WO2020215395A1 - 钠离子电池正极材料及其制备方法及应用 - Google Patents

钠离子电池正极材料及其制备方法及应用 Download PDF

Info

Publication number
WO2020215395A1
WO2020215395A1 PCT/CN2019/086771 CN2019086771W WO2020215395A1 WO 2020215395 A1 WO2020215395 A1 WO 2020215395A1 CN 2019086771 W CN2019086771 W CN 2019086771W WO 2020215395 A1 WO2020215395 A1 WO 2020215395A1
Authority
WO
WIPO (PCT)
Prior art keywords
ion battery
sodium ion
sodium
cathode material
positive electrode
Prior art date
Application number
PCT/CN2019/086771
Other languages
English (en)
French (fr)
Inventor
卓海涛
陈少军
陈雨欣
Original Assignee
深圳大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳大学 filed Critical 深圳大学
Priority to US17/260,929 priority Critical patent/US11127954B2/en
Publication of WO2020215395A1 publication Critical patent/WO2020215395A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B25/00Phosphorus; Compounds thereof
    • C01B25/16Oxyacids of phosphorus; Salts thereof
    • C01B25/26Phosphates
    • C01B25/45Phosphates containing plural metal, or metal and ammonium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/06Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances
    • H01B1/08Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/054Accumulators with insertion or intercalation of metals other than lithium, e.g. with magnesium or aluminium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/5825Oxygenated metallic salts or polyanionic structures, e.g. borates, phosphates, silicates, olivines
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/625Carbon or graphite
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/74Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by peak-intensities or a ratio thereof only
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/80Particles consisting of a mixture of two or more inorganic phases
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/028Positive electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the invention belongs to the field of energy materials, and specifically relates to a sodium ion battery cathode material and a preparation method and application thereof.
  • sodium-ion battery cathode material sodium vanadium phosphate (Na3V2(PO4)3) is a fast ion conductor with relatively high ionic conductivity, excellent thermal stability, large channels that allow sodium ions to pass quickly, stable structure, and high working voltage , High capacity and other advantages, is considered to be the most promising cathode material for sodium ion batteries.
  • Na3V2(PO4)3 sodium vanadium phosphate
  • the battery cathode material with the NASICON (sodium super-ion conductor) structure has the advantages of three open frame structure, high charge and discharge voltage, large energy storage capacity, rapid charge and discharge capability, and good cycle stability. Has attracted widespread attention.
  • the purpose of the present invention is to provide a sodium ion battery cathode material and a preparation method thereof, so as to solve the technical problem of insufficient conductivity and cycle performance of the existing sodium ion battery cathode material. (Refer to the claims to amend) The solution to the problem
  • One aspect of the present invention provides a method for preparing the cathode material of a sodium ion battery, which comprises the following steps:
  • the sodium ion battery cathode material precursor is sintered to obtain the sodium ion battery cathode material.
  • the preparation method of the sodium vanadium phosphate aqueous solution includes the following steps:
  • ammonium metavanadate, oxalic acid, ammonium dihydrogen phosphate and sodium acetate are arranged according to the molar ratio of sodium, vanadium, and phosphorus as [2 ⁇ 1]: [1 ⁇ 3]: [4 ⁇ 21, in which oxalic acid and ammonium metavanadate The mass ratio is [2 ⁇ 1]: [2 ⁇ 1].
  • the initiator is any one of ammonium persulfate, potassium persulfate and hydrogen peroxide-ferrous sulfate.
  • the mass ratio of the methallyl polyoxyethylene ether, N,N-dimethyl (methacryloxyethyl) ammonium propane sulfonate and acrylic acid is 10-90:10- 30:10-30;
  • the mass fraction of the initiator is 0.5%-1%.
  • the mass ratio of the zwitterionic polymer to sodium vanadium phosphate is 1-20:80-99.
  • the sintering treatment includes the following steps:
  • Another aspect of the present invention provides a sodium ion battery cathode material prepared by the preparation method.
  • a sodium ion battery positive electrode including the sodium ion battery positive electrode material.
  • a sodium ion battery comprising the cathode material of the sodium ion battery.
  • the preparation method of the sodium ion cathode material of the present invention prepares sulfur and nitrogen element-doped carbon cathode materials by the sol-gel method, and the synthesized zwitterionic polymer can be used as a chelating agent.
  • the process is simple, can quickly form a gel, shorten the reaction time; and contains a zwitterionic structure, which can be well dissolved with the precursor of sodium vanadium phosphate to form a more stable sulfur and nitrogen element doped carbon cathode material.
  • the cathode material of the sodium ion battery of the present invention improves the conductivity and cycle performance of the cathode material through the doping of carbon with nitrogen and sulfur elements; the cathode material of the sodium ion battery prepared at the same time has sodium vacancies, and is in the process of sodium ion insertion/extraction. Maintain structural stability.
  • the anode of the sodium ion battery of the present invention is prepared by using the anode material of the sodium ion battery, so it has good electrical conductivity and cycle performance.
  • the sodium ion battery of the present invention is prepared by using the sodium ion battery cathode material, it has good electrical conductivity and cycle performance, as well as better stability.
  • Figure 1 is an X-ray diffraction pattern of Na 3 V 2 (PO4) 3 /C material in Example 1 of the present invention
  • FIG. 2 is a graph of the first charge and discharge curve of the sample in Example 1 of the present invention.
  • Fig. 3 is an SEM chart of Na3V2(PO4)3/C material in Example 2 of the present invention.
  • FIG. 4 is a graph of the first charge and discharge curve of the sample in Example 2 of the present invention.
  • FIG. 5 is a graph of the first charge and discharge curve of the sample in Example 3 of the present invention.
  • FIG. 6 is a graph of the test results of the rate performance of the sample in the third embodiment of the present invention.
  • One aspect of the embodiments of the present invention provides a method for preparing the cathode material of a sodium ion battery, which includes the following steps:
  • S03 Sintering the precursor of the sodium ion battery cathode material to obtain the sodium ion battery cathode material.
  • the mass ratio of the methallyl polyoxyethylene ether, N,N-dimethyl (methacryloxyethyl) ammonium propane sulfonate and acrylic acid is 10-90: 10-30:10-30.
  • a proper ratio can change the particle size of the emulsion polymerization, which has a more important impact on the formation of the coating layer. Selecting a smaller particle size in this range can make the coating layer more uniform and dense.
  • the initiator is any one of ammonium persulfate, potassium persulfate and hydrogen peroxide-ferrous sulfate.
  • Ammonium persulfate, potassium persulfate and hydrogen peroxide-ferrous sulfate are used as initiators for the emulsion polymerization of vinyl acetate, acrylate and other vinyl monomers. They are inexpensive, and the resulting emulsion has better water resistance. More preferably, ammonium persulfate and persulfuric acid Ammonium has good effect and low price, and the elements contained in the initiator are sulfur and nitrogen and will not introduce other miscellaneous elements to affect performance.
  • the mass fraction of the initiator is 0.5%-1%.
  • the preparation method of the sodium vanadium phosphate aqueous solution includes the following steps:
  • Ammonium metavanadate, oxalic acid, ammonium dihydrogen phosphate and sodium acetate are arranged according to the molar ratio of sodium, vanadium, and phosphorus: [2 ⁇ 1]: [1 ⁇ 3]: [4 ⁇ 2], among which oxalic acid and metavanadic acid
  • the mass ratio of ammonium is [2 ⁇ 1]: [2 ⁇ 1].
  • the mass ratio of the zwitterionic polymer and sodium vanadium phosphate is 1-20:80-99. Under the stated ratio, it can be ensured that the coating layer can completely cover the core body without affecting the electrical performance due to the excessive amount.
  • the sintering process includes the following steps:
  • the embodiment of the present invention adopts the above-mentioned preparation method of sodium ion battery cathode material to provide a sodium ion battery cathode material with a coating structure.
  • the positive electrode material is sintered from a nitrogen source, a sulfur source, a carbon source and sodium vanadium phosphate.
  • the present invention is doped with nitrogen and sulfur elements on the basis of the original carbon-coated doped ion battery. After sintering, the carbon element becomes zero-valent carbon black, so the electrical conductivity is very weak, but the doped nitrogen and sulfur elements will The formation of compounds with different valences changes the conductivity, and the doped structure formed after the compound is denser, which also enhances its stability and cycle performance.
  • a sodium ion battery positive electrode including the sodium ion battery positive electrode material.
  • the battery anode according to the embodiment of the present invention can be solved due to the use of the cathode material, and the cycle performance and conductivity are improved.
  • a sodium ion battery including the sodium ion battery cathode material. Because the battery according to the embodiment of the present invention adopts the battery cathode material, the cycle performance is improved, and the product stability is also improved.
  • This embodiment provides a sodium ion battery cathode material and a preparation method thereof.
  • the method for preparing the cathode material of the sodium ion battery includes the following steps:
  • the third step is to dry the mucus into a film, then weigh 20% by weight and place it in the sodium vanadium phosphate precursor solution, stir and heat, and finally form a gel. Put the gel in a vacuum oven and dry it in an argon atmosphere, sinter the gel at a high temperature to 300 for the first time, react for 5 hours, take it out and grind and sinter it to 700°C for 8 hours; the heating rate for both times is 3°C/min ; Finally get sodium vanadium phosphate/carbon sodium ion battery cathode material.
  • the positive electrode material of the sodium vanadium phosphate/carbon sodium ion battery is tested by TG, and its carbon content is less than 5%.
  • FIG. 1 The X-ray diffraction pattern of the Na3V2(PO4)3/C material prepared in the embodiment of the present invention is shown in FIG. 1. It can be seen from Figure 1 that there are no extra impurity peaks in the sample, and all diffraction peaks can be well matched with the R-3c space group, indicating that the crystallinity of the sample prepared at the temperature described in the present invention is very high. high.
  • the first step is to use water as the solvent, weigh 6g ammonium metavanadate and 6g oxalic acid to dissolve in it, stir it evenly with magnetic force, then add 9g ammonium dihydrogen phosphate and 9g sodium acetate, stir evenly to obtain a dark green solution and vanadium phosphate Sodium precursor.
  • the third step is to dry the mucus into a film, then weigh 30% by weight and place it in the sodium vanadium phosphate precursor solution, stir and heat, and finally form a gel. Put the gel in a vacuum oven and dry it in an argon atmosphere, sinter it to 400°C for the first time, react for 5 hours, take it out and grind it and sinter it to 800°C, react for 8 hours; both heating rates are 3°C/ min; Finally, the cathode material of sodium vanadium phosphate/carbon sodium ion battery is obtained. The positive electrode material of the sodium vanadium phosphate/carbon sodium ion battery is tested by TG, and its carbon content is less than 5 wt%.
  • the SEM image of the Na3V2(PO4)3/C material prepared in the embodiment of the present invention is shown in FIG. 3. It can be seen from the figure that the sample is uniform and granular, and the particle surface has a porous structure. This is mainly because the zwitterionic polymer can quickly form a gel and form a porous structure on the surface of the material during the water evaporation process.
  • This embodiment provides a sodium ion battery cathode material and a preparation method thereof.
  • the method for preparing the cathode material of the sodium ion battery includes the following steps:
  • the first step is to use water as the solvent, weigh out 5.0g ammonium metavanadate and 5.0g oxalic acid, dissolve them in it, stir evenly with a magnetic force, then add 6.0g ammonium dihydrogen phosphate and 6.0g sodium acetate, and stir to obtain a dark green solution. , And the precursor of sodium vanadium phosphate.
  • the third step is to dry the mucus into a film, then weigh 25% by weight and place it in the sodium vanadium phosphate precursor solution, stir and heat, and finally form a gel. Put the gel in a vacuum oven and dry it in an argon atmosphere. The first high-temperature sintering to 350°C, reaction for 5 hours, take it out and grind and sinter it to 750°C for 8 hours; both heating rates are 3°C/ min; Finally, the cathode material of sodium vanadium phosphate/carbon sodium ion battery is obtained. The positive electrode material of the sodium vanadium phosphate/carbon sodium ion battery is tested by TG, and its carbon content is less than 5 wt%.
  • the cathode material (active material) of sodium vanadium phosphate/carbon sodium ion battery obtained in Example 11, acetylene black, and binder were ground into a slurry at a mass ratio of 8:1:1 and coated on an aluminum sheet, dried, sliced, Install the battery.
  • the first charge-discharge curve of the sodium-ion battery prepared by the sodium vanadium phosphate/carbon-sodium ion battery cathode material prepared in this example is shown in Figure 2. It can be seen from the figure that there is a voltage platform in the range of 2.8-4V. Its value is about 3.4V; when the rate is 0.1C, the first charging capacity reaches 110mAh/g, which is close to the theoretical capacity of sodium vanadium phosphate.
  • the cathode material (active material) of sodium vanadium phosphate/carbon sodium ion battery obtained in Example 12, acetylene black, and binder were ground into a slurry at a mass ratio of 8:1:1, coated on an aluminum sheet, dried, sliced, Install the battery.
  • the charge and discharge curve of the sodium ion battery prepared by the sodium vanadium phosphate/carbon sodium ion battery cathode material prepared in this example is shown in Figure 4. From the figure, it can be seen that there is a voltage plateau in the range of 2.8-4V. It is about 3.4V; when the rate is 0.1C, the first charging capacity reaches 100mAh/g, which is close to the theoretical capacity of sodium vanadium phosphate.
  • the sodium vanadium phosphate/carbon sodium ion battery cathode material (active material), acetylene black, and binder obtained in Example 13 were ground into a slurry at a mass ratio of 8:1:1 and coated on an aluminum sheet, dried, sliced, Install the battery.
  • the charge-discharge curve of the sodium-ion battery prepared by the sodium vanadium phosphate/carbon-sodium ion battery cathode material prepared in this example is shown in Figure 5. It can be seen from the figure that there is a voltage plateau in the range of 2.8-4V. It is about 3.4V; when the rate is 0.1C, the first charging capacity reaches 100mAh/g, which is close to the theoretical capacity of sodium vanadium phosphate.
  • Figure 6 is the rate performance graph of the sample in Example 1. As can be seen from the figure, the material shows excellent rate performance, and its capacity can reach 20-30 mAh/g at a high rate of 30C.
  • the first charge-discharge curve of the sodium ion battery (Example 21) containing the cathode material of the sodium ion battery of Example 11 is shown in Figure 2. It can be seen from the figure that there is a voltage plateau in the range of 2.8-4V. It is about 3.4V; when the rate is 0.1C, the first charging capacity reaches 110mAh/g, which is close to the theoretical capacity of sodium vanadium phosphate.
  • the first charge and discharge curve of the sodium ion battery (Example 22) containing the cathode material of the sodium ion battery of Example 12 is shown in Figure 4. From the figure, it can be seen that there is a voltage plateau in the range of 2.8-4V, and its value is About 3.4V; when the rate is 0.1C, the first charge capacity reaches 100mAh/g, which is close to the theoretical capacity of sodium vanadium phosphate.
  • the first charge and discharge curve of the sodium ion battery (Example 23) containing the cathode material of the sodium ion battery of Example 13 is shown in Figure 5. From the figure, it can be seen that there is a voltage plateau in the range of 2.8-4V, and its value is About 3.4V; when the rate is 0.1C, the first charge capacity reaches 100mAh/g, which is close to the theoretical capacity of sodium vanadium phosphate.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Composite Materials (AREA)
  • Inorganic Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

本发明一种包覆结构的钠离子电池正极材料及其制备方法。本发明通过溶胶-凝胶法制备了Na3V2(PO4)3/C正极材料,合成的两性离子聚合物即可作螯合剂,又作碳源,工艺简单,能快速形成凝胶状,缩短反应时间;且含两性离子结构,可以很好地与磷酸钒钠前驱体相溶,形成稳定碳包覆层。与现有技术相比本发明的钠离子电池正极材料通过氮元素和硫元素对碳的掺杂提升了正极材料的导电性能和循环性能;同时制备的钠离子电池正极材料具有钠空位,在钠离子嵌入/脱出的过程中保持结构稳定。

Description

钠离子电池正极材料及其制备方法及应用 技术领域
本发明属于能源材料领域,具体涉及一种钠离子电池正极材料及其制备方法及应用。
背景技术
钠离子电池正极材料磷酸钒钠(Na3V2(PO4)3)是一种快离子导体,具有离子导电性能比较高、热稳定性优异、可允许钠离子快速通过的大通道、结构稳定、工作电压高、容量高等优点,被认为是一种最具有应用前景的钠离子电池正极材料。但由于其电子电导率比较低以及由此引起电化学极化比较大、循环性能较差等缺点,导致其实际的电化学性能较差,难以产业化。
对于嵌钠正极材料,具有NASICON(钠超离子导体)结构的电池正极材料由于具有三开放的框架结构、充放电电压高、储能容量大、快速充放电能力和循环稳定性好等优点,引起了人们广泛的关注。
目前大多数研究者通过对Na3V2(PO4)3进行纳米化、包覆导电材料、金属离子掺杂来改善其电化学性能。其中,碳包覆被认为是提高Na3V2(PO4)3电化学性能的一种非常有效的方式。然而,碳包覆Na3V2(PO4)3的钠离子电池正极材料还有很大发展空间,其碳包覆层的导电性及包覆效果还需要进一步完善。
发明概述
技术问题
本发明的目的是提供一种钠离子电池正极材料及其制备方法,以解决现有钠离子电池正极材料导电性能和循环性能不够好的技术问题。(参照权利要求书修改)问题的解决方案
技术解决方案
本发明一方面提供了一种所述的钠离子电池正极材料的制备方法,包含如下步骤:
在甲基烯丙基聚氧乙烯醚、N,N-二甲基(甲基丙烯酰氧乙基)铵基丙磺酸内盐以 及丙烯酸体系中加入引发剂,加热反应得到两性离子聚合物溶液;
将所述两性离子聚合物溶液与磷酸钒钠水溶液进行混合处理,并进行干燥处理,得到钠离子电池正极材料前驱体;
将所述钠离子电池正极材料前驱体进行烧结处理,得到钠离子电池正极材料。
优选地,所述磷酸钒钠水溶液的制备方法包括如下步骤:
将偏钒酸铵、草酸、磷酸二氢氨及乙酸钠按照钠、钒、磷元素摩尔比为[2~1]∶[1~3]∶[4~21配置,其中草酸与偏钒酸铵质量比为[2~1]∶[2~1]。
优选地,所述引发剂为过硫酸铵,过硫酸钾和过氧化氢-硫酸亚铁中的任意一种。
优选地,所述甲基烯丙基聚氧乙烯醚、N,N-二甲基(甲基丙烯酰氧乙基)铵基丙磺酸内盐以及丙烯酸的质量比为10-90∶10-30∶10-30;
优选地,所述引发剂的质量分数为0.5%-1%。
优选地,所述两性离子聚合物和磷酸钒钠的质量比为1-20∶80-99。
优选地,所述烧结处理包括如下步骤:
在300℃-400℃温度中初始烧结5小时,然后在700℃-800℃温度中二次烧结8小时,烧结的升温速率均为3℃/min。
发明的有益效果
有益效果
本发明另一方面提供一种由所述的制备方法制备的钠离子电池正极材料。
本发明又一方面提供了一种包含所述的钠离子电池正极材料的钠离子电池正极。
本发明还一方面提供了一种包含所述的钠离子电池正极材料的钠离子电池。
与现有技术相比本发明所述的钠离子正极材料的制备方法通过溶胶-凝胶法制备了硫和氮元素掺杂碳的正极材料,合成的两性离子聚合物即可作螯合剂,又作碳源,工艺简单,能快速形成凝胶状,缩短反应时间;且含两性离子结构,可以很好地与磷酸钒钠前驱体相溶,形成更稳定的硫和氮元素掺杂碳的正极材料。
本发明的钠离子电池正极材料通过氮元素和硫元素对碳的掺杂提升了正极材料 的导电性能和循环性能;同时制备的钠离子电池正极材料具有钠空位,在钠离子嵌入/脱出的过程中保持结构稳定。
本发明所述的钠离子电池正极,由于是采用所述的钠离子电池正极材料制备而成,因此具备良好的导电性能和循环性能。
本发明所述的钠离子电池由于是采用所述的钠离子电池正极材料制备而成,因此具备良好的导电性能和循环性能,还具有更好的稳定性。
对附图的简要说明
附图说明
图1为本发明实施案例1中Na 3V 2(PO4) 3/C材料的X射线衍射图谱;
图2为本发明实施案例1中样品的首次充放电曲线图;
图3为本发明实施案例2中Na3V2(PO4)3/C材料的SEM图谱;
图4为本发明实施案例2中样品的首次充放电曲线图;
图5为本发明实施案例3中样品的首次充放电曲线图;
图6为本发明实施案例3中样品的倍率性能测试结果图。
发明实施例
本发明的实施方式
为了使本发明要解决的技术问题、技术方案及有益效果更加清楚明白,以下结合实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。
本发明实施例一方面提供了一种所述的钠离子电池正极材料的制备方法,包含如下步骤:
S01:在甲基烯丙基聚氧乙烯醚、N,N-二甲基(甲基丙烯酰氧乙基)铵基丙磺酸内盐以及丙烯酸体系中加入引发剂,加热反应得到两性离子聚合物溶液;
S02:将所述两性离子聚合物溶液与磷酸钒钠水溶液进行混合处理,并进行干燥处理,得到钠离子电池正极材料前驱体;
S03:将所述钠离子电池正极材料前驱体进行烧结处理,得到钠离子电池正极材料。
上述步骤S01中,所述甲基烯丙基聚氧乙烯醚、N,N-二甲基(甲基丙烯酰氧乙基) 铵基丙磺酸内盐以及丙烯酸的质量比为10-90∶10-30∶10-30。合适的比例可以让乳液聚合的粒径发生变化,这对包覆层的形成有较为重要的影响,选取此范围粒径较小,可以使包覆层更加均匀致密。
上述步骤S01中,所述引发剂为过硫酸铵,过硫酸钾和过氧化氢-硫酸亚铁中的任意一种。过硫酸铵,过硫酸钾和过氧化氢-硫酸亚铁用作醋酸乙烯、丙烯酸酯等烯类单体乳液聚合的引发剂,价格便宜,所得乳液耐水性较好进一步优选过硫酸铵,过硫酸铵效果良好,价格低廉,且所述引发剂含有的元素为硫和氮不会引入其他杂元素影响性能。
上述步骤S01中,所述引发剂的质量分数为0.5%-1%。
上述步骤S02中,所述磷酸钒钠水溶液的制备方法包括如下步骤:
将偏钒酸铵、草酸、磷酸二氢氨及乙酸钠按照钠、钒、磷元素摩尔比为[2~1]∶[1~3]∶[4~2]配置,其中草酸与偏钒酸铵质量比为[2~1]∶[2~1]。
上述步骤S02中,所述两性离子聚合物和磷酸钒钠的质量比为1-20∶80-99。在所述比例下可以保证包覆层可以完全包覆核体,且不会因为量太多而影响电学性能。
上述步骤S03中,所述烧结处理包括如下步骤:
在300℃-400℃温度中初始烧结5小时,然后在700℃-800℃温度中二次烧结8小时,烧结的升温速率均为3℃/min。分两次烧结可以分批除掉其中不需要的杂质成分,若一次性除去,由于杂质的性质不同会导致包覆层质地不均。
本发明实施例另一方面采用上述钠离子电池正极材料的制备方法提供了一种包覆结构的钠离子电池正极材料。所述正极材料由氮源、硫源、碳源和磷酸钒钠烧结而成。本发明在原有的碳包掺杂离子电池的基础上掺杂了氮和硫元素,碳元素烧结之后为零价态炭黑,因此导电性能很弱,但是掺杂了氮元素和硫元素后会形成不同价态的化合物,改变了导电能力,而且由于化合之后形成的掺杂结构更致密,也使得其稳定性和循环性能加强。
本发明实施例又一方面提供了一种包含所述的钠离子电池正极材料的钠离子电池正极。本发明实施例所述得的电池正极由于使用了所述正极材料会解决,循环性能和导电性能都得到了提升。
本发明实施例还一方面提供了一种包含所述的钠离子电池正极材料的钠离子电池。本发明实施例所述的电池由于采用了所述电池正极材料,循环性能得到提升,产品稳定性也得到了提升。
1.钠离子电池正极材料极其制备方法实施例
实施例11
本实施例提供一种钠离子电池正极材料极其制备方法。所述钠离子电池正极材料的制备方法包括如下步骤:
第一步,以水作溶剂,称取4.6g偏钒酸铵、4.6g草酸溶解于其中,同时磁力搅拌均匀,再加入6.9g磷酸二氢铵及4.9g乙酸钠,搅拌均匀得深绿色溶液,制备磷酸钒钠前驱体溶液。
第二步,以水作溶剂,称取10份甲基烯丙基聚氧乙烯醚(TPEG)、80份N,N-二甲基(甲基丙烯酰氧乙基)铵基丙磺酸内盐(DMAPS)加入三口烧瓶里,并搅拌均匀;再加入10份丙烯酸(AA),继续搅拌,并加入去离子水调节溶液浓度,同时升温至70℃;称取1wt%引发剂过硫酸铵(NH4S2O8),配制成质量分数为10%的水溶液,缓慢滴加入反应容器中;反应4小时后得高分子量的白色凝胶物。
第三步,将黏液烘干成膜,然后称取20wt%%置于磷酸钒钠前驱体溶液中,搅拌并加热,最后形成凝胶。把凝胶置于真空烘箱烘干后在氩气氛围下,首次高温烧结至300,反应5小时,取出研磨后二次烧结至700℃,时间8小时;两次升温速率均为3℃/min;最终得磷酸钒钠/碳钠离子电池正极材料。所述磷酸钒钠/碳钠离子电池正极材料经过TG测试,其碳含量低于5%。
本发明实施案所制备的Na3V2(PO4)3/C材料的X射线衍射图谱如图1所示。从图1可以看出,样品中不存在多余的杂峰,所有的衍射峰都能很好地与R-3c空间群相匹配,说明在本发明所述的温度下所制备的样品结晶度很高。
实施案例12
第一步,以水作溶剂,称取6g偏钒酸铵、6g草酸溶解于其中,同时磁力搅拌均匀,再加入9g磷酸二氢铵及9g乙酸钠,搅拌均匀得深绿色溶液,及磷酸钒钠前驱体。
第二步,以水作溶剂,称取20份甲基烯丙基聚氧乙烯醚(TPEG)、60份N,N-二 甲基(甲基丙烯酰氧乙基)铵基丙磺酸内盐(DMAPS)加入三口烧瓶里,并搅拌均匀;再加入20份丙烯酸(AA),继续搅拌,并加入去离子水调节溶液浓度,同时升温至90℃;称取1份引发剂过硫酸铵(NH4S2O8),配制成质量分数为10%的水溶液,缓慢滴加入反应容器中;反应5h后得高分子量的白色凝胶物。
第三步,将黏液烘干成膜,然后称取30wt%置于磷酸钒钠前驱体溶液中,搅拌并加热,最后形成凝胶。把凝胶置于真空烘箱烘干后在氩气氛围下,首次高温烧结至400℃,反应5小时,取出研磨后二次烧结至800℃,反应8小时;两次升温速率均为3℃/min;最终得磷酸钒钠/碳钠离子电池正极材料。所述磷酸钒钠/碳钠离子电池正极材料经过TG测试,其碳含量低于5wt%。
本发明实施案所制备的Na3V2(PO4)3/C材料的SEM图如图3所示。从图中可以看出,样品为均匀的颗粒状,且颗粒表面具有多孔结构,这主要时因为两性离子聚合物能快速形成凝胶,在水蒸发过程于材料表面形成多孔结构。
实施案例13
本实施例提供一种钠离子电池正极材料极其制备方法。所述钠离子电池正极材料的制备方法包括如下步骤:
第一步,以水作溶剂,称取5.0g偏钒酸铵、5.0g草酸溶解于其中,同时磁力搅拌均匀,再加入6.0g磷酸二氢铵及6.0g乙酸钠,搅拌均匀得深绿色溶液,及磷酸钒钠前驱体。
第二步,以水作溶剂,称取30份甲基烯丙基聚氧乙烯醚(TPEG)、40份N,N-二甲基(甲基丙烯酰氧乙基)铵基丙磺酸内盐(DMAPS)加入三口烧瓶里,并搅拌均匀;再加入30份丙烯酸(AA),继续搅拌,并加入去离子水调节溶液浓度,同时升温至80℃;称取1份引发剂过硫酸铵(NH4S2O8),配制成质量分数为10%的水溶液,缓慢滴加入反应容器中;反应5小时后得高分子量的白色凝胶物。
第三步,将黏液烘干成膜,然后称取25wt%置于磷酸钒钠前驱体溶液中,搅拌并加热,最后形成凝胶。把凝胶置于真空烘箱烘干后在氩气氛围下,首次高温烧结至350℃,反应5小时,取出研磨后二次烧结至750℃,时间8小时;两次升温速率均为3℃/min;最终得磷酸钒钠/碳钠离子电池正极材料。所述磷酸钒钠/碳钠离子电池正极材料经过TG测试,其碳含量低于5wt%。
2.钠离子电池实施例
实施案例21
把实施例11所得磷酸钒钠/碳钠离子电池正极材料(活性物质)与乙炔黑、粘结剂按照质量比为8∶1∶1研磨成浆状涂覆在铝片上,烘干、切片、装电池。本实施例制备的磷酸钒钠/碳钠离子电池正极材料制备的钠离子电池的首次充放电曲线如图2所示,从图中可以看到,在2.8-4V范围内,存在一个电压平台,其值为约3.4V左右;当倍率在0.1C时,首次充电容量达110mAh/g,接近磷酸钒钠的理论容量。
实施案例22
把实施例12所得磷酸钒钠/碳钠离子电池正极材料(活性物质)与乙炔黑、粘结剂按照质量比为8∶1∶1研磨成浆状涂覆在铝片上,烘干、切片、装电池。本实施例制备的磷酸钒钠/碳钠离子电池正极材料制备的钠离子电池的充放电曲线如图4所示,从图中可以看到在2.8-4V范围内,存在一个电压平台,其值为约3.4V左右;当倍率在0.1C时,首次充电容量达100mAh/g,接近磷酸钒钠的理论容量。
实施案例23
把实施例13所得磷酸钒钠/碳钠离子电池正极材料(活性物质)与乙炔黑、粘结剂按照质量比为8∶1∶1研磨成浆状涂覆在铝片上,烘干、切片、装电池。本实施例制备的磷酸钒钠/碳钠离子电池正极材料制备的钠离子电池的充放电曲线如图5所示,从图中可以看到在2.8-4V范围内,存在一个电压平台,其值为约3.4V左右;当倍率在0.1C时,首次充电容量达100mAh/g,接近磷酸钒钠的理论容量。
图6为实施例1中样品的倍率性能图,从图中可以看到,该材料显示出优异的倍率性能,在30C的高倍率下,其容量还可达20-30mAh/g。
实施例3
将各实施例中钠离子电池分别进行充放电性能测试,结果如图2、3和5所示。
含有实施例11钠离子电池正极材料的钠离子电池(实施例21)的首次充放电曲线如图2所示,从图中可以看到,在2.8-4V范围内,存在一个电压平台,其值为约3.4V左右;当倍率在0.1C时,首次充电容量达110mAh/g,接近磷酸钒钠的理论容量。
含有实施例12钠离子电池正极材料的钠离子电池(实施例22)的首次充放电曲线如图4所示,从图中可以看到在2.8-4V范围内,存在一个电压平台,其值为约3.4V左右;当倍率在0.1C时,首次充电容量达100mAh/g,接近磷酸钒钠的理论容量。
含有实施例13钠离子电池正极材料的钠离子电池(实施例23)的首次充放电曲线如图5所示,从图中可以看到在2.8-4V范围内,存在一个电压平台,其值为约3.4V左右;当倍率在0.1C时,首次充电容量达100mAh/g,接近磷酸钒钠的理论容量。

Claims (10)

  1. 一种钠离子电池正极材料的制备方法,其特征在于,包含如下步骤:
    在甲基烯丙基聚氧乙烯醚、N,N-二甲基(甲基丙烯酰氧乙基)铵基丙磺酸内盐以及丙烯酸体系中加入引发剂,加热反应得到两性离子聚合物溶液;
    将所述两性离子聚合物溶液与磷酸钒钠水溶液进行混合处理,并进行干燥处理,得到钠离子电池正极材料前驱体;
    将所述钠离子电池正极材料前驱体进行烧结处理,得到钠离子电池正极材料。
  2. 如权利要求1所述的钠离子电池正极材料的制备方法,其特征在于:所述磷酸钒钠水溶液的制备方法包括如下步骤:
    将偏钒酸铵、草酸、磷酸二氢氨及乙酸钠按照钠、钒、磷元素摩尔比为[2~1]∶[1~3]∶[4~2]配置,其中草酸与偏钒酸铵质量比为[2~1]∶[2~1]。
  3. 如权利要求1所述的钠离子电池正极材料的制备方法,其特征在于:所述引发剂为过硫酸铵,过硫酸钾和过氧化氢-硫酸亚铁中的任意一种。
  4. 如权利要求1所述的钠离子电池正极材料的制备方法,其特征在于:所述甲基烯丙基聚氧乙烯醚、N,N-二甲基(甲基丙烯酰氧乙基)铵基丙磺酸内盐以及丙烯酸的质量比为10-90∶10-30∶10-30;
  5. 权利要求1所述的钠离子电池正极材料的制备方法,其特征在于:所述引发剂的质量分数为0.5%-1%。
  6. 权利要求1所述的钠离子电池正极材料的制备方法,其特征在于:所述两性离子聚合物和磷酸钒钠的质量比为1-20∶80-99。
  7. 权利要求1所述的钠离子电池正极材料的制备方法,其特征在于:所述烧结处理包括如下步骤:
    在300℃-400℃温度中初始烧结5小时,然后在700℃-800℃温度中 二次烧结8小时,烧结的升温速率均为3℃/min。
  8. 一种由权利要求1-7所述的制备方法制备的钠离子电池正极材料。
  9. 一种钠离子电池正极,其特征在于:包含如权利要求8所述的钠离子电池正极材料。
  10. 一种钠离子电池,其特征在于:包含如权利要求8所述的钠离子电池正极材料。
PCT/CN2019/086771 2019-04-23 2019-05-14 钠离子电池正极材料及其制备方法及应用 WO2020215395A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/260,929 US11127954B2 (en) 2019-04-23 2019-05-14 Cathode material for a sodium-ion battery, preparation method therefor and application thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910327175.6 2019-04-23
CN201910327175.6A CN109980211B (zh) 2019-04-23 2019-04-23 钠离子电池正极材料及其制备方法及应用

Publications (1)

Publication Number Publication Date
WO2020215395A1 true WO2020215395A1 (zh) 2020-10-29

Family

ID=67085830

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/086771 WO2020215395A1 (zh) 2019-04-23 2019-05-14 钠离子电池正极材料及其制备方法及应用

Country Status (3)

Country Link
US (1) US11127954B2 (zh)
CN (1) CN109980211B (zh)
WO (1) WO2020215395A1 (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114221025A (zh) * 2021-12-15 2022-03-22 四川大学 一种磷酸钒钠@碳核壳纳米棒、制备方法及应用
CN114477274A (zh) * 2022-02-28 2022-05-13 中山大学 一种钠离子电池负极材料及其制备方法与应用
CN114613999A (zh) * 2022-03-16 2022-06-10 哈尔滨工业大学(威海) 一种具有中空纳米笼结构的钠离子电池负极材料及其制备方法
CN114864905A (zh) * 2022-05-30 2022-08-05 中国地质大学(武汉) 石墨烯复合硅掺杂磷酸钒钠的复合材料及制备方法和应用
CN115676801A (zh) * 2022-11-22 2023-02-03 无锡零一未来新材料技术研究院有限公司 一种导电剂包覆正极材料及其制备方法与电化学储能装置
CN115893513A (zh) * 2022-09-30 2023-04-04 湖南钠能时代科技发展有限公司 一种水分子扩层改性的三元钠电材料及其制备方法

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113745507B (zh) * 2021-09-02 2024-01-30 东北师范大学 一种氯磷酸钒氧钠正极材料、制备方法及钠离子电池
CN114148994B (zh) * 2021-11-17 2023-08-29 中北大学 一种柔性Bi2O2Se基电极材料及其制备方法和应用
CN114655991B (zh) * 2022-03-24 2024-01-09 西北工业大学深圳研究院 一种改性锰酸钠材料及其制备方法和应用
CN114920283B (zh) * 2022-03-29 2024-01-26 中北大学 一种锌锡二元硫化物/碳纳米立方复合材料及其制备方法
CN114824207A (zh) * 2022-04-18 2022-07-29 中国科学技术大学 一种用于水系钠离子电池负极材料的中空纳米立方块的制备方法
CN115275180A (zh) * 2022-08-26 2022-11-01 上海恩捷新材料科技有限公司 空位型钠离子正极材料及其制备方法与应用
CN115838162B (zh) * 2022-12-21 2024-02-23 三一红象电池有限公司 磷酸钒铁钠正极材料及其制备方法
CN115663196B (zh) * 2022-12-27 2023-03-28 江苏正力新能电池技术有限公司 一种纳米立方聚阴离子电极材料及其制备方法与应用
CN117712311B (zh) * 2023-12-12 2024-05-17 柳州法恩赛克新能源科技有限公司 一种钠离子电池正极材料及其制备方法和应用

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103923275A (zh) * 2014-03-18 2014-07-16 深圳大学 一种两性甜菜碱类聚羧酸减水剂及其制备方法
CN105914352A (zh) * 2016-04-19 2016-08-31 哈尔滨工业大学 一种钠离子电池正极材料Na3V2(PO4)3/C的制备方法
CN107845796A (zh) * 2017-10-27 2018-03-27 东北大学秦皇岛分校 一种碳掺杂磷酸钒钠正极材料及其制备方法和应用

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102569797B (zh) * 2012-01-20 2015-04-29 中国科学院宁波材料技术与工程研究所 一种新型磷酸盐基正极复合材料及其制备方法和用途
CN105884960B (zh) * 2016-05-25 2018-07-20 深圳大学 Dmaps-aa-aas共聚物及其制备方法和应用
CN107256953B (zh) * 2017-06-13 2019-08-02 枣庄学院 一种高性能钠离子电池负极材料(vo)2p2o7/c复合材料的制备方法
CN109119604A (zh) * 2018-07-12 2019-01-01 暨南大学 一种二次锌基电池用纳米Zn@C负极材料及其制备方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103923275A (zh) * 2014-03-18 2014-07-16 深圳大学 一种两性甜菜碱类聚羧酸减水剂及其制备方法
CN105914352A (zh) * 2016-04-19 2016-08-31 哈尔滨工业大学 一种钠离子电池正极材料Na3V2(PO4)3/C的制备方法
CN107845796A (zh) * 2017-10-27 2018-03-27 东北大学秦皇岛分校 一种碳掺杂磷酸钒钠正极材料及其制备方法和应用

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
HAO, YUEYING ET AL.: "Hydrothermal-Sol-Gel Synthesis of Na3V2(Po4)3/C Cathode Material and Its Electrochemical Performances", JOURNAL OF FUNCTIONAL MATERIALS, no. 11, 30 November 2018 (2018-11-30), ISSN: 1001-9731, DOI: 20200122141811A *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114221025A (zh) * 2021-12-15 2022-03-22 四川大学 一种磷酸钒钠@碳核壳纳米棒、制备方法及应用
CN114477274A (zh) * 2022-02-28 2022-05-13 中山大学 一种钠离子电池负极材料及其制备方法与应用
CN114613999A (zh) * 2022-03-16 2022-06-10 哈尔滨工业大学(威海) 一种具有中空纳米笼结构的钠离子电池负极材料及其制备方法
CN114613999B (zh) * 2022-03-16 2023-09-15 哈尔滨工业大学(威海) 一种具有中空纳米笼结构的钠离子电池负极材料及其制备方法
CN114864905A (zh) * 2022-05-30 2022-08-05 中国地质大学(武汉) 石墨烯复合硅掺杂磷酸钒钠的复合材料及制备方法和应用
CN115893513A (zh) * 2022-09-30 2023-04-04 湖南钠能时代科技发展有限公司 一种水分子扩层改性的三元钠电材料及其制备方法
CN115676801A (zh) * 2022-11-22 2023-02-03 无锡零一未来新材料技术研究院有限公司 一种导电剂包覆正极材料及其制备方法与电化学储能装置
CN115676801B (zh) * 2022-11-22 2024-05-10 无锡零一未来新材料技术研究院有限公司 一种导电剂包覆正极材料及其制备方法与电化学储能装置

Also Published As

Publication number Publication date
US20210151767A1 (en) 2021-05-20
US11127954B2 (en) 2021-09-21
CN109980211A (zh) 2019-07-05
CN109980211B (zh) 2021-03-19

Similar Documents

Publication Publication Date Title
WO2020215395A1 (zh) 钠离子电池正极材料及其制备方法及应用
CN110148708B (zh) 一种负极片及锂离子电池
CN108878877B (zh) 一种水系锌离子二次电池用正极活性材料以及一种水系锌离子二次电池
CN110085839B (zh) 磷酸铁锂复合正极材料及其制备方法和应用
CN112133897B (zh) 一种湿法包覆降低正极材料表面碱量并提高电化学性能的方法
CN110817958B (zh) 一种碳包覆纳米五氧化二钒锂电池正极材料及其液相原位制备方法
CN109616651B (zh) 一种钠离子正极材料杂原子掺杂石墨烯基磷酸钒钠复合纳米材料
CN107482188B (zh) 一种中空核壳结构复合材料及其制备方法与应用
CN109167036B (zh) 一种TiN与导电聚合物复合改性的锂离子层状三元正极材料及其制备方法
CN111916703B (zh) 一种磷酸锰铁锂/碳@石墨烯复合材料的原位合成方法
CN113173606A (zh) 一种基于密度泛函理论计算提高富锂铁锰基正极材料性能的改性方法
CN102208646A (zh) AlPO4修复包覆LiFePO4/C正极材料及其制备方法
CN110085850B (zh) 一种多层碳包覆的硅碳复合材料的制备方法
CN111525097B (zh) 负极材料、其制备方法及应用
CN113511651B (zh) 一种聚吡咯修饰微氧化膨胀石墨负极材料的制备方法
CN113299872B (zh) 一种锂离子电池磷酸铁锂正极的制备方法
CN114804057A (zh) 改性磷酸铁前驱体、改性磷酸铁锂及其制备方法
CN107895796A (zh) 一种高倍率纳米片状介孔磷酸铁锂的制备方法
CN113998744A (zh) 一种高容量、高倍率LiNi0.6Co0.2Mn0.2O2正极材料、制备方法及应用
TW201320450A (zh) 改質人造石墨作為鋰電池負極材料之製備方法
CN112456536A (zh) 一种固态电解质材料、氟离子电池及其制备方法
CN117525372B (zh) 一种基于金属有机骨架材料的锂电池负极材料
CN114824250B (zh) 多功能添加剂同步改性碳包覆氟磷酸钒钠复合材料、制备方法及其应用
CN113036138B (zh) 一种三维多孔亲锂复合材料的制备方法及应用
CN111081972B (zh) 一种用于锂离子电池的界面修饰正极材料的制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19926340

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 17/02/2022)

122 Ep: pct application non-entry in european phase

Ref document number: 19926340

Country of ref document: EP

Kind code of ref document: A1