WO2020196791A1 - 銅合金条材およびその製造方法、それを用いた抵抗器用抵抗材料ならびに抵抗器 - Google Patents

銅合金条材およびその製造方法、それを用いた抵抗器用抵抗材料ならびに抵抗器 Download PDF

Info

Publication number
WO2020196791A1
WO2020196791A1 PCT/JP2020/013832 JP2020013832W WO2020196791A1 WO 2020196791 A1 WO2020196791 A1 WO 2020196791A1 JP 2020013832 W JP2020013832 W JP 2020013832W WO 2020196791 A1 WO2020196791 A1 WO 2020196791A1
Authority
WO
WIPO (PCT)
Prior art keywords
mass
less
copper alloy
oxide film
content
Prior art date
Application number
PCT/JP2020/013832
Other languages
English (en)
French (fr)
Inventor
紳悟 川田
俊太 秋谷
樋口 優
Original Assignee
古河電気工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 古河電気工業株式会社 filed Critical 古河電気工業株式会社
Priority to CN202080015481.7A priority Critical patent/CN113454252B/zh
Priority to JP2020542680A priority patent/JP6800387B1/ja
Priority to KR1020217028880A priority patent/KR20210144680A/ko
Publication of WO2020196791A1 publication Critical patent/WO2020196791A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • C22C9/05Alloys based on copper with manganese as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • C22C9/02Alloys based on copper with tin as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • C22C9/04Alloys based on copper with zinc as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • C22C9/06Alloys based on copper with nickel or cobalt as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/08Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of copper or alloys based thereon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01CRESISTORS
    • H01C13/00Resistors not provided for elsewhere
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working

Definitions

  • the present invention relates to a copper alloy strip, a method for producing the same, a resistor material for a resistor using the same, and a resistor, and particularly to a copper alloy strip having a stable resistance even when the environmental temperature changes.
  • the metal material of the resistor used for the resistor is required to have a small temperature coefficient of resistance (TCR), which is an index thereof, so that the resistance of the resistor is stable even if the ambient temperature changes.
  • TCR temperature coefficient of resistance
  • the temperature coefficient of resistance represents the magnitude of change in resistance value with temperature as a fraction (ppm) per 1 ° C.
  • TCR ( ⁇ 10-6 / K) (RR 0 ). / that R 0 ⁇ 1 / (T- T 0) ⁇ 10 6 is represented by the formula.
  • T in the equation indicates the test temperature (° C.)
  • T 0 indicates the reference temperature (° C.)
  • R indicates the resistance value ( ⁇ ) at the test temperature T
  • R 0 indicates the resistance value ( ⁇ ) at the test temperature T 0 . ..
  • Cu-Mn-Ni alloys and Cu-Mn-Sn alloys have been proposed as metal materials constituting the resistance material (see, for example, Patent Document 1). These metallic materials have very low TCR.
  • a copper-based alloy material containing a predetermined amount of manganese as shown in Patent Document 1 has a stable temperature coefficient of resistance, but in such a copper alloy, the surface is easily oxidized to form an oxide film. Due to the oxide of manganese formed in this manner, the solder wettability is lowered and the adhesion to the solder is low.
  • Patent Document 2 In order to prevent oxidation of the surface of the copper alloy material used as the resistance material and suppress the change in the resistance value of the copper alloy material, for example, in Patent Document 2, the surface of the copper alloy material to which aluminum and tin are added is heat-treated. A material obtained by oxidizing the material has been proposed.
  • the present invention has been made in view of the above circumstances, and an object of the present invention is to provide a copper alloy material having stable resistance even when the ambient temperature changes and having good solder mountability. ..
  • the present inventors have a composition in which the copper alloy strip contains 3% by mass or more and 20% by mass or less of manganese, and the balance is composed of copper and unavoidable impurities, by Auger electron spectroscopy.
  • the ratio of the Mn content to the Cu content (surface layer [Mn / Cu] ratio) measured in the surface layer region partitioned between the surface and the surface layer region at a position of 0.05 ⁇ m in the depth direction from the surface is the mass ratio.
  • the gist structure of the present invention is as follows.
  • the ratio of the Mn content to the Cu content (surface layer [Mn / Cu] ratio) measured in the surface layer region partitioned from the surface at a position of 0.05 ⁇ m in the depth direction is converted into a mass ratio.
  • a method for producing a copper alloy strip which comprises removing the above with an aqueous sulfuric acid solution.
  • the method for producing a copper alloy strip according to (5) above which further comprises the second cold rolling step [step 8] after the first oxide film removing step [step 7]. .. (7)
  • the second oxide film forming step includes the second oxide film forming step.
  • the second cold-rolled sheet obtained in the second cold rolling step is heated at 200 ° C. or higher and 800 ° C.
  • a second oxide film is formed, and in the second oxide film removing step, the second oxide film of the second cold-rolled plate formed in the second oxide film forming step is removed with a sulfuric acid aqueous solution.
  • the copper alloy strip contains 3% by mass or more and 20% by mass or less of manganese, and the balance is composed of copper and unavoidable impurities. From the surface and the surface by Auger electron spectroscopy. The ratio of the Mn content to the Cu content (surface layer [Mn / Cu] ratio) measured in the surface layer region partitioned by the 0.05 ⁇ m position in the depth direction is 0.03 in terms of mass ratio. By less than, the copper alloy strip has stable resistance even when the ambient temperature changes, and has good solder mountability.
  • the copper alloy strip according to the present invention is a copper alloy strip containing 3% by mass or more and 20% by mass or less of manganese, and the balance is composed of copper and unavoidable impurities, and the surface is subjected to Auger electron spectroscopy.
  • the ratio of the Mn content to the Cu content (surface layer [Mn / Cu] ratio) measured in the surface layer region partitioned from the surface at a position of 0.05 ⁇ m in the depth direction is converted into a mass ratio. , Less than 0.030.
  • the surface has a small amount of Mn and has a high adhesion to the solder.
  • Mn is abundantly present in the copper alloy strip as a whole in an amount of 3% by mass or more, the alloy strip having electrical characteristics as a whole has a lower resistance temperature coefficient. .. Therefore, such a copper alloy strip has stable resistance even when the ambient temperature changes, and has good solder mountability.
  • the copper alloy strip of the present invention contains manganese (Mn) of 3% by mass or more and 20% by mass or less.
  • Mn manganese
  • the temperature coefficient of resistance can be lowered without lowering the solder wettability of the surface of the copper alloy material.
  • the manganese content is less than 3% by mass, the effect of lowering the temperature coefficient of resistance cannot be sufficiently obtained.
  • the manganese content is more than 20% by mass, the surface characteristics may be significantly deteriorated.
  • the manganese content is preferably 5% by mass or more.
  • the ratio of the Mn content to the Cu content measured by Auger electron spectroscopy in the surface layer region divided by the surface and the position 0.05 ⁇ m in the depth direction from the surface. is less than 0.030 in terms of mass ratio.
  • the surface layer [Mn / Cu] ratio is, for example, preferably 0.028 or less, more preferably 0.025 or less, and even more preferably 0.022 or less.
  • the alloy strip of the present invention was measured in the surface layer region with respect to the Mn content measured in the internal region divided into the 5 ⁇ m position and the 10 ⁇ m position in the depth direction from the surface by Auger electron spectroscopy.
  • the Mn content ratio (surface Mn content / internal Mn content ratio) is preferably 0.50 or less, more preferably 0.45 or less, and more preferably 0.45 or less in terms of mass ratio. The following is more preferable.
  • the concentration of manganese increases from the surface layer of the alloy strip material toward the inside, but the concentration gradient becomes steeper.
  • manganese is present in the surface layer, its oxidation causes the wettability of the copper alloy strip to decrease.
  • Mn is contained in the material as a whole.
  • the resistance temperature coefficient can be lowered by containing a large amount. That is, the smaller the ratio of surface Mn content / internal Mn content, the larger the concentration gradient of manganese, and the manganese is sparsely distributed on the surface layer and densely distributed on the inside, resulting in more. It has a lower temperature coefficient of resistance while having good solder wettability.
  • alloy strip material of the present invention as optional additive components, nickel of 0.01% by mass or more and 5% by mass or less, tin of 0.01% by mass or more and 5% by mass or less, 0.01% by mass or more and 5% by mass.
  • Nickel 0.01% by mass or more and 5% by mass or less
  • the content of nickel (Ni) is not particularly limited, but is preferably 0.01% by mass or more and 5% by mass or less with respect to 100% by mass of the copper alloy strip. If the nickel content is less than 0.01%, the effects of improving the temperature coefficient of resistance and adjusting the resistivity may not be sufficiently obtained. On the other hand, if the nickel content exceeds 5% by mass, the solder wettability may decrease.
  • the nickel content may be, for example, 0% by mass or more (including the case where it is not contained), 0.001% by mass or more, and 0.005% by mass or more.
  • tin 0.01% by mass or more and 5% by mass or less
  • the content of tin (Sn) is not particularly limited, but is preferably 0.01% by mass or more and 5% by mass or less with respect to 100% by mass of the copper alloy strip. If the tin content is less than 0.01%, the effects of improving the temperature coefficient of resistance and adjusting the resistivity may not be sufficiently obtained. On the other hand, if the tin content exceeds 5% by mass, the manufacturability of the copper alloy strip may be significantly reduced.
  • the tin content may be, for example, 0% by mass or more (including the case where it is not contained), 0.001% by mass or more, and 0.005% by mass or more.
  • the content of iron (Fe) is not particularly limited, but is preferably 0.01% by mass or more and 0.5% by mass or less with respect to 100% by mass of the copper alloy strip. If the iron content is less than 0.01%, the effects of improving the temperature coefficient of resistance and adjusting the resistivity may not be sufficiently obtained. On the other hand, if the iron content is more than 0.5% by mass, the solder wettability may decrease.
  • the iron content may be, for example, 0% by mass or more (including the case where it is not contained), 0.001% by mass or more, and 0.005% by mass or more.
  • the content of zinc (Zn) is not particularly limited, but is preferably 0.01% by mass or more and 5% by mass or less with respect to 100% by mass of the copper alloy strip. If the zinc content is less than 0.01%, the effects of improving the temperature coefficient of resistance and adjusting the resistivity may not be sufficiently obtained. On the other hand, if the zinc content is more than 5% by mass, dezincination may cause a change in performance with time.
  • the zinc content may be, for example, 0% by mass or more (including the case where it is not contained), 0.001% by mass or more, and 0.005% by mass or more.
  • the content of silicon (Si) is not particularly limited, but is preferably 0.01% by mass or more and 0.5% by mass or less with respect to 100% by mass of the copper alloy strip. If the silicon content is less than 0.01% by mass, the effects of improving the temperature coefficient of resistance and adjusting the resistivity may not be sufficiently obtained. On the other hand, if the silicon content exceeds 0.5% by mass, the solder wettability may decrease.
  • the silicon content may be, for example, 0% by mass or more (including the case where it is not contained), 0.001% by mass or more, and 0.005% by mass or more.
  • the content of chromium (Cr) is not particularly limited, but is preferably 0.01% by mass or more and 0.5% by mass or less with respect to 100% by mass of the copper alloy strip. If the chromium content is less than 0.01% by mass, the effects of improving the temperature coefficient of resistance and adjusting the resistivity may not be sufficiently obtained. On the other hand, if the chromium content exceeds 0.5% by mass, the solder wettability may decrease.
  • the chromium content may be, for example, 0% by mass or more (including the case where it is not contained), 0.001% by mass or more, and 0.005% by mass or more.
  • zirconium 0.01% by mass or more and 0.5% by mass or less
  • the content of zirconium (Zr) is not particularly limited, but is preferably 0.01% by mass or more and 0.5% by mass or less with respect to 100% by mass of the copper alloy strip. If the zirconium content is less than 0.01% by mass, the effects of improving the temperature coefficient of resistance and adjusting the resistivity may not be sufficiently obtained. On the other hand, if the zirconium content exceeds 0.5% by mass, the solder wettability may decrease.
  • the zirconium content may be, for example, 0% by mass or more (including the case where it is not contained), 0.001% by mass or more, and 0.005% by mass or more.
  • titanium 0.01% by mass or more and 0.5% by mass or less
  • the content of titanium (Ti) is not particularly limited, but is preferably 0.01% by mass or more and 0.5% by mass or less with respect to 100% by mass of the copper alloy strip. If the titanium content is less than 0.01% by mass, the effects of improving the temperature coefficient of resistance and adjusting the resistivity may not be sufficiently obtained. On the other hand, if the titanium content exceeds 0.5% by mass, the solder wettability may decrease.
  • the titanium content may be, for example, 0% by mass or more (including the case where it is not contained), 0.001% by mass or more, and 0.005% by mass or more.
  • the content of silver (Ag) is not particularly limited, but is preferably 0.01% by mass or more and 0.5% by mass or less with respect to 100% by mass of the copper alloy strip. If the silver content is less than 0.01%, the effects of improving the temperature coefficient of resistance and adjusting the resistivity may not be sufficiently obtained. On the other hand, if the silver content is more than 0.5% by mass, the raw material cost is high, but the effect commensurate with it cannot be obtained.
  • the silver content may be, for example, 0% by mass or more (including the case where it is not contained), 0.001% by mass or more, and 0.005% by mass or more.
  • the content of magnesium (Mg) is not particularly limited, but is preferably 0.01% by mass or more and 0.5% by mass or less with respect to 100% by mass of the copper alloy strip. If the magnesium content is less than 0.01% by mass, the effects of improving the temperature coefficient of resistance and adjusting the resistivity may not be sufficiently obtained. On the other hand, if the magnesium content exceeds 0.5% by mass, the solder wettability may decrease.
  • the magnesium content may be, for example, 0% by mass or more (including the case where it is not contained), 0.001% by mass or more, and 0.005% by mass or more.
  • cobalt 0.01% by mass or more and 0.5% by mass or less
  • the content of cobalt (Co) is not particularly limited, but is preferably 0.01% by mass or more and 0.5% by mass or less with respect to 100% by mass of the copper alloy strip. If the cobalt content is less than 0.01% by mass, the effects of improving the temperature coefficient of resistance and adjusting the resistivity may not be sufficiently obtained. On the other hand, if the cobalt content exceeds 0.5% by mass, the solder wettability may decrease.
  • the cobalt content may be, for example, 0% by mass or more (including the case where it is not contained), 0.001% by mass or more, and 0.005% by mass or more.
  • the content of phosphorus (P) is not particularly limited, but is preferably 0.01% by mass or more and 5% by mass or less with respect to 100% by mass of the copper alloy strip. If the phosphorus content is less than 0.01%, the effects of improving the temperature coefficient of resistance and adjusting the resistivity may not be sufficiently obtained. On the other hand, if the phosphorus content exceeds 0.5% by mass, the manufacturability of the copper alloy strip may be significantly reduced.
  • the phosphorus content may be, for example, 0% by mass or more (including the case where it is not contained), 0.001% by mass or more, and 0.005% by mass or more.
  • the balance consists of Cu (copper) and unavoidable impurities.
  • the "unavoidable impurities” referred to here are generally those that are present in the raw materials of copper-based products and those that are unavoidably mixed in the manufacturing process, which are originally unnecessary, but are in trace amounts. It is an acceptable impurity because it does not affect the characteristics of copper-based products.
  • Examples of the components listed as unavoidable impurities include non-metal elements such as sulfur (S) and oxygen (O) and metal elements such as aluminum (Al) and antimony (Sb).
  • the upper limit of the content of these components may be 0.05% by mass for each of the above components and 0.20% by mass for the total amount of the above components.
  • the copper alloy strip of the present invention is extremely useful as a resistance material for resistors such as shunt resistors and chip resistors.
  • This manufacturing method includes a casting step [step 1], a homogenization treatment step [step 2], a hot rolling step [step 3], a surface milling step [step 4], a first cold rolling step [step 5], and a first.
  • a casting step [step 1] a homogenization treatment step [step 2]
  • a hot rolling step [step 3] a hot rolling step [step 3]
  • a surface milling step [step 4] a first cold rolling step [step 5]
  • a first Each of the steps of 1 oxide film forming step [step 6] and 1st oxide film removing step [step 7] is provided in this order, and in the 1st oxide film forming step, the first obtained in the first cold rolling step.
  • the cold-rolled sheet is heated at 200 ° C. or higher and 800 ° C.
  • the removing step is characterized in that the first oxide film of the first cold-rolled plate formed in the first oxide film forming step is removed with a sulfuric acid aqueous solution.
  • a second cold rolling step [step 8], or a second oxide film forming step [step 9] and a second oxide film removing step [step 10] may be added.
  • each step will be described.
  • the raw material (copper alloy material) of the copper alloy plate material such as Cu and Si is melted and cast in a carbon, for example, a graphite crucible, which is preferably made of carbon inside the casting machine (inner wall).
  • the atmosphere inside the casting machine at the time of melting is preferably a vacuum or an atmosphere of an inert gas such as nitrogen or argon in order to prevent the formation of oxides.
  • the casting method is not particularly limited, and for example, a horizontal continuous casting machine or an upcast method can be used.
  • ⁇ Homogenization process [Step 2]> Since the solidification segregation and crystallization generated at the time of ingot in the casting [step 1] are coarse, in the homogenization treatment step [step 2], they are dissolved in the matrix as much as possible to make them as small as possible and eliminated as much as possible. Specifically, for example, the homogenization treatment is carried out for 1 to 24 hours by heating to 800 to 1000 ° C. in an inert gas or the like.
  • ⁇ Hot rolling process for example, the homogenized ingot is rolled at a treatment temperature of about 800 ° C. to 1000 ° C. to a desired plate thickness.
  • the hot working is not particularly limited to either rolling or extrusion.
  • ⁇ Surface cutting process [Process 4]>
  • the oxide film and the altered layer of the skin of the copper alloy plate material are removed. It can be carried out by a commonly known method, for example, by mechanical polishing.
  • the surface cutting thickness may be, for example, about 0.1 to 3 mm.
  • the first cold-rolled sheet obtained in the above-mentioned first cold rolling step is subjected to a neutral gas atmosphere containing 0.01 to 2.00% by volume of oxygen. Then, it is heated at 200 ° C. or higher and 800 ° C. or lower to form a first oxide film.
  • the heating time is preferably, for example, 10 seconds to 10 hours.
  • the reason for positively forming the first oxide film is to form an oxide film containing Mn oxide as a main component.
  • the term "first” such as “first oxide film forming step” is used to distinguish it from the "second oxide film forming step” described later. However, the "second oxide film forming step” and the like are not essential steps, and only the “first oxide film forming step” may be performed.
  • the first oxide film removing step [step 7] is a step of removing the first oxide film of the first cold-rolled plate formed in the oxide film forming step with an aqueous sulfuric acid solution.
  • concentration of the aqueous sulfuric acid solution is, for example, preferably 1 to 50%, more preferably 5 to 30%.
  • a second cold rolling step [step 8] may be further provided after the first oxide film removing step [step 7].
  • this second cold rolling step [step 8] for example, cold rolling with a workability of 0 to 75% is performed to make the plate thickness uniform.
  • the plate thickness after the second cold rolling depends on the application and the like, but can be, for example, 0.01 to 10 mm. Thereby, the above-mentioned copper alloy strip of the present invention can be obtained.
  • a second oxide film forming step [step 9] may be further provided.
  • the second cold-rolled plate obtained in the second cold rolling step is subjected to 200 ° C. or higher in a neutral gas atmosphere containing 0.01 to 2.00% by volume of oxygen.
  • This is a step of forming a second oxide film by heating at 800 ° C. or lower. The specific operation is the same as that of the first oxide film forming step.
  • the second oxide film forming step is a step of removing the second oxide film of the second cold-rolled plate formed in the second oxide film forming step with an aqueous sulfuric acid solution.
  • the specific operation is the same as that of the first oxide film removing step.
  • Mn is preferentially oxidized in a neutral gas atmosphere in which the oxygen concentration is controlled, and then a wet step is performed. It is necessary to remove the oxide film formed in the previous step. At that time, in order to reduce the surface layer [Mn / Cu] ratio, it is necessary to increase the preferential oxidation amount of Mn, and it is necessary to appropriately adjust the heat treatment temperature, time, and oxygen concentration to obtain a desired oxidation amount. Then, by removing the oxide film with a sulfuric acid solution, a surface layer having a small surface layer [Mn / Cu] ratio can be formed.
  • the electrical characteristics particularly the temperature coefficient of resistance (TCR)
  • TCR temperature coefficient of resistance
  • Invention Examples 1 to 22, Comparative Examples 1 and 3 Ingots having the alloy composition described in the "Alloy composition" column of Table 1 below were produced by casting. Next, the ingot was heat-treated under the conditions of a heating temperature of 800 ° C. or higher and 1000 ° C. or lower and a heating time of 10 minutes or longer and 10 hours or lower to homogenize the alloy components, and then formed into a plate shape by hot rolling and cooled with water. , A plate-like product was obtained.
  • the plate-like material obtained by hot rolling is face-cut to remove the oxide film on the surface by 1 mm on each side, and then the plate-like material is cold-rolled at a predetermined processing rate of 90% or more.
  • the plate thickness after the first cold rolling was adjusted to 0.15 mm, 0.23 mm, and 0.50 mm, respectively.
  • the surface was oxidized under predetermined conditions (heating temperature and heating time) in a furnace composed of a mixed gas of nitrogen gas and air and controlled at an oxygen concentration of 0.01 to 2.00% by volume. After the oxidation treatment, the oxide film on the surface was removed with a 20% aqueous sulfuric acid solution.
  • Examples 5, 6, 8, 9, 12, 14, 15, 17, 18, 20 and 21 of the present invention were subjected to the oxidation treatment (second oxide film forming step) again after the second cold rolling. Then, the oxide film on the surface was removed with a 20% aqueous sulfuric acid solution to obtain a copper alloy strip.
  • composition of copper alloy strip The chemical composition of the copper alloy strip was measured by ICP analysis and is shown in Table 1 below.
  • the average [Mn / Cu] ratio in the region) is shown in Table 1 below.
  • the Mn content was measured and averaged at 0.25 minute intervals, and further, the value measured and averaged at 5 points on the front and back sides was "Mn content measured in the surface layer region" (surface layer). Mn content). Further, in the internal region partitioned by the position of 5 ⁇ m in the depth direction from the surface and the position of 10 ⁇ m in the depth direction from the surface, the sputter rate at the time of measurement is set to 4 kV (SiO 2 equivalent value of 100 nm / min) from 50 minutes.
  • the average value of the Mn content measured at intervals of 0.25 minutes for a time up to 100 minutes was further measured at 5 points on the front and back, and the average value was the "Mn content measured in the internal region" (internal Mn). Content). Based on the values of the surface Mn content and the internal Mn content obtained as described above, the ratio of the surface Mn content / internal Mn content is shown in Table 1.
  • solder wettability A test piece cut to a width of 10 mm by a solder checker was immersed in a Sn-3Ag-0.5Cu alloy heated to 245 ° C. for 10 mm at an immersion rate of 25 mm / sec, and the maximum wet load (mN) was read.
  • the RMA type RM615
  • the wetting load is 5 mN or more
  • the solder wettability is regarded as excellent, and when the wettability is 4 mN or more and less than 5 mN, the solder wettability is good.
  • the wettability is less than 4 mN, it is evaluated as “ ⁇ ” as the solder wettability is inferior, and is shown in Table 1.
  • TCR Temperature coefficient of resistance
  • the copper alloy strip of Comparative Example 1 having a manganese content of 2% by mass which is less than the appropriate range of the present invention, has good solder wetting, but has a high TCR and inferior electrical characteristics. It was.
  • the copper alloy strip of Comparative Example 2 having a surface layer [Mn / Cu] ratio of 0.111 had a low TCR, but was inferior in solder wetting.
  • the copper alloy strip of Comparative Example 3 having a manganese content of 25% by mass which is larger than the appropriate range of the present invention, had a low TCR, but was inferior in solder wetting.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Conductive Materials (AREA)
  • Non-Insulated Conductors (AREA)

Abstract

本発明の銅合金条材は、3質量%以上20質量%以下のマンガン(Mn)を含有し、残部が銅(Cu)および不可避不純物からなる組成を有する銅合金条材であって、オージェ電子分光法により、表面と、該表面から深さ方向に0.05μm位置とで区画される表層領域にて測定した、Mn含有量のCu含有量に対する比(表層[Mn/Cu]比)が、質量比に換算して、0.030未満であることを特徴とし、環境温度が変化しても安定した抵抗を有し、かつ良好なはんだの実装性を有する。

Description

銅合金条材およびその製造方法、それを用いた抵抗器用抵抗材料ならびに抵抗器
 本発明は、銅合金条材およびその製造方法、それを用いた抵抗器用抵抗材料ならびに抵抗器に関し、特に、環境温度が変化しても安定した抵抗を有する銅合金条材に関する。
 抵抗器に使用される抵抗材の金属材料には、環境温度が変化しても抵抗器の抵抗が安定するように、その指標である抵抗温度係数(TCR)が小さいことが要求される。抵抗温度係数とは、温度による抵抗値の変化の大きさを1℃当たりの百万分率(ppm)で表したものであり、TCR(×10-6/K)=(R-R)/R×1/(T-T)×10という式で表される。ここで、式中のTは試験温度(℃)、Tは基準温度(℃)、Rは試験温度Tにおける抵抗値(Ω)、Rは試験温度Tにおける抵抗値(Ω)を示す。
 抵抗材を構成する金属材料として、Cu-Mn-Ni合金やCu-Mn-Sn合金が提案されている(例えば、特許文献1参照)。これらの金属材料はTCRが非常に小さい。
 しかしながら、特許文献1に示されるようなマンガンを所定量含む銅系合金材料は、安定した抵抗温度係数を有するが、このような銅合金では、表面が酸化されて酸化膜が形成しやすく、このようにして形成されたマンガンの酸化物により、はんだ濡れ性の低下が生じ、はんだに対する密着性が低い。
 抵抗材に用いる銅合金材料の表面の酸化を防止して、銅合金材料の抵抗値の変化を抑制するため、例えば特許文献2には、アルミニウムと錫を添加した銅合金材料を熱処理して表面を酸化した材料が提案されている。
特開2016-69724号公報 特開2006-270078号公報
 しかしながら、特許文献2の銅合金材料では、添加するアルミニウムがはんだ等の実装に悪影響を及ぼすため、実装性になお改良の余地があった。
 本発明は、以上の実情に鑑みてなされたものであり、環境温度が変化しても安定した抵抗を有し、かつ良好なはんだの実装性を有する銅合金材料を提供することを目的とする。
 本発明者らは、鋭意検討を重ねた結果、銅合金条材が3質量%以上20質量%以下のマンガンを含有し、残部が銅および不可避不純物からなる組成を有し、オージェ電子分光法により、表面と、該表面から深さ方向に0.05μm位置とで区画される表層領域にて測定した、Mn含有量のCu含有量に対する比(表層[Mn/Cu]比)が、質量比に換算して、0.03未満であることによって、その銅合金条材は、環境温度が変化しても安定した抵抗を有し、かつ良好なはんだの実装性を有することを見出し、かかる知見に基づき、本発明を完成させるに至った。
 すなわち、本発明の要旨構成は以下のとおりである。
(1)3質量%以上20質量%以下のマンガン(Mn)を含有し、残部が銅(Cu)および不可避不純物からなる組成を有する銅合金条材であって、オージェ電子分光法により、表面と、該表面から深さ方向に0.05μm位置とで区画される表層領域にて測定した、Mn含有量のCu含有量に対する比(表層[Mn/Cu]比)が、質量比に換算して、0.030未満であることを特徴とする、銅合金条材。
(2)オージェ電子分光法により、表面から深さ方向に5μm位置と10μm位置とで区画される内部領域にて測定したMn含有量に対する、前記表層領域にて測定したMn含有量の比(表層Mn含有量/内部Mn含有量比)が、質量比に換算して、0.50以下であることを特徴とする、上記(1)に記載の銅合金条材。
(3)マンガンを5質量%以上20質量%以下含有することを特徴とする、上記(1)または(2)に記載の銅合金条材。
(4)0.01質量%以上5質量%以下のニッケル、0.01質量%以上5質量%以下の錫、0.01質量%以上5質量%以下の鉄、0.01質量%以上5質量%以下の亜鉛、0.01質量%以上0.5質量%以下のケイ素、0.01質量%以上0.5質量%以下のクロム、0.01質量%以上0.5質量%以下のジルコニウム、0.01質量%以上0.5質量%以下のチタン、0.01質量%以上0.5質量%以下の銀、0.01質量%以上0.5質量%以下のマグネシウム、0.01質量%以上0.5質量%以下のコバルト、および、0.01質量%以上0.5質量%以下のリンからなる群より選択される1種以上の元素を含有することを特徴とする、上記(1)~(3)のいずれかに記載の銅合金条材。
(5)上記(1)~(4)のいずれかに記載の銅合金条材の製造方法であって、鋳造工程[工程1]、均質化処理工程[工程2]、熱間圧延工程[工程3]、面削工程[工程4]、第1冷間圧延工程[工程5]、第1酸化被膜形成工程[工程6]および第1酸化被膜除去工程[工程7]の各工程をこの順に有し、前記第1酸化被膜形成工程では、第1冷間圧延工程で得られた第1冷延板を、0.01~2.00体積%の酸素を含んだ中性ガス雰囲気下で、200℃以上800℃以下で加熱して、第1酸化被膜を形成し、前記第1酸化被膜除去工程では、前記第1酸化被膜形成工程で形成された前記第1冷延板の前記第1酸化被膜を、硫酸水溶液で除去することを特徴とする、銅合金条材の製造方法。
(6)前記第1酸化被膜除去工程[工程7]後に、前記第2冷間圧延工程[工程8]をさらに有することを特徴とする、上記(5)に記載の銅合金条材の製造方法。
(7)前記第2冷間圧延工程[工程8]後に、第2酸化被膜形成工程[工程9]および第2酸化被膜除去工程[工程10]をさらに有し、前記第2酸化被膜形成工程では、第2冷間圧延工程で得られた第2冷延板を、0.01~2.00体積%の酸素を含んだ中性ガス雰囲気下で、200℃以上800℃以下で加熱して、第2酸化被膜を形成し、前記第2酸化被膜除去工程では、前記第2酸化被膜形成工程で形成された前記第2冷延板の前記第2酸化被膜を、硫酸水溶液で除去することを特徴とする、上記(6)に記載の銅合金条材の製造方法。
(8)上記(1)~(4)のいずれかに記載の銅合金条材を用いた抵抗器用抵抗材料。
(9)上記(8)に記載の抵抗材料を有する抵抗器。
 本発明によれば、銅合金条材が3質量%以上20質量%以下のマンガンを含有し、残部が銅および不可避不純物からなる組成を有し、オージェ電子分光法により、表面と、該表面から深さ方向に0.05μm位置とで区画される表層領域にて測定した、Mn含有量のCu含有量に対する比(表層[Mn/Cu]比)が、質量比に換算して、0.03未満であることによって、その銅合金条材は、環境温度が変化しても安定した抵抗を有し、かつ良好なはんだの実装性を有する。
(1)銅合金条材
 以下、本発明の銅合金条材の好ましい実施形態について、詳細に説明する。本発明に従う銅合金条材は、3質量%以上20質量%以下のマンガンを含有し、残部が銅および不可避不純物からなる組成を有する銅合金条材であって、オージェ電子分光法により、表面と、該表面から深さ方向に0.05μm位置とで区画される表層領域にて測定した、Mn含有量のCu含有量に対する比(表層[Mn/Cu]比)が、質量比に換算して、0.030未満であることを特徴とするものである。
 このような銅合金条材において、その表面はMnが少なく、はんだに対し高い密着力を有するものとなる。一方、当該銅合金条材の内部では、Mnが全体で3質量%以上も潤沢に存在しているので、電気的特性を担う合金条材全体としては、より低い抵抗温度係数を有するものとなる。したがって、このような銅合金条材は、環境温度が変化しても安定した抵抗を有し、かつ良好なはんだの実装性を有する。
<銅合金条材の組成>
 〔マンガン:3質量%以上20質量%以下〕
 本発明の銅合金条材は、3質量%以上20質量%以下のマンガン(Mn)を含有するものである。マンガンの含有量がこのような範囲にあることにより、当該銅合金材料の表面のはんだ濡れ性を低下させることなく、抵抗温度係数を低下させることができる。これに対し、マンガンの含有量が3質量%未満であると、抵抗温度係数の低下効果が十分に得られない。また、マンガンの含有量が20質量%より多い場合、表面特性を著しく低下させるおそれがある。抵抗温度係数の観点から、マンガンの含有量は、5質量%以上であることが好ましい。
<銅合金条材の組成分布>
 本発明の銅合金条材は、オージェ電子分光法により、表面と、該表面から深さ方向に0.05μm位置とで区画される表層領域にて測定した、Mn含有量のCu含有量に対する比(表層[Mn/Cu]比)が、質量比に換算して、0.030未満である。このように、表層[Mn/Cu]比が0.030未満であることにより、その表面においてMnが少なくなるため、その表面は高いはんだ濡れ性を有し良好なはんだ実装性を有するものとなる。表層[Mn/Cu]比は、例えば0.028以下であることが好ましく、0.025以下であることがより好ましく、0.022以下であることがより好ましい。
 また、本発明の合金条材は、オージェ電子分光法により、表面から深さ方向に5μm位置と10μm位置とで区画される内部領域にて測定したMn含有量に対する、前記表層領域にて測定したMn含有量の比(表層Mn含有量/内部Mn含有量比)が、質量比に換算して、0.50以下であることが好ましく、0.45以下であることがより好ましく、0.4以下であることがさらに好ましい。表層Mn含有量/内部Mn含有量比が0.50以下であることにより、当該合金条材の表層から内部に向けてマンガンの濃度が上昇するが、その濃度勾配がより急激になる。マンガンは表層に存在すると、その酸化によって銅合金条材の濡れ性を低下させる原因となることから、表層におけるマンガンの濃度を極力低減させる必要があるが、その一方で、材料全体としてはMnが多く含まれることで抵抗温度係数を低下させることができる。すなわち、表層Mn含有量/内部Mn含有量の比が小さいほど、マンガンの濃度勾配は大きくなり、表層ではマンガンが疎に分布し、内部ではマンガンが密に分布することになり、その結果、より良好なはんだ濡れ性を有しながらも、より低い抵抗温度係数を有するものとなる。
<任意成分>
 また、本発明の合金条材は、任意添加成分として、0.01質量%以上5質量%以下のニッケル、0.01質量%以上5質量%以下の錫、0.01質量%以上5質量%以下の亜鉛、0.01質量%以上0.5質量%以下の鉄、0.01質量%以上0.5質量%以下のケイ素、0.01質量%以上0.5質量%以下のクロム、0.01質量%以上0.5質量%以下のジルコニウム、0.01質量%以上0.5質量%以下のチタン、0.01質量%以上0.5質量%以下の銀、0.01質量%以上0.5質量%以下のマグネシウム、0.01質量%以上0.5質量%以下のコバルト、および、0.01質量%以上0.5質量%以下のリンからなる群より選択される1種以上の元素を含有することができる。これらの元素は、いずれも抵抗温度係数の改善、体積抵抗率の調整等を目的として添加するものであるが、それぞれの所定の範囲を超えて添加すると、はんだ濡れ性の低下や、原料コストの増加等が生じるおそれがある。以下、各金属元素についてそれぞれ説明する。
 〔ニッケル:0.01質量%以上5質量%以下〕
 ニッケル(Ni)の含有量は、特に限定されないが、銅合金条材100質量%に対して0.01質量%以上5質量%以下であることが好ましい。ニッケルの含有量が0.01%未満であると、抵抗温度係数の改善および体積抵抗率の調整の効果が十分に得られない可能性がある。一方で、ニッケルの含有量が5質量%超であると、はんだ濡れ性が低下するおそれがある。なお、ニッケルの含有量は、例えば0質量%以上(非含有の場合を含む)、0.001質量%以上、0.005質量%以上であってもよい。
 〔錫:0.01質量%以上5質量%以下〕
 錫(Sn)の含有量は、特に限定されないが、銅合金条材100質量%に対して0.01質量%以上5質量%以下であることが好ましい。錫の含有量が0.01%未満であると、抵抗温度係数の改善および体積抵抗率の調整の効果が十分に得られない可能性がある。一方で、錫の含有量が5質量%超であると、銅合金条材の製造性を著しく低下させるおそれがある。なお、錫の含有量は、例えば0質量%以上(非含有の場合を含む)、0.001質量%以上、0.005質量%以上であってもよい。
 〔鉄:0.01質量%以上0.5質量%以下〕
 鉄(Fe)の含有量は、特に限定されないが、銅合金条材100質量%に対して0.01質量%以上0.5質量%以下であることが好ましい。鉄の含有量が0.01%未満であると、抵抗温度係数の改善および体積抵抗率の調整の効果が十分に得られない可能性がある。一方で、鉄の含有量が0.5質量%超であると、はんだ濡れ性が低下するおそれがある。なお、鉄の含有量は、例えば0質量%以上(非含有の場合を含む)、0.001質量%以上、0.005質量%以上であってもよい。
 〔亜鉛:0.01質量%以上5質量%以下〕
 亜鉛(Zn)の含有量は、特に限定されないが、銅合金条材100質量%に対して0.01質量%以上5質量%以下であることが好ましい。亜鉛の含有量が0.01%未満であると、抵抗温度係数の改善および体積抵抗率の調整の効果が十分に得られない可能性がある。一方で、亜鉛の含有量が5質量%超であると、脱亜鉛により性能の経時変化が生じるおそれがある。なお、亜鉛の含有量は、例えば0質量%以上(非含有の場合を含む)、0.001質量%以上、0.005質量%以上であってもよい。
 〔ケイ素:0.01質量%以上0.5質量%以下〕
 ケイ素(Si)の含有量は、特に限定されないが、銅合金条材100質量%に対して0.01質量%以上0.5質量%以下であることが好ましい。ケイ素の含有量が0.01質量%未満であると、抵抗温度係数の改善および体積抵抗率の調整の効果が十分に得られない可能性がある。一方で、ケイ素の含有量が0.5質量%超であると、はんだ濡れ性が低下するおそれがある。なお、ケイ素の含有量は、例えば0質量%以上(非含有の場合を含む)、0.001質量%以上、0.005質量%以上であってもよい。
 〔クロム:0.01質量%以上0.5質量%以下〕
 クロム(Cr)の含有量は、特に限定されないが、銅合金条材100質量%に対して0.01質量%以上0.5質量%以下であることが好ましい。クロムの含有量が0.01質量%未満であると、抵抗温度係数の改善および体積抵抗率の調整の効果が十分に得られない可能性がある。一方で、クロムの含有量が0.5質量%超であると、はんだ濡れ性が低下するおそれがある。なお、クロムの含有量は、例えば0質量%以上(非含有の場合を含む)、0.001質量%以上、0.005質量%以上であってもよい。
 〔ジルコニウム:0.01質量%以上0.5質量%以下〕
 ジルコニウム(Zr)の含有量は、特に限定されないが、銅合金条材100質量%に対して0.01質量%以上0.5質量%以下であることが好ましい。ジルコニウムの含有量が0.01質量%未満であると、抵抗温度係数の改善および体積抵抗率の調整の効果が十分に得られない可能性がある。一方で、ジルコニウムの含有量が0.5質量%超であると、はんだ濡れ性が低下するおそれがある。なお、ジルコニウムの含有量は、例えば0質量%以上(非含有の場合を含む)、0.001質量%以上、0.005質量%以上であってもよい。
 〔チタン:0.01質量%以上0.5質量%以下〕
 チタン(Ti)の含有量は、特に限定されないが、銅合金条材100質量%に対して0.01質量%以上0.5質量%以下であることが好ましい。チタンの含有量が0.01質量%未満であると、抵抗温度係数の改善および体積抵抗率の調整の効果が十分に得られない可能性がある。一方で、チタンの含有量が0.5質量%超であると、はんだ濡れ性が低下するおそれがある。なお、チタンの含有量は、例えば0質量%以上(非含有の場合を含む)、0.001質量%以上、0.005質量%以上であってもよい。
 〔銀:0.01質量%以上0.5質量%以下〕
 銀(Ag)の含有量は、特に限定されないが、銅合金条材100質量%に対して0.01質量%以上0.5質量%以下であることが好ましい。銀の含有量が0.01%未満であると、抵抗温度係数の改善および体積抵抗率の調整の効果が十分に得られない可能性がある。一方で、銀の含有量が0.5質量%超であると、原料コストが高くなるが、それに見合った効果は得られない。なお、銀の含有量は、例えば0質量%以上(非含有の場合を含む)、0.001質量%以上、0.005質量%以上であってもよい。
 〔マグネシウム:0.01質量%以上0.5質量%以下〕
 マグネシウム(Mg)の含有量は、特に限定されないが、銅合金条材100質量%に対して0.01質量%以上0.5質量%以下であることが好ましい。マグネシウムの含有量が0.01質量%未満であると、抵抗温度係数の改善および体積抵抗率の調整の効果が十分に得られない可能性がある。一方で、マグネシウムの含有量が0.5質量%超であると、はんだ濡れ性が低下するおそれがある。なお、マグネシウムの含有量は、例えば0質量%以上(非含有の場合を含む)、0.001質量%以上、0.005質量%以上であってもよい。
 〔コバルト:0.01質量%以上0.5質量%以下〕
 コバルト(Co)の含有量は、特に限定されないが、銅合金条材100質量%に対して0.01質量%以上0.5質量%以下であることが好ましい。コバルトの含有量が0.01質量%未満であると、抵抗温度係数の改善および体積抵抗率の調整の効果が十分に得られない可能性がある。一方で、コバルトの含有量が0.5質量%超であると、はんだ濡れ性が低下するおそれがある。なお、コバルトの含有量は、例えば0質量%以上(非含有の場合を含む)、0.001質量%以上、0.005質量%以上であってもよい。
 〔リン:0.01質量%以上0.5質量%以下〕
 リン(P)の含有量は、特に限定されないが、銅合金条材100質量%に対して0.01質量%以上5質量%以下であることが好ましい。リンの含有量が0.01%未満であると、抵抗温度係数の改善および体積抵抗率の調整の効果が十分に得られない可能性がある。一方で、リンの含有量が0.5質量%超であると、銅合金条材の製造性を著しく低下させるおそれがある。なお、リンの含有量は、例えば0質量%以上(非含有の場合を含む)、0.001質量%以上、0.005質量%以上であってもよい。
 〔残部:銅および不可避不純物〕
 上述した必須含有成分および任意添加成分以外は、残部がCu(銅)および不可避不純物からなる。なお、ここでいう「不可避不純物」とは、おおむね銅系製品において、原料中に存在するものや、製造工程において不可避的に混入するもので、本来は不要なものであるが、微量であり、銅系製品の特性に影響を及ぼさないため許容されている不純物である。不可避不純物として挙げられる成分としては、例えば、硫黄(S)、酸素(O)等の非金属元素やアルミニウム(Al)やアンチモン(Sb)等の金属元素が挙げられる。なお、これらの成分含有量の上限は、上記成分毎に0.05質量%、上記成分の総量で0.20質量%とすればよい。
 本発明の銅合金条材は、抵抗器、例えばシャント抵抗器やチップ抵抗器用の抵抗材料として極めて有用である。
(2)銅合金条材の製造方法
 以上のような本発明の一実施形態による銅合金条材の製造方法を詳しく説明する。この製造方法は、鋳造工程[工程1]、均質化処理工程[工程2]、熱間圧延工程[工程3]、面削工程[工程4]、第1冷間圧延工程[工程5]、第1酸化被膜形成工程[工程6]および第1酸化被膜除去工程[工程7]の各工程をこの順に有し、前記第1酸化被膜形成工程では、第1冷間圧延工程で得られた第1冷延板を、0.01~2.00体積%の酸素を含んだ中性ガス雰囲気下で、200℃以上800℃以下で加熱して、第1酸化被膜を形成し、前記第1酸化被膜除去工程では、前記第1酸化被膜形成工程で形成された前記第1冷延板の前記第1酸化被膜を、硫酸水溶液で除去することを特徴としている。また、必要に応じて、第2冷間圧延工程[工程8]、または、第2酸化被膜形成工程[工程9]および第2酸化被膜除去工程[工程10]を追加してもよい。以下、各工程について説明する。
<鋳造工程[工程1]>
 鋳造工程[工程1]では、Cu、Si等の銅合金板材の原料(銅合金素材)を、鋳造機内部(内壁)が好ましくは炭素製の、例えば黒鉛坩堝にて、溶解し鋳造する。溶解するときの鋳造機内部の雰囲気は、酸化物の生成を防止するために、真空もしくは窒素やアルゴンなどの不活性ガス雰囲気とすることが好ましい。鋳造方法には特に制限はなく、例えば横型連続鋳造機やアップキャスト法などを用いることができる。
<均質化処理工程[工程2]>
 鋳造[工程1]において鋳塊時に生じた凝固偏析や晶出物は、粗大なので、均質化処理工程[工程2]において、できるだけ母相に固溶させて小さくし、可能な限り無くす。具体的には、例えば、不活性ガス中等で、800~1000℃に加熱して1~24時間の均質化処理を行う。
<熱間圧延工程[工程3]>
 熱間圧延[工程3]では、例えば、均質化処理を施された鋳塊を処理温度800℃~1000℃程度で、所望の板厚になるように圧延する。熱間加工については、圧延加工、もしくは押出加工のどちらでも特に制限は無い。
<面削工程[工程4]>
 面削工程[工程4]では、銅合金板材の表皮の酸化皮膜や変質層を除去する。通常公知の方法により行うことができ、例えば、機械研磨により行うことができる。面削の厚さとしては、例えば0.1~3mm程度であってよい。
<第1冷間圧延工程[工程5]>
 第1冷間圧延工程[工程5]では、例えば加工度90%の冷間圧延を行う。
<第1酸化被膜形成工程[工程6]>
 第1酸化被膜形成工程[工程6]では、上述の第1冷間圧延工程で得られた第1冷延板を、0.01~2.00体積%の酸素を含んだ中性ガス雰囲気下で、200℃以上800℃以下で加熱して、第1酸化被膜を形成する。加熱時間は、例えば10秒~10時間であることが好ましい。第1酸化被膜を積極的に形成する理由は、Mn酸化物を主成分とする酸化被膜を形成させるためである。なお、「第1酸化被膜形成工程」等、「第1」と標記するのは、後述する「第2酸化被膜形成工程」等との区別のためである。ただし、「第2酸化被膜形成工程」等は必須の工程ではなく、「第1酸化被膜形成工程」のみを行ってもよい。
<第1酸化被膜除去工程[工程7]>
 第1酸化被膜除去工程[工程7]では、前記酸化被膜形成工程で形成された前記第1冷延板の前記第1酸化被膜を、硫酸水溶液で除去する工程である。硫酸水溶液の濃度は、例えば1~50%であることが好ましく、5~30%であることがより好ましい。このような第1酸化被膜除去工程により、表層のMn酸化物を化学的に溶解除去することができ、これにより表層においてマンガン濃度の少ない銅合金条材を得ることができる。
<第2冷間圧延工程[工程8]>
 第1酸化被膜除去工程[工程7]の後に、第2冷間圧延工程[工程8]をさらに設けてもよい。この第2冷間圧延工程[工程8]では、例えば加工度0~75%の冷間圧延を行い、板厚を均一にする。第2冷間圧延後の板厚は用途等にもよるが、例えば0.01~10mmとすることができる。これにより、上述した本発明の銅合金条材を得ることができる。
<第2酸化被膜形成工程[工程9]>
 第1酸化被膜除去工程[工程7]または第2冷間圧延工程[工程8]の後に、第2酸化被膜形成工程[工程9]をさらに設けてもよい。この第2酸化被膜形成工程は、第2冷間圧延工程で得られた第2冷延板を、0.01~2.00体積%の酸素を含んだ中性ガス雰囲気下で、200℃以上800℃以下で加熱して、第2酸化被膜を形成する工程である。第1酸化被膜形成工程と具体的な操作は同様である。
<第2酸化被膜除去工程[工程10]>
 第2酸化被膜形成工程は、前記第2酸化被膜形成工程で形成された前記第2冷延板の前記第2酸化被膜を、硫酸水溶液で除去する工程である。第1酸化被膜除去工程と具体的な操作は同様である。
 Mn含有量のCu含有量に対する比(表層[Mn/Cu]比)を0.030未満にするには、酸素濃度が制御された中性ガス雰囲気下でMnを優先酸化させた後、湿式工程にて、前工程で形成された酸化被膜を除去することが必要である。その際、表層[Mn/Cu]比を小さくするには、Mnの優先酸化量を増やす必要があり、熱処理温度、時間、酸素濃度を適宜調整し、所望の酸化量を得る必要がある。その後、硫酸溶液で酸化膜を除去することで、表層[Mn/Cu]比の小さい表層を形成することができる。また、電気的特性、特に抵抗温度係数(TCR)については、Mn濃度が高い方が良く、これははんだ濡れ性と相反するものである。特に、電気的特性とはんだ濡れ性をより高いレベルで両立させるには、内部のMn濃度が高く、表層のMn濃度が低いことが求められる。これを得るには、内部の濃度を狙って、溶解鋳造した後、最終工程で上記の比の小さい表層を形成すること必要がある。冷間加工ままでも表層[Mn/Cu]比の小さい表層を得ることは可能だが、冷延加工により表層[Mn/Cu]比が小さい表層が薄くなってしまう恐れがあり、最後に酸化処理、除去処理をすることが好ましい。
 以上、本発明の実施形態について説明したが、本発明は上記実施形態に限定されるものではなく、本発明の概念および特許請求の範囲に含まれるあらゆる態様を含み、本発明の範囲内で種々に改変することができる。
 次に、本発明の効果をさらに明確にするために、本発明例および比較例について説明するが、本発明はこれらの実施例に限定されるものではない。
 (発明例1~22、比較例1および3)
 下記表1の「合金組成」欄に記載した合金組成を有する鋳塊を鋳造により製造した。次いでこの鋳塊に対し、加熱温度800℃以上1000℃以下、加熱時間10分以上10時間以下の条件で熱処理を施して合金成分を均質化した後に、熱間圧延により板状に成形し水冷し、板状物を得た。
 次に、熱間圧延により得た板状物に面削を施して表面の酸化皮膜を片面1mmずつ除去した後に、板状物を加工率90%以上の所定の加工率で冷間圧延をして、第1冷間圧延後の板厚を0.15mm、0.23mm、0.50mmにそれぞれ調整した。
 続けて、窒素ガスと空気の混合ガスからなる、酸素濃度0.01~2.00体積%で制御された炉内で所定の条件(加熱温度および加熱時間)で表面の酸化処理を施した。酸化処理後、20%硫酸水溶液により表面の酸化被膜を除去した。
 その後、第1冷間圧延後の板厚が0.15mmである発明例1、4、7、10、13、16、19、22以外の発明例については、35%(第1冷間圧延後の板厚0.23mmの場合)又は70%(第1冷間圧延後の板厚0.50mmの場合)にて第2冷間圧延を施し、いずれの場合においても、板厚0.15mmの圧延板(銅合金条材)を得た。なお、本発明例1、4、7、10、13、16、19、22および比較例1~3については、第2冷間圧延を施さなかったため、下記表1の「第2冷間圧延工程」の欄に「-」と示した。
 なお、本発明例5、6、8、9、12、14、15、17、18、20および21については、第2冷間圧延後、再度酸化処理(第2酸化被膜形成工程)を施した後、20%硫酸水溶液により表面の酸化被膜を除去して銅合金条材を得た。なお、本発明例1~4、7、10、11、13、16、19、22および比較例1~3については、第2酸化被膜形成工程および第2酸化被膜除去工程を行わなかったため、下記表1の「第2酸化被膜形成工程」の欄に「-」と示した。
 (比較例2)
 第1冷間圧延後の板厚を0.35mmに変更し、酸化処理後に試料の表面を片面0.1mmずつ湿式研磨によって除去することで0.15mm厚の銅合金条材試料を得た。
[銅合金条材の組成]
 銅合金条材の化学組成は、ICP分析により測定し、下記表1に示した。また、表層[Mn/Cu]比および表層Mn含有量/内部Mn含有量の比は、オージェ電子分光装置PIH 680(アルバック・ファイ株式会社)によって測定を行った。具体的には、得られたCuとMnのスペクトルから、原子%を得た後、Cuの原子量を63.546、Mnの原子量を54.938として計算し、MnとCuの質量%換算でそれらの含有量を算出した。なお、測定時のスパッタ速度を2kV(SiO換算値で10nm/min)として、0分から5分までの時間、0.25分間隔で測定した(Mn含有量)/(Cu含有量)の比を、質量比換算で平均した値をさらに、表裏5点ずつ測定して平均した値を表層[Mn/Cu]比(表面と、表面から深さ方向に0.05μm位置とで区画される表層領域における平均[Mn/Cu]比)として下記表1に示した。このとき、この表層領域において、0.25分間隔でMn含有量を測定して平均し、さらに、表裏5点ずつ測定して平均した値を「表層領域にて測定したMn含有量」(表層Mn含有量)として求めた。また、表面から深さ方向に5μm位置と、表面から深さ方向に10μm位置とで区画される内部領域において、測定時のスパッタ速度を4kV(SiO換算値で100nm/min)として、50分から100分までの時間、0.25分間隔で測定したMnの含有量を平均した値をさらに、表裏5点ずつ測定して平均した値を「内部領域にて測定したMn含有量」(内部Mn含有量)として求めた。以上のようにして求めた表層Mn含有量と、内部Mn含有量の値より、表層Mn含有量/内部Mn含有量の比を表1に示した。
  測定装置  :PIH 680(アルバック・ファイ株式会社)
  分析面積  :10×10μm
  スパッタ速度:2.4kV(SiO換算値で10又は100nm/min)
[はんだ濡れ性]
 ソルダーチェッカーによって、幅10mmに切断した試験片を、245℃に熱したSn-3Ag-0.5Cu合金に浸漬速度25mm/secで10mm浸漬させ、最大濡れ荷重(mN)を読み取った。なお、フラックスにRMAタイプ(RM615)を用い、濡れ荷重が5mN以上である場合を、はんだ濡れ性が優れているとして「◎」、4mN以上5mN未満である場合を、はんだ濡れ性が良好であるとして「○」、濡れ荷重が4mN未満である場合を、半田濡れ性が劣るとして「×」と評価し、表1に示した。
[抵抗温度係数(TCR)]
 JIS C2526(1994)に規定の方法に準拠して、板材の20℃以上50℃以下の範囲の平均抵抗温度係数(TCR)を測定した。20℃以上50℃以下の範囲の平均抵抗温度係数の絶対値が200ppm/K以下である場合を、電気的特性が優れているとして「◎」、200ppm/K超え400ppm/K以下である場合を、電気的特性が良好として「○」、400ppm/K超えの場合を電気的特性が劣るとして「×」と評価し、表1に示した。
Figure JPOXMLDOC01-appb-T000001
 上記表1から分かるように、3質量%以上20質量%以下のマンガンを含有し、残部が銅および不可避不純物からなる組成を有し、オージェ電子分光法により、表面と、該表面から深さ方向に0.05μm位置とで区画される表層領域にて測定した、Mn含有量のCu含有量に対する比(表層[Mn/Cu]比)が、質量比に換算して、0.030未満である本発明例1~22の銅合金条材は、低いTCRおよび良好なはんだ濡れを兼ね備えることが分かった。
 これに対し、マンガン含有量が2質量%と本発明の適正範囲よりも少ない比較例1の銅合金条材は、良好なはんだ濡れを備えるものの、TCRが高く、電気的特性が劣るものとなった。
 また、表層[Mn/Cu]比が0.111である比較例2の銅合金条材は、低いTCRを備えるものの、はんだ濡れが劣っていた。
 さらに、マンガン含有量が25質量%と本発明の適正範囲よりも多い比較例3の銅合金条材は、低いTCRを備えるものの、はんだ濡れが劣っていた。

Claims (9)

  1.  3質量%以上20質量%以下のマンガン(Mn)を含有し、残部が銅(Cu)および不可避不純物からなる組成を有する銅合金条材であって、
     オージェ電子分光法により、表面と、該表面から深さ方向に0.05μm位置とで区画される表層領域にて測定した、Mn含有量のCu含有量に対する比(表層[Mn/Cu]比)が、質量比に換算して、0.030未満であることを特徴とする、銅合金条材。
  2.  オージェ電子分光法により、表面から深さ方向に5μm位置と10μm位置とで区画される内部領域にて測定したMn含有量に対する、前記表層領域にて測定したMn含有量の比(表層Mn含有量/内部Mn含有量比)が、質量比に換算して、0.50以下であることを特徴とする、請求項1に記載の銅合金条材。
  3.  マンガンを5質量%以上20質量%以下含有することを特徴とする、請求項1または2に記載の銅合金条材。
  4.  0.01質量%以上5質量%以下のニッケル、
     0.01質量%以上5質量%以下の錫、
     0.01質量%以上5質量%以下の亜鉛、
     0.01質量%以上0.5質量%以下の鉄、
     0.01質量%以上0.5質量%以下のケイ素、
     0.01質量%以上0.5質量%以下のクロム、
     0.01質量%以上0.5質量%以下のジルコニウム、
     0.01質量%以上0.5質量%以下のチタン、
     0.01質量%以上0.5質量%以下の銀、
     0.01質量%以上0.5質量%以下のマグネシウム、
     0.01質量%以上0.5質量%以下のコバルト、および、
     0.01質量%以上0.5質量%以下のリンからなる群より選択される1種以上の元素を含有することを特徴とする、請求項1~3のいずれか1項に記載の銅合金条材。
  5.  請求項1~4のいずれか1項に記載の銅合金条材の製造方法であって、
     鋳造工程[工程1]、均質化処理工程[工程2]、熱間圧延工程[工程3]、面削工程[工程4]、第1冷間圧延工程[工程5]、第1酸化被膜形成工程[工程6]および第1酸化被膜除去工程[工程7]をこの順に有し、
     前記第1酸化被膜形成工程では、第1冷間圧延工程で得られた第1冷延板を、0.01~2.00体積%の酸素を含んだ中性ガス雰囲気下で、200℃以上800℃以下で加熱して、第1酸化被膜を形成し、
     前記第1酸化被膜除去工程では、前記第1酸化被膜形成工程で形成された前記第1冷延板の前記第1酸化被膜を、硫酸水溶液で除去することを特徴とする、銅合金条材の製造方法。
  6.  前記第1酸化被膜除去工程[工程7]後に、前記第2冷間圧延工程[工程8]をさらに有することを特徴とする、請求項5に記載の銅合金条材の製造方法。
  7.  前記第2冷間圧延工程[工程8]後に、第2酸化被膜形成工程[工程9]および第2酸化被膜除去工程[工程10]をさらに有し、
     前記第2酸化被膜形成工程では、第2冷間圧延工程で得られた第2冷延板を、0.01~2.00体積%の酸素を含んだ中性ガス雰囲気下で、200℃以上800℃以下で加熱して、第2酸化被膜を形成し、
     前記第2酸化被膜除去工程では、前記第2酸化被膜形成工程で形成された前記第2冷延板の前記第2酸化被膜を、硫酸水溶液で除去することを特徴とする、請求項6に記載の銅合金条材の製造方法。
  8.  請求項1~4のいずれか1項に記載の銅合金条材を用いた抵抗器用抵抗材料。
  9.  請求項8に記載の抵抗材料を有する抵抗器。
PCT/JP2020/013832 2019-03-28 2020-03-26 銅合金条材およびその製造方法、それを用いた抵抗器用抵抗材料ならびに抵抗器 WO2020196791A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202080015481.7A CN113454252B (zh) 2019-03-28 2020-03-26 铜合金条材及其制造方法、使用其的电阻器用电阻材料以及电阻器
JP2020542680A JP6800387B1 (ja) 2019-03-28 2020-03-26 銅合金条材およびその製造方法、それを用いた抵抗器用抵抗材料ならびに抵抗器
KR1020217028880A KR20210144680A (ko) 2019-03-28 2020-03-26 구리 합금 조재 및 그 제조 방법, 그것을 사용한 저항기용 저항 재료 및 저항기

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019064302 2019-03-28
JP2019-064302 2019-03-28

Publications (1)

Publication Number Publication Date
WO2020196791A1 true WO2020196791A1 (ja) 2020-10-01

Family

ID=72608841

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/013832 WO2020196791A1 (ja) 2019-03-28 2020-03-26 銅合金条材およびその製造方法、それを用いた抵抗器用抵抗材料ならびに抵抗器

Country Status (5)

Country Link
JP (1) JP6800387B1 (ja)
KR (1) KR20210144680A (ja)
CN (1) CN113454252B (ja)
TW (1) TWI739362B (ja)
WO (1) WO2020196791A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021187360A1 (ja) * 2020-03-19 2021-09-23 三菱マテリアル株式会社 Cu-Ni-Si系銅合金板、めっき皮膜付Cu-Ni-Si系銅合金板及びこれらの製造方法
WO2021200326A1 (ja) * 2020-04-01 2021-10-07 Koa株式会社 抵抗器用の合金及び抵抗器用合金の抵抗器への使用
WO2023276905A1 (ja) * 2021-06-28 2023-01-05 古河電気工業株式会社 銅合金材ならびにそれを用いた抵抗器用抵抗材料および抵抗器
JP7307297B1 (ja) * 2022-02-18 2023-07-11 古河電気工業株式会社 銅合金板材およびその製造方法
WO2023157614A1 (ja) * 2022-02-18 2023-08-24 古河電気工業株式会社 銅合金板材およびその製造方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113308621B (zh) * 2021-05-26 2022-04-15 江西理工大学 一种铜基电阻材料及其制备方法和应用
CN115537597B (zh) * 2022-09-20 2023-07-28 重庆川仪自动化股份有限公司 一种负电阻温度系数的锰铜合金和制备方法及用途

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000256775A (ja) * 1999-03-03 2000-09-19 Toyota Motor Corp Cu−Ni−Mn系焼結摩擦材料
JP2012020325A (ja) * 2010-07-16 2012-02-02 Sanyo Special Steel Co Ltd Cu−Mn系ろう材細線およびその製造方法
JP2016069724A (ja) * 2014-09-29 2016-05-09 日立金属株式会社 Cu合金材およびその製造方法
US20180130578A1 (en) * 2016-11-04 2018-05-10 Samsung Electro-Mechanics Co., Ltd. Chip resistor
WO2018150705A1 (ja) * 2017-02-17 2018-08-23 古河電気工業株式会社 抵抗材用銅合金材料及びその製造方法並びに抵抗器
WO2019244842A1 (ja) * 2018-06-20 2019-12-26 古河電気工業株式会社 抵抗器用抵抗材料およびその製造方法並びに抵抗器

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE69314438T2 (de) * 1992-11-30 1998-05-14 Sumitomo Electric Industries Niedrig legierter Sinterstahl und Verfahren zu dessen Herstellung
JP4974544B2 (ja) 2005-02-25 2012-07-11 コーア株式会社 抵抗用合金材料、抵抗器および抵抗器の製造方法
JP4157898B2 (ja) * 2006-10-02 2008-10-01 株式会社神戸製鋼所 プレス打ち抜き性に優れた電気電子部品用銅合金板
CN102482794B (zh) * 2009-09-30 2014-10-22 Jx日矿日石金属株式会社 镀锡层的耐热剥离性优良的Cu-Ni-Si系合金镀锡条
CN106153605A (zh) * 2016-06-29 2016-11-23 内蒙古包钢钢联股份有限公司 同时测定铝铜合金中铝铁硅铅锡锰含量的方法
JP6302009B2 (ja) * 2016-07-12 2018-03-28 古河電気工業株式会社 銅合金圧延材及びその製造方法並びに電気電子部品
CN107043867B (zh) * 2017-01-09 2019-02-22 河北工业大学 一种多孔铜基形状记忆合金的制备方法
KR102463644B1 (ko) * 2017-01-10 2022-11-07 후루카와 덴키 고교 가부시키가이샤 저항재용 구리 합금 재료 및 그 제조 방법, 및 저항기
CN108031717A (zh) * 2017-12-28 2018-05-15 滁州宝岛特种冷轧带钢有限公司 一种冷轧带钢表面的酸洗除磷方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000256775A (ja) * 1999-03-03 2000-09-19 Toyota Motor Corp Cu−Ni−Mn系焼結摩擦材料
JP2012020325A (ja) * 2010-07-16 2012-02-02 Sanyo Special Steel Co Ltd Cu−Mn系ろう材細線およびその製造方法
JP2016069724A (ja) * 2014-09-29 2016-05-09 日立金属株式会社 Cu合金材およびその製造方法
US20180130578A1 (en) * 2016-11-04 2018-05-10 Samsung Electro-Mechanics Co., Ltd. Chip resistor
WO2018150705A1 (ja) * 2017-02-17 2018-08-23 古河電気工業株式会社 抵抗材用銅合金材料及びその製造方法並びに抵抗器
WO2019244842A1 (ja) * 2018-06-20 2019-12-26 古河電気工業株式会社 抵抗器用抵抗材料およびその製造方法並びに抵抗器

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021187360A1 (ja) * 2020-03-19 2021-09-23 三菱マテリアル株式会社 Cu-Ni-Si系銅合金板、めっき皮膜付Cu-Ni-Si系銅合金板及びこれらの製造方法
WO2021200326A1 (ja) * 2020-04-01 2021-10-07 Koa株式会社 抵抗器用の合金及び抵抗器用合金の抵抗器への使用
JP2021161512A (ja) * 2020-04-01 2021-10-11 Koa株式会社 抵抗器用の合金及び抵抗器用合金の抵抗器への使用
JP7194145B2 (ja) 2020-04-01 2022-12-21 Koa株式会社 抵抗器用の合金及び抵抗器用合金の抵抗器への使用
WO2023276905A1 (ja) * 2021-06-28 2023-01-05 古河電気工業株式会社 銅合金材ならびにそれを用いた抵抗器用抵抗材料および抵抗器
JP7214931B1 (ja) * 2021-06-28 2023-01-30 古河電気工業株式会社 銅合金材ならびにそれを用いた抵抗器用抵抗材料および抵抗器
JP7307297B1 (ja) * 2022-02-18 2023-07-11 古河電気工業株式会社 銅合金板材およびその製造方法
WO2023157614A1 (ja) * 2022-02-18 2023-08-24 古河電気工業株式会社 銅合金板材およびその製造方法

Also Published As

Publication number Publication date
TWI739362B (zh) 2021-09-11
KR20210144680A (ko) 2021-11-30
CN113454252A (zh) 2021-09-28
TW202041689A (zh) 2020-11-16
CN113454252B (zh) 2022-06-24
JP6800387B1 (ja) 2020-12-16
JPWO2020196791A1 (ja) 2021-04-30

Similar Documents

Publication Publication Date Title
JP6800387B1 (ja) 銅合金条材およびその製造方法、それを用いた抵抗器用抵抗材料ならびに抵抗器
US7351372B2 (en) Copper base alloy and method for producing same
JP6382478B1 (ja) 抵抗材用銅合金材料及びその製造方法並びに抵抗器
JP6852228B2 (ja) 銅合金条材およびその製造方法、それを用いた抵抗器用抵抗材料ならびに抵抗器
JP6961861B1 (ja) 銅合金条材およびその製造方法、それを用いた抵抗器用抵抗材料ならびに抵抗器
WO2011122490A1 (ja) Cu-Co-Si合金材
JP2007126739A (ja) 電子材料用銅合金
JP4813814B2 (ja) Cu−Ni−Si系銅合金及びその製造方法
JP4754930B2 (ja) 電子材料用Cu−Ni−Si系銅合金
KR102493118B1 (ko) 구리 합금 소재
KR102486303B1 (ko) 주조용 몰드재, 및 구리 합금 소재
WO2023276904A1 (ja) 銅合金材ならびにそれを用いた抵抗器用抵抗材料および抵抗器
JPS591653A (ja) ラジエ−タ−フイン用銅合金
JP7214931B1 (ja) 銅合金材ならびにそれを用いた抵抗器用抵抗材料および抵抗器
KR102044983B1 (ko) 고내식 마그네슘 합금 및 그 제조방법
JP2005298948A (ja) 電子機器用銅合金及びこの合金からなる銅合金箔
WO2021241502A1 (ja) 銅合金条材およびその製造方法、それを用いた抵抗器用抵抗材料ならびに抵抗器
JP5623960B2 (ja) 電子材料用Cu−Ni−Si系銅合金条及びその製造方法
WO2024135786A1 (ja) 銅合金材、抵抗器用抵抗材料および抵抗器
JP3519863B2 (ja) 表面割れ感受性の低いりん青銅及びその製造方法
JPH04210438A (ja) 高強度Cu 合金製連続鋳造鋳型材
KR20230031229A (ko) 구리 합금 소성 가공재, 구리 합금 선재, 전자·전기 기기용 부품, 단자
WO2023157614A1 (ja) 銅合金板材およびその製造方法
JP2000017354A (ja) 熱間加工性に優れた高力銅合金
KR20230028822A (ko) 저항이 낮은 구리 합금 자재 및 제조 방법

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2020542680

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20779746

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20779746

Country of ref document: EP

Kind code of ref document: A1