WO2020204136A1 - 容量制御弁 - Google Patents

容量制御弁 Download PDF

Info

Publication number
WO2020204136A1
WO2020204136A1 PCT/JP2020/015181 JP2020015181W WO2020204136A1 WO 2020204136 A1 WO2020204136 A1 WO 2020204136A1 JP 2020015181 W JP2020015181 W JP 2020015181W WO 2020204136 A1 WO2020204136 A1 WO 2020204136A1
Authority
WO
WIPO (PCT)
Prior art keywords
valve
control
pressure
port
suction
Prior art date
Application number
PCT/JP2020/015181
Other languages
English (en)
French (fr)
Inventor
真弘 葉山
康平 福留
貴裕 江島
▲高▼橋 渉
啓吾 白藤
Original Assignee
イーグル工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by イーグル工業株式会社 filed Critical イーグル工業株式会社
Priority to CN202310387662.8A priority Critical patent/CN116518111A/zh
Priority to KR1020217035024A priority patent/KR20210142187A/ko
Priority to JP2021512306A priority patent/JP7438643B2/ja
Priority to CN202080026878.6A priority patent/CN113661324B/zh
Priority to EP20782597.7A priority patent/EP3951172B1/en
Priority to US17/600,547 priority patent/US11927275B2/en
Publication of WO2020204136A1 publication Critical patent/WO2020204136A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K11/00Multiple-way valves, e.g. mixing valves; Pipe fittings incorporating such valves
    • F16K11/02Multiple-way valves, e.g. mixing valves; Pipe fittings incorporating such valves with all movable sealing faces moving as one unit
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K31/00Actuating devices; Operating means; Releasing devices
    • F16K31/02Actuating devices; Operating means; Releasing devices electric; magnetic
    • F16K31/06Actuating devices; Operating means; Releasing devices electric; magnetic using a magnet, e.g. diaphragm valves, cutting off by means of a liquid
    • F16K31/0603Multiple-way valves
    • F16K31/061Sliding valves
    • F16K31/0613Sliding valves with cylindrical slides
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B27/00Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders
    • F04B27/08Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders having cylinders coaxial with, or parallel or inclined to, main shaft axis
    • F04B27/10Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders having cylinders coaxial with, or parallel or inclined to, main shaft axis having stationary cylinders
    • F04B27/1009Distribution members
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B27/00Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders
    • F04B27/08Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders having cylinders coaxial with, or parallel or inclined to, main shaft axis
    • F04B27/14Control
    • F04B27/16Control of pumps with stationary cylinders
    • F04B27/18Control of pumps with stationary cylinders by varying the relative positions of a swash plate and a cylinder block
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B27/00Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders
    • F04B27/08Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders having cylinders coaxial with, or parallel or inclined to, main shaft axis
    • F04B27/14Control
    • F04B27/16Control of pumps with stationary cylinders
    • F04B27/18Control of pumps with stationary cylinders by varying the relative positions of a swash plate and a cylinder block
    • F04B27/1804Controlled by crankcase pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B39/00Component parts, details, or accessories, of pumps or pumping systems specially adapted for elastic fluids, not otherwise provided for in, or of interest apart from, groups F04B25/00 - F04B37/00
    • F04B39/10Adaptations or arrangements of distribution members
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K11/00Multiple-way valves, e.g. mixing valves; Pipe fittings incorporating such valves
    • F16K11/10Multiple-way valves, e.g. mixing valves; Pipe fittings incorporating such valves with two or more closure members not moving as a unit
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K11/00Multiple-way valves, e.g. mixing valves; Pipe fittings incorporating such valves
    • F16K11/10Multiple-way valves, e.g. mixing valves; Pipe fittings incorporating such valves with two or more closure members not moving as a unit
    • F16K11/20Multiple-way valves, e.g. mixing valves; Pipe fittings incorporating such valves with two or more closure members not moving as a unit operated by separate actuating members
    • F16K11/22Multiple-way valves, e.g. mixing valves; Pipe fittings incorporating such valves with two or more closure members not moving as a unit operated by separate actuating members with an actuating member for each valve, e.g. interconnected to form multiple-way valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K11/00Multiple-way valves, e.g. mixing valves; Pipe fittings incorporating such valves
    • F16K11/10Multiple-way valves, e.g. mixing valves; Pipe fittings incorporating such valves with two or more closure members not moving as a unit
    • F16K11/20Multiple-way valves, e.g. mixing valves; Pipe fittings incorporating such valves with two or more closure members not moving as a unit operated by separate actuating members
    • F16K11/24Multiple-way valves, e.g. mixing valves; Pipe fittings incorporating such valves with two or more closure members not moving as a unit operated by separate actuating members with an electromagnetically-operated valve, e.g. for washing machines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K27/00Construction of housing; Use of materials therefor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K31/00Actuating devices; Operating means; Releasing devices
    • F16K31/02Actuating devices; Operating means; Releasing devices electric; magnetic
    • F16K31/06Actuating devices; Operating means; Releasing devices electric; magnetic using a magnet, e.g. diaphragm valves, cutting off by means of a liquid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K31/00Actuating devices; Operating means; Releasing devices
    • F16K31/12Actuating devices; Operating means; Releasing devices actuated by fluid
    • F16K31/122Actuating devices; Operating means; Releasing devices actuated by fluid the fluid acting on a piston
    • F16K31/1221Actuating devices; Operating means; Releasing devices actuated by fluid the fluid acting on a piston one side of the piston being spring-loaded
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K31/00Actuating devices; Operating means; Releasing devices
    • F16K31/12Actuating devices; Operating means; Releasing devices actuated by fluid
    • F16K31/122Actuating devices; Operating means; Releasing devices actuated by fluid the fluid acting on a piston
    • F16K31/1226Actuating devices; Operating means; Releasing devices actuated by fluid the fluid acting on a piston the fluid circulating through the piston
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B27/00Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders
    • F04B27/08Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders having cylinders coaxial with, or parallel or inclined to, main shaft axis
    • F04B27/14Control
    • F04B27/16Control of pumps with stationary cylinders
    • F04B27/18Control of pumps with stationary cylinders by varying the relative positions of a swash plate and a cylinder block
    • F04B27/1804Controlled by crankcase pressure
    • F04B2027/1809Controlled pressure
    • F04B2027/1813Crankcase pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B27/00Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders
    • F04B27/08Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders having cylinders coaxial with, or parallel or inclined to, main shaft axis
    • F04B27/14Control
    • F04B27/16Control of pumps with stationary cylinders
    • F04B27/18Control of pumps with stationary cylinders by varying the relative positions of a swash plate and a cylinder block
    • F04B27/1804Controlled by crankcase pressure
    • F04B2027/1822Valve-controlled fluid connection
    • F04B2027/1827Valve-controlled fluid connection between crankcase and discharge chamber
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B27/00Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders
    • F04B27/08Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders having cylinders coaxial with, or parallel or inclined to, main shaft axis
    • F04B27/14Control
    • F04B27/16Control of pumps with stationary cylinders
    • F04B27/18Control of pumps with stationary cylinders by varying the relative positions of a swash plate and a cylinder block
    • F04B27/1804Controlled by crankcase pressure
    • F04B2027/1822Valve-controlled fluid connection
    • F04B2027/1831Valve-controlled fluid connection between crankcase and suction chamber
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B27/00Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders
    • F04B27/08Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders having cylinders coaxial with, or parallel or inclined to, main shaft axis
    • F04B27/14Control
    • F04B27/16Control of pumps with stationary cylinders
    • F04B27/18Control of pumps with stationary cylinders by varying the relative positions of a swash plate and a cylinder block
    • F04B27/1804Controlled by crankcase pressure
    • F04B2027/184Valve controlling parameter
    • F04B2027/1854External parameters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B27/00Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders
    • F04B27/08Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders having cylinders coaxial with, or parallel or inclined to, main shaft axis
    • F04B27/14Control
    • F04B27/16Control of pumps with stationary cylinders
    • F04B27/18Control of pumps with stationary cylinders by varying the relative positions of a swash plate and a cylinder block
    • F04B27/1804Controlled by crankcase pressure
    • F04B2027/1863Controlled by crankcase pressure with an auxiliary valve, controlled by
    • F04B2027/1868Crankcase pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B27/00Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders
    • F04B27/08Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders having cylinders coaxial with, or parallel or inclined to, main shaft axis
    • F04B27/14Control
    • F04B27/16Control of pumps with stationary cylinders
    • F04B27/18Control of pumps with stationary cylinders by varying the relative positions of a swash plate and a cylinder block
    • F04B27/1804Controlled by crankcase pressure
    • F04B2027/1863Controlled by crankcase pressure with an auxiliary valve, controlled by
    • F04B2027/1881Suction pressure

Definitions

  • the present invention relates to a capacity control valve that variably controls the capacity of a working fluid, for example, a capacity control valve that controls the discharge amount of a variable capacity compressor used in an automobile air conditioning system according to pressure.
  • Variable-capacity compressors used in air conditioning systems such as automobiles include a rotating shaft that is rotationally driven by an engine, a swash plate that is variably connected to a swash plate at an inclination angle with respect to the rotating shaft, and a compression piston that is connected to the swash plate.
  • the inclination angle of the swash plate is determined by the suction pressure Ps of the suction chamber that sucks the fluid, the discharge pressure Pd of the discharge chamber that discharges the fluid pressurized by the piston, using the capacitance control valve that is driven to open and close by electromagnetic force. It is possible to continuously change the pressure in the control chamber by appropriately controlling the pressure in the control chamber while utilizing the control pressure Pc in the control chamber containing the swash plate.
  • the capacity control valve When the capacity variable compressor is continuously driven (hereinafter, may be simply referred to as “continuous driving"), the capacity control valve is energized and controlled by a control computer, and the main valve body is operated by the electromagnetic force generated by the solenoid. Normal control is performed to adjust the control pressure Pc in the control chamber by moving it in the axial direction and opening and closing the main valve.
  • the pressure in the control chamber of the variable capacitance compressor is appropriately controlled, and the stroke amount of the piston is changed by continuously changing the inclination angle of the swash plate with respect to the rotation axis.
  • the amount of fluid discharged to the discharge chamber is controlled so that the air conditioning system has a desired cooling capacity.
  • variable capacity compressor When such a variable capacity compressor is left in a stopped state for a long time after the variable capacity compressor is stopped, the suction pressure Ps, the discharge pressure Pd and the control pressure Pc become equalized, and the control pressure Pc and the control pressure Pc and The suction pressure Ps becomes much higher than the control pressure Pc and the suction pressure Ps during continuous driving, and liquefaction may occur in a part of the fluid in the control chamber.
  • the control pressure Pc is much higher than that during continuous driving, and the control chamber is unlikely to reach the maximum capacity due to the liquefied fluid, so the discharge amount is set to the target value. It took a long time to control. For this reason, there is a capacitance control valve that discharges the liquefied fluid from the control chamber of the variable capacitance compressor in a short time when the variable capacitance compressor is started.
  • the capacity control valve shown in Patent Document 1 includes a first valve chamber in which the first valve seat, which is the main valve seat, is formed, and a first passage, which is a discharge port that communicates with a discharge chamber of a variable capacity compressor.
  • the second passage which is a suction port that communicates the second valve chamber where the second valve seat is formed and the suction chamber of the variable displacement compressor, and the second valve chamber and the axial direction with reference to the first valve chamber.
  • a valve housing provided with a third valve chamber, which is a pressure-sensitive chamber formed on the opposite side, and a third passage, which is a control port for communicating the control chamber of a variable displacement compressor, and in the first valve chamber.
  • the first valve section that opens and closes the communication between the first valve seat and the discharge chamber and the control chamber
  • the second valve chamber that opens and closes the communication between the second valve seat and the second valve seat and the control chamber and the suction chamber.
  • the main valve body which has a valve portion integrally and opens and closes in opposite directions by its reciprocating motion, an intermediate communication passage for communicating the second valve chamber and the third valve chamber, and the third valve chamber.
  • a pressure-sensitive body that is arranged and applies urging force to the main valve body in the valve opening direction according to the surrounding fluid pressure, and a feeling that the main valve body is integrally provided at the free end of the pressure-sensitive body in the expansion and contraction direction. It is provided with an adapter having an annular sealing surface that opens and closes communication between the pressure valve seat and the third valve chamber and the intermediate communication passage, and a solenoid that exerts a driving force on the main valve body.
  • the first valve portion closes the main valve and the second valve portion opens the second valve.
  • the pressure sensitive body contracts due to the control pressure Pc and the suction pressure Ps, which are much higher than those during continuous driving, and the pressure sensitive valve is opened, so that the intermediate communication passage allows the third valve chamber to enter the valve housing.
  • a flow path that communicates with the two valve chambers is formed.
  • the suction pressure Ps in the suction chamber decreases with the activation of the variable capacity compressor, the liquefied fluid in the high pressure state of the control chamber moves due to the pressure difference from the suction chamber and is formed in the valve housing.
  • the main valve body with an auxiliary communication passage that communicates the intermediate communication passage and the third valve chamber, it is easy to discharge the fluid in the control chamber to the suction chamber when the capacity variable compressor is started.
  • Patent Document 1 by providing an auxiliary communication passage, the second passage, which is a suction port, and the third passage, which is a control port, are always communicated with each other during normal control of the capacity control valve.
  • the main valve When the main valve is opened, a part of the fluid flowing through the main valve to the third valve chamber is discharged to the suction chamber through the auxiliary passage, the intermediate passage, and the second passage.
  • the controllability and energy efficiency of the control pressure Pc were poor.
  • the present invention has been made by paying attention to such a problem, and an object of the present invention is to provide a capacitance control valve having high control accuracy during normal control and excellent energy efficiency.
  • the capacitance control valve of the present invention is used.
  • a valve housing formed with a discharge port through which the discharge fluid of the discharge pressure passes, a suction port through which the suction fluid of the suction pressure passes, and a control port through which the control fluid of the control pressure passes.
  • It is a capacitance control valve equipped with A CS valve is provided between the control port and the suction port, which is controlled by the dynamic pressure of the fluid flowing from the discharge port toward the control port by opening the main valve.
  • the CS valve is controlled by the dynamic pressure of the discharge fluid flowing through the main valve toward the control port. Since the control fluid of the control pressure is not discharged from the suction port, the control accuracy during normal control is high and the energy efficiency is excellent.
  • the control port may be in a state of being able to communicate with the main valve at all times. According to this, when the main valve is opened when the main valve is not energized, the discharge port and the control port are in a communicating state, so that the discharge chamber and the control chamber can be reliably communicated with each other.
  • the CS valve may have a cylindrical CS valve body and a spring that urges the CS valve body in the valve opening direction. According to this, the capacitance control valve having the CS valve can be compactly configured. In addition, when the main valve is closed, the control pressure and the suction pressure can be maintained at the same pressure, so that the maximum capacity state can be maintained and the operating efficiency can be improved.
  • the CS valve body may have a receiving surface extending in the radial direction. According to this, since the receiving surfaces intersect with the flow direction of the discharged fluid, dynamic pressure is likely to be generated by the discharged fluid flowing toward the control port when the main valve is opened.
  • the CS valve body has an end face portion that comes into contact with and separates from the CS valve seat, and when the CS valve is urged in the valve opening direction, the end face portion on the side opposite to the axial direction of the end face portion is the inner surface of the valve housing. It may be in contact with. According to this, since the maximum opening area of the CS valve can be set by the contact of the CS valve body with the inner surface of the valve housing, the structure of the CS valve can be simplified.
  • the CS valve may also serve as a differential pressure valve between the suction pressure and the control pressure. According to this, when the main valve is opened, the CS valve operates reliably because a differential pressure acts in addition to the dynamic pressure generated by the flow of the discharged fluid.
  • a pressure drive valve that opens and closes according to the suction pressure.
  • the main valve body may be formed with an intermediate communication passage capable of communicating the control port and the suction port by opening and closing the pressure drive valve. According to this, the pressure drive valve opens when the suction pressure is high, and the control port communicates with the suction port via the intermediate communication passage, so that the liquid refrigerant in the control chamber is quickly discharged to the suction chamber at startup. Can be made to. As a result, the responsiveness at the time of starting the variable capacity compressor is excellent.
  • the valve housing may be provided with a suction port that is different from the suction port by forming a flow path that is opened and closed by the pressure drive valve. According to this, the structure of the valve housing is simplified by separately providing the suction port constituting the flow path opened and closed by the pressure drive valve and the suction port forming the flow path opened and closed by the CS valve. it can.
  • FIG. 5 is a cross-sectional view showing a state in which the main valve is closed and the CS valve is opened in the energized state (during normal control) of the capacitance control valve of the first embodiment.
  • FIG. 2 is an enlarged cross-sectional view of FIG. 2 showing a state in which the main valve is closed and the CS valve is opened in the energized state (during normal control) of the capacitance control valve of the first embodiment.
  • FIG. 5 is a cross-sectional view showing a state in which the main valve is closed and the CS valve is opened in the energized state (during normal control) of the capacitance control valve of the first embodiment.
  • FIG. 2 is an enlarged cross-sectional view of FIG. 2 showing a state in which the main valve is closed and the CS valve is opened in the energized state (during normal control) of the capacitance control valve of the first embodiment.
  • FIG. 5 is an enlarged cross-sectional view showing a state in which the main valve is opened and the CS valve is closed in a non-energized state of the capacitance control valve of the first embodiment.
  • FIG. 5 is an enlarged cross-sectional view showing a state in which the main valve is closed and the CS valve is opened in the energized state (during normal control) of the capacitance control valve according to the second embodiment of the present invention.
  • the capacity control valve according to the first embodiment will be described with reference to FIGS. 1 to 4.
  • the left and right sides when viewed from the front side of FIG. 2 will be described as the left and right sides of the capacitance control valve.
  • the capacity control valve V of the present invention is incorporated in a variable capacity compressor M used in an air conditioning system of an automobile or the like, and variably controls the pressure of a working fluid (hereinafter, simply referred to as “fluid”) as a refrigerant. Therefore, the discharge amount of the variable capacity compressor M is controlled to adjust the air conditioning system so as to have a desired cooling capacity.
  • a working fluid hereinafter, simply referred to as “fluid”
  • variable capacity compressor M has a casing 1 including a discharge chamber 2, a suction chamber 3, a control chamber 4, and a plurality of cylinders 4a.
  • the variable capacity compressor M is provided with a communication passage (not shown) that directly connects the control chamber 4 and the suction chamber 3, and the pressure between the suction chamber 3 and the control chamber 4 is balanced in this communication passage.
  • a fixed orifice is provided for adjustment.
  • variable capacity compressor M is eccentrically connected to the rotary shaft 5 which is rotationally driven by an engine (not shown) installed outside the casing 1 and the rotary shaft 5 in the control chamber 4 by a hinge mechanism 8.
  • a capacitance control valve V including a swash plate 6 to be formed and a plurality of pistons 7 connected to the swash plate 6 and fitted to reciprocate in each cylinder 4a and opened and closed by an electromagnetic force is used. While using the suction pressure Ps of the suction chamber 3 for sucking the fluid, the discharge pressure Pd of the discharge chamber 2 for discharging the fluid pressurized by the piston 7, and the control pressure Pc of the control chamber 4 accommodating the swash plate 6.
  • the stroke amount of the piston 7 is changed to control the discharge amount of the fluid by continuously changing the inclination angle of the swash plate 6 by appropriately controlling the pressure in the control chamber 4.
  • the capacity control valve V incorporated in the variable capacity compressor M is not shown in FIG. 1.
  • the swash plate 6 is substantially perpendicular to the shaft 5, that is, is slightly inclined from the vertical.
  • the stroke amount of the piston 7 is minimized, and the pressurization of the fluid in the cylinder 4a by the piston 7 is minimized, so that the amount of fluid discharged to the discharge chamber 2 is reduced and the cooling capacity of the air conditioning system is minimized. It becomes.
  • the capacitance control valve V incorporated in the variable capacitance compressor M adjusts the current energizing the coil 86 constituting the solenoid 80, and controls the opening and closing of the main valve 50 in the capacitance control valve V.
  • the pressure sensitive body 61 is operated by the suction pressure Ps in the intermediate communication passage 55 to control the opening and closing of the pressure sensitive valve 54 as a pressure drive valve, and the fluid flowing into or out of the control chamber 4 is controlled.
  • the control pressure Pc in the control chamber 4 is variably controlled by controlling.
  • the intermediate communication passage 55 penetrates in the axial direction by connecting the main / sub valve body 51 as the main valve body and the hollow hole formed inside the pressure sensitive valve member 52, and discharges the liquid refrigerant.
  • variable capacity compressor M it constitutes a flow path for. Specifically, if the variable capacity compressor M is left in a stopped state for a long time, the fluid having a high pressure may be liquefied in the control chamber 4, but the variable capacity compressor M is started and the capacity control valve is started. By energizing V, the main valve 50 is closed and the sub valve 53 is opened, and the high suction pressure Ps in the intermediate communication passage 55 causes the pressure sensitive body 61 to contract and the pressure sensitive valve 54 to open. As a result, the liquid refrigerant in the control chamber 4 can be discharged to the suction chamber 3 in a short time via the intermediate communication passage 55.
  • the main valve 50 is composed of a main valve body 51 and a main valve seat 10a formed on the inner peripheral surface of the valve housing 10, and the main valve body 51 is mainly at the left end 51a in the axial direction.
  • the main valve 50 is opened and closed by being brought into contact with and separated from the valve seat 10a.
  • the sub valve 53 is composed of a main sub valve body 51 and a sub valve seat 82a formed on the inner diameter side of the left end surface in the axial direction, which is the open end surface of the center post 82, and is the right end in the axial direction of the main sub valve body 51.
  • the sub-valve 53 opens and closes when the 51b comes into contact with the sub-valve seat 82a.
  • the pressure-sensitive valve 54 is composed of a cap 70 constituting the pressure-sensitive body 61 and a pressure-sensitive valve seat 52a formed at the axially left end of the pressure-sensitive valve member 52, and is formed on the outer diameter side of the axially right end of the cap 70.
  • the pressure-sensitive valve 54 opens and closes when the sealing surface 70a is brought into contact with and separated from the pressure-sensitive valve seat 52a.
  • the capacitance control valve V includes a valve housing 10 formed of a metal material or a resin material, and a main / sub valve body 51 arranged so as to reciprocate in the valve housing 10 in the axial direction.
  • the pressure-sensitive valve member 52, the CS valve body 57, the pressure-sensitive body 61 that applies an axially urging force to the main / sub-valve body 51 and the pressure-sensitive valve member 52 according to the suction pressure Ps in the intermediate communication passage 55, and the valve. It is mainly composed of a main / sub valve body 51 connected to the housing 10 and a solenoid 80 that exerts a driving force on the pressure sensitive valve member 52.
  • the capacitance control valve V includes a CS valve body 57, and closes the CS valve 56 (see FIGS. 3 and 4) by the dynamic pressure of the fluid flowing through the main valve 50 when the main valve 50 is opened. Can be done.
  • the CS valve 56 is composed of a CS valve body 57 and a CS valve seat 11a (see FIGS. 3 and 4) formed on the axially right end surface of the partition adjusting member 11 attached to the valve housing 10.
  • the CS valve 56 opens and closes when the end face portion 57a formed at the left end of the CS valve body 57 in the axial direction comes into contact with and separates from the CS valve seat 11a.
  • the solenoid 80 is inserted into the casing 81 having an opening 81a that opens to the left in the axial direction from the left side in the axial direction with respect to the opening 81a of the casing 81 and is located on the inner diameter side of the casing 81.
  • a substantially cylindrical center post 82 to be fixed, and a drive rod 83 as a rod inserted through the center post 82 and reciprocating in the axial direction, and the left end portion in the axial direction is inserted and fixed to the main / sub valve body 51.
  • the movable iron core 84 into which the right end portion in the axial direction of the drive rod 83 is inserted and fixed, and the movable iron core 84 provided between the center post 82 and the movable iron core 84 in the axial direction which is the valve opening direction of the main valve 50. It is mainly composed of a coil spring 85 urging to the right and an exciting coil 86 wound around the outside of the center post 82 via a bobbin.
  • the casing 81 is formed with a recess 81b in which the inner diameter side of the left end in the axial direction is recessed to the right in the axial direction, and the right end portion in the axial direction of the valve housing 10 is inserted and fixed to the recess 81b in a substantially sealed shape. There is.
  • the center post 82 is formed of a rigid body made of a magnetic material such as iron or silicon steel, and has a cylindrical portion 82b in which an insertion hole 82c extending in the axial direction and into which a drive rod 83 is inserted is formed, and an axial left end of the cylindrical portion 82b.
  • An annular flange portion 82d extending from the outer peripheral surface of the portion in the outer radial direction is provided, and a sub valve seat 82a is formed on the inner diameter side of the open end surface of the center post 82, that is, on the axial left end surface of the cylindrical portion 82b.
  • center post 82 is inserted and fixed to the recess 81b of the casing 81 in a state where the right end surface of the flange portion 82d in the axial direction is in contact with the bottom surface of the recess 81b of the casing 81 from the left in the axial direction.
  • the valve housing 10 is fitted and fixed in a substantially sealed shape with respect to the recess 10b recessed to the left in the axial direction on the inner diameter side of the right end in the axial direction.
  • the valve housing 10 has a Pd port 12 as a discharge port communicating with the discharge chamber 2 of the variable capacitance compressor M and a control for communicating with the control chamber 4 of the variable capacitance compressor M.
  • the Pc port 13 as a port
  • the first Ps port 14 as a suction port communicating with the suction chamber 3 of the variable capacity compressor M
  • the suction of the variable capacity compressor M adjacent to the right side in the axial direction of the Pd port 12.
  • a second Ps port 15 that communicates with the chamber 3 is formed.
  • the valve housing 10 has a bottomed substantially cylindrical shape by press-fitting the partition adjusting member 11 into the left end portion in the axial direction in a substantially sealed shape.
  • the partition adjusting member 11 can adjust the urging force of the pressure sensitive body 61 and the urging force of the coil spring 58 of the CS valve 56, which will be described later, by adjusting the installation position of the valve housing 10 in the axial direction. There is.
  • the first valve chamber 20 is communicated with the Pd port 12 and the axial left end 51a side of the main / sub valve body 51 is arranged, and the back pressure side of the main / sub valve body 51 is communicated with the second Ps port 15. That is, a second valve chamber 30 in which the right end 51b side in the axial direction is arranged and a pressure sensitive chamber 60 in which the CS valve body 57 and the pressure sensitive body 61 are arranged and communicated with the Pc port 13 and the first Ps port 14 are formed. ing.
  • valve housing 10 a main / sub valve body 51 and a pressure-sensitive valve member 52 inserted / fixed in the main / sub valve body 51 are arranged so as to reciprocate in the axial direction, and the inner circumference of the valve housing 10 is arranged.
  • a small-diameter guide hole 10c is formed on the surface at the right end in the axial direction so that the outer peripheral surface of the main / sub valve body 51 can be slidably contacted in a substantially sealed state.
  • the first valve chamber 20 and the second valve chamber 30 are partitioned by an outer peripheral surface of the main / sub valve body 51 and an inner peripheral surface of the guide hole 10c.
  • a minute gap is formed between the inner peripheral surface of the guide hole 10c and the outer peripheral surface of the main / sub valve body 51 by slightly separating them in the radial direction, and the main / sub valve body 51 is the valve housing. It is possible to move smoothly in the axial direction with respect to 10.
  • a CS valve body 57 is reciprocally arranged in the pressure sensitive chamber 60 in the axial direction, and on the inner peripheral surface of the valve housing 10, the CS valve body 57 is located at the left end in the axial direction.
  • a small-diameter guide hole 10d is formed so that the outer peripheral surface of the housing can slide in a substantially sealed state.
  • the main / sub valve body 51 is formed in a substantially cylindrical shape, and at the left end portion in the axial direction thereof, a separate pressure-sensitive valve member having a stepped cylindrical shape and a side view substantially turret shape is formed.
  • 52 is inserted and fixed in a substantially sealed shape
  • a drive rod 83 is inserted and fixed in a substantially sealed shape at the right end in the axial direction, both of which are movable in the axial direction. ..
  • the labyrinth effect of the annular groove 51c as the sealing portion formed on the outer peripheral surface of the main / sub valve body 51 can suppress the leakage of the fluid from the first valve chamber 20 to the second valve chamber 30.
  • the discharge pressure Pd of the discharge fluid supplied from the discharge chamber 2 to the first valve chamber 20 via the Pd port 12 is maintained.
  • the pressure-sensitive valve member 52 is formed with a large-diameter portion 52b on which the pressure-sensitive valve seat 52a is formed and a diameter smaller than that of the large-diameter portion 52b on the axial right side of the large-diameter portion 52b.
  • the small diameter portion 52d and the main / sub valve body 51 formed to have a smaller diameter than the middle diameter portion 52c on the right side in the axial direction of the middle diameter portion 52c and formed into a substantially cylindrical shape are externally fitted in a substantially sealed shape. And, it is configured in a stepped substantially cylindrical shape.
  • the pressure sensitive body 61 is mainly composed of a bellows core 62 in which a coil spring 63 is built and a disk-shaped cap 70 provided at the right end in the axial direction of the bellows core 62.
  • the left end of the bellows core 62 in the axial direction is fixed to the partition adjusting member 11.
  • the pressure sensitive body 61 is arranged in the pressure sensitive chamber 60, and the seal surface 70a of the cap 70 is a pressure sensitive valve member by the urging force that moves the cap 70 to the right in the axial direction by the coil spring 63 and the bellows core 62. It is designed to be seated on the pressure sensitive valve seat 52a of 52. Further, the cap 70 is provided with a force for moving the cap 70 to the left in the axial direction according to the suction pressure Ps in the intermediate communication passage 55.
  • the CS valve body 57 is formed in a substantially cylindrical shape, and is concentrically arranged on the outer diameter side of the pressure sensitive body 61 in the pressure sensitive chamber 60.
  • a coil spring 58 as a spring is internally fitted in the mounting portion 57c formed at the axial left end of the CS valve body 57, and the axial left end of the coil spring 58 is the axial right end surface of the partition adjusting member 11.
  • the axially right end of the coil spring 58 is in contact with a side surface 57g extending in the radial direction of the axially right end of the mounting portion 57c.
  • the CS valve body 57 is formed on a substantially cylindrical base portion 57b, a mounting portion 57c formed at the axial left end portion of the base portion 57b and having an inner diameter side cut out in an annular shape, and an axial right end portion of the base portion 57b. It has a through hole 57d that is formed and penetrates in the radial direction, and an annular convex portion 57e that protrudes in the inner diameter direction from the inner peripheral surface of the base portion 57b on the axial right side of the through hole 57d, and is fitted in the mounting portion 57c.
  • the coil spring 58 urges the CS valve 56 to the right in the axial direction, which is the valve opening direction.
  • the through hole 57d has substantially the same opening area as the Pc port 13 formed in the valve housing 10 and is arranged so that the axial position corresponds to the Pc port 13.
  • the CS valve body 57 is formed with an end face portion 57a formed at the axial left end of the mounting portion 57c and in contact with and separated from the CS valve seat 11a formed on the axial right end surface of the partition adjusting member 11. Further, on the axially opposite side of the end face portion 57a, that is, on the axial right end of the base portion 57b, an end face portion 57f that can come into contact with the inner surface of the pressure sensitive chamber 60 in the valve housing 10 when the CS valve 56 is opened is formed. ing.
  • annular convex portion 57e of the CS valve body 57 is formed at a position between the Pd port 12 and the Pc port 13 in the valve housing 10, and the axial right end surface thereof forms a receiving surface 57h extending in the radial direction. There is.
  • the inner diameter of the annular convex portion 57e is smaller than the outer diameter of the large diameter portion 52b of the pressure sensitive valve member 52 and larger than the outer diameter of the medium diameter portion 52c.
  • the capacitance control valve V has a structure in which the pressure sensitive body 61, the CS valve body 57 and the coil spring 58 are inserted into the pressure sensitive chamber 60 from the left end in the axial direction of the valve housing 10, and then the partition adjusting member 11 is press-fitted and fixed. Therefore, it is easy to assemble.
  • the capacitance control valve V has a movable iron core 84 due to an electromagnetic force generated by applying a current to the solenoid 80 in an energized state (that is, during normal control, so-called duty control). Is attracted to the center post 82 side, that is, to the left in the axial direction, and the drive rod 83, the main / sub valve body 51, and the pressure sensitive valve member 52 fixed to the movable iron core 84 move together to the left in the axial direction, and the pressure sensitive body 61 moves.
  • the right end 51b in the axial direction of the main / sub valve body 51 is separated from the sub valve seat 82a to open the sub valve 53, and the left end 51a in the axial direction of the main / sub valve body 51 is opened. Is seated on the main valve seat 10a, and the main valve 50 is closed.
  • the CS valve body 57 is urged to the right in the axial direction by the coil spring 58, and the end face portion 57a of the CS valve body 57 is from the CS valve seat 11a of the partition adjusting member 11. Separated, the CS valve 56 is open.
  • the non-energized state of the capacitance control valve V will be described.
  • the movable iron core 84 is pressed to the right in the axial direction by the urging force of the coil spring 85 or the urging force of the coil spring 63 and the bellows core 62 in the non-energized state.
  • the drive rod 83, the main / sub valve body 51, and the pressure sensitive valve member 52 move to the right in the axial direction, the axial right end 51b of the main / sub valve body 51 is seated on the sub valve seat 82a, and the main / sub valve body The left end 51a in the axial direction of 51 is separated from the main valve seat 10a, and the main valve 50 is open.
  • the fluid in the discharge chamber 2 of the variable capacitance compressor M passes through the capacitance control valve V from the discharge chamber 2 when the main valve 50 is opened. And flows into the control room 4. This is because the discharge pressure Pd is higher than the control pressure Pc.
  • the CS valve body 57 receives the flow of the discharged fluid flowing toward the Pc port 13 through the main valve 50 (shown by the solid arrow in FIG. 4) and the surface 57h.
  • the end face portion 57a of the CS valve body 57 is seated on the CS valve seat 11a of the partition adjusting member 11 by being pressed to the left in the axial direction by the dynamic pressure generated by the reception, and the CS valve 56 is closed. ..
  • the CS valve 56 is not limited to the one that completely closes the space between the end face portion 57a of the CS valve body 57 and the CS valve seat 11a of the partition adjusting member 11, and the fluid flowing from the Pc port 13 to the first Ps port 14 It may be configured to throttle the flow.
  • the CS valve 56 may be closed by the dynamic pressure of the discharge fluid flowing through the main valve 50 toward the Pc port 13.
  • the CS valve 56 passes through the main valve 50. Due to the dynamic pressure of the discharge fluid flowing toward the Pc port 13, a force (shown by a white arrow in FIG. 4) that moves the CS valve body 57 to the left in the axial direction acts against the urging force of the coil spring 58. Since the CS valve 56 is closed and the control fluid of the control pressure Pc is not discharged from the pressure sensitive chamber 60 from the first Ps port 14, the control accuracy of the control pressure Pc during normal control is high and the energy efficiency is excellent.
  • the Pc port 13 is always in a state of being able to communicate with the main valve 50 by the through hole 57d provided in the CS valve body 57, and when the main valve 50 is opened in the non-energized state of the capacitance control valve V. Since the Pd port 12 and the Pc port 13 are in a communicating state, the discharge chamber 2 and the control chamber 4 can be reliably communicated with each other.
  • the CS valve 56 is composed of a substantially cylindrical CS valve body 57 and a coil spring 58 that urges the CS valve body 57 in the valve opening direction, the capacitance control valve V having the CS valve 56 is provided. Can be configured compactly.
  • the CS valve body 57 has a receiving surface 57h extending in the radial direction so as to intersect the flow direction of the discharged fluid, the CS valve body 57 passes through the main valve 50 toward the Pc port 13 when the main valve 50 is opened. Dynamic pressure is likely to be generated by the flowing discharge fluid.
  • the CS valve body 57 is formed so that the inner diameter of the annular convex portion 57e is smaller than the outer diameter of the large diameter portion 52b of the stepped cylindrical pressure sensitive valve member 52 and larger than the outer diameter of the middle diameter portion 52c.
  • the CS valve body 57 has an end face portion 57a that comes into contact with and separates from the CS valve seat 11a of the partition adjusting member 11, and when the CS valve 56 is urged in the valve opening direction, the end face portion 57a is on the opposite side in the axial direction.
  • the maximum opening area of the CS valve 56 can be set by abutting the CS valve body 57 on the inner surface of the valve housing 10 by abutting the end face portion 57f of the valve housing 10 on the inner surface of the valve housing 10. The structure can be simplified.
  • the CS valve body 57 can stably open and close the CS valve 56 by guiding the outer peripheral surface thereof to the inner peripheral surface of the guide hole 10d of the valve housing 10, so that the CS valve 56 can be opened and closed stably.
  • the structure can be further simplified.
  • the capacitance control valve V includes a pressure-sensitive valve 54 that opens and closes according to the suction pressure Ps, and the main / sub valve body 51 and the pressure-sensitive valve member 52 communicate with the Pc port 13 and the second Ps port 15 by opening and closing the pressure-sensitive valve 54. Since the intermediate communication passage 55 is formed, the pressure sensitive valve 54 is opened when the suction pressure Ps in the intermediate communication passage 55 is high, and the Pc port 13 is connected to the second Ps port 15 via the intermediate communication passage 55. Therefore, the liquid refrigerant in the control chamber 4 can be quickly discharged to the suction chamber 3 when the variable capacity compressor M is started. As a result, the responsiveness at the time of starting the variable capacity compressor M is excellent.
  • valve housing 10 is provided with a first Ps port 14 constituting a flow path opened and closed by the CS valve 56 (shown by a solid arrow in FIG. 3) and a flow path opened and closed by the pressure sensitive valve 54 (not shown).
  • the structure of the valve housing 10 can be simplified by providing the constituent second Ps port 15 separately.
  • the CS valve body 157 is configured in a substantially cylindrical shape, and is concentrically arranged on the outer diameter side of the pressure sensitive body 61 in the pressure sensitive chamber 60. Further, a coil spring 158 as a spring is externally fitted to a small-diameter mounting portion 157c formed at the left end portion in the axial direction of the CS valve body 157.
  • the opening / closing mechanism of the CS valve 156 as a differential pressure valve will be described.
  • the control pressure Pc of the control chamber 4 and the suction pressure Ps of the suction chamber 3 act on the CS valve body 157 arranged in the pressure sensitive chamber 60 from both sides in the axial direction.
  • the pressure receiving area of the pressure acting on the right side in the axial direction, which is the valve opening direction, and the left side in the axial direction, which is the valve closing direction, of the CS valve 156 are configured to be substantially the same.
  • the influence of the pressure acting on the body 157 from both sides in the axial direction is canceled, the CS valve body 157 moves to the right in the axial direction under the urging force of the coil spring 158, and the end face portion 157a of the CS valve body 157 partitions.
  • the CS valve 156 is opened apart from the CS valve seat 11a of the adjusting member 11.
  • the differential pressure between the control pressure Pc and the suction pressure Ps may have a slight pressure range.
  • the CS valve 156 since the CS valve 156 also serves as a differential pressure valve between the suction pressure Ps and the control pressure Pc, when the main valve 50 is opened, the CS valve 156 becomes In addition to the dynamic pressure of the discharge fluid flowing through the main valve 50 toward the Pc port 13, the differential pressure between the control pressure Pc and the suction pressure Ps acts in the valve closing direction of the CS valve 156, so that the CS valve 156 is operated. It can be operated reliably.
  • the main valve 50 when the control chamber 4 has the maximum capacity, the main valve 50 is closed and the CS valve 156 is opened, so that the CS valve body 157 is viewed from both sides in the axial direction. Since the acting control pressure Pc and the suction pressure Ps can be balanced, the influence of the pressure acting on the CS valve body 157 from both sides in the axial direction can be canceled and the CS valve 156 can be easily opened. 4 can easily maintain the state of the maximum capacity and improve the operation efficiency.
  • the pressure sensitive valve 54 composed of the pressure sensitive body 61 and the pressure sensitive valve member 52 may not be provided.
  • the second Ps port 15 of the valve housing 10 is not required.
  • the mode in which the Pc port 13 is always in a state of being able to communicate with the main valve 50 by the through hole provided in the CS valve body has been described, but the present invention is not limited to this, and the through hole in the CS valve body is not limited to this.
  • the communication between the Pc port 13 and the main valve 50 may be opened and closed by the operation of the CS valve body.
  • the sub valve 53 may not be provided, and the axial right end 51b of the main sub valve body 51 may function as a support member that receives an axial load, and a sealing function is not always necessary.
  • CS valve and the Pc port 13 may be provided in the second valve chamber 30.
  • the second valve chamber 30 may be provided on the side opposite to the solenoid 80 in the axial direction, and the pressure sensitive chamber 60 may be provided on the solenoid 80 side.
  • coil springs 58 and 158 are not limited to compression springs, but may be tension springs or may have a shape other than the coil shape.
  • the pressure sensitive body 61 may not use a coil spring inside.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Compressors, Vaccum Pumps And Other Relevant Systems (AREA)
  • Control Of Positive-Displacement Pumps (AREA)

Abstract

通常制御時の制御精度が高く、かつエネルギー効率に優れる容量制御弁を提供する。 吐出圧力Pdの吐出流体が通過する吐出ポート12、吸入圧力Psの吸入流体が通過する吸入ポート14および制御圧力Pcの制御流体が通過する制御ポート13が形成されたバルブハウジング10と、ソレノイド80により駆動されるロッド83と、主弁座10aと主弁体51とにより構成されロッド83の移動により吐出ポート12と制御ポート13との連通を開閉する主弁50と、を備える容量制御弁Vであって、制御ポート13と吸入ポート14との間には、主弁50の開放により吐出ポート12から制御ポート13に向かって流れる流体の動圧により制御されるCS弁56が設けられている。

Description

容量制御弁
 本発明は、作動流体の容量を可変制御する容量制御弁に関し、例えば、自動車の空調システムに用いられる容量可変型圧縮機の吐出量を圧力に応じて制御する容量制御弁に関する。
 自動車等の空調システムに用いられる容量可変型圧縮機は、エンジンにより回転駆動される回転軸、回転軸に対して傾斜角度を可変に連結された斜板、斜板に連結された圧縮用のピストン等を備え、斜板の傾斜角度を変化させることにより、ピストンのストローク量を変化させて流体の吐出量を制御するものである。この斜板の傾斜角度は、電磁力により開閉駆動される容量制御弁を用いて、流体を吸入する吸入室の吸入圧力Ps、ピストンにより加圧された流体を吐出する吐出室の吐出圧力Pd、斜板を収容した制御室の制御圧力Pcを利用しつつ、制御室内の圧力を適宜制御することで連続的に変化させ得るようになっている。
 容量可変型圧縮機の連続駆動時(以下、単に「連続駆動時」と表記することもある)において、容量制御弁は、制御コンピュータにより通電制御され、ソレノイドで発生する電磁力により主弁体を軸方向に移動させ、主弁を開閉して制御室の制御圧力Pcを調整する通常制御を行っている。
 容量制御弁の通常制御時においては、容量可変型圧縮機における制御室の圧力が適宜制御されており、回転軸に対する斜板の傾斜角度を連続的に変化させることにより、ピストンのストローク量を変化させて吐出室に対する流体の吐出量を制御し、空調システムが所望の冷却能力となるように調整している。
 このような容量可変型圧縮機は、容量可変型圧縮機が停止した後、長時間停止状態に放置されると、吸入圧力Ps、吐出圧力Pdおよび制御圧力Pcが均圧となり、制御圧力Pcおよび吸入圧力Psは連続駆動時における制御圧力Pcおよび吸入圧力Psよりもはるかに高い状態となり、制御室内の流体の一部で液化が起こることがある。この状態から容量可変型圧縮機の起動する際には、制御圧力Pcは連続駆動時よりもはるかに高い状態にあるとともに、液化した流体により制御室が最大容量となり難いため、吐出量を目標値に制御するまでに長い時間を要していた。このことから、容量可変型圧縮機の起動時に、容量可変型圧縮機の制御室内から液化した流体を短時間で排出するようにした容量制御弁がある。
 特許文献1に示される容量制御弁は、主弁座である第1弁座が形成される第1弁室と容量可変型圧縮機の吐出室とを連通する吐出ポートである第1連通路と、第2弁座が形成される第2弁室と容量可変型圧縮機の吸入室とを連通する吸入ポートである第2連通路と、第1弁室を基準として第2弁室と軸方向反対側に形成された感圧室である第3弁室と容量可変型圧縮機の制御室とを連通する制御ポートである第3連通路と、を備えるバルブハウジングと、第1弁室にて第1弁座と接離し吐出室と制御室との連通を開閉する第1弁部と、第2弁室にて第2弁座と接離し制御室と吸入室との連通を開閉する第2弁部とを一体的に有し、その往復動により互いに逆向きの開閉動作を行う主弁体と、第2弁室と第3弁室とを連通させる中間連通路と、第3弁室内に配置され周囲の流体圧に応じて主弁体に主弁の開弁方向への付勢力を付与する感圧体と、感圧体の伸縮方向の自由端に主弁体に一体に設けられる感圧弁座と接離し第3弁室と中間連通路との連通を開閉する環状のシール面を有するアダプタと、主弁体に駆動力を及ぼすソレノイドと、を備えている。
 容量可変型圧縮機の起動時に、容量制御弁のソレノイドに通電され主弁体が軸方向に移動すると、第1弁部が主弁を閉塞すると同時に第2弁部が第2弁を開放する。さらに、連続駆動時よりもはるかに高い状態にある制御圧力Pcおよび吸入圧力Psにより感圧体が収縮し、感圧弁を開放することで、中間連通路によってバルブハウジング内に第3弁室から第2弁室にかけて連通する流路が形成される。また、容量可変型圧縮機の起動に伴って吸入室の吸入圧力Psは低下するため、制御室の高圧状態にある液化した流体が吸入室との圧力差により移動し、バルブハウジング内に形成された流路を通って短時間で排出される。さらに、主弁体に中間連通路と第3弁室とを連通する補助連通路を設けることで、容量可変型圧縮機の起動時に制御室の流体を吸入室に排出させやすくなっている。
特許第5167121号公報(段落0052、第4図)
 しかしながら、特許文献1にあっては、補助連通路を設けることで吸入ポートである第2連通路と制御ポートである第3連通路とは常時連通されており、容量制御弁の通常制御時において、主弁を開放した際に、主弁を通って第3弁室に流れる流体の一部は、補助連通路、中間連通路、第2連通路を通って、吸入室に排出されるため、制御圧力Pcの制御性およびエネルギー効率が悪いと言う問題があった。
 本発明は、このような問題点に着目してなされたもので、通常制御時の制御精度が高く、かつエネルギー効率に優れる容量制御弁を提供することを目的とする。
 前記課題を解決するために、本発明の容量制御弁は、
 吐出圧力の吐出流体が通過する吐出ポート、吸入圧力の吸入流体が通過する吸入ポートおよび制御圧力の制御流体が通過する制御ポートが形成されたバルブハウジングと、
 ソレノイドにより駆動されるロッドと、
 主弁座と主弁体とにより構成され前記ロッドの移動により前記吐出ポートと前記制御ポートとの連通を開閉する主弁と、
を備える容量制御弁であって、
 前記制御ポートと前記吸入ポートとの間には、前記主弁の開放により前記吐出ポートから前記制御ポートに向かって流れる流体の動圧により制御されるCS弁が設けられている。
 これによれば、容量可変型圧縮機の起動後の通常運転時において、主弁を開放した際には、CS弁は主弁を通って制御ポートに向かって流れる吐出流体の動圧によって制御され、制御圧力の制御流体が吸入ポートから排出されないので、通常制御時の制御精度が高くかつエネルギー効率に優れる。
 前記制御ポートは、常時前記主弁と連通可能状態となっていてもよい。
 これによれば、非通電時に主弁が開放された際に吐出ポートと制御ポートが連通状態となるため、吐出室と制御室とを確実に連通させることができる。
 前記CS弁は、円筒状のCS弁体と、前記CS弁体を開弁方向に付勢するスプリングと、を有していてもよい。
 これによれば、CS弁を有する容量制御弁をコンパクトに構成することができる。加えて、主弁が閉塞されている際に、制御圧力と吸入圧力を同圧に維持することができるため、最大容量の状態を維持して運転効率を高めることができる。
 前記CS弁体は、径方向に延びる受け面を有するものであってよい。
 これによれば、受け面は吐出流体の流れ方向に交差するので、主弁の開放時に制御ポートに向かって流れる吐出流体によって動圧を生じさせやすい。
 前記CS弁体は、CS弁座と接離する端面部を有し、前記CS弁の開弁方向に付勢されたときに前記端面部の軸方向反対側の端面部が前記バルブハウジングの内面に当接するものであってもよい。
 これによれば、CS弁の最大開口面積をバルブハウジングの内面へのCS弁体の当接により設定することができるため、CS弁の構造を単純化できる。
 前記CS弁は、吸入圧力と制御圧力との差圧弁を兼ねていてもよい。
 これによれば、主弁の開放時に、CS弁は吐出流体の流れにより生じる動圧に加えて差圧が作用するので、確実に動作する。
 前記吸入圧力により開閉する圧力駆動弁を備え、
 前記主弁体には、前記圧力駆動弁の開閉により前記制御ポートと前記吸入ポートとを連通させることが可能な中間連通路が形成されてもよい。
 これによれば、吸入圧力が高いときに圧力駆動弁が開放し、制御ポートは中間連通路を介して吸入ポートに連通しているので、起動時に迅速に制御室の液冷媒を吸入室に排出させることができる。これにより容量可変型圧縮機の起動時の応答性に優れる。
 前記バルブハウジングには、前記圧力駆動弁により開閉される流路を構成し前記吸入ポートとは異なる吸入ポートが設けられていてもよい。
 これによれば、圧力駆動弁により開閉される流路を構成する吸入ポートと、CS弁により開閉される流路を構成する吸入ポートとが個別に設けられることにより、バルブハウジングの構造を単純化できる。
本発明に係る実施例1の容量制御弁が組み込まれる斜板式容量可変型圧縮機を示す概略構成図である。 実施例1の容量制御弁の通電状態(通常制御時)において主弁が閉塞され、CS弁が開放された様子を示す断面図である。 実施例1の容量制御弁の通電状態(通常制御時)において主弁が閉塞され、CS弁が開放された様子を示す図2の拡大断面図である。 実施例1の容量制御弁の非通電状態において主弁が開放され、CS弁が閉塞された様子を示す拡大断面図である。 本発明に係る実施例2の容量制御弁の通電状態(通常制御時)において主弁が閉塞され、CS弁が開放された様子を示す拡大断面図である。
 本発明に係る容量制御弁を実施するための形態を実施例に基づいて以下に説明する。
 実施例1に係る容量制御弁につき、図1から図4を参照して説明する。以下、図2の正面側から見て左右側を容量制御弁の左右側として説明する。
 本発明の容量制御弁Vは、自動車等の空調システムに用いられる容量可変型圧縮機Mに組み込まれ、冷媒である作動流体(以下、単に「流体」と表記する)の圧力を可変制御することにより、容量可変型圧縮機Mの吐出量を制御し空調システムを所望の冷却能力となるように調整している。
 先ず、容量可変型圧縮機Mについて説明する。図1に示されるように、容量可変型圧縮機Mは、吐出室2と、吸入室3と、制御室4と、複数のシリンダ4aと、を備えるケーシング1を有している。尚、容量可変型圧縮機Mには、制御室4と吸入室3とを直接連通する図示しない連通路が設けられており、この連通路には吸入室3と制御室4との圧力を平衡調整させるための固定オリフィスが設けられている。
 また、容量可変型圧縮機Mは、ケーシング1の外部に設置される図示しないエンジンにより回転駆動される回転軸5と、制御室4内において回転軸5に対してヒンジ機構8により偏心状態で連結される斜板6と、斜板6に連結され各々のシリンダ4a内において往復動自在に嵌合された複数のピストン7と、を備え、電磁力により開閉駆動される容量制御弁Vを用いて、流体を吸入する吸入室3の吸入圧力Ps、ピストン7により加圧された流体を吐出する吐出室2の吐出圧力Pd、斜板6を収容した制御室4の制御圧力Pcを利用しつつ、制御室4内の圧力を適宜制御することで斜板6の傾斜角度を連続的に変化させることにより、ピストン7のストローク量を変化させて流体の吐出量を制御している。尚、説明の便宜上、図1においては、容量可変型圧縮機Mに組み込まれる容量制御弁Vの図示を省略している。
 具体的には、制御室4内の制御圧力Pcが高圧であるほど、回転軸5に対する斜板6の傾斜角度は小さくなりピストン7のストローク量が減少するが、一定以上の圧力となると、回転軸5に対して斜板6が略垂直状態、すなわち垂直よりわずかに傾斜した状態となる。このとき、ピストン7のストローク量は最小となり、ピストン7によるシリンダ4a内の流体に対する加圧が最小となることで、吐出室2への流体の吐出量が減少し、空調システムの冷却能力は最小となる。一方で、制御室4内の制御圧力Pcが低圧であるほど、回転軸5に対する斜板6の傾斜角度は大きくなりピストン7のストローク量が増加するが、一定以下の圧力となると、回転軸5に対して斜板6が最大傾斜角度となる。このとき、ピストン7のストローク量は最大となり、ピストン7によるシリンダ4a内の流体に対する加圧が最大となることで、吐出室2への流体の吐出量が増加し、空調システムの冷却能力は最大となる。
 図2に示されるように、容量可変型圧縮機Mに組み込まれる容量制御弁Vは、ソレノイド80を構成するコイル86に通電する電流を調整し、容量制御弁Vにおける主弁50の開閉制御を行うとともに、中間連通路55における吸入圧力Psにより感圧体61を動作させて圧力駆動弁としての感圧弁54の開閉制御を行い、制御室4内に流入する、または制御室4から流出する流体を制御することで制御室4内の制御圧力Pcを可変制御している。尚、中間連通路55は、主弁体としての主副弁体51と感圧弁部材52の内部に形成される中空孔が接続されることにより軸方向に亘って貫通しており、液冷媒排出用の流路を構成している。詳しくは、容量可変型圧縮機Mが停止状態で長時間放置されることにより制御室4で高圧となった流体が液化することがあるが、容量可変型圧縮機Mを起動するとともに容量制御弁Vを通電状態とすることにより、主弁50が閉塞されるとともに副弁53が開放され、さらに中間連通路55における高い吸入圧力Psにより、感圧体61が収縮して感圧弁54が開弁されることにより、制御室4の液冷媒を中間連通路55を介して吸入室3に短時間で排出できるようになっている。
 本実施例において、主弁50は、主副弁体51とバルブハウジング10の内周面に形成された主弁座10aとにより構成されており、主副弁体51の軸方向左端51aが主弁座10aに接離することで、主弁50が開閉するようになっている。副弁53は、主副弁体51とセンタポスト82の開口端面である軸方向左端面の内径側に形成される副弁座82aとにより構成されており、主副弁体51の軸方向右端51bが副弁座82aに接離することで、副弁53が開閉するようになっている。感圧弁54は、感圧体61を構成するキャップ70と感圧弁部材52の軸方向左端に形成される感圧弁座52aとにより構成されており、キャップ70の軸方向右端の外径側に形成されるシール面70aが感圧弁座52aに接離することで、感圧弁54が開閉するようになっている。
 次いで、容量制御弁Vの構造について説明する。図2に示されるように、容量制御弁Vは、金属材料または樹脂材料により形成されたバルブハウジング10と、バルブハウジング10内に軸方向に往復動自在に配置された主副弁体51、感圧弁部材52、CS弁体57と、中間連通路55における吸入圧力Psに応じて主副弁体51、感圧弁部材52に軸方向右方への付勢力を付与する感圧体61と、バルブハウジング10に接続され主副弁体51、感圧弁部材52に駆動力を及ぼすソレノイド80と、から主に構成されている。また、容量制御弁Vは、CS弁体57を備え、主弁50の開弁時において主弁50を通って流れる流体の動圧によりCS弁56(図3および図4参照)を閉塞させることができる。
 本実施例において、CS弁56は、CS弁体57とバルブハウジング10に取り付けられる仕切調整部材11の軸方向右端面に形成されるCS弁座11a(図3および図4参照)とにより構成されており、CS弁体57の軸方向左端に形成される端面部57aがCS弁座11aに接離することで、CS弁56が開閉するようになっている。
 図2に示されるように、ソレノイド80は、軸方向左方に開放する開口部81aを有するケーシング81と、ケーシング81の開口部81aに対して軸方向左方から挿入されケーシング81の内径側に固定される略円筒形状のセンタポスト82と、センタポスト82に挿通され軸方向に往復動自在、かつその軸方向左端部が主副弁体51に挿嵌・固定されるロッドとしての駆動ロッド83と、駆動ロッド83の軸方向右端部が挿嵌・固定される可動鉄心84と、センタポスト82と可動鉄心84との間に設けられ可動鉄心84を主弁50の開弁方向である軸方向右方に付勢するコイルスプリング85と、センタポスト82の外側にボビンを介して巻き付けられた励磁用のコイル86と、から主に構成されている。
 ケーシング81には、軸方向左端の内径側が軸方向右方に凹む凹部81bが形成されており、この凹部81bに対してバルブハウジング10の軸方向右端部が略密封状に挿嵌・固定されている。
 センタポスト82は、鉄やケイ素鋼等の磁性材料である剛体から形成され、軸方向に延び駆動ロッド83が挿通される挿通孔82cが形成される円筒部82bと、円筒部82bの軸方向左端部の外周面から外径方向に延びる環状のフランジ部82dとを備え、センタポスト82の開口端面の内径側、すなわち円筒部82bの軸方向左端面には副弁座82aが形成されている。
 また、センタポスト82は、フランジ部82dの軸方向右端面をケーシング81の凹部81bの底面に軸方向左方から当接させた状態で、ケーシング81の凹部81bに対して挿嵌・固定されるバルブハウジング10の軸方向右端の内径側において軸方向左方に凹む凹部10bに対して略密封状に挿嵌・固定されている。
 図2に示されるように、バルブハウジング10には、容量可変型圧縮機Mの吐出室2と連通する吐出ポートとしてのPdポート12と、容量可変型圧縮機Mの制御室4と連通する制御ポートとしてのPcポート13と、容量可変型圧縮機Mの吸入室3と連通する吸入ポートとしての第1Psポート14と、Pdポート12の軸方向右方に隣接し容量可変型圧縮機Mの吸入室3と連通する第2Psポート15と、が形成されている。
 バルブハウジング10は、その軸方向左端部に仕切調整部材11が略密封状に圧入されることにより有底略円筒形状を成している。尚、仕切調整部材11は、バルブハウジング10の軸方向における設置位置を調整することで、感圧体61の付勢力および後述するCS弁56のコイルスプリング58の付勢力を調整できるようになっている。
 バルブハウジング10の内部には、Pdポート12と連通され主副弁体51の軸方向左端51a側が配置される第1弁室20と、第2Psポート15と連通され主副弁体51の背圧側、すなわち軸方向右端51b側が配置される第2弁室30と、Pcポート13および第1Psポート14と連通されCS弁体57および感圧体61が配置される感圧室60と、が形成されている。
 また、バルブハウジング10の内部には、主副弁体51およびこの主副弁体51に挿嵌・固定された感圧弁部材52が軸方向に往復動自在に配置され、バルブハウジング10の内周面には、軸方向右端部に主副弁体51の外周面が略密封状態で摺接可能な小径のガイド孔10cが形成されている。さらに、バルブハウジング10の内部において、第1弁室20と第2弁室30は、主副弁体51の外周面とガイド孔10cの内周面により仕切られている。尚、ガイド孔10cの内周面と主副弁体51の外周面との間は、径方向に僅かに離間することにより微小な隙間が形成されており、主副弁体51は、バルブハウジング10に対して軸方向に円滑に相対移動可能となっている。
 また、バルブハウジング10の内部には、感圧室60内にCS弁体57が軸方向に往復動自在に配置され、バルブハウジング10の内周面には、軸方向左端部にCS弁体57の外周面が略密封状態で摺動可能な小径のガイド孔10dが形成されている。
 図2に示されるように、主副弁体51は、略円筒形状に構成され、その軸方向左端部には、段付き円筒形状かつ側面視略砲台形状に構成される別体の感圧弁部材52が略密封状に挿嵌・固定されるとともに、その軸方向右端部には、駆動ロッド83が略密封状に挿嵌・固定されており、これらは共に軸方向に移動可能となっている。
 また、主副弁体51の外周面に形成されるシール部としての環状の溝51cのラビリンス効果により、第1弁室20から第2弁室30への流体の漏れを抑制することができるため、吐出室2からPdポート12を介して第1弁室20に供給される吐出流体の吐出圧力Pdが維持されている。
 図3および図4に示されるように、感圧弁部材52は、感圧弁座52aが形成される大径部52bと、大径部52bの軸方向右側において大径部52bよりも小径に形成される中径部52cと、中径部52cの軸方向右側において中径部52cよりも小径に形成され略円筒形状に構成される主副弁体51が略密封状に外嵌される小径部52dと、から段付き略円筒形状に構成されている。
 図2に示されるように、感圧体61は、コイルスプリング63が内蔵されるベローズコア62と、ベローズコア62の軸方向右端に設けられる円板状のキャップ70と、から主に構成され、ベローズコア62の軸方向左端は、仕切調整部材11に固定されている。
 また、感圧体61は、感圧室60内に配置されており、コイルスプリング63とベローズコア62によりキャップ70を軸方向右方に移動させる付勢力によりキャップ70のシール面70aを感圧弁部材52の感圧弁座52aに着座させるようになっている。また、キャップ70は、中間連通路55における吸入圧力Psに応じてキャップ70を軸方向左方に移動させる力が付与されるようになっている。
 図3および図4に示されるように、CS弁体57は、略円筒形状に構成されており、感圧室60内において感圧体61の外径側に同心状に配置されている。また、CS弁体57の軸方向左端部に形成される取付部57cには、スプリングとしてのコイルスプリング58が内嵌され、コイルスプリング58の軸方向左端は、仕切調整部材11の軸方向右端面に当接し、コイルスプリング58の軸方向右端は、取付部57cの軸方向右端の径方向に延びる側面57gに当接している。
 詳しくは、CS弁体57は、略円筒形状の基部57bと、基部57bの軸方向左端部に形成され内径側が環状に切り欠かれた形状の取付部57cと、基部57bの軸方向右端部に形成され径方向に貫通する貫通孔57dと、貫通孔57dの軸方向右側において基部57bの内周面から内径方向に突出する環状凸部57eと、を有し、取付部57cに内嵌されるコイルスプリング58によりCS弁56の開弁方向である軸方向右方に付勢されている。尚、貫通孔57dは、バルブハウジング10に形成されるPcポート13と略同開口面積であり、かつ軸方向位置が対応するように配置されている。
 また、CS弁体57には、取付部57cの軸方向左端に仕切調整部材11の軸方向右端面に形成されるCS弁座11aと接離する端面部57aが形成されている。さらに、端面部57aの軸方向反対側、すなわち基部57bの軸方向右端には、CS弁56の開弁時においてバルブハウジング10における感圧室60の内面に当接可能な端面部57fが形成されている。
 また、CS弁体57の環状凸部57eは、バルブハウジング10におけるPdポート12とPcポート13との間の位置に形成され、その軸方向右端面が径方向に延びる受け面57hを形成している。尚、環状凸部57eの内径は、感圧弁部材52の大径部52bの外径よりも小さく、中径部52cの外径よりも大きく形成されている。
 また、容量制御弁Vは、バルブハウジング10の軸方向左端から感圧室60に感圧体61とCS弁体57およびコイルスプリング58を挿入した後、仕切調整部材11を圧入して固定する構造であるため、組み立てが簡単である。
 次いで、容量制御弁Vの動作、主に主弁50およびCS弁56の開閉動作について説明する。
 先ず、容量制御弁Vの通電状態について説明する。図2および図3に示されるように、容量制御弁Vは、通電状態(すなわち通常制御時、いわゆるデューティ制御時)において、ソレノイド80に電流が印加されることにより発生する電磁力により可動鉄心84がセンタポスト82側、すなわち軸方向左側に引き寄せられ、可動鉄心84に固定された駆動ロッド83、主副弁体51、感圧弁部材52が軸方向左方へ共に移動し、感圧体61が軸方向左方に押圧されて収縮することにより、主副弁体51の軸方向右端51bが副弁座82aから離間して副弁53が開放するとともに、主副弁体51の軸方向左端51aが主弁座10aに着座し、主弁50が閉塞されている。
 また、容量制御弁Vは、通電状態において、CS弁体57は、コイルスプリング58により軸方向右方に付勢され、CS弁体57の端面部57aが仕切調整部材11のCS弁座11aから離間し、CS弁56が開放されている。
 次に、容量制御弁Vの非通電状態について説明する。図4に示されるように、容量制御弁Vは、非通電状態において、可動鉄心84がコイルスプリング85の付勢力やコイルスプリング63とベローズコア62の付勢力により軸方向右方へと押圧されることで、駆動ロッド83、主副弁体51、感圧弁部材52が軸方向右方へ移動し、主副弁体51の軸方向右端51bが副弁座82aに着座するとともに、主副弁体51の軸方向左端51aが主弁座10aから離間し、主弁50が開放されている。
 このように、容量制御弁Vの非通電状態において、容量可変型圧縮機Mの吐出室2内の流体は、主弁50が開放されることで、吐出室2から容量制御弁Vを経由して制御室4に流入していく。これは、吐出圧力Pdが制御圧力Pcより高い圧力であるためである。
 また、容量制御弁Vの非通電状態において、CS弁体57は、主弁50を通ってPcポート13に向かって流れる吐出流体の流れ(図4において実線の矢印で図示)を受け面57hが受けることにより生じる動圧により、軸方向左方へと押圧されることで、CS弁体57の端面部57aが仕切調整部材11のCS弁座11aに着座し、CS弁56が閉塞されている。尚、CS弁56は、CS弁体57の端面部57aと仕切調整部材11のCS弁座11aとの間を完全に閉塞するものに限らず、Pcポート13から第1Psポート14に向かう流体の流れを絞るように構成されるものであってもよい。
 また、説明の便宜上、図示を省略するが、容量制御弁Vの非通電状態に限らず、容量制御弁Vの通常制御時における中間制御域において主弁50が僅かに開放された状態においても、主弁50を通ってPcポート13に向かって流れる吐出流体の動圧によってCS弁56が閉塞されるように構成されていてもよい。
 これによれば、本実施例の容量制御弁Vは、容量可変型圧縮機Mの起動後の通常運転時において、主弁50を開放した際には、CS弁56は主弁50を通ってPcポート13に向かって流れる吐出流体の動圧によって、コイルスプリング58の付勢力に抗してCS弁体57を軸方向左方へ移動させる力(図4において白矢印で図示)が作用し、CS弁56が閉塞されることとなり、感圧室60内から制御圧力Pcの制御流体が第1Psポート14から排出されないので、通常制御時の制御圧力Pcの制御精度が高くかつエネルギー効率に優れる。
 また、Pcポート13は、CS弁体57に設けられる貫通孔57dにより常時主弁50と連通可能状態となっており、容量制御弁Vの非通電状態において、主弁50が開放された際にPdポート12とPcポート13が連通状態となるため、吐出室2と制御室4とを確実に連通させることができる。
 また、CS弁56は、略円筒状のCS弁体57と、CS弁体57を開弁方向に付勢するコイルスプリング58と、から構成されているため、CS弁56を有する容量制御弁Vをコンパクトに構成することができる。
 加えて、図3に示されるように、主弁50が閉塞されている際に、CS弁56が開放されることにより、制御圧力Pcと吸入圧力Psを同圧に維持することができるため、制御室4が最大容量の状態を維持して運転効率を高めることができる。また、容量制御弁V側で吸入室3と制御室4との圧力を平衡調整させることができるため、容量可変型圧縮機Mにおける制御室4と吸入室3とを直接連通する連通路や固定オリフィスを排除することができる。
 また、CS弁体57は、吐出流体の流れ方向に交差するように径方向に延びる受け面57hを有しているため、主弁50の開放時に主弁50を通ってPcポート13に向かって流れる吐出流体によって動圧を生じさせやすい。
 また、CS弁体57は、環状凸部57eの内径が段付き円筒形状の感圧弁部材52の大径部52bの外径よりも小さく、中径部52cの外径よりも大きく形成されることにより、受け面57hの面積を大きくしながら、環状凸部57eの内周面と感圧弁部材52の中径部52cの外周面との間を通ってPcポート13に向かって流れる吐出流体の流路断面積を十分に確保することができる。
 また、CS弁体57は、仕切調整部材11のCS弁座11aと接離する端面部57aを有し、CS弁56の開弁方向に付勢されたときに端面部57aの軸方向反対側の端面部57fがバルブハウジング10の内面に当接することにより、CS弁56の最大開口面積をバルブハウジング10の内面へのCS弁体57の当接により設定することができるため、CS弁56の構造を単純化できる。
 また、CS弁体57は、その外周面をバルブハウジング10のガイド孔10dの内周面にガイドされることにより、CS弁56の開閉動作を安定して行うことができるため、CS弁56の構造をさらに単純化できる。
 また、容量制御弁Vは、吸入圧力Psにより開閉する感圧弁54を備え、主副弁体51および感圧弁部材52には、感圧弁54の開閉によりPcポート13と第2Psポート15とを連通させることが可能な中間連通路55が形成されているため、中間連通路55における吸入圧力Psが高いときに感圧弁54が開放し、Pcポート13は中間連通路55を介して第2Psポート15に連通しているので、容量可変型圧縮機Mの起動時に迅速に制御室4の液冷媒を吸入室3に排出させることができる。これにより容量可変型圧縮機Mの起動時の応答性に優れる。
 また、バルブハウジング10には、CS弁56により開閉される流路(図3において実線の矢印で図示)を構成する第1Psポート14と、感圧弁54により開閉される流路(図示略)を構成する第2Psポート15とが個別に設けられることにより、バルブハウジング10の構造を単純化できる。
 次に、実施例2に係る容量制御弁につき、図5を参照して説明する。尚、前記実施例に示される構成部分と同一構成部分については同一符号を付して重複する説明を省略する。
 実施例2における容量制御弁Vについて説明する。図5に示されるように、CS弁体157は、略円筒形状に構成されており、感圧室60内において感圧体61の外径側に同心状に配置されている。また、CS弁体157の軸方向左端部に形成される小径の取付部157cには、スプリングとしてのコイルスプリング158が外嵌されている。
 次いで、CS弁156の差圧弁としての開閉機構について説明する。制御室4の制御圧力Pcと吸入室3の吸入圧力Psとの圧力が平衡し均圧となることにより、感圧室60内に配置されるCS弁体157に対して軸方向両側から作用する圧力が均衡した状態では、CS弁156の開弁方向である軸方向右方と閉弁方向である軸方向左方とに作用する圧力の受圧面積は略同一に構成されているため、CS弁体157に対して軸方向両側から作用する圧力の影響がキャンセルされ、CS弁体157はコイルスプリング158の付勢力を受けて軸方向右方へ移動し、CS弁体157の端面部157aが仕切調整部材11のCS弁座11aから離間し、CS弁156は開放されている。尚、本実施例においては制御圧力Pcと吸入圧力Psの差圧に多少の圧力幅があってもよい。
 一方、制御室4の制御圧力Pcよりも吸入室3の吸入圧力Psの圧力が低い状態では、制御圧力Pcと吸入圧力Psの圧力差によりCS弁体157の軸方向に差圧が発生し、CS弁体157に軸方向左方から作用する圧力は、軸方向右方から作用する圧力より小さくなり、CS弁体157に軸方向左方へ移動させる力が作用する。
 これによれば、本実施例の容量制御弁Vは、CS弁156が吸入圧力Psと制御圧力Pcとの差圧弁を兼ねているため、主弁50を開放した際には、CS弁156は主弁50を通ってPcポート13に向かって流れる吐出流体の動圧に加えて、制御圧力Pcと吸入圧力Psとの差圧がCS弁156の閉弁方向に作用するため、CS弁156を確実に動作させることができる。
 さらに、本実施例の容量制御弁Vは、制御室4が最大容量の状態において、主弁50が閉塞され、CS弁156が開放されることにより、CS弁体157に対して軸方向両側から作用する制御圧力Pcと吸入圧力Psを均衡させ、CS弁体157に対して軸方向両側から作用する圧力の影響がキャンセルしてCS弁156を開放させやすい状態とすることができるため、制御室4が最大容量の状態を維持しやすくして運転効率を高めることができる。
 以上、本発明の実施例を図面により説明してきたが、具体的な構成はこれら実施例に限られるものではなく、本発明の要旨を逸脱しない範囲における変更や追加があっても本発明に含まれる。
 例えば、前記実施例では、感圧体61および感圧弁部材52から構成される感圧弁54は設けなくともよく、この場合、中間連通路55を構成する主副弁体51の内部の中空孔やバルブハウジング10の第2Psポート15は必要ではない。
 また、前記実施例では、Pcポート13は、CS弁体に設けられる貫通孔により常時主弁50と連通可能状態となっている態様について説明したが、これに限らず、CS弁体に貫通孔を設けず、例えばCS弁体の動作によりPcポート13と主弁50との連通が開閉されるようになっていてもよい。
 また、前記実施例では、副弁53は設けなくともよく、主副弁体51の軸方向右端51bは、軸方向の荷重を受ける支持部材として機能すればよく、必ずしも密閉機能は必要ではない。
 また、CS弁およびPcポート13は、第2弁室30内に設けられてもよい。
 また、第2弁室30はソレノイド80と軸方向反対側に設けられるとともに感圧室60はソレノイド80側に設けられていてもよい。
 また、コイルスプリング58,158は、圧縮バネに限らず、引張バネでもよく、コイル形状以外であってもよい。
 また、感圧体61は、内部にコイルスプリングを使用しないものであってもよい。
1        ケーシング
2        吐出室
3        吸入室
4        制御室
10       バルブハウジング
10a      主弁座
11       仕切調整部材
11a      CS弁座
12       Pdポート(吐出ポート)
13       Pcポート(制御ポート)
14       第1Psポート(吸入ポート)
15       第2Psポート(前記吸入ポートとは異なる吸入ポート)
20       第1弁室
30       第2弁室
50       主弁
51       主副弁体(主弁体)
51a      軸方向左端
51b      軸方向右端
52       感圧弁体
52a      感圧弁座
53       副弁
54       感圧弁(圧力駆動弁)
55       中間連通路
56       CS弁
57       CS弁体
57a      端面部
57f      端面部
57h      受け面
58       コイルスプリング(スプリング)
60       感圧室
61       感圧体
62       ベローズコア
63       コイルスプリング
70       キャップ
70a      シール面
80       ソレノイド
82       センタポスト
82a      副弁座
83       駆動ロッド(ロッド)
156      CS弁
157      CS弁体
157a     端面部
157c     取付部
158      コイルスプリング(スプリング)
Pc       制御圧力
Pd       吐出圧力
Ps       吸入圧力
V        容量制御弁

Claims (8)

  1.  吐出圧力の吐出流体が通過する吐出ポート、吸入圧力の吸入流体が通過する吸入ポートおよび制御圧力の制御流体が通過する制御ポートが形成されたバルブハウジングと、
     ソレノイドにより駆動されるロッドと、
     主弁座と主弁体とにより構成され前記ロッドの移動により前記吐出ポートと前記制御ポートとの連通を開閉する主弁と、
    を備える容量制御弁であって、
     前記制御ポートと前記吸入ポートとの間には、前記主弁の開放により前記吐出ポートから前記制御ポートに向かって流れる流体の動圧により制御されるCS弁が設けられている容量制御弁。
  2.  前記制御ポートは、常時前記主弁と連通可能状態となっている請求項1に記載の容量制御弁。
  3.  前記CS弁は、円筒状のCS弁体と、前記CS弁体を開弁方向に付勢するスプリングと、を有している請求項1または2に記載の容量制御弁。
  4.  前記CS弁体は、径方向に延びる受け面を有する請求項3に記載の容量制御弁。
  5.  前記CS弁体は、CS弁座と接離する端面部を有し、前記CS弁の開弁方向に付勢されたときに前記端面部の軸方向反対側の端面部が前記バルブハウジングの内面に当接する請求項4に記載の容量制御弁。
  6.  前記CS弁は、吸入圧力と制御圧力との差圧弁を兼ねている請求項1ないし5のいずれかに記載の容量制御弁。
  7.  前記吸入圧力により開閉する圧力駆動弁を備え、
     前記主弁体には、前記圧力駆動弁の開閉により前記制御ポートと前記吸入ポートとを連通させることが可能な中間連通路が形成されている請求項1ないし6のいずれかに記載の容量制御弁。
  8.  前記バルブハウジングには、前記圧力駆動弁により開閉される流路を構成する前記吸入ポートとは異なる吸入ポートが設けられている請求項7に記載の容量制御弁。
PCT/JP2020/015181 2019-04-03 2020-04-02 容量制御弁 WO2020204136A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
CN202310387662.8A CN116518111A (zh) 2019-04-03 2020-04-02 容量控制阀
KR1020217035024A KR20210142187A (ko) 2019-04-03 2020-04-02 용량 제어 밸브
JP2021512306A JP7438643B2 (ja) 2019-04-03 2020-04-02 容量制御弁
CN202080026878.6A CN113661324B (zh) 2019-04-03 2020-04-02 容量控制阀
EP20782597.7A EP3951172B1 (en) 2019-04-03 2020-04-02 Capacity control valve
US17/600,547 US11927275B2 (en) 2019-04-03 2020-04-02 Capacity control valve

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-071635 2019-04-03
JP2019071635 2019-04-03

Publications (1)

Publication Number Publication Date
WO2020204136A1 true WO2020204136A1 (ja) 2020-10-08

Family

ID=72668239

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/015181 WO2020204136A1 (ja) 2019-04-03 2020-04-02 容量制御弁

Country Status (6)

Country Link
US (1) US11927275B2 (ja)
EP (1) EP3951172B1 (ja)
JP (1) JP7438643B2 (ja)
KR (1) KR20210142187A (ja)
CN (2) CN113661324B (ja)
WO (1) WO2020204136A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN219497932U (zh) 2021-10-22 2023-08-08 株式会社Lg新能源 圆筒形电池、包括其的电池组及汽车

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5167121B2 (ja) 2006-03-15 2013-03-21 イーグル工業株式会社 容量制御弁
JP2019002384A (ja) * 2017-06-19 2019-01-10 サンデン・オートモーティブコンポーネント株式会社 可変容量圧縮機

Family Cites Families (77)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2617621A (en) 1946-03-29 1952-11-11 Hobbs James Clarence Valve
JPS4748Y1 (ja) 1966-02-04 1972-01-05
US3787023A (en) 1971-08-05 1974-01-22 Nupro Co Bellows valve
US4166607A (en) 1976-10-14 1979-09-04 Hoke, Inc. Bellows seal valve
JPS626274Y2 (ja) 1981-01-09 1987-02-13
JPH05167121A (ja) 1991-12-12 1993-07-02 Sumitomo Electric Ind Ltd 超電導素子の形成方法
JP3089816B2 (ja) 1992-04-28 2000-09-18 株式会社豊田自動織機製作所 斜板式可変容量圧縮機
JPH06200875A (ja) 1993-01-08 1994-07-19 Toyota Autom Loom Works Ltd 揺動斜板式可変容量圧縮機
JP3242496B2 (ja) 1993-07-06 2001-12-25 株式会社豊田自動織機 可変容量圧縮機の外部切換式容量制御弁
JPH09144929A (ja) 1995-11-16 1997-06-03 Tosok Corp 電磁弁
US6010312A (en) 1996-07-31 2000-01-04 Kabushiki Kaisha Toyoda Jidoshokki Seiksakusho Control valve unit with independently operable valve mechanisms for variable displacement compressor
JPH10148258A (ja) 1996-11-18 1998-06-02 Nissan Motor Co Ltd ベローズ
JP3585148B2 (ja) 1996-12-16 2004-11-04 株式会社豊田自動織機 可変容量圧縮機用制御弁
JP3583951B2 (ja) 1999-06-07 2004-11-04 株式会社豊田自動織機 容量制御弁
JP2001073939A (ja) 1999-08-31 2001-03-21 Toyota Autom Loom Works Ltd 容量可変型圧縮機の制御弁及び容量可変型圧縮機
JP2001099060A (ja) 1999-10-04 2001-04-10 Fuji Koki Corp 可変容量型圧縮機用制御弁
JP2001132632A (ja) 1999-11-10 2001-05-18 Toyota Autom Loom Works Ltd 容量可変型圧縮機の制御弁
JP3942851B2 (ja) 2001-07-31 2007-07-11 株式会社テージーケー 容量制御弁
JP4246975B2 (ja) 2002-02-04 2009-04-02 イーグル工業株式会社 容量制御弁
JP4242624B2 (ja) 2002-09-26 2009-03-25 イーグル工業株式会社 容量制御弁及びその制御方法
JP4316955B2 (ja) 2003-08-11 2009-08-19 イーグル工業株式会社 容量制御弁
JP2006097665A (ja) 2004-06-28 2006-04-13 Toyota Industries Corp 可変容量型圧縮機における容量制御弁
JP4431462B2 (ja) 2004-08-10 2010-03-17 株式会社鷺宮製作所 斜板式容量可変型圧縮機および電磁制御弁
JP4700048B2 (ja) 2005-02-24 2011-06-15 イーグル工業株式会社 容量制御弁
JP2006307828A (ja) 2005-03-31 2006-11-09 Tgk Co Ltd 可変容量圧縮機用制御弁
JP2007247512A (ja) 2006-03-15 2007-09-27 Toyota Industries Corp 可変容量型圧縮機における容量制御弁
JP2008014269A (ja) 2006-07-07 2008-01-24 Toyota Industries Corp 可変容量型圧縮機の容量制御弁
JP2008202572A (ja) 2007-02-22 2008-09-04 Toyota Industries Corp 可変容量型圧縮機における容量制御弁
JP4861956B2 (ja) 2007-10-24 2012-01-25 株式会社豊田自動織機 可変容量型圧縮機における容量制御弁
US9568108B2 (en) 2009-03-30 2017-02-14 Eagle Industry Co., Ltd. Bellows type mechanical seal
JP2011032916A (ja) 2009-07-31 2011-02-17 Tgk Co Ltd 制御弁
KR101099121B1 (ko) 2009-08-19 2011-12-27 주식회사 두원전자 진공 벨로우즈 조립체 제조방법
CN102792025B (zh) 2010-03-16 2015-03-04 伊格尔工业股份有限公司 容量控制阀
KR101319566B1 (ko) 2010-04-29 2013-10-23 이구루코교 가부시기가이샤 용량 제어 밸브
JP6140315B2 (ja) * 2010-09-06 2017-05-31 株式会社不二工機 可変容量型圧縮機用制御弁
WO2012077439A1 (ja) 2010-12-09 2012-06-14 イーグル工業株式会社 容量制御弁
JP5907432B2 (ja) 2011-06-15 2016-04-26 イーグル工業株式会社 容量制御弁
JP5665722B2 (ja) * 2011-11-17 2015-02-04 株式会社豊田自動織機 容量制御弁
KR101322404B1 (ko) 2012-01-19 2013-10-28 (주)대정고분자산업 가변용량 압축기의 전자제어밸브
US20150068628A1 (en) 2012-05-24 2015-03-12 Eagle Industry Co., Ltd. Capacity control valve
JP6064132B2 (ja) 2012-10-09 2017-01-25 株式会社テージーケー 複合弁
CN104541056B (zh) * 2012-12-12 2016-12-28 伊格尔工业股份有限公司 容量控制阀
JP6020130B2 (ja) 2012-12-19 2016-11-02 株式会社豊田自動織機 可変容量型斜板式圧縮機
EP2952741B1 (en) 2013-01-31 2019-03-13 Eagle Industry Co., Ltd. Variable capacity compressor
JP6103586B2 (ja) 2013-03-27 2017-03-29 株式会社テージーケー 可変容量圧縮機用制御弁
JP6136461B2 (ja) 2013-03-29 2017-05-31 株式会社豊田自動織機 可変容量型圧縮機
JP6149239B2 (ja) 2013-06-28 2017-06-21 株式会社テージーケー 可変容量圧縮機用制御弁
JP6149206B2 (ja) 2013-07-04 2017-06-21 株式会社テージーケー 可変容量圧縮機用制御弁
JP6206274B2 (ja) 2014-03-19 2017-10-04 株式会社豊田自動織機 容量制御弁
CN107002900B (zh) 2014-12-25 2019-03-12 伊格尔工业股份有限公司 容量控制阀
JP6500183B2 (ja) 2015-04-02 2019-04-17 株式会社テージーケー 可変容量圧縮機用制御弁
US20170028462A1 (en) 2015-07-28 2017-02-02 Primetals Technologies USA LLC Simple copper tube design for continuous casting process with enhanced rigidity
WO2017057160A1 (ja) 2015-09-29 2017-04-06 株式会社ヴァレオジャパン 可変容量型圧縮機の制御弁
JP6383720B2 (ja) 2015-12-16 2018-08-29 株式会社不二工機 可変容量型圧縮機用制御弁
JP6663227B2 (ja) 2016-01-19 2020-03-11 サンデン・オートモーティブコンポーネント株式会社 可変容量圧縮機の容量制御弁
JP6500184B2 (ja) * 2016-02-25 2019-04-17 株式会社テージーケー 可変容量圧縮機用制御弁
JP6500186B2 (ja) 2016-02-25 2019-04-17 株式会社テージーケー 可変容量圧縮機用制御弁
WO2017159553A1 (ja) 2016-03-17 2017-09-21 イーグル工業株式会社 容量制御弁
WO2017188060A1 (ja) 2016-04-27 2017-11-02 イーグル工業株式会社 メカニカルシール
US10883606B2 (en) 2016-04-27 2021-01-05 Eagle Industry Co., Ltd. Mechanical seal
JP6714274B2 (ja) 2016-06-13 2020-06-24 株式会社テージーケー 可変容量圧縮機用制御弁
CN108071824B (zh) 2016-06-13 2021-08-10 株式会社Tgk 可变容量压缩机用控制阀
JP2018021646A (ja) 2016-08-05 2018-02-08 株式会社鷺宮製作所 感圧制御弁
EP3505758B1 (en) 2016-08-29 2021-03-03 Eagle Industry Co., Ltd. Capacity control valve
JP2018040385A (ja) 2016-09-05 2018-03-15 株式会社テージーケー 電磁弁
KR102173480B1 (ko) 2016-12-28 2020-11-03 이구루코교 가부시기가이샤 용량 제어 밸브
JP2018145877A (ja) 2017-03-06 2018-09-20 株式会社豊田自動織機 可変容量型斜板式圧縮機
JP6924476B2 (ja) 2017-04-07 2021-08-25 株式会社テージーケー 可変容量圧縮機用制御弁
JP6997536B2 (ja) 2017-05-09 2022-01-17 サンデン・オートモーティブコンポーネント株式会社 ソレノイド制御弁及びこれを備えた可変容量圧縮機
EP3650695B1 (en) 2017-07-05 2023-09-06 Eagle Industry Co., Ltd. Capacity control valve
US11512786B2 (en) 2017-11-30 2022-11-29 Eagle Industry Co., Ltd. Capacity control valve and control method for capacity control valve
JP7148549B2 (ja) 2017-12-25 2022-10-05 イーグル工業株式会社 容量制御弁
EP3744978B1 (en) 2018-01-26 2023-11-15 Eagle Industry Co., Ltd. Capacity control valve
JP7139084B2 (ja) 2018-02-27 2022-09-20 イーグル工業株式会社 容量制御弁
JP7387237B2 (ja) 2018-08-08 2023-11-28 イーグル工業株式会社 容量制御弁
US11053933B2 (en) 2018-12-13 2021-07-06 Eagle Industry Co., Ltd. Displacement control valve
US11300219B2 (en) 2020-07-28 2022-04-12 Mahle International Gmbh Variable-capacity compressor control valve

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5167121B2 (ja) 2006-03-15 2013-03-21 イーグル工業株式会社 容量制御弁
JP2019002384A (ja) * 2017-06-19 2019-01-10 サンデン・オートモーティブコンポーネント株式会社 可変容量圧縮機

Also Published As

Publication number Publication date
CN113661324A (zh) 2021-11-16
JP7438643B2 (ja) 2024-02-27
KR20210142187A (ko) 2021-11-24
CN116518111A (zh) 2023-08-01
EP3951172B1 (en) 2024-08-28
EP3951172A1 (en) 2022-02-09
EP3951172A4 (en) 2022-11-16
US20220178358A1 (en) 2022-06-09
US11927275B2 (en) 2024-03-12
CN113661324B (zh) 2023-06-06
JPWO2020204136A1 (ja) 2020-10-08

Similar Documents

Publication Publication Date Title
JP7139084B2 (ja) 容量制御弁
JP7242663B2 (ja) 容量制御弁
US11480166B2 (en) Capacity control valve
WO2019146674A1 (ja) 容量制御弁
JP7162995B2 (ja) 容量制御弁
US11555489B2 (en) Capacity control valve
WO2020116435A1 (ja) 容量制御弁
WO2021215345A1 (ja) 容量制御弁
JPWO2020013154A1 (ja) 容量制御弁
JPWO2020110925A1 (ja) 容量制御弁
WO2021241477A1 (ja) 容量制御弁
WO2020218284A1 (ja) 容量制御弁
WO2020204136A1 (ja) 容量制御弁
WO2019159999A1 (ja) 容量制御弁
JP7286672B2 (ja) 容量制御弁
US20210363980A1 (en) Capacity control valve
WO2020204131A1 (ja) 容量制御弁
WO2020116436A1 (ja) 容量制御弁
JP7374574B2 (ja) 容量制御弁
WO2022009795A1 (ja) 容量制御弁
WO2021006301A1 (ja) 容量制御弁

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20782597

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021512306

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20217035024

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2020782597

Country of ref document: EP

Effective date: 20211103