JP3933943B2 - 高周波信号接続構造 - Google Patents

高周波信号接続構造 Download PDF

Info

Publication number
JP3933943B2
JP3933943B2 JP2002017584A JP2002017584A JP3933943B2 JP 3933943 B2 JP3933943 B2 JP 3933943B2 JP 2002017584 A JP2002017584 A JP 2002017584A JP 2002017584 A JP2002017584 A JP 2002017584A JP 3933943 B2 JP3933943 B2 JP 3933943B2
Authority
JP
Japan
Prior art keywords
substrate
signal
pattern
ground
resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2002017584A
Other languages
English (en)
Other versions
JP2003218482A (ja
Inventor
英征 大橋
武 吉田
哲 大和田
寛 池松
洋一 北村
純司 藤野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2002017584A priority Critical patent/JP3933943B2/ja
Publication of JP2003218482A publication Critical patent/JP2003218482A/ja
Application granted granted Critical
Publication of JP3933943B2 publication Critical patent/JP3933943B2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Waveguide Connection Structure (AREA)
  • Production Of Multi-Layered Print Wiring Board (AREA)
  • Printing Elements For Providing Electric Connections Between Printed Circuits (AREA)
  • Structure Of Printed Boards (AREA)
  • Combinations Of Printed Boards (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は、主としてマイクロ波帯及びミリ波帯の高周波信号回路に関し、時にこのような高周波信号回路を有する基板の接続構造に関するものである。
【0002】
【従来の技術】
図34は、特開平08−236655号公報に示された従来の高周波信号接続構造を示す基板の表面を示す図である。図35はパッケージと基板とがはんだバンプで接続されている様子を示す断面図である。図34において、パッケージ110は、信号用のパターン130を中心にしてその周囲の底面にリング状の地導体パターン180を備えている。信号用のパターン130に接続された信号用導体柱170は基板材料内に延びている。地導体パターン180に接続された4本のグランド用導体柱190も基板材料内に延びている。
【0003】
一方、基板150は、信号用のパターン160を中心にしてその周囲の表面に地導体パターン200を備えている。信号用のパターン160に接続された信号用導体柱172は基板材料内に延びている。地導体パターン200に接続された4本のグランド用導体柱192も基板材料内に延びている。信号用のパターン130と信号用のパターン160とは、第1のはんだバンプ140で接続されている。地導体パターン180と地導体パターン200とは、第2のはんだバンプ142で接続されている。
【0004】
このような構造の高周波信号接続構造においては、パッケージ110底面の接続パターン部分、及びパッケージ110が実装される基板150表面の接続パターン部分の特性インピーダンスを、パッケージ110内の特性インピーダンスとマッチングさせることができ、接続部分での高周波信号の伝送損失を低減している。
【0005】
【発明が解決しようとする課題】
しかしながら、リング状の地導体パターン180,200であると、地導体パターンのある層を地導体とするストリップ線路、及びマイクロストリップ線路の構築が難しい。
【0006】
また、信号用パターン130,160とはんだバンプ140の接続部で信頼性を得るため、はんだバンプ140径を大きくしようとする際、パッケージ及びビルドアップ基板の信号用パターンの大きさが、信号用導体柱の大きさの4倍より大きいとき、信号用接続線路と信号用パターンの境界付近で高周波信号の伝送損失が増大する。
【0007】
また、ビルドアップ基板ではバイアホールの真上にはんだバンプをとりつけられないため、高周波信号の伝送損失が増大する。またビルドアップ基板の信号パターンの真上に、パッケージ底面の地導体があると、地導体と信号パターンの間の結合により高周波信号の伝送損失が増大する。
【0008】
さらに、信号用はんだバンプと地導体用はんだバンプの間隔が制約となり、パッケージ内及び基板内で所望の特性インピーダンスを満たす構造を作りにくい。
【0009】
この発明は、上述のような課題を解決するためになされたもので、パッケージ内の信号用線路と基板内の信号用線路を低損失で接続できる高周波信号接続構造を提供することを目的としている。
【0010】
さらには、はんだバンプのピッチによらず、パッケージ内や基板内で所望の特性インピーダンスを実現し、パッケージ内の信号用線路と基板内の信号用線路を低損失で接続できる高周波信号接続構造を提供することを目的としている。
【0011】
【課題を解決するための手段】
この発明に係る高周波信号接続構造は、所定の間隙で対向する第1の基板と第2の基板を有し、前記第1の基板は、平板状の基板材料と、該基板材料の前記第2の基板に対向する面に広く設けられ、該基板材料が露出するように所定の領域に第1の切り抜き穴が形成された第1のグランドパターンと、前記第1の切り抜き穴内の前記基板材料表面に設けられた第1の信号用パターンと、前記第1の信号用パターンに接続されて前記基板材料の内部に延びる第1の信号用導体柱とを有し、前記第2の基板は、平板状の基板材料と、該基板材料の前記第1の基板に対向する面に広く設けられ、該基板材料が露出するように所定の領域に第2の切り抜き穴が形成された第2のグランドパターンと、前記第2の切り抜き穴内の前記基板材料表面に所定の広さで設けられた第2の信号用パターンと、前記第2の信号用パターンに接続されて前記基板材料の内部に延び軸方向に貫通穴が形成された第2の信号用導体柱とを有し、前記第1の基板は、前記第1のグランドパターンを、前記第1の切り抜き穴の周囲の複数の第1のグランド用接続パターンの部分を除いて絶縁コート材で覆うことで形成された複数の第1のグランド用接続パターンをさらに有し、前記第2の基板は、前記第2のグランドパターンを、前記第2の切り抜き穴の周囲の複数の第2のグランド用接続パターンの部分を除いて絶縁コート材で覆うことで形成された複数の第2のグランド用接続パターンをさらに有し、前記第2の基板に形成された前記第2の信号用パターンは、前記第2の信号用パターンを、前記第1の信号用パターンに対応した接続箇所を除いて絶縁コート材で覆うことで形成された接続箇所を有し、前記第1の信号用導体柱と第2の信号用導体柱との間に設けられ前記第1の信号用パターン及び前記接続箇所を接続する信号用バンプと、前記第1のグランドパターンと前記第2のグランドパターンとの間に設けられ前記複数の第1及び第2のグランド用接続パターンそれぞれ接続する複数のグランド用バンプとをさらに有し、前記第2の信号用導体柱は、軸線方向に前記信号用バンプ及び接続箇所と重ならないように設けられ、前記第1の切り抜き穴は第2の信号用パターンに対向する領域まで広げて形成されている。
【0012】
また、第1の基板がセラミック多層基板であり、第2の基板が樹脂単層基板である。
【0013】
また、第1の基板がセラミック多層基板であり、第2の基板が樹脂ビルドアップ基板である。
【0014】
また、第1の信号用導体柱は、第2の信号用導体柱と反対側で軸線方向に信号用バンプと重ならないように設けられ、第2の切り抜き穴は第1の信号用パターンに対向する領域まで広げて形成されている。
【0015】
また、信号用バンプの径は、グランド用バンプの径よりも小さい。
【0016】
また、第1の信号用パターンと第2のグランドパターンとの間、及び第2の信号用パターンと第1のグランドパターンとの間の容量性成分が所定の値より小さくなるように、信号用バンプとグランド用バンプの高さを高くする。
【0017】
また、第1の基板は、各層毎にグランドパターンが広く形成された多層基板であり、第1のグランドパターンに接続されて各層毎に形成されたグランドパターンを介して接続されながら基板材料の内部に延びる第1のグランド用導体柱を有し、基板材料の内部において、各層毎に形成された第1のグランド用導体柱は、第1の信号用導体柱に対して少なくとも1本が異なる距離に配設されている。
【0018】
また、第1の基板がセラミック単層基板であり、第2の基板が樹脂多層基板である
【0019】
【発明の実施の形態】
実施の形態1.
図1はこの発明の実施の形態1の高周波信号接続構造を説明するための図であり、より具体的にはセラミック単層基板と樹脂多層基板がはんだバンプで接続されている要部を示す断面図である。図2はセラミック単層基板の樹脂多層基板側の面を示す図である。図3は樹脂多層基板のセラミック単層基板側の面を示す図である。
【0020】
図1から図3において、1は第1の基板としてのセラミック単層基板である。5は第2の基板としての樹脂多層基板である。20a及び20bはセラミック単層基板1と樹脂多層基板5を接続するために設けられた信号用はんだバンプ(信号用バンプ)及びグランド用はんだバンプ(グランド用バンプ)である。
【0021】
第1の基板としてのセラミック単層基板1は、平板状の基板材料と、この基板材料の樹脂多層基板5に対向する面に広く設けられ、基板材料が露出するように所定の領域に第1の切り抜き穴51が形成された第1のグランドパターン14aと、第1の切り抜き穴51内の基板材料表面に設けられた第1の信号用パターン11aと、第1の信号用パターン11aに接続されて基板材料の内部に延びる第1の信号用導体柱10aとを有している。
【0022】
一方、第2の基板としての樹脂多層基板5は、平板状の基板材料と、この基板材料のセラミック単層基板1に対向する面に広く設けられ、基板材料が露出するように所定の領域に第2の切り抜き穴53が形成された第2のグランドパターン40aと、第2の切り抜き穴53内の基板材料表面に所定の広さで設けられた第2の信号用パターン11bと、第2の信号用パターン11bに接続されて基板材料の内部に延びる第2の信号用導体柱10bとを有している。
【0023】
図2に示されるように、第1のグランド用接続パターン13aは、第1のグランドパターン14aを、第1のグランド用接続パターン13aの部分を除いて絶縁コート材17で覆うことで形成している。
【0024】
図3に示されるように、第2のグランド用接続パターン13bは、第2のグランドパターン40aを、第2のグランド用接続パターン13bの部分を除いて絶縁コート材17で覆うことで形成している。グランドパターン40aとグランドパターン40bとは基板材料内に延びるグランド用導体柱12aで接続されている。第2の信号用パターン11bは信号用はんだバンプ20aの接続箇所21を除いて絶縁コート材17で覆われている。
【0025】
信号用はんだバンプ20aは、第1の信号用パターン11aと第2の信号用パターン11b上の信号用はんだバンプの接続箇所21とを接続する。グランド用はんだバンプ20bは、第1のグランド用接続パターン13aと第2のグランド用接続パターン13bとを接続する。第1の信号用導体柱10aは第1の信号用接続線路18aと第1の信号用パターン11aを接続する。第2の信号用導体柱10bは第2の信号用接続線路18bと第2の信号用パターン11bを接続する。第2の信号用導体柱10bは、製造過程において予め形成された貫通穴に内周面にメッキが施されて形成されるので中心軸線上に貫通穴が空いている。
【0026】
図4はセラミック単層基板1の樹脂多層基板5側と反対側の面を示す図である。第1の信号用接続線路18aは、セラミック単層基板1のグランドパターン14aと共同してマイクロストリップ線路を構成しており、所望の特性インピーダンスとなるように設計されている。
【0027】
図5は樹脂多層基板5の第2の信号用接続線路18bがある層の断面図である。第2の信号用パターン18bは樹脂多層基板5上に設けられたグランドパターン40aと樹脂多層基板5内部に設けられたグランドパターン40bをグランドプレーンとした、トリプレート線路を構成しており、所望の特性インピーダンスとなるように設計されている。
【0028】
セラミック単層基板1から樹脂多層基板5へ高周波信号が伝送される経路は、第1の信号用接続線路18a→信号用導体柱10a→第1の信号用パターン11a→信号用はんだバンプ20a→第2の信号用パターン11b→第2の信号用導体柱10b→第2の信号用接続線路18bとなっている。
【0029】
図3に示されるように、第2の信号用導体柱10bは、軸線方向に信号用はんだバンプ20aと重ならないように設けられている。第2の信号用導体柱10bの真上に信号用はんだバンプ20aを接続しようとすると、はんだバンプが溶けたとき、信号用導体柱10bの内側の貫通穴の中にはんだが流れ込み、信号用はんだバンプ20aを用いて、第1の信号用パターン11aと第2の信号用導体柱10bを接続することが出来ない。そこで本実施の形態のように第2の信号用導体柱10bに貫通穴があいているとき、図3に示したように、第2の信号用導体柱10bと信号用はんだバンプの接続箇所21は異なる位置に配置することではんだが流れ込むことなく両者を良好に接続することができる。
【0030】
そして、第2の信号用導体柱10bと信号用はんだバンプ20aの接続箇所21と異なる位置に配置すると、第2の信号用パターン11bの面積が大きくなり、グランドパターン14aと信号用パターン11bの間に容量性成分が生じ反射特性が劣化する。そのためこれを防止するためにセラミック単層基板1に形成された第1の切り抜き穴51を第2の信号用パターン11bに対向する位置まで広げることで反射特性の改善を図っている。反射特性の改善は、第1の切り抜き穴51の大きさ、第2の信号用パターン11bの大きさ、及び第2のグランドパターン40aに設けた第2の切り抜き穴53の大きさを変えることで最適な反射特性を得ることが出来る。
【0031】
なお、本実施の形態ではグランド用はんだバンプ20bとグランド用導体柱12aの数は4つであるが、この数は4に限定するものではなく、3つでも5つでも好適である。また、本実施の形態では第1のグランドパターン14aに設けた第1の切り抜き穴51と第2のグランドパターン40aに設けた第2の切り抜き穴53はともに長円形であるが四角形でも好適である。
【0032】
このように、本実施の形態の高周波信号接続構造によれば、まず所定の間隙で対向する第1の基板としての単層セラミック基板1と第2の基板としての多層樹脂基板5を有している。
そして、単層セラミック基板1は、平板状の基板材料と、基板材料の多層樹脂基板5に対向する面に広く設けられ、基板材料が露出するように所定の領域に第1の切り抜き穴51が形成された第1のグランドパターン14aと、第1の切り抜き穴51内の基板材料表面に設けられた第1の信号用パターン11aと、第1の信号用パターン11aに接続されて基板材料の内部に延びる第1の信号用導体柱10aとを有している。
【0033】
一方、多層樹脂基板5は、平板状の基板材料と、基板材料の単層セラミック基板1に対向する面に広く設けられ、基板材料が露出するように所定の領域に第2の切り抜き穴53が形成された第2のグランドパターン40aと、第2の切り抜き穴53内の基板材料表面に所定の広さで設けられた第2の信号用パターン11bと、第2の信号用パターン11bに接続されて基板材料の内部に延び軸方向に貫通穴が形成された第2の信号用導体柱10bとを有している。
また、第1の信号用導体柱10aと第2の信号用導体柱10bとの間に設けられ両者を接続する信号用バンプ20aと、第1のグランドパターン14aと第2のグランドパターン40aとの間に設けられ両者を接続するグランド用バンプ20bとをさらに有している。
【0034】
そして、第2の信号用導体柱10bは、軸線方向に信号用バンプ20aと重ならないように設けられ、第1の切り抜き穴51は第2の信号用パターン11bに対向する領域まで広げて形成されている。
そのため、第1の基板としての単層セラミック基板1と、第2の信号用導体柱10bと信号用はんだバンプ20aの接続箇所を異なる位置に配置している第2の信号用パターン11bをもつ第2の基板としての多層樹脂基板5をはんだバンプ20aで接続する際、第2の信号用パターン11bと、第2の信号用パターン11bと対向する第1のグランドパターン14aとの間の容量性成分を減らすことができ、良好な反射特性を持つ高周波信号接続構造を構築することが出来るという効果がある。
【0035】
実施の形態2.
図6はこの発明の実施の形態2の高周波信号接続構造を説明するための図であり、より具体的にはセラミック多層基板と樹脂単層基板がはんだバンプで接続されている要部を示す断面図である。図7はセラミック多層基板の樹脂単層基板側の面を示す図である。図8は樹脂単層基板のセラミック多層基板側の面を示す図である。図において図1から5に示した実施の形態1の高周波信号接続構造と同一または相当部分には同一符号を付し、その説明を省略する。
【0036】
図6において、3aは第1の基板としてのセラミック多層基板である。4は第2の基板としての樹脂単層基板である。
図7において、第1のグランド用接続パターン13a及びこれに接続されるグランド用導体柱12aは4つが設けられている。第1のグランド用接続パターン13aから、セラミック多層基板3aの内部に延びるグランド用導体柱12aは、図6に良く示されるように、セラミック多層基板3aの内部に積層されて設けられたグランドパターン14a、14b、14c、14d及び14eを各々接続している。第2の信号用導体柱10bは中心軸線上に貫通穴があいている。
【0037】
本実施の形態において、セラミック多層基板3aの地導体パターン14b、14c、14dは必ずしも必要でない。30は単層樹脂基板4に設けられたグランドパターンである。第1の信号用接続線路18aはセラミック多層基板3aのグランドパターン14aとマイクロストリップ線路を構成しており、所望の特性インピーダンスとなるように設計されている。第2の信号用接続線路18bは樹脂単層基板4に設けられたグランドパターン30をグランドプレーンとしたマイクロストリップ線路を構成しており、所望の特性インピーダンスとなるように設計されている。
【0038】
このような構成とすることにより、セラミック多層基板3aの内部の各層14b、14c、14dに高周波回路やICの制御・電源配線を設けることが可能になり、セラミック多層基板3aを多数の機能回路を含んだ高周波モジュール用基板として使用できる。
【0039】
このように本実施の形態によれば、セラミック多層基板3aをモジュール基板として使用し、樹脂単層基板4へ実装する際、良好な反射特性を持つ高周波信号接続構造を構築することが出来るという効果がある。セラミック多層基板3aの層数は本実施の形態の数に限るものではない。
【0040】
実施の形態3.
図9はこの発明の実施の形態3の高周波信号接続構造を説明するための図であり、より具体的にはセラミック多層基板と樹脂ビルドアップ基板がはんだバンプで接続されている要部を示す断面図である。図10はセラミック多層基板の樹脂ビルドアップ基板側の面を示す図である。図11は樹脂ビルドアップ基板のセラミック多層基板側の面を示す図である。図において図1から8に示した実施の形態1及び実施の形態2の高周波信号接続構造と同一または相当部分には同一符号を付し、その説明を省略する。
【0041】
図9において、3aは第1の基板としてのセラミック多層基板である。2aは第2の基板としての樹脂ビルドアップ基板である。
図9において、12b、12cは樹脂ビルドアップ基板2aの内部に形成されたグランド用導体柱である。2つのグランド用導体柱12b、12cはグランド用導体柱接続パターン31aで接続される。樹脂ビルドアップ基板2aのグランドパターン15a、15bはグランド用導体柱12b、12cとグランド用導体柱接続パターン31aによって接続されている。第2の信号用接続線路18bはグランドパターン15a、15bと共にトリプレート線路を構成している。
【0042】
このような構成とすることにより、樹脂ビルドアップ基板2aの内部の各層に高周波回路や制御・電源用配線を設けることが可能となり、セラミック多層基板3aを多数の機能回路を含む高周波モジュール用基板として利用し、樹脂ビルドアップ基板2aを高周波モジュールに高周波信号や制御信号および電源を供給する実装基板として用いることができ、高周波装置の高密度実装が可能となる。
【0043】
本実施の形態では、セラミック多層基板3aと樹脂ビルドアップ基板2aをはんだバンプ20a、20bで接続した例について説明したが、樹脂ビルドアップ基板以外の樹脂多層基板を使用しても好適である。また、樹脂ビルドアップ基板2aの層数は本実施の形態の数に限るものではない。
【0044】
このように、本実施の形態においては、セラミック多層基板3aをモジュール基板として使用した際、モジュール基板に必要な多数のモジュール制御用配線を樹脂ビルドアップ基板2a内に精度良く多数構成することができ、良好な反射特性を持つ高周波信号接続構造を構築できるという効果がある。
尚、本実施の形態において、セラミック多層基板3aの地導体パターン14b、14c及び14dは、必ずしも必要なものではない。
【0045】
実施の形態4.
図12はこの発明の実施の形態4の高周波信号接続構造を説明するための図であり、より具体的には樹脂ビルドアップ基板2a,2bどうしがはんだバンプで接続されている要部を示す断面図である。図13は一側の樹脂ビルドアップ基板2aの表面を示す図である。図14は他側の樹脂ビルドアップ基板2bの表面を示す図である。
【0046】
図12において、2aは第1の基板としての第1の樹脂ビルドアップ基板である。2bは第2の基板としての第2の樹脂ビルドアップ基板である。グランド用導体柱12a、12bはグランド用導体柱接続パターン31aによって接続されている。グランド用導体柱12c、12dはグランド用導体柱接続パターン31bによって接続されている。樹脂ビルドアップ基板2aのグランドパターン15aと15bはグランド用導体柱12a、12bとグランド用導体柱接続パターン31aによって接続されている。樹脂ビルドアップ基板2bのグランドパターン15cと15dはグランド用導体柱12c、12dとグランド用導体柱接続パターン31bによって接続されている。
【0047】
第1のグランド用接続パターン13aはグランドパターン15bを第1のグランド用接続パターン13aの部分を除いて絶縁コート材17で覆うことで形成している。第2のグランド用接続パターン13bはグランドパターン15cを第1のグランド用接続パターン13bの部分を除いて絶縁コート材17で覆うことで形成している。第1の信号用パターン11aは信号用はんだバンプ20aの接続箇所21を除いて絶縁コート材17で覆われている。第2の信号用パターン11bは信号用はんだバンプ20aの接続箇所21を除いて絶縁コート材17で覆われている。
【0048】
第1の信号用接続線路18aはグランドパターン15aと15bと共同してストリップ線路を構成している。第2の信号用接続線路18bはグランドパターン15cと15dと共同してストリップ線路を構成している。
【0049】
樹脂ビルドアップ基板2aから樹脂ビルドアップ基板2bへと信号が伝わる際の経路は、第1の信号接続線路18a→信号用導体柱10a→第1の信号用パターン11a→信号用はんだバンプ20a→第2の信号用接続線路11b→第2の信号用導体柱10b→第2の信号接続線路18bである。
【0050】
樹脂ビルドアップ基板2aのグランドパターン15bに設けた切り抜き穴56を対向する第2の信号用パターン11bの領域にまで広げることで、グランドパターン15bと第2の信号用パターン11bの間の容量性成分を減らし、反射特性の改善を行っている。また、樹脂ビルドアップ基板2bのグランドパターン15cに設けた切り抜き穴54を対向する第2の信号用パターン11aの領域にまで広げることで、グランドパターン15cと第2の信号用パターン11aの間の容量性成分を減らし、反射特性の改善を行っている。そして、第1の信号用パターン11a、第2の信号用パターン11b、及びこれらに対向する切り抜き穴56、切り抜き穴54の大きさを調整することで最適な反射特性を得ることができ、樹脂ビルドアップ基板同士を特性良く接続できる。
【0051】
本実施の形態では樹脂ビルドアップ基板2a,2b同士を接続したものについて述べたが、単層基板同士の接続、単層基板と多層基板同士の接続、並びに樹脂ビルドアップ基板以外の多層基板同士の接続についても好適である。
【0052】
このように、本実施の形態によれば、第1の基板としての第1の樹脂ビルドアップ基板2aと第2の基板としての第2の樹脂ビルドアップ基板2bを接続する際に、第1の信号用導体柱10aは、第2の信号用導体柱10bと反対側で軸線方向に信号用バンプ20bと重ならないように設けられ、第2の切り抜き穴54は第1の信号用パターン11aに対向する領域まで広げて形成されている。
【0053】
そのため、樹脂ビルドアップ基板2a,2b同士をはんだバンプ20a,20bで接続する際、信号用パターン11aと信号用パターン11aと対向しているグランドパターン15cの間にある容量性成分を減らし、信号用パターン11bと信号用パターン11bと対向しているグランドパターン15bに設けた切り抜き穴56の大きさを変えることで、良好な反射特性を持つ高周波信号接続構造を構築することができるという効果がある。
【0054】
実施の形態5.
図15はこの発明の実施の形態5の高周波信号接続構造を説明するための図であり、より具体的にはセラミック多層基板と樹脂単層基板がはんだバンプで接続されている要部を示す断面図である。図16はセラミック多層基板の樹脂単層基板側の面を示す図である。図17は樹脂単層基板のセラミック多層基板側の面を示す図である。
【0055】
図15において、3aは第1の基板としてのセラミック多層基板である。4は第2の基板としての樹脂単層基板である。
本実施の形態においては、信号用はんだバンプ20aの径がグランド用はんだバンプ20bの径より小さくされている。このような形状とすることで、信号用はんだバンプ20aと、セラミック多層基板3aの内層グランドパターン14a、14b、14cと14d並びにセラミック多層基板3aのグランドパターン14eの間の容量性成分を小さくし、かつインダクタンス性成分を増やし、信号用はんだバンプ20aと第1の信号用パターン11aの大きさを調整することで、最適な反射特性を得ることができ、セラミック多層基板と樹脂単層基板を特性良く接続できる。
【0056】
図18と図19は本実施の形態の高周波信号接続構造の他の例を説明する断面図である。図18及び図19においてセラミック多層基板3aの樹脂単層基板4側の面は図16と同様である。また、樹脂単層基板4のセラミック多層基板3a側の面は図17と同様である。図18の信号用はんだバンプ20aは、円柱型をしている。図19の信号用はんだバンプ20aは、中央がくびれた糸巻き型をしている。
【0057】
信号用はんだバンプ20aの大きさを調整する際に、信号用はんだバンプの形状を図18や図19のようにして、信号用はんだバンプ20aの形状を変更し、セラミック多層基板3aの内層グランドパターン14a、14b、14cと14d並びにセラミック多層基板3a底面のグランドパターン14eの間の容量性成分を調整したり、かつインダクタンス性成分を調整したりして最適な反射特性になるようにすることも好適である。
【0058】
なお、本実施の形態ではセラミック多層基板3aと樹脂単層基板4の接続に関して述べたが、セラミック多層基板同士の接続、セラミック単層基板同士の接続、樹脂単層基板同士の接続、樹脂多層基板同士の接続、ビルドアップ基板同士の接続、セラミック多層基板と樹脂多層基板の接続、セラミック単層基板と樹脂多層基板の接続、セラミック単層基板と樹脂単層基板の接続、セラミック多層基板とビルドアップ基板の接続、セラミック単層基板とビルドアップ基板の接続においても好適である。
【0059】
このように本実施の形態によれば、はんだバンプを用いて基板同士を接続する際、信号用はんだバンプと信号用パターンの大きさを変えることで、信号用はんだバンプ並びに信号用パターンと、セラミック多層基板のグランドとの容量性成分を調整でき、かつ信号用はんだバンプが持つインダクタンス性を調整でき、最適な反射特性を持つ高周波信号接続構造を構築できるという効果がある。
尚、本実施の形態において、セラミック多層基板3aの地導体パターン14b、14c及び14dは、必ずしも必要なものではない。
【0060】
実施の形態6.
図20はこの発明の実施の形態6の高周波信号接続構造を説明するための図であり、より具体的にはセラミック多層基板と樹脂単層基板がはんだバンプで接続されている要部を示す断面図である。図21はセラミック多層基板の樹脂単層基板側の面を示す図である。図22は樹脂単層基板のセラミック多層基板側の面を示す図である。
【0061】
本実施の形態においては、信号用はんだバンプ20aとグランド用はんだバンプ20bはその高さを出来るだけ高くすることで、第2の信号用パターン11bとセラミック多層基板3aのグランドパターン14eの間の容量性成分を減らし、最適な反射特性を持つ高周波信号接続構造を構築している。
【0062】
なお、本実施の形態ではセラミック多層基板3aと樹脂単層基板4の接続に関して述べたが、セラミック多層基板同士の接続、セラミック単層基板同士の接続、樹脂単層基板同士の接続、樹脂多層基板同士の接続、ビルドアップ基板同士の接続、セラミック多層基板と樹脂多層基板の接続、セラミック単層基板と樹脂多層基板の接続、セラミック単層基板と樹脂単層基板の接続、セラミック多層基板とビルドアップ基板の接続、セラミック単層基板とビルドアップ基板の接続においても好適である。
【0063】
このように本実施の形態によれば、セラミック多層基板3aと樹脂単層基板4をはんだバンプ20a,20bで接続する際、その高さを出来るだけ高くすることで、信号用パターンと対向するグランドパターンの間の容量性成分を減らし、最適な反射特性を持つ高周波信号接続構造を構築することが出来るという効果がある。
尚、本実施の形態において、セラミック多層基板3aの地導体パターン14b、14c及び14dは、必ずしも必要なものではない。
【0064】
実施の形態7.
図23はこの発明の実施の形態7の高周波信号接続構造を説明するための図であり、より具体的にはセラミック多層基板と樹脂ビルドアップ基板がはんだバンプで接続されている要部を示す断面図である。図24はセラミック多層基板の樹脂ビルドアップ基板側の面を示す図である。図25は樹脂ビルドアップ基板のセラミック多層基板側の面を示す図である。図26は図23においてグランドパターン14bとグランドパターン14cの間で切断した図である。図27は図23においてグランドパターン14dとグランドパターン14eの間で切断した図である。
【0065】
図23において、3aは第1の基板としてのセラミック多層基板である。セラミック多層基板3aの各層には、各々グランドパターンが形成されている。すなわち、グランドパターン14a、14b、14c、14d及び14eが形成されている。2aは第2の基板としての樹脂ビルドアップ基板である。20a及び20bはセラミック単層基板1と樹脂多層基板5を接続するために設けられた信号用はんだバンプ及びグランド用はんだバンプである。
【0066】
本実施の形態においては、第1の基板としてのセラミック多層基板3aに形成された第1のグランド用導体柱12a,12bは、各層毎に形成されたグランドパターン14a、14b、14c、14d及び14eを介して接続されながら基板材料の内部に延びている。そして、基板材料の内部において、各層毎に形成された第1のグランド用導体柱は、信号用導体柱10aに対して少なくとも1本が異なる距離に配設されている。
【0067】
すなわち、セラミック多層基板3a内に設けられたグランド用導体柱に関し、グランドパターン14aからグランドパターン14dまでの間に設けられた各々のグランド用導体柱12aは信号用導体柱10aから同じ距離とされている。しかし、グランドパターン14dとグランドパターン14eとの間に設けられたグランド用導体柱12bは、信号用導体柱10aに対して、上述のグランド用導体柱12aと異なる距離とされている。
【0068】
このようにグランド用導体柱を形成して、グランド用導体柱と信号用導体柱10aの距離を調整することにより、信号用導体柱とグランド用導体柱で構成する擬似同軸線路の特性インピーダンスをセラミック多層基板3a内の層ごとに変化させることが可能となる。例えば、信号用パターン部において発生する並列容量成分を打ち消すためグランドパターン14dと14eの間にある信号用導体柱の特性インピーダンスを高くすることが出来る。これにより、良好な反射特性を持つ高周波信号接続構造を構築できる。
尚、図23において、セラミック多層基板3aの地導体パターン14b、14cは、必ずしも必要なものではない。
【0069】
図28は本実施の形態の高周波信号接続構造の他の例を説明する断面図である。図23の例では、グランドパターン14dとグランドパターン14eとの間に設けられたグランド用導体柱12bの信号用導体柱10aに対する距離のみを他のグランド用導体柱12aと異なる距離としたが、図28に示されるように、グランドパターン14cとグランドパターン14dとの間に設けられたグランド用導体12bにおいても異なるものとしても良い。
【0070】
なお、本実施の形態ではグランド用導体柱12aの間隔は、グランド用導体柱12bのものより狭くなっているが、信号用導体柱10aを所望の特性インピーダンスにするために、グランド用導体柱12aの間隔をグランド用導体柱12bの間隔より広くしても良い。
【0071】
また、本実施の形態では、セラミック多層基板3aと樹脂ビルドアップ基板2aをはんだバンプ20a,20bで接続したときについて述べたが、セラミック多層基板と樹脂単層基板をはんだバンプで接続したとき、樹脂多層基板と樹脂ビルドアップ基板をはんだバンプで接続したとき、樹脂多層基板と樹脂単層基板をはんだバンプで接続したときや、樹脂多層基板と樹脂多層基板をはんだバンプで接続したときについても好適である。
【0072】
このように本実施の形態によれば、セラミック多層基板3aと樹脂ビルドアップ基板2aをはんだバンプ20a,20bで接続する際、はんだバンプの間隔によらずセラミック多層基板内に所望の特性インピーダンスを持つ信号用導体柱を構築でき、良好な反射特性を持つ高周波信号接続構造を構築できるという効果がある。
尚、図28において、セラミック多層基板3aの地導体パターン14b、14dは、必ずしも必要なものではない。
【0073】
実施の形態8.
図29はこの発明の実施の形態8の高周波信号接続構造を説明するための図であり、より具体的にはセラミック多層基板3a,3bどうしがはんだバンプで接続されている要部を示す断面図である。図30は一側のセラミック多層基板3aの表面を示す図である。図31は他側のセラミック多層基板3bの表面を示す図である。
【0074】
第1の基板としてのセラミック多層基板3aに設けられた第1のグランド用接続パターン13aは、表面に形成されたグランドパターン14eが、グランド用接続パターン13aの部分を除いて絶縁コート材17で覆うことで形成している。セラミック多層基板3a内に形成されたグランドパターン14a、14b、14c、14d及び14eはグランド用導体柱12a、12bによって接続されている。但し、グランドパターン14b及び14cは必ずしも必要でない。
【0075】
信号用接続線路18aは信号用パターン11aと信号用導体柱10aによって接続されている。信号用接続線路18aはグランドパターン14aとマイクロストリップ線路を構成しており、所望の特性インピーダンスとなるように設計されている。
【0076】
第2の基板としてのセラミック多層基板3bに設けられた第2のグランド用接続パターン13bは、表面に形成されたグランドパターン14fが、グランド用接続パターン13bの部分を除いて絶縁コート材17で覆うことで形成している。セラミック多層基板3b内に形成されたグランドパターン14f、14g、14h、14i及び14jはグランド用導体柱12cと12dによって接続されている。但し、グランドパターン14h及び14iは必ずしも必要でない。
【0077】
信号用接続線路18bは信号用パターン11bと信号用導体柱10bによって接続されている。信号用接続線路18bはグランドパターン14jとマイクロストリップ線路を構成しており、所望の特性インピーダンスとなるように設計されている。
【0078】
セラミック多層基板3b内に設けられたグランド用導体柱に関し、グランドパターン14gからグランドパターン14jまでの間に設けられた各々のグランド用導体柱12dは信号用導体柱10bから同じ距離とされている。しかし、グランドパターン14fとグランドパターン14gとの間に設けられたグランド用導体柱12cは、信号用導体柱10bに対して、上述のグランド用導体柱12dと異なる距離とされている。
【0079】
このようにグランド用導体柱を形成することにより、信号用導体柱とグランド用導体柱で構成する擬似同軸線路の特性インピーダンスをセラミック多層基板内の層ごとに変化させることが可能となる。例えば、信号用パターン部において発生する並列容量成分を打ち消すためグランドパターン14fと14gの間にある信号用導体柱の特性インピーダンスを高くすることが出来る。これにより、良好な反射特性を持つ高周波信号接続構造を構築できる。
尚、図29において、セラミック多層基板3aの地導体パターン14b、14c及びセラミック多層基板3bの地導体パターン14h、14iは、必ずしも必要なものではない。
【0080】
図32は本実施の形態の高周波信号接続構造の他の例を説明する断面図である。図29の例では、グランドパターン14fとグランドパターン14gとの間に設けられたグランド用導体柱12cの信号用導体柱10bに対する距離のみを他のグランド用導体柱12dと異なる距離としたが、図32に示されるように、グランドパターン14gとグランドパターン14hとの間に設けられたグランド用導体12cにおいても異なるものとしても良い。
【0081】
なお、本実施の形態ではグランド用導体柱12a、12dの間隔はグランド用導体柱12b、12cより狭くなっているが、信号用導体柱10a、10bを所望の特性インピーダンスにするために、グランド用導体柱12a、12dの間隔をグランド用導体柱12b、12cの間隔より広くしても良い。
【0082】
本実施の形態ではセラミック多層基板3aのグランドパターン14eに設けたグランドパターンの切り抜き穴51がグランドパターン14dに設けたグランドパターンの切り抜き穴60aより大きいが、図33に示したようにグランドパターン14eに設けたグランドパターンの切り抜き穴51がグランドパターン14dに設けたグランドパターンの切り抜き穴60aより小さくなるようにしても好適である。同様に、グランドパターン14fに設けたグランドパターンの切り抜き穴55がグランドパターン14gに設けたグランドパターンの切り抜き穴60bより小さくなることについても好適である。
【0083】
本実施の形態ではセラミック多層基板3a,3b同士をはんだバンプで接続したときについて述べたが、セラミック多層基板と樹脂多層基板をはんだバンプで接続したとき、樹脂多層基板と樹脂ビルドアップ基板をはんだバンプで接続したとき、樹脂多層基板と樹脂多層基板をはんだバンプで接続したときについても好適である。
【0084】
このように本実施の形態によれば、セラミック多層基板3a,3b同士をはんだバンプで接続する際、はんだバンプの間隔によらずセラミック多層基板内に所望の特性インピーダンスを持つ信号用導体柱を構築でき、良好な反射特性を持つ高周波信号接続構造を構築できるという効果がある。
【0085】
以上の実施の形態から明らかなように、このように本発明においては、単層基板とビルドアップ基板をはんだバンプで接続する際、単層基板底面の地導体パターンの、ビルドアップ基板に設けられた信号用パターン上部にあたる部分を切抜き、はんだバンプの高さは、地導体用はんだバンプの間隔の50%を上限として出来るだけ高くしたことを特徴としている。
【0086】
また、単層基板底面に設けられた信号用パターンは単層基板内の信号用線路とビルドアップ基板上の信号用パターンの中間の大きさとし、信号用はんだバンプの中心部をできるだけ細くしたことを特徴としている。
【0087】
さらにこの構造は、単層基板とビルドアップ基板の組み合わせだけでなく、多層基板とビルドアップ基板の接続構造、ビルドアップ基板とビルドアップ基板、多層基板と多層基板の接続構造に適応しても良い。
【0088】
さらにまた、多層基板とビルドアップ基板の接続構造、及び多層基板と多層基板の接続構造のとき、多層基板内で信号用線路と地導体用線路の間隔を信号用はんだバンプと地導体用はんだバンプの間隔から変えることで、多層基板内で所望の特性インピーダンスを満たす構造を構築できる。
尚、図32において、セラミック多層基板3aの地導体パターン14b、14d及びセラミック多層基板3bの地導体パターン14g、14iは、必ずしも必要なものではない。
【0089】
【発明の効果】
この発明に係る高周波信号接続構造は、所定の間隙で対向する第1の基板と第2の基板を有し、前記第1の基板は、平板状の基板材料と、該基板材料の前記第2の基板に対向する面に広く設けられ、該基板材料が露出するように所定の領域に第1の切り抜き穴が形成された第1のグランドパターンと、前記第1の切り抜き穴内の前記基板材料表面に設けられた第1の信号用パターンと、前記第1の信号用パターンに接続されて前記基板材料の内部に延びる第1の信号用導体柱とを有し、前記第2の基板は、平板状の基板材料と、該基板材料の前記第1の基板に対向する面に広く設けられ、該基板材料が露出するように所定の領域に第2の切り抜き穴が形成された第2のグランドパターンと、前記第2の切り抜き穴内の前記基板材料表面に所定の広さで設けられた第2の信号用パターンと、前記第2の信号用パターンに接続されて前記基板材料の内部に延び軸方向に貫通穴が形成された第2の信号用導体柱とを有し、前記第1の基板は、前記第1のグランドパターンを、前記第1の切り抜き穴の周囲の複数の第1のグランド用接続パターンの部分を除いて絶縁コート材で覆うことで形成された複数の第1のグランド用接続パターンをさらに有し、前記第2の基板は、前記第2のグランドパターンを、前記第2の切り抜き穴の周囲の複数の第2のグランド用接続パターンの部分を除いて絶縁コート材で覆うことで形成された複数の第2のグランド用接続パターンをさらに有し、前記第2の基板に形成された前記第2の信号用パターンは、前記第2の信号用パターンを、前記第1の信号用パターンに対応した接続箇所を除いて絶縁コート材で覆うことで形成された接続箇所を有し、前記第1の信号用導体柱と第2の信号用導体柱との間に設けられ前記第1の信号用パターン及び前記接続箇所を接続する信号用バンプと、前記第1のグランドパターンと前記第2のグランドパターンとの間に設けられ前記複数の第1及び第2のグランド用接続パターンそれぞれ接続する複数のグランド用バンプとをさらに有し、前記第2の信号用導体柱は、軸線方向に前記信号用バンプ及び接続箇所と重ならないように設けられ、前記第1の切り抜き穴は第2の信号用パターンに対向する領域まで広げて形成されている。そのため、第2の信号用導体柱の貫通穴に溶けた信号用バンプが流れ込むことがなく、両基板を確実に接続することができるとともに、第2の信号用パターンと、第1のグランドパターンとの間の容量性成分を減らすことができ、良好な反射特性を持つ高周波信号接続構造を構築することが出来る。
【0090】
また、第1の基板がセラミック多層基板であり、第2の基板が樹脂単層基板である。そのため、セラミック多層基板をモジュール基板として使用し、樹脂単層基板へ実装する際、良好な反射特性を持つ高周波信号接続構造を構築することが出来る。
【0091】
また、第1の基板がセラミック多層基板であり、第2の基板が樹脂ビルドアップ基板である。そのため、セラミック多層基板をモジュール基板として使用した際、モジュール基板に必要な多数のモジュール制御用配線を樹脂ビルドアップ基板内に精度良く多数構成することができ、良好な反射特性を持つ高周波信号接続構造を構築できる。
【0092】
また、第1の信号用導体柱は、第2の信号用導体柱と反対側で軸線方向に信号用バンプと重ならないように設けられ、第2の切り抜き穴は第1の信号用パターンに対向する領域まで広げて形成されている。そのため、第1の信号用パターンと、第2のグランドパターンとの間の容量性成分を減らすことができ、さらに良好な反射特性を持つ高周波信号接続構造を構築することが出来る。
【0093】
また、信号用バンプの径は、グランド用バンプの径よりも小さい。そのため、はんだバンプを用いて基板同士を接続する際、信号用はんだバンプと信号用パターンの大きさを変えることで、信号用はんだバンプ並びに信号用パターンと、グランドとの容量性成分を調整でき、かつ信号用はんだバンプが持つインダクタンス性を調整でき、最適な反射特性を持つ高周波信号接続構造を構築できる。
【0094】
また、第1の信号用パターンと第2のグランドパターンとの間、及び第2の信号用パターンと第1のグランドパターンとの間の容量性成分が所定の値より小さくなるように、信号用バンプとグランド用バンプの高さを高くする。そのため、信号用バンプとグランド用バンプの高さを高くすることで、信号用パターンと対向するグランドパターンの間の容量性成分を減らし、最適な反射特性を持つ高周波信号接続構造を構築することが出来る。
【0095】
また、第1の基板は、各層毎にグランドパターンが広く形成された多層基板であり、第1のグランドパターンに接続されて各層毎に形成されたグランドパターンを介して接続されながら基板材料の内部に延びる第1のグランド用導体柱を有し、基板材料の内部において、各層毎に形成された第1のグランド用導体柱は、第1の信号用導体柱に対して少なくとも1本が異なる距離に配設されている。そのため、多層基板と他の基板をはんだバンプで接続する際、はんだバンプの間隔によらず多層基板内に所望の特性インピーダンスを持つ信号用導体柱を構築でき、良好な反射特性を持つ高周波信号接続構造を構築できる。
【0096】
また、第1の基板がセラミック単層基板であり、第2の基板が樹脂多層基板である
そのため、第2の信号用導体柱の貫通穴に溶けた信号用バンプが流れ込むことがなく、両基板を確実に接続することができるとともに、第2の信号用パターンと、第1のグランドパターンとの間の容量性成分を減らすことができ、良好な反射特性を持つ高周波信号接続構造を構築することが出来る。
【図面の簡単な説明】
【図1】 この発明の実施の形態1の高周波信号接続構造を説明するための図であり、より具体的にはセラミック単層基板と樹脂多層基板がはんだバンプで接続されている要部を示す断面図である。
【図2】 セラミック単層基板の樹脂多層基板側の面を示す図である。
【図3】 樹脂多層基板のセラミック単層基板側の面を示す図である。
【図4】 セラミック単層基板の樹脂多層基板側と反対側の面を示す図である。
【図5】 樹脂多層基板の第2の信号用接続線路がある層の断面図である。
【図6】 この発明の実施の形態2の高周波信号接続構造を説明するための図であり、より具体的にはセラミック多層基板と樹脂単層基板がはんだバンプで接続されている要部を示す断面図である。
【図7】 セラミック多層基板の樹脂単層基板側の面を示す図である。
【図8】 樹脂単層基板側のセラミック多層基板側の面を示す図である。
【図9】 この発明の実施の形態3の高周波信号接続構造を説明するための図であり、より具体的にはセラミック多層基板と樹脂ビルドアップ基板がはんだバンプで接続されている要部を示す断面図である。
【図10】 セラミック多層基板の樹脂ビルドアップ基板側の面を示す図である。
【図11】 樹脂ビルドアップ基板のセラミック多層基板側の面を示す図である。
【図12】 この発明の実施の形態4の高周波信号接続構造を説明するための図であり、より具体的には樹脂ビルドアップ基板どうしがはんだバンプで接続されている要部を示す断面図である。
【図13】 一側の樹脂ビルドアップ基板の表面を示す図である。
【図14】 他側の樹脂ビルドアップ基板の表面を示す図である。
【図15】 この発明の実施の形態5の高周波信号接続構造を説明するための図であり、より具体的にはセラミック多層基板と樹脂単層基板がはんだバンプで接続されている要部を示す断面図である。
【図16】 セラミック多層基板の樹脂単層基板側の面を示す図である。
【図17】 樹脂単層基板のセラミック多層基板側の面を示す図である。
【図18】 実施の形態5の高周波信号接続構造の他の例を説明する断面図である。
【図19】 実施の形態5の高周波信号接続構造の他の例を説明する断面図である。
【図20】 この発明の実施の形態6の高周波信号接続構造を説明するための図であり、より具体的にはセラミック多層基板と樹脂単層基板がはんだバンプで接続されている要部を示す断面図である。
【図21】 セラミック多層基板の樹脂単層基板側の面を示す図である。
【図22】 樹脂単層基板のセラミック多層基板側の面を示す図である。
【図23】 この発明の実施の形態7の高周波信号接続構造を説明するための図であり、より具体的にはセラミック多層基板と樹脂ビルドアップ基板がはんだバンプで接続されている要部を示す断面図である。
【図24】 セラミック多層基板の樹脂ビルドアップ基板側の面を示す図である。
【図25】 樹脂ビルドアップ基板のセラミック多層基板側の面を示す図である。
【図26】 図23においてグランドパターン14bとグランドパターン14cの間で切断した図である。
【図27】 図23においてグランドパターン14dとグランドパターン14eの間で切断した図である。
【図28】 実施の形態7の高周波信号接続構造の他の例を説明する断面図である。
【図29】 この発明の実施の形態8の高周波信号接続構造を説明するための図であり、より具体的にはセラミック多層基板どうしがはんだバンプで接続されている要部を示す断面図である。
【図30】 一側のセラミック多層基板の表面を示す図である。
【図31】 他側のセラミック多層基板の表面を示す図である。
【図32】 実施の形態8の高周波信号接続構造の他の例を説明する断面図である。
【図33】 グランドパターンに設けたグランドパターンの切り抜き穴が基板材料内部に設けたグランドパターンの切り抜き穴より小さくなるようにした例を示す図である。
【図34】 従来の高周波信号接続構造を示す基板の表面を示す図である。
【図35】 従来のパッケージと基板とがはんだバンプで接続されている様子を示す断面図である。
【符号の説明】
1 セラミック単層基板(第1の基板)、5 樹脂多層基板(第2の基板)、51 第1の切り抜き穴、14a 第1のグランドパターン、11a 第1の信号用パターン、10a 第1の信号用導体柱、53 第2の切り抜き穴、40a第2のグランドパターン、11b 第2の信号用パターン、10b 第2の信号用導体柱、20a 信号用はんだバンプ(信号用バンプ)、20b グランド用はんだバンプ(グランド用バンプ)、12a,12b 第1のグランド用導体柱、12c,12d 第2のグランド用導体柱。

Claims (8)

  1. 所定の間隙で対向する第1の基板と第2の基板を有し、
    前記第1の基板は、平板状の基板材料と、該基板材料の前記第2の基板に対向する面に広く設けられ、該基板材料が露出するように所定の領域に第1の切り抜き穴が形成された第1のグランドパターンと、前記第1の切り抜き穴内の前記基板材料表面に設けられた第1の信号用パターンと、前記第1の信号用パターンに接続されて前記基板材料の内部に延びる第1の信号用導体柱とを有し、
    前記第2の基板は、平板状の基板材料と、該基板材料の前記第1の基板に対向する面に広く設けられ、該基板材料が露出するように所定の領域に第2の切り抜き穴が形成された第2のグランドパターンと、前記第2の切り抜き穴内の前記基板材料表面に所定の広さで設けられた第2の信号用パターンと、前記第2の信号用パターンに接続されて前記基板材料の内部に延び軸方向に貫通穴が形成された第2の信号用導体柱とを有し、
    前記第1の基板は、前記第1のグランドパターンを、前記第1の切り抜き穴の周囲の複数の第1のグランド用接続パターンの部分を除いて絶縁コート材で覆うことで形成された複数の第1のグランド用接続パターンをさらに有し、
    前記第2の基板は、前記第2のグランドパターンを、前記第2の切り抜き穴の周囲の複数の第2のグランド用接続パターンの部分を除いて絶縁コート材で覆うことで形成された複数の第2のグランド用接続パターンをさらに有し、
    前記第2の基板に形成された前記第2の信号用パターンは、前記第2の信号用パターンを、前記第1の信号用パターンに対応した接続箇所を除いて絶縁コート材で覆うことで形成された接続箇所を有し、
    前記第1の信号用導体柱と第2の信号用導体柱との間に設けられ前記第1の信号用パターン及び前記接続箇所を接続する信号用バンプと、
    前記第1のグランドパターンと前記第2のグランドパターンとの間に設けられ前記複数の第1及び第2のグランド用接続パターンそれぞれ接続する複数のグランド用バンプとをさらに有し、
    前記第2の信号用導体柱は、軸線方向に前記信号用バンプ及び接続箇所と重ならないように設けられ、
    前記第1の切り抜き穴は第2の信号用パターンに対向する領域まで広げて形成されている
    ことを特徴とする高周波信号接続構造。
  2. 前記第1の基板がセラミック多層基板であり、前記第2の基板が樹脂単層基板である
    ことを特徴とする請求項1に記載の高周波信号接続構造。
  3. 前記第1の基板がセラミック多層基板であり、前記第2の基板が樹脂ビルドアップ基板である
    ことを特徴とする請求項1に記載の高周波信号接続構造。
  4. 前記第1の信号用導体柱は、前記第2の信号用導体柱と反対側で軸線方向に前記信号用バンプと重ならないように設けられ、
    前記第2の切り抜き穴は第1の信号用パターンに対向する領域まで広げて形成されている
    ことを特徴とする請求項1に記載の高周波信号接続構造。
  5. 記信号用バンプの径は、前記グランド用バンプの径よりも小さい
    ことを特徴とする請求項1に記載の高周波信号接続構造。
  6. 記第1の信号用パターンと前記第2のグランドパターンとの間、及び前記第2の信号用パターンと前記第1のグランドパターンとの間の容量性成分が所定の値より小さくなるように、前記信号用バンプと前記グランド用バンプの高さを高くする
    ことを特徴とする請求項1に記載の高周波信号接続構造。
  7. 記第1の基板は、各層毎にグランドパターンが広く形成された多層基板であり、前記第1のグランドパターンに接続されて前記各層毎に形成されたグランドパターンを介して接続されながら前記基板材料の内部に延びる第1のグランド用導体柱を有し、
    前記基板材料の内部において、前記各層毎に形成された前記第1のグランド用導体柱は、前記第1の信号用導体柱に対して少なくとも1本が異なる距離に配設されている
    ことを特徴とする請求項1に記載の高周波信号接続構造。
  8. 前記第1の基板がセラミック単層基板であり、前記第2の基板が樹脂多層基板である
    ことを特徴とする請求項1に記載の高周波信号接続構造。
JP2002017584A 2002-01-25 2002-01-25 高周波信号接続構造 Expired - Lifetime JP3933943B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002017584A JP3933943B2 (ja) 2002-01-25 2002-01-25 高周波信号接続構造

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002017584A JP3933943B2 (ja) 2002-01-25 2002-01-25 高周波信号接続構造

Publications (2)

Publication Number Publication Date
JP2003218482A JP2003218482A (ja) 2003-07-31
JP3933943B2 true JP3933943B2 (ja) 2007-06-20

Family

ID=27653225

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002017584A Expired - Lifetime JP3933943B2 (ja) 2002-01-25 2002-01-25 高周波信号接続構造

Country Status (1)

Country Link
JP (1) JP3933943B2 (ja)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4990021B2 (ja) * 2007-05-14 2012-08-01 三菱電機株式会社 高周波伝送線路
US20090101402A1 (en) * 2007-10-19 2009-04-23 Advantest Corporation Circuit board, and electronic device
JP5183527B2 (ja) * 2009-03-02 2013-04-17 三菱電機株式会社 差動線路−導波管変換器
JP5686624B2 (ja) * 2011-02-18 2015-03-18 三菱電機株式会社 高周波信号接続構造
US20130048344A1 (en) * 2011-08-30 2013-02-28 Star Technologies Inc. High frequency circuit board
CN103650234A (zh) * 2012-02-15 2014-03-19 松下电器产业株式会社 无线模块
WO2016067908A1 (ja) * 2014-10-29 2016-05-06 株式会社村田製作所 無線通信モジュール
WO2020208683A1 (ja) * 2019-04-08 2020-10-15 三菱電機株式会社 高周波回路及び通信モジュール
WO2023166894A1 (ja) * 2022-03-01 2023-09-07 株式会社村田製作所 回路モジュール及び回路基板

Also Published As

Publication number Publication date
JP2003218482A (ja) 2003-07-31

Similar Documents

Publication Publication Date Title
US6700076B2 (en) Multi-layer interconnect module and method of interconnection
US6914500B2 (en) Filter circuit device and method of manufacturing the same
US8963018B2 (en) Printed circuit board
US6617943B1 (en) Package substrate interconnect layout for providing bandpass/lowpass filtering
US6747356B2 (en) Semiconductor device
TWI423753B (zh) 多層佈線基板
JP3933943B2 (ja) 高周波信号接続構造
JP2007158675A (ja) 多層プリント回路基板のビア構造、それを有する帯域阻止フィルタ
TWI752743B (zh) 多層基板的垂直互連結構
US9301386B2 (en) Printed circuit board and method of manufacturing the same
US6377141B1 (en) Distributed constant filter, method of manufacturing same, and distributed constant filter circuit module
US20070194434A1 (en) Differential signal transmission structure, wiring board, and chip package
US6531932B1 (en) Microstrip package having optimized signal line impedance control
JP2004265929A (ja) 高周波多層プリント基板
US6734555B2 (en) Integrated circuit package and printed circuit board arrangement
JP2008078184A (ja) 高周波チップ搭載用多層配線板および高周波回路モジュール
US11212910B1 (en) High frequency signal cross-layer transmission structure in multi-layer printed circuit board
TWI734633B (zh) 多層印刷電路板中高頻訊號跨層傳輸結構
US20230065767A1 (en) Antenna module
JP4323231B2 (ja) 高周波伝送線路基板
JP2001284827A (ja) 配線基板
JP3889210B2 (ja) バトラーマトリクス
JP2000294733A (ja) 高周波フリップチップ実装基板のパターンレイアウト
JP4026052B2 (ja) 半導体装置及び半導体装置の設計方法
JPH08204341A (ja) プリント基板内蔵型バイパスコンデンサ

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050107

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061121

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070119

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070313

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070314

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100330

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110330

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110330

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120330

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130330

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130330

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140330

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250