WO2009128193A1 - マイクロストリップ線路 - Google Patents

マイクロストリップ線路 Download PDF

Info

Publication number
WO2009128193A1
WO2009128193A1 PCT/JP2009/000795 JP2009000795W WO2009128193A1 WO 2009128193 A1 WO2009128193 A1 WO 2009128193A1 JP 2009000795 W JP2009000795 W JP 2009000795W WO 2009128193 A1 WO2009128193 A1 WO 2009128193A1
Authority
WO
WIPO (PCT)
Prior art keywords
microstrip line
conductor
view
line
groove
Prior art date
Application number
PCT/JP2009/000795
Other languages
English (en)
French (fr)
Inventor
崎山一幸
嶺岸瞳
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Priority to EP09733407A priority Critical patent/EP2270920A4/en
Priority to JP2010508090A priority patent/JPWO2009128193A1/ja
Priority to US12/664,431 priority patent/US8294531B2/en
Publication of WO2009128193A1 publication Critical patent/WO2009128193A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P3/00Waveguides; Transmission lines of the waveguide type
    • H01P3/02Waveguides; Transmission lines of the waveguide type with two longitudinal conductors
    • H01P3/08Microstrips; Strip lines
    • H01P3/081Microstriplines

Definitions

  • the present invention provides a signal waveform matching device for matching a waveform of a digital signal by realizing a wider and substantially more uniform pass frequency characteristic in a microstrip line transmitting a digital signal as compared with the prior art.
  • the present invention relates to a provided microstrip line.
  • FIG. 29A is a plan view showing a configuration of a general microstrip line according to a first conventional example
  • FIG. 29B is a longitudinal cross-sectional view of the D-D 'line in FIG. 29A.
  • FIG. 30 is a perspective view of the microstrip line of FIGS. 29A and 29B.
  • a microstrip line composed of a strip conductor 12 and a ground conductor 11 sandwiching a dielectric substrate 10 is used. It is common to use.
  • microstrip line type transmission lines there are various transmission lines such as single-ended, differential transmission lines, coplanar lines, etc. The characteristics are determined by the shape of the line or substrate if the material characteristics of the line or substrate are constant An impedance can be determined, and signal transmission characteristics having a constant characteristic impedance can be obtained.
  • FIG. 31A is a cross-sectional view of a microstrip line according to a second conventional example.
  • 31B is a longitudinal cross-sectional view of FIG. 31A along the line A-A '.
  • 31C is a longitudinal cross-sectional view of FIG. 31A along the line B-B '.
  • 31D is a longitudinal cross-sectional view of FIG. 31A taken along line C-C '.
  • the microstrip line is a transmission line for reducing the discontinuity of the conventional characteristic impedance described in Patent Document 1 mentioned above.
  • FIGS. 31A to 31D a conventional design method of the microstrip line in the case where the width of the signal line changes halfway will be described.
  • FIG. 32A is a front view of a microstrip line according to a third prior art.
  • 32B is a plan view of the microstrip line of FIG. 32A.
  • 32C is a longitudinal cross-sectional view of FIG. 32B taken along the line E-E '.
  • 32D is a side view of the microstrip line of FIG. 32A.
  • FIG. 33 is a perspective view of the microstrip line of FIGS. 32A-32D.
  • FIG. 32A to 32D and FIG. 33 show one configuration example of a discontinuous microstrip line in which the ground conductor 11 disappears on the way.
  • Non-Patent Document 1 there is a design method using high frequency metamaterial theory as a design method for controlling the characteristics of the transmission line (see Non-Patent Document 1).
  • FIG. 34 is a circuit diagram showing a transmission line model equalization circuit showing the concept of high frequency material which is the design theory disclosed in Non-Patent Document 1. As shown in FIG. Hereinafter, the outline of the design theory of the high frequency metamaterial will be described with reference to FIG.
  • An equivalent circuit of a general microstrip line can be represented as a ladder circuit composed of an inductor L1 and a capacitor C1 shown in FIG.
  • this is a circuit design method for expressing a desired characteristic impedance by making the electric characteristic different from that of the conventional transmission line appear.
  • Non-Patent Document 1 shows an example of realization of a microstrip antenna smaller than the wavelength of a high frequency electromagnetic field and a unique characteristic impedance corresponding to the effect of negative refractive index, and control of the characteristic impedance of the transmission line The method is described.
  • Non-Patent Document 1 In order to realize a model as shown in Non-Patent Document 1 with an actual microstrip line, a capacitor C2 must be realized in series with the strip conductor 12, and effective capacitance components are dispersed in series. The means of realization of the strip conductor 12 is unknown. In addition, although it is conceivable to insert a lumped constant capacitor element, etc., in this case, discontinuity of impedance causes reflection and loss of signal at the junction of the capacitor element, which is against the purpose. Similarly, as a method of providing a portion corresponding to the inductor L2 to the strip conductor 12, there is a method of using a microstrip-like stub, but it is difficult to form in the gap of the wiring layout of the strip conductor 12.
  • the object of the present invention is to solve the above problems and to obtain a microstrip line capable of obtaining substantially more uniform passing frequency characteristics in a wider band compared to the prior art even when the characteristic impedance of the microstrip line changes. It is to provide.
  • a microstrip line according to the present invention is a microstrip line comprising a ground conductor and a strip conductor sandwiching a dielectric substrate, By having a conductor portion having at least one groove formed to three-dimensionally cross the strip conductor, it has substantially more uniform pass frequency characteristics as compared to the microstrip line. It is characterized by
  • the groove is formed to be three-dimensionally orthogonal to the strip conductor.
  • the conductor portion having the groove is formed as a component different from the microstrip line.
  • a dielectric portion is formed on the dielectric substrate side of the component of the conductor portion having the groove.
  • the component of the conductor portion having the groove is inserted and arranged in the opening of the ground conductor.
  • a component of the conductor portion having the groove is inserted and arranged in the opening portion of the ground conductor and the dielectric substrate.
  • the conductor portion having the groove is provided on the side of the dielectric substrate on which the ground conductor is formed and at a position where the ground conductor is formed.
  • the conductor portion having the groove is provided on the side of the dielectric substrate on which the ground conductor is formed and in a position where the ground conductor is not formed.
  • the conductor portion having the groove is provided on the side of the dielectric substrate on which the strip conductor is formed and at the formation position of the ground conductor.
  • a via conductor for connecting the conductor portion having the groove to the ground conductor is formed in the conductor portion.
  • the conductor portion having the groove is provided on the side of the dielectric substrate on which the strip conductor is formed and in a position where the ground conductor is not formed.
  • the microstrip line of the present invention in the microstrip line constituted by the ground conductor and the strip conductor sandwiching the dielectric substrate, at least the microstrip line formed so as to intersect the strip conductor in three dimensions. Therefore, even when the characteristic impedance changes, a broadband and substantially more uniform pass frequency characteristic can be obtained, and as a result, a microstrip line with less deterioration of the signal waveform can be realized.
  • FIG. 1 is a front view showing a configuration of a microstrip line according to a first embodiment of the present invention. It is a top view of the micro strip line of FIG. 1A. It is a longitudinal cross-sectional view about the F-F 'line
  • FIG. 2 is a side view of the microstrip line of FIGS. 1A-1D.
  • FIG. 2 is a perspective view of the microstrip line of FIGS. 1A-1D. It is an enlarged view of the principal part of FIG. 2B.
  • FIG. 2 is a circuit diagram showing an equivalent circuit of the microstrip line of FIGS. 1A to 1D.
  • FIG. 12 is a front view showing a configuration of a simulation model (microstrip line transmission system) configured such that the pair of microstrip lines of FIGS. 1A to 1D are opposed and that the coupling portion does not have the ground conductor 11; It is a top view of the simulation model of FIG. 5A. 5 is a spectrum diagram showing the passing frequency characteristics of the simulation model of FIGS.
  • 5 is a spectrum diagram showing the passing frequency characteristics of the simulation model of FIGS. 5A and 5B when the number N of grooves of the conductor portion 14 is 10 and the passing frequency characteristics of a comparative example when the conductor portion 14 is not provided in the simulation model.
  • 5 is a spectrum diagram showing the passing frequency characteristics of the simulation model of FIGS. 5A and 5B when the groove number N of the conductor portion 14 is 15 and the passing frequency characteristics of a comparative example when the conductor portion 14 is not provided in the simulation model. is there.
  • FIG. 9 is a perspective view of the microstrip line of FIGS. 8A-8C. It is a front view which shows the detailed structure of the conductor part 14 of FIG. 8A-FIG. 8C. It is a top view of conductor part 14 of Drawing 10A. It is a longitudinal cross-sectional view about the I-I 'line
  • FIG. 9 is a perspective view of the microstrip line of FIGS. 8A-8C. It is a front view which shows the detailed structure of the conductor part 14 of FIG. 8A-FIG. 8C. It is a top view of conductor part 14 of Drawing 10A. It is a longitudinal cross-sectional view about the I-I 'line
  • FIG. 11 is a perspective view of the conductor portion 14 of FIGS. 10A to 10C. It is a top view which shows the structure of the microstrip line which concerns on the modification of the 2nd Embodiment of this invention. It is a longitudinal cross-sectional view about the J-J 'line
  • FIG. 13 is a perspective view of the microstrip line of FIGS. 12A-12C. It is an enlarged view of the principal part of FIG. 13A.
  • FIG. 16 is an enlarged vertical sectional view of the main part of a microstrip line according to another modification of the second embodiment of the present invention.
  • FIG. 15 is a longitudinal cross-sectional view when the conductor portion 14 of FIG.
  • FIG. 16 is an enlarged longitudinal sectional view showing the configuration of still another modified example of the microstrip line of FIG. 15; It is a front view which shows the structure of the micro strip line which concerns on the 3rd Embodiment of this invention.
  • FIG. 17B is a plan view of the microstrip line of FIG. 17A. It is a longitudinal cross-sectional view about the K-K 'line
  • FIG. 18 is a side view of the microstrip line of FIGS. 17A-17D.
  • FIG. 18 is a perspective view of the microstrip line of FIGS. 17A-17D.
  • FIG. 17B It is a front view which shows the structure of the micro strip line which concerns on the modification of the 3rd Embodiment of this invention. It is a longitudinal cross-sectional view about the L-L 'line
  • FIG. 19C is a perspective view of the microstrip line of FIGS. 19A-19C. It is an enlarged view of the principal part of FIG. 20A. It is a front view which shows the structure of the micro strip line which concerns on another modification of the 3rd Embodiment of this invention. It is a longitudinal cross-sectional view about the M-M 'line
  • FIG. 21C is a perspective view of the microstrip line of FIGS. 21A-21C. It is an enlarged view of the principal part of FIG. 22A. It is a front view of the microstrip line concerning a 4th embodiment of the present invention.
  • FIG. 23C is a plan view of the microstrip line of FIG. 23A.
  • FIG. 23C is a side view of the microstrip line of FIG. 23A.
  • FIG. 23C is a perspective view of the microstrip line of FIGS. 23A-23C.
  • FIG. 25B is a side view of the microstrip line of FIG. 25A.
  • FIG. 25D is a perspective view of the microstrip line of FIGS. 25A-25C. It is a front view of the microstrip line concerning a 6th embodiment of the present invention.
  • FIG. 27B is a plan view of the microstrip line of FIG. 27A.
  • FIG. 27B is a side view of the microstrip line of FIG. 27A.
  • FIG. 27B is a perspective view of the microstrip line of FIGS. 27A-27C.
  • It is a top view which shows the structure of the micro strip line which concerns on a 1st prior art example. It is a longitudinal cross-sectional view about the D-D 'line
  • FIG. 29A is a longitudinal cross-sectional view about the D-D 'line
  • FIG. 30 is a perspective view of the microstrip line of FIGS. 29A and 29B. It is a cross-sectional view of the micro strip line which concerns on a 2nd prior art example. It is a longitudinal cross-sectional view about the AA of FIG. 31A. It is a longitudinal cross-sectional view about the B-B 'line
  • FIG. 32B is a plan view of the microstrip line of FIG. 32A. It is a longitudinal cross-sectional view about the E-E 'line
  • FIG. 32B is a side view of the microstrip line of FIG. 32A.
  • FIG. 32D is a perspective view of the microstrip line of FIGS. 32A-32D. It is a circuit diagram showing an equalization circuit of a transmission line model which shows a concept of high frequency material which is a design theory disclosed in Non Patent Literature 1.
  • FIG. 1A is a front view showing a configuration of a microstrip line according to a first embodiment of the present invention.
  • FIG. 1B is a plan view of the microstrip line of FIG. 1A.
  • FIG. 1C is a longitudinal cross-sectional view of FIG. 1B taken along line FF ′.
  • FIG. 1D is an enlarged view of the main part of FIG. 1C.
  • FIG. 2A is a side view of the microstrip line of FIG.
  • FIG. 2B is a perspective view of the microstrip line of FIGS. 1A-1D.
  • FIG. 2C is an enlarged view of the main part of FIG. 2B.
  • FIGS. 1A to 1D and 2A to 2C in the microstrip line of the prior art configured of the ground conductor 11 and the strip conductor 12 sandwiching the dielectric substrate 10, the ground conductor A configuration is assumed where 11 is missing at its edge 11B (near the boundary between the formation portion and the non-formation portion of the ground conductor 11), and the discontinuous portion of the ground conductor 11 from which the ground conductor 11 is missing.
  • a groove structure comprising a plurality of rectangular parallelepiped shaped grooves 21 parallel to a direction substantially orthogonal to the longitudinal direction of the strip conductor 12
  • the rectangular parallelepiped conductor portion 14 is characterized in that it is formed integrally with the ground conductor 11.
  • the void space of the plurality of grooves 21 is in contact with the dielectric substrate 10, and the void space is filled with the dielectric 22.
  • Each groove 21 has a depth direction orthogonal to the surface of dielectric substrate 10 (each groove 21 does not penetrate in the depth direction of conductor portion 14), and in the longitudinal direction of strip conductor 12. It has an orthogonal length in the length direction.
  • Respective grooves 21 are such that the lengths in the longitudinal direction thereof become longer in the direction from the end 11B of the ground conductor 11 to the formation portion of the ground conductor 11 and in line symmetry with the center line of the strip conductor 12 It is formed as it is.
  • each groove 21 is formed to be orthogonal to the strip conductor 12, the present invention is not limited to this and may be formed to intersect at least three-dimensionally.
  • FIG. 3 is a circuit diagram showing an equivalent circuit of the microstrip line of FIGS. 1A to 1D
  • FIG. 4A is a plan view showing a detailed configuration of the conductor portion 14 having the groove structure of FIGS. 1A to 1D
  • FIG. 4A is a longitudinal sectional view taken along the line GG ′ of FIG. 4A.
  • the inductor L1 represents the inductance of the strip conductor 12, and the capacitor C1 represents the capacitance between the strip conductor 12 and the ground conductor 11. Further, a capacitor C2 represents a capacitance realized by the facing surface between the groove wall surfaces of the conductor portion 14 having the groove structure. Further, the inductor L2 represents an inductance caused by the induced current flowing through the ground conductor 11 flowing through the conductor portion 14 having the conductive groove structure.
  • the equivalent circuit is expressed in the form of a distributed constant circuit in which the partial circuits P are cascaded by a plurality of stages.
  • each groove 21 has a width w, a length L and a depth d.
  • the method of changing the capacitor C2 can be realized by changing the length L, the depth d and the width w of each groove 21 respectively.
  • the inductor L2 is determined by the distribution of the induced current flowing in the conductor portion 14 having the groove structure, it can be set by changing the relative value of the length L of the groove 21 and the depth d.
  • changing the number of the grooves 21 corresponds to changing the number of stages of each partial circuit P in the equivalent circuit of FIG.
  • the inductor L2 and the capacitor C2 which were conventionally provided in the signal line, are ground conductors in the configuration of this embodiment. It is characterized in that the point 11 is realized.
  • FIG. 5A is a front view showing the configuration of a simulation model (microstrip line transmission system) configured to have the pair of microstrip lines of FIGS. 1A to 1D face each other and not have the ground conductor 11 at the coupling portion.
  • FIG. 5B is a plan view of the simulation model of FIG. 5A.
  • FIG. 6 shows the passing frequency characteristics (solid line) of the simulation model of FIGS. 5A and 5B when the number of grooves N of the conductor portion 14 is 5 and the passage of the comparative example when the conductor portion 14 is not provided in the simulation model. It is a spectrum figure showing frequency characteristics (broken line).
  • grooves are provided at two places immediately before the portion at which the characteristic impedance changes, each edge 11B being a boundary portion where the ground conductor 11 disappears. It is characterized in that a conductor portion 14 having a structure is provided.
  • the simulation in FIG. 6 is based on the assumption that a rectangular wave having a fundamental frequency of 1 GHz is transmitted, and 3 GHz and 5 GHz become third and fifth harmonics with respect to the fundamental frequency, respectively, and the frequency of that degree
  • the fact that the pass characteristic is uniform is a condition for preventing distortion of the rectangular wave.
  • the conductor portion 14 having the groove structure according to the present embodiment is not provided, the pass characteristic changes by about 10 dB or more in the band of 1 to 5 GHz, so the rectangular wave of the transmission signal is distorted.
  • a change of about 2 dB or less can be suppressed in this band.
  • the pass characteristic can be made uniform in a wide band, and a microstrip line with less distortion of the signal waveform can be realized.
  • FIG. 7A shows the passing frequency characteristics (solid line) of the simulation model of FIGS. 5A and 5B when the groove number N of the conductor portion 14 is 10 and the passing frequency characteristics of the comparative example when the conductor portion 14 is not provided in the simulation model.
  • FIG. 7B shows the passing frequency characteristics of the simulation model of FIGS. 5A and 5B when the number N of grooves of the conductor portion 14 is 15, and the passing frequency characteristics of the comparative example when the conductor portion 14 is not provided in the simulation model.
  • FIG. 7A and 7B the size of the conductor portion 14 is fixed. As apparent from FIGS. 7A and 7B, it can be understood that the band in which the pass characteristic becomes uniform can be changed by increasing the number of the grooves 21 of the conductor portion 14.
  • the grooves 21 of the conductor portion 14 having the groove structure are filled with the dielectric 22 of the same material as that of the dielectric substrate 10 in this embodiment, they may be formed of a dielectric of another material, or an air gap It may be This case corresponds to changing the capacitance of the capacitor C2 in the equivalent circuit of FIG.
  • FIG. 8A is a plan view showing a configuration of a microstrip line according to a second embodiment of the present invention.
  • FIG. 8B is a longitudinal sectional view taken along the line HH ′ of FIG. 8A.
  • FIG. 8C is an enlarged view of the main part of FIG. 8B.
  • FIG. 9 is a perspective view of the microstrip line of FIGS. 8A-8C.
  • the second embodiment is not formed integrally with the ground conductor 11 as in the case of providing the conductor portion 14 having the groove structure according to the first embodiment to the ground conductor 11.
  • the parts of the conductor portion 14 having the groove structure are made in advance, the openings 11A of the same size as the parts of the conductor portion 14 are formed in the ground conductor 11, and the parts of the conductor portion 14 having the groove structure are It is characterized in that it is inserted into the opening 11A.
  • FIGS. 10A is a front view showing the detailed configuration of the conductor portion 14 of FIGS. 8A to 8C
  • FIG. 10B is a plan view of the conductor portion 14 of FIG. 10A
  • FIG. 10C is a line II 'of FIG. It is a longitudinal cross-sectional view
  • 11A is a side view of the conductor portion 14 of FIGS. 10A to 10C
  • FIG. 11B is a perspective view of the conductor portion 14 of FIGS. 10A to 10C.
  • FIGS. 10A to 10C and FIGS. 11A and 11B are schematic views for explaining the configuration of the parts of the conductor portion 14 having the groove structure according to the present embodiment, and the configuration thereof is the first embodiment. It is the same as that of the structure of the conductor part 14 which concerns on a form.
  • each groove 21 may be filled with the dielectric 22 or may be formed as an air gap or the like.
  • a dielectric 22 of the same material as the dielectric substrate 10 or a dielectric 22 of a different dielectric material may be used.
  • FIG. 12A is a plan view showing a configuration of a microstrip line according to a modification of the second embodiment of the present invention.
  • FIG. 12B is a longitudinal cross-sectional view of FIG. 12A taken along the line JJ '.
  • FIG. 12C is an enlarged view of the main part of FIG. 12B.
  • 13A is a perspective view of the microstrip line of FIGS. 12A to 12C, and
  • FIG. 13B is an enlarged view of a main part of FIG. 13A.
  • the component of the conductor portion 14 having a groove structure is disposed immediately below the strip conductor 12 so as to be in contact with the edge 11B of the ground conductor 11. . With this configuration, it is not necessary to form the opening 11A provided in the ground conductor 11.
  • FIG. 14 is an enlarged vertical sectional view of the main part of a microstrip line according to another modification of the second embodiment of the present invention
  • FIG. 15 is a sectional view of the conductor 14 of FIG. It is a longitudinal cross-sectional view when fitting to.
  • FIG. 16 is an enlarged vertical sectional view showing the configuration of still another modification of the microstrip line of FIG.
  • the rectangular parallelepiped dielectric portion 15 is formed on the upper portion of the conductor portion 14 in the opening portion 11A of the ground conductor 11 and the opening portion 10A of the dielectric substrate 10 (the planar shape is the same as the planar shape of the conductor portion 14
  • the part is placed and fitted on the part.
  • the strip conductor 12 and the conductor portion 14 having a groove structure Can be determined. This corresponds to the effect of changing the capacitor C1 in the equivalent circuit for explaining the present invention shown in FIG. 3 by changing the distance d4.
  • this configuration is the same as in the case where it is provided on the dielectric substrate 10 without the ground conductor 11.
  • FIG. 17A is a front view showing a configuration of a microstrip line according to a third embodiment of the present invention.
  • FIG. 17B is a plan view of the microstrip line of FIG. 17A.
  • FIG. 17C is a longitudinal cross-sectional view of FIG. 17B taken along the line KK ′.
  • FIG. 17D is an enlarged view of a main part of FIG. 17C.
  • 18A is a side view of the microstrip line of FIGS. 17A-17D.
  • FIG. 18B is a perspective view of the microstrip line of FIGS. 17A-17D.
  • FIG. 18C is an enlarged view of a main part of FIG. 18B.
  • the parts of the conductor portion 14 having the groove structure according to the second embodiment can be separated from the strip conductor 12 through the dielectric portion 15. It is characterized by being placed on top.
  • the component of the conductor portion 14 having the groove structure is conducted to the ground conductor 11, but the present embodiment Will become non-conductive.
  • the same effect as the second embodiment is obtained in that an induced current flows also to the parts of the conductor portion 14 having the groove structure by the electromagnetic field generated by the electric signal flowing through the strip conductor 12.
  • FIG. 19A is a front view showing a configuration of a microstrip line according to a modification of the third embodiment of the present invention
  • FIG. 19B is a longitudinal cross-sectional view of the line LL ′ in FIG. It is an enlarged view of the principal part of FIG. 19B
  • 20A is a perspective view of the microstrip line of FIGS. 19A to 19C
  • FIG. 20B is an enlarged view of the main part of FIG. 20A.
  • the components of the conductor portion 14 having the present groove structure can be disposed anywhere in the microstrip line, and as shown in FIGS. 19A to 19C and FIGS.
  • the conductor 11 can also be provided on portions of the strip conductor 12 and the dielectric substrate 10 which are not directly below.
  • FIG. 21A is a front view showing a configuration of a microstrip line according to another modification of the third embodiment of the present invention
  • FIG. 21B is a longitudinal cross-sectional view of the MM ′ line of FIG. 21C is an enlarged view of a main part of FIG. 21B
  • 22A is a perspective view of the microstrip line of FIGS. 21A to 21C
  • FIG. 22B is an enlarged view of a main part of FIG. 22A.
  • the conductor portion 14 having a groove structure is connected to the ground conductor 11 through the dielectric substrate 10. It is characterized in that the via conductors 16 for conduction are formed on both sides of the strip conductor 12 interposed therebetween.
  • flowing the induced current flowing through the ground conductor 11 to the conductor portion 14 having the groove structure has the effect of changing the inductor L2 in the equivalent circuit of FIG.
  • the plurality of grooves 21 may be filled with the dielectric 22 of the same or different dielectric material as the material of the dielectric substrate 10 or may be a void.
  • differential microstrip lines may be formed as described below.
  • three differential microstrip lines corresponding to three embodiments or variations are exemplified below, differential microstrip lines corresponding to other embodiments or variations are formed. It is also good.
  • FIG. 23A is a front view of a microstrip line according to a fourth embodiment of the present invention.
  • FIG. 23B is a plan view of the microstrip line of FIG. 23A.
  • FIG. 23C is a side view of the microstrip line of FIG. 23A.
  • FIG. 24 is a perspective view of the microstrip line of FIGS. 23A-23C.
  • the microstrip line according to the fourth embodiment is formed by maintaining a predetermined distance instead of the strip conductor 12 in comparison with the microstrip line according to the first embodiment of FIGS. 1 and 2.
  • a differential microstrip line is formed by forming the pair of strip conductors 12a and 12b.
  • the microstrip line has the same effects as the microstrip line according to the first embodiment.
  • FIG. 25A is a front view of a microstrip line according to a fifth embodiment of the present invention.
  • FIG. 25B is a plan view of the microstrip line of FIG. 25A.
  • FIG. 25C is a side view of the microstrip line of FIG. 25A.
  • FIG. 26 is a perspective view of the microstrip line of FIGS. 25A-25C.
  • a differential type microstrip line is formed by forming the formed pair of strip conductors 12a and 12b.
  • the microstrip line has the same effects as the microstrip line according to the second embodiment.
  • FIG. 27A is a front view of a microstrip line according to a sixth embodiment of the present invention.
  • FIG. 27B is a plan view of the microstrip line of FIG. 27A.
  • FIG. 27C is a side view of the microstrip line of FIG. 27A.
  • FIG. 28 is a perspective view of the microstrip line of FIGS. 27A to 27C.
  • the microstrip line according to the sixth embodiment is different from the microstrip line according to another modification of the third embodiment of FIGS. 21A to 21C and FIGS. 22A and 22B, in place of the strip conductor 12.
  • a differential type microstrip line is formed by forming a pair of strip conductors 12a and 12b which are formed to be held at a predetermined distance.
  • the microstrip line has the same effects as the microstrip line according to the first embodiment.
  • the microstrip line in the microstrip line constituted by the ground conductor and the strip conductor sandwiching the dielectric substrate, three-dimensional to the above-mentioned strip conductor is provided.
  • a conductor portion having at least one groove formed to intersect it has substantially more uniform pass frequency characteristics as compared to the microstrip line. Therefore, even when the characteristic impedance changes, a broadband and substantially more uniform pass frequency characteristic can be obtained, and as a result, a microstrip line with less deterioration of the signal waveform can be realized.
  • the microstrip line according to the present invention when used for a digital circuit, a stripline used for a substrate or the like, or a microstrip line, it is useful as a means for reducing distortion of digital signal waveform and realizing high-speed signal transmission. Further, since a wide band and uniform pass frequency characteristics can be obtained, the present invention can also be applied as a means for realizing a transmission line of a high frequency circuit with little waveform distortion.

Landscapes

  • Structure Of Printed Boards (AREA)
  • Waveguides (AREA)

Abstract

 誘電体基板(10)を挟設する接地導体(11)とストリップ導体(12)とにより構成されたマイクロストリップ線路において、ストリップ導体(12)に対して立体的に交差して直交するように形成された少なくとも1個の溝(21)を有する導体部(14)を備えることにより、従来技術に係るマイクロストリップ線路に比較して、実質的により均一な通過周波数特性を有する。

Description

マイクロストリップ線路
 本発明は、デジタル信号を伝送するマイクロストリップ線路において、従来技術に比較して広帯域で実質的により均一な通過周波数特性を実現して、上記デジタル信号の波形を整合するための信号波形整合装置を備えたマイクロストリップ線路に関する。
 図29Aは第1の従来例に係る一般的なマイクロストリップ線路の構成を示す平面図であり、図29Bは図29AのD-D’線についての縦断面図である。また、図30は図29A及び図29Bのマイクロストリップ線路の斜視図である。
 デジタル信号をプリント回路基板上で伝送する方法としては、図29A、図29B及び図30に示すように、誘電体基板10を挟設するストリップ導体12と接地導体11から構成されるマイクロストリップ線路を用いることが一般的である。マイクロストリップ線路型の伝送線路としては、シングルエンド、差動伝送線路、コプレーナ線路など様々な伝送線路があるが、特徴としては線路や基板の材料特性が一定なら、線路や基板の形状で決まる特性インピーダンスが定まり、一定の特性インピーダンスを有する信号伝送特性を得ることができる。
 しかしながら、上記のマイクロストリップ線路を用いて、プリント回路基板上で配線のレイアウト設計をする場合、途中で線路幅を変えたり、あるいは、部分的に接地導体を配置しないなどの設計をしなければならないことが頻繁にある。このような線路の形状が、不連続であることで伝送線路の特性インピーダンスが変化する。さらに、この特性インピーダンスの変化量は周波数に依存する。従って、伝送信号の波形劣化の原因になる。
 従来の上記の波形劣化への対策としては、特性インピーダンスの変化をなるべく小さくして、信号劣化を抑える設計方法がある(例えば、特許文献1参照。)。
 図31Aは第2の従来例に係るマイクロストリップ線路の横断面図である。図31Bは図31AのA-A’線についての縦断面図である。図31Cは図31AのB-B’線についての縦断面図である。図31Dは図31AのC-C’線についての縦断面図である。当該マイクロストリップ線路は、上記特許文献1に記載された従来の特性インピーダンスの不連続を小さくするための伝送線路である。以下、図31A~図31Dを参照して、信号線の幅が途中で変わる場合のマイクロストリップ線路の従来の設計方法について述べる。
 図31A~図31Dにおいて、誘電体基板110を挟設する接地導体11とストリップ導体12で構成されるマイクロストリップ線路において、ストリップ導体12の幅が変わる図中断面B-B‘とC-C’では、接地導体11とストリップ導体12の間の距離を変えている。従って、接地導体11とストリップ導体12間の容量成分を変えることで、伝送線路の特性インピーダンスの変化量を抑える効果がある。なお、図31A~図31Dにおいて、130は電気絶縁部であり、121はストリップ導体120上に形成された凸部である。
 以上のような従来の設計方法では対応できないマイクロストリップ線路が不連続な場合の一例について、図32A~図32D及び図33を参照して説明する。図32Aは第3の従来例に係るマイクロストリップ線路の正面図である。図32Bは図32Aのマイクロストリップ線路の平面図である。図32Cは図32BのE-E’線についての縦断面図である。図32Dは図32Aのマイクロストリップ線路の側面図である。また、図33は図32A~図32Dのマイクロストリップ線路の斜視図である。
 図32A~図32D及び図33は、途中で接地導体11が無くなるような不連続なマイクロストリップ線路の一構成例を示す。この場合、接地導体11が存在しない部分では、ストリップ導体12と接地導体11間の容量成分は存在しない。従って、上記の特許文献1の方法では、所望のようにマイクロストリップ線路の特性インピーダンスの変化量を小さくすることができず、効果が無い。
 さらに、伝送線路の特性を制御する設計方法として高周波メタマテリアルの理論を用いた設計方法がある(非特許文献1参照。)
 図34は非特許文献1に開示された設計理論である高周波マテリアルの概念を示す伝送線路モデルの等化回路を示す回路図である。以下、図34を用いて、高周波メタマテリアルの設計理論の概要を述べる。
 一般的なマイクロストリップ線路の等価回路としては、図34中に示すインダクタL1とキャパシタC1からなるはしご形回路として表すことができる。これらに加え、インダクタL2とキャパシタC2を伝送線路に付加して実現することで、従来の伝送線路とは異なった電気特性を発現させ、所望の特性インピーダンスを設計する回路設計手法である。非特許文献1には、高周波電磁界の波長に比べ小型のマイクロストリップアンテナや、負の屈折率の効果に相応する特異な特性インピーダンスの実現例が示されており、伝送線路の特性インピーダンスの制御手法が記載されている。
特開2001-053507号公報。 C. Caloz et al., "Application of the transmission line theory of left-handed (LH) materials to the realization of a microstrip LH transmission line", IEEE-APS International Symposium Digest, Vol.2, pp.412-415, June 2002.
 しかしながら、非特許文献1に示されるようなモデルを実際のマイクロストリップ線路で実現するためには、ストリップ導体12に直列にキャパシタC2を実現しなければならず、有効な容量成分を直列に分散させたストリップ導体12の実現の手段が不明である。また、集中定数のキャパシタ素子を挿入するなどの方法も考えられるが、この場合、そのキャパシタ素子の接合部で、インピーダンスの不連続により、信号の反射や損失が生じてしまい、目的に反する。同様に、インダクタL2に相当する部分をストリップ導体12に設ける方法としては、マイクロストリップ状のスタブを用いる方法があるが、ストリップ導体12の配線レイアウトの隙間に構成するのは困難である。
 上述のように、マイクロストリップ線路の特性インピーダンスが途中で変化する場合、その部分で信号波形の劣化や、歪みなどが発生するという問題点があった。
 本発明の目的は以上の問題点を解決し、マイクロストリップ線路の特性インピーダンスが変化する場合でも、従来技術に比較して広帯域で実質的により均一な通過周波数特性を得ることができるマイクロストリップ線路を提供することにある。
 本発明に係るマイクロストリップ線路は、誘電体基板を挟設する接地導体とストリップ導体とにより構成されたマイクロストリップ線路において、
 上記ストリップ導体に対して立体的に交差するように形成された少なくとも1個の溝を有する導体部を備えることにより、上記マイクロストリップ線路に比較して、実質的により均一な通過周波数特性を有することを特徴とする。
 上記マイクロストリップ線路において、上記溝は、上記ストリップ導体に対して立体的に直交するように形成されたことを特徴とする。
 また、上記マイクロストリップ線路において、上記溝を有する導体部を上記マイクロストリップ線路とは別の部品として形成したことを特徴とする。
 さらに、上記マイクロストリップ線路において、上記溝を有する導体部の部品の、上記誘電体基板側に誘電体部を形成したことを特徴とする。
 またさらに、上記マイクロストリップ線路において、上記溝を有する導体部の部品を、上記接地導体の開口部に挿入配置したことを特徴とする。
 またさらに、上記マイクロストリップ線路において、上記溝を有する導体部の部品を、上記接地導体及び上記誘電体基板の開口部に挿入配置したことを特徴とする。
 また、上記マイクロストリップ線路において、上記溝を有する導体部を、上記誘電体基板の接地導体の形成面側であって接地導体の形成位置に設けたことを特徴とする。
 さらに、上記マイクロストリップ線路において、上記溝を有する導体部を、上記誘電体基板の接地導体の形成面側であって接地導体の非形成位置に設けたことを特徴とする。
 また、上記マイクロストリップ線路において、上記溝を有する導体部を、上記誘電体基板のストリップ導体の形成面側であって接地導体の形成位置に設けたことを特徴とする。
 さらに、上記マイクロストリップ線路において、上記溝を有する導体部を、上記接地導体に接続するためのビア導体を上記導体部に形成したことを特徴とする。
 またさらに、上記マイクロストリップ線路において、上記溝を有する導体部を、上記誘電体基板のストリップ導体の形成面側であって接地導体の非形成位置に設けたことを特徴とする。
 本発明に係るマイクロストリップ線路によれば、誘電体基板を挟設する接地導体とストリップ導体とにより構成されたマイクロストリップ線路において、上記ストリップ導体に対して立体的に交差するように形成された少なくとも1個の溝を有する導体部を備えることにより、上記マイクロストリップ線路に比較して、実質的により均一な通過周波数特性を有する。従って、特性インピーダンスが変化する場合でも、広帯域で実質的により均一な通過周波数特性を得ることができ、その結果、信号波形の劣化が少ないマイクロストリップ線路を実現できる。
本発明の第1の実施形態に係るマイクロストリップ線路の構成を示す正面図である。 図1Aのマイクロストリップ線路の平面図である。 図1BのF-F’線についての縦断面図である。 図1Cの主要部の拡大図である。 図1A~図1Dのマイクロストリップ線路の側面図である。 図1A~図1Dのマイクロストリップ線路の斜視図である。 図2Bの主要部の拡大図である。 図1A~図1Dのマイクロストリップ線路の等価回路を示す回路図である。 図1A~図1Dの溝構造を有する導体部14の詳細構成を示す平面図である。 図4AのG-G’線の縦断面図である。 図1A~図1Dの1対のマイクロストリップ線路を対向させかつ連結部で接地導体11を有しないように構成されたシミュレーションモデル(マイクロストリップ線路伝送システム)の構成を示す正面図である。 図5Aのシミュレーションモデルの平面図である。 導体部14の溝数N=5のときの図5A及び図5Bのシミュレーションモデルの通過周波数特性と、上記シミュレーションモデルにおいて導体部14を設けないときの比較例の通過周波数特性とを示すスペクトル図である。 導体部14の溝数N=10のときの図5A及び図5Bのシミュレーションモデルの通過周波数特性と、上記シミュレーションモデルにおいて導体部14を設けないときの比較例の通過周波数特性とを示すスペクトル図である。 導体部14の溝数N=15のときの図5A及び図5Bのシミュレーションモデルの通過周波数特性と、上記シミュレーションモデルにおいて導体部14を設けないときの比較例の通過周波数特性とを示すスペクトル図である。 本発明の第2の実施形態に係るマイクロストリップ線路の構成を示す平面図である。 図8AのH-H’線についての縦断面図である。 図8Bの主要部の拡大図である。 図8A~図8Cのマイクロストリップ線路の斜視図である。 図8A~図8Cの導体部14の詳細構成を示す正面図である。 図10Aの導体部14の平面図である。 図10BのI-I’線についての縦断面図である。 図10A~図10Cの導体部14の側面図である。 図10A~図10Cの導体部14の斜視図である。 本発明の第2の実施形態の変形例に係るマイクロストリップ線路の構成を示す平面図である。 図12AのJ-J’線についての縦断面図である。 図12Bの主要部の拡大図である。 図12A~図12Cのマイクロストリップ線路の斜視図である。 図13Aの主要部の拡大図である。 本発明の第2の実施形態の別の変形例に係るマイクロストリップ線路の主要部の拡大縦断面図である。 図14の導体部14を誘電体基板10の開口部10Aに嵌合したときの縦断面図である。 図15のマイクロストリップ線路のさらに別の変形例の構成を示す拡大縦断面図である。 本発明の第3の実施形態に係るマイクロストリップ線路の構成を示す正面図である。 図17Aのマイクロストリップ線路の平面図である。 図17BのK-K’線についての縦断面図である。 図17Cの主要部の拡大図である。 図17A~図17Dのマイクロストリップ線路の側面図である。 図17A~図17Dのマイクロストリップ線路の斜視図である。 図17Bの主要部の拡大図である。 本発明の第3の実施形態の変形例に係るマイクロストリップ線路の構成を示す正面図である。 図19AのL-L’線についての縦断面図である。 図19Bの主要部の拡大図である。 図19A~図19Cのマイクロストリップ線路の斜視図である。 図20Aの主要部の拡大図である。 本発明の第3の実施形態の別の変形例に係るマイクロストリップ線路の構成を示す正面図である。 図21AのM-M’線についての縦断面図である。 図21Bの主要部の拡大図である。 図21A~図21Cのマイクロストリップ線路の斜視図である。 図22Aの主要部の拡大図である。 本発明の第4の実施形態に係るマイクロストリップ線路の正面図である。 図23Aのマイクロストリップ線路の平面図である。 図23Aのマイクロストリップ線路の側面図である。 図23A~図23Cのマイクロストリップ線路の斜視図である。 本発明の第5の実施形態に係るマイクロストリップ線路の正面図である。 図25Aのマイクロストリップ線路の平面図である。 図25Aのマイクロストリップ線路の側面図である。 図25A~図25Cのマイクロストリップ線路の斜視図である。 本発明の第6の実施形態に係るマイクロストリップ線路の正面図である。 図27Aのマイクロストリップ線路の平面図である。 図27Aのマイクロストリップ線路の側面図である。 図27A~図27Cのマイクロストリップ線路の斜視図である。 第1の従来例に係るマイクロストリップ線路の構成を示す平面図である。 図29AのD-D’線についての縦断面図である。 図29A及び図29Bのマイクロストリップ線路の斜視図である。 第2の従来例に係るマイクロストリップ線路の横断面図である。 図31AのA-A線についての縦断面図である。 図31AのB-B’線についての縦断面図である。 図31AのC-C’線についての縦断面図である。 第3の従来例に係るマイクロストリップ線路の正面図である。 図32Aのマイクロストリップ線路の平面図である。 図32BのE-E’線についての縦断面図である。 図32Aのマイクロストリップ線路の側面図である。 図32A~の図32Dのマイクロストリップ線路の斜視図である。 非特許文献1に開示された設計理論である高周波マテリアルの概念を示す伝送線路モデルの等化回路を示す回路図である。
符号の説明
10…誘電体基板、
10A…誘電体基板の開口部、
11…接地導体、
11A…導体部の挿入部、
11B…接地導体の縁端部、
12…ストリップ導体、
14…溝構造を有する導体部、
15…誘電体部、
16…ビア導体、
21…溝、
22…誘電体。
 以下、本発明に係る実施形態について図面を参照して説明する。なお、以下の各実施形態及び従来技術において、同様の構成要素については同一の符号を付している。
第1の実施形態.
 図1Aは本発明の第1の実施形態に係るマイクロストリップ線路の構成を示す正面図である。図1Bは図1Aのマイクロストリップ線路の平面図である。図1Cは図1BのF-F’線についての縦断面図である。図1Dは図1Cの主要部の拡大図である。図2Aは図1のマイクロストリップ線路の側面図である。図2Bは図1A~図1Dのマイクロストリップ線路の斜視図である。図2Cは図2Bの主要部の拡大図である。
 図1A~図1D及び図2A~図2Cにおいて、本実施形態によれば、誘電体基板10を挟設する接地導体11及びストリップ導体12により構成されてなる従来技術のマイクロストリップ線路において、接地導体11がその縁端部11B(接地導体11の形成部分と非形成部分との境界近傍)で欠落するような構成を想定するものであり、上記接地導体11が欠落する接地導体11の不連続部分の近傍であって、上記ストリップ導体12の直下部分の接地導体11に、ストリップ導体12の長手方向に対して実質的に直交する方向に平行な複数の直方体形状の溝21にてなる溝構造を有する直方体形状の導体部14を、接地導体11と一体的に形成したことを特徴としている。ここで、複数の溝21は、その空隙空間は誘電体基板10に接しており、その空隙空間は誘電体22で充填形成される。また、各溝21は、誘電体基板10の面に対して直交する深さ方向を有し(各溝21は導体部14の深さ方向で貫通していない)、ストリップ導体12の長手方向に対して直交する長さ方向の長さを有する。各溝21は、それらの長さ方向の長さが接地導体11の縁端部11Bから接地導体11の形成部分に向う方向で長くなるようにかつストリップ導体12の中心線に対して線対称であるように形成されている。
 なお、各溝21をストリップ導体12に対して直交するように形成しているが、本発明はこれに限らず、少なくとも立体的に交差するように形成してもよい。
 以上のように構成されている、本実施形態の主要構成部である溝構造を有する導体部14の作用効果に関して、図3と図4A及び図4Bを参照して説明する。図3は図1A~図1Dのマイクロストリップ線路の等価回路を示す回路図であり、図4Aは図1A~図1Dの溝構造を有する導体部14の詳細構成を示す平面図であり、図4Bは図4AのG-G’線の縦断面図である。
 図3の等価回路において、インダクタL1はストリップ導体12のインダクタンスを表し、キャパシタC1はストリップ導体12と接地導体11の間のキャパシタンスを表す。また、キャパシタC2は溝構造を有する導体部14の溝壁面間の対向面で実現されるキャパシタンスを表している。また、インダクタL2は接地導体11を流れる誘導電流が、導通している溝構造を有する導体部14を流れることにより生じるインダクタンスを表すものである。そして、当該等価回路は、部分回路Pが複数段だけ縦続接続された分布定数回路の形式で表されている。
 図4A及び図4Bにおいて、各溝21は幅wと長さLと深さdとを有する。ここで、上記キャパシタC2を変える方法としては、各溝21の長さL、深さd及び幅wをそれぞれ変えることで実現できる。一方、上記インダクタL2は溝構造を有する導体部14を流れる誘導電流の分布で決まるので、溝21の長さLと深さdの相対値を変えることにより設定できる。また、溝21の個数を変えることは、図3の等価回路における各部分回路Pの段数を変えることに相当する。
 図3の等価回路から明らかなように、上記非特許文献1で示したメタマテリアル伝送線路モデルにおいて、従来は信号線に設けるとしていたインダクタL2及びキャパシタC2を、本実施形態の構成では、接地導体11に実現している点が特徴である。これらの等価回路の部分回路Pの回路構成を設計することで、特性インピーダンスが変化する部分も含めて、マイクロストリップ線路全体の特性インピーダンスの周波数分散を広帯域に均一にすることができる。
 次いで、本実実施形態の作用効果を、図5A及び図5Bと図6を参照して説明する。図5Aは図1A~図1Dの1対のマイクロストリップ線路を対向させかつ連結部で接地導体11を有しないように構成されたシミュレーションモデル(マイクロストリップ線路伝送システム)の構成を示す正面図である。図5Bは図5Aのシミュレーションモデルの平面図である。また、図6は導体部14の溝数N=5のときの図5A及び図5Bのシミュレーションモデルの通過周波数特性(実線)と、上記シミュレーションモデルにおいて導体部14を設けないときの比較例の通過周波数特性(破線)とを示すスペクトル図である。図5A及び図5Bのシミュレーションモデルでは、接地導体11が無くなる境界部である各縁端部11Bであって特性インピーダンスが変化する部分の直前の2箇所にそれぞれ上記実施形態に述べたように、溝構造を有する導体部14を設けたことを特徴としている。
 ここで、図6のシミュレーションは、基本周波数1GHzの矩形波を伝送する場合を想定したものであり、3GHz、5GHzがそれぞれ基本周波数に対する3次高調波及び5次高調波になり、その程度の周波数で、通過特性が均一なことが、矩形波の歪を生じないための条件となる。本実施形態に係る溝構造を有する導体部14を設けない場合は、1~5GHzの帯域で通過特性が約10dB程度以上変化するため、伝送信号の矩形波が歪む。これに対して、本実施形態では、この帯域で約2dB程度以下の変化に抑えることができる。このように、本実施形態では、特性インピーダンスが不連続になるマイクロストリップ線路においても、広帯域で通過特性を均一にすることができ信号波形の歪みが少ないマイクロストリップ線路を実現することができる。
 また、複数の溝21の個数Nを変えることで、通過特性の周波数帯域を変えることができることを、図7A及び図7Bを参照して説明する。図7Aは導体部14の溝数N=10のときの図5A及び図5Bのシミュレーションモデルの通過周波数特性(実線)と、上記シミュレーションモデルにおいて導体部14を設けないときの比較例の通過周波数特性(破線)とを示すスペクトル図である。図7Bは導体部14の溝数N=15のときの図5A及び図5Bのシミュレーションモデルの通過周波数特性と、上記シミュレーションモデルにおいて導体部14を設けないときの比較例の通過周波数特性とを示すスペクトル図である。なお、図7A及び図7Bにおいて、導体部14のサイズを一定としている。図7A及び図7Bから明らかなように、導体部14の溝21の個数を増やすことで通過特性が均一になる帯域を変えることができることが分かる。
 なお、溝構造を有する導体部14の溝21は、本実施形態では誘電体基板10と同じ材料の誘電体22で充填形成したが、別の材料の誘電体で構成してもよく、もしくは空隙であってもよい。この場合、図3の等価回路中のキャパシタC2のキャパシタンスを変えることに相当する。
第2の実施形態.
 図8Aは本発明の第2の実施形態に係るマイクロストリップ線路の構成を示す平面図である。図8Bは図8AのH-H’線についての縦断面図である。図8Cは図8Bの主要部の拡大図である。また、図9は図8A~図8Cのマイクロストリップ線路の斜視図である。
 図8A~図8C及び図9において、第1の実施形態に係る溝構造を有する導体部14を接地導体11に設ける場合のごとく接地導体11と一体的に形成するのではなく、第2の実施形態では、あらかじめ溝構造を有する導体部14の部品を作っておき、当該導体部14の部品と同じ大きさの開口部11Aを接地導体11に形成し、溝構造を有する導体部14の部品を開口部11Aに挿入して構成したことを特徴としている。
 図10Aは図8A~図8Cの導体部14の詳細構成を示す正面図であり、図10Bは図10Aの導体部14の平面図であり、図10Cは図10BのI-I’線についての縦断面図である。また、図11Aは図10A~図10Cの導体部14の側面図であり、図11Bは図10A~図10Cの導体部14の斜視図である。ここで、図10A~図10C及び図11A及び図11Bは、本実施形態に係る溝構造を有する導体部14の部品の構成を説明するための模式図であり、その構成は、第1の実施形態に係る導体部14の構成と同様である。
 以上のように構成された第2の実施形態によれば、上記第1の実施形態に記載した構成を、基板一体で形成する変わりに、溝構造を有する導体部14の部品を追加することで実現でき、上記第1の実施形態で説明したのと同様の作用効果を生じるものである。なお、本第2の実施形態においても、各溝21は、誘電体22で充填しもしくは空気などの空隙で形成してもよい。当該誘電体としては、誘電体基板10と同じ材料の誘電体22、あるいは異なる誘電材料の誘電体22を用いてもよい。
第2の実施形態の変形例.
 図12Aは本発明の第2の実施形態の変形例に係るマイクロストリップ線路の構成を示す平面図である。図12Bは図12AのJ-J’線についての縦断面図である。図12Cは図12Bの主要部の拡大図である。また、図13Aは図12A~図12Cのマイクロストリップ線路の斜視図であり、図13Bは図13Aの主要部の拡大図である。図12A~図12C並びに図13A及び図13Bにおいて、溝構造を有する導体部14の部品を、接地導体11の縁端部11Bに接するように、ストリップ導体12の直下に配置したことを特徴としている。このように構成することで、接地導体11に設ける開口部11Aを形成する必要がなくなる。
 図14は本発明の第2の実施形態の別の変形例に係るマイクロストリップ線路の主要部の拡大縦断面図であり、図15は図14の導体部14を誘電体基板10の開口部10Aに嵌合したときの縦断面図である。また、図16は図15のマイクロストリップ線路のさらに別の変形例の構成を示す拡大縦断面図である。
 図14においては、接地導体11の開口部11A及び誘電体基板10の開口部10Aに、導体部14の上部に直方体形状の誘電体部15(その平面形状は、導体部14の平面形状と同一である。)を載置してなる部品を挿入嵌合したことを特徴としている。ここで、誘電体基板10の開口部10Aの深さd1と、誘電体部15の高さd2によっては、図15及び図16に示すように、ストリップ導体12と溝構造を有する導体部14との間の距離d4を決めることができる。このことは、距離d4を変えることで、図3で示した本発明を説明するための等価回路におけるキャパシタC1を変える効果を有することに相当する。また、この構成は図12A~図12C及び図13A及び図13Bに示したように、誘電体基板10上の接地導体11の無い部分に設ける場合も同様である。
第3の実施形態.
 図17Aは本発明の第3の実施形態に係るマイクロストリップ線路の構成を示す正面図である。図17Bは図17Aのマイクロストリップ線路の平面図である。図17Cは図17BのK-K’線についての縦断面図である。図17Dは図17Cの主要部の拡大図である。また、図18Aは図17A~図17Dのマイクロストリップ線路の側面図である。図18Bは図17A~図17Dのマイクロストリップ線路の斜視図である。図18Cは図18Bの主要部の拡大図である。
 図17A~図17D及び図18A~図18Cにおいて、本実施形態によれば、第2の実施形態に係る溝構造を有する導体部14の部品を、誘電体部15を介して、ストリップ導体12の上に配置したことを特徴としている。以上のように構成された第3の実施形態においては、第2の実施形態に係る構成では、溝構造を有する導体部14の部品が接地導体11と導通しているのに対し、本実施形態では非導通になる。しかしながら、ストリップ導体12を流れる電気信号が作る電磁界によって、溝構造を有する導体部14の部品にも誘導電流が流れる点では、第2の実施形態と同様の作用効果を有する。
 図19Aは本発明の第3の実施形態の変形例に係るマイクロストリップ線路の構成を示す正面図であり、図19Bは図19AのL-L’線についての縦断面図であり、図19Cは図19Bの主要部の拡大図である。また、図20Aは図19A~図19Cのマイクロストリップ線路の斜視図であり、図20Bは図20Aの主要部の拡大図である。本実施形態によれば、マイクロストリップ線路の任意の場所に、本溝構造を有する導体部14の部品を配置することができ、図19A~図19C及び図20A及び図20Bに示すように、接地導体11が直下に存在しないストリップ導体12及び誘電体基板10のおもて面上の部分にも設けることができる。
 図21Aは本発明の第3の実施形態の別の変形例に係るマイクロストリップ線路の構成を示す正面図であり、図21Bは図21AのM-M’線についての縦断面図であり、図21Cは図21Bの主要部の拡大図である。また、図22Aは図21A~図21Cのマイクロストリップ線路の斜視図であり、図22Bは図22Aの主要部の拡大図である。
 図21A~図21C並びに図22A及び図22Bにおいて、図17A~図17Dの第3の実施形態に係るマイクロストリップ線路において、溝構造を有する導体部14を誘電体基板10を介して接地導体11に導通させるためのビア導体16を、ストリップ導体12を間に挟んだ両側においてそれぞれ形成したことを特徴としている。以上のように構成されたマイクロストリップ線路では、接地導体11を流れる誘導電流を、溝構造を有する導体部14に流すことで、図3の等価回路におけるインダクタL2を変える作用効果がある。なお、第3の実施形態及びその変形例においても、複数の溝21は、誘電体基板10の材料と同一又は異なる誘電体材料の誘電体22で充填形成するか、または空隙としてもよい。
 以上の実施形態では、いずれもシングルエンド型のマイクロストリップ線路での実施形態を示したが、本発明はこれに限らず、以下に示すように、差動型マイクロストリップ線路を形成してもよい。なお、以下では、3つの実施形態又は変形例に対応する3つの差動型マイクロストリップ線路を例示しているが、他の実施形態又は変形例に対応する差動型マイクロストリップ線路を形成してもよい。
第4の実施形態.
 図23Aは本発明の第4の実施形態に係るマイクロストリップ線路の正面図である。図23Bは図23Aのマイクロストリップ線路の平面図である。図23Cは図23Aのマイクロストリップ線路の側面図である。また、図24は図23A~図23Cのマイクロストリップ線路の斜視図である。第4の実施形態に係るマイクロストリップ線路は、図1及び図2の第1の実施形態に係るマイクロストリップ線路に比較して、ストリップ導体12に代えて、所定の間隔だけ保持して形成された1対のストリップ導体12a,12bを形成することにより、差動型マイクロストリップ線路を形成したことを特徴としている。当該マイクロストリップ線路は、第1の実施形態に係るマイクロストリップ線路と同様の作用効果を有する。
第5の実施形態.
 図25Aは本発明の第5の実施形態に係るマイクロストリップ線路の正面図である。図25Bは図25Aのマイクロストリップ線路の平面図である。図25Cは図25Aのマイクロストリップ線路の側面図である。また、図26は図25A~図25Cのマイクロストリップ線路の斜視図である。第5の実施形態に係るマイクロストリップ線路は、図8A~図8C及び図9の第2の実施形態に係るマイクロストリップ線路に比較して、ストリップ導体12に代えて、所定の間隔だけ保持して形成された1対のストリップ導体12a,12bを形成することにより、差動型マイクロストリップ線路を形成したことを特徴としている。当該マイクロストリップ線路は、第2の実施形態に係るマイクロストリップ線路と同様の作用効果を有する。
第6の実施形態.
 図27Aは本発明の第6の実施形態に係るマイクロストリップ線路の正面図である。図27Bは図27Aのマイクロストリップ線路の平面図である。図27Cは図27Aのマイクロストリップ線路の側面図である。また、図28は図27A~図27Cのマイクロストリップ線路の斜視図である。第6の実施形態に係るマイクロストリップ線路は、図21A~図21C並びに図22A及び図22Bの第3の実施形態の別の変形例に係るマイクロストリップ線路に比較して、ストリップ導体12に代えて、所定の間隔だけ保持して形成された1対のストリップ導体12a,12bを形成することにより、差動型マイクロストリップ線路を形成したことを特徴としている。当該マイクロストリップ線路は、第1の実施形態に係るマイクロストリップ線路と同様の作用効果を有する。
 以上に詳述したように、本発明に係るマイクロストリップ線路によれば、誘電体基板を挟設する接地導体とストリップ導体とにより構成されたマイクロストリップ線路において、上記ストリップ導体に対して立体的に交差するように形成された少なくとも1個の溝を有する導体部を備えることにより、上記マイクロストリップ線路に比較して、実質的により均一な通過周波数特性を有する。従って、特性インピーダンスが変化する場合でも、広帯域で実質的により均一な通過周波数特性を得ることができ、その結果、信号波形の劣化が少ないマイクロストリップ線路を実現できる。
 特に、本発明に係るマイクロストリップ線路は、デジタル回路、基板などに用いられるストリップ線路、マイクロストリップ線路に用いる場合、デジタル信号波形の歪みを低減し、高速信号伝送を実現する手段として有用である。また、広帯域で均一な通過周波数特性を得ることができることから、波形ひずみの少ない高周波回路の伝送線路を実現する手段としても応用できる。

Claims (11)

  1.  誘電体基板を挟設する接地導体とストリップ導体とにより構成されたマイクロストリップ線路において、
     上記ストリップ導体に対して立体的に交差するように形成された少なくとも1個の溝を有する導体部を備えることにより、上記マイクロストリップ線路に比較して、実質的により均一な通過周波数特性を有することを特徴とするマイクロストリップ線路。
  2.  上記溝は、上記ストリップ導体に対して立体的に直交するように形成されたことを特徴とする請求項1記載のマイクロストリップ線路。
  3.  上記溝を有する導体部を上記マイクロストリップ線路とは別の部品として形成したことを特徴とする請求項1又は2記載のマイクロストリップ線路。
  4.  上記溝を有する導体部の部品の、上記誘電体基板側に誘電体部を形成したことを特徴とする請求項3記載のマイクロストリップ線路。
  5.  上記溝を有する導体部の部品を、上記接地導体の開口部に挿入配置したことを特徴とする請求項3又は4記載のマイクロストリップ線路。
  6.  上記溝を有する導体部の部品を、上記接地導体及び上記誘電体基板の開口部に挿入配置したことを特徴とする請求項3又は4記載のマイクロストリップ線路。
  7.  上記溝を有する導体部を、上記誘電体基板の接地導体の形成面側であって接地導体の形成位置に設けたことを特徴とする請求項1乃至6のうちのいずれか1つに記載のマイクロストリップ線路。
  8.  上記溝を有する導体部を、上記誘電体基板の接地導体の形成面側であって接地導体の非形成位置に設けたことを特徴とする請求項1乃至6のうちのいずれか1つに記載のマイクロストリップ線路。
  9.  上記溝を有する導体部を、上記誘電体基板のストリップ導体の形成面側であって接地導体の形成位置に設けたことを特徴とする請求項1乃至4のうちのいずれか1つに記載のマイクロストリップ線路。
  10.  上記溝を有する導体部を、上記接地導体に接続するためのビア導体を上記導体部に形成したことを特徴とする請求項9記載のマイクロストリップ線路。
  11.  上記溝を有する導体部を、上記誘電体基板のストリップ導体の形成面側であって接地導体の非形成位置に設けたことを特徴とする請求項1乃至4のうちのいずれか1つに記載のマイクロストリップ線路。
PCT/JP2009/000795 2008-04-14 2009-02-24 マイクロストリップ線路 WO2009128193A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP09733407A EP2270920A4 (en) 2008-04-14 2009-02-24 MICRORUBAN LINE
JP2010508090A JPWO2009128193A1 (ja) 2008-04-14 2009-02-24 マイクロストリップ線路
US12/664,431 US8294531B2 (en) 2008-04-14 2009-02-24 Microstrip line provided with conductor section having groove formed to sterically intersect strip conductor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008104557 2008-04-14
JP2008-104557 2008-04-14

Publications (1)

Publication Number Publication Date
WO2009128193A1 true WO2009128193A1 (ja) 2009-10-22

Family

ID=41198904

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/000795 WO2009128193A1 (ja) 2008-04-14 2009-02-24 マイクロストリップ線路

Country Status (4)

Country Link
US (1) US8294531B2 (ja)
EP (1) EP2270920A4 (ja)
JP (1) JPWO2009128193A1 (ja)
WO (1) WO2009128193A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010026907A1 (ja) * 2008-09-03 2010-03-11 株式会社村田製作所 メタマテリアル
KR101286311B1 (ko) * 2009-12-17 2013-07-15 경희대학교 산학협력단 메타메터리얼 전송선 장치 및 그 제조방법

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011101327A (ja) * 2009-11-09 2011-05-19 Canon Inc 信号伝送路
US8344828B2 (en) * 2009-12-17 2013-01-01 Electronics And Telecommunications Research Institute Metamaterial transmission line apparatus and method of implementing the same
US9277645B2 (en) 2012-01-18 2016-03-01 Covidien Lp Method of manufacturing a printed circuit board
US8766104B2 (en) 2012-01-18 2014-07-01 Covidien Lp Printed circuit boards including strip-line circuitry and methods of manufacturing same
US8946562B2 (en) * 2012-01-18 2015-02-03 Covidien Lp Printed circuit boards including strip-line circuitry and methods of manufacturing same
US9351395B2 (en) 2012-01-18 2016-05-24 Covidien Lp Printed circuit boards including strip-line circuitry and methods of manufacturing same
US11955436B2 (en) * 2019-04-24 2024-04-09 Intel Corporation Self-equalized and self-crosstalk-compensated 3D transmission line architecture with array of periodic bumps for high-speed single-ended signal transmission
CN113644424A (zh) * 2021-07-05 2021-11-12 山东师范大学 一种基于超宽带信号的弧形槽陷波单极子微带天线

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03158002A (ja) * 1989-11-15 1991-07-08 Nec Corp 半導体装置
JPH05251914A (ja) * 1992-03-04 1993-09-28 A T R Koudenpa Tsushin Kenkyusho:Kk マイクロ波遅波回路
JPH07135407A (ja) * 1993-11-11 1995-05-23 Nippon Telegr & Teleph Corp <Ntt> 高周波線路
JPH07336114A (ja) * 1994-05-31 1995-12-22 Whitaker Corp:The マイクロストリップライン及びその製造方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6277901U (ja) * 1985-10-31 1987-05-19
GB8828281D0 (en) * 1988-12-03 1989-01-05 Quantel Ltd Strip lines
JPH08116201A (ja) * 1994-10-18 1996-05-07 Nec Corp インピーダンス変換装置
JP3158002B2 (ja) 1995-01-26 2001-04-23 京セラ株式会社 半導体発光装置
JP2001053507A (ja) 1999-08-13 2001-02-23 Nec Corp 配線基板とその製造方法
US6545572B1 (en) * 2000-09-07 2003-04-08 Hitachi Chemical Co., Ltd. Multi-layer line interfacial connector using shielded patch elements
CN1316858C (zh) * 2001-04-27 2007-05-16 日本电气株式会社 高频电路基板及其制造方法
US6765450B2 (en) * 2002-06-28 2004-07-20 Texas Instruments Incorporated Common mode rejection in differential pairs using slotted ground planes
ES2336093T3 (es) * 2003-06-13 2010-04-08 Telefonaktiebolaget Lm Ericsson (Publ) Linea de trasnmision.

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03158002A (ja) * 1989-11-15 1991-07-08 Nec Corp 半導体装置
JPH05251914A (ja) * 1992-03-04 1993-09-28 A T R Koudenpa Tsushin Kenkyusho:Kk マイクロ波遅波回路
JPH07135407A (ja) * 1993-11-11 1995-05-23 Nippon Telegr & Teleph Corp <Ntt> 高周波線路
JPH07336114A (ja) * 1994-05-31 1995-12-22 Whitaker Corp:The マイクロストリップライン及びその製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2270920A4 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010026907A1 (ja) * 2008-09-03 2010-03-11 株式会社村田製作所 メタマテリアル
US8860631B2 (en) 2008-09-03 2014-10-14 Murata Manufacturing Co., Ltd. Metamaterial
KR101286311B1 (ko) * 2009-12-17 2013-07-15 경희대학교 산학협력단 메타메터리얼 전송선 장치 및 그 제조방법

Also Published As

Publication number Publication date
EP2270920A4 (en) 2012-10-03
JPWO2009128193A1 (ja) 2011-08-04
US20100171574A1 (en) 2010-07-08
EP2270920A1 (en) 2011-01-05
US8294531B2 (en) 2012-10-23

Similar Documents

Publication Publication Date Title
WO2009128193A1 (ja) マイクロストリップ線路
US7138887B2 (en) Coupler with lateral extension
US20140306776A1 (en) Planar rf crossover structure with broadband characteristic
KR100624048B1 (ko) 유전체필터
KR100892024B1 (ko) 밴드패스 필터
US7884682B2 (en) Waveguide to microstrip transducer having a ridge waveguide and an impedance matching box
JP4958849B2 (ja) 差動伝送線路
US8207451B2 (en) Ground-plane slotted type signal transmission circuit board
JP6013298B2 (ja) 高周波伝送線路
US10128557B2 (en) Chip-to-chip interface comprising a microstrip circuit to waveguide transition having an emitting patch
JP6091284B2 (ja) 方向性結合器
US9178263B1 (en) Divider/combiner with bridging coupled section
KR20040073131A (ko) 포토닉 밴드갭 코플래너 웨이브가이드 및 이를 이용한전력 분배기 제조 방법
WO2010140320A1 (ja) ストリップ線路
JP5454222B2 (ja) 低域通過フィルタ
JPH1079608A (ja) 方向性結合器
TWI648950B (zh) Differential filter microstrip line structure capable of suppressing common mode signals
KR100907270B1 (ko) 마이크로스트립 선로를 이용한 밀리미터파 광대역 대역통과필터
JP6612803B2 (ja) 導波路及び信号処理装置
JP2006524954A (ja) 改良型方向性結合器
JP6937965B2 (ja) 高周波回路及び通信モジュール
JP4629617B2 (ja) 高周波結合線路及び高周波フィルタ
KR100280835B1 (ko) 직선형 양방향성 결합기
JP2012244619A (ja) 縦形平面構造をもつ分布定数線路を用いたマイクロ波回路
JP2019106663A (ja) 高周波回路

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2010508090

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2009733407

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 12664431

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09733407

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE