WO2020203102A1 - 中空デバイス用ドライフィルム、硬化物および電子部品 - Google Patents

中空デバイス用ドライフィルム、硬化物および電子部品 Download PDF

Info

Publication number
WO2020203102A1
WO2020203102A1 PCT/JP2020/010404 JP2020010404W WO2020203102A1 WO 2020203102 A1 WO2020203102 A1 WO 2020203102A1 JP 2020010404 W JP2020010404 W JP 2020010404W WO 2020203102 A1 WO2020203102 A1 WO 2020203102A1
Authority
WO
WIPO (PCT)
Prior art keywords
solvent
resin layer
dry film
resin
residual content
Prior art date
Application number
PCT/JP2020/010404
Other languages
English (en)
French (fr)
Inventor
中居 弘進
和貴 仲田
衆 管
Original Assignee
太陽インキ製造株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 太陽インキ製造株式会社 filed Critical 太陽インキ製造株式会社
Priority to CN202080012433.2A priority Critical patent/CN113396056B/zh
Priority to JP2021511325A priority patent/JP7394839B2/ja
Publication of WO2020203102A1 publication Critical patent/WO2020203102A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/02Containers; Seals
    • H01L23/06Containers; Seals characterised by the material of the container or its electrical properties
    • H01L23/08Containers; Seals characterised by the material of the container or its electrical properties the material being an electrical insulator, e.g. glass

Definitions

  • the present invention relates to dry films for hollow devices, cured products and electronic components.
  • a hollow device generally has a structure in which a functional element is connected to a substrate via bumps and a hollow portion is formed in a package by the height of the bumps.
  • Patent Document 1 There is a technique using a dry film for sealing a functional element in a hollow device (Patent Document 1). By using a dry film, it is possible to prevent the sealing material from flowing into the hollow portion formed so as to face the active surface of the functional element, which is difficult with the dispensing method using the liquid sealing material. ing.
  • an object of the present invention is a dry film for a hollow device that can suppress the inflow of a sealing material into a hollow portion of a hollow device and can be sealed well, a cured product of a resin layer of the dry film, and the curing.
  • the purpose is to provide electronic components having objects.
  • a resin layer made of a curable resin composition containing a solvent remains in the dry film used for sealing a hollow device in the thickness direction.
  • a region having a relatively high content and a region having a relatively low content it is possible to effectively suppress the resin layer (also referred to as a sealing material) from flowing into the hollow portion of the hollow device, which is good.
  • a sealing material also referred to as a sealing material
  • the dry film for hollow devices of the present invention includes a resin layer made of a curable resin composition containing a solvent on a carrier film, and the resin layer is a region in which the residual content of the solvent is relatively large in the thickness direction.
  • a dry film comprising at least one region having a relatively small amount of the solvent and a region having a relatively small residual content of the solvent and a region having a relatively small residual content of the solvent. The difference from the residual content of the solvent is 0.2% by mass or more.
  • the thickness of the resin layer is preferably 40 ⁇ m or more.
  • the solvent contains a solvent having a boiling point of 60 ° C. or higher and lower than 130 ° C. and a solvent having a boiling point of 130 ° C. or higher and 250 ° C. or lower, respectively.
  • the cured product of the present invention is characterized by being obtained by curing the resin layer of the dry film for hollow devices.
  • the electronic component of the present invention is characterized by having the cured product.
  • the present invention when manufacturing a hollow device, it is possible to suppress the inflow of the sealing material into the hollow portion of the hollow device and to perform good sealing. Further, according to the present invention, when the functional element is sealed, it is possible to prevent the dry film from being displaced with respect to the functional element.
  • the dry film for hollow devices of the present invention (hereinafter, may be abbreviated as "dry film”) will be described more specifically with reference to the drawings.
  • the dry film for hollow devices of the present invention includes a resin layer made of a curable resin composition containing a solvent on a carrier film, and the resin layer has a residual content of the solvent in the curable resin composition in the thickness direction.
  • FIG. 1 is a schematic cross-sectional view of an embodiment of the dry film for hollow devices of the present invention.
  • the dry film 1 of FIG. 1 includes a resin layer 3 formed on the carrier film 2.
  • the resin layer 3 is obtained by applying and drying a curable resin composition, and includes a region 3a in which the residual content of the solvent is relatively high and a region 3b in which the residual content of the solvent is relatively low.
  • the difference between the residual content of the solvent in the region 3a and the residual content of the solvent in the region 3b is 0.2% by mass or more.
  • a protective film 4 that protects the resin layer 3 is formed so as to cover the resin layer 3.
  • FIG. 1 is a schematic cross-sectional view of an embodiment of the dry film for hollow devices of the present invention.
  • the dry film 1 of FIG. 1 includes a resin layer 3 formed on the carrier film 2.
  • the resin layer 3 is obtained by applying and drying a curable resin composition, and includes a region 3a in which the residual content of the solvent is relatively high and
  • the region 3a in which the residual content of the solvent is relatively high and the region 3b in which the residual content of the solvent is relatively low are separated by a line segment for easy understanding.
  • the actual resin layer 3 does not always have a clear boundary.
  • the residual content of the solvent in the thickness direction of the resin layer 3 so that the residual content of the solvent decreases stepwise or continuously from one surface in the thickness direction of the resin layer 3 toward the other surface. It may have a concentration gradient of.
  • FIG. 2A shows a state before sealing with the dry film 1, and the electrode pad (not shown in the figure) provided on the substrate 11 and the functional element 12 are connected via the bump 13.
  • the bump height is about 20 ⁇ m
  • the height of the functional element 12 is about 200 to 250 ⁇ m.
  • the resin layer 3 of the dry film 1 for a hollow device is pressed toward the functional element 12 and the substrate 11 while being heated, and the resin layer 3 is formed around the functional element 12.
  • the functional element 12 is sealed by flowing.
  • FIG. 2D after the resin layer 3 is cured, the carrier film 2 is peeled off and separated into individual hollow devices 10 by dicing.
  • the hollow device 10 has a structure in which the resin layer 3 is sealed by the cured resin package 14, and the substrate 11, the functional element 12, and both bumps 13 are hollow.
  • the resin layer 3 is made to flow in the hollow device 10 in FIG. 2C, it is important to stop the flow on the outer side of the bump 13 so that the resin layer 3 does not enter the hollow portion on the inner side. It is also important that the space outside the 12 ends of the functional element does not become large.
  • the resin layer is composed of a curable resin composition containing a solvent, and a region having a relatively high residual content of the solvent and a region having a relatively low residual content of the solvent.
  • the difference between the residual content of the solvent in the region where the residual content of the solvent is relatively high and the residual content of the solvent in the region where the residual content of the solvent is relatively low is 0.2% by mass or more. ..
  • the region in the resin layer having a relatively large residual solvent content has high fluidity at the time of sealing, and the region in the resin layer having a relatively low residual content of solvent has low fluidity at the time of sealing.
  • the region where the residual content of the solvent in the resin layer is relatively low becomes the core portion of the resin layer at the time of sealing, and the region where the residual content of the solvent in the resin layer is relatively high flows. Acts to regulate. Therefore, the dry film for a hollow device of the present invention can suppress the inflow of the sealing material into the hollow portion of the hollow device when the hollow device is manufactured. Further, good sealing can be realized without forming a large space outside the end of the functional element due to the region where the residual content of the solvent is relatively large.
  • the region having a relatively high solvent residual content and a relatively low solvent residual content in the resin layer and having a relatively high solvent residual content is described. It is important that the difference between the residual content of the solvent and the residual content of the solvent in a relatively small region is 0.2% by mass or more.
  • the resin layer of the dry film for hollow devices includes at least one region in which the residual content of the solvent is relatively high and a region in which the residual content of the solvent in the curable resin composition is relatively low. There is. There may be two or more of each of these regions in the resin layer.
  • FIG. 3 shows another example of a dry film for hollow devices only with a resin layer, which is a characteristic portion of the present invention.
  • the carrier film and protective film of the dry film are not shown.
  • the resin layer 31 shown in FIG. 3 has two regions, 31a, in which the residual content of the solvent is relatively high, and 31b, which is a region in which the residual content of the solvent is relatively low, respectively.
  • the regions 31b in which the residual content of the solvent in the resin layer is relatively small are arranged so as to be in contact with each other.
  • the resin layer 31 is provided with a region 31b in which the residual content of the solvent is relatively small in the central portion in the thickness direction as a whole, and the residual content of the solvent is relative to both ends in the thickness direction including the surface.
  • the dry film for hollow devices of the present invention has a region having a relatively large residual solvent content in the central portion in the thickness direction as a whole, and the residual content of the solvent is provided at both ends in the thickness direction including the surface. May have a relatively small area.
  • the dry film for a hollow device has a residual content of the solvent of 0.5% by mass or more, more preferably 0.6% by mass or more and 5% by mass in a region where the residual content of the solvent is relatively large.
  • the residual content of the solvent in the relatively small region can be less than 0.5% by mass, more preferably 0.1% by mass or more and 0.4% by mass or less.
  • the sealing material flows into the hollow portion of the hollow device by the region where the residual content of the solvent is relatively small. The suppression of things is done effectively.
  • the residual content of the solvent in the region where the residual content of the solvent is relatively large is 2.8% by mass or more, more preferably 3.0% by mass or more and 5% by mass or less.
  • the residual content of the solvent in the relatively small region can be less than 2.8% by mass, more preferably 0.1% by mass or more and 2.5% by mass or less. Even in such a dry film, it is possible to effectively suppress the inflow of the sealing material into the hollow portion of the hollow device due to the region where the residual content of the solvent is relatively small.
  • the difference between the residual content of the solvent in the region where the residual content of the solvent is relatively high and the residual content of the solvent in the region where the residual content of the solvent is relatively low is 0.2% by mass or more. Is. When it is 0.2% by mass or more, it is effective to suppress the inflow of the sealing material into the hollow portion of the hollow device due to the region where the residual content of the solvent in the resin layer is relatively small and to perform good sealing. Is done. A more preferable difference is 0.4% by mass or more and 4% by mass or less.
  • the surface of the resin layer on the carrier film side and the surface on the side opposite to the carrier film side has a relative residual content of the solvent in the resin layer. It is preferable that the area is large in number.
  • the residual content of the solvent in the resin layer is due to the fact that at least one surface of the resin layer is a region in which the residual content of the solvent in the resin layer is relatively large.
  • the surface of the region 3a having a relatively large amount of solvent can be opposed to the functional element 12. Since the region 3a in the resin layer having a relatively large residual content of the solvent has high tacking property (sticking property), it is possible to suppress the misalignment between the dry film and the functional element 12, and eventually the sealing property. Workability at the time can be improved.
  • the thickness of the resin layer of the dry film for hollow devices is not particularly limited, but is preferably about 40 ⁇ m or more. When it is 40 ⁇ m or more, the solvent is volatilized from one surface of the resin layer so that the residual content of the solvent in the surface and the region in the vicinity thereof is 0.2% by mass or more lower than that in the other regions. Can be made into.
  • the upper limit of the thickness of the resin layer is, for example, 300 ⁇ m.
  • the thickness of the resin layer of the dry film for hollow devices can be made approximately the same as the height of the functional element and the height of the bumps combined.
  • a plurality of resin layers having a predetermined thickness may be laminated by using a roll laminator or a vacuum laminator to have a thickness substantially the same as the combined height of the functional element height and the bump height.
  • the drying conditions when the resin layer formed by coating on the carrier film is dried are controlled to volatilize the solvent from one surface of the resin layer. Therefore, the residual content of the solvent in the surface and the region in the vicinity thereof can be reduced by 0.2% by mass or more as compared with the other regions.
  • the method of applying the curable resin composition on the carrier film is not particularly limited, and the resin composition is diluted with an organic solvent to adjust the viscosity to an appropriate level, and the bar coater, die coater, comma coater, blade coater, and lip coater are used. , Rod coater, squeeze coater, reverse coater, transfer coater, gravure coater, spray coater, etc. may be applied to a uniform thickness. Further, after the application of the resin composition, the residual content of the solvent can be adjusted by, for example, drying at a temperature of 50 to 130 ° C. for 1 to 200 minutes.
  • a solvent having a boiling point of 60 ° C. or higher and lower than 130 ° C. and a solvent having a boiling point of 130 ° C. or higher and 250 ° C. or lower can be contained in the resin layer.
  • the difference in the residual content of the solvent between the region where the residual content of the solvent is relatively high and the region where the residual content of the solvent is relatively low can be easily formed to 0.2% by mass or more. ..
  • the solvent having a boiling point of 60 ° C. or higher and lower than 130 ° C. include methyl ethyl ketone, 1-methoxy-2-propanol, ethanol and the like.
  • the solvent having a boiling point of 130 ° C. or higher and 250 ° C. or lower include cyclohexanone, diethylene glycol monoethyl ether acetate, propylene glycol methyl ether acetate and the like.
  • a curable resin composition having a small residual content of the solvent and a curable resin composition having a large residual content of the solvent are prepared, and one of the curable resin compositions is applied to the carrier film and then dried.
  • the other curable resin composition is applied in layers without being allowed to or dried, and then dried as a whole to obtain a region having a relatively large residual content of the solvent and a residual content of the solvent in the resin layer. It is also possible to form a region having a relatively small amount of resin so that the difference in the residual content of the solvent is 0.2% by mass or more.
  • a resin layer having a relatively high residual solvent content is formed on the carrier film, and a resin layer having a relatively low residual solvent content is formed on a separately prepared carrier film.
  • the residual content of the solvent can be increased in the resin layer.
  • a region having a relatively large amount and a region having a relatively small residual content of the solvent can be formed so that the difference in the residual content of the solvent is 0.2% by mass or more.
  • the component composition of the resin layer is not particularly limited except for the difference between the solvent and the residual content thereof, but an exemplary component composition of the resin layer includes an inorganic filler, an epoxy resin, and a solvent.
  • the epoxy resin is a resin having an epoxy group, and any conventionally known resin can be used. Examples thereof include a bifunctional epoxy resin having two epoxy groups in the molecule, a polyfunctional epoxy resin having three or more epoxy groups in the molecule, and the like. It may be a hydrogenated epoxy resin.
  • the resin layer may contain a solid epoxy resin, a liquid epoxy resin, a semi-solid epoxy resin, a crystalline epoxy resin, or the like.
  • the solid epoxy resin refers to an epoxy resin that is solid at 40 ° C.
  • the semi-solid epoxy resin refers to an epoxy resin that is solid at 20 ° C. and liquid at 40 ° C., and is a liquid epoxy resin.
  • Judgment of liquidity is carried out in accordance with the "Liquid confirmation method" of Attachment 2 of the Ministerial Ordinance on Dangerous Goods Testing and Properties (Ministerial Ordinance No. 1 of 1989). For example, the method described in paragraphs 23 to 25 of JP-A-2016-079384 is performed.
  • the crystalline epoxy resin means an epoxy resin having strong crystallinity, and at a temperature below the melting point, polymer chains are regularly arranged, and although it is a solid resin, it has a low viscosity comparable to that of a liquid resin when melted.
  • a thermosetting epoxy resin is an epoxy resin having strong crystallinity, and at a temperature below the melting point, polymer chains are regularly arranged, and although it is a solid resin, it has a low viscosity comparable to that of a liquid resin when melted.
  • Examples of the semi-solid epoxy resin include EPICLON860, EPICLON900-IM, EPICLON EXA-4816, EPICLON EXA-4822, Toto Kasei Epototo YD-134, Mitsubishi Chemical jER834, jER872, and Sumitomo Chemical ELA-134.
  • Bisphenol A type epoxy resin such as DIC; Naphthalene type epoxy resin such as EPICLON HP-4032 manufactured by DIC; Phenol novolac type epoxy resin such as EPICLON N-740 manufactured by DIC and the like can be mentioned.
  • a crystalline epoxy resin having a biphenyl structure, a sulfide structure, a phenylene structure, a naphthalene structure, or the like can be used.
  • Biphenyl type epoxy resins are provided as, for example, jER YX4000, jER YX4000H, jER YL6121H, jER YL6640, jER YL6677 manufactured by Mitsubishi Chemical Corporation, and diphenyl sulfide type epoxy resins are provided as, for example, Epototo YSLV-120TE manufactured by Toto Kasei Co., Ltd.
  • the phenylene type epoxy resin is provided as, for example, Epototo YDC-1312 manufactured by Toto Kasei Co., Ltd.
  • the naphthalene type epoxy resin is provided as, for example, EPICLON HP-4032D and EPICLON HP-4700 manufactured by DIC Corporation. Has been done.
  • the crystalline epoxy resin Epototo YSLV-90C manufactured by Toto Kasei Co., Ltd. and TEPIC-S (triglycidyl isocyanurate) manufactured by Nissan Chemical Industries, Ltd. can also be used.
  • solid epoxy resin examples include naphthalene type epoxy resins such as EPICLON HP-4700 (naphthalene type epoxy resin) manufactured by DIC and NC-7000 (polyfunctional solid epoxy resin containing naphthalene skeleton) manufactured by Nippon Kayaku Co., Ltd .; Epoxy product (trisphenol type epoxy resin) of a condensate of phenols such as EPPN-502H (trisphenol epoxy resin) and aromatic aldehyde having a phenolic hydroxyl group; EPICLON HP-7200H (containing dicyclopentadiene skeleton) manufactured by DIC.
  • naphthalene type epoxy resins such as EPICLON HP-4700 (naphthalene type epoxy resin) manufactured by DIC and NC-7000 (polyfunctional solid epoxy resin containing naphthalene skeleton) manufactured by Nippon Kayaku Co., Ltd .
  • Epoxy product (trisphenol type epoxy resin) of a condensate of phenols such as EPPN
  • Dicyclopentadiene aralkyl type epoxy resin such as polyfunctional solid epoxy resin
  • Biphenyl aralkyl type epoxy resin such as NC-3000H (biphenyl skeleton-containing polyfunctional solid epoxy resin) manufactured by Nippon Kayaku Co., Ltd .; NC-3000L manufactured by Nihon Kayaku Co., Ltd.
  • Biphenyl / phenol novolac type epoxy resin such as DIC; Novolak type epoxy resin such as EPICLON N660, EPICLON N690, N770 manufactured by DIC, EOCN-104S manufactured by Nippon Kayaku Co., Ltd .; Phosphor-containing epoxy resin such as TX0712 manufactured by Nippon Steel & Sumitomo Metal Corporation; Nissan Examples thereof include tris (2,3-epoxypropyl) isocyanurate such as TEPIC manufactured by Kagaku Co., Ltd.
  • liquid epoxy resin examples include bisphenol A type epoxy resin, bisphenol F type epoxy resin, bisphenol AF type epoxy resin, phenol novolac type epoxy resin, tert-butyl-catechol type epoxy resin, glycidylamine type epoxy resin, and aminophenol type epoxy resin. , Alicyclic epoxy resin and the like.
  • the resin layer of the dry film of the present invention may be a thermosetting resin other than the epoxy resin, for example, an isocyanate compound, a blocked isocyanate compound, an amino resin, a benzoxazine resin, a carbodiimide resin, a cyclocarbonate compound, a polyfunctional oxetane compound, or an episulfide resin. It may contain a known and commonly used thermosetting resin such as.
  • the resin layer may contain an inorganic filler.
  • an inorganic filler By blending an inorganic filler, it is possible to suppress curing shrinkage of the obtained cured product and improve thermal properties such as adhesion, hardness, and crack resistance.
  • Conventionally known inorganic fillers can be used as the inorganic fillers, and the inorganic fillers are not limited to specific ones, but for example, silicas such as barium sulfate, barium titanate, amorphous silica, crystalline silica, molten silica, and spherical silica, talc, and clay.
  • the inorganic filler is preferably spherical particles.
  • the average particle size (median diameter, D50) of the inorganic filler is preferably 0.01 to 20 ⁇ m. In the present specification, the average particle size of the inorganic filler is the average particle size including not only the particle size of the primary particles but also the particle size of the secondary particles (aggregates).
  • the average particle size can be determined by a laser diffraction type particle size distribution measuring device and a measuring device by a dynamic light scattering method.
  • the measuring device by the laser diffraction method include Microtrac MT3300EXII manufactured by Microtrac Bell
  • examples of the measuring device by the dynamic light scattering method include Nanotrac Wave II UT151 manufactured by Microtrac Bell.
  • the inorganic filler may be surface-treated.
  • a surface treatment using a coupling agent or a surface treatment such as an alumina treatment that does not introduce an organic group may be performed.
  • the surface treatment method of the inorganic filler is not particularly limited, and a known and commonly used method may be used.
  • a surface treatment agent having a curable reactive group for example, a coupling agent having a curable reactive group as an organic group, is used as an inorganic filler. The surface may be treated.
  • the inorganic filler may be used alone or as a mixture of two or more.
  • the blending amount of the inorganic filler is preferably 10 to 90% by mass based on the total solid content of the resin layer of the dry film.
  • the resin layer may contain a curing agent.
  • the curing agent include compounds having a phenolic hydroxyl group, polycarboxylic acids and their acid anhydrides, compounds having a cyanate ester group, compounds having an active ester group, compounds having a maleimide group, alicyclic olefin polymers and the like. Be done.
  • the curing agent may be used alone or in combination of two or more.
  • Examples of the compound having a phenolic hydroxyl group include phenol novolac resin, alkylphenol volac resin, bisphenol A novolak resin, dicyclopentadiene type phenol resin, Xylok type phenol resin, terpene-modified phenol resin, cresol / naphthol resin, and polyvinylphenols.
  • Conventionally known materials such as phenol / naphthol resin, ⁇ -naphthol skeleton-containing phenol resin, triazine skeleton-containing cresol novolac resin, biphenyl aralkyl type phenol resin, and zylock type phenol novolac resin can be used.
  • the compound having a cyanate ester group is preferably a compound having two or more cyanate ester groups (-OCN) in one molecule.
  • the compound having a cyanate ester group any conventionally known compound can be used.
  • the compound having a cyanate ester group include phenol novolac type cyanate ester resin, alkylphenol novolac type cyanate ester resin, dicyclopentadiene type cyanate ester resin, bisphenol A type cyanate ester resin, bisphenol F type cyanate ester resin, and bisphenol S type. Cyanate ester resin can be mentioned. Further, it may be a prepolymer in which a part is triazine-ized.
  • cyanate ester group examples include phenol novolac type polyfunctional cyanate ester resin (manufactured by Ronza Japan, PT30S), and a prepolymer in which part or all of bisphenol A dicyclonate is triazined to form a trimer. (Manufactured by Ronza Japan, BA230S75), a cyanate ester resin containing a dicyclopentadiene structure (manufactured by Ronza Japan, DT-4000, DT-7000) and the like can be mentioned.
  • the compound having an active ester group is preferably a compound having two or more active ester groups in one molecule.
  • a compound having an active ester group can generally be obtained by a condensation reaction of a carboxylic acid compound and a hydroxy compound. Of these, a compound having an active ester group obtained by using a phenol compound or a naphthol compound as the hydroxy compound is preferable.
  • phenol compound or naphthol compound examples include hydroquinone, resorcin, bisphenol A, bisphenol F, bisphenol S, phenolphthaline, methylated bisphenol A, methylated bisphenol F, methylated bisphenol S, phenol, o-cresol, m-cresol, p-cresol, catechol, ⁇ -naphthol, ⁇ -naphthol, 1,5-dihydroxynaphthalene, 1,6-dihydroxynaphthalene, 2,6-dihydroxynaphthalene, dihydroxybenzophenone, trihydroxybenzophenol, tetrahydroxybenzophenone, fluoroglusin, benzenetriol , Dicyclopentadienyldiphenol, phenol novolac and the like.
  • the compound having an active ester group may be a naphthalenediol alkyl / benzoic acid type.
  • dicyclopentadiene type diphenol compounds for example, HPC8000-65T (manufactured by DIC), HPC8100-65T (manufactured by DIC), HPC8150-65T (manufactured by DIC). Can be mentioned.
  • the blending amount of the curing agent is, for example, 20 to 100 parts by mass with respect to 100 parts by mass of the epoxy resin.
  • the resin layer may contain a curing accelerator.
  • the curing accelerator accelerates the thermosetting reaction, and is used to further improve properties such as adhesion, chemical resistance, and heat resistance.
  • Specific examples of such a curing accelerator include imidazole and its derivatives; guanamines such as acetoguanamine and benzoguanamine; diaminodiphenylmethane, m-phenylenediamine, m-xylenediamine, diaminodiphenylsulphon, dicyandiamide, urea, urea derivatives, etc.
  • Polyamines such as melamine, polybase hydrazide; these organolates and / or epoxy adducts; amine complexes of boron trifluoride; ethyldiamino-S-triazine, 2,4-diamino-S-triazine, 2,4- Triazine derivatives such as diamino-6-xylyl-S-triazine; trimethylamine, triethanolamine, N, N-dimethyloctylamine, N-benzyldimethylamine, pyridine, N-methylmorpholin, hexa (N-methyl) melamine, Amines such as 2,4,6-tris (dimethylaminophenol), tetramethylguanidine, m-aminophenol; polyphenols such as polyvinylphenol, polyvinylphenol bromide, phenol novolac, alkylphenol novolac; tributylphosphine, triphenylphosphine
  • Tertiary ammonium salts the polybasic acid anhydrides; photocationic polymerization catalysts such as diphenyliodonium tetrafluoroboroate, triphenylsulfonium hexafluoroantimonate, 2,4,6-triphenylthiopyrylium hexafluorophosphate; styrene- Maleic anhydride resin; isomolar reactants of phenylisocyanate and dimethylamine, equimolar reactants of organic polyisocyanate such as tolylene diisocyanate and isophorone diisocyanate and dimethylamine, and conventionally known curing accelerators such as metal catalysts can be mentioned. ..
  • the curing accelerator can be used alone or in combination of two or more.
  • the use of a curing accelerator is not essential, but when it is particularly desired to accelerate curing, it can be used in the range of 0.01 to 5 parts by mass with respect to 100 parts by mass of the epoxy resin, for example.
  • a metal catalyst 10 to 550 ppm is preferable, and 25 to 200 ppm is more preferable in terms of metal with respect to 100 parts by mass of the compound having a cyanate ester group.
  • the resin layer of the dry film of the present invention contains a solvent such as an organic solvent.
  • the organic solvent is not particularly limited, and examples thereof include ketones, aromatic hydrocarbons, glycol ethers, glycol ether acetates, esters, alcohols, aliphatic hydrocarbons, and petroleum-based solvents. it can. Specifically, ketones such as methyl ethyl ketone, cyclohexanone, methyl butyl ketone and methyl isobutyl ketone; aromatic hydrocarbons such as toluene, xylene and tetramethylbenzene; cellosolve, methyl cellosolve, butyl cellosolve, carbitol, methyl carbitol, etc.
  • Glycol ethers such as butyl carbitol, ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, ethylene glycol monobutyl ether, propylene glycol monomethyl ether, dipropylene glycol monomethyl ether, dipropylene glycol diethyl ether, triethylene glycol monoethyl ether; acetic acid Esters such as ethyl, butyl acetate, isobutyl acetate, ethylene glycol monoethyl ether acetate, dipropylene glycol methyl ether acetate, propylene glycol methyl ether acetate, propylene glycol ethyl ether acetate, propylene glycol butyl ether acetate; ethanol, propanol, 2-methoxy Alcohols such as propanol, n-butanol, isobutyl alcohol, isopentyl alcohol, ethylene glycol, propylene glycol; aliphatic
  • N, N-dimethylformamide (DMF), tetrachloroethylene, televisionne oil and the like can be mentioned.
  • the organic solvent may be used alone or as a mixture of two or more.
  • the resin layer of the dry film of the present invention preferably contains a solvent having a boiling point of 60 ° C. or higher and lower than 130 ° C. and a solvent having a boiling point of 130 ° C. or higher and 250 ° C. or lower, respectively.
  • the resin layer of the dry film of the present invention may further contain a solvent having a boiling point of more than 250 ° C., if necessary.
  • the resin layer may contain an elastomer.
  • an elastomer a thermoplastic resin, rubber-like particles, a polymer resin having a glass transition point of 20 ° C. or less and a weight average molecular weight of 10,000 or more can be used.
  • the elastomer include "SG-P3", “SG-80H”, “SG-600LB”, “SG-280”, “SG-790", and "SG-K2" manufactured by Nagase ChemteX Corporation.
  • the resin layer may further contain conventionally known colorants such as phthalocyanine blue, phthalocyanine green, iodin green, disazo yellow, crystal violet, titanium oxide, carbon black, and naphthalene black, asbestos, orben, and benton.
  • Conventionally known thickeners such as fine powder silica, defoaming agents such as silicone-based, fluorine-based, and polymer-based and / or adhesion-imparting agents such as leveling agents, thiazole-based, triazole-based, and silane coupling agents.
  • Conventionally known additives such as flame retardants, titanates, and aluminum can be used.
  • the carrier film includes, for example, a polyester film such as polyethylene terephthalate or polyethylene naphthalate, a polyimide film, a polyamideimide film, a polyethylene film, a polytetrafluoroethylene film, a polypropylene film, a film made of a thermoplastic resin such as a polystyrene film, and a surface. Treated paper or the like can be used.
  • the thickness of the carrier film is not particularly limited, but is appropriately selected in the range of approximately 10 to 150 ⁇ m according to the application.
  • the surface of the carrier film on which the resin layer is provided may be subjected to a mold release treatment.
  • the dry film of the present invention may be provided with a protective film on the resin layer, if necessary.
  • the protective film is provided on the surface opposite to the carrier film of the resin layer for the purpose of preventing dust and the like from adhering to the surface of the resin layer of the dry film and improving handleability.
  • the protective film for example, a film made of the thermoplastic resin exemplified in the carrier film, surface-treated paper, or the like can be used, but the thickness of the protective film is not particularly limited, but is generally limited. It is appropriately selected in the range of 10 to 150 ⁇ m according to the application.
  • the surface of the protective film on which the resin layer is provided may be subjected to a mold release treatment.
  • thermosetting resin composition ⁇ Preparation of thermosetting resin composition> The solvent of the formulation shown in Table 1 was placed in a container, heated to 50 ° C. so that the solvent did not volatilize, each epoxy resin was added, and the mixture was sufficiently stirred and dissolved. Then, an additive and an inorganic filler were added and kneaded with a three-roll mill, and a curing agent, a curing accelerator, and a polymer resin were further added and sufficiently stirred with a stirrer to obtain a thermosetting resin composition.
  • Example 1 Preparation of 1-layer type dry film
  • the obtained thermosetting resin composition was applied to a PET film (release-treated PET film; TN200: thickness 38 ⁇ m) using a bar coater, and dried by hot air circulation. It was dried in a furnace at 100 ° C. for 20 minutes to obtain a dry film having a thickness of 200 ⁇ m on one side (the side opposite to the PET film) and having a low residual solvent content.
  • a protective film was laminated on the opposite side of the PET film of the resin layer.
  • Example 2 Preparation of 2-layer type dry film
  • the obtained thermosetting resin composition is applied to a PET film (release-treated PET film; TN200: thickness 38 ⁇ m) using a bar coater, and is dried by hot air circulation. It was dried in a furnace at 110 ° C. for 15 minutes to obtain a dry film having a thickness of 130 ⁇ m on one side (the side opposite to the PET film) and having a low residual solvent content.
  • the residual solvent content on both sides of the resin layer of the dry film was measured using TG / DTA in the same manner as in Example 1, the residual solvent content on one side was 0.3% by mass (the opposite side to the PET film, that is, that is, (Protective film side), 1.8% by mass (PET film side) was confirmed.
  • the surfaces of the resin layers having a low residual solvent content in the obtained dry film were subjected to conditions of 5 kgf / cm 2 , 50 ° C., 30 seconds, and 4 hPa.
  • a dry film having a resin layer having a low residual solvent content was obtained at the center of a layered thickness of 260 ⁇ m.
  • Example 3 Preparation of 1-layer type dry film
  • the obtained thermosetting resin composition is applied to a PET film (release-treated PET film; TN201: thickness 50 ⁇ m) using a bar coater, and is dried by hot air circulation. It was dried in a furnace at 100 ° C. for 15 minutes to obtain a dry film having a thickness of 200 ⁇ m on one side (the side opposite to the PET film) and having a low residual solvent content.
  • the residual solvent on both sides of the resin layer of the dry film was measured using TG / DTA in the same manner as in Example 1, the residual solvent on one side was 2.3% by mass (opposite side to the PET film) and 3.3% by mass. It was confirmed that it was (PET film side).
  • Comparative Example 1 Preparation of 1-layer type dry film
  • the obtained thermosetting resin composition was applied to a PET film (release-treated PET film; TN200: thickness 38 ⁇ m) using a bar coater, and dried by hot air circulation. It was dried in a furnace at 80 ° C. for 20 minutes to obtain a dry film having a thickness of 200 ⁇ m and having a resin layer having a large residual content of the solvent.
  • the amount of residual solvent on both sides of the resin layer of the dry film was measured using TG / DTA in the same manner as in Example 1, the amount of residual solvent on one side was 2.5% by mass (the opposite side of the PET film, that is, the protective film). Side), it was confirmed that it was 2.6% by mass (PET film side).
  • Comparative Example 2 Preparation of 1-layer type dry film
  • the obtained thermosetting resin composition was applied to a PET film (release-treated PET film; TN200: thickness 38 ⁇ m) using a bar coater, and dried by hot air circulation.
  • the film was sufficiently dried at 80 ° C. for 45 minutes in a furnace to obtain a dry film having a thickness of 200 ⁇ m and having a resin layer having a low residual content of the solvent.
  • the residual solvent content on both sides of the resin layer of the dry film was measured using TG / DTA in the same manner as in Example 1, the residual solvent on one side was 0.3% by mass (the opposite side to the PET film, that is, protection). It was confirmed that the content was 0.35% by mass (PET film side) (on the film side).
  • Example 2 and Comparative Examples 1 and 2 0.5 MPa and 100 were used with a vacuum pressure laminator MVLP-500 (manufactured by Meiki Co., Ltd.) so that the resin layer was in contact with the cover glass of the test substrate.
  • the resin layer was cured to obtain a test substrate.
  • Example 2 For the dry films of Examples 1 and 3, the procedure was the same as that of Example 2 except that the PET film was peeled off, then heated and raminated so that the resin layer was in contact with the cover glass of the test substrate, and then the protective film was peeled off. A test substrate was obtained in.
  • ⁇ Embedability> The embedding property of the resin layer on the back side of the chip component after lamination was confirmed with an optical microscope.
  • the evaluation criteria are as follows. ⁇ : Flow into the lower part of the chip is less than 100 ⁇ m ⁇ : Flow into the lower part of the chip is 100 ⁇ m or more, or there is a space of 100 ⁇ m or more outside the end of the chip.

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Laminated Bodies (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)

Abstract

中空デバイスの中空部分に封止材料が流入することを抑制し、良好に封止することができる本発明の中空デバイス用ドライフィルムは、キャリアフィルム2上に溶剤を含む硬化性樹脂組成物からなる樹脂層3を備え、該樹脂層3は厚さ方向に前記硬化性樹脂組成物中の溶剤の残含有量が相対的に多い領域3aと、相対的に少ない領域3bとを、それぞれ少なくとも一つ備えるドライフィルムであって、前記溶剤の残含有量が相対的に多い領域の該溶剤の残含有量と、前記相対的に少ない領域の該溶剤の残含有量との差が、0.2質量%以上である。

Description

中空デバイス用ドライフィルム、硬化物および電子部品
 本発明は、中空デバイス用ドライフィルム、硬化物および電子部品に関する。
 近年の小型化により機能素子が樹脂で封止された電子部品がある。樹脂で封止された電子部品のなかでも、SAWデバイス、水晶振動子、圧電振動子等は、機能素子を振動可能にするためにパッケージ内に中空部分を有している。このような樹脂パッケージ内に中空部分を有する電子部品を本明細書では中空デバイスという。中空デバイスは、一般に、機能素子がバンプを介して基板に接続され、このバンプの高さによりパッケージ内に中空部分が形成された構造を有している。
 中空デバイスにおける機能素子の封止に、ドライフィルムを用いた技術がある(特許文献1)。ドライフィルムを用いることにより、液状封止材料を用いたディスペンス法では困難な、機能素子のアクティブ面に対向して形成された中空部分に封止材料が流入することを抑制することができるとされている。
特開2006-19714号公報
 特許文献1に記載の技術によっても、中空デバイスの中空部分に封止材料が流入することを必ずしも抑制することはできなかった。一方で、封止の際に機能素子端部より外側に空間が大きく形成されると封止が不十分となり、ダイシング時に機能素子間の隔壁が薄くなって剥れやすくなってしまうという問題もある。
 そこで本発明の目的は、中空デバイスの中空部分に封止材料が流入することを抑制し、良好に封止することができる中空デバイス用ドライフィルム、該ドライフィルムの樹脂層の硬化物、該硬化物を有する電子部品を提供することにある。
 本発明者らは上記を解決すべく鋭意検討を重ねた結果、中空デバイスの封止に用いられるドライフィルムについて、溶剤を含む硬化性樹脂組成物からなる樹脂層が、厚さ方向に溶剤の残含有量が相対的に多い領域と、相対的に少ない領域とを有することにより、当該樹脂層(封止材料ともいう)が中空デバイスの中空部分に流入することを効果的に抑制し、良好に封止することができることを見出し、本発明に至った。
 すなわち、本発明の中空デバイス用ドライフィルムは、キャリアフィルム上に溶剤を含む硬化性樹脂組成物からなる樹脂層を備え、該樹脂層は厚さ方向に溶剤の残含有量が相対的に多い領域と、相対的に少ない領域とを、それぞれ少なくとも一つ備えるドライフィルムであって、前記溶剤の残含有量が相対的に多い領域の該溶剤の残含有量と、前記相対的に少ない領域の該溶剤の残含有量との差が、0.2質量%以上であることを特徴とするものである。
 本発明の前記中空デバイス用ドライフィルムにおいては、前記樹脂層の厚さが40μm以上であることが好ましく、
 更に、前記溶剤が、沸点が60℃以上130℃未満の溶剤と沸点が130℃以上250℃以下の溶剤とをそれぞれ含むことが好ましい。
 本発明の硬化物は、前記中空デバイス用ドライフィルムの樹脂層を硬化して得られることを特徴とするものである。
 本発明の電子部品は、前記硬化物を有することを特徴とするものである。
 本発明によれば、中空デバイスを製造する際に、中空デバイスの中空部分に封止材料が流入することを抑制し、良好に封止することができる。また、本発明によれば、機能素子を封止する際、機能素子に対するドライフィルムの位置ずれを防止することもできる。
本発明の中空デバイス用ドライフィルムの一実施形態の模式的断面図である。 本発明の中空デバイス用ドライフィルムを用いた中空デバイスを、時系列的な製造工程で説明した模式的断面図である。 本発明の中空デバイス用ドライフィルムの樹脂層の別の態様を示す模式的断面図である。
 本発明の中空デバイス用ドライフィルム(以下、「ドライフィルム」と略称することがある。)を、図面を用いつつより具体的に説明する。
 本発明の中空デバイス用ドライフィルムは、キャリアフィルム上に溶剤を含む硬化性樹脂組成物からなる樹脂層を備え、該樹脂層は厚さ方向に前記硬化性樹脂組成物中の溶剤の残含有量が相対的に多い領域と、相対的に少ない領域とを、それぞれ少なくとも一つ備えるドライフィルムであって、前記溶剤の残含有量が相対的に多い領域の該溶剤の残含有量と、前記相対的に少ない領域の該溶剤の残含有量との差が、0.2質量%以上である。
 図1は、本発明の中空デバイス用ドライフィルムの一実施形態の模式的断面図である。図1のドライフィルム1は、キャリアフィルム2上に形成された樹脂層3を備えている。樹脂層3は、硬化性樹脂組成物を塗布乾燥して得られるものであり、溶剤の残含有量が相対的に多い領域3aと、溶剤の残含有量が相対的に少ない領域3bと備え、領域3aの溶剤の残含有量と、領域3bの溶剤の残含有量との差が、0.2質量%以上である。中空デバイス用ドライフィルム1の使用前において樹脂層3を保護する保護フィルム4が樹脂層3を覆って形成されている。なお、図1においては、溶剤の残含有量が相対的に多い領域3aと、溶剤の残含有量が相対的に少ない領域3bとを、理解の容易のために線分で区分けしているが、実際の樹脂層3は、明確な境界があるとは限られない。溶剤の残含有量が樹脂層3の厚さ方向の一方の表面から他方の表面に向けて、段階的に又は連続的に減少するような、樹脂層3の厚さ方向に溶剤の残含有量の濃度勾配を有するものであってもよい。
 図1の中空デバイス用ドライフィルム1が用いられる中空デバイス10を、図2(a)~(d)に示す模式的断面図を用いた時系列的な製造工程で説明する。
 図2(a)は、ドライフィルム1で封止する前の状態を示していて、基板11上に設けられた電極パット(図に現れない)と機能素子12とが、バンプ13を介して接続されている。バンプの高さは、およそ20μm、機能素子12の高さは、およそ200~250μmのものがある。
 次に、図2(b)に示されるように、図1の中空デバイス用ドライフィルム1の保護フィルム4を剥離して、樹脂層3の表面を機能素子12に対向させる。
 次に、図2(c)に示されるように、中空デバイス用ドライフィルム1の樹脂層3を機能素子12及び基板11に向けて加熱しつつ押圧し、機能素子12の周囲に樹脂層3を流動させて機能素子12を封止する。
 次に、図2(d)に示されるように、樹脂層3が硬化した後にキャリアフィルム2を剥離し、ダイシングにより個々の中空デバイス10に分離する。中空デバイス10は、樹脂層3が硬化した樹脂パッケージ14により封止され、基板11と機能素子12と両バンプ13との間が中空になっている構造を有している。
 中空デバイス10は、図2(c)で樹脂層3を流動させるときに、バンプ13よりも外側で流動を止め、内側の中空部分に樹脂層3が入り込まないようにすることが重要であり、機能素子12端部より外側の空間が大きくならないようにすることも重要である。
 そこで本発明の中空デバイス用ドライフィルムは、樹脂層は、溶剤を含む硬化性樹脂組成物からなり、溶剤の残含有量が相対的に多い領域と、溶剤の残含有量が相対的に少ない領域と備え、前記溶剤の残含有量が相対的に多い領域の該溶剤の残含有量と、前記相対的に少ない領域の該溶剤の残含有量との差が、0.2質量%以上である。樹脂層中の溶剤の残含有量が相対的に多い領域は封止時に流動性が高く、樹脂層中の溶剤の残含有量が相対的に少ない領域は封止時に流動性が低い。したがって、樹脂層中の溶剤の残含有量が相対的に低い領域は、封止時に、樹脂層の言わば芯部となって、樹脂層中の溶剤の残含有量が相対的に多い領域の流動を規制するように作用する。そのために本発明の中空デバイス用ドライフィルムは、中空デバイスを製造する際に、中空デバイスの中空部分に封止材料が流入することを抑制することができる。また、溶剤の残含有量が相対的に多い領域によって機能素子端部より外側に大きな空間が形成されることもなく良好な封止を実現することができる。
 中空デバイスの中空部分に封止材料が流入することを抑制し、良好に封止するには、ドライフィルムの樹脂層の溶剤の残含有量を全体的に少なくすることでは達成できず、本発明に従い、樹脂層中に溶剤の残含有量が相対的に多い領域と、溶剤の残含有量が相対的に少ない領域とを有し、かつ、溶剤の残含有量が相対的に多い領域の該溶剤の残含有量と、相対的に少ない領域の該溶剤の残含有量との差が0.2質量%以上であることが肝要である。
 中空デバイス用ドライフィルムの樹脂層は、溶剤の残含有量が相対的に多い領域と、硬化性樹脂組成物中の溶剤の残含有量が相対的に少ない領域とを、それぞれ少なくとも一つ備えている。これらの領域は、それぞれ樹脂層中に2個以上あってもよい。
 図3に、中空デバイス用ドライフィルムの別の例を、本発明の特徴部分である樹脂層のみで示す。ドライフィルムのキャリアフィルムや保護フィルムは図示を省略している。
 図3に示す樹脂層31は、溶剤の残含有量が相対的に多い領域31aと、溶剤の残含有量が相対的に少ない領域31bとが、それぞれ2か所あり、かつ、2か所の樹脂層中の溶剤の残含有量が相対的に少ない領域31b同士が接するように配置されている。これにより樹脂層31は、全体として厚さ方向の中心部に、溶剤の残含有量が相対的に少ない領域31bを備え、表面を含む厚さ方向の両端部に、溶剤の残含有量が相対的に多い領域31aを備えている。なお、本発明の中空デバイス用ドライフィルムは、全体として厚さ方向の中心部に溶剤の残含有量が相対的に多い領域を備え、表面を含む厚さ方向の両端部に溶剤の残含有量が相対的に少ない領域を備えていてもよい。
 中空デバイス用ドライフィルムは、好ましい一例として、溶剤の残含有量が相対的に多い領域の該溶剤の残含有量が0.5質量%以上、より好ましくは、0.6質量%以上5質量%以下であり、相対的に少ない領域の該溶剤の残含有量が0.5質量%未満、より好ましくは、0.1質量%以上0.4質量%以下であるものとすることができる。このようなドライフィルムにおいては、領域の境界の残含有量を0.5質量%とすることにより、溶剤の残含有量が相対的に少ない領域によって中空デバイスの中空部分に封止材料が流入することの抑制が、効果的に行われる。また、他の好ましい例として、溶剤の残含有量が相対的に多い領域の該溶剤の残含有量が2.8質量%以上、より好ましくは、3.0質量%以上5質量%以下であり、相対的に少ない領域の該溶剤の残含有量が2.8質量%未満、より好ましくは、0.1質量%以上2.5質量%以下であるものとすることができる。このようなドライフィルムにおいても溶剤の残含有量が相対的に少ない領域によって中空デバイスの中空部分に封止材料が流入することの抑制が、効果的に行われる。
 中空デバイス用ドライフィルムは、溶剤の残含有量が相対的に多い領域の該溶剤の残含有量と、相対的に少ない領域の該溶剤の残含有量との差が、0.2質量%以上である。0.2質量%以上であることにより、樹脂層中の溶剤の残含有量が相対的に少ない領域によって中空デバイスの中空部分に封止材料が流入することの抑制と良好な封止が、効果的に行われる。より好ましい差は、0.4質量%以上4質量%以下である。
 中空デバイス用ドライフィルムは、樹脂層のキャリアフィルム側の表面と、該キャリアフィルム側とは反対側(保護フィルム側)の表面との少なくとも一方が、樹脂層中の溶剤の残含有量が相対的に多い領域であることが好ましい。樹脂層の少なくとも一方の表面が、樹脂層中の溶剤の残含有量が相対的に多い領域であることにより、図2(b)に示されるように、当該樹脂層中の溶剤の残含有量が相対的に多い領域3aの表面を機能素子12に対向させることができる。樹脂層中の溶剤の残含有量が相対的に多い領域3aは、タッキング性(貼り付き性)が高いことから、ドライフィルムと機能素子12との位置ずれを抑制することができ、ひいては封止時の作業性を向上させることができる。
 中空デバイス用ドライフィルムの樹脂層の厚さは、特に限定されないが、およそ40μm以上であることが好ましい。40μm以上であることにより、樹脂層の一方の表面から溶剤を揮発させて当該表面及びその近傍の領域の溶剤の残含有量が、それ以外の領域に比べて0.2質量%以上低くなるように作製することができる。樹脂層の厚さの上限値は、例えば、300μmである。
 なお、中空デバイス用ドライフィルムの樹脂層の厚さは、機能素子の高さとバンプの高さとを合わせた高さと、ほぼ同じ厚さにすることができる。所定の厚さを有する樹脂層の複数個をロールラミネーターや真空ラミネーターを用いて積層させて、機能素子の高さとバンプの高さとを合わせた高さと、ほぼ同じ厚さにすることもできる。
 本発明の中空デバイス用ドライフィルムを製造するには、例えば、キャリアフィルム上に塗布して形成した樹脂層を乾燥させる際の乾燥条件を制御して、樹脂層の一方の表面から溶剤を揮発させて当該表面及びその近傍の領域の溶剤の残含有量を、それ以外の領域に比べて0.2質量%以上低くすることができる。キャリアフィルム上に硬化性樹脂組成物を塗布する方法は特に限定されず、樹脂組成物を有機溶剤で希釈して適切な粘度に調整し、バーコーター、ダイコーター、コンマコーター、ブレードコーター、リップコーター、ロッドコーター、スクイズコーター、リバースコーター、トランスファロールコーター、グラビアコーター、スプレーコーター等で均一な厚さに塗布すればよい。また、樹脂組成物の塗布後、例えば、50~130℃の温度で1~200分間乾燥することにより、溶剤の残含有量を調整することができる。
 塗布される硬化性樹脂組成物の溶剤として、沸点が60℃以上130℃未満の溶剤と沸点が130℃以上250℃以下の溶剤とをそれぞれ含むようにすることができ、これにより、樹脂層中の溶剤の残含有量が相対的に多い領域と、溶剤の残含有量が相対的に少ない領域との溶剤の残含有量の差を、0.2質量%以上に容易に形成することができる。沸点が60℃以上130℃未満の溶剤として、例えば、メチルエチルケトン、1‐メトキシ‐2‐プロパノール、エタノール等が挙げられる。沸点が130℃以上250℃以下の溶剤として、例えば、シクロヘキサノン、ジエチレングリコールモノエチルエーテルアセテート、プロピレングリコールメチルエーテルアセテート等が挙げられる。
 また、溶剤の残含有量の少ない硬化性樹脂組成物と、溶剤の残含有量の多い硬化性樹脂組成物とを用意して、一方の硬化性樹脂組成物をキャリアフィルムに塗布した後、乾燥させ又は乾燥させることなく他方の硬化性樹脂組成物を重ねて塗布した後、全体的に乾燥させることにより、樹脂層において、溶剤の残含有量が相対的に多い領域と、溶剤の残含有量が相対的に少ない領域を、溶剤の残含有量の差が0.2質量%以上となるように形成することもできる。
 更に、キャリアフィルム上に、溶剤の残含有量が相対的に多い樹脂層を形成し、これとは別途に用意したキャリアフィルム上に、溶剤の残含有量が相対的に少ない樹脂層を形成し、得られた溶剤の残含有量が相対的に少ない樹脂層を、上述した溶剤の残含有量が相対的に多い樹脂層に重ねて積層することにより、樹脂層において、溶剤の残含有量が相対的に多い領域と、溶剤の残含有量が相対的に少ない領域を、溶剤の残含有量の差が0.2質量%以上となるように形成することもできる。
[樹脂層の成分組成]
 樹脂層の成分組成は、溶剤及びその残含有量の差以外については特に限定されないが、樹脂層の例示的な成分組成を説明すると、無機フィラーと、エポキシ樹脂と、溶剤とを含むものである。
[エポキシ樹脂]
 エポキシ樹脂は、エポキシ基を有する樹脂であり、従来公知のものをいずれも使用できる。分子中にエポキシ基を2個有する2官能性エポキシ樹脂、分子中にエポキシ基を3個以上有する多官能エポキシ樹脂等が挙げられる。なお、水素添加されたエポキシ樹脂であってもよい。例えば、前記樹脂層は、固形エポキシ樹脂や液状エポキシ樹脂、半固形エポキシ樹脂や結晶性エポキシ樹脂等を含有してもよい。本明細書において、固形エポキシ樹脂とは40℃で固体状であるエポキシ樹脂をいい、半固形エポキシ樹脂とは20℃で固体状であり、40℃で液状であるエポキシ樹脂をいい、液状エポキシ樹脂とは20℃で液状のエポキシ樹脂をいう。液状の判定は、危険物の試験及び性状に関する省令(平成元年自治省令第1号)の別紙第2の「液状の確認方法」に準じて行う。例えば、特開2016-079384号公報の段落23~25に記載の方法にて行なう。また、結晶性エポキシ樹脂とは、結晶性の強いエポキシ樹脂を意味し、融点以下の温度では、高分子鎖が規則正しく配列し、固形樹脂でありながらも、溶融時には液状樹脂並みの低粘度となる熱硬化性のエポキシ樹脂をいう。
 半固形エポキシ樹脂としては、DIC社製EPICLON860、EPICLON900-IM、EPICLON EXA―4816、EPICLON EXA-4822、東都化成社製エポトートYD-134、三菱ケミカル社製jER834、jER872、住友化学社製ELA-134等のビスフェノールA型エポキシ樹脂;DIC社製EPICLON HP-4032等のナフタレン型エポキシ樹脂;DIC社製EPICLON N-740等のフェノールノボラック型エポキシ樹脂等が挙げられる。
 結晶性エポキシ樹脂としては、例えば、ビフェニル構造、スルフィド構造、フェニレン構造、ナフタレン構造等を有する結晶性エポキシ樹脂を用いることができる。ビフェニルタイプのエポキシ樹脂は、例えば、三菱ケミカル社製jER YX4000、jER YX4000H、jER YL6121H、jER YL6640、jER YL6677として提供されており、ジフェニルスルフィド型エポキシ樹脂は、例えば、東都化成社製エポトートYSLV-120TEとして提供されており、フェニレン型エポキシ樹脂は、例えば、東都化成社製エポトートYDC-1312として提供されており、ナフタレン型エポキシ樹脂は、例えば、DIC社製EPICLON HP-4032D、EPICLON HP-4700として提供されている。また、結晶性エポキシ樹脂として東都化成社製エポトートYSLV-90C、日産化学社製TEPIC-S(トリグリシジルイソシアヌレート)を用いることもできる。
 固形エポキシ樹脂としては、DIC社製EPICLON HP-4700(ナフタレン型エポキシ樹脂)、日本化薬社製NC-7000(ナフタレン骨格含有多官能固形エポキシ樹脂)等のナフタレン型エポキシ樹脂;日本化薬社製EPPN-502H(トリスフェノールエポキシ樹脂)等のフェノール類とフェノール性水酸基を有する芳香族アルデヒドとの縮合物のエポキシ化物(トリスフェノール型エポキシ樹脂);DIC社製EPICLON HP-7200H(ジシクロペンタジエン骨格含有多官能固形エポキシ樹脂)等のジシクロペンタジエンアラルキル型エポキシ樹脂;日本化薬社製NC-3000H(ビフェニル骨格含有多官能固形エポキシ樹脂)等のビフェニルアラルキル型エポキシ樹脂;日本化薬社製NC-3000L等のビフェニル/フェノールノボラック型エポキシ樹脂;DIC社製EPICLON N660、EPICLON N690、N770、日本化薬社製EOCN-104S等のノボラック型エポキシ樹脂;新日鉄住金化学社製TX0712等のリン含有エポキシ樹脂;日産化学社製TEPIC等のトリス(2,3-エポキシプロピル)イソシアヌレート等が挙げられる。
 液状エポキシ樹脂としては、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビスフェノールAF型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、tert-ブチル-カテコール型エポキシ樹脂、グリシジルアミン型エポキシ樹脂、アミノフェノール型エポキシ樹脂、脂環式エポキシ樹脂等が挙げられる。
 本発明のドライフィルムの樹脂層は、エポキシ樹脂以外の熱硬化性樹脂として、例えば、イソシアネート化合物、ブロックイソシアネート化合物、アミノ樹脂、ベンゾオキサジン樹脂、カルボジイミド樹脂、シクロカーボネート化合物、多官能オキセタン化合物、エピスルフィド樹脂などの公知慣用の熱硬化性樹脂を含有していてもよい。
[無機フィラー]
 前記樹脂層は、無機フィラーを含有してもよい。無機フィラーを配合することによって、得られる硬化物の硬化収縮を抑制し、密着性、硬度、クラック耐性等の熱特性を向上させることができる。無機フィラーとしては従来公知の無機フィラーが使用でき、特定のものに限定されないが、例えば、硫酸バリウム、チタン酸バリウム、無定形シリカ、結晶性シリカ、溶融シリカ、球状シリカなどのシリカ、タルク、クレー、ノイブルグ珪土粒子、ベーマイト、炭酸マグネシウム、炭酸カルシウム、酸化チタン、酸化アルミニウム、水酸化アルミニウム、窒化ケイ素、窒化アルミニウム、ジルコン酸カルシウム等の体質顔料や、銅、錫、亜鉛、ニッケル、銀、パラジウム、アルミニウム、鉄、コバルト、金、白金等の金属粉体が挙げられる。無機フィラーは球状粒子であることが好ましい。無機フィラーの平均粒子径(メディアン径、D50)は、0.01~20μmであることが好ましい。なお、本明細書において、無機フィラーの平均粒子径は、一次粒子の粒径だけでなく、二次粒子(凝集体)の粒径も含めた平均粒子径である。平均粒子径は、レーザー回折式粒子径分布測定装置と動的光散乱法による測定装置により求めることができる。レーザー回折法による測定装置としては、マイクロトラック・ベル社製のMicrotrac MT3300EXII、動的光散乱法による測定装置としては、マイクロトラック・ベル社製のNanotracWave II UT151が挙げられる。
 前記無機フィラーは、表面処理されていてもよい。表面処理としては、カップリング剤による表面処理や、アルミナ処理等の有機基を導入しない表面処理がされていてもよい。無機フィラーの表面処理方法は特に限定されず、公知慣用の方法を用いればよく、硬化性反応基を有する表面処理剤、例えば、硬化性反応基を有機基として有するカップリング剤等で無機フィラーの表面を処理すればよい。
 無機フィラーは、1種を単独で用いてもよく、2種以上の混合物として用いてもよい。無機フィラーの配合量は、ドライフィルムの樹脂層の固形分全量基準で、10~90質量%であることが好ましい。
[硬化剤]
 前記樹脂層は、硬化剤を含有してもよい。硬化剤としては、フェノール性水酸基を有する化合物、ポリカルボン酸およびその酸無水物、シアネートエステル基を有する化合物、活性エステル基を有する化合物、マレイミド基を有する化合物、脂環式オレフィン重合体等が挙げられる。硬化剤は1種を単独または2種以上を組み合わせて用いることができる。
 前記フェノール性水酸基を有する化合物としては、フェノールノボラック樹脂、アルキルフェノールボラック樹脂、ビスフェノールAノボラック樹脂、ジシクロペンタジエン型フェノール樹脂、Xylok型フェノール樹脂、テルペン変性フェノール樹脂、クレゾール/ナフトール樹脂、ポリビニルフェノール類、フェノール/ナフトール樹脂、α-ナフトール骨格含有フェノール樹脂、トリアジン骨格含有クレゾールノボラック樹脂、ビフェニルアラルキル型フェノール樹脂、ザイロック型フェノールノボラック樹脂等の従来公知のものを用いることができる。
 前記シアネートエステル基を有する化合物は、一分子中に2個以上のシアネートエステル基(-OCN)を有する化合物であることが好ましい。シアネートエステル基を有する化合物は、従来公知のものをいずれも使用することができる。シアネートエステル基を有する化合物としては、例えば、フェノールノボラック型シアネートエステル樹脂、アルキルフェノールノボラック型シアネートエステル樹脂、ジシクロペンタジエン型シアネートエステル樹脂、ビスフェノールA型シアネートエステル樹脂、ビスフェノールF型シアネートエステル樹脂、ビスフェノールS型シアネートエステル樹脂が挙げられる。また、一部がトリアジン化したプレポリマーであってもよい。
 市販されているシアネートエステル基を有する化合物としては、フェノールノボラック型多官能シアネートエステル樹脂(ロンザジャパン社製、PT30S)、ビスフェノールAジシアネートの一部又は全部がトリアジン化され三量体となったプレポリマー(ロンザジャパン社製、BA230S75)、ジシクロペンタジエン構造含有シアネートエステル樹脂(ロンザジャパン社製、DT-4000、DT-7000)等が挙げられる。
 前記活性エステル基を有する化合物は、一分子中に2個以上の活性エステル基を有する化合物であることが好ましい。活性エステル基を有する化合物は、一般に、カルボン酸化合物とヒドロキシ化合物との縮合反応によって得ることができる。中でも、ヒドロキシ化合物としてフェノール化合物またはナフトール化合物を用いて得られる活性エステル基を有する化合物が好ましい。フェノール化合物またはナフトール化合物としては、ハイドロキノン、レゾルシン、ビスフェノールA、ビスフェノールF、ビスフェノールS、フェノールフタリン、メチル化ビスフェノールA、メチル化ビスフェノールF、メチル化ビスフェノールS、フェノール、o-クレゾール、m-クレゾール、p-クレゾール、カテコール、α-ナフトール、β-ナフトール、1,5-ジヒドロキシナフタレン、1,6-ジヒドロキシナフタレン、2,6-ジヒドロキシナフタレン、ジヒドロキシベンゾフェノン、トリヒドロキシベンゾフェノン、テトラヒドロキシベンゾフェノン、フロログルシン、ベンゼントリオール、ジシクロペンタジエニルジフェノール、フェノールノボラック等が挙げられる。また、活性エステル基を有する化合物としては、ナフタレンジオールアルキル/安息香酸型でもよい。
 市販されている活性エステル基を有する化合物としては、ジシクロペンタジエン型のジフェノール化合物、例えば、HPC8000-65T(DIC社製)、HPC8100-65T(DIC社製)、HPC8150-65T(DIC社製)が挙げられる。
 硬化剤の配合量は、例えば、エポキシ樹脂100質量部に対し20~100質量部である。
 前記樹脂層は、硬化促進剤を含有してもよい。硬化促進剤は、熱硬化反応を促進させるものであり、密着性、耐薬品性、耐熱性等の特性をより一層向上させるために使用される。このような硬化促進剤の具体例としては、イミダゾールおよびその誘導体;アセトグアナミン、ベンゾグアナミン等のグアナミン類;ジアミノジフェニルメタン、m-フェニレンジアミン、m-キシレンジアミン、ジアミノジフェニルスルフォン、ジシアンジアミド、尿素、尿素誘導体、メラミン、多塩基ヒドラジド等のポリアミン類;これらの有機酸塩および/またはエポキシアダクト;三フッ化ホウ素のアミン錯体;エチルジアミノ-S-トリアジン、2,4-ジアミノ-S-トリアジン、2,4-ジアミノ-6-キシリル-S-トリアジン等のトリアジン誘導体類;トリメチルアミン、トリエタノールアミン、N,N-ジメチルオクチルアミン、N-ベンジルジメチルアミン、ピリジン、N-メチルモルホリン、ヘキサ(N-メチル)メラミン、2,4,6-トリス(ジメチルアミノフェノール)、テトラメチルグアニジン、m-アミノフェノール等のアミン類;ポリビニルフェノール、ポリビニルフェノール臭素化物、フェノールノボラック、アルキルフェノールノボラック等のポリフェノール類;トリブチルホスフィン、トリフェニルホスフィン、トリス-2-シアノエチルホスフィン等の有機ホスフィン類;トリ-n-ブチル(2,5-ジヒドロキシフェニル)ホスホニウムブロマイド、ヘキサデシルトリブチルホスホニウムクロライド等のホスホニウム塩類;ベンジルトリメチルアンモニウムクロライド、フェニルトリブチルアンモニウムクロライド等の4級アンモニウム塩類;前記多塩基酸無水物;ジフェニルヨードニウムテトラフルオロボロエート、トリフェニルスルホニウムヘキサフルオロアンチモネート、2,4,6-トリフェニルチオピリリウムヘキサフルオロホスフェート等の光カチオン重合触媒;スチレン-無水マレイン酸樹脂;フェニルイソシアネートとジメチルアミンの等モル反応物や、トリレンジイソシアネート、イソホロンジイソシアネート等の有機ポリイソシアネートとジメチルアミンの等モル反応物、金属触媒等の従来公知の硬化促進剤が挙げられる。
 硬化促進剤は、1種を単独または2種以上混合して用いることができる。硬化促進剤の使用は必須ではないが、特に硬化を促進したい場合には、例えば、エポキシ樹脂100質量部に対して0.01~5質量部の範囲で用いることができる。金属触媒の場合、シアネートエステル基を有する化合物100質量部に対して金属換算で10~550ppmが好ましく、25~200ppmがより好ましい。
 本発明のドライフィルムの樹脂層は、有機溶剤等の溶剤を含む。有機溶剤としては、特に制限はないが、例えば、ケトン類、芳香族炭化水素類、グリコールエーテル類、グリコールエーテルアセテート類、エステル類、アルコール類、脂肪族炭化水素、石油系溶剤などを挙げることができる。具体的には、メチルエチルケトン、シクロヘキサノン、メチルブチルケトン、メチルイソブチルケトン等のケトン類;トルエン、キシレン、テトラメチルベンゼン等の芳香族炭化水素類;セロソルブ、メチルセロソルブ、ブチルセロソルブ、カルビトール、メチルカルビトール、ブチルカルビトール、エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、エチレングリコールモノブチルエーテル、プロピレングリコールモノメチルエーテル、ジプロピレングリコールモノメチルエーテル、ジプロピレングリコールジエチルエーテル、トリエチレングリコールモノエチルエーテル等のグリコールエーテル類;酢酸エチル、酢酸ブチル、酢酸イソブチル、エチレングリコールモノエチルエーテルアセテート、ジプロピレングリコールメチルエーテルアセテート、プロピレングリコールメチルエーテルアセテート、プロピレングリコールエチルエーテルアセテート、プロピレングリコールブチルエーテルアセテートなどのエステル類;エタノール、プロパノール、2-メトキシプロパノール、n-ブタノール、イソブチルアルコール、イソペンチルアルコール、エチレングリコール、プロピレングリコール等のアルコール類;オクタン、デカン等の脂肪族炭化水素;石油エーテル、石油ナフサ、水添石油ナフサ、ソルベントナフサ等の石油系溶剤等の他、N,N-ジメチルホルムアミド(DMF)、テトラクロロエチレン、テレビン油等が挙げられる。また、丸善石油化学社製スワゾール1000、スワゾール1500、三共化学社製ソルベント#100、ソルベント#150、シェルケミカルズジャパン社製シェルゾールA100、シェルゾールA150、出光興産社製イプゾール100番、イプゾール150番等の有機溶剤を用いてもよい。有機溶剤は、1種を単独で用いてもよく、2種以上の混合物として用いることができる。本発明のドライフィルムの樹脂層においては、沸点が60℃以上130℃未満の溶剤と沸点が130℃以上250℃以下の溶剤とをそれぞれ含むことが好ましい。なお、本発明のドライフィルムの樹脂層は、必要に応じて沸点250℃超の溶剤をさらに含んでいてもよい。
(エラストマー)
 前記樹脂層は、エラストマーを含有してもよい。エラストマーとしては、熱可塑性樹脂、ゴム状粒子、ガラス転移点が20℃以下かつ重量平均分子量が1万以上の高分子樹脂等を用いることができる。エラストマーとしては、ナガセケムテックス社製「SG-P3」、「SG-80H」、「SG-600LB」、「SG-280」、「SG-790」、「SG-K2」等が挙げられる。
 前記樹脂層は、さらに必要に応じて、フタロシアニン・ブルー、フタロシアニン・グリーン、アイオジン・グリーン、ジスアゾイエロー、クリスタルバイオレット、酸化チタン、カーボンブラック、ナフタレンブラック等の従来公知の着色剤、アスベスト、オルベン、ベントン、微紛シリカ等の従来公知の増粘剤、シリコーン系、フッ素系、高分子系等の消泡剤および/またはレベリング剤、チアゾール系、トリアゾール系、シランカップリング剤等の密着性付与剤、難燃剤、チタネート系、アルミニウム系の従来公知の添加剤類を用いることができる。
[キャリアフィルム]
 キャリアフィルムは、例えば、ポリエチレンテレフタレートやポリエチレンナフタレート等のポリエステルフィルム、ポリイミドフィルム、ポリアミドイミドフィルム、ポリエチレンフィルム、ポリテトラフルオロエチレンフィルム、ポリプロピレンフィルム、ポリスチレンフィルム等の熱可塑性樹脂からなるフィルム、および、表面処理した紙等を用いることができる。キャリアフィルムの厚さは、特に制限されるものではないが概ね10~150μmの範囲で用途に応じて適宜選択される。キャリアフィルムの樹脂層を設ける面には、離型処理が施されていてもよい。
(保護フィルム)
 本発明のドライフィルムは、必要に応じて、樹脂層上に保護フィルムを設けてもよい。保護フィルムとは、ドライフィルムの樹脂層の表面に塵等が付着するのを防止するとともに取扱性を向上させる目的で、樹脂層のキャリアフィルムとは反対の面に設けられるものである。保護フィルムとしては、例えば、前記キャリアフィルムで例示した熱可塑性樹脂からなるフィルム、および、表面処理した紙等を用いることができるが、保護フィルムの厚さは、特に制限されるものではないが概ね10~150μmの範囲で用途に応じて適宜選択される。保護フィルムの樹脂層を設ける面には、離型処理が施されていてもよい。
 以下、本発明の実施例、比較例および試験例を示して本発明について具体的に説明するが、本発明がこれらの実施例に限定されるものでないことはもとよりである。なお、表中の成分組成は、特に断りのない限り全て質量部である。
〈熱硬化性樹脂組成物の作製〉
 表1に示す処方の溶剤を容器に入れ、溶剤が揮発しないように50℃に加温し、それぞれのエポキシ樹脂を加え十分に攪拌し溶解した。その後、添加剤および無機フィラーを加え3本ロールミルにて混練し、さらに硬化剤、硬化促進剤、高分子樹脂を加え撹拌機により十分に攪拌して熱硬化性樹脂組成物を得た。
Figure JPOXMLDOC01-appb-T000001
※1:ビスフェノールA型エポキシ樹脂;三菱ケミカル社製
※2:フェノールノボラック型エポキシ樹脂;DIC社製 
※3:フェノールノボラック型エポキシ樹脂;DIC社製 
※4:フェノールノボラック樹脂;明和化成社製 
※5:シラン化合物;信越化学社製 
※6:球状シリカ;アドマテックス社製 
※7:2-エチル-4-メチルイミダゾール;四国化成工業社製
※8:テイサンレジン、固形分15%のMEK(メチルケトンケトン)溶液;ナガセケムテックス社製。この溶液中のメチルケトンケトンは、沸点が60℃以上130℃未満の溶剤として活用される。
 実施例1:1層型ドライフィルムの作製
 得られた熱硬化性樹脂組成物を、バーコーターを用いてPETフィルム(離型処理PETフィルム;TN200:厚さ38μm)に塗布し、熱風循環式乾燥炉で100℃で20分間乾燥して厚さ200μmの片面(PETフィルムと逆側の面)で溶剤の残含有量が少ないドライフィルムを得た。なお、実施例1のドライフィルムについては、樹脂層のPETフィルムと逆側に保護フィルムを積層した。
〈溶剤の残含有量の測定〉
 TG/DTA(TA Instruments社製TGA 5500)を用いて、ドライフィルムの樹脂層のPETフィルム側と保護フィルム側をそれぞれ5mg程度削ぎ取り、30℃から250℃まで10℃/分で昇温し、250℃で30分保持した後の重量減少を測定することにより、樹脂層両面の溶剤の残含有量を測定したところ片側の残溶剤がそれぞれ0.2質量%(PETフィルムと逆側、即ち、保護フィルム側)、1.9質量%(PETフィルム側)であることを確認した。
 実施例2:2層型ドライフィルムの作製
 得られた熱硬化性樹脂組成物を、バーコーターを用いてPETフィルム(離型処理PETフィルム;TN200:厚さ38μm)に塗布し、熱風循環式乾燥炉で110℃で15分間乾燥して厚さ130μmの片面(PETフィルムと逆側の面)で溶剤の残含有量が少ないドライフィルムを得た。
 実施例1と同様にしてTG/DTAを用いてドライフィルムの樹脂層両面の溶剤の残含有量を測定したところ片側の残溶剤量がそれぞれ0.3質量%(PETフィルムと逆側、即ち、保護フィルム側)、1.8質量%(PETフィルム側)であることを確認した。
 得られたドライフィルムの溶剤の残含有量が少ない樹脂層の面同士を真空加圧ラミネーターMVLP-500(名機社製)を用いて、5kgf/cm、50℃、30秒、4hPaの条件にて重ね合わせ厚さ260μmの中心部で溶剤の残含有量が少ない樹脂層を有するドライフィルムを得た。
実施例3:1層型ドライフィルムの作製
 得られた熱硬化性樹脂組成物を、バーコーターを用いてPETフィルム(離型処理PETフィルム;TN201:厚さ50μm)に塗布し、熱風循環式乾燥炉で100℃で15分間乾燥して厚さ200μmの片面(PETフィルムと逆側の面)で溶剤の残含有量が少ないドライフィルムを得た。
 実施例1と同様にしてTG/DTAを用いてドライフィルムの樹脂層両面の残溶剤を測定したところ片側の残溶剤がそれぞれ2.3質量%(PETフィルムと逆側)、3.3質量%(PETフィルム側)であることを確認した。
 比較例1:1層型ドライフィルムの作製
 得られた熱硬化性樹脂組成物を、バーコーターを用いてPETフィルム(離型処理PETフィルム;TN200:厚さ38μm)に塗布し、熱風循環式乾燥炉で80℃で20分間乾燥して厚さ200μmの溶剤の残含有量が多い樹脂層を有するドライフィルムを得た。
 実施例1と同様にしてTG/DTAを用いてドライフィルムの樹脂層両面の残溶剤量を測定したところ片側の残溶剤量がそれぞれ2.5質量%(PETフィルムと逆側、即ち、保護フィルム側)、2.6質量%(PETフィルム側)であることを確認した。
 比較例2:1層型ドライフィルムの作製
 得られた熱硬化性樹脂組成物を、バーコーターを用いてPETフィルム(離型処理PETフィルム;TN200:厚さ38μm)に塗布し、熱風循環式乾燥炉で、80℃で45分間十分に乾燥して厚さ200μmの溶剤の残含有量が少ない樹脂層を有するドライフィルムを得た。
 実施例1と同様にしてTG/DTAを用いてドライフィルムの樹脂層両面の溶剤の残含有量を測定したところ片側の残溶剤がそれぞれ0.3質量%(PETフィルムと逆側、即ち、保護フィルム側)、0.35質量%(PETフィルム側)であることを確認した。
<試験用基板(チップ部品モデル)の作製>
 厚さ1.2mmのガラス板に太陽インキ製のドライフィルムPSR-4000AUS410(厚さ:20μm)を真空加圧ラミネーターMVLP-500((株)名機製作所社製)を用いて、0.1MPa、75℃、1分、4hPaの条件にて加熱ラミネートした。ついでメタルハライドランプ((株)オーク社製HMW680GW)を用いて500mJ/cmの露光量でパターン露光した。さらに1質量%のNaCO水溶液で現像を行い、1mm角の硬化物をガラス板上に9個形成した。この1mm角の硬化物は、中空デバイスのバンプの代わりである。
 形成した9個の硬化物上に18mm角の厚さ0.15mmのカバーガラス(MATSUNAMI製)を真空加圧ラミネーターMVLP-500(名機社製)を用いて、試験用基板に0.1MPa、100℃、1分、4hPaの条件にて加熱ラミネートし、熱風循環式乾燥炉にて150℃で30分間加熱し、試験用基板を得た。上記カバーガラスは、機能素子、すなわち、チップ部品の代わりである。
<評価基板の作製>
 実施例2および比較例1,2のドライフィルムについては、真空加圧ラミネーターMVLP-500(名機社製)を用いて、試験用基板のカバーガラスに樹脂層が接するように0.5MPa、100℃、1分、4hPaの条件にて加熱ラミネートし、熱風循環式乾燥炉にて100℃で30分間加熱し、その後、PETフィルムを剥がし、熱風循環式乾燥炉にて180℃で60分間加熱し、樹脂層を硬化させて、試験用基板を得た。実施例1、3のドライフィルムについては、PETフィルムを剥がした後、試験用基板のカバーガラスに樹脂層が接するように加熱ラミートし、その後保護フィルムを剥がした以外は実施例2と同様の手順で試験用基板を得た。
<位置合わせ性>
 ラミネート前後のドライフィルムの位置ずれについて目視にて確認した。評価基準は下記の通りである。
 〇:ズレ無
 ×:ズレ有
<埋め込み性>
 ラミネート後のチップ部品裏側への樹脂層の埋め込み性について光学顕微鏡にて確認した。評価基準は下記の通りである。
〇:チップ下部への流れ込み100μm未満
×:チップ下部への流れ込み100μm以上、またはチップ端部より外側に100μm以上の空間が有る  
Figure JPOXMLDOC01-appb-T000002
 上記表2に示す結果から、実施例1、2、3のドライフィルムは、ドライフィルムの位置合わせ性に優れ、チップ下部への樹脂の流れ込みが少ない。一方で比較例1、は、樹脂層の流れ込みが多い。また比較例2は、ドライフィルムの位置合わせが困難であり、しかも埋め込み性が不十分であった。
1 ドライフィルム
2 キャリアフィルム
3 樹脂層
4 保護フィルム

Claims (5)

  1.  キャリアフィルム上に溶剤を含む硬化性樹脂組成物からなる樹脂層を備え、
     該樹脂層は厚さ方向に溶剤の残含有量が相対的に多い領域と、相対的に少ない領域とを、それぞれ少なくとも一つ備えるドライフィルムであって、
     前記溶剤の残含有量が相対的に多い領域の該溶剤の残含有量と、前記相対的に少ない領域の該溶剤の残含有量との差が、0.2質量%以上であることを特徴とする中空デバイス用ドライフィルム。
  2.  前記樹脂層の厚さが40μm以上である請求項1記載の中空デバイス用ドライフィルム。
  3.  前記溶剤が、沸点が60℃以上130℃未満の溶剤と沸点が130℃以上250℃以下の溶剤とをそれぞれ含む請求項1または2に記載の中空デバイス用ドライフィルム。
  4.  請求項1~3のいずれか一項に記載の中空デバイス用ドライフィルムの樹脂層を硬化して得られることを特徴とする硬化物。
  5.  請求項4記載の硬化物を有することを特徴とする電子部品。
PCT/JP2020/010404 2019-03-29 2020-03-10 中空デバイス用ドライフィルム、硬化物および電子部品 WO2020203102A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202080012433.2A CN113396056B (zh) 2019-03-29 2020-03-10 中空器件用干膜、固化物和电子部件
JP2021511325A JP7394839B2 (ja) 2019-03-29 2020-03-10 中空デバイス用ドライフィルム、硬化物および電子部品

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019067803 2019-03-29
JP2019-067803 2019-03-29

Publications (1)

Publication Number Publication Date
WO2020203102A1 true WO2020203102A1 (ja) 2020-10-08

Family

ID=72668545

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/010404 WO2020203102A1 (ja) 2019-03-29 2020-03-10 中空デバイス用ドライフィルム、硬化物および電子部品

Country Status (3)

Country Link
JP (1) JP7394839B2 (ja)
CN (1) CN113396056B (ja)
WO (1) WO2020203102A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07278274A (ja) * 1994-04-08 1995-10-24 Toshiba Chem Corp 導電性ペースト
JP2004327623A (ja) * 2003-04-23 2004-11-18 Three M Innovative Properties Co 封止用フィルム接着剤、封止用フィルム積層体及び封止方法
WO2013121689A1 (ja) * 2012-02-15 2013-08-22 株式会社村田製作所 電子部品及びその製造方法
JP2015128148A (ja) * 2013-11-28 2015-07-09 日東電工株式会社 中空封止用樹脂シート、及び、中空パッケージの製造方法
JP2019050253A (ja) * 2017-09-08 2019-03-28 リンテック株式会社 樹脂シートおよび半導体装置

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3186834B2 (ja) * 1992-04-28 2001-07-11 住友金属鉱山株式会社 ポリイミド樹脂溶解用エッチング液およびそれを使用したスルーホールのエッチング加工方法
US6252010B1 (en) * 1997-10-29 2001-06-26 Hitachi Chemical Company, Ltd. Siloxane-modified polyamideimide resin composition, adhesive film, adhesive sheet and semiconductor device
TW466720B (en) * 2000-05-22 2001-12-01 Siliconware Precision Industries Co Ltd Semiconductor package with flash-prevention structure and manufacture method
JP2002043307A (ja) * 2000-07-26 2002-02-08 Sharp Corp 樹脂被膜基板および樹脂被膜基板の製造方法
JP5083161B2 (ja) * 2008-04-16 2012-11-28 株式会社村田製作所 電子部品の製造方法及び製造装置
JP5223657B2 (ja) * 2008-12-24 2013-06-26 株式会社村田製作所 電子部品の製造方法及び製造装置
JP4999117B2 (ja) * 2009-03-17 2012-08-15 古河電気工業株式会社 ウエハ加工用テープ
JP5175802B2 (ja) * 2009-06-26 2013-04-03 日本ポリエチレン株式会社 クロム系触媒を用いたエチレン系重合体の製造方法
JP2011205032A (ja) * 2010-03-26 2011-10-13 Seiko Instruments Inc パッケージの製造方法、圧電振動子、発振器、電子機器及び電波時計
WO2011145750A1 (ja) * 2010-05-20 2011-11-24 日立化成工業株式会社 感光性樹脂組成物、感光性フィルム、リブパターンの形成方法、中空構造とその形成方法及び電子部品
JP6221204B2 (ja) * 2011-03-28 2017-11-01 日立化成株式会社 感光性樹脂組成物、感光性フィルム、パターン形成方法、中空構造の形成方法、及び電子部品
JP2014192446A (ja) * 2013-03-28 2014-10-06 Toray Ind Inc 電子部材の製造方法
CN103779306B (zh) * 2014-01-26 2016-11-23 清华大学 一种封装结构、封装方法及在封装方法中使用的模板
SG11201909029YA (en) * 2017-04-28 2019-10-30 Hitachi Chemical Co Ltd Sealing film, sealed structure, and method for producing sealed structure

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07278274A (ja) * 1994-04-08 1995-10-24 Toshiba Chem Corp 導電性ペースト
JP2004327623A (ja) * 2003-04-23 2004-11-18 Three M Innovative Properties Co 封止用フィルム接着剤、封止用フィルム積層体及び封止方法
WO2013121689A1 (ja) * 2012-02-15 2013-08-22 株式会社村田製作所 電子部品及びその製造方法
JP2015128148A (ja) * 2013-11-28 2015-07-09 日東電工株式会社 中空封止用樹脂シート、及び、中空パッケージの製造方法
JP2019050253A (ja) * 2017-09-08 2019-03-28 リンテック株式会社 樹脂シートおよび半導体装置

Also Published As

Publication number Publication date
CN113396056A (zh) 2021-09-14
JP7394839B2 (ja) 2023-12-08
TW202044939A (zh) 2020-12-01
JPWO2020203102A1 (ja) 2020-10-08
CN113396056B (zh) 2024-05-14

Similar Documents

Publication Publication Date Title
KR102641274B1 (ko) 드라이 필름 및 프린트 배선판
TWI400264B (zh) An epoxy resin, a hardened resin composition and a hardened product thereof
JP7169076B2 (ja) 熱硬化性樹脂組成物、ドライフィルム、硬化物、および、電子部品
CN107207837B (zh) 热固化性树脂组合物、干膜、固化物和印刷电路板
JP6538429B2 (ja) ドライフィルム、硬化物およびプリント配線板
JP6999459B2 (ja) ドライフィルム、硬化物、および、電子部品
WO2014208736A1 (ja) ドライフィルムおよびプリント配線板
CN110050514A (zh) 干膜、固化物、印刷电路板和固化物的制造方法
JP2020090576A (ja) 熱硬化性樹脂組成物、ドライフィルム、樹脂付き銅箔、硬化物、電子部品、および、電子部品の製造方法
KR102313172B1 (ko) 드라이 필름, 경화물 및 전자 부품
JP6018148B2 (ja) ドライフィルムおよびプリント配線板
JP7300601B2 (ja) 熱硬化性樹脂組成物、ドライフィルム、硬化物、および、電子部品
WO2014208737A1 (ja) 熱硬化性組成物、ドライフィルムおよびプリント配線板
JP7133955B2 (ja) 熱硬化性樹脂組成物、ドライフィルム、硬化物、および、電子部品
WO2020203102A1 (ja) 中空デバイス用ドライフィルム、硬化物および電子部品
WO2020158202A1 (ja) 硬化性樹脂組成物、ドライフィルム、硬化物、および、電子部品
TWI844644B (zh) 中空裝置用乾式薄膜、硬化物及電子零件
WO2020195843A1 (ja) ドライフィルム、硬化物、および、電子部品
JP7454394B2 (ja) ドライフィルム、硬化物、電子部品、および、ドライフィルムの製造方法
JP2020105399A (ja) 硬化性樹脂組成物、ドライフィルム、硬化物、および、電子部品
WO2020116512A1 (ja) 硬化性樹脂組成物、ドライフィルム、樹脂付き銅箔、硬化物、および電子部品
TWI846846B (zh) 乾薄膜、硬化物及電子零件
WO2024090394A1 (ja) 積層構造体、その製造方法、硬化物および電子部品

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20784974

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021511325

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20784974

Country of ref document: EP

Kind code of ref document: A1