的边缘位置;方案2中有一个凸起,位于接触面的中心位置;方案3中接触面上有两个凸起,分别靠近接触面的边缘位置;方案4中有三个凸起;方案5中有四个凸起。凸起的数量、位置会对接触面的振动传递效率产生不同的影响。如图28-A和28-B所示,无凸起结构的接触面与方案1-5中存在凸起结构的接触面所表现出的频率响应曲线不同。可以看出,在贴合面增加了梯度结构(凸起)后,频响曲线在300Hz-1100Hz范围内有了明显的抬高,表明在增加了梯度结构后,声音的中低频部分得到了明显的改善。
实施例十三
本实施例涉及骨传导扬声器振动接触面内侧梯度结构的多种构型。如图29所示,接触面的梯度结构位于接触面的内侧,即背向使用者的一侧。方案A中振动传递层内侧与面板贴合,贴合面与振动传递层外侧存在一定的倾斜角度;方案B中振动传递层内侧存在一个台阶结构,台阶位于振动传递层的边缘;方案C中振动传递层内侧存在另一个台阶结构,台阶结构位于振动传递层中心位置;方案D中振动传递层内侧存在多个台阶结构。由于接触面内侧存在梯度结构,使得接触面与面板的贴合面上不同点的位置具有不同的振动传递效率,能够拓宽振动的频响曲线,使频率响应在一定的频率范围内更加“平坦”,从而提高骨传导扬声器的音质。
实施例十四
本实施例与实施例八的不同之处在于:如图30所示,在振动传递层3020 及外壳3019上均设计引声孔,壳体内的空气振动形成的壳内声波通过引声孔被导引出壳外,与外壳3019引发的空气振动形成的漏音声波相互抵消,减小漏音。
以上所述实施例仅表达了本发明的几种具体实施方式,其描述较为具体和详细,但并不能因此理解为对本发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,比如本说明书中披露的几种改变骨传导声音传递的方式,都可以进行任意组合和修改,但是这些修改和组合仍在本发明的权利要求保护范围之内。

Claims (76)

  1. 一种改善骨传导扬声器音质的方法,其特征在于,
    提供骨传导扬声器,该骨传导扬声器包括:
    一外壳、一换能装置、一第一传振片;
    所述第一传振片与所述换能装置通过物理方式连接;
    所述第一传振片与所述外壳通过物理方式连接;
    所述第一传振片能产生第一个谐振峰;
    所述换能装置能产生至少另一个谐振峰;
  2. 如权利要求1所述的方法,其特征在于,所述换能装置至少包含一振动板和一第二传振片,该换能装置至少能产生两个谐振峰。
  3. 如权利要求2所述的方法,其特征在于,所述两个谐振峰都在人耳可听到的声音频率范围之内。
  4. 如权利要求2所述的方法,其特征在于,所述换能装置包含至少一个音圈和至少一个磁路系统;所述音圈与所述振动板物理连接,所述磁路系统与所述第二传振片物理连接。
  5. 如权利要求2所述的方法,其特征在于,所述振动板的劲度系数大于第二传振片的劲度系数。
  6. 如权利要求2所述的方法,其特征在于,所述第二传振片为弹性片。
  7. 如权利要求1所述的方法,其特征在于,该骨传导扬声器包括至少一个接触面,所述接触面与使用者接触并传递振动。
  8. 如权利要求1所述的方法,其特征在于,所述第一传振片为弹性片。
  9. 如权利要求8所述的方法,其特征在于,所述第一传振片向中心辐辏至少两个第一支杆。
  10. 如权利要求8所述的方法,其特征在于,所述的第一传振片厚度为0.005mm-3mm。
  11. 一种骨传导扬声器,其特征在于,包括:
    一外壳、一换能装置、一第一传振片;
    所述第一传振片与所述换能器装置间通过物理方式连接;
    所述第一传振片与所述外壳间通过物理方式连接;
    所述第一传振片能产生第一个谐振峰;
    所述换能装置能产生至少另一个谐振峰;
  12. 如权利要求11所述的骨传导扬声器,其特征在于,所述换能装置至少包含一振动板和一第二传振片,该换能装置至少能产生两个谐振峰。
  13. 如权利要求12所述的骨传导扬声器,其特征在于,所述两个谐振峰都在人耳可听到的声音频率范围之内。
  14. 如权利要求12所述的骨传导扬声器,其特征在于,所述换能装置包含至少一个音圈和至少一个磁路系统;所述音圈与所述振动板物理连接,所述磁路系统与所述第二传振片物理连接。
  15. 如权利要求12所述的骨传导扬声器,其特征在于,振动板的劲度系数大于第二传振片的劲度系数。
  16. 如权利要求12所述的骨传导扬声器,其特征在于,第二传振片为弹性片。
  17. 如权利要求11所述的骨传导扬声器,其特征在于,包括至少一个接触面,所述接触面与使用者接触并传递振动;
  18. 如权利要求11所述的骨传导扬声器,其特征在于,所述第一传振片为弹性片。
  19. 如权利要求18所述的骨传导扬声器,其特征在于,所述第一传振片向中心辐辏至少两个第一支杆。
  20. 如权利要求18所述的骨传导扬声器,其特征在于,所述的第一传振片厚度为0.005mm-3mm。
  21. 一种改善骨传导耳机的音质的方法,
    提供骨传导耳机,该骨传导耳机包括一振动单元;
    所述振动单元至少包括与使用者直接接触或间接接触的接触面;
    使得所述接触面与使用者之间的压力大于0.1N;
    使得所述接触面与使用者之间的压力小于5N。
  22. 根据权利要求21所述的方法,使得所述接触面与使用者之间的压力大于0.2N且小于4N。
  23. 根据权利要求21所述的方法,使得所述接触面与使用者之间的压力大于0.2N且小于3N。
  24. 根据权利要求21所述的方法,使得所述接触面与使用者之间的压力大于0.2N且小于1.5N。
  25. 根据权利要求21所述的方法,使得所述接触面与使用者之间的压力大于0.3N且小于1.5N。
  26. 根据权利要求21所述的方法,所述接触面上的压力分布不均匀。
  27. 根据权利要求21所述的方法,所述耳机的频响曲线为所述接触面上各点的频响曲线的叠加。
  28. 一种骨传导耳机,其特征在于,
    该骨传导耳机包括一振动单元;
    所述振动单元至少包括与使用者直接接触或间接接触的接触面;
    使得所述接触面与使用者之间的压力大于0.1N;
    使得所述接触面与使用者之间的压力小于5N。
  29. 根据权利要求28所述的骨传导耳机,该骨传导耳机包括一耳机架/耳机挂带,所述耳机架/耳机挂带的材料包含记忆合金或工程塑料材料。
  30. 根据权利要求28所述的耳机,使得所述接触面与使用者之间的压力大于0.2N且小于4N。
  31. 根据权利要求28所述的耳机,使得所述接触面与使用者之间的压力大于0.2N且小于3N。
  32. 根据权利要求28所述的耳机,使得所述接触面与使用者之间的压力大于0.2N且小于1.5N。
  33. 根据权利要求28所述的耳机,使得所述接触面与使用者之间的压力大于0.3N且小于1.5N。
  34. 根据权利要求28所述的耳机,所述接触面上的压力分布不均匀。
  35. 根据权利要求28所述的耳机,所述耳机的频响曲线为所述接触面上各点的频响曲线的叠加。
  36. 一种改善骨传导扬声器的方法,其特征在于,
    提供骨传导扬声器,该骨传导扬声器包括振动单元;
    所述振动单元至少包括一接触面,该接触面至少部分与使用者直接或间接接触;
    所述接触面上至少包含第一接触面区域;
    该第一接触面区域包含引声孔,所述引声孔将扬声器外壳内的声波导出,与漏音声波叠加。
  37. 根据权利要求36所述的方法,其特征在于,所述第一接触面区域至少有一部分不与使用者接触,所述引声孔开口于该不与使用者接触区域。
  38. 根据权利要求36所述的方法,其特征在于,所述接触面上有第二接触面区域,该第二接触面区域凸起程度高于第一接触面区域。
  39. 根据权利要求36所述的方法,其特征在于,所述引声孔在扬声器内开口于一空腔。
  40. 根据权利要求39所述的方法,其特征在于,所述扬声器外壳的侧面上有至少一侧面引声孔,所述引声孔将扬声器外壳内的声波导出,与漏音声波叠加。
  41. 根据权利要求38所述的方法,其特征在于,所述第二接触面区域与一振动面板接触,并通过第二接触面区域传递振动。
  42. 根据权利要求41所述的方法,其特征在于,所述振动面板支撑第二接触面区域。
  43. 根据权利要求41所述的方法,其特征在于,所述第二接触面区域整体与所述振动面板接触。
  44. 根据权利要求41所述的方法,其特征在于,所述振动面板的面积小于第二接触面区域面积。
  45. 一种骨传导扬声器,其特征在于,
    该骨传导扬声器包括振动单元;
    所述振动单元至少包括一接触面,该接触面至少部分与使用者直接或间接接触;
    所述接触面上至少包含第一接触面区域;
    该第一接触面区域包含引声孔,所述引声孔将扬声器外壳内的声波导出,与漏音声波叠加。
  46. 根据权利要求45所述的扬声器,其特征在于,所述第一接触面区域至少有一部分不与使用者接触,所述引声孔开口于该不与使用者接触区域。
  47. 根据权利要求45所述的扬声器,其特征在于,所述接触面上有第二接触面 区域,该第二接触面区域凸起程度高于第一接触面区域。
  48. 根据权利要求45所述的扬声器,其特征在于,所述引声孔在扬声器内开口于一空腔。
  49. 根据权利要求48所述的扬声器,其特征在于,所述扬声器外壳的侧面上有至少一侧面引声孔,所述引声孔将扬声器外壳内的声波导出,与漏音声波叠加。
  50. 根据权利要求47所述的扬声器,其特征在于,所述第一接触面区域、第二接触面区域使用硅胶、橡胶或塑胶等塑料。
  51. 根据权利要求47所述的扬声器,其特征在于,所述第二接触面区域与一振动面板接触,并通过第二接触面区域传递振动。
  52. 根据权利要求51所述的扬声器,其特征在于,所述振动面板支撑第二接触面区域。
  53. 根据权利要求51所述的扬声器,其特征在于,所述第二接触面区域整体与所述振动面板接触。
  54. 根据权利要求51所述的扬声器,其特征在于,所述振动面板的面积小于第二接触面区域面积。
  55. 一种改善骨传导扬声器的方法,其特征在于,
    提供骨传导扬声器,该骨传导扬声器包括振动单元,
    所述振动单元至少包括一接触层,该接触层至少部分与使用者直接或间接接触;
    所述接触层表面具有梯度结构,使得接触层上压力分布不均匀。
  56. 根据权利要求55所述的方法,所述接触层的压力分布导致各个接触点具有不同的频响曲线。
  57. 根据权利要求56所述的方法,所述接触层整体的频响曲线由各点的频响曲线叠加而成。
  58. 根据权利要求55所述的方法,所述梯度结构包括至少一个凸起。
  59. 根据权利要求55所述的方法,所述梯度结构包括至少一个凹槽。
  60. 根据权利要求55所述的方法,所述梯度结构位于接触层表面的中心或者边缘。
  61. 根据权利要求55所述的方法,所述接触层背向使用者的一侧设置梯度结构。
  62. 根据权利要求61所述的方法,所述梯度结构包括至少一个凸起。
  63. 根据权利要求61所述的方法,所述梯度结构包括至少一个凹槽。
  64. 根据权利要求61所述的方法,所述梯度结构位于接触层背向使用者的一侧的中心或者边缘。
  65. 根据权利要求55所述的方法,所述压力介于第一阈值和第二阈值之间,其中,第一阈值是使得扬声器单元有足够大的高频传递效率的最小力,第二阈值是使得扬声器单元有足够大的低频传递效率的最大力。
  66. 根据权利要求65所述的方法,其特征在于,所述第一阈值为0.2N,所述第二阈值为1.5N。
  67. 一种骨传导扬声器,所述骨传导扬声器包括:
    一振动单元;
    所述振动单元至少包括一接触层,该接触层至少部分与使用者直接或间接接触;
    所述接触层表面具有梯度结构,使得接触层上压力分布不均匀。
  68. 根据权利要求67所述的扬声器,所述梯度结构包括至少一个凸起。
  69. 根据权利要求67所述的扬声器,所述梯度结构包括至少一个凹槽。
  70. 根据权利要求67所述的扬声器,所述梯度结构位于接触层表面的中心或者边缘。
  71. 根据权利要求67所述的方法,所述接触层背向使用者的一侧设置梯度结构。
  72. 根据权利要求71所述的方法,所述梯度结构包括至少一个凸起。
  73. 根据权利要求71所述的方法,所述梯度结构包括至少一个凹槽。
  74. 根据权利要求71所述的方法,所述梯度结构位于接触层背向使用者的一侧的中心或者边缘。
  75. 根据权利要求67所述的方法,所述压力介于第一阈值和第二阈值之间,其中,第一阈值是使得扬声器单元有足够大的高频传递效率的最小力,第二阈值是使得扬声器单元有足够大的低频传递效率的最大力。
  76. 根据权利要求75所述的方法,其特征在于,所述第一阈值为0.2N,所述第二阈值为1.5N。
PCT/CN2015/086907 2011-12-23 2015-08-13 一种骨传导扬声器 WO2017024595A1 (zh)

Priority Applications (67)

Application Number Priority Date Filing Date Title
BR112018002854-1A BR112018002854B1 (pt) 2015-08-13 2015-08-13 Métodos e alto-falante de osteocondução
EP15900793.9A EP3337185B1 (en) 2015-08-13 2015-08-13 Bone conduction loudspeaker
PCT/CN2015/086907 WO2017024595A1 (zh) 2015-08-13 2015-08-13 一种骨传导扬声器
PT159007939T PT3337185T (pt) 2015-08-13 2015-08-13 Altifalante de condução óssea
PL15900793T PL3337185T3 (pl) 2015-08-13 2015-08-13 Głośnik z przewodnictwem kostnym
US15/752,452 US10609496B2 (en) 2015-08-13 2015-08-13 Systems for bone conduction speaker
ES15900793T ES2884329T3 (es) 2015-08-13 2015-08-13 Altavoz de conducción ósea
KR1020227003237A KR102586268B1 (ko) 2015-08-13 2015-08-13 골전도 라우드스피커
KR1020187007115A KR102359696B1 (ko) 2015-08-13 2015-08-13 골전도 라우드스피커
DK15900793.9T DK3337185T3 (da) 2015-08-13 2015-08-13 Knogleledningshøjtaler
EP21186537.3A EP3920551A1 (en) 2015-08-13 2015-08-13 Systems for bone conductor speaker
JP2018506985A JP6651608B2 (ja) 2015-08-13 2015-08-13 骨伝導スピーカーのためのシステム
HK18116341.2A HK1257092A1 (zh) 2015-08-13 2018-12-20 骨傳導揚聲器
US16/833,852 US11323830B2 (en) 2015-08-13 2020-03-30 Systems for bone conduction speaker
US16/833,877 US11140497B2 (en) 2015-08-13 2020-03-30 Systems for bone conduction speaker
US16/833,839 US11399245B2 (en) 2015-08-13 2020-03-30 Systems for bone conduction speaker
US17/161,717 US11399234B2 (en) 2011-12-23 2021-01-29 Bone conduction speaker and compound vibration device thereof
US17/169,477 US11438717B2 (en) 2015-08-13 2021-02-07 Systems for bone conduction speaker
US17/169,512 US11343623B2 (en) 2015-08-13 2021-02-07 Systems for bone conduction speaker
US17/169,514 US11343624B2 (en) 2015-08-13 2021-02-07 Systems for bone conduction speaker
US17/169,469 US11611833B2 (en) 2011-12-23 2021-02-07 Bone conduction speaker and compound vibration device thereof
US17/169,475 US11323832B2 (en) 2015-08-13 2021-02-07 Systems for bone conduction speaker
US17/169,583 US11343625B2 (en) 2015-08-13 2021-02-08 Systems for bone conduction speaker
US17/170,874 US11363392B2 (en) 2014-01-06 2021-02-08 Systems and methods for suppressing sound leakage
US17/170,879 US11343626B2 (en) 2011-12-23 2021-02-08 Bone conduction speaker and compound vibration device thereof
US17/170,885 US11540066B2 (en) 2011-12-23 2021-02-08 Bone conduction speaker and compound vibration device thereof
US17/170,840 US11528561B2 (en) 2011-12-23 2021-02-08 Bone conduction speaker and compound vibration device thereof
US17/170,817 US11395072B2 (en) 2011-12-23 2021-02-08 Bone conduction speaker and compound vibration device thereof
US17/170,847 US11659335B2 (en) 2011-12-23 2021-02-08 Bone conduction speaker and compound vibration device thereof
US17/170,931 US11368801B2 (en) 2014-01-06 2021-02-09 Systems and methods for suppressing sound leakage
US17/170,913 US11368800B2 (en) 2014-01-06 2021-02-09 Systems and methods for suppressing sound leakage
US17/170,904 US11375324B2 (en) 2014-01-06 2021-02-09 Systems and methods for suppressing sound leakage
US17/170,925 US11418895B2 (en) 2014-01-06 2021-02-09 Systems and methods for suppressing sound leakage
US17/219,777 US11665482B2 (en) 2011-12-23 2021-03-31 Bone conduction speaker and compound vibration device thereof
US17/218,677 US11638099B2 (en) 2011-12-23 2021-03-31 Bone conduction speaker and compound vibration device thereof
US17/218,599 US11716575B2 (en) 2011-12-23 2021-03-31 Bone conduction speaker and compound vibration device thereof
US17/218,549 US11540057B2 (en) 2011-12-23 2021-03-31 Bone conduction speaker and compound vibration device thereof
US17/218,713 US11641552B2 (en) 2011-12-23 2021-03-31 Bone conduction speaker and compound vibration device thereof
US17/218,645 US11641551B2 (en) 2011-12-23 2021-03-31 Bone conduction speaker and compound vibration device thereof
US17/218,804 US11463814B2 (en) 2011-12-23 2021-03-31 Bone conduction speaker and compound vibration device thereof
US17/218,292 US11575994B2 (en) 2011-12-23 2021-03-31 Bone conduction speaker and compound vibration device thereof
US17/218,528 US11601761B2 (en) 2011-12-23 2021-03-31 Bone conduction speaker and compound vibration device thereof
US17/218,279 US11611834B2 (en) 2011-12-23 2021-03-31 Bone conduction speaker and compound vibration device thereof
US17/218,494 US11528562B2 (en) 2011-12-23 2021-03-31 Bone conduction speaker and compound vibration device thereof
US17/219,814 US11595760B2 (en) 2011-12-23 2021-03-31 Bone conduction speaker and compound vibration device thereof
US17/218,745 US11483661B2 (en) 2011-12-23 2021-03-31 Bone conduction speaker and compound vibration device thereof
US17/241,041 US11463823B2 (en) 2014-01-06 2021-04-26 Systems and methods for suppressing sound leakage
US17/445,197 US11570560B2 (en) 2015-08-13 2021-08-17 Systems for bone conduction speaker
US17/657,365 US11611837B2 (en) 2015-08-13 2022-03-31 Systems for bone conduction speaker
US17/658,824 US20220240029A1 (en) 2015-08-13 2022-04-12 Systems for bone conduction speaker
US17/804,850 US11632636B2 (en) 2014-01-06 2022-05-31 Systems and methods for suppressing sound leakage
US17/804,611 US11659341B2 (en) 2014-01-06 2022-05-31 Systems and methods for suppressing sound leakage
US17/807,154 US11632637B2 (en) 2014-01-06 2022-06-16 Systems and methods for suppressing sound leakage
US17/813,324 US20220360906A1 (en) 2011-12-23 2022-07-18 Bone conduction speaker and compound vibration device thereof
US17/823,951 US11638105B2 (en) 2014-01-06 2022-08-31 Systems and methods for suppressing sound leakage
US18/182,414 US20230224643A1 (en) 2011-12-23 2023-03-13 Bone conduction speaker and compound vibration device thereof
US18/185,419 US20230224644A1 (en) 2011-12-23 2023-03-17 Bone conduction speaker and compound vibration device thereof
US18/187,693 US11917373B2 (en) 2014-01-06 2023-03-22 Systems and methods for suppressing sound leakage
US18/305,368 US11991500B2 (en) 2014-01-06 2023-04-23 Systems and methods for suppressing sound leakage
US18/308,760 US20230269547A1 (en) 2014-01-06 2023-04-28 Systems and methods for suppressing sound leakage
US18/349,116 US12035108B2 (en) 2014-01-06 2023-07-07 Systems and methods for suppressing sound leakage
US18/349,118 US12003922B2 (en) 2014-01-06 2023-07-07 Systems and methods for suppressing sound leakage
US18/361,807 US20230370791A1 (en) 2014-01-06 2023-07-28 Systems and methods for suppressing sound leakage
US18/361,844 US20230379639A1 (en) 2014-01-06 2023-07-29 Systems and methods for suppressing sound leakage
US18/366,104 US20230379640A1 (en) 2014-01-06 2023-08-07 Systems and methods for suppressing sound leakage
US18/472,180 US20240015452A1 (en) 2014-01-06 2023-09-21 Systems and methods for suppressing sound leakage
US18/472,442 US20240015453A1 (en) 2014-01-06 2023-09-22 Systems and methods for suppressing sound leakage

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2015/086907 WO2017024595A1 (zh) 2015-08-13 2015-08-13 一种骨传导扬声器

Related Parent Applications (18)

Application Number Title Priority Date Filing Date
US14/513,371 Continuation US9402116B2 (en) 2011-12-23 2014-10-14 Bone conduction speaker and compound vibration device thereof
PCT/CN2015/086907 Continuation WO2017024595A1 (zh) 2011-12-23 2015-08-13 一种骨传导扬声器
US16/822,151 Continuation-In-Part US11373671B2 (en) 2011-12-23 2020-03-18 Signal processing device having multiple acoustic-electric transducers
US17/074,762 Continuation-In-Part US11197106B2 (en) 2014-01-06 2020-10-20 Systems and methods for suppressing sound leakage
US16/950,876 Continuation-In-Part US20210072559A1 (en) 2011-12-23 2020-11-17 Eyeglasses
US17/129,733 Continuation-In-Part US11425481B2 (en) 2011-12-23 2020-12-21 Open earphone
US17/161,717 Continuation-In-Part US11399234B2 (en) 2011-12-23 2021-01-29 Bone conduction speaker and compound vibration device thereof
US17/169,816 Continuation-In-Part US11350205B2 (en) 2011-12-23 2021-02-08 Vibration removal apparatus and method for dual-microphone earphones
US17/170,874 Continuation US11363392B2 (en) 2014-01-06 2021-02-08 Systems and methods for suppressing sound leakage
US17/169,604 Continuation-In-Part US11363362B2 (en) 2011-12-23 2021-02-08 Speaker device
US17/170,955 Continuation-In-Part US11496824B2 (en) 2011-12-23 2021-02-09 Acoustic output apparatus with drivers in multiple frequency ranges and bluetooth low energy receiver
US17/172,012 Continuation-In-Part US11115774B2 (en) 2011-12-23 2021-02-09 Acoustic output apparatus
US17/170,920 Continuation-In-Part US11122359B2 (en) 2011-12-23 2021-02-09 Acoustic output apparatus and method thereof
US17/170,947 Continuation-In-Part US11178477B2 (en) 2011-12-23 2021-02-09 Acoustic output apparatus with a plurality of acoustic drivers and methods thereof
US17/457,258 Continuation-In-Part US11838705B2 (en) 2014-01-06 2021-12-02 Earphone
US18/332,747 Continuation-In-Part US20240147144A1 (en) 2014-01-06 2023-06-11 Open earphones
US18/334,401 Continuation-In-Part US20240147108A1 (en) 2014-01-06 2023-06-14 Earphones
US18/337,424 Continuation-In-Part US20230336902A1 (en) 2014-01-06 2023-06-19 Earphone without covering an ear canal

Related Child Applications (14)

Application Number Title Priority Date Filing Date
US15/752,452 A-371-Of-International US10609496B2 (en) 2015-08-13 2015-08-13 Systems for bone conduction speaker
PCT/CN2015/086907 Continuation WO2017024595A1 (zh) 2011-12-23 2015-08-13 一种骨传导扬声器
US15197050 A-371-Of-International 2015-08-13
US15/197,050 Continuation US10117026B2 (en) 2011-12-23 2016-06-29 Bone conduction speaker and compound vibration device thereof
US201615109831A Continuation 2014-01-06 2016-07-06
US201815752452A A-371-Of-International 2011-12-23 2018-02-13
US201815752452A Continuation 2011-12-23 2018-02-13
US16/159,070 Continuation US10911876B2 (en) 2011-12-23 2018-10-12 Bone conduction speaker and compound vibration device thereof
US16/833,852 Continuation US11323830B2 (en) 2015-08-13 2020-03-30 Systems for bone conduction speaker
US16/833,839 Continuation US11399245B2 (en) 2011-12-23 2020-03-30 Systems for bone conduction speaker
US16/833,877 Continuation US11140497B2 (en) 2015-08-13 2020-03-30 Systems for bone conduction speaker
US17/170,874 A-371-Of-International US11363392B2 (en) 2014-01-06 2021-02-08 Systems and methods for suppressing sound leakage
US17/170,874 Continuation US11363392B2 (en) 2014-01-06 2021-02-08 Systems and methods for suppressing sound leakage
US17/804,611 Continuation US11659341B2 (en) 2014-01-06 2022-05-31 Systems and methods for suppressing sound leakage

Publications (1)

Publication Number Publication Date
WO2017024595A1 true WO2017024595A1 (zh) 2017-02-16

Family

ID=57982909

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/086907 WO2017024595A1 (zh) 2011-12-23 2015-08-13 一种骨传导扬声器

Country Status (11)

Country Link
US (12) US10609496B2 (zh)
EP (2) EP3337185B1 (zh)
JP (1) JP6651608B2 (zh)
KR (2) KR102586268B1 (zh)
BR (1) BR112018002854B1 (zh)
DK (1) DK3337185T3 (zh)
ES (1) ES2884329T3 (zh)
HK (1) HK1257092A1 (zh)
PL (1) PL3337185T3 (zh)
PT (1) PT3337185T (zh)
WO (1) WO2017024595A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3477962A4 (en) * 2017-04-21 2020-03-18 Temco Japan Co., Ltd. BONE CONDUCTION SPEAKER UNIT
CN111601228A (zh) * 2020-07-03 2020-08-28 佛山博智医疗科技有限公司 一种可调节的测听耳机安装系统
TWI761874B (zh) * 2020-07-07 2022-04-21 鉭騏實業有限公司 耳鳴屏蔽裝置及其訊號處理方法
US11438689B2 (en) * 2019-01-05 2022-09-06 Shenzhen Shokz Co., Ltd. Loudspeaker apparatus

Families Citing this family (54)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11363362B2 (en) 2018-06-15 2022-06-14 Shenzhen Shokz Co., Ltd. Speaker device
US11483661B2 (en) 2011-12-23 2022-10-25 Shenzhen Shokz Co., Ltd. Bone conduction speaker and compound vibration device thereof
US11540066B2 (en) 2011-12-23 2022-12-27 Shenzhen Shokz Co., Ltd. Bone conduction speaker and compound vibration device thereof
US11463814B2 (en) 2011-12-23 2022-10-04 Shenzhen Shokz Co., Ltd. Bone conduction speaker and compound vibration device thereof
US11343626B2 (en) 2011-12-23 2022-05-24 Shenzhen Shokz Co., Ltd. Bone conduction speaker and compound vibration device thereof
US11611834B2 (en) 2011-12-23 2023-03-21 Shenzhen Shokz Co., Ltd. Bone conduction speaker and compound vibration device thereof
US11641552B2 (en) 2011-12-23 2023-05-02 Shenzhen Shokz Co., Ltd. Bone conduction speaker and compound vibration device thereof
US11601761B2 (en) 2011-12-23 2023-03-07 Shenzhen Shokz Co., Ltd. Bone conduction speaker and compound vibration device thereof
US11575994B2 (en) 2011-12-23 2023-02-07 Shenzhen Shokz Co., Ltd. Bone conduction speaker and compound vibration device thereof
US11716575B2 (en) 2011-12-23 2023-08-01 Shenzhen Shokz Co., Ltd. Bone conduction speaker and compound vibration device thereof
US11540057B2 (en) 2011-12-23 2022-12-27 Shenzhen Shokz Co., Ltd. Bone conduction speaker and compound vibration device thereof
US11665482B2 (en) 2011-12-23 2023-05-30 Shenzhen Shokz Co., Ltd. Bone conduction speaker and compound vibration device thereof
US11528562B2 (en) 2011-12-23 2022-12-13 Shenzhen Shokz Co., Ltd. Bone conduction speaker and compound vibration device thereof
US11638099B2 (en) 2011-12-23 2023-04-25 Shenzhen Shokz Co., Ltd. Bone conduction speaker and compound vibration device thereof
US11595760B2 (en) 2011-12-23 2023-02-28 Shenzhen Shokz Co., Ltd. Bone conduction speaker and compound vibration device thereof
US11399234B2 (en) 2011-12-23 2022-07-26 Shenzhen Shokz Co., Ltd. Bone conduction speaker and compound vibration device thereof
US11641551B2 (en) 2011-12-23 2023-05-02 Shenzhen Shokz Co., Ltd. Bone conduction speaker and compound vibration device thereof
US11418895B2 (en) 2014-01-06 2022-08-16 Shenzhen Shokz Co., Ltd. Systems and methods for suppressing sound leakage
US11832060B2 (en) 2014-01-06 2023-11-28 Shenzhen Shokz Co., Ltd. Systems and methods for suppressing sound leakage
US11375324B2 (en) 2014-01-06 2022-06-28 Shenzhen Shokz Co., Ltd. Systems and methods for suppressing sound leakage
US11363392B2 (en) 2014-01-06 2022-06-14 Shenzhen Shokz Co., Ltd. Systems and methods for suppressing sound leakage
US11368801B2 (en) 2014-01-06 2022-06-21 Shenzhen Shokz Co., Ltd. Systems and methods for suppressing sound leakage
US11368800B2 (en) 2014-01-06 2022-06-21 Shenzhen Shokz Co., Ltd. Systems and methods for suppressing sound leakage
US11706574B2 (en) 2014-01-06 2023-07-18 Shenzhen Shokz Co., Ltd. Systems and methods for suppressing sound leakage
JP6651608B2 (ja) 2015-08-13 2020-02-19 シェンヂェン ボクステック カンパニー リミテッドShenzhen Voxtech Co., Ltd 骨伝導スピーカーのためのシステム
US20180133102A1 (en) * 2016-11-14 2018-05-17 Otolith Sound, Inc. Devices And Methods For Reducing The Symptoms Of Maladies Of The Vestibular System
US11284205B2 (en) 2016-11-14 2022-03-22 Otolith Sound Inc. Systems, devices, and methods for treating vestibular conditions
US10398897B2 (en) 2016-11-14 2019-09-03 Otolith Sound Inc. Systems, devices, and methods for treating vestibular conditions
US10747026B1 (en) 2017-03-28 2020-08-18 Amazon Technologies, Inc. Ergonomic spacer for head-mounted wearable device
US10659868B1 (en) * 2017-03-28 2020-05-19 Amazon Technologies, Inc. Field replaceable spacer for head-mounted wearable device
WO2019134162A1 (zh) * 2018-01-08 2019-07-11 深圳市韶音科技有限公司 一种骨传导扬声器
AU2019285890B2 (en) * 2018-06-15 2022-06-30 Shenzhen Shokz Co., Ltd Bone conduction speaker and testing method therefor
PE20210542A1 (es) 2018-06-15 2021-03-17 Shenzhen Voxtech Co Ltd Altavoz y auricular de conduccion osea
JP6604669B1 (ja) * 2018-09-06 2019-11-13 neten株式会社 骨振動体感装置及びそれを使用する方法
JP6952672B2 (ja) * 2018-11-28 2021-10-20 株式会社東芝 磁気記憶装置
CN109769167B (zh) * 2019-01-05 2024-06-14 深圳市韶音科技有限公司 骨传导扬声装置
KR102096847B1 (ko) * 2019-01-29 2020-04-03 부경대학교 산학협력단 누음 방지 기능을 갖는 가압식 골전도 마운트 구조
WO2020220723A1 (zh) * 2019-04-30 2020-11-05 深圳市韶音科技有限公司 一种声学输出装置
CN110784807B (zh) * 2019-10-31 2021-07-06 歌尔股份有限公司 一种发声装置的振膜以及发声装置
KR102195936B1 (ko) * 2019-11-19 2020-12-29 주식회사 엠아이제이 유양돌기 및 귓바퀴 동시 자극 이명치료 전용 골전도 헤드셋
CA3161757A1 (en) * 2019-12-13 2021-06-17 Shenzhen Shokz Co., Ltd. Sound-output device
EP4061004A4 (en) * 2020-04-30 2023-06-07 Shenzhen Shokz Co., Ltd. BONE CONDUCTION EARPHONES
CN111432324B (zh) * 2020-05-26 2021-05-04 北京瑞森新谱科技股份有限公司 用于骨声纹耳机的测试方法及测试系统
CN111683324B (zh) * 2020-05-27 2021-10-26 歌尔科技有限公司 骨传导设备的音质调整方法、骨传导设备及存储介质
CA198230S (en) * 2020-07-01 2022-02-02 Shenzhen Voxtech Co Ltd Hearing aid
JP2023526341A (ja) * 2020-08-12 2023-06-21 シェンツェン・ショックス・カンパニー・リミテッド 音響装置及びその保護アセンブリの製造方法
KR20220164781A (ko) * 2020-08-29 2022-12-13 썬전 샥 컴퍼니 리미티드 보청장치
KR102400957B1 (ko) * 2020-08-31 2022-05-24 강원대학교산학협력단 체성이명 치료기기
CN212992552U (zh) * 2020-11-04 2021-04-16 捷普电子(新加坡)公司 扬声装置
CN112383865B (zh) * 2020-12-11 2022-06-14 苏州索迩电子技术有限公司 一种骨传导发声装置的使用方法
WO2022151225A1 (zh) * 2021-01-14 2022-07-21 深圳市韶音科技有限公司 一种骨传导扬声器
EP4195701A4 (en) 2021-10-22 2023-06-21 Shenzhen Shokz Co., Ltd. NOISE LEAKAGE REDUCTION DEVICE AND AUDIBLE OUTPUT DEVICE
US11825258B2 (en) * 2021-12-23 2023-11-21 Mobifren Co., Ltd Headset assembly using bone conduction
WO2023230588A1 (en) * 2022-05-25 2023-11-30 Earable, Inc. Headband with bone conduction speakers

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040105566A1 (en) * 2000-07-27 2004-06-03 International Business Machines Corporation Body set type speaker unit
CN1675846A (zh) * 2002-08-16 2005-09-28 飞而康公司 使用振动膜的超小型骨振动扬声器和具有它的移动电话
CN101268717A (zh) * 2005-08-24 2008-09-17 奥帝康有限公司 助听系统
CN102497612A (zh) * 2011-12-23 2012-06-13 深圳市韶音科技有限公司 一种骨传导扬声器及其复合振动装置
CN104823458A (zh) * 2012-11-27 2015-08-05 株式会社坦姆科日本 骨传导扬声器单元
CN105007551A (zh) * 2015-08-13 2015-10-28 深圳市韶音科技有限公司 一种改善骨传导耳机音质的方法及骨传导耳机
CN105101020A (zh) * 2015-08-13 2015-11-25 深圳市韶音科技有限公司 一种改善骨传导扬声器音质的方法及骨传导扬声器
CN105101019A (zh) * 2015-08-13 2015-11-25 深圳市韶音科技有限公司 一种改善骨传导扬声器音质的方法及骨传导扬声器
CN105142077A (zh) * 2015-08-13 2015-12-09 深圳市韶音科技有限公司 一种改善骨传导扬声器漏音的方法及骨传导扬声器
CN204887455U (zh) * 2015-08-13 2015-12-16 深圳市韶音科技有限公司 一种改善骨传导扬声器音质的骨传导扬声器
CN205142506U (zh) * 2015-08-13 2016-04-06 深圳市韶音科技有限公司 一种改善骨传导扬声器漏音的骨传导扬声器

Family Cites Families (42)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2075196A (en) * 1935-04-12 1937-03-30 Edgar H Hand Receiver support
JPS5574290A (en) 1978-11-30 1980-06-04 Matsushita Electric Ind Co Ltd Skelton type receiver
AT397745B (de) 1992-10-07 1994-06-27 Viennatone Gmbh Knochenleitungs-hörgerät
KR20010101915A (ko) * 1999-12-02 2001-11-15 도낀 가부시끼가이샤 서스펜션 플레이트 및 자기 회로 소자 사이에 탄성부를갖는 진동 액추에이터
KR100344091B1 (ko) * 2000-04-18 2002-07-24 주식회사 도우미텍 골도 진동자 및 이것을 이용한 골도 스피커 헤드셋
KR20010111653A (ko) * 2000-06-12 2001-12-20 이상철 골도 진동자
JP3556168B2 (ja) * 2000-12-27 2004-08-18 株式会社テムコジャパン 骨導スピーカ
JP3532537B2 (ja) * 2001-07-05 2004-05-31 株式会社テムコジャパン 骨伝導ヘッドセット
JP3774158B2 (ja) 2002-03-07 2006-05-10 日本電信電話株式会社 イヤホン装置
JP2003284882A (ja) 2002-03-28 2003-10-07 Brother Ind Ltd ミシンのモジュール
JP3794986B2 (ja) * 2002-05-28 2006-07-12 株式会社テムコジャパン 骨伝導スピーカ
JP3985094B2 (ja) 2002-07-30 2007-10-03 透 加藤 骨導スピーカ装置及び通信システム
KR100390003B1 (en) * 2002-10-02 2003-07-04 Joo Bae Kim Bone-conduction speaker using vibration plate and mobile telephone using the same
JP3875178B2 (ja) 2002-11-05 2007-01-31 日本電信電話株式会社 ヘッドホン装置
JP2004274593A (ja) 2003-03-11 2004-09-30 Temuko Japan:Kk 骨伝導スピーカ
JP2005151183A (ja) 2003-11-14 2005-06-09 Toshiba Corp 骨伝導スピーカー、および骨伝導スピーカーを使用した枕、椅子あるいはヘッドホン
CA2554046A1 (en) * 2004-02-20 2005-09-01 Temco Japan Co., Ltd. Bone-conduction handset
JP2006025333A (ja) 2004-07-09 2006-01-26 Koji Takenae ネックバンド式namマイクロフォン装置
SE528279C2 (sv) 2005-02-21 2006-10-10 Entific Medical Systems Ab Vibrator för benledande hörapparat
KR100715003B1 (ko) * 2005-02-23 2007-05-09 주식회사 벨류텔 음향 및 진동발생용 마이크로스피커
JP2007017398A (ja) 2005-07-11 2007-01-25 Toyota Motor Corp 空燃比センサの制御装置
KR200401424Y1 (ko) * 2005-09-08 2005-11-15 이동원 골전도(骨傳導)스피커
JP4655889B2 (ja) * 2005-11-02 2011-03-23 コスモギア株式会社 骨伝導スピーカー
KR100799428B1 (ko) * 2006-06-23 2008-01-29 박의봉 골전도 스피커
JP4861079B2 (ja) 2006-07-10 2012-01-25 Necトーキン株式会社 骨伝導レシーバ
KR20090062999A (ko) 2007-12-13 2009-06-17 현대자동차주식회사 자동차용 스티어링 휠
KR100958486B1 (ko) * 2008-01-29 2010-05-17 김성호 이중프레임 및 이중마그네트 구조의 골전도 스피커
SE533430C2 (sv) * 2008-02-20 2010-09-28 Osseofon Ab Implanterbar vibrator
EP2254345A4 (en) 2008-03-17 2012-08-29 Temco Japan BONE CONDUCTION SPEAKER AND LISTENING DEVICE USING THE SAME
US20090248085A1 (en) * 2008-03-31 2009-10-01 Cochlear Limited Tissue injection fixation system for a prosthetic device
KR101039813B1 (ko) * 2009-03-30 2011-06-13 주식회사 보니아코퍼레이션 골전도와 공기전도 기능을 갖는 듀얼 이어폰
KR20110037483A (ko) * 2009-10-07 2011-04-13 주식회사 뉴지로 마스토이드에 합성수지 재질의 음향 진동판이 일체로 형성된 골전도 진동장치
JP5473640B2 (ja) 2010-02-01 2014-04-16 株式会社オトデザイナーズ スピーカー装置
KR101068254B1 (ko) 2011-02-01 2011-09-28 주식회사 보니아코퍼레이션 골전도 기능을 갖는 통신단말기
US9031274B2 (en) * 2012-09-06 2015-05-12 Sophono, Inc. Adhesive bone conduction hearing device
JP5969817B2 (ja) 2012-05-21 2016-08-17 京セラ株式会社 電子機器
JP6359807B2 (ja) 2013-06-12 2018-07-18 京セラ株式会社 音響再生機器
KR200476572Y1 (ko) 2013-10-30 2015-03-10 김영수 신체 부착이 용이하고 진동 전달력이 우수한 경량 골전도 진동자 패드
CN103716739B (zh) 2014-01-06 2016-11-02 深圳市韶音科技有限公司 一种抑制骨传导扬声器漏音的方法及骨传导扬声器
EP2897378B1 (en) * 2014-01-21 2020-08-19 Oticon Medical A/S Hearing aid device using dual electromechanical vibrator
US9602930B2 (en) * 2015-03-31 2017-03-21 Qualcomm Incorporated Dual diaphragm microphone
JP6651608B2 (ja) * 2015-08-13 2020-02-19 シェンヂェン ボクステック カンパニー リミテッドShenzhen Voxtech Co., Ltd 骨伝導スピーカーのためのシステム

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040105566A1 (en) * 2000-07-27 2004-06-03 International Business Machines Corporation Body set type speaker unit
CN1675846A (zh) * 2002-08-16 2005-09-28 飞而康公司 使用振动膜的超小型骨振动扬声器和具有它的移动电话
CN101268717A (zh) * 2005-08-24 2008-09-17 奥帝康有限公司 助听系统
CN102497612A (zh) * 2011-12-23 2012-06-13 深圳市韶音科技有限公司 一种骨传导扬声器及其复合振动装置
CN104823458A (zh) * 2012-11-27 2015-08-05 株式会社坦姆科日本 骨传导扬声器单元
CN105007551A (zh) * 2015-08-13 2015-10-28 深圳市韶音科技有限公司 一种改善骨传导耳机音质的方法及骨传导耳机
CN105101020A (zh) * 2015-08-13 2015-11-25 深圳市韶音科技有限公司 一种改善骨传导扬声器音质的方法及骨传导扬声器
CN105101019A (zh) * 2015-08-13 2015-11-25 深圳市韶音科技有限公司 一种改善骨传导扬声器音质的方法及骨传导扬声器
CN105142077A (zh) * 2015-08-13 2015-12-09 深圳市韶音科技有限公司 一种改善骨传导扬声器漏音的方法及骨传导扬声器
CN204887455U (zh) * 2015-08-13 2015-12-16 深圳市韶音科技有限公司 一种改善骨传导扬声器音质的骨传导扬声器
CN205142506U (zh) * 2015-08-13 2016-04-06 深圳市韶音科技有限公司 一种改善骨传导扬声器漏音的骨传导扬声器

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3477962A4 (en) * 2017-04-21 2020-03-18 Temco Japan Co., Ltd. BONE CONDUCTION SPEAKER UNIT
US11438689B2 (en) * 2019-01-05 2022-09-06 Shenzhen Shokz Co., Ltd. Loudspeaker apparatus
US20220303665A1 (en) * 2019-01-05 2022-09-22 Shenzhen Shokz Co., Ltd. Loudspeaker apparatus
CN111601228A (zh) * 2020-07-03 2020-08-28 佛山博智医疗科技有限公司 一种可调节的测听耳机安装系统
TWI761874B (zh) * 2020-07-07 2022-04-21 鉭騏實業有限公司 耳鳴屏蔽裝置及其訊號處理方法

Also Published As

Publication number Publication date
US20220225037A1 (en) 2022-07-14
HK1257092A1 (zh) 2019-10-11
PL3337185T3 (pl) 2022-01-10
US20210160634A1 (en) 2021-05-27
US20200228903A1 (en) 2020-07-16
KR20180039150A (ko) 2018-04-17
PT3337185T (pt) 2021-08-30
US20210160635A1 (en) 2021-05-27
US20210160632A1 (en) 2021-05-27
ES2884329T3 (es) 2021-12-10
EP3337185B1 (en) 2021-07-21
DK3337185T3 (da) 2021-08-23
US11323830B2 (en) 2022-05-03
KR20220021000A (ko) 2022-02-21
BR112018002854B1 (pt) 2024-02-06
US11343625B2 (en) 2022-05-24
US11343624B2 (en) 2022-05-24
US20220240029A1 (en) 2022-07-28
JP6651608B2 (ja) 2020-02-19
US11323832B2 (en) 2022-05-03
US11399245B2 (en) 2022-07-26
EP3920551A1 (en) 2021-12-08
US11343623B2 (en) 2022-05-24
EP3337185A4 (en) 2018-06-20
US20210377675A1 (en) 2021-12-02
US10609496B2 (en) 2020-03-31
BR112018002854A2 (zh) 2018-10-02
EP3337185A1 (en) 2018-06-20
US20210168540A1 (en) 2021-06-03
US20200228902A1 (en) 2020-07-16
US20210160633A1 (en) 2021-05-27
US20200228904A1 (en) 2020-07-16
JP2018530205A (ja) 2018-10-11
US11611837B2 (en) 2023-03-21
US11140497B2 (en) 2021-10-05
KR102586268B1 (ko) 2023-10-11
KR102359696B1 (ko) 2022-02-09
US11570560B2 (en) 2023-01-31
US20190014425A1 (en) 2019-01-10
US11438717B2 (en) 2022-09-06

Similar Documents

Publication Publication Date Title
WO2017024595A1 (zh) 一种骨传导扬声器
CN106954150B (zh) 骨传导扬声器
JP6966392B2 (ja) 骨伝導スピーカーのためのシステム
JP7360358B2 (ja) 骨伝導スピーカーのためのシステム
JP6724078B2 (ja) 骨伝導スピーカーのためのシステム
JP7253600B2 (ja) 骨伝導スピーカーのためのシステム
JP2023120275A (ja) 骨伝導スピーカーのためのシステム
JP2018198445A (ja) 骨伝導スピーカーのためのシステム
BR102018067840A2 (pt) Método para melhorar a qualidade de som de um fone de ouvido de osteocondução e fone de ouvido de osteocondução

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15900793

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018506985

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20187007115

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2015900793

Country of ref document: EP

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112018002854

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112018002854

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20180209