WO2020208983A1 - 高周波回路及び通信モジュール - Google Patents
高周波回路及び通信モジュール Download PDFInfo
- Publication number
- WO2020208983A1 WO2020208983A1 PCT/JP2020/009547 JP2020009547W WO2020208983A1 WO 2020208983 A1 WO2020208983 A1 WO 2020208983A1 JP 2020009547 W JP2020009547 W JP 2020009547W WO 2020208983 A1 WO2020208983 A1 WO 2020208983A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- signal line
- ground conductor
- conductor
- circuit board
- dielectric layer
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K1/00—Printed circuits
- H05K1/02—Details
- H05K1/0213—Electrical arrangements not otherwise provided for
- H05K1/0237—High frequency adaptations
- H05K1/025—Impedance arrangements, e.g. impedance matching, reduction of parasitic impedance
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01P—WAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
- H01P5/00—Coupling devices of the waveguide type
- H01P5/02—Coupling devices of the waveguide type with invariable factor of coupling
- H01P5/022—Transitions between lines of the same kind and shape, but with different dimensions
- H01P5/028—Transitions between lines of the same kind and shape, but with different dimensions between strip lines
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01P—WAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
- H01P5/00—Coupling devices of the waveguide type
- H01P5/08—Coupling devices of the waveguide type for linking dissimilar lines or devices
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K1/00—Printed circuits
- H05K1/02—Details
- H05K1/0213—Electrical arrangements not otherwise provided for
- H05K1/0237—High frequency adaptations
- H05K1/025—Impedance arrangements, e.g. impedance matching, reduction of parasitic impedance
- H05K1/0253—Impedance adaptations of transmission lines by special lay-out of power planes, e.g. providing openings
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K1/00—Printed circuits
- H05K1/02—Details
- H05K1/11—Printed elements for providing electric connections to or between printed circuits
- H05K1/118—Printed elements for providing electric connections to or between printed circuits specially for flexible printed circuits, e.g. using folded portions
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K1/00—Printed circuits
- H05K1/02—Details
- H05K1/14—Structural association of two or more printed circuits
- H05K1/147—Structural association of two or more printed circuits at least one of the printed circuits being bent or folded, e.g. by using a flexible printed circuit
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K1/00—Printed circuits
- H05K1/02—Details
- H05K1/0213—Electrical arrangements not otherwise provided for
- H05K1/0216—Reduction of cross-talk, noise or electromagnetic interference
- H05K1/0218—Reduction of cross-talk, noise or electromagnetic interference by printed shielding conductors, ground planes or power plane
- H05K1/0219—Printed shielding conductors for shielding around or between signal conductors, e.g. coplanar or coaxial printed shielding conductors
- H05K1/0221—Coaxially shielded signal lines comprising a continuous shielding layer partially or wholly surrounding the signal lines
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K2201/00—Indexing scheme relating to printed circuits covered by H05K1/00
- H05K2201/01—Dielectrics
- H05K2201/0183—Dielectric layers
- H05K2201/0191—Dielectric layers wherein the thickness of the dielectric plays an important role
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K2201/00—Indexing scheme relating to printed circuits covered by H05K1/00
- H05K2201/05—Flexible printed circuits [FPCs]
- H05K2201/058—Direct connection between two or more FPCs or between flexible parts of rigid PCBs
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K3/00—Apparatus or processes for manufacturing printed circuits
- H05K3/36—Assembling printed circuits with other printed circuits
- H05K3/361—Assembling flexible printed circuits with other printed circuits
- H05K3/363—Assembling flexible printed circuits with other printed circuits by soldering
Definitions
- the present disclosure relates to a high-frequency circuit including a printed circuit board and a flexible substrate, and a communication module including a high-frequency circuit.
- Patent Document 1 discloses an optical module in which a printed circuit board and a flexible wiring board are connected via a plurality of pads.
- the flexible wiring board disclosed in Patent Document 1 below includes a radio wave absorbing layer that absorbs radio waves in order to reduce crosstalk between two transmission lines.
- the flexible wiring board disclosed in Patent Document 1 includes a radio wave absorbing layer.
- a radio wave absorbing layer since a plurality of pads are arranged at the connection portion between the printed circuit board and the flexible wiring board, it is difficult to provide a radio wave absorption layer capable of sufficiently absorbing radio waves. Therefore, there is a problem that radio waves may leak to the outside from the connection portion between the printed circuit board and the flexible wiring board, and crosstalk may occur.
- the present disclosure has been made to solve the above problems, and an object of the present disclosure is to obtain a high frequency circuit and a communication module capable of suppressing leakage of an electric field from a connection portion between a printed circuit board and a flexible board.
- the high frequency circuit includes a printed circuit board and a flexible substrate connected to the printed circuit board.
- the printed circuit board has a first surface and a second surface, and a first ground conductor is provided.
- a second surface having a first dielectric layer applied to the first surface, a third surface and a fourth surface, and a second ground conductor applied to the fourth surface.
- the flexible substrate has a fifth surface and a sixth surface, comprising a dielectric layer and a plurality of first signal lines routed between the second and third surfaces.
- the third ground conductor has a third dielectric layer on the fifth surface, a seventh surface and an eighth surface, and the fourth ground conductor is the eighth surface.
- a fourth dielectric layer provided on the substrate and a plurality of second signal lines routed between the sixth surface and the seventh surface, and a connection portion between the printed circuit board and the flexible substrate. Is connected to each of the first signal lines at one end and is non-conducting to the second ground conductor, and has a plurality of first connecting conductors whose other ends are exposed from the fourth surface and a third. One end exposed from the fifth surface is connected to the other end of each first connecting conductor, and the other end is connected to each second signal line in a non-conducting state with the ground conductor of. It is provided with a plurality of second connecting conductors.
- FIG. 1 It is a block diagram which shows the communication module which includes the high frequency circuit 1 which concerns on Embodiment 1.
- FIG. It is a perspective view which shows the high frequency circuit 1 which concerns on Embodiment 1.
- FIG. It is sectional drawing which shows the cross section in A 1- A 2 in the printed circuit board 2 which the high frequency circuit 1 which concerns on Embodiment 1 has.
- It is a sectional view showing a section at B 1 -B 2 in the flexible substrate 3 having a high-frequency circuit 1 according to the first embodiment.
- Figure 5A is a sectional view showing a cross-section at C 1 -C 2 in front of the connecting part 4 and the printed board 2 and the flexible board 3 is connected, FIG.
- FIG. 5B the printed circuit board 2 and the flexible board 3 is connected at the connecting portion 4 is a sectional view showing a cross-section at C 1 -C 2.
- Figure 6A is a plan view seen from the direction indicated by the printed circuit board 2 shown in FIG. 5A by the arrow D 1
- FIG. 6B is a plan view seen from the direction indicated by the flexible board 3 is an arrow D 2 shown in FIG. 5A.
- Figure 7A is a sectional view showing a section at C 1 -C 2 in front of the connecting part 4 and the printed board 2 and the flexible board 3 is connected
- FIG. 7B a printed circuit board 2 and the flexible board 3 is connected at the connecting portion 4 is a sectional view showing a cross-section at C 1 -C 2.
- FIG. 1 is a configuration diagram showing a communication module including the high frequency circuit 1 according to the first embodiment.
- FIG. 2 is a perspective view showing the high frequency circuit 1 according to the first embodiment.
- FIG. 3 is a cross-sectional view showing a cross section of the printed circuit board 2 included in the high frequency circuit 1 according to the first embodiment in A 1 to A 2 .
- FIG. 4 is a cross-sectional view showing a cross section of the flexible substrate 3 of the high frequency circuit 1 according to the first embodiment in B 1 and B 2 .
- Figure 5 is a sectional view showing a cross-section at C 1 -C 2 at the connecting portion 4 of the printed circuit board 2 and the flexible board 3.
- FIG. 1 is a configuration diagram showing a communication module including the high frequency circuit 1 according to the first embodiment.
- FIG. 2 is a perspective view showing the high frequency circuit 1 according to the first embodiment.
- FIG. 3 is a cross-sectional view showing a cross section of the printed circuit board 2 included in the high frequency circuit 1 according to
- FIG. 5A shows a state before the printed circuit board 2 and the flexible board 3 are connected
- FIG. 5B shows a state where the printed circuit board 2 and the flexible board 3 are connected
- Figure 6A is a plan view seen from the direction indicated by the printed circuit board 2 shown in FIG. 5A by the arrow D 1.
- Figure 6B is a plan view seen from the direction indicated by the flexible board 3 is an arrow D 2 shown in FIG. 5A.
- the high-frequency circuit 1 includes a printed circuit board 2 and a flexible board 3, and transmits a signal transmitted by the communication module or a signal received by the communication module.
- the printed circuit board 2 includes a first dielectric layer 11, a first ground conductor 12, a second dielectric layer 13, a second ground conductor 14, first signal lines 15a and 15b, and a first ground connecting conductor. It includes 16 and a conductor 17.
- FIG. 2 only a part of the printed circuit board 2 is drawn.
- the printed circuit board 2 shown in FIGS. 2 and 3 has two signal lines 15a and 15b as a first signal line. However, this is only an example, and the printed circuit board 2 may have three or more first signal lines as the first signal line.
- the printed circuit board 2 may have only one first signal line as the first signal line. Even when the printed circuit board 2 has only one first signal line, it is between the one first signal line and the signal line (not shown) wired outside the printed circuit board 2. And may cause crosstalk.
- the flexible substrate 3 is connected to the printed circuit board 2 via the connecting portion 4.
- the flexible substrate 3 includes a third dielectric layer 21, a third ground conductor 22, a fourth dielectric layer 23, a fourth ground conductor 24, second signal lines 25a and 25b, and a second ground connecting conductor. It includes 26 and a conductor 27.
- the flexible substrate 3 shown in FIGS. 2 and 4 has two signal lines 25a and 25b as a second signal line. However, this is only an example, and the flexible substrate 3 may have three or more second signal lines as the second signal line. Further, the flexible substrate 3 may have only one second signal line as the second signal line. Even when the flexible board 3 has only one second signal line, between the one second signal line and the signal line (not shown) wired outside the flexible board 3. And there is a possibility of crosstalk.
- the connecting portion 4 connects the printed circuit board 2 and the flexible substrate 3.
- the connection portion 4 is a connection that electrically connects the first signal line 15a and the second signal line 25a in a non-conducting state with each of the second ground conductor 14 and the third ground conductor 22.
- a first connecting conductor 31a and a second connecting conductor 33a are provided.
- the connecting portion 4 electrically connects between the first signal line 15b and the second signal line 25b in a non-conducting state with each of the second ground conductor 14 and the third ground conductor 22.
- a first connecting conductor 31b and a second connecting conductor 33b are provided as connecting conductors.
- the first dielectric layer 11 has a first surface 11a and a second surface 11b.
- the first surface 11a is provided with the first ground conductor 12.
- the first ground conductor 12 is a sheet-shaped conductor provided on the first surface 11a and is connected to the ground.
- the second dielectric layer 13 has a third surface 13a and a fourth surface 13b.
- the fourth surface 13b is provided with a second ground conductor 14.
- the second ground conductor 14 is a sheet-shaped conductor provided on the fourth surface 13b, and is connected to the ground.
- Each of the first signal line 15a and the first signal line 15b is wired between the second surface 11b and the third surface 13a.
- Each of the first signal line 15a and the first signal line 15b transmits a signal transmitted by the communication module or a signal received by the communication module.
- a first ground connecting conductor 16 and a conductor 17 are provided between the first signal line 15a and the first signal line 15b.
- the first ground connecting conductor 16 is provided between the first signal line 15a and the first signal line 15b. Further, the first ground connecting conductor 16 is also provided around both sides of the first signal line 15a on the side where the first signal line 15b is not provided. Further, the first ground connecting conductor 16 is also provided around both sides of the first signal line 15b on the side where the first signal line 15a is not provided. One end of the first ground connecting conductor 16 is connected to the first ground conductor 12, and the other end of the first ground connecting conductor 16 is connected to the second ground conductor 14. In the high frequency circuit 1 shown in FIG. 2, the first ground connecting conductor 16 is provided only around the first signal line 15a and the first signal line 15b.
- the first ground connecting conductor 16 is provided around the first signal line 15a and the first signal line 15b, as well as the first signal line 15a and the first signal line 15b. It may be provided in a place other than the surrounding area.
- the conductor 17 is provided between the second surface 11b and the third surface 13a, and is connected to the first ground connecting conductor 16 with the first ground connecting conductor 16 inserted inside, for example. ing.
- the third dielectric layer 21 has a fifth surface 21a and a sixth surface 21b.
- the fifth surface 21a is provided with a third ground conductor 22.
- the third ground conductor 22 is a sheet-shaped conductor provided on the fifth surface 21a and is connected to the ground.
- the fourth dielectric layer 23 has a seventh surface 23a and an eighth surface 23b.
- the eighth surface 23b is provided with a fourth ground conductor 24.
- the fourth ground conductor 24 is a sheet-shaped conductor provided on the eighth surface 23b, and is connected to the ground.
- Each of the second signal line 25a and the second signal line 25b is wired between the sixth surface 21b and the seventh surface 23a.
- Each of the second signal line 25a and the second signal line 25b transmits a signal transmitted by the communication module or a signal received by the communication module.
- a second ground connecting conductor 26 and a conductor 27 are provided between the second signal line 25a and the second signal line 25b.
- the second ground connecting conductor 26 is provided between the second signal line 25a and the second signal line 25b. Further, the second ground connecting conductor 26 is also provided around both sides of the second signal line 25a on the side where the second signal line 25b is not provided. Further, the second ground connecting conductor 26 is also provided around both sides of the second signal line 25b on the side where the second signal line 25a is not provided. One end of the second ground connecting conductor 26 is connected to the third ground conductor 22, and the other end of the second ground connecting conductor 26 is connected to the fourth ground conductor 24. In the high frequency circuit 1 shown in FIG. 2, the second ground connecting conductor 26 is provided only around the second signal line 25a and the second signal line 25b.
- the second ground connecting conductor 26 is provided around the second signal line 25a and the second signal line 25b, as well as the second signal line 25a and the second signal line 25b. It may be provided in a place other than the surrounding area.
- the conductor 27 is provided between the sixth surface 21b and the seventh surface 23a, and is connected to the second ground connecting conductor 26, for example, with the second ground connecting conductor 26 inserted inside. ing.
- Each of the first connecting conductor 31a and the second connecting conductor 33a is a conductor for connecting the first signal line 15a and the second signal line 25a.
- Each of the first connecting conductor 31a and the second connecting conductor 33a is realized by, for example, a through-hole via.
- One end of the first connecting conductor 31a is connected to the first signal line 15a.
- the other end 32a of the first connecting conductor 31a is exposed from the fourth surface 13b in a non-conducting state with the second ground conductor 14.
- the region where the other end 32a of the first connecting conductor 31a is exposed is a region where the second ground conductor 14 is not provided.
- One end 34a of the second connecting conductor 33a is exposed from the fifth surface 21a in a non-conducting state with the third ground conductor 22 and is connected to the other end 32a of the first connecting conductor 31a. .. The other end of the second connecting conductor 33a is connected to the second signal line 25a.
- Each of the first connecting conductor 31b and the second connecting conductor 33b is a conductor for connecting the first signal line 15b and the second signal line 25b.
- Each of the first connecting conductor 31b and the second connecting conductor 33b is realized by, for example, through-hole vias.
- One end of the first connecting conductor 31b is connected to the first signal line 15b.
- the other end 32b of the first connecting conductor 31b is exposed from the fourth surface 13b in a non-conducting state with the second ground conductor 14.
- the region of the fourth surface 13b where the other end 32b of the first connecting conductor 31b is exposed is a region where the second ground conductor 14 is not provided.
- One end 34b of the second connecting conductor 33b is exposed from the fifth surface 21a in a non-conducting state with the third ground conductor 22 and is connected to the other end 32b of the first connecting conductor 31b. .. The other end of the second connecting conductor 33b is connected to the second signal line 25b.
- the second ground conductor 14 and the third ground conductor 22 are connected by, for example, solder.
- the printed circuit board 2 includes a first connection conductor 31a and a first connection conductor 31b
- the flexible substrate 3 includes a second connection conductor 33a and a second connection conductor 33b.
- the other end 32a of the first connecting conductor 31a and one end 34a of the second connecting conductor 33a are connected by, for example, solder, so that they are not connected to each of the second ground conductor 14 and the third ground conductor 22.
- the first signal line 15a and the second signal line 25a are electrically connected.
- first connecting conductor 31b and one end 34b of the second connecting conductor 33b are connected by, for example, solder, so that they are not connected to each of the second ground conductor 14 and the third ground conductor 22.
- solder solder
- connection portion 4 shown in FIGS. 5A and 5B the other end of the second connecting conductor 33a is connected to the second signal line 25a, and the other end of the second connecting conductor 33b is the second signal line. It is connected to 25b.
- the middle of one end 34b and the other end 35b may be connected to the second signal line 25b.
- each of the other end 35a of the second connecting conductor 33a and the other end 35b of the second connecting conductor 33b is exposed from the eighth surface 23b in a non-conducting state with the fourth ground conductor 24. May be good.
- the eighth surface 23b the region where the other end 35a of the second connecting conductor 33a and the other end 35b of the second connecting conductor 33b are exposed is not provided with the fourth ground conductor 24. The area.
- Figure 7 is a sectional view showing a cross-section at C 1 -C 2 at the connecting portion 4 of the printed circuit board 2 and the flexible board 3.
- FIG. 7A shows a state before the printed circuit board 2 and the flexible board 3 are connected
- FIG. 7B shows a state where the printed circuit board 2 and the flexible board 3 are connected.
- the first connection conductor 31a and the second connection conductor are used as connection conductors for electrically connecting the first signal line 15a and the second signal line 25a. It is possible to use a through-hole via with 33a.
- a connecting conductor for electrically connecting the first signal line 15b and the second signal line 25b a through-hole via having a first connecting conductor 31b and a second connecting conductor 33b is used. It is possible.
- the second ground conductor 14 and the third ground conductor 22 are connected by, for example, solder, and the other end 32a of the first connecting conductor 31a and the second connecting conductor 33a are connected.
- One end 34a of the above is connected by, for example, solder.
- the other end 32b of the first connecting conductor 31b and one end 34b of the second connecting conductor 33b are connected by, for example, solder.
- the operation of the high frequency circuit 1 shown in FIG. 1 will be described.
- a signal is input to the first signal line 15a of the printed circuit board 2
- the input signal is transmitted through the first signal line 15a.
- the signal transmitted through the first signal line 15a is transmitted to the second signal line 25a of the flexible substrate 3 via the first connecting conductor 31a and the second connecting conductor 33a.
- the signal transmitted to the second signal line 25a is transmitted through the second signal line 25a.
- the input signal is transmitted through the first signal line 15b.
- the signal transmitted through the first signal line 15b is transmitted to the second signal line 25b of the flexible substrate 3 via the first connecting conductor 31b and the second connecting conductor 33b.
- the signal transmitted to the second signal line 25b is transmitted through the second signal line 25b.
- the first ground conductor 12 is provided on the first surface 11a of the first dielectric layer 11, the first one of the first dielectric layer 11 Leakage of the generated electric field from the surface 11a to the outside of the printed circuit board 2 is reduced. Further, in the printed circuit board 2 shown in FIG. 3, since the second ground conductor 14 is provided on the fourth surface 13b of the second dielectric layer 13, the fourth surface 13b of the second dielectric layer 13 is provided. Leakage of the generated electric field from the surface 13b to the outside of the printed circuit board 2 is reduced. Further, in the printed circuit board 2 shown in FIG.
- each of the first ground connecting conductor 16 and the conductor 17 is provided between the first signal line 15a and the first signal line 15b, and the first ground is provided.
- Each of the connecting conductor 16 and the conductor 17 acts to block the generated electric field.
- the third ground conductor 22 is provided on the fifth surface 21a of the third dielectric layer 21, the fifth of the third dielectric layer 21 Leakage of the generated electric field from the surface 21a to the outside of the flexible substrate 3 is reduced.
- the fourth ground conductor 24 is provided on the eighth surface 23b of the fourth dielectric layer 23, the eighth surface 23 of the fourth dielectric layer 23 Leakage of the generated electric field from the surface 23b to the outside of the flexible substrate 3 is reduced.
- a second ground connecting conductor 26 and a conductor 27 are provided between the second signal line 25a and the second signal line 25b, respectively, and the second is provided.
- Each of the ground connecting conductor 26 and the conductor 27 acts to block the generated electric field. Since each of the second ground connecting conductor 26 and the conductor 27 is provided, it is possible to prevent the generated electric field from directly reaching the second signal line 25b without passing through the outside of the flexible substrate 3. .. Therefore, in the flexible substrate 3 shown in FIG. 4, crosstalk between the second signal line 25a and the second signal line 25b can be reduced.
- the connecting portion 4 there is a gap between the other end 32a of the first connecting conductor 31a and the second ground conductor 14, and there is a possibility that the electric field leaks to the outside through the gap.
- the generated electric field has the property of concentrating in the region where the conductor exists and hardly concentrating in the region where the conductor does not exist. Therefore, most of the generated electric fields are concentrated in the region where the first ground conductor 12 and the second ground conductor 14 are applied, so that the electric field leaks to the outside through the gap where the conductor does not exist. Is few.
- the third ground conductor 22 is provided on the fifth surface 21a of the third dielectric layer 21, the fifth of the third dielectric layer 21 Leakage of the generated electric field from the surface 21a to the outside of the flexible substrate 3 is reduced.
- the connecting portion 4 there is a gap between one end 34a of the second connecting conductor 33a and the third ground conductor 22, and the electric field may leak to the outside through the gap.
- most of the generated electric fields are concentrated in the region where the third ground conductor 22 and the fourth ground conductor 24 are provided, so that the electric field leaks to the outside through the gap where the conductor does not exist. Is few.
- FIG. 8 is an explanatory diagram showing a simulation result of crosstalk generated by leakage of an electric field from the connection portion 4.
- the horizontal axis is the frequency [GHz] of the signal transmitted on each of the first signal line 15a and the second signal line 25a
- the vertical axis is the crosstalk [dB].
- the alternate long and short dash line shows the crosstalk generated from the connection portion 4 of the high frequency circuit 1 shown in FIG.
- the solid line shows the high frequency when the printed circuit board 2 does not have the first ground conductor 12 and the second ground conductor 14, and the flexible substrate 3 does not have the third ground conductor 22 and the fourth ground conductor 24.
- the crosstalk generated from the connection part 4 of the circuit 1 is shown.
- the broken line shows the high frequency when the flexible substrate 3 includes the third ground conductor 22 and the fourth ground conductor 24, but the printed circuit board 2 does not include the first ground conductor 12 and the second ground conductor 14.
- the crosstalk generated from the connection part 4 of the circuit 1 is shown.
- the crosstalk generated from the connection portion 4 of the high frequency circuit 1 shown in FIG. 2 is the high frequency circuit 1 when the flexible substrate 3 does not include the third ground conductor 22 and the fourth ground conductor 24. It can be seen that the crosstalk generated from the connecting portion 4 of the above is reduced.
- the crosstalk generated from the connection portion 4 of the high frequency circuit 1 shown in FIG. 2 is a high frequency when the printed circuit board 2 does not include the first ground conductor 12 and the second ground conductor 14, as shown in FIG. It can be seen that the crosstalk generated from the connection portion 4 of the circuit 1 is reduced.
- the printed circuit board 2 includes a first dielectric layer 11 in which the first ground conductor 12 is applied to the first surface 11a, and the flexible substrate 3 is the fourth ground conductor.
- a fourth dielectric layer 23 is provided on the eighth surface 23b, and the connection portion 4 between the printed circuit board 2 and the flexible substrate 3 is a second ground conductor 14 and a third ground conductor 22.
- the high-frequency circuit 1 is configured to include a connecting conductor that electrically connects the first signal lines 15a and 15b and the second signal lines 25a and 25b in a non-conducting state.
- connection portion 4 between the printed circuit board 2 and the flexible substrate 3 is connected to the first signal lines 15a and 15b at one end and is non-conducting to the second ground conductor 14, and the fourth
- the first connection conductors 31a and 31b whose other ends are exposed from the surface 13b and one end exposed from the fifth surface 21a in a non-conducting state with the third ground conductor 22 are the first connection.
- It includes second connecting conductors 33a and 33b that are connected to the other ends of the conductors 31a and 31b and that are connected to the second signal lines 25a and 25b and the other ends. Therefore, the high frequency circuit 1 can suppress leakage of the electric field from the connection portion 4 between the printed circuit board 2 and the flexible substrate 3.
- Embodiment 2 In the flexible substrate 3 shown in FIG. 4, a third ground conductor 22 is provided on the fifth surface 21a of the third dielectric layer 21.
- the regions 41a and 41b facing the regions where the second signal lines 25a and 25b are wired are the third.
- a high-frequency circuit 1 including a flexible substrate 3 in a region where the ground conductor 22 is not provided will be described.
- FIG. 9 is a cross-sectional view showing a cross section of the flexible substrate 3 of the high frequency circuit 1 according to the second embodiment in B 1 and B 2 .
- the region 41a is a region of the fifth surface 21a of the third dielectric layer 21 facing the region where the second signal line 25a is wired, and is provided with the third ground conductor 22.
- the region 41b is a region of the fifth surface 21a of the third dielectric layer 21 facing the region where the second signal line 25b is wired, and is provided with the third ground conductor 22.
- the region 41a is a region of the fifth surface 21a of the third dielectric layer 21 facing the region where the second signal line 25b is wired, and is provided with the third ground conductor 22.
- the electric field may leak from the regions 41a and 41b to the outside. There is. However, since most of the generated electric fields are concentrated in the region where the third ground conductor 22 is applied, the electric field leaking to the outside from the regions 41a and 41b where the conductor does not exist is small. .. Therefore, it is possible to suppress the leakage of the electric field to the outside as compared with the flexible substrate in which the third ground conductor 22 is not provided on the fifth surface 21a of the third dielectric layer 21.
- the second signal line 25a for example, a line having an impedance of 50 ⁇ is preferable, and in order to cancel the generated capacitance component and obtain a desired impedance, for example, the second signal line 25a
- the line width may be narrowed and the inductance component may be increased. However, if the line width of the second signal line 25a is narrowed, there is a high possibility that the second signal line 25a will be disconnected when the flexible substrate 3 is bent. Therefore, the second signal line 25a It may be difficult to narrow the track width.
- the third ground conductor 22 is provided on the entire fifth surface 21a of the third dielectric layer 21, but in the flexible substrate 3 shown in FIG. 9, the fifth surface 21a is provided.
- the third ground conductor 22 is not provided on the regions 41a and 41b of the surfaces 21a. Therefore, the area of the third ground conductor 22 included in the flexible substrate 3 shown in FIG. 9 is smaller than the area of the third ground conductor 22 included in the flexible substrate 3 shown in FIG. Since the flexible substrate 3 shown in FIG. 9 has a smaller area of the third ground conductor 22 than the flexible substrate 3 shown in FIG. 4, the second signal lines 25a and 25b are smaller than the flexible substrate 3 shown in FIG. The capacitance component generated between the ground conductor 22 and the third ground conductor 22 is reduced.
- the line widths of the second signal lines 25a and 25b are narrowed to reduce the line widths of the second signal lines 25a and 25b. It may be possible to cancel the capacitance component without increasing the inductance component of.
- the third ground conductor 22 is applied to the regions 41a and 41b of the fifth surface 21a facing the regions where the second signal lines 25a and 25b are wired.
- the high-frequency circuit 1 was configured so as to be in a non-existing region. Therefore, the high-frequency circuit 1 can suppress leakage of the electric field from the connection portion 4 between the printed circuit board 2 and the flexible substrate 3, and also has a second signal line 25a and 25b more than the high-frequency circuit 1 shown in FIG.
- the track width can be widened.
- Embodiment 3 In the flexible substrate 3 shown in FIG. 4, a third ground conductor 22 is provided on the fifth surface 21a of the third dielectric layer 21.
- the region 41a facing the region where the second signal line 25a is wired is the region where the third ground conductor 22 is not provided.
- the region 41c facing the region where the second signal line 25b is wired is a region where the fourth ground conductor 24 is not provided.
- the high frequency circuit 1 including the above will be described.
- FIG. 10 is a cross-sectional view showing a cross section of the flexible substrate 3 of the high frequency circuit 1 according to the third embodiment in B 1 and B 2 .
- the region 41c is a region of the eighth surface 23b of the fourth dielectric layer 23 that faces the region where the second signal line 25b is wired, and is provided with the fourth ground conductor 24.
- the second signal line 25a and the second signal line 25b are signal lines adjacent to each other in two or more second signal lines.
- a third ground conductor 22 is provided on the entire fifth surface 21a of the third dielectric layer 21, and an eighth in the fourth dielectric layer 23.
- a fourth ground conductor 24 is provided on the entire surface 23b of the surface.
- the region 41a of the fifth surface 21a is not provided with the third ground conductor 22.
- the region 41c is not provided with the fourth ground conductor 24. Therefore, the area of the third ground conductor 22 included in the flexible substrate 3 shown in FIG. 10 is smaller than the area of the third ground conductor 22 included in the flexible substrate 3 shown in FIG. Further, the area of the fourth ground conductor 24 included in the flexible substrate 3 shown in FIG. 10 is smaller than the area of the fourth ground conductor 24 included in the flexible substrate 3 shown in FIG.
- the second signal line 25a and the third signal line 25a and the third are smaller than the flexible substrate 3 shown in FIG.
- the capacitance component generated between the ground conductor 22 and the ground conductor 22 is reduced.
- the flexible substrate 3 shown in FIG. 10 has a smaller area of the fourth ground conductor 24 than the flexible substrate 3 shown in FIG. 4, it has a second signal line 25b than the flexible substrate 3 shown in FIG.
- the capacitance component generated between the ground conductor 24 and the fourth ground conductor 24 is reduced. Since the flexible substrate 3 shown in FIG. 10 has a smaller capacitance component than that of the flexible substrate 3 shown in FIG.
- the line widths of the second signal lines 25a and 25b are narrowed to reduce the line widths of the second signal lines 25a and 25b. It may be possible to cancel the capacitance component without increasing the inductance component of. Further, in the flexible substrate 3 shown in FIG. 10, since the region 41a is provided on the fifth surface 21a and the region 41c is provided on the eighth surface 23b, the electric field temporarily leaks from the region 41a to the outside. However, it is difficult for the electric field to reach the region 41c. Therefore, the flexible substrate 3 shown in FIG. 10 can suppress the occurrence of crosstalk between the second signal line 25a and the second signal line 25b as compared with the flexible substrate 3 shown in FIG.
- the region 41a of the fifth surface 21a facing the region where the second signal line 25a is wired is the region where the third ground conductor 22 is not provided. is there.
- the region 41c facing the region where the second signal line 25b is wired is a region where the fourth ground conductor 24 is not provided, so that the high frequency circuit 1 was configured. Therefore, the high-frequency circuit 1 can suppress leakage of the electric field from the connection portion 4 between the printed circuit board 2 and the flexible substrate 3, and also has a second signal line 25a and 25b more than the high-frequency circuit 1 shown in FIG.
- the track width can be widened.
- Embodiment 4 In the printed circuit board 2 shown in FIG. 3, the first surface 11a of the first dielectric layer 11 is provided with the first ground conductor 12. In the fourth embodiment, of the first surface 11a of the first dielectric layer 11, the regions 51a and 51b facing the regions where the first signal lines 15a and 15b are wired are the first. A high-frequency circuit 1 including a printed circuit board 2 in a region where the ground conductor 12 is not provided will be described.
- Figure 11 is a sectional view showing a cross section at A 1 -A 2 in the printed circuit board 2 included in the RF circuit 1 according to the fourth embodiment.
- the region 51a is a region of the first surface 11a of the first dielectric layer 11 that faces the region where the first signal line 15a is wired, and is provided with the first ground conductor 12.
- the region 51b is a region of the first surface 11a of the first dielectric layer 11 that faces the region where the first signal line 15b is wired, and is provided with the first ground conductor 12.
- the region 51a is a region of the first surface 11a of the first dielectric layer 11 that faces the region where the first signal line 15b is wired, and is provided with the first ground conductor 12.
- the electric field may leak from the regions 51a and 51b to the outside. There is. However, since most of the generated electric fields are concentrated in the region where the first ground conductor 12 is applied, the electric field leaking to the outside from the regions 51a and 51b where the conductor does not exist is small. .. Therefore, it is possible to suppress the leakage of the electric field to the outside as compared with the printed circuit board in which the first ground conductor 12 is not provided on the first surface 11a of the first dielectric layer 11.
- the first signal line 15a for example, a line having an impedance of 50 ⁇ is preferable, and in order to cancel the generated capacitance component and obtain a desired impedance, for example, the first signal line 15a
- the line width may be narrowed and the inductance component may be increased. However, if the line width of the first signal line 15a is narrowed, the line impedance of the first signal line 15a may not become a desired impedance depending on manufacturing restrictions and the like.
- the first ground conductor 12 is provided on the entire first surface 11a of the first dielectric layer 11, but in the printed circuit board 2 shown in FIG. 11, the first surface 11a is provided.
- the first ground conductor 12 is not provided on the regions 51a and 51b of the surfaces 11a. Therefore, the area of the first ground conductor 12 included in the printed circuit board 2 shown in FIG. 11 is smaller than the area of the first ground conductor 12 included in the printed circuit board 2 shown in FIG. Since the printed circuit board 2 shown in FIG. 11 has a smaller area of the first ground conductor 12 than the printed circuit board 2 shown in FIG. 3, the first signal lines 15a and 15b are smaller than the printed circuit board 2 shown in FIG.
- the capacitance component generated between the ground conductor 12 and the first ground conductor 12 is reduced. Since the printed circuit board 2 shown in FIG. 11 has a smaller capacitance component than the printed circuit board 2 shown in FIG. 3, the line widths of the first signal lines 15a and 15b are narrowed to reduce the line widths of the first signal lines 15a and 15b. It may be possible to cancel the capacitance component without increasing the inductance component of.
- the first ground conductor 12 is applied to the regions 51a and 51b of the first surface 11a facing the regions where the first signal lines 15a and 15b are wired.
- the high-frequency circuit 1 was configured so as to be in a non-existing region. Therefore, the high-frequency circuit 1 can suppress leakage of the electric field from the connection portion 4 between the printed circuit board 2 and the flexible substrate 3, and also has a first signal line 15a and 15b more than the high-frequency circuit 1 shown in FIG.
- the track width can be widened.
- Embodiment 5 the high frequency circuit 1 including the flexible substrate 3 in which the thickness of the third dielectric layer 21 and the thickness of the fourth dielectric layer 23 are different from each other will be described.
- FIG. 12A is a cross-sectional view showing a cross section of the flexible substrate 3 of the high frequency circuit 1 according to the fifth embodiment in B 1 and B 2 .
- the thickness of the third dielectric layer 21 is thicker than the thickness of the fourth dielectric layer 23.
- FIG. 12B is a cross-sectional view showing a cross section of the flexible substrate 3 of the high frequency circuit 1 according to the fifth embodiment in B 1 and B 2 .
- the thickness of the third dielectric layer 21 is thinner than the thickness of the fourth dielectric layer 23.
- the fourth dielectric layer 21 when the thickness of the fourth dielectric layer 23 is made thinner than the thickness of the third dielectric layer 21 without changing the thickness of the third dielectric layer 21, the fourth dielectric layer 21 is formed.
- the capacitance component generated between the second signal lines 25a and 25b and the fourth ground conductor 24 is larger than that in the case where the thickness of the dielectric layer 23 is the same as the thickness of the third dielectric layer 21. Therefore, even when the thickness of the fourth dielectric layer 23 is made thinner than the thickness of the third dielectric layer 21, the thickness of the fourth dielectric layer 23 is the third dielectric in order to cancel the capacitance component. It is necessary to narrow the line widths of the second signal lines 25a and 25b as compared with the case where the thickness is the same as that of the body layer 21.
- the third dielectric layer 21 is thickened.
- the capacitance component generated between the second signal lines 25a and 25b and the fourth ground conductor 24 is smaller than that in the case where the thickness of the dielectric layer 23 of 4 is the same as the thickness of the third dielectric layer 21.
- the thickness of the fourth dielectric layer 23 is the third dielectric in order to cancel the capacitance component. It is necessary to widen the line width of the second signal lines 25a and 25b as compared with the case where the thickness is the same as that of the body layer 21.
- the line widths of the second signal lines 25a and 25b depend on the thickness of the third dielectric layer 21 and the thickness of the fourth dielectric layer 23, respectively. Should be decided.
- the line widths of the second signal lines 25a and 25b are determined according to the thickness of the third dielectric layer 21 and the thickness of the fourth dielectric layer 23, respectively.
- the thickness of the third dielectric layer 21 and the thickness of the fourth dielectric layer 23 may be determined respectively so that the capacitive components can be canceled out.
- the thickness of the fourth dielectric layer 23 is made different from the thickness of the third dielectric layer 21 without changing the thickness of the third dielectric layer 21. ing. However, this is only an example, and the thickness of the third dielectric layer 21 is made different from the thickness of the fourth dielectric layer 23 without changing the thickness of the fourth dielectric layer 23. It may be the substrate 3.
- the high frequency circuit 1 is configured so that the thickness of the third dielectric layer 21 and the thickness of the fourth dielectric layer 23 are different. Therefore, the high-frequency circuit 1 can suppress the leakage of the electric field from the connection portion 4 between the printed circuit board 2 and the flexible substrate 3, and also has a second signal line 25a and 25b more than the high-frequency circuit 1 shown in FIG. The degree of freedom in designing the line width can be increased.
- Embodiment 6 in the signal transmission direction on the flexible substrate, the connection position between the first signal line 15a and the second signal line 25a, and the first signal line 15b and the second signal line 25b. A high-frequency circuit having a different connection position will be described.
- FIG. 13 is a perspective view showing the high frequency circuit 1 according to the sixth embodiment.
- the connection portion 4 includes a first connection portion 4a and a second connection portion 4b.
- the first connecting portion 4a includes a first connecting conductor 31a and a second connecting conductor 33a in order to electrically connect the first signal line 15a and the second signal line 25a.
- the second connecting portion 4b includes a first connecting conductor 31b and a second connecting conductor 33b in order to electrically connect the first signal line 15b and the second signal line 25b. There is.
- the position where the first connecting portion 4a is provided and the position where the second connecting portion 4b is provided are different in the signal transmission direction on the flexible substrate 3. There is.
- the position where the first connecting portion 4a is provided and the position where the second connecting portion 4b is provided are different, the position where the first connecting portion 4a is provided and the second connection portion 4a are provided.
- the distance between the position where the first connection portion 4a is provided and the position where the second connection portion 4b is provided becomes longer than when the position where the connection portion 4b is provided is the same. .. Therefore, in the high frequency circuit 1 shown in FIG.
- the position where the first connecting portion 4a is provided and the position where the second connecting portion 4b is provided are different in the signal transmission direction on the flexible substrate 3.
- the high frequency circuit 1 was configured. Therefore, the high-frequency circuit 1 can suppress the leakage of the electric field from the connection portion 4 between the printed circuit board 2 and the flexible substrate 3, and can suppress the occurrence of crosstalk as compared with the high-frequency circuit 1 shown in FIG. ..
- Embodiment 7 the high frequency circuit 1 in which the first ground conductor 12 is provided with openings 61a and 61b will be described.
- FIG. 14 is a perspective view showing the high frequency circuit 1 according to the seventh embodiment.
- the same reference numerals as those in FIG. 2 indicate the same or corresponding parts, and thus the description thereof will be omitted.
- Figure 15 is a sectional view showing a cross-section at C 1 -C 2 in front of the connecting part 4 and the printed board 2 and the flexible board 3 is connected.
- the same reference numerals as those in FIGS. 5 and 7 indicate the same or corresponding parts, and thus the description thereof will be omitted.
- the opening 61a is a hole provided in the first ground conductor 12. The position where the opening 61a is provided is the position where the connection portion 4 faces the first signal line 15a.
- the opening 61b is a hole provided in the first ground conductor 12.
- the position where the opening 61b is provided is the position where the connection portion 4 faces the first signal line 15b.
- the high frequency circuit 1 shown in FIG. 14 shows that the openings 61a and 61b are applied to the printed circuit board 2 at the connection portion 4 shown in FIG. However, this is only an example, and the openings 61a and 61b may be applied to the printed circuit board 2 at the connection portion 4 shown in FIG.
- the input signal is transmitted through the first signal line 15a.
- the signal transmitted through the first signal line 15a is transmitted to the second signal line 25a of the flexible substrate 3 via the first connecting conductor 31a and the second connecting conductor 33a.
- the signal transmitted to the second signal line 25a is transmitted through the second signal line 25a.
- the input signal is transmitted through the first signal line 15b.
- the signal transmitted through the first signal line 15b is transmitted to the second signal line 25b of the flexible substrate 3 via the first connecting conductor 31b and the second connecting conductor 33b.
- the signal transmitted to the second signal line 25b is transmitted through the second signal line 25b.
- openings 61a and 61b are provided in the first ground conductor 12, and there is a possibility that an electric field may leak to the outside from the openings 61a and 61b.
- the generated electric field has the property of concentrating in the region where the conductor exists and hardly concentrating in the region where the conductor does not exist. Therefore, most of the generated electric fields are concentrated in the region where the first ground conductor 12 is applied, so that the electric fields leaking to the outside from the openings 61a and 61b in which the conductor does not exist are small. ..
- the impedances of the first signal lines 15a and 15b and the second signal lines 25a and 25b are designed to be, for example, 50 ⁇ .
- the connecting portion 4 the printed circuit board 2 and the flexible substrate 3 are connected by supplying solder from the other ends 35a and 35b of the second connecting conductors 33a and 33b realized by the through-hole vias. It has a structure. Further, a second connecting conductor 33a, one end 34a of the second connecting conductor 33a, and the other end 35a of the second connecting conductor 33a are provided on the second signal line 25a, and the second connecting conductor 33b, the second One end 34b of the connecting conductor 33b and the other end 35b of the second connecting conductor 33b are provided on the second signal line 25b.
- the impedance of the second signal lines 25a and 25b may deviate from 50 ⁇ . If the impedance of the second signal lines 25a and 25b deviates from 50 ⁇ , resonance occurs due to the reflection of the electric signal, and the passage band is limited by the occurrence of resonance.
- the first ground conductor 12 is not provided with openings 61a and 61b, the high frequency component tends to be coupled with the first ground conductor 12 and the capacitance component tends to be large.
- the capacitance component of the printed circuit board 2 at the connection portion 4 is higher than that without the openings 61a and 61b. Also decreases. Since the capacitance component of the printed circuit board 2 in the connection portion 4 is reduced, the impedances of the first signal lines 15a and 15b and the second signal lines 25a and 25b are increased. Therefore, by adjusting the sizes of the openings 61a and 61b in the first ground conductor 12, the respective impedances can be brought close to 50 ⁇ .
- FIG. 16 is an explanatory diagram showing a simulation result of signal passing characteristics in the high frequency circuit 1.
- the horizontal axis is the frequency [GHz] of the signal transmitted on each of the first signal line 15a and the second signal line 25a
- the vertical axis is the S parameter (S21) indicating the signal loss.
- the solid line shows the signal passing characteristic in the high frequency circuit 1 according to the second embodiment
- the broken line shows the signal passing characteristic in the high frequency circuit 1 according to the seventh embodiment. From FIG. 16, it can be seen that the high frequency circuit 1 according to the seventh embodiment can significantly reduce the signal loss in the band of 50 GHz or more as compared with the high frequency circuit 1 according to the second embodiment.
- FIG. 17 is an explanatory diagram showing a simulation result of crosstalk caused by an electric field leaking from the connection portion 4.
- the horizontal axis is the frequency [GHz] of the signal transmitted on each of the first signal line 15a and the second signal line 25a
- the vertical axis is the crosstalk [dB]. From FIG. 17, it can be seen that the high frequency circuit 1 according to the seventh embodiment suppresses crosstalk as in the high frequency circuit 1 according to the second embodiment.
- the high frequency circuit 1 in the connection portion 4 between the printed circuit board 2 and the flexible substrate 3, among the first ground conductors 12 provided on the first surface 11a, the first signal lines 15a and 15b
- the high frequency circuit 1 is configured so that the first ground conductors 12 provided at opposite positions are provided with openings 61a and 61b. Therefore, the high-frequency circuit 1 according to the seventh embodiment can suppress the leakage of the electric field from the connection portion 4 between the printed circuit board 2 and the flexible substrate 3, and the signal is higher than that of the high-frequency circuit 1 according to the second embodiment. Loss can be reduced.
- any combination of the embodiments can be freely combined, any component of the embodiment can be modified, or any component can be omitted in each embodiment.
- the present disclosure is suitable for a high-frequency circuit including a printed circuit board and a flexible substrate, and a communication module including a high-frequency circuit.
Landscapes
- Engineering & Computer Science (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Structure Of Printed Boards (AREA)
- Combinations Of Printed Boards (AREA)
Abstract
プリント基板(2)と、プリント基板(2)と接続されているフレキシブル基板(3)とを備え、プリント基板(2)は、第1の面(11a)及び第2の面(11b)を有しており、第1のグランド導体(12)が第1の面(11a)に施されている第1の誘電体層(11)と、第3の面(13a)及び第4の面(13b)を有しており、第2のグランド導体(14)が第4の面(13b)に施されている第2の誘電体層(13)と、第2の面(11b)と第3の面(13a)との間に配線されている第1の信号線路(15a),(15b)とを備え、フレキシブル基板(3)は、第5の面(21a)及び第6の面(21b)を有しており、第3のグランド導体(22)が第5の面(21a)に施されている第3の誘電体層(21)と、第7の面(23a)及び第8の面(23b)を有しており、第4のグランド導体(24)が第8の面(23b)に施されている第4の誘電体層(23)と、第6の面(21b)と第7の面(23a)との間に配線されている第2の信号線路(25a),(25b)とを備え、プリント基板(2)とフレキシブル基板(3)との接続部(4)は、第1の信号線路(15a),(15b)と一端が接続され、第2のグランド導体(14)と非導通の状態で、第4の面(13b)から他端が露出している複数の第1の接続導体(31a),(31b)と、第3のグランド導体(22)と非導通の状態で、第5の面(21a)から露出している一端が第1の接続導体(31a),(31b)の他端と接続され、かつ、第2の信号線路(25a),(25b)と他端が接続されている複数の第2の接続導体(33a),(33b)とを備えているように、高周波回路(1)を構成した。
Description
本開示は、プリント基板及びフレキシブル基板を備える高周波回路と、高周波回路を備える通信モジュールとに関するものである。
以下の特許文献1には、複数のパッドを介して、プリント基板とフレキシブル配線基板とが接続されている光モジュールが開示されている。
以下の特許文献1に開示されているフレキシブル配線基板は、2つの伝送線路間のクロストークを軽減するために、電波を吸収する電波吸収層を備えている。
以下の特許文献1に開示されているフレキシブル配線基板は、2つの伝送線路間のクロストークを軽減するために、電波を吸収する電波吸収層を備えている。
特許文献1に開示されているフレキシブル配線基板は、電波吸収層を備えている。しかし、プリント基板とフレキシブル配線基板との接続部は、複数のパッドが配置されているため、電波を十分に吸収できる電波吸収層を備えることが困難である。したがって、プリント基板とフレキシブル配線基板との接続部から電波が外部に漏れて、クロストークが生じてしまうことがあるという課題があった。
本開示は上記のような課題を解決するためになされたもので、プリント基板とフレキシブル基板との接続部からの電界の漏れを抑えることができる高周波回路及び通信モジュールを得ることを目的とする。
本開示に係る高周波回路は、プリント基板と、プリント基板と接続されているフレキシブル基板とを備え、プリント基板は、第1の面及び第2の面を有しており、第1のグランド導体が第1の面に施されている第1の誘電体層と、第3の面及び第4の面を有しており、第2のグランド導体が第4の面に施されている第2の誘電体層と、第2の面と第3の面との間に配線されている複数の第1の信号線路とを備え、フレキシブル基板は、第5の面及び第6の面を有しており、第3のグランド導体が第5の面に施されている第3の誘電体層と、第7の面及び第8の面を有しており、第4のグランド導体が第8の面に施されている第4の誘電体層と、第6の面と第7の面との間に配線されている複数の第2の信号線路とを備え、プリント基板とフレキシブル基板との接続部は、それぞれの第1の信号線路と一端が接続され、第2のグランド導体と非導通の状態で、第4の面から他端が露出している複数の第1の接続導体と、第3のグランド導体と非導通の状態で、第5の面から露出している一端がそれぞれの第1の接続導体の他端と接続され、かつ、それぞれの第2の信号線路と他端が接続されている複数の第2の接続導体とを備えているものである。
本開示によれば、プリント基板とフレキシブル基板との接続部からの電界の漏れを抑えることができる。
以下、本開示をより詳細に説明するために、本開示を実施するための形態について、添付の図面に従って説明する。
実施の形態1.
図1は、実施の形態1に係る高周波回路1を備える通信モジュールを示す構成図である。
図2は、実施の形態1に係る高周波回路1を示す斜視図である。
図3は、実施の形態1に係る高周波回路1が有するプリント基板2におけるA1-A2での断面を示す断面図である。
図4は、実施の形態1に係る高周波回路1が有するフレキシブル基板3におけるB1-B2での断面を示す断面図である。
図5は、プリント基板2とフレキシブル基板3との接続部4におけるC1-C2での断面を示す断面図である。
図5Aは、プリント基板2とフレキシブル基板3とが接続される前の状態を示し、図5Bは、プリント基板2とフレキシブル基板3とが接続されている状態を示している。
図6Aは、図5Aに示すプリント基板2を矢印D1が示す方向から見た平面図である。
図6Bは、図5Aに示すフレキシブル基板3を矢印D2が示す方向から見た平面図である。
図1は、実施の形態1に係る高周波回路1を備える通信モジュールを示す構成図である。
図2は、実施の形態1に係る高周波回路1を示す斜視図である。
図3は、実施の形態1に係る高周波回路1が有するプリント基板2におけるA1-A2での断面を示す断面図である。
図4は、実施の形態1に係る高周波回路1が有するフレキシブル基板3におけるB1-B2での断面を示す断面図である。
図5は、プリント基板2とフレキシブル基板3との接続部4におけるC1-C2での断面を示す断面図である。
図5Aは、プリント基板2とフレキシブル基板3とが接続される前の状態を示し、図5Bは、プリント基板2とフレキシブル基板3とが接続されている状態を示している。
図6Aは、図5Aに示すプリント基板2を矢印D1が示す方向から見た平面図である。
図6Bは、図5Aに示すフレキシブル基板3を矢印D2が示す方向から見た平面図である。
高周波回路1は、プリント基板2及びフレキシブル基板3を備えており、通信モジュールが送信する信号、又は、通信モジュールが受信した信号を伝送する。
プリント基板2は、第1の誘電体層11、第1のグランド導体12、第2の誘電体層13、第2のグランド導体14、第1の信号線路15a,15b、第1のグランド接続導体16及び導体17を備えている。図2では、プリント基板2の一部のみが描画されている。
図2及び図3に示すプリント基板2は、第1の信号線路として、2本の信号線路15a,15bを有している。しかし、これは一例に過ぎず、プリント基板2が、第1の信号線路として、3本以上の第1の信号線路を有していてもよい。
また、プリント基板2が、第1の信号線路として、1本の第1の信号線路のみを有していてもよい。プリント基板2が、1本の第1の信号線路のみを有している場合でも、1本の第1の信号線路と、プリント基板2の外部に配線されている図示せぬ信号線路との間で、クロストークを生じる可能性がある。
プリント基板2は、第1の誘電体層11、第1のグランド導体12、第2の誘電体層13、第2のグランド導体14、第1の信号線路15a,15b、第1のグランド接続導体16及び導体17を備えている。図2では、プリント基板2の一部のみが描画されている。
図2及び図3に示すプリント基板2は、第1の信号線路として、2本の信号線路15a,15bを有している。しかし、これは一例に過ぎず、プリント基板2が、第1の信号線路として、3本以上の第1の信号線路を有していてもよい。
また、プリント基板2が、第1の信号線路として、1本の第1の信号線路のみを有していてもよい。プリント基板2が、1本の第1の信号線路のみを有している場合でも、1本の第1の信号線路と、プリント基板2の外部に配線されている図示せぬ信号線路との間で、クロストークを生じる可能性がある。
フレキシブル基板3は、接続部4を介して、プリント基板2と接続されている。
フレキシブル基板3は、第3の誘電体層21、第3のグランド導体22、第4の誘電体層23、第4のグランド導体24、第2の信号線路25a,25b、第2のグランド接続導体26及び導体27を備えている。
図2及び図4に示すフレキシブル基板3は、第2の信号線路として、2本の信号線路25a,25bを有している。しかし、これは一例に過ぎず、フレキシブル基板3が、第2の信号線路として、3本以上の第2の信号線路を有していてもよい。
また、フレキシブル基板3が、第2の信号線路として、1本の第2の信号線路のみを有していてもよい。フレキシブル基板3が、1本の第2の信号線路のみを有している場合でも、1本の第2の信号線路と、フレキシブル基板3の外部に配線されている図示せぬ信号線路との間で、クロストークを生じる可能性がある。
フレキシブル基板3は、第3の誘電体層21、第3のグランド導体22、第4の誘電体層23、第4のグランド導体24、第2の信号線路25a,25b、第2のグランド接続導体26及び導体27を備えている。
図2及び図4に示すフレキシブル基板3は、第2の信号線路として、2本の信号線路25a,25bを有している。しかし、これは一例に過ぎず、フレキシブル基板3が、第2の信号線路として、3本以上の第2の信号線路を有していてもよい。
また、フレキシブル基板3が、第2の信号線路として、1本の第2の信号線路のみを有していてもよい。フレキシブル基板3が、1本の第2の信号線路のみを有している場合でも、1本の第2の信号線路と、フレキシブル基板3の外部に配線されている図示せぬ信号線路との間で、クロストークを生じる可能性がある。
接続部4は、プリント基板2とフレキシブル基板3とを接続している。
接続部4は、第2のグランド導体14及び第3のグランド導体22のそれぞれと非導通の状態で、第1の信号線路15aと第2の信号線路25aとの間を電気的に接続する接続導体として、第1の接続導体31a及び第2の接続導体33aを備えている。
また、接続部4は、第2のグランド導体14及び第3のグランド導体22のそれぞれと非導通の状態で、第1の信号線路15bと第2の信号線路25bとの間を電気的に接続する接続導体として、第1の接続導体31b及び第2の接続導体33bを備えている。
接続部4は、第2のグランド導体14及び第3のグランド導体22のそれぞれと非導通の状態で、第1の信号線路15aと第2の信号線路25aとの間を電気的に接続する接続導体として、第1の接続導体31a及び第2の接続導体33aを備えている。
また、接続部4は、第2のグランド導体14及び第3のグランド導体22のそれぞれと非導通の状態で、第1の信号線路15bと第2の信号線路25bとの間を電気的に接続する接続導体として、第1の接続導体31b及び第2の接続導体33bを備えている。
第1の誘電体層11は、第1の面11a及び第2の面11bを有している。
第1の面11aは、第1のグランド導体12が施されている。
第1のグランド導体12は、第1の面11aに施されているシート状の導体であり、グランドと接続されている。
第2の誘電体層13は、第3の面13a及び第4の面13bを有している。
第4の面13bは、第2のグランド導体14が施されている。
第2のグランド導体14は、第4の面13bに施されているシート状の導体であり、グランドと接続されている。
第1の面11aは、第1のグランド導体12が施されている。
第1のグランド導体12は、第1の面11aに施されているシート状の導体であり、グランドと接続されている。
第2の誘電体層13は、第3の面13a及び第4の面13bを有している。
第4の面13bは、第2のグランド導体14が施されている。
第2のグランド導体14は、第4の面13bに施されているシート状の導体であり、グランドと接続されている。
第1の信号線路15a及び第1の信号線路15bのそれぞれは、第2の面11bと第3の面13aとの間に配線されている。
第1の信号線路15a及び第1の信号線路15bのそれぞれは、通信モジュールが送信する信号、又は、通信モジュールが受信した信号を伝送する。
第1の信号線路15aと第1の信号線路15bとの間には、第1のグランド接続導体16及び導体17が設けられている。
第1の信号線路15a及び第1の信号線路15bのそれぞれは、通信モジュールが送信する信号、又は、通信モジュールが受信した信号を伝送する。
第1の信号線路15aと第1の信号線路15bとの間には、第1のグランド接続導体16及び導体17が設けられている。
第1のグランド接続導体16は、第1の信号線路15aと第1の信号線路15bとの間に設けられている。
また、第1のグランド接続導体16は、第1の信号線路15aの両側のうち、第1の信号線路15bが設けられていない側の周囲にも設けられている。
また、第1のグランド接続導体16は、第1の信号線路15bの両側のうち、第1の信号線路15aが設けられていない側の周囲にも設けられている。
第1のグランド接続導体16の一端は、第1のグランド導体12と接続されており、第1のグランド接続導体16の他端は、第2のグランド導体14と接続されている。
図2に示す高周波回路1では、第1のグランド接続導体16が、第1の信号線路15a及び第1の信号線路15bの周囲のみに設けられている。しかし、これは一例に過ぎず、第1のグランド接続導体16が、第1の信号線路15a及び第1の信号線路15bの周囲のほかに、第1の信号線路15a及び第1の信号線路15bの周囲以外に設けられていてもよい。
導体17は、第2の面11bと第3の面13aとの間に設けられ、例えば、第1のグランド接続導体16が内部に挿入された状態で、第1のグランド接続導体16と接続されている。
また、第1のグランド接続導体16は、第1の信号線路15aの両側のうち、第1の信号線路15bが設けられていない側の周囲にも設けられている。
また、第1のグランド接続導体16は、第1の信号線路15bの両側のうち、第1の信号線路15aが設けられていない側の周囲にも設けられている。
第1のグランド接続導体16の一端は、第1のグランド導体12と接続されており、第1のグランド接続導体16の他端は、第2のグランド導体14と接続されている。
図2に示す高周波回路1では、第1のグランド接続導体16が、第1の信号線路15a及び第1の信号線路15bの周囲のみに設けられている。しかし、これは一例に過ぎず、第1のグランド接続導体16が、第1の信号線路15a及び第1の信号線路15bの周囲のほかに、第1の信号線路15a及び第1の信号線路15bの周囲以外に設けられていてもよい。
導体17は、第2の面11bと第3の面13aとの間に設けられ、例えば、第1のグランド接続導体16が内部に挿入された状態で、第1のグランド接続導体16と接続されている。
第3の誘電体層21は、第5の面21a及び第6の面21bを有している。
第5の面21aは、第3のグランド導体22が施されている。
第3のグランド導体22は、第5の面21aに施されているシート状の導体であり、グランドと接続されている。
第4の誘電体層23は、第7の面23a及び第8の面23bを有している。
第8の面23bは、第4のグランド導体24が施されている。
第4のグランド導体24は、第8の面23bに施されているシート状の導体であり、グランドと接続されている。
第5の面21aは、第3のグランド導体22が施されている。
第3のグランド導体22は、第5の面21aに施されているシート状の導体であり、グランドと接続されている。
第4の誘電体層23は、第7の面23a及び第8の面23bを有している。
第8の面23bは、第4のグランド導体24が施されている。
第4のグランド導体24は、第8の面23bに施されているシート状の導体であり、グランドと接続されている。
第2の信号線路25a及び第2の信号線路25bのそれぞれは、第6の面21bと第7の面23aとの間に配線されている。
第2の信号線路25a及び第2の信号線路25bのそれぞれは、通信モジュールが送信する信号、又は、通信モジュールが受信した信号を伝送する。
第2の信号線路25aと第2の信号線路25bとの間には、第2のグランド接続導体26及び導体27が設けられている。
第2の信号線路25a及び第2の信号線路25bのそれぞれは、通信モジュールが送信する信号、又は、通信モジュールが受信した信号を伝送する。
第2の信号線路25aと第2の信号線路25bとの間には、第2のグランド接続導体26及び導体27が設けられている。
第2のグランド接続導体26は、第2の信号線路25aと第2の信号線路25bとの間に設けられている。
また、第2のグランド接続導体26は、第2の信号線路25aの両側のうち、第2の信号線路25bが設けられていない側の周囲にも設けられている。
また、第2のグランド接続導体26は、第2の信号線路25bの両側のうち、第2の信号線路25aが設けられていない側の周囲にも設けられている。
第2のグランド接続導体26の一端は、第3のグランド導体22と接続されており、第2のグランド接続導体26の他端は、第4のグランド導体24と接続されている。
図2に示す高周波回路1では、第2のグランド接続導体26が、第2の信号線路25a及び第2の信号線路25bの周囲のみに設けられている。しかし、これは一例に過ぎず、第2のグランド接続導体26が、第2の信号線路25a及び第2の信号線路25bの周囲のほかに、第2の信号線路25a及び第2の信号線路25bの周囲以外に設けられていてもよい。
導体27は、第6の面21bと第7の面23aとの間に設けられ、例えば、第2のグランド接続導体26が内部に挿入された状態で、第2のグランド接続導体26と接続されている。
また、第2のグランド接続導体26は、第2の信号線路25aの両側のうち、第2の信号線路25bが設けられていない側の周囲にも設けられている。
また、第2のグランド接続導体26は、第2の信号線路25bの両側のうち、第2の信号線路25aが設けられていない側の周囲にも設けられている。
第2のグランド接続導体26の一端は、第3のグランド導体22と接続されており、第2のグランド接続導体26の他端は、第4のグランド導体24と接続されている。
図2に示す高周波回路1では、第2のグランド接続導体26が、第2の信号線路25a及び第2の信号線路25bの周囲のみに設けられている。しかし、これは一例に過ぎず、第2のグランド接続導体26が、第2の信号線路25a及び第2の信号線路25bの周囲のほかに、第2の信号線路25a及び第2の信号線路25bの周囲以外に設けられていてもよい。
導体27は、第6の面21bと第7の面23aとの間に設けられ、例えば、第2のグランド接続導体26が内部に挿入された状態で、第2のグランド接続導体26と接続されている。
第1の接続導体31a及び第2の接続導体33aのそれぞれは、第1の信号線路15aと第2の信号線路25aとを接続するための導体である。
第1の接続導体31a及び第2の接続導体33aのそれぞれは、例えば、スルーホールビアによって実現される。
第1の接続導体31aの一端は、第1の信号線路15aと接続されている。
第1の接続導体31aの他端32aは、第2のグランド導体14と非導通の状態で、第4の面13bから露出されている。
第4の面13bのうち、第1の接続導体31aの他端32aが露出されている領域は、第2のグランド導体14が施されていない領域である。
第2の接続導体33aの一端34aは、第3のグランド導体22と非導通の状態で、第5の面21aから露出されており、第1の接続導体31aの他端32aと接続されている。
第2の接続導体33aの他端は、第2の信号線路25aと接続されている。
第1の接続導体31a及び第2の接続導体33aのそれぞれは、例えば、スルーホールビアによって実現される。
第1の接続導体31aの一端は、第1の信号線路15aと接続されている。
第1の接続導体31aの他端32aは、第2のグランド導体14と非導通の状態で、第4の面13bから露出されている。
第4の面13bのうち、第1の接続導体31aの他端32aが露出されている領域は、第2のグランド導体14が施されていない領域である。
第2の接続導体33aの一端34aは、第3のグランド導体22と非導通の状態で、第5の面21aから露出されており、第1の接続導体31aの他端32aと接続されている。
第2の接続導体33aの他端は、第2の信号線路25aと接続されている。
第1の接続導体31b及び第2の接続導体33bのそれぞれは、第1の信号線路15bと第2の信号線路25bとを接続するための導体である。
第1の接続導体31b及び第2の接続導体33bのそれぞれは、例えば、スルーホールビアによって実現される。
第1の接続導体31bの一端は、第1の信号線路15bと接続されている。
第1の接続導体31bの他端32bは、第2のグランド導体14と非導通の状態で、第4の面13bから露出されている。
第4の面13bのうち、第1の接続導体31bの他端32bが露出されている領域は、第2のグランド導体14が施されていない領域である。
第2の接続導体33bの一端34bは、第3のグランド導体22と非導通の状態で、第5の面21aから露出されており、第1の接続導体31bの他端32bと接続されている。
第2の接続導体33bの他端は、第2の信号線路25bと接続されている。
第1の接続導体31b及び第2の接続導体33bのそれぞれは、例えば、スルーホールビアによって実現される。
第1の接続導体31bの一端は、第1の信号線路15bと接続されている。
第1の接続導体31bの他端32bは、第2のグランド導体14と非導通の状態で、第4の面13bから露出されている。
第4の面13bのうち、第1の接続導体31bの他端32bが露出されている領域は、第2のグランド導体14が施されていない領域である。
第2の接続導体33bの一端34bは、第3のグランド導体22と非導通の状態で、第5の面21aから露出されており、第1の接続導体31bの他端32bと接続されている。
第2の接続導体33bの他端は、第2の信号線路25bと接続されている。
図5Bが示す接続部4では、第2のグランド導体14と第3のグランド導体22とが、例えば半田によって接続されている。
図5Bが示す接続部4では、プリント基板2が、第1の接続導体31a及び第1の接続導体31bを備え、フレキシブル基板3が、第2の接続導体33a及び第2の接続導体33bを備えている。
そして、第1の接続導体31aの他端32aと第2の接続導体33aの一端34aとが例えば半田によって接続されることで、第2のグランド導体14及び第3のグランド導体22のそれぞれと非導通の状態で、第1の信号線路15aと第2の信号線路25aとの間が電気的に接続されている。また、第1の接続導体31bの他端32bと第2の接続導体33bの一端34bとが例えば半田によって接続されることで、第2のグランド導体14及び第3のグランド導体22のそれぞれと非導通の状態で、第1の信号線路15bと第2の信号線路25bとの間が電気的に接続されている。
図5Bが示す接続部4では、プリント基板2が、第1の接続導体31a及び第1の接続導体31bを備え、フレキシブル基板3が、第2の接続導体33a及び第2の接続導体33bを備えている。
そして、第1の接続導体31aの他端32aと第2の接続導体33aの一端34aとが例えば半田によって接続されることで、第2のグランド導体14及び第3のグランド導体22のそれぞれと非導通の状態で、第1の信号線路15aと第2の信号線路25aとの間が電気的に接続されている。また、第1の接続導体31bの他端32bと第2の接続導体33bの一端34bとが例えば半田によって接続されることで、第2のグランド導体14及び第3のグランド導体22のそれぞれと非導通の状態で、第1の信号線路15bと第2の信号線路25bとの間が電気的に接続されている。
図5A及び図5Bが示す接続部4では、第2の接続導体33aの他端が、第2の信号線路25aと接続されて、第2の接続導体33bの他端が、第2の信号線路25bと接続されている。
しかし、これは一例に過ぎず、図7に示すように、第2の接続導体33aの一端34aと他端35aとの中間が第2の信号線路25aと接続されて、第2の接続導体33bの一端34bと他端35bとの中間が第2の信号線路25bと接続されていてもよい。
また、第2の接続導体33aの他端35a及び第2の接続導体33bの他端35bのそれぞれは、第4のグランド導体24と非導通の状態で、第8の面23bから露出されていてもよい。
第8の面23bのうち、第2の接続導体33aの他端35a及び第2の接続導体33bの他端35bのそれぞれが露出されている領域は、第4のグランド導体24が施されていない領域である。
しかし、これは一例に過ぎず、図7に示すように、第2の接続導体33aの一端34aと他端35aとの中間が第2の信号線路25aと接続されて、第2の接続導体33bの一端34bと他端35bとの中間が第2の信号線路25bと接続されていてもよい。
また、第2の接続導体33aの他端35a及び第2の接続導体33bの他端35bのそれぞれは、第4のグランド導体24と非導通の状態で、第8の面23bから露出されていてもよい。
第8の面23bのうち、第2の接続導体33aの他端35a及び第2の接続導体33bの他端35bのそれぞれが露出されている領域は、第4のグランド導体24が施されていない領域である。
図7は、プリント基板2とフレキシブル基板3との接続部4におけるC1-C2での断面を示す断面図である。
図7Aは、プリント基板2とフレキシブル基板3とが接続される前の状態を示し、図7Bは、プリント基板2とフレキシブル基板3とが接続されている状態を示している。
図7A及び図7Bが示す接続部4では、第1の信号線路15aと第2の信号線路25aとの間を電気的に接続する接続導体として、第1の接続導体31aと第2の接続導体33aとを備えたスルーホールビアを用いることが可能である。
また、第1の信号線路15bと第2の信号線路25bとの間を電気的に接続する接続導体として、第1の接続導体31bと第2の接続導体33bとを備えたスルーホールビアを用いることが可能である。
図7Bが示す接続部4では、第2のグランド導体14と第3のグランド導体22とが、例えば半田によって接続されており、第1の接続導体31aの他端32aと第2の接続導体33aの一端34aとが例えば半田によって接続されている。また、第1の接続導体31bの他端32bと第2の接続導体33bの一端34bとが例えば半田によって接続されている。
図7Aは、プリント基板2とフレキシブル基板3とが接続される前の状態を示し、図7Bは、プリント基板2とフレキシブル基板3とが接続されている状態を示している。
図7A及び図7Bが示す接続部4では、第1の信号線路15aと第2の信号線路25aとの間を電気的に接続する接続導体として、第1の接続導体31aと第2の接続導体33aとを備えたスルーホールビアを用いることが可能である。
また、第1の信号線路15bと第2の信号線路25bとの間を電気的に接続する接続導体として、第1の接続導体31bと第2の接続導体33bとを備えたスルーホールビアを用いることが可能である。
図7Bが示す接続部4では、第2のグランド導体14と第3のグランド導体22とが、例えば半田によって接続されており、第1の接続導体31aの他端32aと第2の接続導体33aの一端34aとが例えば半田によって接続されている。また、第1の接続導体31bの他端32bと第2の接続導体33bの一端34bとが例えば半田によって接続されている。
次に、図1に示す高周波回路1の動作について説明する。
例えば、プリント基板2の第1の信号線路15aに信号が入力されると、入力された信号は、第1の信号線路15aを伝送される。
第1の信号線路15aを伝送された信号は、第1の接続導体31a及び第2の接続導体33aを介して、フレキシブル基板3の第2の信号線路25aまで伝送される。
第2の信号線路25aまで伝送された信号は、第2の信号線路25aを伝送される。
例えば、プリント基板2の第1の信号線路15aに信号が入力されると、入力された信号は、第1の信号線路15aを伝送される。
第1の信号線路15aを伝送された信号は、第1の接続導体31a及び第2の接続導体33aを介して、フレキシブル基板3の第2の信号線路25aまで伝送される。
第2の信号線路25aまで伝送された信号は、第2の信号線路25aを伝送される。
また、プリント基板2の第1の信号線路15bに信号が入力されると、入力された信号は、第1の信号線路15bを伝送される。
第1の信号線路15bを伝送された信号は、第1の接続導体31b及び第2の接続導体33bを介して、フレキシブル基板3の第2の信号線路25bまで伝送される。
第2の信号線路25bまで伝送された信号は、第2の信号線路25bを伝送される。
第1の信号線路15bを伝送された信号は、第1の接続導体31b及び第2の接続導体33bを介して、フレキシブル基板3の第2の信号線路25bまで伝送される。
第2の信号線路25bまで伝送された信号は、第2の信号線路25bを伝送される。
例えば、信号がプリント基板2の第1の信号線路15aを伝送されると、図3の破線の矢印が示すような磁界が発生する。
また、信号が第1の信号線路15aを伝送されると、図3の実線の矢印が示すような電界が発生する。
発生した電界が、例えば、プリント基板2の外部に漏れて、第1の信号線路15bに到達すると、第1の信号線路15aと第1の信号線路15bとの間で、クロストークが生じる。
また、信号が第1の信号線路15aを伝送されると、図3の実線の矢印が示すような電界が発生する。
発生した電界が、例えば、プリント基板2の外部に漏れて、第1の信号線路15bに到達すると、第1の信号線路15aと第1の信号線路15bとの間で、クロストークが生じる。
しかし、図3に示すプリント基板2では、第1の誘電体層11の第1の面11aに、第1のグランド導体12が施されているので、第1の誘電体層11の第1の面11aから、プリント基板2の外部への、発生した電界の漏れが低減される。
また、図3に示すプリント基板2では、第2の誘電体層13の第4の面13bに、第2のグランド導体14が施されているので、第2の誘電体層13の第4の面13bから、プリント基板2の外部への、発生した電界の漏れが低減される。
また、図3に示すプリント基板2では、第1の信号線路15aと第1の信号線路15bとの間に、第1のグランド接続導体16及び導体17のそれぞれが設けられおり、第1のグランド接続導体16及び導体17のそれぞれが、発生した電界を遮断するように作用する。第1のグランド接続導体16及び導体17のそれぞれが設けられたことで、発生した電界が、プリント基板2の外部を介さずに、直接、第1の信号線路15bに到達するのが抑制される。
したがって、図3に示すプリント基板2では、第1の信号線路15aと第1の信号線路15bとの間でのクロストークを低減することができる。
また、図3に示すプリント基板2では、第2の誘電体層13の第4の面13bに、第2のグランド導体14が施されているので、第2の誘電体層13の第4の面13bから、プリント基板2の外部への、発生した電界の漏れが低減される。
また、図3に示すプリント基板2では、第1の信号線路15aと第1の信号線路15bとの間に、第1のグランド接続導体16及び導体17のそれぞれが設けられおり、第1のグランド接続導体16及び導体17のそれぞれが、発生した電界を遮断するように作用する。第1のグランド接続導体16及び導体17のそれぞれが設けられたことで、発生した電界が、プリント基板2の外部を介さずに、直接、第1の信号線路15bに到達するのが抑制される。
したがって、図3に示すプリント基板2では、第1の信号線路15aと第1の信号線路15bとの間でのクロストークを低減することができる。
例えば、信号がフレキシブル基板3の第2の信号線路25aを伝送されると、図4の破線の矢印が示すような磁界が発生する。
また、信号が第2の信号線路25aを伝送されると、図4の実線の矢印が示すような電界が発生する。
発生した電界が、例えば、フレキシブル基板3の外部に漏れて、第2の信号線路25bに到達すると、第2の信号線路25aと第2の信号線路25bとの間で、クロストークが生じる。
また、信号が第2の信号線路25aを伝送されると、図4の実線の矢印が示すような電界が発生する。
発生した電界が、例えば、フレキシブル基板3の外部に漏れて、第2の信号線路25bに到達すると、第2の信号線路25aと第2の信号線路25bとの間で、クロストークが生じる。
しかし、図4に示すフレキシブル基板3では、第3の誘電体層21の第5の面21aに、第3のグランド導体22が施されているので、第3の誘電体層21の第5の面21aから、フレキシブル基板3の外部への、発生した電界の漏れが低減される。
また、図4に示すフレキシブル基板3では、第4の誘電体層23の第8の面23bに、第4のグランド導体24が施されているので、第4の誘電体層23の第8の面23bから、フレキシブル基板3の外部への、発生した電界の漏れが低減される。
また、図4に示すフレキシブル基板3では、第2の信号線路25aと第2の信号線路25bとの間に、第2のグランド接続導体26及び導体27のそれぞれが設けられており、第2のグランド接続導体26及び導体27のそれぞれが、発生した電界を遮断するように作用する。第2のグランド接続導体26及び導体27のそれぞれが設けられたことで、発生した電界が、フレキシブル基板3の外部を介さずに、直接、第2の信号線路25bに到達するのが抑制される。
したがって、図4に示すフレキシブル基板3では、第2の信号線路25aと第2の信号線路25bとの間でのクロストークを低減することができる。
また、図4に示すフレキシブル基板3では、第4の誘電体層23の第8の面23bに、第4のグランド導体24が施されているので、第4の誘電体層23の第8の面23bから、フレキシブル基板3の外部への、発生した電界の漏れが低減される。
また、図4に示すフレキシブル基板3では、第2の信号線路25aと第2の信号線路25bとの間に、第2のグランド接続導体26及び導体27のそれぞれが設けられており、第2のグランド接続導体26及び導体27のそれぞれが、発生した電界を遮断するように作用する。第2のグランド接続導体26及び導体27のそれぞれが設けられたことで、発生した電界が、フレキシブル基板3の外部を介さずに、直接、第2の信号線路25bに到達するのが抑制される。
したがって、図4に示すフレキシブル基板3では、第2の信号線路25aと第2の信号線路25bとの間でのクロストークを低減することができる。
例えば、信号がプリント基板2の第1の信号線路15aを伝送されると、接続部4においても、第1の信号線路15aから、電界が発生する。
発生した電界が、例えば、プリント基板2の外部に漏れて、第1の信号線路15bに到達すると、第1の信号線路15aと第1の信号線路15bとの間で、クロストークが生じる。
しかし、図5Bに示すプリント基板2では、第1の誘電体層11の第1の面11aに、第1のグランド導体12が施されているので、第1の誘電体層11の第1の面11aから、プリント基板2の外部への、発生した電界の漏れが低減される。
また、図5Bに示すプリント基板2では、第2の誘電体層13の第4の面13bに、第2のグランド導体14が施されているので、第2の誘電体層13の第4の面13bから、プリント基板2の外部への、発生した電界の漏れが低減される。
発生した電界が、例えば、プリント基板2の外部に漏れて、第1の信号線路15bに到達すると、第1の信号線路15aと第1の信号線路15bとの間で、クロストークが生じる。
しかし、図5Bに示すプリント基板2では、第1の誘電体層11の第1の面11aに、第1のグランド導体12が施されているので、第1の誘電体層11の第1の面11aから、プリント基板2の外部への、発生した電界の漏れが低減される。
また、図5Bに示すプリント基板2では、第2の誘電体層13の第4の面13bに、第2のグランド導体14が施されているので、第2の誘電体層13の第4の面13bから、プリント基板2の外部への、発生した電界の漏れが低減される。
接続部4では、第1の接続導体31aの他端32aと、第2のグランド導体14との間に隙間があり、隙間から電界が外部へ漏れる可能性がある。しかし、発生した電界は、導体が存在している領域に集中し、導体が存在していない領域にはほとんど集まらない性質がある。したがって、発生した電界のうち、大部分の電界は、第1のグランド導体12及び第2のグランド導体14が施されている領域に集中するため、導体が存在していない隙間から外部へ漏れる電界は僅かである。
例えば、信号がフレキシブル基板3の第2の信号線路25aを伝送されると、接続部4においても、第2の信号線路25aから、電界が発生する。
発生した電界が、例えば、プリント基板2の外部に漏れて、第2の信号線路25bに到達すると、第2の信号線路25aと第2の信号線路25bとの間で、クロストークが生じる。
しかし、図5Bに示すフレキシブル基板3では、第4の誘電体層23の第8の面23bに、第4のグランド導体24が施されているので、第4の誘電体層23の第8の面23bから、フレキシブル基板3の外部への、発生した電界の漏れが低減される。
また、図5Bに示すフレキシブル基板3では、第3の誘電体層21の第5の面21aに、第3のグランド導体22が施されているので、第3の誘電体層21の第5の面21aから、フレキシブル基板3の外部への、発生した電界の漏れが低減される。
接続部4では、第2の接続導体33aの一端34aと、第3のグランド導体22との間に隙間があり、隙間から電界が外部へ漏れる可能性がある。しかし、発生した電界のうち、大部分の電界は、第3のグランド導体22及び第4のグランド導体24が施されている領域に集中するため、導体が存在していない隙間から外部へ漏れる電界は僅かである。
発生した電界が、例えば、プリント基板2の外部に漏れて、第2の信号線路25bに到達すると、第2の信号線路25aと第2の信号線路25bとの間で、クロストークが生じる。
しかし、図5Bに示すフレキシブル基板3では、第4の誘電体層23の第8の面23bに、第4のグランド導体24が施されているので、第4の誘電体層23の第8の面23bから、フレキシブル基板3の外部への、発生した電界の漏れが低減される。
また、図5Bに示すフレキシブル基板3では、第3の誘電体層21の第5の面21aに、第3のグランド導体22が施されているので、第3の誘電体層21の第5の面21aから、フレキシブル基板3の外部への、発生した電界の漏れが低減される。
接続部4では、第2の接続導体33aの一端34aと、第3のグランド導体22との間に隙間があり、隙間から電界が外部へ漏れる可能性がある。しかし、発生した電界のうち、大部分の電界は、第3のグランド導体22及び第4のグランド導体24が施されている領域に集中するため、導体が存在していない隙間から外部へ漏れる電界は僅かである。
図8は、接続部4から電界が漏れることで生じるクロストークのシミュレーション結果を示す説明図である。
図8において、横軸は、第1の信号線路15a及び第2の信号線路25aのそれぞれを伝送される信号の周波数[GHz]であり、縦軸は、クロストーク[dB]である。
一点鎖線は、図2に示す高周波回路1の接続部4から生じるクロストークを示している。
実線は、プリント基板2が第1のグランド導体12及び第2のグランド導体14を備えておらず、フレキシブル基板3が第3のグランド導体22及び第4のグランド導体24を備えていない場合の高周波回路1の接続部4から生じるクロストークを示している。
破線は、フレキシブル基板3は第3のグランド導体22及び第4のグランド導体24を備えているが、プリント基板2が第1のグランド導体12及び第2のグランド導体14を備えていない場合の高周波回路1の接続部4から生じるクロストークを示している。
図2に示す高周波回路1の接続部4から生じるクロストークは、図8に示すように、フレキシブル基板3が第3のグランド導体22及び第4のグランド導体24を備えていない場合の高周波回路1の接続部4から生じるクロストークよりも低減されていることが分かる。
また、図2に示す高周波回路1の接続部4から生じるクロストークは、図8に示すように、プリント基板2が第1のグランド導体12及び第2のグランド導体14を備えていない場合の高周波回路1の接続部4から生じるクロストークよりも低減されていることが分かる。
図8において、横軸は、第1の信号線路15a及び第2の信号線路25aのそれぞれを伝送される信号の周波数[GHz]であり、縦軸は、クロストーク[dB]である。
一点鎖線は、図2に示す高周波回路1の接続部4から生じるクロストークを示している。
実線は、プリント基板2が第1のグランド導体12及び第2のグランド導体14を備えておらず、フレキシブル基板3が第3のグランド導体22及び第4のグランド導体24を備えていない場合の高周波回路1の接続部4から生じるクロストークを示している。
破線は、フレキシブル基板3は第3のグランド導体22及び第4のグランド導体24を備えているが、プリント基板2が第1のグランド導体12及び第2のグランド導体14を備えていない場合の高周波回路1の接続部4から生じるクロストークを示している。
図2に示す高周波回路1の接続部4から生じるクロストークは、図8に示すように、フレキシブル基板3が第3のグランド導体22及び第4のグランド導体24を備えていない場合の高周波回路1の接続部4から生じるクロストークよりも低減されていることが分かる。
また、図2に示す高周波回路1の接続部4から生じるクロストークは、図8に示すように、プリント基板2が第1のグランド導体12及び第2のグランド導体14を備えていない場合の高周波回路1の接続部4から生じるクロストークよりも低減されていることが分かる。
以上の実施の形態1では、プリント基板2が、第1のグランド導体12が第1の面11aに施されている第1の誘電体層11を備え、フレキシブル基板3が、第4のグランド導体24が第8の面23bに施されている第4の誘電体層23を備え、プリント基板2とフレキシブル基板3との接続部4が、第2のグランド導体14及び第3のグランド導体22のそれぞれと非導通の状態で、第1の信号線路15a,15bと第2の信号線路25a,25bとの間を電気的に接続する接続導体を備えるように、高周波回路1を構成した。
また、高周波回路1では、プリント基板2とフレキシブル基板3との接続部4が、第1の信号線路15a,15bと一端が接続され、第2のグランド導体14と非導通の状態で、第4の面13bから他端が露出している第1の接続導体31a,31bと、第3のグランド導体22と非導通の状態で、第5の面21aから露出している一端が第1の接続導体31a,31bの他端と接続され、かつ、第2の信号線路25a,25bと他端が接続されている第2の接続導体33a,33bとを備えている。したがって、高周波回路1は、プリント基板2とフレキシブル基板3との接続部4からの電界の漏れを抑えることができる。
また、高周波回路1では、プリント基板2とフレキシブル基板3との接続部4が、第1の信号線路15a,15bと一端が接続され、第2のグランド導体14と非導通の状態で、第4の面13bから他端が露出している第1の接続導体31a,31bと、第3のグランド導体22と非導通の状態で、第5の面21aから露出している一端が第1の接続導体31a,31bの他端と接続され、かつ、第2の信号線路25a,25bと他端が接続されている第2の接続導体33a,33bとを備えている。したがって、高周波回路1は、プリント基板2とフレキシブル基板3との接続部4からの電界の漏れを抑えることができる。
実施の形態2.
図4に示すフレキシブル基板3では、第3の誘電体層21の第5の面21aに、第3のグランド導体22が施されているものを示している。
実施の形態2では、第3の誘電体層21の第5の面21aのうち、第2の信号線路25a,25bが配線されている領域と対向している領域41a,41bは、第3のグランド導体22が施されていない領域になっているフレキシブル基板3を備える高周波回路1について説明する。
図4に示すフレキシブル基板3では、第3の誘電体層21の第5の面21aに、第3のグランド導体22が施されているものを示している。
実施の形態2では、第3の誘電体層21の第5の面21aのうち、第2の信号線路25a,25bが配線されている領域と対向している領域41a,41bは、第3のグランド導体22が施されていない領域になっているフレキシブル基板3を備える高周波回路1について説明する。
図9は、実施の形態2に係る高周波回路1が有するフレキシブル基板3におけるB1-B2での断面を示す断面図である。図9において、図4と同一符号は同一又は相当部分を示すので説明を省略する。
領域41aは、第3の誘電体層21の第5の面21aのうち、第2の信号線路25aが配線されている領域と対向している領域であり、第3のグランド導体22が施されていない。
領域41bは、第3の誘電体層21の第5の面21aのうち、第2の信号線路25bが配線されている領域と対向している領域であり、第3のグランド導体22が施されていない。
領域41aは、第3の誘電体層21の第5の面21aのうち、第2の信号線路25aが配線されている領域と対向している領域であり、第3のグランド導体22が施されていない。
領域41bは、第3の誘電体層21の第5の面21aのうち、第2の信号線路25bが配線されている領域と対向している領域であり、第3のグランド導体22が施されていない。
第3の誘電体層21の第5の面21aのうち、第3のグランド導体22が施されていない領域41a,41bが存在している場合、領域41a,41bから電界が外部へ漏れる可能性がある。
しかし、発生した電界のうち、大部分の電界は、第3のグランド導体22が施されている領域に集中するため、導体が存在していない領域41a,41bから外部へ漏れる電界は僅かである。したがって、第3の誘電体層21の第5の面21aに第3のグランド導体22が施されていないフレキシブル基板よりも、外部への電界の漏れを抑えることができる。
しかし、発生した電界のうち、大部分の電界は、第3のグランド導体22が施されている領域に集中するため、導体が存在していない領域41a,41bから外部へ漏れる電界は僅かである。したがって、第3の誘電体層21の第5の面21aに第3のグランド導体22が施されていないフレキシブル基板よりも、外部への電界の漏れを抑えることができる。
例えば、図4の構成において、信号がフレキシブル基板3の第2の信号線路25aを伝送されると、上述したように、電界が発生すると同時に、第2の信号線路25aと第3のグランド導体22との間に容量成分が生じ、また、第2の信号線路25aと第4のグランド導体24との間に容量成分が生じる。第2の信号線路25aとしては、例えば、インピーダンスが50Ωとなる線路が好ましく、発生した容量成分を打ち消して、所望のインピーダンスを得ることができるようにするには、例えば、第2の信号線路25aの線路幅を狭め、インダクタンス成分を大きくすればよい。
しかし、第2の信号線路25aの線路幅を狭めると、フレキシブル基板3が曲げられたときに、第2の信号線路25aが断線してしまう可能性が高くなるため、第2の信号線路25aの線路幅を狭めることが困難な場合がある。
しかし、第2の信号線路25aの線路幅を狭めると、フレキシブル基板3が曲げられたときに、第2の信号線路25aが断線してしまう可能性が高くなるため、第2の信号線路25aの線路幅を狭めることが困難な場合がある。
図4に示すフレキシブル基板3では、第3の誘電体層21における第5の面21aの全体に、第3のグランド導体22が施されているが、図9に示すフレキシブル基板3では、第5の面21aのうち、領域41a,41bには、第3のグランド導体22が施されていない。
したがって、図9に示すフレキシブル基板3が備える第3のグランド導体22の面積が、図4に示すフレキシブル基板3が備える第3のグランド導体22の面積よりも小さい。
図9に示すフレキシブル基板3は、図4に示すフレキシブル基板3よりも、第3のグランド導体22の面積が小さいため、図4に示すフレキシブル基板3よりも、第2の信号線路25a,25bと第3のグランド導体22との間に生じる容量成分が減少する。
図9に示すフレキシブル基板3は、図4に示すフレキシブル基板3よりも、生じる容量成分が減少するため、第2の信号線路25a,25bの線路幅を狭めて、第2の信号線路25a,25bのインダクタンス成分を大きくすることなく、容量成分を打ち消すことができることがある。
したがって、図9に示すフレキシブル基板3が備える第3のグランド導体22の面積が、図4に示すフレキシブル基板3が備える第3のグランド導体22の面積よりも小さい。
図9に示すフレキシブル基板3は、図4に示すフレキシブル基板3よりも、第3のグランド導体22の面積が小さいため、図4に示すフレキシブル基板3よりも、第2の信号線路25a,25bと第3のグランド導体22との間に生じる容量成分が減少する。
図9に示すフレキシブル基板3は、図4に示すフレキシブル基板3よりも、生じる容量成分が減少するため、第2の信号線路25a,25bの線路幅を狭めて、第2の信号線路25a,25bのインダクタンス成分を大きくすることなく、容量成分を打ち消すことができることがある。
以上の実施の形態2では、第5の面21aのうち、第2の信号線路25a,25bが配線されている領域と対向している領域41a,41bは、第3のグランド導体22が施されていない領域であるように、高周波回路1を構成した。したがって、高周波回路1は、プリント基板2とフレキシブル基板3との接続部4からの電界の漏れを抑えることができるほか、図2に示す高周波回路1よりも、第2の信号線路25a,25bの線路幅を広げることができる。
実施の形態3.
図4に示すフレキシブル基板3では、第3の誘電体層21の第5の面21aに、第3のグランド導体22が施されているものを示している。
実施の形態3では、第5の面21aのうち、第2の信号線路25aが配線されている領域と対向している領域41aは、第3のグランド導体22が施されていない領域である。そして、第8の面23bのうち、第2の信号線路25bが配線されている領域と対向している領域41cは、第4のグランド導体24が施されていない領域になっているフレキシブル基板3を備える高周波回路1について説明する。
図4に示すフレキシブル基板3では、第3の誘電体層21の第5の面21aに、第3のグランド導体22が施されているものを示している。
実施の形態3では、第5の面21aのうち、第2の信号線路25aが配線されている領域と対向している領域41aは、第3のグランド導体22が施されていない領域である。そして、第8の面23bのうち、第2の信号線路25bが配線されている領域と対向している領域41cは、第4のグランド導体24が施されていない領域になっているフレキシブル基板3を備える高周波回路1について説明する。
図10は、実施の形態3に係る高周波回路1が有するフレキシブル基板3におけるB1-B2での断面を示す断面図である。図10において、図4及び図9と同一符号は同一又は相当部分を示すので説明を省略する。
領域41cは、第4の誘電体層23の第8の面23bのうち、第2の信号線路25bが配線されている領域と対向している領域であり、第4のグランド導体24が施されていない。
第2の信号線路25aと第2の信号線路25bとは、2本以上の第2の信号線路の中で、互いに隣り合っている信号線路である。
領域41cは、第4の誘電体層23の第8の面23bのうち、第2の信号線路25bが配線されている領域と対向している領域であり、第4のグランド導体24が施されていない。
第2の信号線路25aと第2の信号線路25bとは、2本以上の第2の信号線路の中で、互いに隣り合っている信号線路である。
図4に示すフレキシブル基板3では、第3の誘電体層21における第5の面21aの全体に、第3のグランド導体22が施されており、また、第4の誘電体層23における第8の面23bの全体に、第4のグランド導体24が施されている。
一方、図10に示すフレキシブル基板3では、第5の面21aのうち、領域41aには、第3のグランド導体22が施されていない。また、第8の面23bのうち、領域41cには、第4のグランド導体24が施されていない。
したがって、図10に示すフレキシブル基板3が備える第3のグランド導体22の面積が、図4に示すフレキシブル基板3が備える第3のグランド導体22の面積よりも小さい。
また、図10に示すフレキシブル基板3が備える第4のグランド導体24の面積が、図4に示すフレキシブル基板3が備える第4のグランド導体24の面積よりも小さい。
一方、図10に示すフレキシブル基板3では、第5の面21aのうち、領域41aには、第3のグランド導体22が施されていない。また、第8の面23bのうち、領域41cには、第4のグランド導体24が施されていない。
したがって、図10に示すフレキシブル基板3が備える第3のグランド導体22の面積が、図4に示すフレキシブル基板3が備える第3のグランド導体22の面積よりも小さい。
また、図10に示すフレキシブル基板3が備える第4のグランド導体24の面積が、図4に示すフレキシブル基板3が備える第4のグランド導体24の面積よりも小さい。
図10に示すフレキシブル基板3は、図4に示すフレキシブル基板3よりも、第3のグランド導体22の面積が小さいため、図4に示すフレキシブル基板3よりも、第2の信号線路25aと第3のグランド導体22との間に生じる容量成分が減少する。
また、図10に示すフレキシブル基板3は、図4に示すフレキシブル基板3よりも、第4のグランド導体24の面積が小さいため、図4に示すフレキシブル基板3よりも、第2の信号線路25bと第4のグランド導体24との間に生じる容量成分が減少する。
図10に示すフレキシブル基板3は、図4に示すフレキシブル基板3よりも、生じる容量成分が減少するため、第2の信号線路25a,25bの線路幅を狭めて、第2の信号線路25a,25bのインダクタンス成分を大きくすることなく、容量成分を打ち消すことができることがある。
また、図10に示すフレキシブル基板3では、領域41aが第5の面21aに設けられ、領域41cが第8の面23bに設けられているため、仮に、領域41aから電界が外部へ漏洩しても、当該電界が領域41cへ到達することが困難である。したがって、図10に示すフレキシブル基板3では、図9に示すフレキシブル基板3よりも、第2の信号線路25aと第2の信号線路25bとの間での、クロストークの発生を抑えることができる。
また、図10に示すフレキシブル基板3は、図4に示すフレキシブル基板3よりも、第4のグランド導体24の面積が小さいため、図4に示すフレキシブル基板3よりも、第2の信号線路25bと第4のグランド導体24との間に生じる容量成分が減少する。
図10に示すフレキシブル基板3は、図4に示すフレキシブル基板3よりも、生じる容量成分が減少するため、第2の信号線路25a,25bの線路幅を狭めて、第2の信号線路25a,25bのインダクタンス成分を大きくすることなく、容量成分を打ち消すことができることがある。
また、図10に示すフレキシブル基板3では、領域41aが第5の面21aに設けられ、領域41cが第8の面23bに設けられているため、仮に、領域41aから電界が外部へ漏洩しても、当該電界が領域41cへ到達することが困難である。したがって、図10に示すフレキシブル基板3では、図9に示すフレキシブル基板3よりも、第2の信号線路25aと第2の信号線路25bとの間での、クロストークの発生を抑えることができる。
以上の実施の形態3では、第5の面21aのうち、第2の信号線路25aが配線されている領域と対向している領域41aは、第3のグランド導体22が施されていない領域である。そして、第8の面23bのうち、第2の信号線路25bが配線されている領域と対向している領域41cは、第4のグランド導体24が施されていない領域であるように、高周波回路1を構成した。したがって、高周波回路1は、プリント基板2とフレキシブル基板3との接続部4からの電界の漏れを抑えることができるほか、図2に示す高周波回路1よりも、第2の信号線路25a,25bの線路幅を広げることができる。
実施の形態4.
図3に示すプリント基板2では、第1の誘電体層11の第1の面11aに、第1のグランド導体12が施されているものを示している。
実施の形態4では、第1の誘電体層11の第1の面11aのうち、第1の信号線路15a,15bが配線されている領域と対向している領域51a,51bは、第1のグランド導体12が施されていない領域になっているプリント基板2を備える高周波回路1について説明する。
図3に示すプリント基板2では、第1の誘電体層11の第1の面11aに、第1のグランド導体12が施されているものを示している。
実施の形態4では、第1の誘電体層11の第1の面11aのうち、第1の信号線路15a,15bが配線されている領域と対向している領域51a,51bは、第1のグランド導体12が施されていない領域になっているプリント基板2を備える高周波回路1について説明する。
図11は、実施の形態4に係る高周波回路1が有するプリント基板2におけるA1-A2での断面を示す断面図である。図11において、図3と同一符号は同一又は相当部分を示すので説明を省略する。
領域51aは、第1の誘電体層11の第1の面11aのうち、第1の信号線路15aが配線されている領域と対向している領域であり、第1のグランド導体12が施されていない。
領域51bは、第1の誘電体層11の第1の面11aのうち、第1の信号線路15bが配線されている領域と対向している領域であり、第1のグランド導体12が施されていない。
領域51aは、第1の誘電体層11の第1の面11aのうち、第1の信号線路15aが配線されている領域と対向している領域であり、第1のグランド導体12が施されていない。
領域51bは、第1の誘電体層11の第1の面11aのうち、第1の信号線路15bが配線されている領域と対向している領域であり、第1のグランド導体12が施されていない。
第1の誘電体層11の第1の面11aのうち、第1のグランド導体12が施されていない領域51a,51bが存在している場合、領域51a,51bから電界が外部へ漏れる可能性がある。
しかし、発生した電界のうち、大部分の電界は、第1のグランド導体12が施されている領域に集中するため、導体が存在していない領域51a,51bから外部へ漏れる電界は僅かである。したがって、第1の誘電体層11の第1の面11aに第1のグランド導体12が施されていないプリント基板よりも、外部への電界の漏れを抑えることができる。
しかし、発生した電界のうち、大部分の電界は、第1のグランド導体12が施されている領域に集中するため、導体が存在していない領域51a,51bから外部へ漏れる電界は僅かである。したがって、第1の誘電体層11の第1の面11aに第1のグランド導体12が施されていないプリント基板よりも、外部への電界の漏れを抑えることができる。
例えば、信号がプリント基板2の第1の信号線路15aを伝送されると、上述したように、電界が発生する。
電界が発生することで、第1の信号線路15aと第1のグランド導体12との間に容量成分が生じ、また、第1の信号線路15aと第2のグランド導体14との間に容量成分が生じる。第1の信号線路15aとしては、例えば、インピーダンスが50Ωとなる線路が好ましく、発生した容量成分を打ち消して、所望のインピーダンスを得ることができるようにするには、例えば、第1の信号線路15aの線路幅を狭め、インダクタンス成分を大きくすればよい。
しかし、第1の信号線路15aの線路幅を狭めると、第1の信号線路15aの線路インピーダンスが、製造制約等によっては、所望のインピーダンスにならないことがある。
電界が発生することで、第1の信号線路15aと第1のグランド導体12との間に容量成分が生じ、また、第1の信号線路15aと第2のグランド導体14との間に容量成分が生じる。第1の信号線路15aとしては、例えば、インピーダンスが50Ωとなる線路が好ましく、発生した容量成分を打ち消して、所望のインピーダンスを得ることができるようにするには、例えば、第1の信号線路15aの線路幅を狭め、インダクタンス成分を大きくすればよい。
しかし、第1の信号線路15aの線路幅を狭めると、第1の信号線路15aの線路インピーダンスが、製造制約等によっては、所望のインピーダンスにならないことがある。
図3に示すプリント基板2では、第1の誘電体層11における第1の面11aの全体に、第1のグランド導体12が施されているが、図11に示すプリント基板2では、第1の面11aのうち、領域51a,51bには、第1のグランド導体12が施されていない。
したがって、図11に示すプリント基板2が備える第1のグランド導体12の面積が、図3に示すプリント基板2が備える第1のグランド導体12の面積よりも小さい。
図11に示すプリント基板2は、図3に示すプリント基板2よりも、第1のグランド導体12の面積が小さいため、図3に示すプリント基板2よりも、第1の信号線路15a,15bと第1のグランド導体12との間に生じる容量成分が減少する。
図11に示すプリント基板2は、図3に示すプリント基板2よりも、生じる容量成分が減少するため、第1の信号線路15a,15bの線路幅を狭めて、第1の信号線路15a,15bのインダクタンス成分を大きくすることなく、容量成分を打ち消すことができることがある。
したがって、図11に示すプリント基板2が備える第1のグランド導体12の面積が、図3に示すプリント基板2が備える第1のグランド導体12の面積よりも小さい。
図11に示すプリント基板2は、図3に示すプリント基板2よりも、第1のグランド導体12の面積が小さいため、図3に示すプリント基板2よりも、第1の信号線路15a,15bと第1のグランド導体12との間に生じる容量成分が減少する。
図11に示すプリント基板2は、図3に示すプリント基板2よりも、生じる容量成分が減少するため、第1の信号線路15a,15bの線路幅を狭めて、第1の信号線路15a,15bのインダクタンス成分を大きくすることなく、容量成分を打ち消すことができることがある。
以上の実施の形態4では、第1の面11aのうち、第1の信号線路15a,15bが配線されている領域と対向している領域51a,51bは、第1のグランド導体12が施されていない領域であるように、高周波回路1を構成した。したがって、高周波回路1は、プリント基板2とフレキシブル基板3との接続部4からの電界の漏れを抑えることができるほか、図2に示す高周波回路1よりも、第1の信号線路15a,15bの線路幅を広げることができる。
実施の形態5.
実施の形態5では、第3の誘電体層21の厚みと、第4の誘電体層23の厚みとが異なるフレキシブル基板3を備える高周波回路1について説明する。
実施の形態5では、第3の誘電体層21の厚みと、第4の誘電体層23の厚みとが異なるフレキシブル基板3を備える高周波回路1について説明する。
図12Aは、実施の形態5に係る高周波回路1が有するフレキシブル基板3におけるB1-B2での断面を示す断面図である。図12Aの例では、第3の誘電体層21の厚みが、第4の誘電体層23の厚みよりも厚い。
図12Bは、実施の形態5に係る高周波回路1が有するフレキシブル基板3におけるB1-B2での断面を示す断面図である。図12Bの例では、第3の誘電体層21の厚みが、第4の誘電体層23の厚みよりも薄い。
図12Bは、実施の形態5に係る高周波回路1が有するフレキシブル基板3におけるB1-B2での断面を示す断面図である。図12Bの例では、第3の誘電体層21の厚みが、第4の誘電体層23の厚みよりも薄い。
第3の誘電体層21の厚みを変えずに、図12Aに示すように、第4の誘電体層23の厚みを、第3の誘電体層21の厚みよりも薄くした場合、第4の誘電体層23の厚みが第3の誘電体層21の厚みと同じである場合よりも、第2の信号線路25a,25bと第4のグランド導体24との間に生じる容量成分が大きくなる。
したがって、第4の誘電体層23の厚みを、第3の誘電体層21の厚みよりも薄くした場合でも、容量成分を打ち消すには、第4の誘電体層23の厚みが第3の誘電体層21の厚みと同じである場合よりも、第2の信号線路25a,25bの線路幅を狭める必要がある。
したがって、第4の誘電体層23の厚みを、第3の誘電体層21の厚みよりも薄くした場合でも、容量成分を打ち消すには、第4の誘電体層23の厚みが第3の誘電体層21の厚みと同じである場合よりも、第2の信号線路25a,25bの線路幅を狭める必要がある。
また、第3の誘電体層21の厚みを変えずに、図12Bに示すように、第4の誘電体層23の厚みを、第3の誘電体層21の厚みよりも厚くした場合、第4の誘電体層23の厚みが第3の誘電体層21の厚みと同じである場合よりも、第2の信号線路25a,25bと第4のグランド導体24との間に生じる容量成分が小さくなる。
したがって、第4の誘電体層23の厚みを、第3の誘電体層21の厚みよりも厚くした場合でも、容量成分を打ち消すには、第4の誘電体層23の厚みが第3の誘電体層21の厚みと同じである場合よりも、第2の信号線路25a,25bの線路幅を広げる必要がある。
したがって、第4の誘電体層23の厚みを、第3の誘電体層21の厚みよりも厚くした場合でも、容量成分を打ち消すには、第4の誘電体層23の厚みが第3の誘電体層21の厚みと同じである場合よりも、第2の信号線路25a,25bの線路幅を広げる必要がある。
したがって、図12A及び図12Bに示すフレキシブル基板3では、第3の誘電体層21の厚み及び第4の誘電体層23の厚みのそれぞれに応じて、第2の信号線路25a,25bの線路幅を決定すればよい。
ここでは、第3の誘電体層21の厚み及び第4の誘電体層23の厚みのそれぞれに応じて、第2の信号線路25a,25bの線路幅を決定する旨を示している。しかし、これは一例に過ぎず、第2の信号線路25a,25bの線路幅を所望の線路幅に決定した後、第2の信号線路25a,25bと第4のグランド導体24との間に生じる容量成分を打ち消すことができるように、第3の誘電体層21の厚み及び第4の誘電体層23の厚みのそれぞれを決定するようにしてもよい。
ここでは、第3の誘電体層21の厚み及び第4の誘電体層23の厚みのそれぞれに応じて、第2の信号線路25a,25bの線路幅を決定する旨を示している。しかし、これは一例に過ぎず、第2の信号線路25a,25bの線路幅を所望の線路幅に決定した後、第2の信号線路25a,25bと第4のグランド導体24との間に生じる容量成分を打ち消すことができるように、第3の誘電体層21の厚み及び第4の誘電体層23の厚みのそれぞれを決定するようにしてもよい。
図12A及び図12Bに示すフレキシブル基板3では、第3の誘電体層21の厚みを変えずに、第4の誘電体層23の厚みを、第3の誘電体層21の厚みと異なるようにしている。
しかし、これは一例に過ぎず、第4の誘電体層23の厚みを変えずに、第3の誘電体層21の厚みを、第4の誘電体層23の厚みと異なるようにしているフレキシブル基板3であってもよい。
しかし、これは一例に過ぎず、第4の誘電体層23の厚みを変えずに、第3の誘電体層21の厚みを、第4の誘電体層23の厚みと異なるようにしているフレキシブル基板3であってもよい。
以上の実施の形態5では、第3の誘電体層21の厚みと、第4の誘電体層23の厚みとが異なるように、高周波回路1を構成した。したがって、高周波回路1は、プリント基板2とフレキシブル基板3との接続部4からの電界の漏れを抑えることができるほか、図2に示す高周波回路1よりも、第2の信号線路25a,25bの線路幅についての設計の自由度を高めることができる。
実施の形態6.
実施の形態6では、フレキシブル基板における信号の伝送方向おいて、第1の信号線路15aと第2の信号線路25aとの接続位置と、第1の信号線路15bと第2の信号線路25bとの接続位置とが異なっている高周波回路について説明する。
実施の形態6では、フレキシブル基板における信号の伝送方向おいて、第1の信号線路15aと第2の信号線路25aとの接続位置と、第1の信号線路15bと第2の信号線路25bとの接続位置とが異なっている高周波回路について説明する。
図13は、実施の形態6に係る高周波回路1を示す斜視図である。図13において、図2と同一符号は同一又は相当部分を示すので説明を省略する。
接続部4は、第1の接続部4a及び第2の接続部4bを備えている。
第1の接続部4aは、第1の信号線路15aと、第2の信号線路25aとの間を電気的に接続するために、第1の接続導体31a及び第2の接続導体33aを備えている。
第2の接続部4bは、第1の信号線路15bと、第2の信号線路25bとの間を電気的に接続するために、第1の接続導体31b及び第2の接続導体33bを備えている。
接続部4は、第1の接続部4a及び第2の接続部4bを備えている。
第1の接続部4aは、第1の信号線路15aと、第2の信号線路25aとの間を電気的に接続するために、第1の接続導体31a及び第2の接続導体33aを備えている。
第2の接続部4bは、第1の信号線路15bと、第2の信号線路25bとの間を電気的に接続するために、第1の接続導体31b及び第2の接続導体33bを備えている。
図13に示す高周波回路1では、フレキシブル基板3における信号の伝送方向おいて、第1の接続部4aが設けられている位置と、第2の接続部4bが設けられている位置とが異なっている。
第1の接続部4aが設けられている位置と、第2の接続部4bが設けられている位置とが異なっている場合、第1の接続部4aが設けられている位置と、第2の接続部4bが設けられている位置とが同じである場合よりも、第1の接続部4aが設けられている位置と、第2の接続部4bが設けられている位置との距離が長くなる。
したがって、図13に示す高周波回路1では、仮に、第1の接続部4a又は第2の接続部4bから、電界が外部へ漏れても、第1の接続部4aが設けられている位置と、第2の接続部4bが設けられている位置とが同じである場合よりも、第1の信号線路15aと第1の信号線路15bとの間でのクロストークの発生を抑えることができる。また、第2の信号線路25aと第2の信号線路25bとの間でのクロストークの発生を抑えることができる。
第1の接続部4aが設けられている位置と、第2の接続部4bが設けられている位置とが異なっている場合、第1の接続部4aが設けられている位置と、第2の接続部4bが設けられている位置とが同じである場合よりも、第1の接続部4aが設けられている位置と、第2の接続部4bが設けられている位置との距離が長くなる。
したがって、図13に示す高周波回路1では、仮に、第1の接続部4a又は第2の接続部4bから、電界が外部へ漏れても、第1の接続部4aが設けられている位置と、第2の接続部4bが設けられている位置とが同じである場合よりも、第1の信号線路15aと第1の信号線路15bとの間でのクロストークの発生を抑えることができる。また、第2の信号線路25aと第2の信号線路25bとの間でのクロストークの発生を抑えることができる。
以上の実施の形態6では、フレキシブル基板3における信号の伝送方向おいて、第1の接続部4aが設けられている位置と、第2の接続部4bが設けられている位置とが異なっているように、高周波回路1を構成した。したがって、高周波回路1は、プリント基板2とフレキシブル基板3との接続部4からの電界の漏れを抑えることができるほか、図2に示す高周波回路1よりも、クロストークの発生を抑えることができる。
実施の形態7.
実施の形態7では、第1のグランド導体12に開口61a,61bが施されている高周波回路1について説明する。
実施の形態7では、第1のグランド導体12に開口61a,61bが施されている高周波回路1について説明する。
図14は、実施の形態7に係る高周波回路1を示す斜視図である。図14において、図2と同一符号は同一又は相当部分を示すので説明を省略する。
図15は、プリント基板2とフレキシブル基板3とが接続される前の接続部4におけるC1-C2での断面を示す断面図である。図15において、図5及び図7と同一符号は同一又は相当部分を示すので説明を省略する。
開口61aは、第1のグランド導体12に施されている孔である。
開口61aが施されている位置は、接続部4において、第1の信号線路15aと対向している位置である。
開口61bは、第1のグランド導体12に施されている孔である。
開口61bが施されている位置は、接続部4において、第1の信号線路15bと対向している位置である。
図14に示す高周波回路1は、開口61a,61bが、図7に示す接続部4でのプリント基板2に適用されているものを示している。しかし、これは一例に過ぎず、開口61a,61bが、図5に示す接続部4でのプリント基板2に適用されているものであってもよい。
図15は、プリント基板2とフレキシブル基板3とが接続される前の接続部4におけるC1-C2での断面を示す断面図である。図15において、図5及び図7と同一符号は同一又は相当部分を示すので説明を省略する。
開口61aは、第1のグランド導体12に施されている孔である。
開口61aが施されている位置は、接続部4において、第1の信号線路15aと対向している位置である。
開口61bは、第1のグランド導体12に施されている孔である。
開口61bが施されている位置は、接続部4において、第1の信号線路15bと対向している位置である。
図14に示す高周波回路1は、開口61a,61bが、図7に示す接続部4でのプリント基板2に適用されているものを示している。しかし、これは一例に過ぎず、開口61a,61bが、図5に示す接続部4でのプリント基板2に適用されているものであってもよい。
例えば、プリント基板2の第1の信号線路15aに信号が入力されると、入力された信号は、第1の信号線路15aを伝送される。
第1の信号線路15aを伝送された信号は、第1の接続導体31a及び第2の接続導体33aを介して、フレキシブル基板3の第2の信号線路25aまで伝送される。
第2の信号線路25aまで伝送された信号は、第2の信号線路25aを伝送される。
第1の信号線路15aを伝送された信号は、第1の接続導体31a及び第2の接続導体33aを介して、フレキシブル基板3の第2の信号線路25aまで伝送される。
第2の信号線路25aまで伝送された信号は、第2の信号線路25aを伝送される。
また、プリント基板2の第1の信号線路15bに信号が入力されると、入力された信号は、第1の信号線路15bを伝送される。
第1の信号線路15bを伝送された信号は、第1の接続導体31b及び第2の接続導体33bを介して、フレキシブル基板3の第2の信号線路25bまで伝送される。
第2の信号線路25bまで伝送された信号は、第2の信号線路25bを伝送される。
第1の信号線路15bを伝送された信号は、第1の接続導体31b及び第2の接続導体33bを介して、フレキシブル基板3の第2の信号線路25bまで伝送される。
第2の信号線路25bまで伝送された信号は、第2の信号線路25bを伝送される。
例えば、信号がプリント基板2の第1の信号線路15aを伝送されると、接続部4においても、第1の信号線路15aから、電界が発生する。
発生した電界が、例えば、プリント基板2の外部に漏れて、第1の信号線路15bに到達すると、第1の信号線路15aと第1の信号線路15bとの間で、クロストークが生じる。
しかし、図15に示すプリント基板2では、第1の誘電体層11の第1の面11aに、第1のグランド導体12が施されているので、第1の誘電体層11の第1の面11aから、プリント基板2の外部への、発生した電界の漏れが低減される。
また、図15に示すプリント基板2では、第2の誘電体層13の第4の面13bに、第2のグランド導体14が施されているので、第2の誘電体層13の第4の面13bから、プリント基板2の外部への、発生した電界の漏れが低減される。
発生した電界が、例えば、プリント基板2の外部に漏れて、第1の信号線路15bに到達すると、第1の信号線路15aと第1の信号線路15bとの間で、クロストークが生じる。
しかし、図15に示すプリント基板2では、第1の誘電体層11の第1の面11aに、第1のグランド導体12が施されているので、第1の誘電体層11の第1の面11aから、プリント基板2の外部への、発生した電界の漏れが低減される。
また、図15に示すプリント基板2では、第2の誘電体層13の第4の面13bに、第2のグランド導体14が施されているので、第2の誘電体層13の第4の面13bから、プリント基板2の外部への、発生した電界の漏れが低減される。
図15に示すプリント基板2では、第1のグランド導体12に開口61a,61bが施されており、開口61a,61bから電界が外部へ漏れる可能性がある。しかし、発生した電界は、導体が存在している領域に集中し、導体が存在していない領域にはほとんど集まらない性質がある。したがって、発生した電界のうち、大部分の電界は、第1のグランド導体12が施されている領域に集中するため、導体が存在していない開口61a,61bから外部へ漏れる電界は僅かである。
第1の信号線路15a,15b及び第2の信号線路25a,25bにおけるそれぞれのインピーダンスは、例えば、50Ωに設計される。
しかし、接続部4では、スルーホールビアによって実現されている第2の接続導体33a,33bの他端35a,35bから、ハンダが供給されることによって、プリント基板2とフレキシブル基板3とが接続される構造になっている。
また、第2の接続導体33a、第2の接続導体33aの一端34a及び第2の接続導体33aの他端35aが、第2の信号線路25aに設けられ、第2の接続導体33b、第2の接続導体33bの一端34b及び第2の接続導体33bの他端35bが、第2の信号線路25bに設けられている。
このため、第2の信号線路25a,25bと対向する位置には、グランド導体を配置することができないため、第2の信号線路25a,25bのインピーダンスが50Ωからずれてしまうことがある。第2の信号線路25a,25bのインピーダンスが50Ωからずれてしまうと、電気信号の反射による共振が発生し、共振の発生によって、通過帯域が制限されてしまう。第1のグランド導体12に開口61a,61bが施されていない場合、高周波成分が第1のグランド導体12とカップリングして、容量成分が大きくなる傾向にある。
しかし、接続部4では、スルーホールビアによって実現されている第2の接続導体33a,33bの他端35a,35bから、ハンダが供給されることによって、プリント基板2とフレキシブル基板3とが接続される構造になっている。
また、第2の接続導体33a、第2の接続導体33aの一端34a及び第2の接続導体33aの他端35aが、第2の信号線路25aに設けられ、第2の接続導体33b、第2の接続導体33bの一端34b及び第2の接続導体33bの他端35bが、第2の信号線路25bに設けられている。
このため、第2の信号線路25a,25bと対向する位置には、グランド導体を配置することができないため、第2の信号線路25a,25bのインピーダンスが50Ωからずれてしまうことがある。第2の信号線路25a,25bのインピーダンスが50Ωからずれてしまうと、電気信号の反射による共振が発生し、共振の発生によって、通過帯域が制限されてしまう。第1のグランド導体12に開口61a,61bが施されていない場合、高周波成分が第1のグランド導体12とカップリングして、容量成分が大きくなる傾向にある。
図15に示すプリント基板2では、第1のグランド導体12に開口61a,61bが施されているため、接続部4におけるプリント基板2の容量成分が、開口61a,61bが施されていないものよりも、減少する。
接続部4におけるプリント基板2の容量成分が減少するため、第1の信号線路15a,15b及び第2の信号線路25a,25bにおけるそれぞれのインピーダンスが上昇する。したがって、第1のグランド導体12における開口61a,61bの大きさを調整することで、それぞれのインピーダンスを50Ωに近づけることができる。
接続部4におけるプリント基板2の容量成分が減少するため、第1の信号線路15a,15b及び第2の信号線路25a,25bにおけるそれぞれのインピーダンスが上昇する。したがって、第1のグランド導体12における開口61a,61bの大きさを調整することで、それぞれのインピーダンスを50Ωに近づけることができる。
図16は、高周波回路1における信号の通過特性のシミュレーション結果を示す説明図である。
図16において、横軸は、第1の信号線路15a及び第2の信号線路25aのそれぞれを伝送される信号の周波数[GHz]であり、縦軸は、信号の損失を示すSパラメータ(S21)である。
実線は、実施の形態2に係る高周波回路1における信号の通過特性を示しており、破線は、実施の形態7に係る高周波回路1における信号の通過特性を示している。
図16より、実施の形態7に係る高周波回路1は、実施の形態2に係る高周波回路1と比べて、周波数が50GHz以上の帯域において、信号の損失を大幅に低減できていることが分かる。
図16において、横軸は、第1の信号線路15a及び第2の信号線路25aのそれぞれを伝送される信号の周波数[GHz]であり、縦軸は、信号の損失を示すSパラメータ(S21)である。
実線は、実施の形態2に係る高周波回路1における信号の通過特性を示しており、破線は、実施の形態7に係る高周波回路1における信号の通過特性を示している。
図16より、実施の形態7に係る高周波回路1は、実施の形態2に係る高周波回路1と比べて、周波数が50GHz以上の帯域において、信号の損失を大幅に低減できていることが分かる。
図17は、接続部4から電界が漏れることで生じるクロストークのシミュレーション結果を示す説明図である。
図17において、横軸は、第1の信号線路15a及び第2の信号線路25aのそれぞれを伝送される信号の周波数[GHz]であり、縦軸は、クロストーク[dB]である。
図17より、実施の形態7に係る高周波回路1は、実施の形態2に係る高周波回路1と同様に、クロストークが抑えられていることが分かる。
図17において、横軸は、第1の信号線路15a及び第2の信号線路25aのそれぞれを伝送される信号の周波数[GHz]であり、縦軸は、クロストーク[dB]である。
図17より、実施の形態7に係る高周波回路1は、実施の形態2に係る高周波回路1と同様に、クロストークが抑えられていることが分かる。
以上の実施の形態7では、プリント基板2とフレキシブル基板3との接続部4において、第1の面11aに施されている第1のグランド導体12のうち、第1の信号線路15a,15bと対向する位置に施されている第1のグランド導体12に開口61a,61bが施されているように、高周波回路1を構成した。したがって、実施の形態7に係る高周波回路1は、プリント基板2とフレキシブル基板3との接続部4からの電界の漏れを抑えることができるほか、実施の形態2に係る高周波回路1よりも、信号の損失を低減することができる。
なお、本開示は、各実施の形態の自由な組み合わせ、あるいは各実施の形態の任意の構成要素の変形、もしくは各実施の形態において任意の構成要素の省略が可能である。
本開示は、プリント基板及びフレキシブル基板を備える高周波回路と、高周波回路を備える通信モジュールとに適している。
1 高周波回路、2 プリント基板、3 フレキシブル基板、4 接続部、4a 第1の接続部、4b 第2の接続部、11 第1の誘電体層、11a 第1の面、11b 第2の面、12 第1のグランド導体、13 第2の誘電体層、13a 第3の面、13b 第4の面、14 第2のグランド導体、15a,15b 第1の信号線路、16 第1のグランド接続導体、17 導体、21 第3の誘電体層、21a 第5の面、21b 第6の面、22 第3のグランド導体、23 第4の誘電体層、23a 第7の面、23b 第8の面、24 第4のグランド導体、25a,25b 第2の信号線路、26 第2のグランド接続導体、27 導体、31a,31b 第1の接続導体、32a,32b 第1の接続導体の他端、33a,33b 第2の接続導体、34a,34b 第2の接続導体の一端、35a,35b 第2の接続導体の他端、41a,41b,41c,51a,51b 領域、61a,61b 開口。
Claims (9)
- プリント基板と、
前記プリント基板と接続されているフレキシブル基板とを備え、
前記プリント基板は、
第1の面及び第2の面を有しており、第1のグランド導体が前記第1の面に施されている第1の誘電体層と、
第3の面及び第4の面を有しており、第2のグランド導体が前記第4の面に施されている第2の誘電体層と、
前記第2の面と前記第3の面との間に配線されている複数の第1の信号線路とを備え、
前記フレキシブル基板は、
第5の面及び第6の面を有しており、第3のグランド導体が前記第5の面に施されている第3の誘電体層と、
第7の面及び第8の面を有しており、第4のグランド導体が前記第8の面に施されている第4の誘電体層と、
前記第6の面と前記第7の面との間に配線されている複数の第2の信号線路とを備え、
前記プリント基板と前記フレキシブル基板との接続部は、
それぞれの第1の信号線路と一端が接続され、前記第2のグランド導体と非導通の状態で、前記第4の面から他端が露出している複数の第1の接続導体と、
前記第3のグランド導体と非導通の状態で、前記第5の面から露出している一端がそれぞれの第1の接続導体の他端と接続され、かつ、それぞれの第2の信号線路と他端が接続されている複数の第2の接続導体とを備えていることを特徴とする高周波回路。 - 前記複数の第1の信号線路の間には、前記第1のグランド導体と一端が接続され、前記第2のグランド導体と他端が接続されている第1のグランド接続導体が設けられ、
前記複数の第2の信号線路の間には、前記第3のグランド導体と一端が接続され、前記第4のグランド導体と他端が接続されている第2のグランド接続導体が設けられていることを特徴とする請求項1記載の高周波回路。 - 前記第5の面のうち、前記第2の信号線路が配線されている領域と対向している領域は、前記第3のグランド導体が施されていない領域であることを特徴とする請求項1記載の高周波回路。
- 前記第5の面のうち、前記複数の第2の信号線路の中の1つの第2の信号線路が配線されている領域と対向している領域は、前記第3のグランド導体が施されていない領域であり、
前記第8の面のうち、前記複数の第2の信号線路の中で、前記1つの第2の信号線路と隣り合っている第2の信号線路が配線されている領域と対向している領域は、前記第4のグランド導体が施されていない領域であることを特徴とする請求項2記載の高周波回路。 - 前記第1の面のうち、前記第1の信号線路が配線されている領域と対向している領域は、前記第1のグランド導体が施されていない領域であることを特徴とする請求項1記載の高周波回路。
- 前記第3の誘電体層の厚みと、前記第4の誘電体層の厚みとが異なることを特徴とする請求項1記載の高周波回路。
- 前記複数の第1の信号線路の数は、2つであり、前記複数の第2の信号線路の数は、2つであり、
前記プリント基板と前記フレキシブル基板との接続部は、
2つの第1の信号線路のうちの一方の第1の信号線路と、2つの第2の信号線路のうちの一方の第2の信号線路との間を電気的に接続するための第1の接続部と、
2つの第1の信号線路のうちの他方の第1の信号線路と、2つの第2の信号線路のうちの他方の第2の信号線路との間を電気的に接続するための第2の接続部とを備え、
前記フレキシブル基板における信号の伝送方向おいて、前記第1の接続部が設けられている位置と、前記第2の接続部が設けられている位置とが異なっていることを特徴とする請求項1記載の高周波回路。 - 前記プリント基板と前記フレキシブル基板との接続部において、
前記第1の面に施されている前記第1のグランド導体のうち、それぞれの第1の信号線路と対向する位置に施されている第1のグランド導体には、開口が施されていることを特徴とする請求項1記載の高周波回路。 - 請求項1から請求項8のうちのいずれか1項記載の高周波回路を備えた通信モジュール。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202080024920.0A CN113647202B (zh) | 2019-04-08 | 2020-03-06 | 高频电路和通信模块 |
JP2021513517A JP6937965B2 (ja) | 2019-04-08 | 2020-03-06 | 高周波回路及び通信モジュール |
US17/470,432 US20210410269A1 (en) | 2019-04-08 | 2021-09-09 | High-frequency circuit and communication module |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JPPCT/JP2019/015324 | 2019-04-08 | ||
PCT/JP2019/015324 WO2020208683A1 (ja) | 2019-04-08 | 2019-04-08 | 高周波回路及び通信モジュール |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US17/470,432 Continuation US20210410269A1 (en) | 2019-04-08 | 2021-09-09 | High-frequency circuit and communication module |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2020208983A1 true WO2020208983A1 (ja) | 2020-10-15 |
Family
ID=70286805
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2019/015324 WO2020208683A1 (ja) | 2019-04-08 | 2019-04-08 | 高周波回路及び通信モジュール |
PCT/JP2020/009547 WO2020208983A1 (ja) | 2019-04-08 | 2020-03-06 | 高周波回路及び通信モジュール |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2019/015324 WO2020208683A1 (ja) | 2019-04-08 | 2019-04-08 | 高周波回路及び通信モジュール |
Country Status (4)
Country | Link |
---|---|
US (1) | US20210410269A1 (ja) |
JP (2) | JP6687302B1 (ja) |
CN (1) | CN113647202B (ja) |
WO (2) | WO2020208683A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7570305B2 (ja) | 2021-08-31 | 2024-10-21 | ルネサスエレクトロニクス株式会社 | 半導体装置 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005026801A (ja) * | 2003-06-30 | 2005-01-27 | Opnext Japan Inc | 光伝送モジュール |
JP2006024618A (ja) * | 2004-07-06 | 2006-01-26 | Toshiba Corp | 配線基板 |
JP2013126029A (ja) * | 2011-12-13 | 2013-06-24 | Mitsubishi Electric Corp | 高周波伝送線路 |
WO2015087893A1 (ja) * | 2013-12-12 | 2015-06-18 | 株式会社村田製作所 | 信号伝送部品および電子機器 |
Family Cites Families (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS636884Y2 (ja) * | 1981-01-16 | 1988-02-27 | ||
JP2605653B2 (ja) * | 1995-02-28 | 1997-04-30 | 日本電気株式会社 | プリント基板間の同軸線路接続構造 |
JP3933943B2 (ja) * | 2002-01-25 | 2007-06-20 | 三菱電機株式会社 | 高周波信号接続構造 |
US6930240B1 (en) * | 2004-03-18 | 2005-08-16 | Agilent Technologies, Inc. | Flex-circuit shielded connection |
JP4685614B2 (ja) * | 2005-12-06 | 2011-05-18 | 富士通オプティカルコンポーネンツ株式会社 | 基板及び基板モジュール |
DE102007028799A1 (de) * | 2007-06-19 | 2008-12-24 | Technische Universität Ilmenau | Impedanzkontrolliertes koplanares Wellenleitersystem zur dreidimensionalen Verteilung von Signalen hoher Bandbreite |
JP2009094752A (ja) * | 2007-10-09 | 2009-04-30 | Nec Corp | 高周波伝送線路 |
US20130322029A1 (en) * | 2012-05-30 | 2013-12-05 | Dror Hurwitz | Multilayer electronic structure with integral faraday shielding |
JP6218481B2 (ja) * | 2012-09-27 | 2017-10-25 | 三菱電機株式会社 | フレキシブル基板、基板接続構造及び光モジュール |
WO2014069061A1 (ja) * | 2012-10-31 | 2014-05-08 | 株式会社村田製作所 | 高周波信号線路及びその製造方法 |
WO2015005028A1 (ja) * | 2013-07-09 | 2015-01-15 | 株式会社村田製作所 | 高周波伝送線路 |
JP2015018862A (ja) * | 2013-07-09 | 2015-01-29 | 富士通株式会社 | 2重螺旋構造電子部品、2重螺旋構造電子部品の製造方法及び多機能シート |
WO2019168992A1 (en) * | 2018-02-28 | 2019-09-06 | Raytheon Company | Snap-rf interconnections |
CN110213880B (zh) * | 2018-02-28 | 2020-08-25 | 苏州旭创科技有限公司 | 柔性电路板、电路板组件、光收发组件及光模块 |
WO2019188785A1 (ja) * | 2018-03-29 | 2019-10-03 | 株式会社村田製作所 | 伝送線路及びその実装構造 |
-
2019
- 2019-04-08 JP JP2019565037A patent/JP6687302B1/ja active Active
- 2019-04-08 WO PCT/JP2019/015324 patent/WO2020208683A1/ja active Application Filing
-
2020
- 2020-03-06 JP JP2021513517A patent/JP6937965B2/ja active Active
- 2020-03-06 WO PCT/JP2020/009547 patent/WO2020208983A1/ja active Application Filing
- 2020-03-06 CN CN202080024920.0A patent/CN113647202B/zh active Active
-
2021
- 2021-09-09 US US17/470,432 patent/US20210410269A1/en active Pending
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005026801A (ja) * | 2003-06-30 | 2005-01-27 | Opnext Japan Inc | 光伝送モジュール |
JP2006024618A (ja) * | 2004-07-06 | 2006-01-26 | Toshiba Corp | 配線基板 |
JP2013126029A (ja) * | 2011-12-13 | 2013-06-24 | Mitsubishi Electric Corp | 高周波伝送線路 |
WO2015087893A1 (ja) * | 2013-12-12 | 2015-06-18 | 株式会社村田製作所 | 信号伝送部品および電子機器 |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7570305B2 (ja) | 2021-08-31 | 2024-10-21 | ルネサスエレクトロニクス株式会社 | 半導体装置 |
Also Published As
Publication number | Publication date |
---|---|
JPWO2020208983A1 (ja) | 2021-09-27 |
CN113647202B (zh) | 2024-09-10 |
CN113647202A (zh) | 2021-11-12 |
JP6937965B2 (ja) | 2021-09-22 |
JPWO2020208683A1 (ja) | 2021-04-30 |
WO2020208683A1 (ja) | 2020-10-15 |
US20210410269A1 (en) | 2021-12-30 |
JP6687302B1 (ja) | 2020-04-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10116025B2 (en) | Electronic apparatus | |
KR100282274B1 (ko) | 입체적으로 스트립선로를 사용한 전송회로 | |
JP4722614B2 (ja) | 方向性結合器及び180°ハイブリッドカプラ | |
WO2014156422A1 (ja) | 樹脂多層基板および電子機器 | |
US20140306776A1 (en) | Planar rf crossover structure with broadband characteristic | |
US8044749B1 (en) | Coupler device | |
JP2004320109A (ja) | 高周波伝送線路及び高周波基板 | |
WO2009128193A1 (ja) | マイクロストリップ線路 | |
JP4636950B2 (ja) | 伝送回路、アンテナ共用器、高周波スイッチ回路 | |
KR100401967B1 (ko) | 고주파 필터, 필터 장치 및 이를 포함한 전자 장비 | |
JP3958351B2 (ja) | 伝送線路装置 | |
WO2020208983A1 (ja) | 高周波回路及び通信モジュール | |
WO2010140320A1 (ja) | ストリップ線路 | |
WO2018173721A1 (ja) | ダイプレクサ | |
WO2013054596A1 (ja) | 分波装置 | |
JP4381701B2 (ja) | 同軸コネクタと多層基板との接続構造 | |
JP2002185201A (ja) | 高周波用配線基板 | |
TW201414194A (zh) | 帶通濾波器 | |
JP7055006B2 (ja) | 分岐回路 | |
JP5193104B2 (ja) | プリント基板モジュール | |
JP4329702B2 (ja) | 高周波デバイス装置 | |
JP7235169B2 (ja) | インダクタの実装構造 | |
JP2012039449A (ja) | 高周波回路 | |
WO2020235054A1 (ja) | 変換器およびアンテナ装置 | |
JP2023168665A (ja) | 高周波回路、および、レーダ装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 20788217 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2021513517 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 20788217 Country of ref document: EP Kind code of ref document: A1 |