WO2020116435A1 - 容量制御弁 - Google Patents

容量制御弁 Download PDF

Info

Publication number
WO2020116435A1
WO2020116435A1 PCT/JP2019/047192 JP2019047192W WO2020116435A1 WO 2020116435 A1 WO2020116435 A1 WO 2020116435A1 JP 2019047192 W JP2019047192 W JP 2019047192W WO 2020116435 A1 WO2020116435 A1 WO 2020116435A1
Authority
WO
WIPO (PCT)
Prior art keywords
valve
valve body
control
main
port
Prior art date
Application number
PCT/JP2019/047192
Other languages
English (en)
French (fr)
Inventor
真弘 葉山
康平 福留
啓吾 白藤
貴裕 江島
Original Assignee
イーグル工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by イーグル工業株式会社 filed Critical イーグル工業株式会社
Priority to EP19894059.5A priority Critical patent/EP3892856B1/en
Priority to JP2020559213A priority patent/JP7326329B2/ja
Priority to CN201980079538.7A priority patent/CN113167264B/zh
Priority to US17/299,285 priority patent/US11473684B2/en
Priority to KR1020217018244A priority patent/KR102596905B1/ko
Publication of WO2020116435A1 publication Critical patent/WO2020116435A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B27/00Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders
    • F04B27/08Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders having cylinders coaxial with, or parallel or inclined to, main shaft axis
    • F04B27/10Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders having cylinders coaxial with, or parallel or inclined to, main shaft axis having stationary cylinders
    • F04B27/1009Distribution members
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K15/00Check valves
    • F16K15/02Check valves with guided rigid valve members
    • F16K15/025Check valves with guided rigid valve members the valve being loaded by a spring
    • F16K15/026Check valves with guided rigid valve members the valve being loaded by a spring the valve member being a movable body around which the medium flows when the valve is open
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B27/00Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders
    • F04B27/08Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders having cylinders coaxial with, or parallel or inclined to, main shaft axis
    • F04B27/14Control
    • F04B27/16Control of pumps with stationary cylinders
    • F04B27/18Control of pumps with stationary cylinders by varying the relative positions of a swash plate and a cylinder block
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B27/00Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders
    • F04B27/08Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders having cylinders coaxial with, or parallel or inclined to, main shaft axis
    • F04B27/0873Component parts, e.g. sealings; Manufacturing or assembly thereof
    • F04B27/0895Component parts, e.g. sealings; Manufacturing or assembly thereof driving means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B27/00Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders
    • F04B27/08Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders having cylinders coaxial with, or parallel or inclined to, main shaft axis
    • F04B27/14Control
    • F04B27/16Control of pumps with stationary cylinders
    • F04B27/18Control of pumps with stationary cylinders by varying the relative positions of a swash plate and a cylinder block
    • F04B27/1804Controlled by crankcase pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B35/00Piston pumps specially adapted for elastic fluids and characterised by the driving means to their working members, or by combination with, or adaptation to, specific driving engines or motors, not otherwise provided for
    • F04B35/04Piston pumps specially adapted for elastic fluids and characterised by the driving means to their working members, or by combination with, or adaptation to, specific driving engines or motors, not otherwise provided for the means being electric
    • F04B35/045Piston pumps specially adapted for elastic fluids and characterised by the driving means to their working members, or by combination with, or adaptation to, specific driving engines or motors, not otherwise provided for the means being electric using solenoids
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K27/00Construction of housing; Use of materials therefor
    • F16K27/003Housing formed from a plurality of the same valve elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K31/00Actuating devices; Operating means; Releasing devices
    • F16K31/02Actuating devices; Operating means; Releasing devices electric; magnetic
    • F16K31/06Actuating devices; Operating means; Releasing devices electric; magnetic using a magnet, e.g. diaphragm valves, cutting off by means of a liquid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K31/00Actuating devices; Operating means; Releasing devices
    • F16K31/02Actuating devices; Operating means; Releasing devices electric; magnetic
    • F16K31/06Actuating devices; Operating means; Releasing devices electric; magnetic using a magnet, e.g. diaphragm valves, cutting off by means of a liquid
    • F16K31/0644One-way valve
    • F16K31/0668Sliding valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B27/00Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders
    • F04B27/08Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders having cylinders coaxial with, or parallel or inclined to, main shaft axis
    • F04B27/14Control
    • F04B27/16Control of pumps with stationary cylinders
    • F04B27/18Control of pumps with stationary cylinders by varying the relative positions of a swash plate and a cylinder block
    • F04B27/1804Controlled by crankcase pressure
    • F04B2027/1809Controlled pressure
    • F04B2027/1813Crankcase pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B27/00Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders
    • F04B27/08Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders having cylinders coaxial with, or parallel or inclined to, main shaft axis
    • F04B27/14Control
    • F04B27/16Control of pumps with stationary cylinders
    • F04B27/18Control of pumps with stationary cylinders by varying the relative positions of a swash plate and a cylinder block
    • F04B27/1804Controlled by crankcase pressure
    • F04B2027/1822Valve-controlled fluid connection
    • F04B2027/1827Valve-controlled fluid connection between crankcase and discharge chamber
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B27/00Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders
    • F04B27/08Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders having cylinders coaxial with, or parallel or inclined to, main shaft axis
    • F04B27/14Control
    • F04B27/16Control of pumps with stationary cylinders
    • F04B27/18Control of pumps with stationary cylinders by varying the relative positions of a swash plate and a cylinder block
    • F04B27/1804Controlled by crankcase pressure
    • F04B2027/1822Valve-controlled fluid connection
    • F04B2027/1831Valve-controlled fluid connection between crankcase and suction chamber
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B27/00Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders
    • F04B27/08Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders having cylinders coaxial with, or parallel or inclined to, main shaft axis
    • F04B27/10Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders having cylinders coaxial with, or parallel or inclined to, main shaft axis having stationary cylinders
    • F04B27/1036Component parts, details, e.g. sealings, lubrication
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B53/00Component parts, details or accessories not provided for in, or of interest apart from, groups F04B1/00 - F04B23/00 or F04B39/00 - F04B47/00
    • F04B53/10Valves; Arrangement of valves
    • F04B53/1087Valve seats
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2210/00Working fluid
    • F05B2210/10Kind or type
    • F05B2210/14Refrigerants with particular properties, e.g. HFC-134a

Definitions

  • the present invention relates to a capacity control valve that variably controls the capacity of a working fluid, and for example, relates to a capacity control valve that controls the discharge amount of a capacity-variable compressor used in an air conditioning system of an automobile according to pressure.
  • Variable capacity compressors used in air conditioning systems for automobiles include a rotary shaft driven by an engine, a swash plate with a variable inclination angle connected to the rotary shaft, and a compression piston connected to the swash plate. Etc., the stroke amount of the piston is changed by changing the inclination angle of the swash plate to control the discharge amount of the fluid.
  • the inclination angle of the swash plate is determined by using a capacity control valve that is driven to open and close by an electromagnetic force, the suction pressure Ps of a suction chamber for sucking fluid, the discharge pressure Pd of a discharge chamber for discharging fluid pressurized by a piston,
  • the control pressure Pc of the control chamber accommodating the swash plate is utilized, and the pressure in the control chamber is appropriately controlled so that the pressure can be continuously changed.
  • the displacement control valve When the variable displacement compressor is continuously driven, the displacement control valve is energized and controlled by the control computer, the electromagnetic force generated by the solenoid moves the valve element in the axial direction, and the main valve is opened and closed to open the variable displacement compressor. Normal control for adjusting the control pressure Pc of the control chamber is performed.
  • the pressure in the control chamber of the variable displacement compressor is appropriately controlled, and the stroke amount of the piston is changed by continuously changing the inclination angle of the swash plate with respect to the rotating shaft. Then, the discharge amount of the fluid to the discharge chamber is controlled, and the air conditioning system is adjusted so as to have a desired cooling capacity.
  • the main valve of the capacity control valve is closed to reduce the pressure in the control chamber, thereby maximizing the tilt angle of the swash plate. There is.
  • an auxiliary communication passage that connects the control port of the capacity control valve and the suction port is formed, and at the time of startup, the refrigerant in the control chamber of the variable capacity compressor is of a variable capacity type through the control port, the auxiliary communication passage, and the suction port.
  • Patent Document 1 Although the fluid discharge function at the time of start-up is excellent, the auxiliary communication passage is always in communication, so during continuous driving of the variable displacement compressor, the control port is provided via the auxiliary communication passage. There is a possibility that the compression efficiency may be deteriorated due to the refrigerant flowing from the suction port to the suction port.
  • the present invention has been made in view of such problems, and an object thereof is to provide a capacity control valve having an excellent fluid discharge function at the time of startup and high compression efficiency.
  • the capacity control valve of the present invention is A valve housing having a discharge port through which a discharge fluid at a discharge pressure passes, a suction port through which a suction fluid at a suction pressure passes, and a control port through which a control fluid at a control pressure passes;
  • a rod driven by a solenoid A displacement control valve, comprising: a main valve configured by a main valve seat and a main valve body, which opens and closes communication between the discharge port and the control port by movement of the rod, An on-off valve seat that opens and closes communication of a CS communication passage that communicates between the control fluid supply chamber that is formed in the valve housing and that supplies control fluid and the suction port; and an on-off valve body that is biased in a valve closing direction.
  • An on-off valve composed of A CS valve formed by a CS valve seat and a CS valve body that opens and closes communication between the control port and the suction port,
  • the CS valve body is arranged so as to be movable relative to the main valve body, The main valve body and the CS valve body move together by the movement of the rod while maintaining the closed state of the main valve.
  • the main valve body is arranged so as to be movable relative to the CS valve body, it is possible to control the opening and closing of the main valve in a state where the CS valve is closed during normal control, and the maximum In the energized state, the main valve body moves together with the CS valve body by moving the rod while maintaining the closed state of the main valve, thereby opening the CS valve and connecting the control port and the suction port, thereby lowering the control pressure. Therefore, it is possible to provide a capacity control valve having an excellent fluid discharge function at the time of startup and high compression efficiency.
  • the on-off valve body is operated in the valve opening direction in accordance with a predetermined suction pressure in the CS communication passage to communicate the control fluid supply chamber with the suction port via the CS communication passage.
  • the control pressure can be lowered, so that it is possible to provide a capacity control valve having a stable fluid discharge function at the time of startup and compression performance.
  • the CS valve body may be externally fitted to the main valve body, and the main valve seat may be formed on an inner diameter portion of the CS valve body. According to this, by inserting the main valve body into the CS valve body, the capacity control valve having the CS valve can be configured compactly, and the main valve body can be reliably maintained in the closed state of the main valve body. Can be moved with.
  • the main valve seat may be formed at one end of the CS valve body, and the CS valve seat may be formed on the outer diameter side thereof. According to this, the main valve seat is formed on the inner diameter portion at one end of the CS valve body, and the CS valve seat is formed on the outer diameter side thereof, so that switching of the flow paths by opening and closing the main valve and the CS valve is smooth. Therefore, the responsiveness is good.
  • the CS valve body may be biased in a valve closing direction of the CS valve by a biasing means. According to this, the CS valve body can be surely moved to the valve closing position, so that the normal control can be immediately returned from the maximum energization state.
  • the control fluid from the control port may be introduced to one end side of the CS valve body, and the control fluid to be supplied to the control fluid supply chamber may be introduced to the other end side thereof. According to this, since the control pressure acts on the CS valve body from both ends, the CS valve body can be moved together with the main valve body while suppressing the influence of the pressure. Accurate valve body control can be performed.
  • the CS valve body may have the same effective area at both ends. According to this, since the control pressure acting on both ends of the CS valve body is canceled, more precise valve body control can be performed.
  • the main valve body may constitute a sub valve that opens and closes communication between the CS communication passage and the suction port. According to this, the sub-valve can be opened by the movement of the main valve body at the time of startup, normal control, or the like, so that the CS communication passage can be validated.
  • FIG. 6 is a cross-sectional view showing a state in which the main valve is opened and the CS valve is closed in the non-energized state of the capacity control valve of the embodiment.
  • FIG. 6 is a cross-sectional view showing a pressure distribution when the main valve and the CS valve are closed in the energized state (during normal control) of the capacity control valve of the embodiment. The cross-section of each member is not shown to show the pressure distribution.
  • FIG. 3 is an enlarged cross-sectional view of FIG.
  • FIG. 6 is an enlarged cross-sectional view showing a state in which the main valve and the CS valve are closed in the energized state (during normal control) of the capacity control valve of the embodiment.
  • FIG. 6 is an enlarged cross-sectional view showing a state where the main valve is closed and the CS valve is opened in the energized state (maximum energized state) of the capacity control valve of the embodiment. It is a figure explaining the opening/closing state of the main valve and the opening/closing state of the CS valve with respect to the stroke position of the main/sub valve body in the capacity control valve of an example.
  • FIG. 6 is an enlarged cross-sectional view showing a state in which the main valve and the CS valve are closed and the pressure sensing valve is opened by a predetermined suction pressure when the capacity control valve of the embodiment is in the energized state (at the time of startup or normal control).
  • FIG. 6 is an enlarged cross-sectional view showing a state in which the main valve is closed, the CS valve is opened, and the pressure sensing valve is opened by a predetermined suction pressure in the energized state (maximum energized state) of the capacity control valve of the embodiment.
  • a capacity control valve will be described with reference to FIGS. 1 to 9.
  • the left and right sides as viewed from the front side of FIG. 2 will be described as the left and right sides of the displacement control valve.
  • the capacity control valve V of the present invention is incorporated in a capacity variable compressor M used in an air conditioning system of an automobile or the like, and variably controls the pressure of a working fluid (hereinafter simply referred to as “fluid”) that is a refrigerant.
  • a working fluid hereinafter simply referred to as “fluid”
  • the discharge amount of the variable displacement compressor M is controlled to adjust the air conditioning system to a desired cooling capacity.
  • variable capacity compressor M As shown in FIG. 1, the variable displacement compressor M has a casing 1 including a discharge chamber 2, a suction chamber 3, a control chamber 4, and a plurality of cylinders 4a.
  • the variable capacity compressor M is provided with a communication passage (not shown) that directly connects the control chamber 4 and the suction chamber 3, and the pressure in the suction chamber 3 and the control chamber 4 is balanced in this communication passage.
  • a fixed orifice is provided for adjustment.
  • the variable displacement compressor M is eccentrically connected to the rotary shaft 5 driven by an engine (not shown) installed outside the casing 1 and the rotary shaft 5 in the control chamber 4 by a hinge mechanism 8.
  • a swash plate 6 and a plurality of pistons 7 connected to the swash plate 6 and reciprocally fitted in each cylinder 4a. While using the suction pressure Ps of the suction chamber 3 for sucking the fluid, the discharge pressure Pd of the discharge chamber 2 for discharging the fluid pressurized by the piston 7, and the control pressure Pc of the control chamber 4 accommodating the swash plate 6, By appropriately changing the pressure in the control chamber 4 to continuously change the inclination angle of the swash plate 6, the stroke amount of the piston 7 is changed to control the fluid discharge amount.
  • the capacity control valve V incorporated in the variable capacity compressor M is not shown.
  • the inclination angle of the swash plate 6 with respect to the rotating shaft 5 is smaller and the stroke amount of the piston 7 is reduced.
  • the swash plate 6 is substantially perpendicular to the shaft 5, that is, slightly inclined from the vertical.
  • the stroke amount of the piston 7 becomes the minimum, and the pressurization of the fluid in the cylinder 4a by the piston 7 becomes the minimum, so that the discharge amount of the fluid to the discharge chamber 2 decreases and the cooling capacity of the air conditioning system becomes the minimum.
  • the displacement control valve V incorporated in the variable displacement compressor M adjusts the current supplied to the coil 86 forming the solenoid 80, and the main valve 50 and the auxiliary valve 55 in the displacement control valve V are adjusted.
  • the CS valve 56 that is, the valve that opens and closes the communication between the control port and the suction port is controlled, and the suction pressure Ps in the intermediate communication passage 57 as the CS communication passage controls the opening and closing of the pressure-sensitive valve 54 as the on-off valve.
  • the control pressure Pc in the control chamber 4 is variably controlled by controlling the fluid flowing into or out of the control chamber 4.
  • the intermediate communication passage 57 penetrates in the axial direction by connecting hollow holes formed inside the main and sub valve bodies 51 as the main valve body and the pressure sensitive valve member 52.
  • the main valve 50 includes a main/sub valve body 51 and a main valve seat 53a formed on the inner diameter portion of the CS valve body 53 at one end of the CS valve body 53 in the axial right end.
  • the main valve 50 is configured to open and close by the step portion 51a formed substantially at the center in the axial direction contacting and separating from the main valve seat 53a.
  • the pressure-sensitive valve 54 includes an adapter 70 that constitutes a pressure-sensitive body 61 that serves as an opening/closing valve body, and a pressure-sensitive valve seat 52a that serves as an opening/closing valve seat that is formed at the axially left end of the pressure-sensitive valve member 52.
  • the pressure-sensitive valve 54 is opened and closed by contacting and separating the outer diameter portion 70a of the right end surface in the axial direction of the pressure-sensitive valve seat 52a.
  • the sub-valve 55 is composed of the main sub-valve 51 and a sub-valve seat 82a formed on the inner diameter portion of the axially left end face which is the opening end face of the fixed iron core 82, and the main sub-valve 51 axial right end.
  • the sub valve 55 opens and closes when the sub valve seat 82a contacts and separates from the sub valve seat 82a.
  • the CS valve 56 is composed of the CS valve body 53 and a CS valve seat 11a formed on the inner diameter portion of the second valve housing 11 constituting the valve housing at the axially left end, and is one end of the CS valve body 53.
  • the CS valve 56 is opened and closed by the outer diameter portion 53b at the right end in the axial direction coming into contact with and separating from the CS valve seat 11a.
  • the displacement control valve V includes a first valve housing 10 and a second valve housing 11 as a valve housing formed of a metal material or a resin material, a first valve housing 10 and a second valve housing. 11, a main/sub valve body 51, a pressure-sensitive valve member 52, a CS valve body 53, which are axially reciprocally movable, and a main/sub-valve body 51, a pressure-sensitive valve member depending on the suction pressure Ps in the intermediate communication passage 57.
  • the solenoid 80 includes a casing 81 having an opening 81a that opens leftward in the axial direction and an opening 81a of the casing 81 that is inserted from the left side in the axial direction toward the inner diameter side of the casing 81.
  • a substantially cylindrical fixed iron core 82 to be fixed, and a drive rod as a rod that is inserted into the fixed iron core 82 and is reciprocally movable in the axial direction, and the axial left end portion 83a is inserted and fixed to the main/sub valve body 51.
  • the coil spring 85 mainly urges the coil spring 85 to the right in the axial direction, and the exciting coil 86 is wound around the fixed iron core 82 via a bobbin.
  • the casing 81 is formed with a recess 81b in which the inner diameter side at the left end in the axial direction is recessed rightward in the axial direction.
  • the right end in the axial direction of the second valve housing 11 is inserted and fixed into the recess 81b in a substantially hermetic manner. Has been done.
  • the fixed iron core 82 is formed of a rigid body that is a magnetic material such as iron or silicon steel, and has a cylindrical portion 82b in which an insertion hole 82c that extends in the axial direction and into which the drive rod 83 is inserted is formed, and an axial left end of the cylindrical portion 82b.
  • An annular flange portion 82d extending outward from the outer peripheral surface of the portion is provided, and an auxiliary valve seat 82a is formed on the inner diameter portion of the open end surface of the fixed iron core 82, that is, on the axial left end surface of the cylindrical portion 82b.
  • the fixed iron core 82 is inserted and fixed in the recess 81b of the casing 81 with the axial right end surface of the flange portion 82d being in contact with the bottom surface of the recess 81b of the casing 81.
  • the inner diameter side of the right end in the axial direction is inserted and fixed in a substantially hermetically sealed manner in the recessed portion 11d that is recessed leftward in the axial direction.
  • the drive rod 83 is formed in a columnar shape, and the axial left end portion 83a inserted and fixed to the main/sub valve body 51 and the axial right end portion 83b inserted and fixed to the movable iron core 84 are plate-shaped. ing.
  • a space S1 is formed by the peripheral surface.
  • a cup 87 having a bottomed cylindrical shape is fitted on the cylindrical portion 82b of the fixed iron core 82 from the axial right side in a substantially sealed manner, so that the axial right end of the cylindrical portion 82b and the cup.
  • a space S2 is formed by the inner peripheral surface of 87.
  • the space S1 communicates with the space S2 through a gap between the inner peripheral surface of the insertion hole 82c of the fixed iron core 82 and the outer peripheral surface of the drive rod 83, and the spaces S1 and S2 and the fixed iron core 82 are inserted therethrough.
  • the hole 82c constitutes a storage chamber 90 in which the back side of the main/sub valve body 51 is stored.
  • the movable iron core 84 arranged in the space S2 is provided with a through hole 84a extending in the axial direction, and the plate-shaped axial right end portion 83b of the drive rod 83 is inserted into the through hole 84a from the axial left side.
  • the plate surface of the axial right end portion 83b of the drive rod 83 and the inner peripheral surface of the through hole 84a communicate with each other, and the axial right end of the movable iron core 84 and the bottom surface of the cup 87 are connected.
  • the fluid can always flow between them.
  • the first valve housing 10 communicates with the Pd port 12 as a discharge port that communicates with the discharge chamber 2 of the variable displacement compressor M, and with the suction chamber 3 of the variable displacement compressor M.
  • a Ps port 13 serving as a suction port and a second Pc port 15 communicating with the control chamber 4 of the variable displacement compressor M are formed.
  • the second valve housing 11 is formed with a first Pc port 14 as a control port communicating with the control chamber 4 of the variable displacement compressor M. Note that these ports are arranged in this order from the right side in the axial direction, which is the solenoid 80 side, in order of the first Pc port 14, Ps port 13, Pd port 12, and second Pc port 15.
  • the first valve housing 10 has a recess 10a formed by recessing the axial right end thereof axially leftward, and the axial left end of the second valve housing 11 is inserted into the recess 10a from the axial right side. By doing so, they are integrally connected and fixed in a substantially sealed state.
  • the first valve housing 10 has a substantially cylindrical shape with a bottom by the partition adjusting member 17 being press-fitted into the left end of the first valve housing 10 in a substantially sealed manner.
  • the partition adjusting member 17 can adjust the urging force of the pressure sensitive body 61 by adjusting the installation position of the first valve housing 10 in the axial direction.
  • a first valve chamber 20 in which a Pd communication hole 53c that communicates with the Pd port 12 and penetrates in the radial direction of the CS valve body 53 is arranged, and communicates with the Ps port 13 and the CS valve 13 is connected.
  • a second valve chamber 30 in which the axial right end as one end of the valve body 53 is arranged, and a pressure sensitive chamber 60 as a control fluid supply chamber in which the pressure sensitive body 61 is arranged in communication with the second Pc port 15.
  • the large diameter portion 51c and the medium diameter portion 51d (FIGS. 4 to 6, FIG. 8 and FIG. 8) which communicate with the first Pc port 14 and are located on the axially right end side of the main/sub valve body 51.
  • the third valve chamber 40 in which (see 9) is arranged is formed.
  • a main/sub valve body 51, a pressure-sensitive valve member 52 connected to the main/sub valve body 51, and a CS valve body 53 are axially reciprocated.
  • the first valve housing 10 is movably arranged and has small-diameter guide holes 10b and 10c formed in the inner peripheral surface of the first valve housing 10 so that the outer peripheral surface of the CS valve body 53 can be slid in a substantially sealed state in the approximate center in the axial direction. There is.
  • the inner diameters of the guide holes 10b and 10c of the first valve housing 10 are substantially the same.
  • a guide hole 11b having a small diameter is formed on the inner peripheral surface of the second valve housing 11 at the right end in the axial direction so that the outer peripheral surface of the main/sub valve body 51 can slide in a substantially sealed state. Further, a CS valve seat 11a is formed on the inner diameter portion of the second valve housing 11 at the left end in the axial direction so that the outer diameter portion 53b of the CS valve body 53 at the right end in the axial direction can abut.
  • first valve chamber 20 and the second valve chamber 30 are partitioned by the outer peripheral surface of the CS valve body 53 and the inner peripheral surface of the guide hole 10c, so that the first valve chamber 20 and the pressure sensitive chamber are separated from each other.
  • 60 is partitioned by the outer peripheral surface of the CS valve body 53 and the inner peripheral surface of the guide hole 10b.
  • a small gap is formed between the inner peripheral surfaces of the guide holes 10b and 10c and the outer peripheral surface of the CS valve body 53 by slightly separating them in the radial direction. It can be smoothly moved relative to the valve housing 10 in the axial direction.
  • the third valve chamber 40 and the accommodation chamber 90 are partitioned by the outer peripheral surface of the large diameter portion 51c of the main/sub valve body 51 and the inner peripheral surface of the guide hole 11b. ing. A small gap is formed between the inner peripheral surface of the guide hole 11b and the outer peripheral surface of the main/sub valve body 51 by slightly separating them in the radial direction. It can be smoothly moved relative to the valve housing 11 in the axial direction.
  • the third valve chamber 40 is formed in the radial direction between the inner peripheral surface of the shaft hole 11c and the outer peripheral surface of the middle diameter portion 51d of the main/sub valve body 51 at the axial left end of the second valve housing 11. It is possible to communicate with the first valve chamber 20 or the second valve chamber 30 via the gap. Specifically, as shown in FIGS. 2 and 4, when the main valve 50 is opened and the CS valve 56 is closed, the first valve chamber 20 and the third valve chamber 40 communicate with each other and the third valve chamber 40 The second valve chamber 30 is isolated. Further, as shown in FIGS. 3, 5 and 8, when the main valve 50 and the CS valve 56 are closed, the first valve chamber 20 and the third valve chamber 40 are isolated and the third valve chamber 40 is separated. The second valve chamber 30 is isolated. Further, as shown in FIGS. 6 and 9, when the main valve 50 is closed and the CS valve 56 is opened, the first valve chamber 20 and the third valve chamber 40 are isolated and the third valve chamber 40 is separated. The second valve chamber 30 is in communication.
  • the second valve housing 11 is provided with a Ps communication hole 16 penetrating in the axial direction at a position that does not interfere with the third valve chamber 40 and the first Pc port 14, and the second valve chamber 30 is provided with the Ps communication hole 16.
  • the flow passage area of the Ps communication hole 16 has a size that allows the suction pressure Ps in the second valve chamber 30 and the storage chamber 90 to be substantially the same, for example, half the flow passage area of the first Pc-Ps flow passage described later. It is preferable that the flow path area and the hole diameter are set to 1 mm or more.
  • the main/sub valve body 51 has a large-diameter portion 51c inserted into the guide hole 11b of the second valve housing 11 and an axial direction of the large-diameter portion 51c.
  • the intermediate diameter portion 51d formed on the left side has a smaller diameter than the large diameter portion 51c and is inserted into the shaft hole 11c of the second valve housing 11, and the intermediate diameter portion 51d formed on the left side in the axial direction of the intermediate diameter portion 51d has a smaller diameter than the intermediate diameter portion 51d.
  • the CS valve body 53 having a cylindrical shape is formed into a stepped substantially cylindrical shape from a small diameter portion 51e fitted on the outer surface in a substantially sealed manner.
  • a separate pressure-sensitive valve member 52 having a substantially cylindrical shape and a generally turret shape in a side view is inserted in a substantially sealed manner. They are fixed and both are axially movable.
  • the plate-shaped axial left end portion 83a of the drive rod 83 is inserted and fixed to the axial right end portion of the large-diameter portion 51c of the main/sub valve body 51, whereby the axial left end portion of the drive rod 83.
  • the plate surface of 83a and the inner peripheral surface of the large diameter portion 51c of the main/sub valve body 51 are communicated with each other so that the fluid can always flow from the space S1 to the intermediate communication passage 57.
  • the step portion 51a formed substantially at the center in the axial direction of the main/sub valve body 51, that is, the axially left end of the medium diameter portion 51d is tapered so as to taper leftward in the axial direction where the small diameter portion 51e is formed. It is formed so as to come into contact with and separate from the main valve seat 53a formed on the inner diameter portion of the CS valve body 53 at the right end in the axial direction.
  • the main/sub valve body 51 is configured such that the outer peripheral surface of the axially left end portion of the small-diameter portion 51e can slide in a substantially sealed state with the inner peripheral surface of the CS valve body 53 at the axial left end portion thereof.
  • the pressure sensitive chamber 60 is partitioned from the radial gap formed between the pressure sensing chamber 60 and the CS valve body 53.
  • the outer peripheral surface of the axially left end portion of the small diameter portion 51e of the main/sub valve body 51 and the inner peripheral surface of the axial left end portion of the CS valve body 53 are slightly separated in the radial direction to form a minute gap. Is formed, and the main/sub valve body 51 can smoothly move relative to the CS valve body 53 in the axial direction.
  • the small-diameter portion 51e of the main/sub valve body 51 is formed such that the outer peripheral surface is recessed toward the inner diameter side from the right end portion in the axial direction to substantially the center in the axial direction, and the CS valve body 53 is fitted onto the small-diameter portion 51e.
  • the inner peripheral surface of the substantially central portion in the axial direction is formed in a constricted shape that is recessed toward the outer diameter side, so that the Pd-Pc flow path from the Pd port 12 to the first Pc port 14 when the main valve 50 is opened (see FIG. A large flow passage area (shown by a solid arrow) can be secured.
  • a coil spring 58 as a biasing means is externally fitted to the axial left end of the small diameter portion 51e of the main/sub valve body 51, and the coil spring 58.
  • the axial left end of the coil spring 58 is in contact with the axial right side surface of the flange portion 52b of the pressure sensitive valve member 52, and the axial right end of the coil spring 58 is in contact with the axial left end which is the other end of the CS valve body 53.
  • the coil spring 58 causes the outer diameter portion 53b at the right end in the axial direction, which is one end of the CS valve body 53, to contact the CS valve seat 11a formed at the inner diameter portion at the left end in the axial direction of the second valve housing 11. , And applies a biasing force in the axial right direction, which is the closing direction of the CS valve 56. Further, the coil spring 58 is set to have a smaller spring constant than the coil spring 63 provided in the pressure sensitive body 61.
  • the pressure sensitive body 61 includes a bellows core 62 having a coil spring 63 built-in, and a disc-shaped adapter provided at the right end of the bellows core 62 in the axial direction. 70, and the axially left end of the bellows core 62 is fixed to the partition adjusting member 17.
  • the pressure sensitive body 61 is arranged in the pressure sensitive chamber 60, and the urging force of the coil spring 63 and the bellows core 62 causes the outer diameter portion 70 a of the axially right end surface of the adapter 70 to move toward the shaft of the pressure sensitive valve member 52.
  • the pressure-sensitive valve seat 52a at the left end in the direction is seated. That is, the driving force to the axial left side of the solenoid 80 is applied to the pressure sensitive body 61 via the drive rod 83, the main/sub valve body 51, and the pressure sensitive valve member 52, and the pressure sensitive body 61 moves axially rightward. You can receive the reaction force of.
  • FIG. 3 shows a state in which the main valve 50, the CS valve 56, and the pressure sensitive valve 54 are closed and the sub valve 55 is opened in the energized state of the displacement control valve V (during normal control).
  • the control pressure Pc introduced from the first Pc port 14 is equal to the inner peripheral surface of the shaft hole 11c of the second valve housing 11 from the third valve chamber 40 and the middle diameter portion of the main/sub valve body 51. It is distributed to the right side in the axial direction of the main valve 50, which is closed, and the inner diameter side of the closed CS valve 56, through a radial gap formed between the outer peripheral surface of 51d.
  • the suction pressure Ps introduced from the Ps port 13 is distributed to the outer diameter side of the CS valve 56 closed in the second valve chamber 30, and the Ps communication hole from the second valve chamber 30 to the second valve housing 11 is provided.
  • 16 is introduced into the accommodating chamber 90, and is formed on the axial right end surface of the adapter 70 of the pressure sensitive body 61 via the intermediate communication passage 57 formed inside the main and sub valve bodies 51 and the pressure sensitive valve member 52. It is distributed up to the Ps pressure receiving surface 70b.
  • the discharge pressure Pd introduced from the Pd port 12 is between the first valve chamber 20 and the Pd communication hole 53c of the CS valve body 53 and the inner peripheral surface of the CS valve body 53 and the outer peripheral surface of the main/sub valve body 51.
  • the control pressure Pc introduced from the second Pc port 15 is distributed in the pressure sensitive chamber 60.
  • the suction pressure Ps is applied from both axial ends to the movable iron core 84, the drive rod 83, the main/sub valve body 51, and the pressure sensitive valve member 52, which move together by the driving force of the solenoid 80.
  • the non-energized state of the capacity control valve V will be described.
  • the movable iron core 84 is axially driven by the urging force of the coil spring 85 constituting the solenoid 80 and the urging force of the coil spring 63 and the bellows core 62.
  • the drive rod 83, the main/sub valve body 51, and the pressure-sensitive valve member 52 move axially to the right, and the axial right end 51b of the main/sub valve body 51 is a subsidiary of the fixed iron core 82.
  • the sub valve 55 is seated on the valve seat 82a and the sub valve 55 is closed, and the step portion 51a of the main sub valve body 51 is separated from the main valve seat 53a formed on the inner diameter portion of the CS valve body 53 at the axially right end, and the main valve 50 is open.
  • the step portion 51a of the main/sub valve body 51 is separated from the main valve seat 53a of the CS valve body 53, and the CS valve body 53 is biased by the coil spring 58.
  • F sp2 acts and pushes the CS valve 56 axially to the right, which is the closing direction, so that the outer diameter portion 53b at the axially right end of the CS valve body 53 causes the shaft of the second valve housing 11 to move.
  • the CS valve 56 is closed by sitting on the CS valve seat 11a formed on the inner diameter portion at the left end in the direction.
  • the biasing force (F sp2 ) of the coil spring 58 acts on the main/sub valve body 51 in the axially leftward direction via the flange portion 52b of the pressure-sensitive valve member 52, and in the axially rightward direction.
  • the energized state of the capacity control valve V will be described.
  • the electromagnetic force (F sol 1) generated by applying a current to the solenoid 80 in the energized state is a force.
  • the electromagnetic force (F sol 1) is axially leftward
  • the urging force (F sp1 ) of the coil spring 85 is axially rightward
  • the urging force of the pressure sensitive body 61 (F sp1 ). bel )
  • the biasing force (F sp2 ) of the coil spring 58 is axially left with respect to the main/sub valve body 51 until the step 51a of the main/sub valve body 51 is seated on the main valve seat 53a of the CS valve body 53.
  • the step portion 51a of the main/sub valve body 51 is seated on the main valve seat 53a of the CS valve body 53 at the moment when the step portion 51a of the main/sub valve body 51 is seated on the main valve seat 53a. Since it is held between the flange portion 52b of the pressure-sensitive valve member 52 that moves together with the main/sub valve body 51, it does not act on the main/sub valve body 51.
  • the displacement control valve V is set to the maximum energized state (that is, the energized state with the maximum duty during normal control), and the solenoid 80 is operated.
  • the electromagnetic force (F sol 2) generated by the application of the maximum current to the driving force exceeds the force F rod 2 (F sol 2>F rod 2 ), and thus the main/sub valve body 51 fixed to the drive rod 83.
  • the CS valve 56 is opened apart from the CS valve seat 11a of the two-valve housing 11. According to this, while maintaining the closed state of the main valve 50, the main/sub valve body 51 moves together with the CS valve body 53 by the movement of the drive rod 83 to open the CS valve 56, and the first Pc port 14 and the Ps port.
  • a first Pc-Ps flow path (illustrated by a solid arrow in FIG. 6) that communicates 13 with each other, that is, by communicating the control chamber 4 and the suction chamber 3, the control pressure Pc is quickly lowered and the control pressure Pc Since the suction pressure Ps can be maintained at a uniform pressure, the capacity control valve V with high compression efficiency can be provided.
  • the CS valve 56 can be opened and the first Pc port 14 and the Ps port 13 can be communicated by setting the maximum displacement of the displacement control valve V. It is possible to provide the capacity control valve V having an excellent fluid discharge function at the time of starting.
  • FIG. 7 The horizontal axis of FIG. 7 indicates the stroke position where the main/sub valve body 51 moves in accordance with the current applied to the solenoid 80.
  • the CS valve 56 is closed and the opening area of the main valve 50 is maximum.
  • the opening area of the main valve 50 (Pd-Pc flow path) linearly decreases according to the stroke position of the main/sub valve body 51 due to the current applied to the solenoid 80.
  • the CS valve 56 is maintained in the closed state.
  • the main valve 50 and the CS valve 56 are closed.
  • the main valve 50 is maintained in the closed state, and the CS valve 56 (first Pc-Ps flow path is changed according to the stroke position of the main/sub valve body 51).
  • the opening area of) increases linearly.
  • the biasing force of the bellows core 62 and the coil spring 63 forming the pressure sensitive body 61 is set to the suction pressure Ps when the displacement control valve V is started or during normal control.
  • the force based on the pressure that is, the suction pressure Ps in the intermediate communication passage 57 acting on the Ps pressure receiving surface 70b of the adapter 70 of the pressure sensitive body 61 is higher, the pressure sensitive body 61 contracts to cause the shaft of the adapter 70 to contract.
  • the outer diameter portion 70a of the right end surface in the direction is separated from the pressure-sensitive valve seat 52a of the pressure-sensitive valve member 52 to open the pressure-sensitive valve 54 to communicate the second Pc port 15 and the Ps port 13 with each other in the second Pc-Ps flow path ( 8 and 9, the control pressure Pc is quickly reduced to form the control pressure Pc and the suction pressure Ps by connecting the control chamber 4 and the suction chamber 3 via the intermediate communication passage 57. Since it is possible to maintain the pressure equalized, it is possible to provide the capacity control valve V having a stable fluid discharge function at the time of startup and compression performance. In particular, as shown in FIG.
  • the CS valve 56 is opened with the capacity control valve V set to the maximum energization state, and the pressure sensitive valve 54 is opened by a predetermined suction pressure Ps. Since the Ps flow path can be communicated with each other, the fluid discharge function at the time of startup can be further enhanced.
  • the main/sub valve body 51 moves axially leftward to open the sub valve 55. Therefore, when the pressure sensitive valve 54 is opened by a predetermined suction pressure Ps.
  • the intermediate communication passage 57 is enabled so that the pressure sensitive chamber 60 and the Ps port 13 can communicate with each other.
  • the CS valve body 53 is externally fitted to the main/sub valve body 51 and the main valve seat 53a is formed in the inner diameter portion of the CS valve body 53, the displacement control valve V having the CS valve 56 can be more simply.
  • the main and sub valve bodies 51 can be moved together with the CS valve body 53 while the closed state of the main valve 50 is reliably maintained while being made compact.
  • a main valve seat 53a that constitutes the main valve 50 is formed on the inner diameter portion at the axial right end that is one end of the CS valve body 53, and the CS valve 56 is formed on the outer diameter side by the outer diameter portion 53b and the CS valve seat 11a.
  • the CS valve body 53 is biased by the coil spring 58 rightward in the axial direction, which is the closing direction of the CS valve 56, the CS valve body 53 is reliably moved to the closed position due to the decrease in the current value. It is possible to immediately return from the maximum energized state with the maximum duty to the energized state below that (duty control).
  • the CS valve body 53 has the control pressure Pc supplied from the first Pc port 14 to the third valve chamber 40 introduced to the right end side in the axial direction, which is the one end side, and the other end.
  • the control pressure Pc supplied to the pressure sensing chamber 60 from the second Pc port 15 is introduced to the left side in the axial direction, which is the side, so that the control pressure Pc can be applied to the CS valve body 53 from both ends in the axial direction. Since it is possible to move the CS valve body 53 together with the main and sub valve bodies 51 while suppressing the influence of pressure, it is possible to perform precise valve body control according to the current applied to the solenoid 80.
  • the control pressure Pc acting on both axial ends of the CS valve body 53 is canceled, so that more precise valve body control can be performed.
  • the mode in which the pressure Pc is canceled has been described, the invention is not limited to this.
  • the effective area A at the axial left end is set to be larger than the effective area B at the axial right end (A>B).
  • the control pressure Pc may be actuated rightward in the axial direction, which is the valve opening direction, and the driving force of the solenoid 80 may be adjusted to change the control characteristic of the main/sub valve body 51.
  • the control characteristic of the main/sub valve body 51 may be changed by changing the spring constant of the coil spring 58.
  • the opening/closing timing of the main valve 50 and the CS valve 56 depending on the stroke position of the main/sub valve body 51 based on the driving force of the solenoid 80 is determined by the axial arrangement of the CS valve body 53 with respect to the main/sub valve body 51 and the second valve. It may be appropriately adjusted by changing the axial formation position of the CS valve seat 11a in the housing 11 or the size and shape of the CS valve body 53.
  • the CS valve 56 which moves the CS valve 56 relative to the main/sub valve body 51, is brought into contact with and separated from the CS valve seat 11a in the second valve housing 11, has been described.
  • the CS valve may have a spool valve structure.
  • both may be integrally formed.
  • the sub valve 55 may not be provided, and the axial right end of the main and sub valve body 51 may function as a supporting member that receives a load in the axial direction, and the sealing function is not necessarily required.
  • first valve housing 10 and the second valve housing 11 that form the valve housing may be integrally formed.
  • the pressure sensitive body 61 may be one in which the bellows core 62 has an urging force without using a coil spring inside.
  • first valve housing (valve housing) 11 Second valve housing (valve housing) 11a CS valve seat 12 Pd port (discharge port) 13 Ps port (suction port) 14 1st Pc port (control port) 15 2nd Pc port 16 Ps communication hole 20 1st valve chamber 30 2nd valve chamber 40 3rd valve chamber 50 Main valve 51 Main sub valve body (main valve body) 51a Step 51b Axial right end 52 Pressure sensitive valve member 52a Pressure sensitive valve seat (open/close valve seat) 53 CS valve body 53a Main valve seat 53b Outer diameter portion 54 Pressure sensitive valve (open/close valve) 55 Sub valve 56 CS valve 57 Intermediate communication passage (CS communication passage) 58 Coil spring (biasing means) 60 Pressure sensitive chamber (control fluid supply chamber) 61 Pressure-sensitive body (open/close valve body) 62 Bellows core 63 Coil spring 70 Adapter 70a Outer diameter portion 70b Ps pressure receiving surface 80 Solenoid 82 Fixed iron core 82a

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Magnetically Actuated Valves (AREA)
  • Compressors, Vaccum Pumps And Other Relevant Systems (AREA)
  • Control Of Positive-Displacement Pumps (AREA)

Abstract

起動時の流体排出機能に優れ、かつ高圧縮効率となる容量制御弁を提供する。 吐出ポート12、吸入ポート13および制御ポート14が形成されたバルブハウジング10,11と、ソレノイド80により駆動されるロッド83と、ロッド83の移動により吐出ポート12と制御ポート14との連通を開閉する主弁座53aと主弁体51とにより構成される主弁50と、を備える容量制御弁Vであって、制御流体供給室60と吸入ポート13との間を連通するCS連通路57の連通を開閉する開閉弁座52aと閉弁方向に付勢される開閉弁体61とにより構成される開閉弁54と、制御ポート14と吸入ポート13との連通を開閉するCS弁座11aとCS弁体53とにより構成されるCS弁56を備え、CS弁体53は、主弁体51に対して相対移動可能に配置され、主弁50の閉塞状態を維持したままロッド83の移動により主弁体51とCS弁体53とが共に移動する。

Description

容量制御弁
 本発明は、作動流体の容量を可変制御する容量制御弁に関し、例えば、自動車の空調システムに用いられる容量可変型圧縮機の吐出量を圧力に応じて制御する容量制御弁に関する。
 自動車等の空調システムに用いられる容量可変型圧縮機は、エンジンにより回転駆動される回転軸、回転軸に対して傾斜角度を可変に連結された斜板、斜板に連結された圧縮用のピストン等を備え、斜板の傾斜角度を変化させることにより、ピストンのストローク量を変化させて流体の吐出量を制御するものである。この斜板の傾斜角度は、電磁力により開閉駆動される容量制御弁を用いて、流体を吸入する吸入室の吸入圧力Ps、ピストンにより加圧された流体を吐出する吐出室の吐出圧力Pd、斜板を収容した制御室の制御圧力Pcを利用しつつ、制御室内の圧力を適宜制御することで連続的に変化させ得るようになっている。
 容量可変型圧縮機の連続駆動時において、容量制御弁は、制御コンピュータにより通電制御され、ソレノイドで発生する電磁力により弁体を軸方向に移動させ、主弁を開閉して容量可変型圧縮機の制御室の制御圧力Pcを調整する通常制御を行っている。
 容量制御弁の通常制御時においては、容量可変型圧縮機における制御室の圧力が適宜制御されており、回転軸に対する斜板の傾斜角度を連続的に変化させることにより、ピストンのストローク量を変化させて吐出室に対する流体の吐出量を制御し、空調システムが所望の冷却能力となるように調整している。また、容量可変型圧縮機を最大容量で駆動する場合には、容量制御弁の主弁を閉塞して制御室の圧力を低くすることで、斜板の傾斜角度を最大とするようになっている。
 また、容量制御弁の制御ポートと吸入ポートとの間を連通させる補助連通路を形成し、起動時に容量可変型圧縮機の制御室の冷媒を制御ポート、補助連通路、吸入ポートを通して容量可変型圧縮機の吸入室へ排出するようにして、起動時に制御室の圧力を迅速に低下させることで、容量可変型圧縮機の応答性を向上させるものも知られている(特許文献1参照)。
特許第5167121号公報(第7頁、第2図)
 しかしながら、特許文献1にあっては、起動時の流体排出機能に優れるものの、補助連通路が常に連通しているため、容量可変型圧縮機の連続駆動時において、補助連通路を介して制御ポートから吸入ポートに冷媒が流れ込むことにより、圧縮効率を悪化させる虞があった。
 本発明は、このような問題点に着目してなされたもので、起動時の流体排出機能に優れ、かつ高圧縮効率となる容量制御弁を提供することを目的とする。
 前記課題を解決するために、本発明の容量制御弁は、
 吐出圧力の吐出流体が通過する吐出ポート、吸入圧力の吸入流体が通過する吸入ポートおよび制御圧力の制御流体が通過する制御ポートが形成されたバルブハウジングと、
 ソレノイドにより駆動されるロッドと、
 前記ロッドの移動により前記吐出ポートと前記制御ポートとの連通を開閉する主弁座と主弁体とにより構成される主弁と、を備える容量制御弁であって、
 前記バルブハウジングに形成され制御流体が供給される制御流体供給室と前記吸入ポートとの間を連通するCS連通路の連通を開閉する開閉弁座と閉弁方向に付勢される開閉弁体とにより構成される開閉弁と、
 前記制御ポートと前記吸入ポートとの連通を開閉するCS弁座とCS弁体とにより構成されるCS弁と、を備え、
 前記CS弁体は、前記主弁体に対して相対移動可能に配置され、
 前記主弁の閉塞状態を維持したまま前記ロッドの移動により前記主弁体と前記CS弁体とが共に移動する。
 これによれば、主弁体はCS弁体に対して相対移動可能に配置されていることにより、通常制御時においてCS弁が閉塞された状態で主弁を開閉制御することができるとともに、最大通電状態では主弁の閉塞状態を維持したままロッドの移動により主弁体がCS弁体と共に移動してCS弁を開放し制御ポートと吸入ポートを連通させることにより、制御圧力を低下させることができるため、起動時の流体排出機能に優れ、かつ高圧縮効率となる容量制御弁を提供できる。加えて、起動時や通常制御時等に、CS連通路における所定の吸入圧力に応じて開閉弁体を開弁方向に作動させてCS連通路を介して制御流体供給室と吸入ポートとを連通させることにより、制御圧力を低下させることができるため、安定した起動時の流体排出機能と圧縮性能を有する容量制御弁を提供できる。
 前記CS弁体は前記主弁体に外嵌されているとともに、前記CS弁体の内径部には前記主弁座が形成されていてもよい。
 これによれば、CS弁体に主弁体を挿通させることにより、CS弁を有する容量制御弁をコンパクトに構成できるとともに、主弁の閉塞状態を確実に維持したまま主弁体をCS弁体と共に移動させることができる。
 前記主弁座は、前記CS弁体の一端に形成され、その外径側には前記CS弁座が構成されていてもよい。
 これによれば、CS弁体の一端における内径部に主弁座が形成され、その外径側にCS弁座が構成されることにより、主弁およびCS弁の開閉による流路の切り換えがスムーズに行われるため、応答性が良い。
 前記CS弁体は、付勢手段により前記CS弁の閉弁方向に付勢されていてもよい。
 これによれば、CS弁体を確実に閉弁位置に移動させることができるため、最大通電状態から通常制御にすぐに復帰させることができる。
 前記CS弁体は、その一端側に前記制御ポートからの制御流体が導入され、他端側に前記制御流体供給室に供給される制御流体が導入されていてもよい。
 これによれば、CS弁体に対して両端から制御圧力が作用することにより、圧力の影響を抑えた状態でCS弁体を主弁体と共に移動させることができるため、ソレノイドへの印加電流に応じた精密な弁体制御を行うことができる。
 前記CS弁体は、その両端の有効面積が同じであってもよい。
 これによれば、CS弁体の両端に作用する制御圧力がキャンセルされるため、より精密な弁体制御を行うことができる。
 前記主弁体は、前記CS連通路と前記吸入ポートとの連通を開閉する副弁を構成していてもよい。
 これによれば、起動時や通常制御時等に、主弁体の移動により副弁を開弁させることができるため、CS連通路を有効化することができる。
本発明に係る実施例の容量制御弁が組み込まれる斜板式容量可変型圧縮機を示す概略構成図である。 実施例の容量制御弁の非通電状態において主弁が開放され、CS弁が閉塞された様子を示す断面図である。 実施例の容量制御弁の通電状態(通常制御時)において主弁およびCS弁が閉塞されたときの圧力分布を示す断面図である。尚、圧力分布を示すために、各部材の断面の表示を省略している。 実施例の容量制御弁の非通電状態において主弁が開放され、CS弁が閉塞された様子を示す図2の拡大断面図である。 実施例の容量制御弁の通電状態(通常制御時)において主弁およびCS弁が閉塞された様子を示す拡大断面図である。 実施例の容量制御弁の通電状態(最大通電状態)において主弁が閉塞され、CS弁が開放された様子を示す拡大断面図である。 実施例の容量制御弁における主副弁体のストローク位置に対する主弁の開閉状態と、CS弁の開閉状態を説明する図である。 実施例の容量制御弁の通電状態(起動時や通常制御時等)において主弁およびCS弁が閉塞され、所定の吸入圧力により感圧弁が開放された様子を示す拡大断面図である。 実施例の容量制御弁の通電状態(最大通電状態)において主弁が閉塞され、CS弁が開放され、所定の吸入圧力により感圧弁が開放された様子を示す拡大断面図である。
 本発明に係る容量制御弁を実施するための形態を実施例に基づいて以下に説明する。
 実施例に係る容量制御弁につき、図1から図9を参照して説明する。以下、図2の正面側から見て左右側を容量制御弁の左右側として説明する。
 本発明の容量制御弁Vは、自動車等の空調システムに用いられる容量可変型圧縮機Mに組み込まれ、冷媒である作動流体(以下、単に「流体」と表記する)の圧力を可変制御することにより、容量可変型圧縮機Mの吐出量を制御し空調システムを所望の冷却能力となるように調整している。
 先ず、容量可変型圧縮機Mについて説明する。図1に示されるように、容量可変型圧縮機Mは、吐出室2と、吸入室3と、制御室4と、複数のシリンダ4aと、を備えるケーシング1を有している。尚、容量可変型圧縮機Mには、制御室4と吸入室3とを直接連通する図示しない連通路が設けられており、この連通路には吸入室3と制御室4との圧力を平衡調整させるための固定オリフィスが設けられている。
 また、容量可変型圧縮機Mは、ケーシング1の外部に設置される図示しないエンジンにより回転駆動される回転軸5と、制御室4内において回転軸5に対してヒンジ機構8により偏心状態で連結される斜板6と、斜板6に連結され各々のシリンダ4a内において往復動自在に嵌合された複数のピストン7と、を備え、電磁力により開閉駆動される容量制御弁Vを用いて、流体を吸入する吸入室3の吸入圧力Ps、ピストン7により加圧された流体を吐出する吐出室2の吐出圧力Pd、斜板6を収容した制御室4の制御圧力Pcを利用しつつ、制御室4内の圧力を適宜制御することで斜板6の傾斜角度を連続的に変化させることにより、ピストン7のストローク量を変化させて流体の吐出量を制御している。尚、説明の便宜上、図1においては、容量可変型圧縮機Mに組み込まれる容量制御弁Vの図示を省略している。
 具体的には、制御室4内の制御圧力Pcが高圧であるほど、回転軸5に対する斜板6の傾斜角度は小さくなりピストン7のストローク量が減少するが、一定以上の圧力となると、回転軸5に対して斜板6が略垂直状態、すなわち垂直よりわずかに傾斜した状態となる。このとき、ピストン7のストローク量は最小となり、ピストン7によるシリンダ4a内の流体に対する加圧が最小となることで、吐出室2への流体の吐出量が減少し、空調システムの冷却能力は最小となる。一方で、制御室4内の制御圧力Pcが低圧であるほど、回転軸5に対する斜板6の傾斜角度は大きくなりピストン7のストローク量が増加するが、一定以下の圧力となると、回転軸5に対して斜板6が最大傾斜角度となる。このとき、ピストン7のストローク量は最大となり、ピストン7によるシリンダ4a内の流体に対する加圧が最大となることで、吐出室2への流体の吐出量が増加し、空調システムの冷却能力は最大となる。
 図2に示されるように、容量可変型圧縮機Mに組み込まれる容量制御弁Vは、ソレノイド80を構成するコイル86に通電する電流を調整し、容量制御弁Vにおける主弁50、副弁55、CS弁56、すなわち制御ポートと吸入ポートとの連通を開閉する弁の開閉制御を行うとともに、CS連通路としての中間連通路57における吸入圧力Psにより開閉弁としての感圧弁54の開閉制御を行い、制御室4内に流入する、または制御室4から流出する流体を制御することで制御室4内の制御圧力Pcを可変制御している。尚、中間連通路57は、主弁体としての主副弁体51および感圧弁部材52の内部に形成される中空孔が接続されることにより軸方向に亘って貫通している。
 本実施例において、主弁50は、主副弁体51とCS弁体53の一端である軸方向右端の内径部に形成された主弁座53aとにより構成されており、主副弁体51の軸方向略中央に形成される段部51aが主弁座53aに接離することで、主弁50が開閉するようになっている。感圧弁54は、開閉弁体としての感圧体61を構成するアダプタ70と感圧弁部材52の軸方向左端に形成される開閉弁座としての感圧弁座52aとにより構成されており、アダプタ70の軸方向右端面の外径部70aが感圧弁座52aに接離することで、感圧弁54が開閉するようになっている。副弁55は、主副弁体51と固定鉄心82の開口端面である軸方向左端面の内径部に形成される副弁座82aとにより構成されており、主副弁体51の軸方向右端51bが副弁座82aに接離することで、副弁55が開閉するようになっている。CS弁56は、CS弁体53とバルブハウジングを構成する第2バルブハウジング11の軸方向左端の内径部に形成されるCS弁座11aとにより構成されており、CS弁体53の一端である軸方向右端の外径部53bがCS弁座11aに接離することで、CS弁56が開閉するようになっている。
 次いで、容量制御弁Vの構造について説明する。図2に示されるように、容量制御弁Vは、金属材料または樹脂材料により形成されたバルブハウジングとしての第1バルブハウジング10および第2バルブハウジング11と、第1バルブハウジング10および第2バルブハウジング11内に軸方向に往復動自在に配置された主副弁体51、感圧弁部材52、CS弁体53と、中間連通路57における吸入圧力Psに応じて主副弁体51、感圧弁部材52、CS弁体53に軸方向右方への付勢力を付与する感圧体61と、第2バルブハウジング11に接続され主副弁体51、感圧弁部材52、CS弁体53に駆動力を及ぼすソレノイド80と、から主に構成されている。
 図2に示されるように、ソレノイド80は、軸方向左方に開放する開口部81aを有するケーシング81と、ケーシング81の開口部81aに対して軸方向左方から挿入されケーシング81の内径側に固定される略円筒形状の固定鉄心82と、固定鉄心82に挿通され軸方向に往復動自在、かつその軸方向左端部83aが主副弁体51に挿嵌・固定されるロッドとしての駆動ロッド83と、駆動ロッド83の軸方向右端部83bが挿嵌・固定される可動鉄心84と、固定鉄心82と可動鉄心84との間に設けられ可動鉄心84を主弁50の開弁方向である軸方向右方に付勢するコイルスプリング85と、固定鉄心82の外側にボビンを介して巻き付けられた励磁用のコイル86と、から主に構成されている。
 ケーシング81には、軸方向左端の内径側が軸方向右方に凹む凹部81bが形成されており、この凹部81bに対して第2バルブハウジング11の軸方向右端部が略密封状に挿嵌・固定されている。
 固定鉄心82は、鉄やケイ素鋼等の磁性材料である剛体から形成され、軸方向に延び駆動ロッド83が挿通される挿通孔82cが形成される円筒部82bと、円筒部82bの軸方向左端部の外周面から外径方向に延びる環状のフランジ部82dとを備え、固定鉄心82の開口端面の内径部、すなわち円筒部82bの軸方向左端面には副弁座82aが形成されている。
 また、固定鉄心82は、フランジ部82dの軸方向右端面をケーシング81の凹部81bの底面に当接させた状態で、ケーシング81の凹部81bに対して挿嵌・固定される第2バルブハウジング11の軸方向右端の内径側が軸方向左方に凹む凹部11dに対して略密封状に挿嵌・固定されている。
 駆動ロッド83は、円柱状に形成され、主副弁体51に挿嵌・固定される軸方向左端部83aおよび可動鉄心84に挿嵌・固定される軸方向右端部83bが板状を成している。
 容量制御弁Vには、ケーシング81に対して固定鉄心82および第2バルブハウジング11が取り付けられることにより、固定鉄心82のフランジ部82dの軸方向左端面と第2バルブハウジング11の凹部11dの内周面とにより空間S1が形成されている。また、容量制御弁Vには、固定鉄心82の円筒部82bに軸方向右方から有底円筒形状のカップ87が略密封状に外嵌されることにより、円筒部82bの軸方向右端とカップ87の内周面とにより空間S2が形成されている。また、空間S1は、固定鉄心82の挿通孔82cの内周面と駆動ロッド83の外周面との間の隙間を介して空間S2と連通しており、空間S1,S2および固定鉄心82の挿通孔82cは、主副弁体51の背面側が収容される収容室90を構成している。尚、空間S2に配置される可動鉄心84には、軸方向に延びる貫通孔84aが設けられ、この貫通孔84aに軸方向左方から駆動ロッド83の板状の軸方向右端部83bが挿嵌・固定されることにより、駆動ロッド83の軸方向右端部83bの板面と貫通孔84aの内周面との間が連通されており、可動鉄心84の軸方向右端とカップ87の底面との間に流体が常時回り込めるようになっている。
 図2に示されるように、第1バルブハウジング10には、容量可変型圧縮機Mの吐出室2と連通する吐出ポートとしてのPdポート12と、容量可変型圧縮機Mの吸入室3と連通する吸入ポートとしてのPsポート13と、容量可変型圧縮機Mの制御室4と連通する第2Pcポート15と、が形成されている。また、第2バルブハウジング11には、容量可変型圧縮機Mの制御室4と連通する制御ポートとしての第1Pcポート14が形成されている。尚、これらのポートは、ソレノイド80側である軸方向右側から、第1Pcポート14、Psポート13、Pdポート12、第2Pcポート15の順に配置されている。
 また、第1バルブハウジング10は、その軸方向右端が軸方向左方に凹むことにより凹部10aが形成され、この凹部10aに第2バルブハウジング11の軸方向左端部が軸方向右方から挿嵌されることにより一体に略密封状態で接続固定されている。また、第1バルブハウジング10は、その軸方向左端部に仕切調整部材17が略密封状に圧入されることにより有底略円筒形状を成している。尚、仕切調整部材17は、第1バルブハウジング10の軸方向における設置位置を調整することで、感圧体61の付勢力を調整できるようになっている。
 また、第1バルブハウジング10の内部には、Pdポート12と連通されCS弁体53の径方向に貫通するPd連通孔53cが配置される第1弁室20と、Psポート13と連通されCS弁体53の一端部としての軸方向右端部が配置される第2弁室30と、第2Pcポート15と連通され感圧体61が配置される制御流体供給室としての感圧室60と、が形成されている。また、第2バルブハウジング11の内部には、第1Pcポート14と連通され主副弁体51の軸方向右端側の大径部51cおよび中径部51d(図4~図6、図8および図9参照)が配置される第3弁室40が形成されている。
 また、第1バルブハウジング10および第2バルブハウジング11の内部には、主副弁体51およびこの主副弁体51に接続された感圧弁部材52と、CS弁体53とが軸方向に往復動自在に配置され、第1バルブハウジング10の内周面には、軸方向略中央にCS弁体53の外周面が略密封状態で摺動可能な小径のガイド孔10b,10cが形成されている。尚、第1バルブハウジング10のガイド孔10b,10cの内径は、略同一となっている。また、第2バルブハウジング11の内周面には、軸方向右端部に主副弁体51の外周面が略密封状態で摺動可能な小径のガイド孔11bが形成されている。さらに、第2バルブハウジング11の軸方向左端の内径部には、CS弁体53の軸方向右端の外径部53bが当接可能なCS弁座11aが形成されている。
 第1バルブハウジング10の内部において、第1弁室20と第2弁室30は、CS弁体53の外周面とガイド孔10cの内周面により仕切られ、第1弁室20と感圧室60は、CS弁体53の外周面とガイド孔10bの内周面により仕切られている。尚、ガイド孔10b,10cの内周面とCS弁体53の外周面との間は、径方向に僅かに離間することにより微小な隙間が形成されており、CS弁体53は、第1バルブハウジング10に対して軸方向に円滑に相対移動可能となっている。
 また、第2バルブハウジング11の内部において、第3弁室40と収容室90(空間S1)は、主副弁体51の大径部51cの外周面とガイド孔11bの内周面により仕切られている。尚、ガイド孔11bの内周面と主副弁体51の外周面との間は、径方向に僅かに離間することにより微小な隙間が形成されており、主副弁体51は、第2バルブハウジング11に対して軸方向に円滑に相対移動可能となっている。
 また、第3弁室40は、第2バルブハウジング11の軸方向左端部において軸孔11cの内周面と主副弁体51の中径部51dの外周面との間に形成される径方向の隙間を介して、第1弁室20または第2弁室30と連通可能となっている。詳しくは、図2および図4に示されるように、主弁50が開放され、CS弁56が閉塞されたときには、第1弁室20と第3弁室40が連通され、第3弁室40と第2弁室30は隔離されている。また、図3、図5および図8に示されるように、主弁50およびCS弁56が閉塞されたときには、第1弁室20と第3弁室40は隔離され、かつ第3弁室40と第2弁室30は隔離されている。また、図6および図9に示されるように、主弁50が閉塞され、CS弁56が開放されたときには、第1弁室20と第3弁室40は隔離され、第3弁室40と第2弁室30は連通されている。
 また、第2バルブハウジング11には、第3弁室40および第1Pcポート14に干渉しない位置で軸方向に貫通するPs連通孔16が設けられており、第2弁室30がPs連通孔16を介して収容室90、すなわち空間S1と連通している。これにより、Psポート13からの吸入圧力Psが第2弁室30およびPs連通孔16を介して収容室90に供給されるようになっている。尚、Ps連通孔16の流路面積は、第2弁室30と収容室90における吸入圧力Psを略同一にできる大きさ、例えば後述する第1のPc-Ps流路の流路面積の半分以上の流路面積や孔の直径1mm以上に設定されることが好ましい。
 図4~図6、図8および図9に示されるように、主副弁体51は、第2バルブハウジング11のガイド孔11bに挿通される大径部51cと、大径部51cの軸方向左側において大径部51cよりも小径に形成され第2バルブハウジング11の軸孔11cに挿通される中径部51dと、中径部51dの軸方向左側において中径部51dよりも小径に形成され円筒形状に構成されるCS弁体53が略密封状に外嵌される小径部51eと、から段付き略円筒形状に構成されている。尚、主副弁体51の軸方向右端部、すなわち大径部51cの軸方向右端部には、ソレノイド80を構成する駆動ロッド83の軸方向左端部83aが挿嵌・固定されるとともに、主副弁体51の軸方向左端部、すなわち小径部51eの軸方向左端部には、略円筒形状かつ側面視略砲台形状に構成される別体の感圧弁部材52が略密封状に挿嵌・固定されており、共に軸方向に移動可能となっている。
 また、主副弁体51の大径部51cの軸方向右端部には、駆動ロッド83の板状の軸方向左端部83aが挿嵌・固定されることにより、駆動ロッド83の軸方向左端部83aの板面と主副弁体51の大径部51cの内周面との間が連通されており、空間S1から中間連通路57に流体が常時回り込めるようになっている。
 また、主副弁体51の軸方向略中央、すなわち中径部51dの軸方向左端に形成される段部51aは、小径部51eが形成される軸方向左方に向けて先細りするテーパ状に形成されており、CS弁体53の軸方向右端の内径部に形成された主弁座53aに対して接離するようになっている。
 また、主副弁体51は、小径部51eの軸方向左端部の外周面がCS弁体53の軸方向左端部の内周面と略密封状態で摺動可能であり、主副弁体51とCS弁体53との間に形成される径方向の隙間と感圧室60とが仕切られている。尚、主副弁体51の小径部51eの軸方向左端部の外周面とCS弁体53の軸方向左端部の内周面との間は、径方向に僅かに離間することにより微小な隙間が形成されており、主副弁体51は、CS弁体53に対して軸方向に円滑に相対移動可能となっている。
 また、主副弁体51の小径部51eは、軸方向右端部から軸方向略中央にかけて外周面が内径側に凹むくびれ状に形成されるとともに、小径部51eに外嵌されるCS弁体53の軸方向略中央の内周面が外径側に凹むくびれ状に形成されることにより、主弁50の開弁時におけるPdポート12から第1Pcポート14へのPd-Pc流路(図4において実線矢印で図示)の流路面積を大きく確保できるようになっている。
 図4~図6、図8および図9に示されるように、主副弁体51の小径部51eの軸方向左端部には、付勢手段としてのコイルスプリング58が外嵌され、コイルスプリング58の軸方向左端は、感圧弁部材52のフランジ部52bの軸方向右側面に当接し、コイルスプリング58の軸方向右端は、CS弁体53の他端である軸方向左端に当接している。尚、コイルスプリング58は、CS弁体53の一端である軸方向右端の外径部53bを第2バルブハウジング11の軸方向左端の内径部に形成されるCS弁座11aに当接させるように、CS弁56の閉弁方向である軸方向右方への付勢力を付与している。また、コイルスプリング58は、感圧体61に設けられるコイルスプリング63よりもバネ定数が小さく設定されている。
 図2~図6、図8および図9に示されるように、感圧体61は、コイルスプリング63が内蔵されるベローズコア62と、ベローズコア62の軸方向右端に設けられる円板状のアダプタ70と、から主に構成され、ベローズコア62の軸方向左端は、仕切調整部材17に固定されている。
 また、感圧体61は、感圧室60内に配置されており、コイルスプリング63とベローズコア62の付勢力により、アダプタ70の軸方向右端面の外径部70aを感圧弁部材52の軸方向左端の感圧弁座52aに着座させるようになっている。すなわち、駆動ロッド83、主副弁体51、感圧弁部材52を介してソレノイド80の軸方向左方への駆動力を感圧体61に作用させるとともに、感圧体61から軸方向右方への反力を受けられるようになっている。
 ここで、容量制御弁Vにおける圧力分布について図3を用いて説明する。尚、図3は、容量制御弁Vの通電状態(通常制御時)において、主弁50、CS弁56、感圧弁54が閉塞され、副弁55が開放された状態を示している。図3に示されるように、第1Pcポート14から導入される制御圧力Pcは、第3弁室40から第2バルブハウジング11の軸孔11cの内周面と主副弁体51の中径部51dの外周面との間に形成される径方向の隙間を介して閉塞された主弁50の軸方向右側かつ閉塞されたCS弁56の内径側まで分布している。また、Psポート13から導入される吸入圧力Psは、第2弁室30において閉塞されたCS弁56の外径側まで分布するとともに、第2弁室30から第2バルブハウジング11のPs連通孔16を介して収容室90に導入され、主副弁体51および感圧弁部材52の内部に形成される中間連通路57を介して感圧体61のアダプタ70の軸方向右端面に形成されるPs受圧面70bまで分布している。また、Pdポート12から導入される吐出圧力Pdは、第1弁室20からCS弁体53のPd連通孔53cおよびCS弁体53の内周面と主副弁体51の外周面との間に形成される径方向の隙間を介して閉塞された主弁50の軸方向左側まで分布している。また、第2Pcポート15から導入される制御圧力Pcは、感圧室60に分布している。尚、図3に示されるように、ソレノイド80の駆動力により共に移動する可動鉄心84、駆動ロッド83、主副弁体51、感圧弁部材52に対して軸方向両端から吸入圧力Psを作用させることにより、圧力の影響を抑えた状態でソレノイド80への印加電流に応じた精密な弁体制御を行うことができるようになっている。
 次いで、容量制御弁Vの動作、主に主弁50およびCS弁56の開閉動作について説明する。
 先ず、容量制御弁Vの非通電状態について説明する。図2および図4に示されるように、容量制御弁Vは、非通電状態において、可動鉄心84がソレノイド80を構成するコイルスプリング85の付勢力やコイルスプリング63とベローズコア62の付勢力により軸方向右方へと押圧されることで、駆動ロッド83、主副弁体51、感圧弁部材52が軸方向右方へ移動し、主副弁体51の軸方向右端51bが固定鉄心82の副弁座82aに着座し副弁55が閉塞されるとともに、主副弁体51の段部51aがCS弁体53の軸方向右端の内径部に形成された主弁座53aから離間し、主弁50が開放されている。
 また、容量制御弁Vは、非通電状態において、主副弁体51の段部51aがCS弁体53の主弁座53aから離間しており、CS弁体53にはコイルスプリング58の付勢力(Fsp2)が作用してCS弁56の閉弁方向である軸方向右方へと押圧されることで、CS弁体53の軸方向右端の外径部53bが第2バルブハウジング11の軸方向左端の内径部に形成されるCS弁座11aに着座し、CS弁56が閉塞されている。
 このとき、主副弁体51には、軸方向左方に向けて感圧弁部材52のフランジ部52bを介してコイルスプリング58の付勢力(Fsp2)が作用し、軸方向右方に向けてソレノイド80を構成する駆動ロッド83を介してコイルスプリング85の付勢力(Fsp1)と、感圧弁部材52を介して感圧体61の付勢力(Fbel)(すなわち、ベローズコア62およびコイルスプリング63の付勢力)が作用している(すなわち、右向きを正として、主副弁体51には、力Frod1=Fsp1+Fbel-Fsp2が作用している)。尚、圧力の影響は小さいので省略している。
 次に、容量制御弁Vの通電状態について説明する。図5に示されるように、容量制御弁Vは、通電状態(すなわち通常制御時、いわゆるデューティ制御時)において、ソレノイド80に電流が印加されることにより発生する電磁力(Fsol1)が力Frod1を上回る(Fsol1>Frod1)と、可動鉄心84が固定鉄心82側、すなわち軸方向左側に引き寄せられ、可動鉄心84に固定された駆動ロッド83、主副弁体51、感圧弁部材52が軸方向左方へ共に移動し、感圧体61が軸方向左方に押圧されて収縮することにより、主副弁体51の軸方向右端51bが固定鉄心82の副弁座82aから離間し副弁55が開放されるとともに、主副弁体51の段部51aがCS弁体53の主弁座53aに着座し、主弁50が閉塞されている。
 このとき、主副弁体51には、軸方向左方に電磁力(Fsol1)、軸方向右方にコイルスプリング85の付勢力(Fsp1)と、感圧体61の付勢力(Fbel)が作用している(すなわち、右向きを正として、主副弁体51には、力Frod2=Fsp1+Fbel-Fsol1が作用している)。尚、コイルスプリング58の付勢力(Fsp2)は、主副弁体51の段部51aがCS弁体53の主弁座53aに着座するまでは、主副弁体51に対して軸方向左方に作用しているが、主副弁体51の段部51aがCS弁体53の主弁座53aに着座した瞬間にCS弁体53およびコイルスプリング58が主副弁体51の段部51aと主副弁体51と共に移動する感圧弁部材52のフランジ部52bとの間に保持されるため、主副弁体51に対して作用しなくなる。
 容量制御弁Vの通常制御において、主弁50の開度や開放時間を調整してPdポート12から第1Pcポート14への流体の流量を制御している場合には、ソレノイド80に電流が印加されることにより発生する電磁力(Fsol1)が力Frod1を上回り(Fsol1>Frod1)、かつ力Frod2を下回る(Fsol1<Frod2)ように電流値が制御されることにより、CS弁56の閉塞が維持された状態で主弁50を開閉制御することができる。
 また、容量可変型圧縮機Mを最大容量で駆動する場合には、図6に示されるように、容量制御弁Vを最大通電状態(すなわち通常制御時における最大デューティの通電状態)とし、ソレノイド80に最大の電流が印加されることにより発生する電磁力(Fsol2)が力Frod2を上回る(Fsol2>Frod2)ことにより、駆動ロッド83に固定された主副弁体51がCS弁体53を軸方向左方へ押し、主副弁体51がCS弁体53と軸方向左方へ共に移動することにより、CS弁体53の軸方向右端の外径部53bが第2バルブハウジング11のCS弁座11aから離間しCS弁56が開放される。これによれば、主弁50の閉塞状態を維持したまま、駆動ロッド83の移動により主副弁体51がCS弁体53と共に移動してCS弁56を開放し、第1Pcポート14とPsポート13を連通させる第1のPc-Ps流路(図6において実線矢印で図示)を形成する、すなわち制御室4と吸入室3を連通させることにより、制御圧力Pcを素早く低下させ制御圧力Pcと吸入圧力Psを均圧に維持することができるため、高圧縮効率となる容量制御弁Vを提供できる。また、容量可変型圧縮機Mの起動時においても、容量制御弁Vを最大通電状態とすることにより、CS弁56を開放し、第1Pcポート14とPsポート13を連通させることができるため、起動時の流体排出機能に優れる容量制御弁Vを提供できる。
 次いで、図7を参照して、主副弁体51のストローク位置に対する主弁50の開閉状態と、CS弁56の開閉状態について説明する。尚、図7の横軸は、ソレノイド80に印加した電流に伴い主副弁体51が移動するストローク位置を示している。図7に示されるように、ソレノイド80への非通電時に相当する主副弁体51のストローク位置がゼロにおいては、CS弁56は閉塞され、主弁50の開口面積は最大となっている。ソレノイド80に印加される電流に伴う主副弁体51のストローク位置に応じて主弁50(Pd-Pc流路)の開口面積は直線状に減少していく。このとき、CS弁56は閉塞状態が維持されている。主副弁体51のストローク位置が点Pに到達すると、主弁50およびCS弁56が閉塞状態となる。そして、主副弁体51のストローク位置が点Pを過ぎると、主弁50は閉塞状態が維持され、主副弁体51のストローク位置に応じてCS弁56(第1のPc-Ps流路)の開口面積は直線状に増加していく。このように、点Pを基準とする主副弁体51のストローク位置により主弁50とCS弁56の開閉の切り換えを行うことができるため、制御性が高められている。
 加えて、図8および図9に示されるように、容量制御弁Vの起動時や通常制御時等に、感圧体61を構成するベローズコア62およびコイルスプリング63の付勢力を吸入圧力Psに基づく力、すなわち感圧体61のアダプタ70のPs受圧面70bに対して作用する中間連通路57内の吸入圧力Psが上回る場合には、感圧体61が収縮することにより、アダプタ70の軸方向右端面の外径部70aが感圧弁部材52の感圧弁座52aから離間し、感圧弁54を開放させて第2Pcポート15とPsポート13とを連通させる第2のPc-Ps流路(図8および図9において実線矢印で図示)を形成する、すなわち中間連通路57を介して制御室4と吸入室3を連通させることにより、制御圧力Pcを素早く低下させ制御圧力Pcと吸入圧力Psを均圧に維持することができるため、安定した起動時の流体排出機能と圧縮性能を有する容量制御弁Vを提供できる。特に、図8に示されるように、容量制御弁Vを最大通電状態としてCS弁56が開弁されるとともに、所定の吸入圧力Psにより感圧弁54が開弁されることにより、2つのPc-Ps流路を連通させることができるため、起動時の流体排出機能をより高めることができる。
 また、起動時や通常制御時等に、主副弁体51が軸方向左方に移動することにより副弁55が開放されるため、所定の吸入圧力Psにより感圧弁54が開放されたときに中間連通路57を感圧室60とPsポート13とを連通できるように有効化されるようになっている。
 また、CS弁体53は主副弁体51に外嵌され、CS弁体53の内径部には主弁座53aが形成されるため、CS弁56を有する容量制御弁Vをより簡素に、かつコンパクトに構成できるとともに、主弁50の閉塞状態を確実に維持したまま主副弁体51をCS弁体53と共に移動させることができる。
 また、CS弁体53の一端である軸方向右端における内径部に主弁50を構成する主弁座53aが形成され、その外径側に外径部53bとCS弁座11aによりCS弁56が構成されることにより、主弁50およびCS弁56の開閉によるPd-Pc流路と第1のPc-Ps流路との切り換えがスムーズに行われるため、応答性が良い。
 また、CS弁体53は、コイルスプリング58によりCS弁56の閉弁方向である軸方向右方に付勢されているため、電流値の低下によりCS弁体53を確実に閉弁位置に移動させることができ、最大デューティの最大通電状態からそれ未満通電状態(デューティ制御)にすぐに復帰させることができる。
 また、図3に示されるように、CS弁体53は、一端側である軸方向右端側に第1Pcポート14から第3弁室40に供給される制御圧力Pcが導入されるとともに、他端側である軸方向左端側に第2Pcポート15から感圧室60に供給される制御圧力Pcが導入されることにより、CS弁体53に対して軸方向両端から制御圧力Pcを作用させることができ、圧力の影響を抑えた状態でCS弁体53を主副弁体51と共に移動させることができるため、ソレノイド80への印加電流に応じた精密な弁体制御を行うことができる。さらに、CS弁体53の他端部である軸方向左端部の有効面積Aと、CS弁体53の一端部である軸方向右端部の有効面積Bが同じ面積(A=B)に設定されることにより、CS弁体53の軸方向両端に作用する制御圧力Pcがキャンセルされるため、より精密な弁体制御を行うことができる。
 以上、本発明の実施例を図面により説明してきたが、具体的な構成はこれら実施例に限られるものではなく、本発明の要旨を逸脱しない範囲における変更や追加があっても本発明に含まれる。
 例えば、前記実施例では、CS弁体53の軸方向両端における有効面積A,Bが同じ(A=B)になるように設定されることにより、CS弁体53の軸方向両端に作用する制御圧力Pcがキャンセルされる態様について説明したが、これに限らず、例えば、CS弁体の軸方向右端の有効面積Bよりも軸方向左端の有効面積Aが大きく(A>B)設定されることにより、主弁50の閉弁時に制御圧力Pcを開弁方向である軸方向右方に作用させ、ソレノイド80の駆動力を調整して主副弁体51の制御特性を変更してもよい。尚、コイルスプリング58のバネ定数を変更することにより、主副弁体51の制御特性を変更してもよい。
 また、ソレノイド80の駆動力に基づく主副弁体51のストローク位置による主弁50およびCS弁56の開閉のタイミングは、主副弁体51に対するCS弁体53の軸方向の配置や第2バルブハウジング11におけるCS弁座11aの軸方向の形成位置、またはCS弁体53の寸法や形状等を変更することにより適宜調整するようにしてもよい。
 また、前記実施例では、CS弁56を主副弁体51に対して相対移動するCS弁体53を第2バルブハウジング11におけるCS弁座11aに接離させることにより構成する例について説明したが、その他構成であってもよく、例えばCS弁はスプール弁構造であってもよい。
 また、主副弁体51およびCS弁体53の外周面と第1バルブハウジング10のガイド孔10b,10cおよび第2バルブハウジング11のガイド孔11bの内周面の少なくとも一方に周方向に延びる溝が形成されていてもよく、これによれば、溝によるラビリンス効果によって主副弁体51と第1バルブハウジング10およびCS弁体53と第2バルブハウジング11との摺動部分におけるシール性を高め、流体の漏れを抑制することができる。
 また、主副弁体51と感圧弁部材52とを別体で構成する例について説明したが、両者は一体に形成されていてもよい。
 また、容量可変型圧縮機Mの制御室4と吸入室3とを直接連通する連通路および固定オリフィスは設けなくてもよい。
 また、前記実施例では、副弁55は設けなくともよく、主副弁体51の軸方向右端は、軸方向の荷重を受ける支持部材として機能すればよく、必ずしも密閉機能は必要ではない。
 また、バルブハウジングを構成する第1バルブハウジング10と、第2バルブハウジング11は一体に形成されていてもよい。
 また、感圧体61は、内部にコイルスプリングを使用せず、ベローズコア62が付勢力を有するものであってもよい。
1        ケーシング
2        吐出室
3        吸入室
4        制御室
10       第1バルブハウジング(バルブハウジング)
11       第2バルブハウジング(バルブハウジング)
11a      CS弁座
12       Pdポート(吐出ポート)
13       Psポート(吸入ポート)
14       第1Pcポート(制御ポート)
15       第2Pcポート
16       Ps連通孔
20       第1弁室
30       第2弁室
40       第3弁室
50       主弁
51       主副弁体(主弁体)
51a      段部
51b      軸方向右端
52       感圧弁部材
52a      感圧弁座(開閉弁座)
53       CS弁体
53a      主弁座
53b      外径部
54       感圧弁(開閉弁)
55       副弁
56       CS弁
57       中間連通路(CS連通路)
58       コイルスプリング(付勢手段)
60       感圧室(制御流体供給室)
61       感圧体(開閉弁体)
62       ベローズコア
63       コイルスプリング
70       アダプタ
70a      外径部
70b      Ps受圧面
80       ソレノイド
82       固定鉄心
82a      副弁座
83       駆動ロッド(ロッド)
84       可動鉄心
85       コイルスプリング
90       収容室
A,B      CS弁体の有効面積
Pc       制御圧力
Pd       吐出圧力
Ps       吸入圧力
S1,S2    空間
V        容量制御弁

Claims (7)

  1.  吐出圧力の吐出流体が通過する吐出ポート、吸入圧力の吸入流体が通過する吸入ポートおよび制御圧力の制御流体が通過する制御ポートが形成されたバルブハウジングと、
     ソレノイドにより駆動されるロッドと、
     前記ロッドの移動により前記吐出ポートと前記制御ポートとの連通を開閉する主弁座と主弁体とにより構成される主弁と、を備える容量制御弁であって、
     前記バルブハウジングに形成され制御流体が供給される制御流体供給室と前記吸入ポートとの間を連通するCS連通路の連通を開閉する開閉弁座と閉弁方向に付勢される開閉弁体とにより構成される開閉弁と、
     前記制御ポートと前記吸入ポートとの連通を開閉するCS弁座とCS弁体とにより構成されるCS弁と、を備え、
     前記CS弁体は、前記主弁体に対して相対移動可能に配置され、
     前記主弁の閉塞状態を維持したまま前記ロッドの移動により前記主弁体と前記CS弁体とが共に移動する容量制御弁。
  2.  前記CS弁体は前記主弁体に外嵌されているとともに、前記CS弁体の内径部には前記主弁座が形成されている請求項1に記載の容量制御弁。
  3.  前記主弁座は、前記CS弁体の一端に形成され、その外径側には前記CS弁座が構成されている請求項2に記載の容量制御弁。
  4.  前記CS弁体は、付勢手段により前記CS弁の閉弁方向に付勢されている請求項1ないし3のいずれかに記載の容量制御弁。
  5.  前記CS弁体は、その一端側に前記制御ポートからの制御流体が導入され、他端側に前記制御流体供給室に供給される制御流体が導入されている請求項1ないし4のいずれかに記載の容量制御弁。
  6.  前記CS弁体は、その両端の有効面積が同じである請求項5に記載の容量制御弁。
  7.  前記主弁体は、前記CS連通路と前記吸入ポートとの連通を開閉する副弁を構成している請求項1ないし6のいずれかに記載の容量制御弁。
PCT/JP2019/047192 2018-12-04 2019-12-03 容量制御弁 WO2020116435A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP19894059.5A EP3892856B1 (en) 2018-12-04 2019-12-03 Capacity control valve
JP2020559213A JP7326329B2 (ja) 2018-12-04 2019-12-03 容量制御弁
CN201980079538.7A CN113167264B (zh) 2018-12-04 2019-12-03 容量控制阀
US17/299,285 US11473684B2 (en) 2018-12-04 2019-12-03 Capacity control valve
KR1020217018244A KR102596905B1 (ko) 2018-12-04 2019-12-03 용량 제어 밸브

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-227597 2018-12-04
JP2018227597 2018-12-04

Publications (1)

Publication Number Publication Date
WO2020116435A1 true WO2020116435A1 (ja) 2020-06-11

Family

ID=70973903

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/047192 WO2020116435A1 (ja) 2018-12-04 2019-12-03 容量制御弁

Country Status (6)

Country Link
US (1) US11473684B2 (ja)
EP (1) EP3892856B1 (ja)
JP (1) JP7326329B2 (ja)
KR (1) KR102596905B1 (ja)
CN (1) CN113167264B (ja)
WO (1) WO2020116435A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3822483B1 (en) 2018-07-12 2024-04-03 Eagle Industry Co., Ltd. Capacity control valve
WO2020153244A1 (ja) * 2019-01-21 2020-07-30 イーグル工業株式会社 容量制御弁

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5167121B2 (ja) 2006-03-15 2013-03-21 イーグル工業株式会社 容量制御弁
WO2013109005A1 (ko) * 2012-01-19 2013-07-25 (주)대정고분자산업 가변용량 압축기의 전자제어밸브
WO2017057160A1 (ja) * 2015-09-29 2017-04-06 株式会社ヴァレオジャパン 可変容量型圧縮機の制御弁
JP2017223348A (ja) * 2016-06-13 2017-12-21 株式会社テージーケー 可変容量圧縮機用制御弁
JP2018021646A (ja) * 2016-08-05 2018-02-08 株式会社鷺宮製作所 感圧制御弁
JP2018145877A (ja) * 2017-03-06 2018-09-20 株式会社豊田自動織機 可変容量型斜板式圧縮機
WO2018207461A1 (ja) * 2017-05-09 2018-11-15 サンデン・オートモーティブコンポーネント株式会社 ソレノイド制御弁及びこれを備えた可変容量圧縮機
WO2019167912A1 (ja) * 2018-02-27 2019-09-06 イーグル工業株式会社 容量制御弁

Family Cites Families (56)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5862775A (ja) 1981-10-08 1983-04-14 Sankyo Seiki Mfg Co Ltd 磁気ストライプ付カ−ドの処理装置
JP3082417B2 (ja) * 1991-09-18 2000-08-28 株式会社豊田自動織機製作所 可変容量型圧縮機
JP3089816B2 (ja) 1992-04-28 2000-09-18 株式会社豊田自動織機製作所 斜板式可変容量圧縮機
JPH06200875A (ja) 1993-01-08 1994-07-19 Toyota Autom Loom Works Ltd 揺動斜板式可変容量圧縮機
JP3242496B2 (ja) 1993-07-06 2001-12-25 株式会社豊田自動織機 可変容量圧縮機の外部切換式容量制御弁
JPH09144929A (ja) 1995-11-16 1997-06-03 Tosok Corp 電磁弁
KR100215157B1 (ko) * 1996-06-19 1999-08-16 이소가이 지세이 가변용량 압축기 및 그 부착방법
US6010312A (en) 1996-07-31 2000-01-04 Kabushiki Kaisha Toyoda Jidoshokki Seiksakusho Control valve unit with independently operable valve mechanisms for variable displacement compressor
JP3583951B2 (ja) 1999-06-07 2004-11-04 株式会社豊田自動織機 容量制御弁
JP2001073939A (ja) 1999-08-31 2001-03-21 Toyota Autom Loom Works Ltd 容量可変型圧縮機の制御弁及び容量可変型圧縮機
JP2001099060A (ja) 1999-10-04 2001-04-10 Fuji Koki Corp 可変容量型圧縮機用制御弁
JP3991556B2 (ja) * 1999-10-04 2007-10-17 株式会社豊田自動織機 容量可変型圧縮機の制御弁
JP2001132632A (ja) 1999-11-10 2001-05-18 Toyota Autom Loom Works Ltd 容量可変型圧縮機の制御弁
JP3942851B2 (ja) 2001-07-31 2007-07-11 株式会社テージーケー 容量制御弁
JP4242624B2 (ja) 2002-09-26 2009-03-25 イーグル工業株式会社 容量制御弁及びその制御方法
JP4316955B2 (ja) 2003-08-11 2009-08-19 イーグル工業株式会社 容量制御弁
JP2006097665A (ja) 2004-06-28 2006-04-13 Toyota Industries Corp 可変容量型圧縮機における容量制御弁
JP4431462B2 (ja) 2004-08-10 2010-03-17 株式会社鷺宮製作所 斜板式容量可変型圧縮機および電磁制御弁
JP4700048B2 (ja) 2005-02-24 2011-06-15 イーグル工業株式会社 容量制御弁
JP2006307828A (ja) 2005-03-31 2006-11-09 Tgk Co Ltd 可変容量圧縮機用制御弁
JP2007247512A (ja) 2006-03-15 2007-09-27 Toyota Industries Corp 可変容量型圧縮機における容量制御弁
JP2008014269A (ja) 2006-07-07 2008-01-24 Toyota Industries Corp 可変容量型圧縮機の容量制御弁
JP2008202572A (ja) 2007-02-22 2008-09-04 Toyota Industries Corp 可変容量型圧縮機における容量制御弁
JP4861956B2 (ja) 2007-10-24 2012-01-25 株式会社豊田自動織機 可変容量型圧縮機における容量制御弁
JP2011032916A (ja) 2009-07-31 2011-02-17 Tgk Co Ltd 制御弁
KR101099121B1 (ko) 2009-08-19 2011-12-27 주식회사 두원전자 진공 벨로우즈 조립체 제조방법
EP2549106B1 (en) 2010-03-16 2019-10-16 Eagle Industry Co., Ltd. Volume control valve
US8757988B2 (en) 2010-04-29 2014-06-24 Eagle Industry Co., Ltd. Capacity control valve
JP5665722B2 (ja) 2011-11-17 2015-02-04 株式会社豊田自動織機 容量制御弁
WO2013176012A1 (ja) 2012-05-24 2013-11-28 イーグル工業株式会社 容量制御弁
JP6064132B2 (ja) 2012-10-09 2017-01-25 株式会社テージーケー 複合弁
EP2933487B1 (en) * 2012-12-12 2019-09-18 Eagle Industry Co., Ltd. Capacity control valve
JP6020130B2 (ja) 2012-12-19 2016-11-02 株式会社豊田自動織機 可変容量型斜板式圧縮機
EP2952741B1 (en) 2013-01-31 2019-03-13 Eagle Industry Co., Ltd. Variable capacity compressor
JP6103586B2 (ja) 2013-03-27 2017-03-29 株式会社テージーケー 可変容量圧縮機用制御弁
JP6149239B2 (ja) 2013-06-28 2017-06-21 株式会社テージーケー 可変容量圧縮機用制御弁
JP6206274B2 (ja) 2014-03-19 2017-10-04 株式会社豊田自動織機 容量制御弁
CN107002900B (zh) 2014-12-25 2019-03-12 伊格尔工业股份有限公司 容量控制阀
JP2016125376A (ja) * 2014-12-26 2016-07-11 株式会社テージーケー 可変容量圧縮機用制御弁
JP6500183B2 (ja) 2015-04-02 2019-04-17 株式会社テージーケー 可変容量圧縮機用制御弁
US20170028462A1 (en) 2015-07-28 2017-02-02 Primetals Technologies USA LLC Simple copper tube design for continuous casting process with enhanced rigidity
JP6383720B2 (ja) * 2015-12-16 2018-08-29 株式会社不二工機 可変容量型圧縮機用制御弁
JP6663227B2 (ja) 2016-01-19 2020-03-11 サンデン・オートモーティブコンポーネント株式会社 可変容量圧縮機の容量制御弁
JP6500186B2 (ja) 2016-02-25 2019-04-17 株式会社テージーケー 可変容量圧縮機用制御弁
JP6500184B2 (ja) * 2016-02-25 2019-04-17 株式会社テージーケー 可変容量圧縮機用制御弁
US10690125B2 (en) 2016-03-17 2020-06-23 Eagle Industry Co., Ltd. Displacement control valve
CN107489791B (zh) 2016-06-13 2020-12-04 株式会社Tgk 可变容量压缩机用控制阀
JP2018040385A (ja) 2016-09-05 2018-03-15 株式会社テージーケー 電磁弁
JP7007299B2 (ja) 2016-12-28 2022-01-24 イーグル工業株式会社 容量制御弁
JP6924476B2 (ja) 2017-04-07 2021-08-25 株式会社テージーケー 可変容量圧縮機用制御弁
JP2019002384A (ja) 2017-06-19 2019-01-10 サンデン・オートモーティブコンポーネント株式会社 可変容量圧縮機
EP3719364B1 (en) 2017-11-30 2023-11-15 Eagle Industry Co., Ltd. Capacity control valve and control method for capacity control valve
CN111684156B (zh) 2018-01-26 2022-03-29 伊格尔工业股份有限公司 容量控制阀
CN112534136A (zh) * 2018-08-08 2021-03-19 伊格尔工业股份有限公司 容量控制阀
US11053933B2 (en) 2018-12-13 2021-07-06 Eagle Industry Co., Ltd. Displacement control valve
US11300219B2 (en) * 2020-07-28 2022-04-12 Mahle International Gmbh Variable-capacity compressor control valve

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5167121B2 (ja) 2006-03-15 2013-03-21 イーグル工業株式会社 容量制御弁
WO2013109005A1 (ko) * 2012-01-19 2013-07-25 (주)대정고분자산업 가변용량 압축기의 전자제어밸브
WO2017057160A1 (ja) * 2015-09-29 2017-04-06 株式会社ヴァレオジャパン 可変容量型圧縮機の制御弁
JP2017223348A (ja) * 2016-06-13 2017-12-21 株式会社テージーケー 可変容量圧縮機用制御弁
JP2018021646A (ja) * 2016-08-05 2018-02-08 株式会社鷺宮製作所 感圧制御弁
JP2018145877A (ja) * 2017-03-06 2018-09-20 株式会社豊田自動織機 可変容量型斜板式圧縮機
WO2018207461A1 (ja) * 2017-05-09 2018-11-15 サンデン・オートモーティブコンポーネント株式会社 ソレノイド制御弁及びこれを備えた可変容量圧縮機
WO2019167912A1 (ja) * 2018-02-27 2019-09-06 イーグル工業株式会社 容量制御弁

Also Published As

Publication number Publication date
EP3892856A4 (en) 2022-07-06
KR20210091269A (ko) 2021-07-21
CN113167264A (zh) 2021-07-23
JPWO2020116435A1 (ja) 2021-10-21
KR102596905B1 (ko) 2023-11-01
EP3892856A1 (en) 2021-10-13
US20220057005A1 (en) 2022-02-24
JP7326329B2 (ja) 2023-08-15
CN113167264B (zh) 2023-02-28
EP3892856B1 (en) 2024-03-27
US11473684B2 (en) 2022-10-18

Similar Documents

Publication Publication Date Title
WO2019167912A1 (ja) 容量制御弁
CN112119216B (zh) 容量控制阀
WO2020032087A1 (ja) 容量制御弁
WO2020013169A1 (ja) 容量制御弁
JP7162995B2 (ja) 容量制御弁
WO2020116435A1 (ja) 容量制御弁
JP7341621B2 (ja) 容量制御弁
CN111712638B (zh) 容量控制阀
JP7438643B2 (ja) 容量制御弁
CN112955684B (zh) 容量控制阀
JP7383362B2 (ja) 容量制御弁
WO2020116436A1 (ja) 容量制御弁
JP7358022B2 (ja) 容量制御弁

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19894059

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020559213

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20217018244

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2019894059

Country of ref document: EP

Effective date: 20210705