WO2020196769A1 - 高炉の操業方法 - Google Patents

高炉の操業方法 Download PDF

Info

Publication number
WO2020196769A1
WO2020196769A1 PCT/JP2020/013733 JP2020013733W WO2020196769A1 WO 2020196769 A1 WO2020196769 A1 WO 2020196769A1 JP 2020013733 W JP2020013733 W JP 2020013733W WO 2020196769 A1 WO2020196769 A1 WO 2020196769A1
Authority
WO
WIPO (PCT)
Prior art keywords
ore
blast furnace
ratio
slag
pulverized
Prior art date
Application number
PCT/JP2020/013733
Other languages
English (en)
French (fr)
Inventor
翔士 生田
笠井 昭人
Original Assignee
株式会社神戸製鋼所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社神戸製鋼所 filed Critical 株式会社神戸製鋼所
Priority to US17/598,044 priority Critical patent/US20220177985A1/en
Priority to KR1020217034117A priority patent/KR102596097B1/ko
Priority to EP20778098.2A priority patent/EP3933053B1/en
Priority to CN202310383909.9A priority patent/CN116287501A/zh
Priority to CN202080019705.1A priority patent/CN113544291A/zh
Publication of WO2020196769A1 publication Critical patent/WO2020196769A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B5/00Making pig-iron in the blast furnace
    • C21B5/02Making special pig-iron, e.g. by applying additives, e.g. oxides of other metals
    • C21B5/023Injection of the additives into the melting part
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B7/00Blast furnaces
    • C21B7/16Tuyéres
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B5/00Making pig-iron in the blast furnace
    • C21B5/001Injecting additional fuel or reducing agents
    • C21B5/003Injection of pulverulent coal
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B5/00Making pig-iron in the blast furnace
    • C21B5/001Injecting additional fuel or reducing agents
    • C21B5/003Injection of pulverulent coal
    • C21B5/004Injection of slurries
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B5/00Making pig-iron in the blast furnace
    • C21B5/006Automatically controlling the process
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B5/00Making pig-iron in the blast furnace
    • C21B5/008Composition or distribution of the charge
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B5/00Making pig-iron in the blast furnace
    • C21B5/06Making pig-iron in the blast furnace using top gas in the blast furnace process
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B1/00Preliminary treatment of ores or scrap
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B2300/00Process aspects
    • C21B2300/04Modeling of the process, e.g. for control purposes; CII
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Definitions

  • the present invention relates to a method of operating a blast furnace.
  • coke acts as a spacer to ensure air permeability in the furnace, and a certain amount must be used.
  • the expensive coke can be replaced with cheap pulverized coal, and the amount of coke used (coke ratio) can be reduced.
  • pulverized coal injection operation which uses a large amount of pulverized coal at 150 kg / tp or more, has become stable.
  • the pulverized coal blown into the blast furnace contains about 10% by mass (hereinafter, simply referred to as “%”) of ash, and this ash content is SiO 2 : 50% to 60%, Al 2 O 3 : 20% to 30%, other Fe 2 O 3 , CaO, etc., mainly composed of acidic components. Therefore, when the blowing ratio of pulverized coal increases, the acidic slag derived from the ash content of pulverized coal increases, and the viscosity and melting point of the slag layer (commonly known as bird's nest slag) that stays in the bird's nest at the back of the raceway increases. To rise. Then, the retention amount (hold-up) of the bird's nest slag increases, and the air permeability in the lower part of the blast furnace deteriorates (see FIG. 15).
  • % 10% by mass
  • Patent Document 1 uses iron ore containing 2.0% by weight or more of crystalline water as a raw material for the blast furnace ironmaking method to increase blast furnace productivity. Techniques for reducing the coke ratio are disclosed. Specifically, the technique of Patent Document 1 reduces iron ore containing 2.0% by weight or more of water of crystallization to a reduction rate of 30% or more, and then charges the iron ore into a blast furnace as a raw material for a blast furnace ironmaking method, and / Alternatively, blow into the blast furnace. The reduction of iron ore is carried out in a reducing atmosphere containing CO and H 2 in the heat of 400 ° C. or higher.
  • Patent Document 2 discloses a technique relating to a method for operating a blast furnace, particularly relating to suppression of Si in hot metal. Specifically, in the technique of Patent Document 2, pulverized ore and pulverized coal are simultaneously blown from each tuyere, and the ratio of pulverized ore and pulverized coal at that time is determined by the ore and coke charged from the upper part of the blast furnace. Is equal to the ratio of. In the technique of Patent Document 2, since the pulverized ore is blown in addition to the pulverized coal, the rise of Si is suppressed, and the ratio of the pulverized ore to the pulverized coal at that time is determined by the ore and coke charged from the upper part of the blast furnace.
  • the blow-in ratio of the undehydrated ore is as large as 100 kg / tp, and the temperature drop is large, so that the retention amount (hold-up) of the bird's nest slag cannot be reduced.
  • the pulverized coal injection ratio is as small as 0 to 40 kg / tp, and this cannot reduce the retention amount (hold-up) of the bird's nest slag.
  • Patent Document 2 does not describe the properties of the ore, and when the ore is blown in, the hot metal temperature of the blast furnace may decrease due to insufficient reduction of the ore, and it is necessary to further increase the coke ratio.
  • the technique of Patent Document 2 is a technique for reducing Si in hot metal, and is not intended to improve the air permeability in the lower part of the blast furnace as in the present invention.
  • the present invention has been made in view of the above problems, and an object of the present invention is to provide a method for operating a blast furnace capable of improving ventilation at the lower part of the blast furnace by blowing a tuyere of fine ore.
  • the operating method of the blast furnace of the present invention takes the following technical measures. That is, in the operation method of the blast furnace of the present invention, coal is crushed into pulverized coal, and iron ore having a loss on ignition of 9% by mass or more and 12% by mass or less is pulverized into pulverized ore, and the pulverized coal is blown.
  • the inclusion ratio is 150 kg / tp or more
  • the blowing ratio of the pulverized ore is 2.5 kg / tp or more and 50.0 kg / tp or less
  • the pulverized coal and the pulverized ore are injected from the tuyere.
  • the operating method of the blast furnace of the present invention it is possible to improve the ventilation of the lower part of the blast furnace by blowing the tuyere of fine ore.
  • coal is crushed into pulverized coal, and iron ore having a strong heat loss of 9% by mass or more and 12% by mass or less is crushed into pulverized ore.
  • the blowing ratio of the pulverized coal is 150 kg / tp or more
  • the blowing ratio of the pulverized ore is 2.5 kg / tp or more and 50.0 kg / tp or less
  • the pulverized coal and the pulverized ore are blown from the tuyere 2. It is characterized (the above-mentioned "kg / tp" is the mass per ton of hot metal (kg), the same applies hereinafter).
  • coke and ore raw materials (iron ore, sinter, pellets, etc.) are alternately layered from the top of the furnace, and hot air (air) is charged from the tuyere 2.
  • hot air air
  • Oxygen and pulverized coal are blown in to reduce and melt the ore raw material to produce hot metal.
  • Coke has the role of a spacer to ensure the air permeability in the furnace, and if the air permeability in the furnace can be improved, the expensive coke is replaced with cheap pulverized coal to reduce the amount of coke used (coke ratio). be able to.
  • pulverized coal obtained by crushing coal and pulverized ore obtained by crushing iron ore are blown from the tuyere 2.
  • the above-mentioned pulverized coal has, for example, a maximum particle size of 1000 ⁇ m or less and an average particle size of 50 ⁇ m, and is blown into the blast furnace 1 at 150 kg / tp or more. That is, the operation method of the present invention is intended for high pulverized coal ratio operation, improves the ventilation in the furnace in the high pulverized coal ratio operation, and eventually the coke ratio in one blast furnace operation (the coke required for producing 1 ton of hot metal). It is a technology aimed at reducing the mass (kg) of.
  • % ash content of about 10% by mass
  • the iron oxide contained in the fine ore reacts with the coke in the furnace, it causes a direct reduction reaction (for example, FeO + C ⁇ Fe + CO). Since this reaction involves a large endothermic reaction, the temperature of the hot metal may be lowered, which causes the hot metal to cool down. In other words, it is not possible to blindly blow in fine ore just because the air permeability is improved. Therefore, in the operation method of the blast furnace 1 of the present invention, the ore properties and the blowing ratio are defined as appropriate conditions so that both improvement of ventilation and prevention of cooling can be achieved at the same time.
  • Fine ore is obtained by crushing iron ore.
  • the iron ore used as a raw material for this fine ore has a loss on ignition of 9% by mass or more and 12% by mass or less.
  • Ignition loss (LOI) in iron ore is an index measured according to JIS M8850, and in the case of iron ore, it mainly indicates the content of water of crystallization.
  • the ignition loss (LOI) of iron ore is defined by making the pulverizability of pulverized ore equivalent to that of coal for pulverized coal, and the particle size of both when pulverized (easily pulverized). This is to align.
  • HGI Hardgrove Grindability
  • JIS M8801 coal HGI strength test
  • the HGI of coal generally used as pulverized coal in the blast furnace 1 is 40 to 90.
  • the reason why the HGI of coal is set to 40 or more is that when the HGI is less than 40, the grindability deteriorates and the grain size becomes large, so that equipment wears and the like occurs. Further, the reason why the HGI of coal is set to 90 or less is that when the HGI is larger than 90, the coal is crushed too finely and causes clogging of pipes.
  • the HGI of the iron ore becomes 40 to 90, which is equivalent to that of coal for pulverized coal, and the particle size of the pulverized ore when the iron ore is crushed.
  • FIG. 5 there is a positive correlation between the ignition loss (LOI) of iron ore and the specific surface area (BET), and the larger the ignition loss, the higher the specific surface area. Since the fine powder ore (iron ore) having a high specific surface area easily reacts in the raceway, it is possible to improve the reduction rate of the fine powder ore.
  • the viscosity of the bird's nest slag 4 can be lowered and the amount of retention of the bird's nest slag 4 can be reduced.
  • the pressure loss of the blast furnace 1 can be reduced, and the air permeability in the lower part of the blast furnace 1 can be improved.
  • the ignition loss (LOI) of iron ore is less than 9% by mass, iron ore having a low HGI is used as a raw material, so that it is difficult to pulverize. Therefore, the particle size of the fine ore becomes large, and the equipment wears so much that it leads to operational troubles such as tearing of the transport pipe and cannot be used.
  • the ore having a small ignition loss (LOI) of the iron ore has a small specific surface area, and the reduction rate in the raceway at the time of blowing the tuyere 2 decreases. Therefore, the amount of heat absorbed by the direct reduction reaction with the core coke at the back of the raceway also increases, which tends to cause a decrease in hot metal temperature (decrease in furnace heat). As a result, the pressure loss increases on the contrary, and the effect of blowing fine ore cannot be obtained.
  • LOI ignition loss
  • FIG. 7 The result of FIG. 6 described above was calculated according to the calculation flow of FIG. 9, but when tested using an actual blast furnace, the result shown in FIG. 7 can be obtained.
  • the pressure loss does not decrease when the injection ratio of the fine ore is 1.3 kg / tp, and the injection ratio starts from 2.5 kg / tp.
  • the pressure loss decreased as in 6. This is because the blowing ratio is small when 1.3 kg / tp is blown, and the equal amount of fine ore cannot be distributed to the tuyere 2 which has 25 in the circumferential direction, and the circumferential balance is disturbed, so that the air permeability is improved. It is probable that no effect was obtained. Therefore, in the operation method of the present invention, the lower limit of the blowing ratio of the fine powder ore in which the effect of the present invention is exhibited is set to 2.5 kg / tp or more.
  • the blowing ratio of the fine powder ore is more than 50 kg / tp
  • the blown sensible heat heat absorption amount
  • the bird's nest slag temperature T
  • W inflowing slag
  • the above-mentioned fine powder ore indicates an ore that has been pulverized by a roller mill, a ball mill, or the like, and indicates an iron ore that has been pulverized to 1000 ⁇ m or less.
  • the pulverized coal indicates coal that has been pulverized by a roller mill, a ball mill, or the like, and indicates coal that has been pulverized by the same roller mill or ball mill as coal and pulverized to 1000 ⁇ m or less.
  • the change in the "pressure loss reduction amount” with respect to the "fine powder ore injection ratio” is obtained according to the calculation flow of FIG.
  • this "pressure loss reduction amount” indicates how much the pressure loss is reduced as compared with that before the blowing.
  • the pressure loss reduction amount is increased means that the pressure loss is reduced.
  • the amount of pressure loss reduction has decreased means that the pressure loss has increased.
  • the "pressure loss change amount” indicates how much the pressure loss increased or decreased compared to before the blowing.
  • the amount of change in pressure drop has increased means that the amount of pressure drop has increased, and “the amount of change in pressure drop has decreased” literally means that the amount of pressure drop has decreased.
  • the basicity (C / S) is the ratio of CaO (mass%) and SiO2 (mass%) contained in the slag.
  • the heat absorption amount (heat absorption component) of the reduction reaction is subtracted from the raceway boundary temperature (the temperature of the bird's nest 3) to obtain the blown ratio of the fine powder ore.
  • the relationship with the temperature of the bird's nest slag 4 was determined. The obtained relationship is shown in FIG. 10 (d).
  • the viscosity ( ⁇ ) of the bird's nest slag 4 was determined. The temperature dependence of the viscosity of the bird's nest slag 4 at each flux ratio is experimentally determined.
  • the viscosity ( ⁇ ) of the bird's nest slag 4 is obtained from the experimental value (details will be described later) using the change in the temperature of the bird's nest portion 3 (the temperature of the bird's nest slag 4) in FIG. 10 (d). ..
  • the value of the blow-in ratio of fine ore 0 was calculated using the viscosity estimation formula described in "Iron and Steel Sugiyama et al. Vol. 73, 1987, P2044".
  • FIG. 10 (e) shows the relationship between the blowing ratio of the fine powder ore obtained by the above procedure and the viscosity ( ⁇ ) of the bird's nest slag 4.
  • the blowing ratio and dropping line velocity of fine ore are based on the relational expression described in "Materials and Processes Kato et al. Vol. 28, 2015, S25". Asked for a relationship with. The obtained relationship is shown in FIG. 10 (f). Furthermore, regarding the hold-up (h), based on the relational expression described in "Materials and Processes Kato et al. Vol. 28, 2015, S25", the injection ratio of fine ore and the hold-up (h) I asked for a relationship. The obtained relationship is shown in FIG. 10 (g).
  • the "Bosch gas amount” in Table 3 refers to the combustion of coke in front of the tuyere by blowing air such as air blown from the tuyere, oxygen for oxygen enrichment, and blast moisture, and auxiliary fuel such as pulverized coal. It is a calculated value of the total amount of gas generated in front of the tuyere by combustion, and is shown in Nm 3 / min.
  • the calculation method of this "Bosch gas amount” is, for example, iron and steel, Vol. 48 (1962) No. 12, P1606.
  • a preliminary experiment was conducted on how the mixing ratio of the molten ore (flux) and the slag temperature affect the viscosity of the slag. It is preferable to keep it.
  • a rotary torque meter 5 as shown in FIG. 11 is prepared, and ceramic paste is applied to the pure iron crucible 7 and the pure iron rotor 6 of the rotary torque meter 5 to prevent oxidation. I will do it.
  • the pure iron rotor 6 of the rotary torque meter 5 is calibrated using the calibration liquid of JS1000, and the relationship between the rotation speed and the torque is obtained.
  • the rotor coefficient: K0 standard viscosity (mPa ⁇ s) ⁇ regression coefficient b.
  • the pure iron crucible 7 is filled with a reagent (slag containing flux) mixed with a predetermined formulation (formulation shown in Table 4 below). Heat to a predetermined temperature in an electric furnace to melt the reagents. The heating temperature is 1300 ° C., 1350 ° C., 1400 ° C., 1450 ° C., 1500 ° C.
  • the rotor (pure iron rotor 6) attached to the rotary torque meter 5 is inserted into the center of the molten slag, and the rotation of the rotor is started.
  • the temperature-dependent equations are used. Summarizing the temperature dependence of the viscosity ( ⁇ ) of the slag thus obtained, the results shown in FIGS. 12 and 13 can be obtained.
  • Each viscosity is obtained from the relational expression of FIG. 10D, and the relationship between the basicity of slag and the viscosity is obtained by an exponential function.
  • the relationship shown in FIG. 10 (e) can be obtained.
  • the pressure loss decreases (the amount of pressure loss reduction increases or the amount of pressure loss change decreases) as compared with that before blowing.
  • the reason why the blowing ratio of the fine powder ore is 0 kg / tp or more and 50 kg / tp or less, and the upper limit of the blowing ratio of the fine powder ore can be specified.
  • the lower limit of the injection ratio of fine ore can be derived by an experiment using an actual blast furnace (actual machine test).
  • the blast furnace 1 used in this actual machine test is an actual blast furnace of 2112 m 3 and has a tapping ratio of 1.8 t / m 3 / day. While changing the amount of fine ore blown into the blast furnace 1 in the order of 0.0 kg / tp ⁇ 1.3 kg / tp ⁇ 2.5 kg / tp ⁇ 5.0 kg / tp, the test operation was carried out for 5 days. Carried out.
  • the fine powder ore blown into the actual blast furnace has the composition shown in Table 6.
  • the pulverized coal ratio (the pulverized coal blowing ratio) is 208 kg / tp (satisfying the standard of 150 kg / tp or more), and the pulverized powder.
  • the ignition loss (LOI) of coal, which is the raw material of charcoal, is 11.1 mass% (satisfies the standard of 9.0 mass% to 12.0 mass%).
  • the reducing agent ratio (sum of pulverized coal ratio and coke ratio) is 524 kg / tp in both Examples and Comparative Examples.
  • the operation was performed while blowing the pulverized ore, and how the pressure drop changed compared to before the blowing was measured.
  • the measurement results are shown in FIG.
  • the injection ratio of the fine powder ore is 2.5 kg / tp and 5.0 kg / tp
  • the injection ratio of the fine powder ore is 0.0 kg / tp, 1 It is .3 kg / tp.
  • the pressure loss changes in the Examples were -1.72 kPa and -3.33 kPa, the pressure loss was smaller than that before blowing, and the air permeability was improved. You can see that there is.
  • the amount of change in pressure loss is 0.00 kPa and 0.73 kPa, and the pressure loss is the same as that before blowing, or the pressure loss is larger than that before blowing, and the air permeability is not improved. .. From this, it can be determined that the effect of improving the air permeability can be obtained when the blowing ratio of the fine powder ore is 2.5 kg / tp or more.
  • coal was crushed into pulverized coal, and iron ore having a strong heat loss of 9% by mass or more and 12% by mass or less was crushed into pulverized ore.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Geology (AREA)
  • Mechanical Engineering (AREA)
  • Manufacture Of Iron (AREA)

Abstract

微粉鉱石の羽口吹込みによる高炉下部の通気改善を行う。 本発明にかかる高炉1の操業方法は、石炭を粉砕して微粉炭とすると共に、強熱減量が9質量%以上12質量%以下の鉄鉱石を粉砕して微粉鉱石とし、微粉炭の吹込み比を150kg/tp以上とし、微粉鉱石の吹込み比を2.5kg/tp以上50.0kg/tp以下として、微粉炭及び微粉鉱石を羽口2から吹込むことを特徴とするものである。好ましくは、鉄鉱石と石炭と一緒に粉砕するのが良い。

Description

高炉の操業方法
 本発明は、高炉の操業方法に関するものである。
 従来より、高炉では、炉頂からコークスと鉱石原料(鉄鉱石、焼結鉱、ペレット等)を交互に層状装入し、羽口から熱風(空気、酸素)と共に微粉炭を吹込んで、鉱石原料を還元・溶融し溶銑を製造している。このような固気向流移動層を備えた高炉において安定した操業を行うには炉内の通気性を良好に保つことが重要である。通気性の悪化は安定操業の妨げになるからである。
 例えば、コークスは炉内の通気性を確保するスペーサーの役割があり、一定量は使用せざるを得ない。しかし、コークスの使用を抑えて炉内の通気性を低減することができれば、高価なコークスを安価な微粉炭と置換することができ、コークス使用量(コークス比)を低減することができる。
 近年、微粉炭をコークスの一部代替燃料(還元材)として高炉の羽口から吹込む微粉炭吹込み式の高炉操業が一般的となっている。最近では150kg/tp以上と微粉炭の使用量が多い高微粉炭吹込み操業も安定して行われるようになってきた。
 ここで、高炉に吹込まれる微粉炭には約10質量%(以下、単に「%」と記す。)程度の灰分が含まれ、この灰分はSiO:50%~60%、Al:20%~30%、その他Fe、CaOなどからなり、主に酸性成分で構成されている。
 そのため、微粉炭の吹込み比が高くなると、微粉炭の灰分由来の酸性スラグが増加し、レースウェイ奥の鳥の巣部に滞留するスラグ層(通称:鳥の巣スラグ)の粘度や融点が上昇する。そうすると鳥の巣スラグの滞留量(ホールドアップ)が増加し、高炉下部での通気性が悪化する(図15参照)。
 上述した高炉下部での通気性の悪化に対して、特許文献1には、結晶水を2.0重量%以上含む鉄鉱石を高炉製銑法の原料として使用して、高炉生産性を高め、コークス比を低減する技術が開示されている。具体的には、特許文献1の技術は、結晶水を2.0重量%以上含む鉄鉱石を還元率30%以上に還元した後、高炉製銑法の原料として高炉に装入し、および/または、高炉に吹込む。鉄鉱石の還元は、400℃以上の熱間のCOやHが含まれる還元性雰囲気下で行うものとなっている。
 また、特許文献2には、高炉操業方法に関する技術であって、特に出銑された溶銑のSiの抑制に関するものが開示されている。具体的には、特許文献2の技術は、粉鉱石と微粉炭とを同時に各羽口から吹込み、その時の粉鉱石と微粉炭との比を高炉の上部から装入される鉱石とコークスとの比と等しくするものである。特許文献2の技術では、微粉炭のほかに粉鉱石を吹込むのでSiの上昇が抑えられ、また、その時の粉鉱石と微粉炭との比を高炉の上部から装入される鉱石とコークスとの比と等しくしたので炉内の装入物の分布が変化せず、装入物の分布制御を容易なものとされている。さらに羽口毎に分割して吹込むので各羽口からの吹込み量が少なく、設備トラブルも起きづらいといった効果が得られると報告されている。
特開平09-165607号公報 特開平04-002708号公報
 特許文献1の方法では、未脱水鉱石の吹込み比が100kg/tpと多く、温度低下が大きいため鳥の巣スラグの滞留量(ホールドアップ)を低減することができない。
 また、特許文献2の方法は、微粉炭吹込み比が0~40kg/tpと少なく、これでは鳥の巣スラグの滞留量(ホールドアップ)を低減することができない。また、特許文献2には鉱石の性状が記載されておらず、吹込んだ際に鉱石の還元不足により高炉の溶銑温度が低下する可能性があり、さらなるコークス比の増加が必要となる。さらに、特許文献2の技術は、溶銑のSi低減に関する技術であり、本発明のように高炉下部での通気性を向上させることを目的とするものではない。
 本発明は、上述の問題に鑑みてなされたものであり、微粉鉱石の羽口吹込みによる高炉下部の通気改善が可能な高炉の操業方法を提供することを目的とする。
 上記課題を解決するため、本発明の高炉の操業方法は以下の技術的手段を講じている。
 即ち、本発明の高炉の操業方法は、石炭を粉砕して微粉炭とすると共に、強熱減量が9質量%以上12質量%以下の鉄鉱石を粉砕して微粉鉱石とし、前記微粉炭の吹込み比150kg/tp以上とし、前記微粉鉱石の吹込み比を2.5kg/tp以上50.0kg/tp以下として、前記微粉炭及び微粉鉱石を羽口から吹込むことを特徴とする。
 なお、好ましくは、前記鉄鉱石と石炭を一緒に粉砕するとよい。
 本発明の高炉の操業方法によれば、微粉鉱石の羽口吹込みによる高炉下部の通気改善が可能となる。
本発明に高炉の操業方法において羽口で行われる処理を模式的に示した図である。 Alが15%、MgOが5%、塩基度が1.2のスラグの粘度特性がFeOの含有率でどのように変化するかを示したグラフである。 SiOが40モル%含まれたスラグの粘度特性がFeのモル%濃度でどのように変化するかを示したグラフである。 微粉炭に用いる石炭の強熱減量とハードグローブ指数との関係を示した図である。 微粉炭に用いる石炭の強熱減量と比表面積との関係を示した図である。 微粉鉱石の吹込み比と高炉の圧損変化量との関係を示した図である。 微粉鉱石の吹込み比と高炉の圧損変化量との関係を、実際の高炉を用いて調査した結果を示した図である。 本発明の操業方法の手順を示したブロック図である。 高炉の圧損変化量を算出するための手順を示したブロック図である。 高炉の圧損変化量を算出する過程で得られる各物性値を示したグラフである。 スラグの粘度測定に用いる回転式トルクメータを示した図である。 塩基度が0.6のスラグにおける粘度の温度依存性を示したグラフである。 塩基度が1.0のスラグにおける粘度の温度依存性を示したグラフである。 フラックス比=20kg/tpの場合におけるスラグの塩基度と粘度との関係を示したグラフである。 従来の高炉の操業方法において羽口で行われる処理を模式的に示した図である。
 以下、本発明に係る高炉1の操業方法の実施形態を、図面に基づき詳しく説明する。
 図1に示すように、本実施形態の高炉1の操業方法は、石炭を粉砕して微粉炭とすると共に、強熱減量が9質量%以上12質量%以下の鉄鉱石を粉砕して微粉鉱石とし、微粉炭の吹込み比を150kg/tp以上とし、微粉鉱石の吹込み比を2.5kg/tp以上50.0kg/tp以下として、微粉炭及び微粉鉱石を羽口2から吹込むことを特徴とする(上述した「kg/tp」は、溶銑1トン当たりの質量(kg)、以下同じ)。
 具体的には、本発明の操業方法が行われる高炉1は、炉頂からコークスと鉱石原料(鉄鉱石、焼結鉱、ペレット等)を交互に層状装入し、羽口2から熱風(空気、酸素)と共に微粉炭を吹込んで、鉱石原料を還元・溶融し溶銑を製造している。固気向流移動層である高炉1の安定操業には炉内の通気性を良好に保つことが重要である。通気性が悪化すると安定操業の妨げになるからである。コークスは炉内の通気性を確保するスペーサーの役割があり、炉内の通気性を良好にすることができれば高価なコークスを安価な微粉炭と置換し、コークス使用量(コークス比)を低減することができる。
 本発明の操業方法は、上述したように石炭を粉砕した微粉炭と、鉄鉱石を粉砕した微粉鉱石とを、羽口2から吹込むものとなっている。
 上述した微粉炭は、例えば最大粒径1000μm以下、平均粒径=50μmのものであり、高炉1内に150kg/tp以上吹込まれる。つまり、本発明の操業方法は、高微粉炭比操業を対象としており、高微粉炭比操業において炉内通気を改善し、ひいては高炉1操業におけるコークス比(溶銑1トンを製造するに当たり、要するコークスの質量(kg))低減を目的とした技術となっている。
 また、上述した微粉炭には、約10質量%(以下、単に「%」と記す)程度の灰分が含まれ、この灰分はSiO:50%~60%、Al:20%~30%、その他Fe、CaOなどからなり、主に酸性成分で構成されている。
 そのため、微粉炭吹込み比が多くなると、微粉炭由来の酸性スラグが増加し、図11に示すようなレースウェイ奥(=鳥の巣部3)に滞留するスラグ層(通称:鳥の巣スラグ4)の粘性や融点が上昇し、通気性が低下(圧損が上昇)する。その結果、高炉1の下部での通気性が悪化する。
 ところで、本発明の操業方法は、上述した微粉炭に加えて、鉱石を羽口2から吹込むものである。このような鉱石の吹込みについては、既に特開05-214414などに知見がある。例えば、図2などに示すように、鉱石(Fe2O3)を羽口から吹込むと、鳥の巣部の到達時に10%~40%がFe~FeO、一部は金属鉄として還元されることや、鉄鉱石を石炭と同時に粉砕することで、石炭と鉄鉱石が近接配置され還元率が向上することなどが報告されている。また、図2及び図3には、一般的に酸性スラグに酸化鉄系成分(FeO、Fe)を加えることで粘度が低下することが報告されている。
 つまり、上述した図2などから、石炭と鉄鉱石を一緒に羽口から吹込むと、レースウェイで鉄鉱石の一部が還元され、レースウェイ奥の鳥の巣スラグに還元された微粉鉱石がトラップされる。その結果、還元された微粉鉱石の酸化鉄系成分によりスラグ粘度が低下し、鳥の巣スラグが滴下しやすくなる。そのため、鳥の巣に滞留するスラグ量が低減され、スラグホールドアップが低下して、炉下部の通気性が改善する(炉下部の圧損が低下する)という効果を得ることができると考えられる。
 ただ、微粉鉱石に含まれる酸化鉄は、炉内のコークスと反応する場合、直接還元反応(例えばFeO+C→Fe+CO)を起こすことになる。この反応は、大きな吸熱を伴う反応であるため、溶銑温度を低下させる可能性があり、溶銑の冷え込みの原因となる。つまり、通気性が良好になるというだけでやみくもに微粉鉱石を吹込むことはできない。
 そこで、本発明の高炉1の操業方法では、通気改善と冷え込み防止とを両立できるように、鉱石性状と吹込み比を適正な条件に規定している。
 次に、本発明の操業方法における微粉鉱石の原料となる鉄鉱石の鉱石性状、及び微粉鉱石の吹込み比について説明する。
 微粉鉱石は、鉄鉱石を粉砕して得られるものである。この微粉鉱石の原料となる鉄鉱石は、強熱減量が9質量%以上、且つ、12質量%以下となるものである。鉄鉱石中の強熱減量(LOI)は、JIS M8850に準じて測定される指標であり、鉄鉱石の場合は主に結晶水の含有量を示している。
 このように鉄鉱石の強熱減量(LOI)を規定するのは、微粉鉱石の粉砕性を微粉炭用の石炭と同等にして、粉砕されやすく(細かくなりやすく)粉砕した場合の両者の粒径を揃えるためである。HGI(ハードグローブ指数)は、石炭HGI強度試験(JIS  M8801)で示される石炭の粉砕性を示す指標である。この石炭HGI強度試験の方法に準じて複数種の鉄鉱石の粉砕性を測定し、強熱減量(LOI)との関係を整理すると、図4のような関係が得られる。
 図4に示すように、鉄鉱石の強熱減量(LOI)を多いと、鉄鉱石のHGIも大きくなり、粉砕されやすく(細かくなりやすく)なる。
 ここで、一般的に高炉1で微粉炭として使用される石炭のHGIは40~90である。石炭のHGIを40以上とするのは、HGIが40未満になると粉砕性が悪化し、粒度が大きくなるため設備磨耗等が起こるからである。また、石炭のHGIを90以下とするのは、HGIが90より大きくなると、石炭が細かく粉砕されすぎて配管詰まりの原因となるからである。
 上述した強熱減量が9質量%以上、且つ、12質量%以下の場合、鉄鉱石のHGIが微粉炭用の石炭と同等の40~90になり、鉄鉱石を粉砕した時の微粉鉱石の粒度が微粉炭並み(最大粒径1000μm以下、平均粒径=50μm)になるため、設備磨耗や搬送配管の破れを防止することが可能となる。
 また、図5に示すように、鉄鉱石の強熱減量(LOI)と、比表面積(BET)とは正の相関があり、強熱減量を大きくすると比表面積も高くなる。比表面積が高い微粉鉱石(鉄鉱石)は、レースウェイ中で反応しやすくなるため、微粉鉱石の還元率を向上させることも可能となる。
 以上のことから、微粉鉱石はレースウェイ奥の鳥の巣スラグ4にトラップされた際、鳥の巣スラグ4の粘度を下げ、鳥の巣スラグ4の滞留量を低減できる。その結果、高炉1の圧損を低下させ、高炉1下部での通気性を良好にすることができる。
 なお、鉄鉱石の強熱減量(LOI)が9質量%未満の場合、HGIが低い鉄鉱石が原料として用いられるため粉砕しにくい。そのため、微粉鉱石の粒径が大きくなり、設備磨耗が大きく搬送配管の破れ等の操業トラブルに繋がり使用できなくなる。また、鉄鉱石の強熱減量(LOI)が小さい鉱石は比表面積が小さく、羽口2吹込み時レースウェイ中での還元率が低下する。そのため、レースウェイ奥で炉芯コークスとの直接還元反応による吸熱量も大きくなって、溶銑温度低下(炉熱低下)を招きやすくなる。その結果、圧損が逆に上昇し、微粉鉱石の吹込みによる効果も得られなくなる。
 また、鉄鉱石の強熱減量(LOI)が12質量%より高い場合、このような強熱減量を備えた鉱石は存在しないため、強熱減量が12質量%より高い場合を対象外とした。
 次に、微粉鉱石の吹込み比について説明する。
 後述する図9の計算フローを用いて微粉鉱石の吹込み比と圧損低減量の関係を計算した。計算結果を図6に示す。微粉鉱石の吹込み比を増加させることで鳥の巣スラグ4の粘度が低下し、滴下線速度が向上するため、スラグホールドアップが低下(スラグ滞留量が減少)する。その結果、圧損低減量が増加する。しかし、微粉鉱石の吹込み比が20kg/tp以上になると鳥の巣領域のスラグ量が増加し、スラグ温度低下の影響により圧損低減量が減少する。なお、微粉鉱石の吹込み比が50kg/tpより増加すると微粉鉱石の吹込み比=0kg/tp(ベース)の条件よりも圧損が上昇してしまい、効果がなくなる。
 なお、上述した図6の結果は図9の計算フローに従って算出されたものであるが、実高炉を用いてテストすると、図7に示すような結果が得られる。
 図7に示すように、実高炉で図8のフローに従って操業を行うと、微粉鉱石の吹込み比が1.3kg/tpでは圧損は低下せず、吹込み比が2.5kg/tpから図6と同様に圧損が低下した。これは、1.3kg/tp吹込み時は吹込み比が小さく、円周方向に25本ある羽口2に、微粉鉱石が等量配分できず、円周バランスが乱れたため、通気性の改善効果が得られなかったと考えられる。そこで、本発明の操業方法においては、本発明の効果が発現する微粉鉱石の吹込み比の下限を2.5kg/tp以上とした。
 また、微粉鉱石の吹込み比が50kg/tpより多い場合、吹込み顕熱(吸熱量)が増加し、鳥の巣スラグ温度(T)が低下する。また、流入するスラグ量(W)も増加し、吹込む前のベースよりも圧損が上昇する。
 なお、上述した微粉鉱石は、ローラミル、ボールミルなどで粉砕処理を施した鉱石を示すものであり、1000μm以下に粉砕した鉄鉱石を示している。また、微粉炭は、ローラミル、ボールミルなどで粉砕処理を施した石炭を示すものであり、石炭と同じローラミル、ボールミルで粉砕され、1000μm以下に粉砕した石炭を示している。
 次に、比較例及び実施例を用いて、本発明の高炉1の操業方法が有する作用効果について詳しく説明する。
 まず、「微粉鉱石の吹込み比」に対する「圧損低減量」の変化を、図9の計算フローに従って求める。なお、この「圧損低減量」は、圧損が吹込み前に比してどの程度低減したかを示しており、例えば「圧損低減量が増加した」とは、圧損が減少したことを意味し、「圧損低減量が減少した」とは、圧損が増加したことを意味する。これに対し、「圧損変化量」は、吹込み前に比して圧損が吹込み前に比してどの程度増減したかを示している。「圧損変化量が増加した」とは、圧損が増加したことを意味し、「圧損変化量が減少した」とは、文字通り圧損が減少したことを意味する。
 また、以降では、表1に示されるように定義される記号を用いて、本発明の操業方法の結果を説明する。
Figure JPOXMLDOC01-appb-T000001
 まず、羽口2からの微粉鉱石の吹込み比の上限(吹込み上限)について説明する。最初に微粉鉱石の吹込み比におけるレースウェイでの還元率、溶融率およびレースウェイ境界温度(=鳥の巣スラグ4の温度)の変化を算出する。本計算方法は「鉄と鋼  肖ら  vol.78、1992年、P1230」に記載されている数学モデルをもとに計算した。計算結果を図10(a)に、また計算諸元を表2に示す。
Figure JPOXMLDOC01-appb-T000002
 このとき、溶融した鉱石のみが鳥の巣スラグ4の粘度低下に寄与するとして、微粉鉱石の吹込み比と溶融率から、溶融鉱石(フラックス)と未溶融鉱石の関係を求めた。求められた溶融鉱石と未溶融鉱石との関係を、図10(b)に示す。
 また、吹込んだ微粉鉱石の全量が鳥の巣スラグ4のスラグ比に合算されるとして、微粉鉱石の吹込み比と鳥の巣スラグ4の量(w)との関係を求めた。求められた関係を、図10(c)に示す。なお、鳥の巣スラグ4の成分はサンプリング調査を元にボッシュスラグ成分と微粉炭中のスラグ成分の比が0.18:1.00の割合で滞留すると算出している。また、吹込み比=0の状態の鳥の巣スラグ4の成分及び量は、塩基度(C/S)=0.75で一定、鳥の巣スラグ量=64kg/tpとして計算を行った。なお、塩基度(C/S)は、スラグ中に含まれるCaO(質量%)とSiO2(質量%)の比である。
 さらに、吹込まれた微粉鉱石は全量コークスと直接還元するとし、還元反応の吸熱量(吸熱分)をレースウェイ境界温度(鳥の巣部3の温度)から差し引いて、微粉鉱石の吹込み比と鳥の巣スラグ4の温度との関係を求めた。求められた関係を、図10(d)に示す。
 次に、鳥の巣スラグ4の粘度(μ)を求めた。各フラックス比における鳥の巣スラグ4の粘度の温度依存性を実験で求めている。
 図10(d)の鳥の巣部3の温度(鳥の巣スラグ4の温度)の変化を用いて実験値(詳しくは後述する)から鳥の巣スラグ4の粘度(μ)を求めている。なお、微粉鉱石の吹込み比=0の値は「鉄と鋼  杉山ら  vol.73、1987年、P2044」に記載されている粘度推定式を用いて計算した。
 上述した手順で求められた微粉鉱石の吹込み比と鳥の巣スラグ4の粘度(μ)との関係を図10(e)に示す。
 また、スラグの滴下線速度(u)については、「材料とプロセス  加藤ら  vol.28、2015年、S25」に記載されている関係式をもとに、微粉鉱石の吹込み比と滴下線速度との関係を求めた。求められた関係を、図10(f)に示す。
 さらに、ホールドアップ(h)については、「材料とプロセス  加藤ら  vol.28、2015年、S25」に記載されている関係式をもとに、微粉鉱石の吹込み比とホールドアップ(h)との関係を求めた。求められた関係を、図10(g)に示す。
 このとき、充填層断面積S=6.67m(一定)とし、スラグ量(W)については図10(c)の値を用いた。
 最後に、微粉鉱石の吹込み比と圧損低減量(圧損変化量)との関係を求めた。圧損は、「鉄と鋼  福武ら、vol.66、1980年、P1974」に記載されている計算式から算出した。なお、計算諸元は表3に示す通りである。求められた微粉鉱石の吹込み比と圧損変化量との関係を、図10(h)に示す。
Figure JPOXMLDOC01-appb-T000003
 なお、表3中の「ボッシュガス量」は、羽口から吹き込まれる空気、酸素富化用の酸素、送風湿分などの送風による羽口前コークスの燃焼、および、微粉炭などの補助燃料の燃焼により羽口前で生成する総ガス量の計算値であり、Nm/minで示される。この「ボッシュガス量」の計算方法は例えば、鉄と鋼、Vol.48(1962)No.12、P1606に記載されている。
 図10(h)に示すように、微粉鉱石の吹込み比を増加させることで、鳥の巣スラグ4の粘度が低下し、圧損低減量が増加する(圧損が低下する)。しかし、微粉鉱石の吹込み比を20kg/tp以上にすると、鳥の巣領域のスラグ量が増加すると共に、鳥の巣スラグ4の温度の低下の影響により、圧損低減量が減少する(圧損が増加する)。微粉鉱石の吹込み比が50kg/tpより増加すると、微粉鉱石の吹込み比=0kg/tpよりも圧損が上昇してしまい、微粉鉱石の吹込みの効果がなくなる。
 ところで、上述した鳥の巣部3の温度から鳥の巣スラグ4の粘度を導くためには、溶融鉱石(フラックス)の混合比やスラグ温度がスラグの粘度にどのように影響するかを事前実験しておくのが好ましい。
 上述した事前実験は、事前準備として、図11に示すような回転式トルクメータ5を用意し、酸化防止のためセラミックペーストを純鉄るつぼ7と回転式トルクメータ5の純鉄ロータ6とに塗布しておく。さらに、JS1000の校正液を用いて回転式トルクメータ5の純鉄ロータ6を校正し、回転数とトルクとの関係を求めておく。このような校正を行うと、y=ax+bという1次回帰式が得られ、ロータ係数(K0)を求めることが可能となる。なお、ロータ係数:K0=標準粘度(mPa・s)÷回帰係数bにより求めることができる。
 このようにしてロータ係数が得られたら、純鉄るつぼ7の中に所定の配合(以下の表4に示す配合)で混合した試薬(フラックス入りのスラグ)を充填する。電気炉で所定の温度まで加熱し、試薬を溶融させる。加熱する温度は1300℃、1350℃、1400℃、1450℃、1500℃である。回転式トルクメータ5に取り付けたロータ(純鉄ロータ6)を溶融スラグの中心へ入れ、ロータの回転を開始する。計測されるトルクの変化が0.1%/minになったら、粘度が安定したとみなし、粘度が安定した後1分間測定を継続して行い、この1分間で計測された値をトルクの測定値とする。測定の後、回転を止め実験を終了する。なお、粘度が安定しないものに関してはデータから除外した。
 上述したようにトルクが安定した1分間の測定値をトルクの測定値(トルク(%))として採用する。得られたトルク(%)を、粘度η(mPa・s)=トルク(%)×K0÷回転速度(rpm)に代入して、フラックス比が異なるスラグの粘度η(mPa・s)を求めた。求められたスラグの粘度η(mPa・s)を表4に示す。
Figure JPOXMLDOC01-appb-T000004
 上述のようにして微粉鉱石の吹込み比に対する鳥の巣スラグ4の粘度(μ)の変化を、スラグの塩基度C/S=0.6の場合と、塩基度C/S=1.0の場合について、それぞれ温度依存式の状態で求める。このようにして得られたスラグの粘度(μ)の温度依存性をまとめると、図12及び図13の結果が得られる。
 図10(d)の関係式からそれぞれの粘度を求め、スラグの塩基度と粘度との関係を指数関数で求める。一例としてフラックス比=20kg/tpの場合についてまとめたスラグの塩基度と粘度との関係を図14に示す。図14の関係式から塩基度=0.75の粘度を求めることが可能となる。
 上述した粘度の算出方法に従って、微粉鉱石の吹込み比と粘度との関係を整理すると、図10(e)の関係が得られる。
 上述した手順で導かれた図10(e)の関係、言い換えれば図6の関係によれば、吹込み前に比して圧損が低下する(圧損低減量が増加する、あるいは圧損変化量がマイナスになる)のは、微粉鉱石の吹込み比が0kg/tp以上、且つ、50kg/tp以下ということになり、微粉鉱石の吹込み比の上限を規定することができる。
 なお、上述した計算手順の詳細をまとめると、表5のようになる。
Figure JPOXMLDOC01-appb-T000005
 一方、微粉鉱石の吹込み比の下限については、実高炉を用いた実験(実機テスト)により導くことができる。
 この実機テストに用いた高炉1は、2112mの実高炉であって、出銑比=1.8t/m/dayの高炉である。高炉1に吹込む微粉鉱石の鉱石量を0.0kg/tp⇒1.3 kg/tp⇒2.5kg/tp⇒5.0kg/tpの順番で変更しつつ、テスト操業を5日間に亘って実施した。
 なお、実高炉に吹込む微粉鉱石は、表6に示すような組成を有している。
Figure JPOXMLDOC01-appb-T000006
 なお、上述した微粉鉱石は、図8に示すような処理を行って、粉砕されたものとなっている。
 実機テストの結果を、以下の表7に示す。
Figure JPOXMLDOC01-appb-T000007
 表7を見ると、実施例および比較例は、いずれも微粉炭比(微粉炭の吹込み比)が208kg/tpとなっており(150kg/tp以上の規格を満足しており)、また微粉炭の原料となる石炭の強熱減量(LOI)は11.1mass%となっている(9.0mass%~12.0mass%の規格を満足している)。また、還元材比(微粉炭比とコークス比との和)は、実施例、比較例とも524kg/tpとなっている。
 これらの微粉炭比、強熱減量、及び還元材比の条件で、微粉鉱石の吹込みを行いつつ操業を行い、吹込み前に比して圧損がどのように変化したかを計測した。計測結果を図7に示す。
 図7に示すように、実施例は微粉鉱石の吹込み比が2.5kg/tp、5.0kg/tpとなっており、比較例は微粉鉱石の吹込み比が0.0kg/tp、1.3kg/tpとなっている。
 上述した実施例及び比較例に対して、実施例は圧損変化量が-1.72kPa、-3.33kPaとなっており、吹込み前に比べて圧損が小さくなり、通気性が良好になっていることがわかる。ところが、比較例は圧損変化量が0.00kPa、0.73kPaとなっており、吹込み前と圧損が同じか、吹込み前に比べて圧損が大きくなっており、通気性は改善されていない。
 このことから、通気性の改善効果が得られるのは、微粉鉱石の吹込み比が2.5kg/tp以上の場合と判断することができる。
 以上の実施例及び比較例の結果を総合的に判断すると、石炭を粉砕して微粉炭とすると共に、強熱減量が9質量%以上12質量%以下の鉄鉱石を粉砕して微粉鉱石とし、微粉炭の吹込み比を150kg/tp以上とし、微粉鉱石の吹込み比を2.5kg/tp以上50.0kg/tp以下として、微粉炭及び微粉鉱石を羽口2から吹込むことで、微粉鉱石の羽口2吹込みによる高炉1下部の通気改善が可能となると判断される。
 なお、今回開示された実施形態はすべての点で例示であって制限的なものではないと考えられるべきである。特に、今回開示された実施形態において、明示的に開示されていない事項、例えば、運転条件や操業条件、各種パラメータ、構成物の寸法、重量、体積などは、当業者が通常実施する範囲を逸脱するものではなく、通常の当業者であれば、容易に想定することが可能な値を採用している。
 1 高炉
 2 羽口
 3 鳥の巣部
 4 鳥の巣スラグ
 5 回転式トルクメータ
 6 純鉄ロータ
 7 純鉄るつぼ

Claims (2)

  1.  石炭を粉砕して微粉炭とすると共に、強熱減量が9質量%以上12質量%以下の鉄鉱石を粉砕して微粉鉱石とし、
     前記微粉炭の吹込み比を150kg/tp以上とし、前記微粉鉱石の吹込み比を2.5kg/tp以上50.0kg/tp以下として、前記微粉炭及び微粉鉱石を羽口から吹込む
     ことを特徴とする高炉の操業方法。
  2.  前記鉄鉱石と石炭と一緒に粉砕することを特徴とする請求項1に記載の高炉の操業方法。
PCT/JP2020/013733 2019-03-28 2020-03-26 高炉の操業方法 WO2020196769A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US17/598,044 US20220177985A1 (en) 2019-03-28 2020-03-26 Method for operation of blast furnace
KR1020217034117A KR102596097B1 (ko) 2019-03-28 2020-03-26 고로의 조업 방법
EP20778098.2A EP3933053B1 (en) 2019-03-28 2020-03-26 Method for operation of blast furnace
CN202310383909.9A CN116287501A (zh) 2019-03-28 2020-03-26 高炉的操作方法
CN202080019705.1A CN113544291A (zh) 2019-03-28 2020-03-26 高炉的操作方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019063381A JP7130898B2 (ja) 2019-03-28 2019-03-28 高炉の操業方法
JP2019-063381 2019-03-28

Publications (1)

Publication Number Publication Date
WO2020196769A1 true WO2020196769A1 (ja) 2020-10-01

Family

ID=72611071

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/013733 WO2020196769A1 (ja) 2019-03-28 2020-03-26 高炉の操業方法

Country Status (6)

Country Link
US (1) US20220177985A1 (ja)
EP (1) EP3933053B1 (ja)
JP (1) JP7130898B2 (ja)
KR (1) KR102596097B1 (ja)
CN (2) CN113544291A (ja)
WO (1) WO2020196769A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7115664B1 (ja) * 2021-06-28 2022-08-09 Jfeスチール株式会社 供給熱量推定方法、供給熱量推定装置、供給熱量推定プログラム、及び高炉の操業方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6436711A (en) * 1987-07-31 1989-02-07 Nippon Steel Corp Blast furnace operating method
JPH0394006A (ja) * 1989-09-05 1991-04-18 Sumitomo Metal Ind Ltd 高炉羽口粉体吹き込み方法
JPH042708A (ja) 1990-04-20 1992-01-07 Nkk Corp 高炉操業法
JPH05214414A (ja) 1992-02-04 1993-08-24 Kobe Steel Ltd 鉱石または金属酸化物の高速還元方法
JPH09165607A (ja) 1995-12-14 1997-06-24 Nippon Steel Corp 高炉操業方法
JPH09194913A (ja) * 1996-01-19 1997-07-29 Nkk Corp 高炉の操業方法
JPH09324205A (ja) * 1996-06-04 1997-12-16 Nkk Corp 高炉の2段羽口による粉鉄鉱石の吹込み方法
JP2012153949A (ja) * 2011-01-26 2012-08-16 Kobe Steel Ltd 高炉原料用塊成化物の製造方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09157712A (ja) * 1995-12-04 1997-06-17 Nippon Steel Corp 高炉における微粉炭および紛状鉄源の同時吹込み操業方法
BR0307107A (pt) 2002-01-24 2004-12-28 Jfe Steel Corp Método para produção de ferro fundido com baixo teor de silìcio
JP2005298923A (ja) 2004-04-13 2005-10-27 Nippon Steel Corp 高炉における高鉱石/還元材比操業方法
JP4807099B2 (ja) * 2006-02-22 2011-11-02 Jfeスチール株式会社 高炉操業方法
JP2011127176A (ja) * 2009-12-17 2011-06-30 Kobe Steel Ltd 高炉の操業方法
JP6057642B2 (ja) * 2012-09-20 2017-01-11 三菱重工業株式会社 スラグ除去装置及びスラグ除去方法
JP6198649B2 (ja) * 2014-03-19 2017-09-20 株式会社神戸製鋼所 高炉の原料装入方法
CN108660270A (zh) * 2017-03-29 2018-10-16 鞍钢股份有限公司 一种高炉喷吹用含有金属铁的低温固结焦炭及其生产方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6436711A (en) * 1987-07-31 1989-02-07 Nippon Steel Corp Blast furnace operating method
JPH0394006A (ja) * 1989-09-05 1991-04-18 Sumitomo Metal Ind Ltd 高炉羽口粉体吹き込み方法
JPH042708A (ja) 1990-04-20 1992-01-07 Nkk Corp 高炉操業法
JPH05214414A (ja) 1992-02-04 1993-08-24 Kobe Steel Ltd 鉱石または金属酸化物の高速還元方法
JPH09165607A (ja) 1995-12-14 1997-06-24 Nippon Steel Corp 高炉操業方法
JPH09194913A (ja) * 1996-01-19 1997-07-29 Nkk Corp 高炉の操業方法
JPH09324205A (ja) * 1996-06-04 1997-12-16 Nkk Corp 高炉の2段羽口による粉鉄鉱石の吹込み方法
JP2012153949A (ja) * 2011-01-26 2012-08-16 Kobe Steel Ltd 高炉原料用塊成化物の製造方法

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
FUKUTAKE ET AL., IRON AND STEEL, vol. 66, 1980, pages 1,974
IRON AND STEE, vol. 48, no. 12, 1962, pages 1,606
KATO ET AL., MATERIALS AND PROCESSES, vol. 28, 2015, pages S25
SUGIYAMA ET AL., IRON AND STEEL, vol. 73, 1987, pages 2,044
XIAO ET AL., IRON AND STEEL, vol. 78, 1992, pages 230

Also Published As

Publication number Publication date
JP7130898B2 (ja) 2022-09-06
KR102596097B1 (ko) 2023-10-30
CN116287501A (zh) 2023-06-23
US20220177985A1 (en) 2022-06-09
KR20210141661A (ko) 2021-11-23
EP3933053A4 (en) 2022-04-13
JP2020164886A (ja) 2020-10-08
CN113544291A (zh) 2021-10-22
EP3933053A1 (en) 2022-01-05
EP3933053B1 (en) 2023-09-13

Similar Documents

Publication Publication Date Title
RU2447164C2 (ru) Способ производства окатышей из восстановленного железа и способ производства чугуна
EP2578703A1 (en) Granular metal production method
CN104894313A (zh) 一种钒钛磁铁矿高炉冶炼的方法
WO2020196769A1 (ja) 高炉の操業方法
WO1996015277A1 (fr) Procede d'utilisation d'un haut fourneau
US4985075A (en) Method for manufacturing chromium-bearing pig iron
JP6260751B2 (ja) 高炉への原料装入方法
JPH0913107A (ja) 高炉操業方法
JP5012138B2 (ja) 高炉操業方法
RU2780654C1 (ru) Способ работы доменной печи
JP2006028538A (ja) 高温被還元性に優れた焼結鉱を使用する高炉の操業方法
JP3068967B2 (ja) 高炉操業法
TWI711702B (zh) 鐵碳複合材料及鐵氧化物的還原方法
JP3746842B2 (ja) 微粉炭多量吹き込み時の高炉操業方法
WO2024028920A1 (ja) 還元用非焼成ペレットとその製造方法
WO2022201562A1 (ja) 銑鉄製造方法
WO2023199550A1 (ja) 高炉の操業方法
JP2002060809A (ja) 化学組成を調整した焼結鉱を使用する低炉熱高炉操業方法
JPH02236210A (ja) 高炉操業法
JPH11286705A (ja) 高炉操業方法
JP4759977B2 (ja) 高炉操業方法
JP3590543B2 (ja) 高炉への含鉄粉吹き込み方法
JP2001107114A (ja) 高被還元性焼結鉱を使用した高炉操業方法
JP5626072B2 (ja) 竪型溶解炉の操業方法
JP3017009B2 (ja) 高炉操業法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20778098

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020778098

Country of ref document: EP

Effective date: 20210930

ENP Entry into the national phase

Ref document number: 20217034117

Country of ref document: KR

Kind code of ref document: A