WO2020179642A1 - 多孔質体および多孔質体の製造方法 - Google Patents

多孔質体および多孔質体の製造方法 Download PDF

Info

Publication number
WO2020179642A1
WO2020179642A1 PCT/JP2020/008184 JP2020008184W WO2020179642A1 WO 2020179642 A1 WO2020179642 A1 WO 2020179642A1 JP 2020008184 W JP2020008184 W JP 2020008184W WO 2020179642 A1 WO2020179642 A1 WO 2020179642A1
Authority
WO
WIPO (PCT)
Prior art keywords
porous body
porous
epoxy
compound
body according
Prior art date
Application number
PCT/JP2020/008184
Other languages
English (en)
French (fr)
Inventor
紀生 石塚
俊和 小田
Original Assignee
株式会社エマオス京都
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社エマオス京都 filed Critical 株式会社エマオス京都
Priority to JP2021504033A priority Critical patent/JP7132659B2/ja
Priority to EP20765487.2A priority patent/EP3789444A4/en
Priority to US15/734,138 priority patent/US11613618B2/en
Priority to CN202080002913.0A priority patent/CN112218913B/zh
Publication of WO2020179642A1 publication Critical patent/WO2020179642A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/0004Use of compounding ingredients, the chemical constitution of which is unknown, broadly defined, or irrelevant
    • C08J9/0009Phase change materials
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/26Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof by elimination of a solid phase from a macromolecular composition or article, e.g. leaching out
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/20Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the epoxy compounds used
    • C08G59/22Di-epoxy compounds
    • C08G59/24Di-epoxy compounds carbocyclic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/20Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the epoxy compounds used
    • C08G59/32Epoxy compounds containing three or more epoxy groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/40Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
    • C08G59/62Alcohols or phenols
    • C08G59/621Phenols
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L63/00Compositions of epoxy resins; Compositions of derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2201/00Foams characterised by the foaming process
    • C08J2201/04Foams characterised by the foaming process characterised by the elimination of a liquid or solid component, e.g. precipitation, leaching out, evaporation
    • C08J2201/046Elimination of a polymeric phase
    • C08J2201/0464Elimination of a polymeric phase using water or inorganic fluids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2205/00Foams characterised by their properties
    • C08J2205/04Foams characterised by their properties characterised by the foam pores
    • C08J2205/05Open cells, i.e. more than 50% of the pores are open
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2363/00Characterised by the use of epoxy resins; Derivatives of epoxy resins
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a porous body and a method for producing the porous body.
  • epoxy resin porous bodies using spinodal decomposition are amine curing agents. Since the epoxy resin porous body cured with an amine-based curing agent contains an amino group in the main chain, it may swell due to quaternization under acidic conditions. When such a porous body made of epoxy resin is used as a packing material for a column, for example, when an acidic liquid is flown, it may swell and the liquid may not flow easily.
  • an object of the present invention is to provide a porous body in which swelling under acidic conditions is suppressed and a method for producing the porous body.
  • the first porous body of the present invention comprises: A porous body formed of a copolymer of an epoxy compound and a curing agent,
  • the porous body is a porous body containing no primary to tertiary amino groups, and has pores communicating with the porous structure inside.
  • the second porous body of the present invention is A porous material formed by a copolymer of an epoxy compound and a curing agent.
  • the porous body is a porous body that does not contain nitrogen atoms that are quaternized by acid treatment, and is characterized by having pores in which the porous structure communicates.
  • the first porous body of the present invention and the second porous body of the present invention may be collectively referred to as "the porous body of the present invention”.
  • the method for producing a porous body of the present invention is a method for producing the porous body of the present invention, A dispersion preparation step of preparing a dispersion by dispersing a porous material containing an epoxy compound and a curing agent in a dispersion medium, and A polymerization step of polymerizing the porous body raw material in the dispersion, In the polymerization step, the pores are formed by spinodal decomposition.
  • FIG. 1 is an SEM image of the surface of the porous body of Example 1.
  • FIG. 2 is an SEM image of the surface of the porous body (particle 1) of Example 5.
  • FIG. 3 is an SEM image of the surface of the porous body (particle 2) of Example 6.
  • the epoxy compound may be an epoxy compound containing no primary to tertiary amino groups.
  • the epoxy compound may be an epoxy compound containing no nitrogen atom which is quaternized by acid treatment.
  • the epoxy compound may be an epoxy compound represented by the following chemical formula (E1).
  • n is a positive integer and R is a hydrogen atom or a substituent.
  • n may be 10 to 15 in the chemical formula (E1).
  • the epoxy compound represented by the chemical formula (E1) is, for example, 1,2-epoxy-4-(2-oxiranyl) of 2,2-bis(hydroxymethyl)-1-butanol. It may be a cyclohexane adduct.
  • the curing agent may be a curing agent containing no primary to tertiary amino groups.
  • the curing agent may be a curing agent that does not contain a nitrogen atom that is quaternized by acid treatment.
  • the curing agent may be a phenol compound.
  • the phenol compound may be a phenol compound containing three or more phenolic hydroxyl groups in one molecule.
  • the pores communicating with the porous structure may be through holes communicating with the porous structure.
  • the end portion of the through hole may open toward the outside of the porous body.
  • the porous body of the present invention may be, for example, porous particles.
  • the porous particles may be substantially spherical particles.
  • the major axis of the porous particles may be 1.6 times or less the minor axis.
  • the average particle diameter of the porous particles may be in the range of 0.5 to 30,000 ⁇ m.
  • a curing accelerator may be further dispersed in a dispersion medium.
  • the porous body raw material may be dispersed in a dispersion medium together with a dispersant.
  • the method for producing a porous body of the present invention may be, for example, a block copolymer in which the dispersant is formed by containing a hydrophobic polymer block and a hydrophilic polymer block.
  • the method for producing a porous body of the present invention further includes, for example, a dispersant production step of producing the dispersant, wherein the dispersant production step is performed by living radical polymerization of the hydrophobic polymer block and the hydrophilic polymer block.
  • a dispersant production step of producing the dispersant is performed by living radical polymerization of the hydrophobic polymer block and the hydrophilic polymer block.
  • the dispersant may be a surfactant.
  • the porous body of the present invention is a porous body formed by a copolymer of an epoxy compound and a curing agent.
  • Epoxy compound The epoxy compound preferably does not contain a primary to tertiary amino group. Further, it is preferable that the epoxy compound does not contain a nitrogen atom that is quaternized by acid treatment. A nitrogen atom such as an amide bond or a urethane bond will not be quaternized even under acidic conditions.
  • the first porous body of the present invention does not contain primary to tertiary amino groups as described above. In this case, even if the epoxy compound contains a primary to tertiary amino group or the epoxy compound contains a nitrogen atom that is quaternized by acid treatment, the first porous material of the present invention produced. It is sufficient that the substance does not contain a primary to tertiary amino group.
  • the second porous body of the present invention does not contain nitrogen atoms that are quaternized by acid treatment.
  • the epoxy compound contains a primary to tertiary amino group or the epoxy compound contains a nitrogen atom that is quaternized by acid treatment, the first porous material of the present invention produced. It is sufficient that the substance does not contain a nitrogen atom that is quaternized by the acid treatment.
  • the epoxy compounds may be used alone or in combination of two or more.
  • an epoxy compound containing a nitrogen atom may be used or used in combination within a range in which adverse effects due to swelling and inhibition during addition reaction are allowable.
  • the epoxy compound has a large number of epoxy groups in one molecule because a porous structure is easily formed.
  • the number of epoxy groups in one molecule of the epoxy compound may be 5 or more or 10 or more, and the upper limit is not particularly limited, but is, for example, 30 or less or 15 or less. Good. Further, it is preferable that the epoxy compound does not contain an epoxy compound having two or less epoxy groups in one molecule.
  • the epoxy compound may be, for example, at least one of an epoxy monomer and an epoxy prepolymer.
  • the epoxy compound at least one of an epoxy monomer and an epoxy prepolymer corresponding to the structure of the produced porous body can be used.
  • epoxy compound are not particularly limited, but are as follows, for example.
  • Examples of the epoxy compound containing no 1st to 3rd grade nitrogen atoms include phenol novolac type epoxy resin and EHPE3150 (trade name of Daicel Co., Ltd., details will be described later).
  • Examples of the epoxy compound containing a primary to tertiary nitrogen atom include glycidylamine type TETRAD-C (also referred to as tetrad-C, a trade name of Mitsubishi Gas Chemical Co., Inc.), TEPIC having a triazine ring (also referred to as Tepic, The product name of Nissan Chemical Industries, Ltd.) and the like.
  • TETRAD-C The structure of TETRAD-C is represented by the following chemical formula (1).
  • TEPIC The structure of TEPIC is represented by the following chemical formula (4). Further, as the TEPIC series, for example, TEPIC-L (tepic L), TEPIC-VL (tepic VL), TEPIC-FL (tepic FL), TEPIC-PAS (tepic PAS), TEPIC-UC (tepic UC) are available. Can be mentioned. These are obtained by changing a part of the structure of the following chemical formula (4) and have a structure similar to TEPIC.
  • Examples of the epoxy compound containing no nitrogen atom include a bisphenol type epoxy compound, a novolak type epoxy compound, and an alicyclic type EHPE3150 (trade name of Daicel Co., Ltd.). Particularly, EHPE3150 and a novolac type epoxy compound are preferable.
  • EHPE3150 has a chemical structure of "1,2-epoxy-4- (2-oxylanyl) cyclohexane adduct of 2,2-bis (hydroxymethyl) -1-butanol” and is represented by the following chemical formula (E1). be able to. In the following chemical formula (E1), n is a positive integer, for example, 10 to 15.
  • the epoxy compound (for example, at least one of an epoxy monomer and an epoxy prepolymer) may be, for example, a polyfunctional epoxy group-containing compound.
  • the polyfunctional epoxy group-containing compound is an epoxy compound having two or more epoxy groups in one molecule, and preferably has three or more, for example, three or four epoxy groups in one molecule.
  • the polyfunctional epoxy group-containing compound may be, for example, an aromatic epoxy compound or a non-aromatic epoxy compound.
  • the polyfunctional epoxy group-containing compound may be, for example, a high molecular compound (for example, an oligomer or a prepolymer) or a low molecular compound (for example, a monomer).
  • aromatic epoxy compounds examples include bisphenol A type epoxy compounds, brominated bisphenol A type epoxy compounds, bisphenol F type epoxy compounds, bisphenol AD type epoxy compounds, stilbene type epoxy compounds, biphenyl type epoxy compounds, bisphenol A novolac type compounds.
  • the aromatic epoxy compound is, for example, bisphenol A type epoxy compound, brominated bisphenol A type epoxy compound, bisphenol F type epoxy compound, bisphenol AD type epoxy compound, fluorene-containing epoxy compound, triglycidyl isocyanurate, and particularly preferably.
  • a bisphenol A type epoxy compound, a brominated bisphenol A type epoxy compound, a bisphenol F type epoxy compound, a bisphenol AD type epoxy compound, a fluorene-containing epoxy compound, etc. which has an epoxy equivalent of 500 or less and a melting point of 100° C. or less, Is also good.
  • the aromatic epoxy compound is, for example, N,N,N′,N′-tetraglycidyl-m-xylylenediamine (a compound in which the cyclohexane ring of the chemical formula (1) is replaced with a benzene ring) and the like. Is also good.
  • non-aromatic epoxy compound examples include an aliphatic glycidyl ether type epoxy compound, an aliphatic glycidyl ester type epoxy compound, an alicyclic glycidyl ether type epoxy compound, and an alicyclic glycidyl ester type epoxy compound.
  • Preferred examples thereof include alicyclic glycidyl ether type epoxy compounds and alicyclic glycidyl ester type epoxy compounds.
  • it is an alicyclic glycidyl ether type epoxy compound having an epoxy equivalent of 500 or less and a melting point of 100 ° C. or less, or an alicyclic glycidyl ester type epoxy compound.
  • non-aromatic epoxy compound an alicyclic epoxy compound having 3 or more epoxy groups, for example, 3 to 4 epoxy groups in one molecule is preferable for the above-mentioned reason.
  • the alicyclic epoxy compound having 3 or more epoxy groups in one molecule is not particularly limited, and those having an alicyclic hydrocarbon group and 3 or more epoxy groups can be appropriately used. Further, from the viewpoint of further increasing the hydrophilicity, it is preferable that the alicyclic epoxy compound contains a nitrogen atom.
  • the compound containing a nitrogen atom in the alicyclic epoxy compound may be, for example, a compound represented by the following chemical formula (A). X- (NY 2 ) m (A)
  • X represents an alicyclic hydrocarbon group having 3 to 8 carbon atoms, which is directly bonded to the nitrogen atom in the formula or through a linear alkylene group having 1 to 5 carbon atoms.
  • Y may be the same or different, respectively, and is an epoxy group which is a hydrogen atom or is bonded directly to a nitrogen atom in the formula or via a linear alkylene group having 1 to 5 carbon atoms. is there.
  • m is 2, 3 or 4 (particularly preferably 2).
  • each “NY 2 ” may be the same or different.
  • X in the chemical formula (A) is directly bonded to the nitrogen atom in the formula or via a linear alkylene group having 1 to 5 carbon atoms (more preferably 1 to 3 and even more preferably 1).
  • the linear alkylene group which may be present between the nitrogen atom and the alicyclic hydrocarbon group is, for example, a methylene group, an ethylene group, a propylene group or the like.
  • the carbon number of the linear alkylene group preferably does not exceed the upper limit from the viewpoint of preventing a decrease in mechanical strength of the porous particles.
  • Examples of such X include groups represented by the following formulas (I) to (VI).
  • Y in the chemical formula (A) is directly connected to the nitrogen atom in the formula or via a linear alkylene group having 1 to 5 carbon atoms (more preferably 1 to 3 and even more preferably 1). It is an epoxy group to be bonded.
  • the linear alkylene group is not particularly limited, but is the same as the linear alkylene group described with reference to X, for example.
  • m in the chemical formula (A) is 2, 3 or 4 as described above. From the viewpoint that the crosslinking reaction is not insufficient, m is preferably 2 or more, and from the viewpoint that the reactivity is not lowered due to steric hindrance, m is preferably 4 or less.
  • Y may be the same or different as described above, and each is a hydrogen atom, or is directly a nitrogen atom in the formula. Alternatively, it is an epoxy group bonded through a linear alkylene group having 1 to 5 carbon atoms. In each "NY 2 ", it is preferred that at least one (preferably both) of Y is the epoxy group.
  • the number of epoxy groups in the chemical formula (A) is preferably not too small from the viewpoint that the crosslinking reaction is not insufficient, and is preferably not too large from the viewpoint that the reactivity is not lowered due to steric hindrance.
  • alicyclic epoxy compound having three or more epoxy groups in one molecule include compounds represented by the following chemical formulas (1A) or (1).
  • non-aromatic epoxy compound examples include, for example, “triglycidyl isocyanurate” represented by the chemical formula (4) in Examples described below, that is, triglycidyl isocyanurate (2,2,2-tri-(2,3- It may be a compound having an isocyanul ring, such as epoxypropyl) -isocyanurate).
  • triglycidyl isocyanurate represented by the chemical formula (4) in Examples described below, that is, triglycidyl isocyanurate (2,2,2-tri-(2,3- It may be a compound having an isocyanul ring, such as epoxypropyl) -isocyanurate).
  • a compound having a nitrogen atom is preferable as the polyfunctional epoxy group-containing compound.
  • N,N,N',N'-tetraglycidyl-m-xylylenediamine is preferable from the viewpoints of compatibility and reactivity with the polyfunctional amino group-containing compound and strength of the obtained porous epoxy resin particles.
  • triglycidyl isocyanurate is preferable from the viewpoint of high hydrophilicity and versatility of the raw material.
  • These polyfunctional epoxy group-containing compounds may be used alone or in combination of two or more.
  • the polyfunctional epoxy group-containing compound used as the raw material of the porous body may be, for example, an aromatic amino compound or a non-aromatic amino compound.
  • aromatic amino compound examples include aromatic amino compounds such as metaphenylenediamine, diaminodiphenylmethane, diaminodiphenylsulfone, benzyldimethylamine, and dimethylaminomethylbenzene, phthalic anhydride, trimellitic anhydride, pyromellitic anhydride, and the like.
  • aromatic acid anhydrides examples include aromatic acid anhydrides, phenol resins, phenol novolac resins, and amino compounds having a heteroaromatic ring such as a triazine ring.
  • An aromatic amino compound having two or more primary amino groups in the molecule is preferable, and metaphenylenediamine, diaminodiphenylmethane, and diaminodiphenylsulfone are particularly preferable.
  • non-aromatic amino compound examples include ethylenediamine, diethylenetriamine, triethylenetetramine, tetraethylenepentamine, iminobispropylamine, bis(hexamethylene)triamine, 1,3,6-trisaminomethylhexane and polymethylenediamine.
  • Aliphatic amino compounds such as trimethylhexamethylenediamine, polyetherdiamine, isophoronediamine, menthanediamine, N-aminoethylpiperazine, 3,9-bis(3-aminopropyl)2,4,8,10-tetraoxaspiro (5,5)
  • alicyclic amino compounds such as undecane adduct, bis (4-amino-3-methylcyclohexyl) methane, bis (4-aminocyclohexyl) methane and modified products thereof, and other polyamino compounds and dimer acids. Examples thereof include aliphatic polyamide amino compounds.
  • an alicyclic amino compound having two or more primary amino groups in the molecule is preferable from the viewpoint of achieving an efficient cross-linking reaction, and isophorone diamine, mentan diamine, and bis (4-amino-3-3) are preferable. More preferably, it is at least one selected from the group consisting of methylcyclohexyl)methane, bis(4-aminocyclohexyl)methane, and modified products thereof, and among them, bis(4-amino-3-methylcyclohexyl) ) Methane and bis(4-aminocyclohexyl)methane represented by the chemical formula (2) in Examples described later are particularly preferable.
  • modified amines include various modified products such as epoxy-modified products, carboxylic acid-modified products, urea-modified products, modified products with ketone compounds, and modified products with silane compounds.
  • modified products such as epoxy-modified products, carboxylic acid-modified products, urea-modified products, modified products with ketone compounds, and modified products with silane compounds.
  • a cyclic amino compound modified by a known method can be appropriately used.
  • polyfunctional amino group-containing compounds may be used alone or in combination of two or more.
  • the porous body of the present invention is a porous body formed by a copolymer of an epoxy compound and a curing agent.
  • the curing agent is not particularly limited. Further, the curing agent may be used alone or in combination of two or more.
  • the first porous body of the present invention does not contain primary to tertiary amino groups as described above. In this case, even if the curing agent contains a primary to tertiary amino group or the curing agent contains a nitrogen atom that is quaternized by an acid treatment, the first porosity of the present invention produced. It is sufficient that the substance does not contain a primary to tertiary amino group.
  • the second porous body of the present invention does not contain nitrogen atoms that are quaternized by acid treatment.
  • the curing agent contains a primary to tertiary amino group, or the curing agent contains a nitrogen atom that is quaternized by acid treatment, the second porosity of the present invention produced. It is sufficient that the substance does not contain a nitrogen atom that is quaternized by the acid treatment.
  • the curing agent for example, a general curing agent for epoxy resin can be used.
  • the curing agent containing no primary to tertiary amino groups include phenol compounds, acid anhydrides and polymercaptans, and the phenol compounds are particularly preferable.
  • a porous body was actually produced by a copolymer of an epoxy compound and a curing agent containing no 1st to 3rd grade nitrogen atoms.
  • the present inventors have studied various combinations of epoxy compounds and phenol compounds. As a result, it was found that a porous structure can be formed with a curing agent containing no nitrogen atom by using a phenol resin in which a low-functional group component having two or less hydroxyl groups is removed instead of a general phenol novolac resin.
  • the epoxy compound and the phenol compound are not limited to these as described above.
  • phenol compound used as the curing agent examples include phenol novolac type, triphenylmethane type, tetrakisphenolethane type, xylylene type, biphenylene type, naphthol/cresol type and dicyclopentadiene type. It is preferable to contain three (3) or more functional hydroxyl groups. Further, it is preferable that the phenol compound does not include a phenol compound having two or less (bifunctional) phenolic hydroxyl groups in one molecule.
  • the curing agent is preferably a phenol novolac type, a triphenylmethane type, a xylylene type, a biphenylene type, or a naphthol/cresol type, which does not contain a bifunctional or less component, and particularly preferably contains a bifunctional or less component.
  • phenol novolac type triphenylmethane type.
  • DL-92 (Meiwa Kasei Co., Ltd. product name, phenol novolac type H-4 excluding dimers) is MEH-7500 as phenol novolac type that does not contain bifunctional or lower components. (Product name of Meiwa Kasei Co., Ltd.) and the like.
  • DL-92 can be represented by the following chemical formula (F1). In the chemical formula (F1) below, n is a positive integer, for example, about 3 to 10.
  • a curing accelerator In the production of the porous body of the present invention, substances other than the epoxy compound and the curing agent may or may not be appropriately used. The method for producing the porous body of the present invention will be described later.
  • a curing accelerator can be used.
  • the curing accelerator is not particularly limited, and any known compound can be used. Examples thereof include tertiary amines such as triethylamine and tributylamine, 2-phenol-4-methylimidazole, 2-ethyl-4-methyl. Imidazoles such as imidazole and 2-phenol-4,5-dihydroxymethylimidazole can be preferably used.
  • the curing accelerator may be used alone or in combination of two or more.
  • the reaction temperature can be lowered to promote the copolymerization of the epoxy compound and the curing agent.
  • the curing accelerator is not particularly limited and known ones can be used, but imidazole and its derivatives, and salts with DBU, DBN and their organic acids as tertiary amines are preferable. If a part of imidazole and its derivative remains in the porous body of the present invention, it may become an inhibitory factor at the time of swelling or addition reaction under acidic conditions, for example. DBU and DBN are more preferable because such problems are less likely to occur.
  • the official names and chemical structural formulas of DBU and DBN are as follows.
  • porogen In the production of the porous body of the present invention, as the substance other than the epoxy compound and the curing agent, for example, porogen can be used.
  • porogen refers to an inert solvent or mixture of inert solvents as a pore-forming agent.
  • a porogen is present in a polymerization reaction that forms a porous polymer at a certain stage of polymerization, and by removing it from a reaction mixture at a predetermined stage, an epoxy resin having a three-dimensional network skeleton structure and communicating voids. A cured product porous body is obtained.
  • the porosity can, for example, dissolve the porous particle raw material and the curing agent, and cause reaction-induced phase separation after the porous particle raw material and the curing agent are polymerized. It is a possible solvent.
  • the porogen include cellosolves such as methyl cellosolve and ethyl cellosolve, esters such as ethylene glycol monomethyl ether acetate and propylene glycol monomethyl ether acetate, and glycols such as polyethylene glycol and polypropylene glycol.
  • polyethylene glycol having a molecular weight of about 200 to 20,000, methyl cellosolve, ethyl cellosolve, ethylene glycol monomethyl ether acetate and propylene glycol monomethyl ether acetate are preferable, and polyethylene glycol (PEG) having a molecular weight of about 200 to 20,000 and propylene glycol monomethyl are particularly preferable.
  • PEG polyethylene glycol
  • Ether acetate is preferred.
  • the porogen may be used alone or in combination of two or more.
  • the hydroxyl value becomes smaller than 100 (mgKOH / g)
  • the viscosity becomes high, and it becomes difficult to increase the pore size of the formed epoxy resin cured product porous body, or impart hydrophilicity to the epoxy resin cured product porous body. The effect may be reduced.
  • the porogen is not particularly limited, but for example, it is preferable to use PEG having a molecular weight of about 200 and PEG having a larger molecular weight in combination. In particular, it is preferable to use PEG having a molecular weight of about 200 and about 10,000 in combination.
  • the method for producing a porous body of the present invention is, as described above, a dispersion liquid preparation step of preparing a dispersion liquid by dispersing a porous material containing an epoxy compound and a curing agent in a dispersion medium, and the porous material.
  • the hole may be, for example, a through hole as described above.
  • the porous body raw material is dispersed in a dispersion medium together with a dispersant.
  • the dispersant may be, for example, a surfactant.
  • the dispersant may be a block copolymer formed by containing a hydrophobic polymer block and a hydrophilic polymer block.
  • a block copolymer may be referred to as the “block copolymer of the present invention”.
  • the method for producing a porous body of the present invention further includes a dispersant production step of producing the dispersant (block copolymer of the present invention), and the dispersant production step is performed by living radical polymerization.
  • the other of the hydrophobic polymer block and the hydrophilic polymer block is subjected to living radical polymerization.
  • a porous body having through holes through which a porous structure communicates, having a substantially spherical outer shape, and having no skin layer can be produced.
  • this mechanism is unknown, it is presumed that, for example, the interface between the porous body raw material and the dispersion medium can be maintained in an appropriate state. Specifically, for example, by maintaining the interface in an appropriate state, it is possible to polymerize the porous body raw material without aggregating, and thus it is considered that the through hole can be formed.
  • the raw material for the porous body can be maintained in a state of being dispersed in the dispersion medium in the form of particles, it is considered that a substantially spherical porous body of the present invention can be produced.
  • the skin layer may be formed due to polymerization or the like. The skin layer tends to block the through-holes on the surface of the porous body.
  • the formation of the skin layer can be prevented by controlling the ratio of the hydrophilic substance and the hydrophobic substance at an appropriate level at the interface.
  • this mechanism is an example and does not limit the present invention.
  • the method for maintaining the interface between the porous material and the dispersion medium in an appropriate state is not particularly limited, and for example, the surfactant or a block copolymer (dispersant) which is a surfactant in a broad sense is used. There is a method. Further, in the surfactant or the block copolymer (dispersant) of the present invention, it is preferable to appropriately control the ratio of the hydrophobic portion to the hydrophilic portion as described later. Further, as a method of maintaining the interface between the porous material and the dispersion medium in an appropriate state, for example, a method of physically stirring the dispersion liquid and the like can be mentioned.
  • spinodal decomposition refers to a phenomenon in which a multi-component mixed system forms a co-continuous structure and phase separation (for example, a two-component mixed system separates two phases), or a state in which the two components are separated.
  • spinodal decomposition may refer to a process of two-phase separation that occurs when the binary mixture system is rapidly cooled from a high temperature to an unstable state, but in the present invention, it is not limited to the rapid cooling. That is, in the present invention, the method of causing the spinodal decomposition is not particularly limited, and any method may be used.
  • a porous material containing an epoxy compound and a curing agent is dispersed in a dispersion medium to prepare a dispersion liquid (dispersion liquid preparation step).
  • the epoxy compound is not particularly limited, and examples thereof include the above-mentioned epoxy compounds.
  • the epoxy compound is a raw material for a material for forming a porous body (for example, an epoxy resin) to be produced.
  • the epoxy compound for example, at least one of an epoxy monomer and an epoxy prepolymer corresponding to the material for forming the porous body can be used.
  • the epoxy monomers and epoxy prepolymers may be used alone or in combination of two or more.
  • Examples of the epoxy monomer and the epoxy prepolymer include, as described above, the trade name “Tetrad-C” of Mitsubishi Gas Chemical Co., Inc., the trade name of “TEPIC” of Nissan Chemical Co., Ltd., and the trade name of Mitsubishi Chemical Co., Ltd. “Epicote 828” and the like can be mentioned.
  • the above-mentioned epoxy monomer and epoxy prepolymer may be, for example, a compound containing a polyfunctional epoxy group.
  • the epoxy resin may be, for example, a polymer obtained by polymerizing the epoxy monomer and the epoxy prepolymer with a curing agent.
  • the curing agent may be, for example, a polyfunctional amino group-containing compound. That is, the epoxy resin may be, for example, a polymer of a polyfunctional epoxy group-containing compound and a polyfunctional amino group-containing compound.
  • the epoxy monomer and the epoxy prepolymer may be used alone or in combination of two or more kinds, and the curing agent may be used in one kind or in combination of plural kinds.
  • the polyfunctional epoxy group-containing compound is an epoxy compound having two or more epoxy groups in one molecule, and preferably has three or more, for example, three or four epoxy groups in one molecule.
  • the polyfunctional epoxy group-containing compound may be, for example, an aromatic epoxy compound or a non-aromatic epoxy compound.
  • the polyfunctional epoxy group-containing compound may be, for example, a high molecular compound (for example, an oligomer or a prepolymer) or a low molecular compound (for example, a monomer).
  • aromatic epoxy compounds examples include bisphenol A type epoxy compounds, brominated bisphenol A type epoxy compounds, bisphenol F type epoxy compounds, bisphenol AD type epoxy compounds, stilbene type epoxy compounds, biphenyl type epoxy compounds, bisphenol A novolac type compounds.
  • the aromatic epoxy compound is, for example, bisphenol A type epoxy compound, brominated bisphenol A type epoxy compound, bisphenol F type epoxy compound, bisphenol AD type epoxy compound, fluorene-containing epoxy compound, triglycidyl isocyanurate, and particularly preferably.
  • a bisphenol A type epoxy compound, a brominated bisphenol A type epoxy compound, a bisphenol F type epoxy compound, a bisphenol AD type epoxy compound, a fluorene-containing epoxy compound, etc. which has an epoxy equivalent of 500 or less and a melting point of 100° C. or less, Is also good.
  • the aromatic epoxy compound is, for example, N,N,N′,N′-tetraglycidyl-m-xylylenediamine (a compound in which the cyclohexane ring of the chemical formula (1) described later is replaced with a benzene ring). May be.
  • non-aromatic epoxy compound examples include an aliphatic glycidyl ether type epoxy compound, an aliphatic glycidyl ester type epoxy compound, an alicyclic glycidyl ether type epoxy compound, and an alicyclic glycidyl ester type epoxy compound.
  • Preferred examples thereof include alicyclic glycidyl ether type epoxy compounds and alicyclic glycidyl ester type epoxy compounds.
  • it is an alicyclic glycidyl ether type epoxy compound having an epoxy equivalent of 500 or less and a melting point of 100 ° C. or less, or an alicyclic glycidyl ester type epoxy compound.
  • non-aromatic epoxy compound an alicyclic epoxy compound having 3 or more epoxy groups, for example, 3 to 4 epoxy groups in one molecule is preferable for the above-mentioned reason.
  • the alicyclic epoxy compound having 3 or more epoxy groups in one molecule is not particularly limited, and a compound having an alicyclic hydrocarbon group and 3 or more epoxy groups can be appropriately used. Further, from the viewpoint of further increasing the hydrophilicity, it is preferable that the alicyclic epoxy compound contains a nitrogen atom.
  • the compound containing a nitrogen atom in the alicyclic epoxy compound may be, for example, a compound represented by the following chemical formula (A). X- (NY 2 ) m (A)
  • X represents an alicyclic hydrocarbon group having 3 to 8 carbon atoms, which is directly bonded to the nitrogen atom in the formula or through a linear alkylene group having 1 to 5 carbon atoms.
  • Y may be the same or different, respectively, and is an epoxy group which is a hydrogen atom or is bonded directly to a nitrogen atom in the formula or via a linear alkylene group having 1 to 5 carbon atoms. is there.
  • m is 2, 3 or 4 (particularly preferably 2).
  • each “NY 2 ” may be the same or different.
  • X in the chemical formula (A) is directly bonded to the nitrogen atom in the formula or through a linear alkylene group having 1 to 5 carbon atoms (more preferably 1 to 3 and even more preferably 1).
  • the linear alkylene group which may be present between the nitrogen atom and the alicyclic hydrocarbon group is, for example, a methylene group, an ethylene group, a propylene group or the like.
  • the number of carbon atoms of the linear alkylene group preferably does not exceed the upper limit from the viewpoint of preventing the mechanical strength of the porous body from decreasing.
  • Examples of such X include groups represented by the following formulas (I) to (VI).
  • Y in the chemical formula (A) is directly connected to the nitrogen atom in the formula or via a linear alkylene group having 1 to 5 carbon atoms (more preferably 1 to 3 and even more preferably 1). It is an epoxy group to be bonded.
  • the linear alkylene group is not particularly limited, but is the same as the linear alkylene group described with reference to X, for example.
  • m in the chemical formula (A) is, for example, 2, 3 or 4, as described above. From the viewpoint that the crosslinking reaction is not insufficient, m is preferably 2 or more, and from the viewpoint that the reactivity is not lowered due to steric hindrance, m is preferably 4 or less.
  • Y may be the same or different as described above, and each is a hydrogen atom, or is directly a nitrogen atom in the formula. Alternatively, it is an epoxy group bonded through a linear alkylene group having 1 to 5 carbon atoms. In each "NY 2 ", it is preferred that at least one (preferably both) of Y is the epoxy group.
  • the number of epoxy groups in the chemical formula (A) is preferably not too small from the viewpoint that the crosslinking reaction is not insufficient, and is preferably not too large from the viewpoint that the reactivity is not lowered due to steric hindrance.
  • alicyclic epoxy compound having 3 or more epoxy groups in one molecule include compounds represented by the following chemical formula (1A) or (1).
  • non-aromatic epoxy compound examples include, for example, “triglycidyl isocyanurate” represented by the chemical formula (4) in Examples described below, that is, triglycidyl isocyanurate (2,2,2-tri-(2,3- It may be a compound having an isocyanul ring, such as epoxypropyl) -isocyanurate).
  • triglycidyl isocyanurate represented by the chemical formula (4) in Examples described below, that is, triglycidyl isocyanurate (2,2,2-tri-(2,3- It may be a compound having an isocyanul ring, such as epoxypropyl) -isocyanurate).
  • a compound having a nitrogen atom is preferable as the polyfunctional epoxy group-containing compound.
  • N,N,N',N'-tetraglycidyl-m-xylylenediamine is preferable from the viewpoints of compatibility and reactivity with the polyfunctional amino group-containing compound and strength of the obtained porous epoxy resin particles.
  • triglycidyl isocyanurate is preferable from the viewpoint of high hydrophilicity and versatility of the raw material.
  • These polyfunctional epoxy group-containing compounds may be used alone or in combination of two or more.
  • the polyfunctional epoxy group-containing compound that is a raw material of the porous body of the present invention may be, for example, an aromatic amino compound or a non-aromatic amino compound. ..
  • aromatic amino compound examples include aromatic amino compounds such as metaphenylenediamine, diaminodiphenylmethane, diaminodiphenylsulfone, benzyldimethylamine, and dimethylaminomethylbenzene, phthalic anhydride, trimellitic anhydride, pyromellitic anhydride, and the like.
  • aromatic acid anhydrides examples include aromatic acid anhydrides, phenol resins, phenol novolac resins, and amino compounds having a heteroaromatic ring such as a triazine ring.
  • An aromatic amino compound having two or more primary amino groups in the molecule is preferable, and metaphenylenediamine, diaminodiphenylmethane, and diaminodiphenylsulfone are particularly preferable.
  • non-aromatic amino compound examples include ethylenediamine, diethylenetriamine, triethylenetetramine, tetraethylenepentamine, iminobispropylamine, bis(hexamethylene)triamine, 1,3,6-trisaminomethylhexane and polymethylenediamine.
  • Aliphatic amino compounds such as trimethylhexamethylenediamine, polyetherdiamine, isophoronediamine, menthanediamine, N-aminoethylpiperazine, 3,9-bis(3-aminopropyl)2,4,8,10-tetraoxaspiro (5,5)
  • alicyclic amino compounds such as undecane adduct, bis (4-amino-3-methylcyclohexyl) methane, bis (4-aminocyclohexyl) methane and modified products thereof, and other polyamino compounds and dimer acids. Examples thereof include aliphatic polyamide amino compounds.
  • alicyclic amino compounds having two or more primary amino groups in the molecule are preferable from the viewpoint of achieving efficient crosslinking reaction, and isophoronediamine, menthanediamine, bis(4-amino-3-) are preferred. More preferably, it is at least one selected from the group consisting of methylcyclohexyl)methane, bis(4-aminocyclohexyl)methane, and modified products thereof, and among them, bis(4-amino-3-methylcyclohexyl) ) Methane and bis(4-aminocyclohexyl)methane represented by the chemical formula (2) in Examples described later are particularly preferable.
  • modified amines include various modified products such as epoxy-modified products, carboxylic acid-modified products, urea-modified products, modified products with ketone compounds, and modified products with silane compounds.
  • modified products such as epoxy-modified products, carboxylic acid-modified products, urea-modified products, modified products with ketone compounds, and modified products with silane compounds.
  • a cyclic amino compound modified by a known method can be appropriately used.
  • polyfunctional amino group-containing compounds may be used alone or in combination of two or more.
  • the porous body raw material may contain at least one of a monomer and a prepolymer other than the epoxy compound, for example.
  • monomers or prepolymers other than epoxy monomers and epoxy prepolymers include aromatic monovinyl compounds such as styrene-based monomers such as styrene, ethylstyrene, methylstyrene, hydroxystyrene, chlorostyrene; (meth) acrylic.
  • the porous body of the present invention is obtained, for example, by (co)polymerizing one or more of the above-mentioned porous body raw materials and then using epichlorohydrin or (poly)alkyleneglycoldiene with respect to the obtained (co)polymer.
  • Porous cross-linked particles by introducing a cross-linking structure using a cross-linking agent such as glycidyl ether and alkylene diisocyanate, aromatic polyvinyl compounds such as divinylbenzene and trivinylbenzene, (poly)ethylene glycol di(meth) Poly (meth) acrylic acid esters such as acrylic acid ester and glycerol di (meth) acrylic acid ester, polycarboxylic acid polyvinyl esters, polycarboxylic acid polyallyl esters, polyol polyvinyl ethers, polyol polyallyl ethers, butadiene , Methylenebisacrylamide, triallyl isocyanurate and other polyvinyl compounds (co) polymerized, or one or more of such polyvinyl compounds and the above-mentioned monovinyl monomer. It may be porous crosslinked particles obtained by copolymerizing one kind or two or more kinds. From the viewpoint of industrial productivity, a copolymer of one
  • the dispersion medium is not particularly limited, and examples thereof include an organic solvent and water, which may be used alone or in combination of two or more kinds.
  • the organic solvent include hydrocarbon solvents such as hexane, octane, decane, dodecane, isodecane, cyclohexane, methylcyclohexane, toluene, xylene, ethylbenzene and cumene; methanol, ethanol, propanol, isopropanol, butanol, isobutanol, Alcoholic solvents such as hexanol, benzyl alcohol, cyclohexanol; ethylene glycol, diethylene glycol, propylene glycol, dipropylene glycol, methyl cellosolve, ethyl cellosolve, butyl cellosolve, propylene glycol monomethyl ether, propylene glycol monoethyl ether, propylene glycol propyl
  • Glycol solvents such as triglyme, dipropylene glycol dimethyl ether, butyl carbitol, butyl triethylene glycol, methyl dipropylene glycol, methyl cellosolve acetate, propylene glycol monomethyl ether acetate, dipropylene glycol butyl ether acetate, diethylene glycol monobutyl ether acetate; diethyl ether , Ether solvents such as dipropyl ether, methyl cyclopropyl ether, tetrahydrofuran, dioxane and anisole; ketone solvents such as methyl ethyl ketone, diethyl ketone, methyl isobutyl ketone, cyclohexanone, isophorone and acetophenone; methyl acetate, ethyl acetate, butyl acetate, Ester solvents such as propyl acetate, methyl butyrate, ethyl but
  • the concentration of the porous body raw material in the dispersion is not particularly limited, but is, for example, 0.01 to 10,000 g/L, 1 to 5,000 g/L, or 5 to 3, with respect to the dispersion medium. It is 000 g / L.
  • the porous body raw material may be dispersed in a dispersion medium together with a dispersant.
  • concentration of the dispersant is not particularly limited, but is, for example, 1 to 500 g / L, 2 to 300 g / L, or 3 to 250 g / L with respect to the dispersion medium.
  • the dispersant may be, for example, a surfactant.
  • the surfactant is not particularly limited, and examples thereof include anionic surfactants, cationic surfactants, nonionic surfactants, block copolymers composed of hydrophilic blocks and hydrophobic blocks, such as polyacrylic acid blocks and polyacrylic esters. Examples thereof include a block copolymer composed of blocks, a block copolymer composed of a polyoxyethylene block and a polyacrylic ester block, a block copolymer composed of a polyoxyethylene block and a polyoxypropylene block, and the like.
  • anionic surfactants include fatty acid salts, sulfuric acid ester salts of higher alcohols, phosphoric acid ester salts of fatty alcohols, alkylallyl sulfonates, and formalin condensed naphthalene sulfonates.
  • examples of the cationic surfactant include alkyl primary amine salts, alkyl secondary amine salts, alkyl tertiary amine salts, alkyl quaternary ammonium salts, pyridinium salts and the like.
  • nonionic surfactants include polyoxyethylene alkyl ethers, polyoxyethylene alkylphenyl ethers, polyoxyethylene alkyl esters, sorbitan alkyl esters, polyoxyethylene sorbitan alkyl esters, and the like.
  • examples of the polymer surfactant include partially saponified polyvinyl alcohol, starch, methyl cellulose, carboxymethyl cellulose, hydroxyethyl cellulose and partially saponified polymethacrylate.
  • the average particle size and particle size distribution of the obtained porous epoxy resin particles and the aggregated state of the particles can be controlled.
  • an anionic surfactant, a cationic surfactant, and a nonionic surfactant can be controlled.
  • the average particle size can be reduced and the particle size distribution can be narrowed.
  • the average particle size can be increased and the aggregation of particles can be suppressed.
  • a block copolymer composed of a hydrophilic block and a hydrophobic block when used as the surfactant, it can be emulsified with a small amount of addition, so that the viscosity of the solution during the polymerization reaction can be kept low, and stirring is easy. Is preferable.
  • surfactants may be used alone or in combination of two or more.
  • the dispersant may be a block copolymer formed by including a hydrophobic polymer block and a hydrophilic polymer block.
  • the method for producing a porous body of the present invention further includes a dispersant production step of producing the dispersant, and the dispersant production step comprises the hydrophobic polymer block and the hydrophilic group by living radical polymerization.
  • Living radical polymerization step for forming one of the hydrophobic polymer blocks, and a second living room for forming the other of the hydrophobic polymer block and the hydrophilic polymer block by living radical polymerization after the first living radical polymerization step. It may include a radical polymerization step.
  • the block copolymer (dispersant) and the dispersant manufacturing process will be described in [2-2. Block copolymer (dispersant) and dispersant production process].
  • the dispersion liquid may contain components other than the porous material and the dispersant.
  • the other components are not particularly limited, and examples thereof include surfactants other than nonionic activators, antifoaming agents, and the like as long as they do not affect the original dispersion.
  • Block copolymer (dispersant) and dispersant manufacturing process [2-2. Block copolymer (dispersant) and dispersant manufacturing process]
  • the block copolymer (dispersant) and the dispersant production process will be described in detail.
  • the block copolymer is formed by containing a hydrophobic polymer block and a hydrophilic polymer block, it can be said to be a "surfactant" in a broad sense as described above.
  • the block copolymer and the dispersant manufacturing process may be, for example, the same as or according to the description in JP-A-2015-83688, or may be referred to. Specifically, for example, it is as follows.
  • the block copolymer is, for example, the hydrophobic polymer block (hereinafter, may be simply referred to as "hydrophobic block” or “hydrophobic block A” or “A block”)-the hydrophilic polymer block (hereinafter, simply “”. It may be a diblock copolymer composed of "hydrophilic block” or “hydrophilic block B” or “B block”).
  • the block copolymer is obtained by polymerizing an addition polymerizable monomer using, for example, an organic iodide as a polymerization initiation compound, an organic phosphorus compound, an organic nitrogen compound or an organic oxygen compound as a catalyst, and a radical generator. It may be.
  • the content of the A block (hydrophobic block) in the block copolymer molecule is, for example, 5 to 95% by mass, 10 to 90% by mass, 15 to 85% by mass, or 20 to 80% by mass.
  • the content of the B block (hydrophilic block) in the block copolymer molecule is, for example, 5 to 95% by mass, 10 to 90% by mass, 15 to 85% by mass, or 20 to 80% by mass. ..
  • the hydrophobic monomer which is a raw material of the A block (hydrophobic block) is, for example, a (meth) acrylate ((meth) acrylic acid ester) having a hydrophobic group, a vinyl compound having a hydrophobic group, and an allyl having a hydrophobic group. Compounds, etc. may be mentioned.
  • the hydrophilic monomer which is a raw material of the B block (hydrophilic block) is, for example, a (meth) acrylate having a hydrophilic group ((meth) acrylic acid ester), a vinyl compound having a hydrophilic group, an allyl compound having a hydrophilic group, and the like.
  • Etc the hydrophobic monomer may include lauryl (meth)acrylate, and the hydrophilic monomer may include polyethylene glycol methacrylate.
  • the dispersant (block copolymer) has a diblock structure formed by containing the hydrophobic polymer block A and the hydrophilic polymer block B (hereinafter, may be referred to as “AB diblock polymer”). )is there.
  • the dispersant (block copolymer) is dispersed in the dispersion medium together with the porous material (including at least one of a monomer and a prepolymer).
  • the porous body raw material has relatively high hydrophilicity with respect to the dispersion medium, for example, the hydrophilic polymer block B is adsorbed to the porous body raw material and the porous body raw material is aggregated to form particles.
  • the surface is coated with the hydrophobic polymer block A.
  • the hydrophobic polymer block A has a shape facing the hydrophobic dispersion medium.
  • the hydrophobic polymer block A is adsorbed to the porous body raw material, and the porous body raw material is aggregated.
  • the hydrophilic polymer block B covers the surfaces of the particles.
  • the hydrophilic polymer block B has a shape facing the hydrophilic dispersion medium. In this way, the porous body raw material can be in a state of being dispersed in the dispersion medium in the form of particles.
  • This state can also be said to be, for example, a state in which the porous material is emulsified (suspended) in the dispersion medium.
  • the dispersion stability and storage stability of the dispersion liquid before and after the polymerization can be improved.
  • the porous material (including at least one of a monomer and a prepolymer) is as described above.
  • the porous material is at least one of a radically polymerizable or thermosetting monomer and a prepolymer. May include.
  • the monomer and prepolymer may be, for example, a hydrophilic monomer and prepolymer.
  • an organic iodide is used as a polymerization initiation compound, an organic phosphorus compound, an organic nitrogen compound or an organic oxygen compound is used as a catalyst, and a radical generator is used.
  • It may be a production method for polymerizing an addition-polymerizable monomer (hydrophobic monomer and hydrophilic monomer).
  • Such a production method is described in, for example, Japanese Patent Application Laid-Open No. 2015-83688. According to this manufacturing method, there are no problems such as heavy metals, odor, coloring, and cost. Specifically, for example, there are the following advantages (1) to (6).
  • the method for producing the block copolymer (dispersant) is not particularly limited in the present invention. That is, the method for producing the block copolymer (dispersant) is not limited to the method described in JP-A-2005-83688, and any production method may be used.
  • the hydrophobic monomer forming the A block is not particularly limited, and for example, methyl (meth) acrylate, ethyl (meth) acrylate, propyl (meth) acrylate, isopropyl (meth) acrylate, butyl (meth) acrylate, 2 -Methyl propane (meth)acrylate, t-butyl (meth)acrylate, pentyl (meth)acrylate, hexyl (meth)acrylate, octyl (meth)acrylate, 2-ethylhexyl (meth)acrylate, nonyl (meth)acrylate, decyl ( (Meth)acrylate, isodecyl (meth)acrylate, lauryl (meth)acrylate, tetradecyl (meth)acrylate, octadecyl (meth)acrylate, behenyl (meth)acrylate, isostearyl (meth)acryl
  • (Meth)acrylate and further (poly)ethylene glycol monomethyl ether (meth)acrylate, (poly)ethylene glycol monooctyl ether (meth)acrylate, (poly)ethylene glycol monolauryl ether (meth)acrylate, (poly)ethylene glycol Monostearyl ether (meth)acrylate, (poly)ethylene glycol monooleyl ether (meth)acrylate, (poly)ethylene glycol monostearate (meth)acrylate, (poly)ethylene glycol monononylphenyl ether (meth)acrylate, ( (Poly)propylene glycol monomethyl ether (meth)acrylate, (poly)propylene glycol monoethyl ether (meth)acrylate, (poly)propylene glycol monooctyl ether (meth)acrylate, (poly)propylene glycol monolauryl ether (meth)acrylate, Examples include (polyalkylene)glycol monoal
  • block copolymer may be formed only from the hydrophobic polymer block A (A block) and the hydrophilic polymer block B (B block), but may include other components ( It may be (copolymerized).
  • the monomer that can be copolymerized within a range that does not change the basic properties of the A block and the B block include conventionally known monomers such as styrene, vinyltoluene, vinylhydroxybenzene, chloromethylstyrene, vinylnaphthalene, and vinyl.
  • Biphenyl vinylethylbenzene, vinyldimethylbenzene, ⁇ -methylstyrene, ethylene, propylene, isoprene, butene, butadiene, 1-hexene, cyclohexene, cyclodecene, dichloroethylene, chloroethylene, fluoroethylene, tetrafluoroethylene, acrylonitrile, methacrylonitrile, Vinyl-based monomers such as vinyl acetate, vinyl propionate, isocyanatodimethylmethaneisopropenylbenzene, phenylmaleimide, cyclohexylmaleimide, and hydroxymethylstyrene; 2-hydroxyethyl (meth)acrylate and 2-hydroxypropyl as hydroxyl group-containing monomers.
  • Acrylic ester polyester-based mono(meth)acrylic ester obtained by ring-opening polymerization of lactones such as ⁇ -caprolactone and ⁇ -butyrolactone; 2-(meth)acryloyloxyethyl-2-hydroxyethyl phthalate,
  • the above-mentioned (poly) alkylene glycol mono (meth) acrylic acid ester such as 2- (meth) acryloyloxyethyl-2-hydroxyethyl succinate is reacted with a dibasic acid to form a half ester, and then the other Ester-based (meth) acrylate in which alcohol and alkylene glycol are reacted with a carboxyl group; mono (meth) of a polyfunctional hydroxyl group having three or more hydroxyl groups such as glycerol mono (meth) acrylate and dimethylol propane mono (meth) acrylate.
  • the molecular weight of the block copolymer (dispersant) is not particularly limited, but is a styrene-equivalent number average molecular weight in gel permeation chromatography (hereinafter GPC) (hereinafter, the number average molecular weight is styrene equivalent of GPC, and is simply referred to as molecular weight).
  • GPC gel permeation chromatography
  • the molecular weight range is, for example, 1,000 to 300,000, preferably 1,500 to 100,000, more preferably 2,000 to 50,000, still more preferably 3,000 to 50,000.
  • the molecular weight of the block copolymer (dispersant) is preferably 1,000 or more. Further, from the viewpoint of the solubility of the block copolymer (dispersant) in the dispersion medium, the molecular weight of the block copolymer (dispersant) is preferably 300,000 or less. If the molecular weight of the block copolymer (dispersant) is too large, the dispersants in the dispersion medium may aggregate with each other and the entanglement between the molecules may become too strong, and the porous material may not be dispersed.
  • the degree of dispersion which is the ratio of the weight average molecular weight to the number average molecular weight, in the block copolymer (dispersant) is not particularly limited.
  • PDI degree of dispersion
  • living radical polymerization a very small PDI ( ⁇ 1.3) polymer dispersant can be used, but in the present invention, it is important that the block copolymer (dispersant) has the above-mentioned block structure. PDI is not significantly involved.
  • the block copolymer (dispersant) includes polymers having a large molecular weight to a polymer having a small molecular weight, which may cause a phenomenon other than the above-mentioned molecular weight range, which is not preferable.
  • the PDI of the block copolymer (dispersant) used in the present invention is preferably 2.0 or less, more preferably 1.8 or less.
  • the mass ratio of the hydrophobic block to the hydrophilic block in the block copolymer (dispersant) is not particularly limited, but is, for example, as described above.
  • the interface between the porous body raw material and the dispersion medium is maintained in an appropriate state. can do.
  • the porous body raw material can be maintained in a state of being dispersed in the dispersion medium in the form of particles, so that the porous body of the present invention having a substantially spherical shape can be produced.
  • the ratio of the hydrophilic substance and the hydrophobic substance is appropriately adjusted. It can be controlled to the state. For example, if one of the hydrophilic substance and the hydrophobic substance is unevenly distributed on the interface, the skin layer may be formed due to polymerization or the like. The skin layer tends to block the through-holes on the surface of the porous body. However, the formation of the skin layer can be prevented by controlling the ratio of the hydrophilic substance and the hydrophobic substance at an appropriate level at the interface.
  • these descriptions are merely examples and do not limit the present invention.
  • This polymerization method is not particularly limited, but for example, as described above, an addition-polymerizable monomer using an organic iodide as a polymerization initiation compound, an organic phosphorus compound, an organic nitrogen compound or an organic oxygen compound as a catalyst, and a radical generator.
  • a method of polymerizing hydrophobic monomer and hydrophilic monomer may be used.
  • This polymerization method does not use a metal compound or a ligand, and does not need to use a special compound such as nitroxide, dithiocarboxylic acid ester or xanthate, and a polymerization initiator which is a conventional addition polymerizable monomer and a radical generator. It is a living radical polymerization which can be easily carried out by simply using a starting compound, which is an organic iodide, and a catalyst together with the radical polymerization using
  • the above polymerization method proceeds by the reaction mechanism represented by the following general reaction formula 1, and is considered to be a reversible active reaction of the Dormant species Polymer-X (PX) to the growth radical.
  • PX Dormant species Polymer-X
  • this polymerization mechanism may change depending on the type of catalyst, it is thought to proceed as follows.
  • P ⁇ generated from the polymerization initiator reacts with XA to generate catalyst A ⁇ in site.
  • A. acts as an activator of PX, and this catalytic action activates PX with high frequency.
  • the radical generated from the polymerization initiator abstracts the active hydrogen or active halogen atom of the catalyst to become the catalytic radical A.
  • the A. abstracts X of the starting compound and becomes XA
  • the starting compound becomes a radical
  • the monomer is polymerized to the radical
  • immediately X is abstracted from XA to prevent the termination reaction.
  • A. pulls X out of the terminal X becomes XA and a terminal radical, and the monomer reacts there to immediately give X to the terminal radical to stabilize it.
  • the polymerization proceeds and the molecular weight and structure can be controlled.
  • a bimolecular termination reaction or disproportionation may occur as a side reaction.
  • the starting compound that initiates the living radical polymerization is a conventionally known organic iodide and is not particularly limited. Specific examples include methyl iodide, ethyl iodide, propyl iodide, isopropyl iodide, butyl iodide, t-butyl iodide; iodophenylmethane, iododiphenylmethane, iodotriphenylmethane, 2-iodo.
  • Alkyl iodides such as 1-phenylethane, 1-iodo-1-phenylethane, 1-iodo-1,1-diphenylethane and diiodomethane; iododichloromethane, iodochloromethane, iodotrichloromethane, iododibromomethane
  • Organic halides containing iodine atom such as 1-iodoethanol, 1-iodopropanol, 2-iodopropanol, 2-iodo-2-propanol, 2-iodo-2-methylpropanol, 2-phenyl-1 -Iodo alcohols such as iodoethanol and 2-phenyl-2-iodoethanol; ester compounds of these iodide alcohols with carboxylic acid compounds such as acetic acid, butyric acid and fumaric acid; iodoacetic acid, ⁇ -iodopro
  • a bifunctional starting compound having two iodines can be used, and examples thereof include 1,2-diaiodoethane, 1,2-diaiodotetrafluoroethane, 1,2-diaiodotetrachloroethane, and 1,2-diaiodo-1-.
  • examples thereof include a reaction product of phenylethane, an iodocarboxylic acid such as ⁇ -iodoisobutyric acid described above, a diol such as ethylene glycol, and a diamine such as hexamethylenediamine.
  • iodine is synonymous with “iodine” and represents iodide. The same applies below.
  • the starting compound may be used alone or in combination of two or more.
  • these compounds for example, commercially available products may be used as they are, or they can be obtained by a conventionally known method.
  • an organic halide obtained by reacting an azo compound such as azobisisobutyronitrile with iodine, or in which the above-mentioned iodine of the organic iodide is replaced with another halogen atom such as bromide or chloride is used.
  • An organic iodide used in the present invention can be obtained by halogen exchange reaction using an iodide salt such as quaternary ammonium iodide or sodium iodide. They are not particularly limited.
  • the catalyst is, for example, an organic phosphorus compound, an organic nitrogen compound, or an organic oxygen compound, which is a radical that abstracts an iodine atom of the starting compound, and is preferably a phosphorus halide containing an iodine atom, or a phosphite compound.
  • phosphorus compounds are halogenated phosphorus containing an iodine atom, phosphite compounds, phosphinate compounds, for example, dichloroiodrine, dibromoiodrine, Phosphorus triiodide, dimethyl phosphite, diethyl phosphite, dibutyl phosphite, diperfluoroethyl phosphinate, diphenyl phosphite, dibenzyl phosphite, bis(2-ethylhexyl) phosphite, bis(2,2,2 -Trifluoroethyl) phosphite, diallyl phosphite, ethylene phosphite, ethoxyphenyl phosphinate, phenylphenoxy phosphinate, ethoxymethyl phosphinate, phenoxymethyl phosphinate and the like.
  • Nitrogen compounds include imide compounds and hydantoin compounds, such as succinimide, 2,2-dimethylsuccinimide, ⁇ , ⁇ -dimethyl- ⁇ -methylsuccinimide, 3-ethyl-3-methyl-2,5-pyrrolidinedione, Cis-1,2,3,6-tetrahydrophthalimide, ⁇ -methyl- ⁇ -propylsuccinimide, 5-methylhexahydroisoindole-1,3-dione, 2-phenylsuccinimide, ⁇ -methyl- ⁇ -phenylsuccinimide, 2,3-diacetoxysuccinimide, maleimide, phthalimide, 4-methylphthalimide, N-chlorophthalimide, N-bromophthalimide, N-bromophthalimide, 4-nitrophthalimide, 2,3-naphthalenecarboximide, pyromellitic diimide, 5 -Bromoisoindole-1,3-dione
  • a phenolic compound which is a phenolic hydroxyl group having a hydroxyl group in an aromatic ring an iodooxyphenyl compound which is an iodide of the phenolic hydroxyl group, and vitamins, for example, phenol as a phenol, hydroquinone, methoxy.
  • Examples of the iodooxyphenyl compound include thymol diiodide, and examples of the vitamins include vitamin C and vitamin E.
  • the amount of the catalyst is not particularly limited, but is, for example, less than the number of moles of the polymerization initiator. If the number of moles of the catalyst is too large, the polymerization may be controlled too much and the polymerization may not proceed.
  • the polymerization initiator used in the present invention is not particularly limited, but conventionally known polymerization initiators such as organic peroxides and azo compounds that are usually used can be used. Specific examples include benzoyl peroxide, dicumyl peroxide, diisopropyl peroxide, di-t-butyl peroxide, t-butylperoxybenzoate, t-hexylperoxybenzoate, t-butylperoxy-2-ethylhexa.
  • the amount of the polymerization initiator used is not particularly limited, but is, for example, 0.001 to 0.1 mol times, more preferably 0.002 to 0.05 mol times, the number of moles of the monomer. If the amount of the polymerization initiator used is too small, the polymerization may be insufficient, and if it is too large, a polymer containing only the addition polymerization monomer may be formed.
  • the block copolymer (dispersant) used in the present invention can be obtained by polymerizing using at least an initiator compound, an addition-polymerizable monomer, a polymerization initiator and a catalyst which are organic iodides.
  • the polymerization may be performed in bulk without using an organic solvent, but solution polymerization using a solvent is preferable.
  • the organic solvent used is not particularly limited, and any solvent may be used as long as it dissolves the organic iodide, catalyst, addition-polymerizable monomer and polymerization initiator used in the present invention.
  • organic solvent examples include hydrocarbon solvents such as hexane, octane, decane, isodecane, cyclohexane, methylcyclohexane, toluene, xylene, ethylbenzene and cumene; methanol, ethanol, propanol, isopropanol, butanol, isobutanol, hexanol, benzyl.
  • hydrocarbon solvents such as hexane, octane, decane, isodecane, cyclohexane, methylcyclohexane, toluene, xylene, ethylbenzene and cumene
  • methanol, ethanol, propanol isopropanol, butanol, isobutanol, hexanol, benzyl.
  • Alcohol-based solvents such as alcohol and cyclohexanol; ethylene glycol, diethylene glycol, propylene glycol, dipropylene glycol, methyl cellosolve, ethyl cellosolve, butyl cellosolve, propylene glycol monomethyl ether, propylene glycol monoethyl ether, propylene glycol propyl ether, diglyme, triglyme, Dipropylene glycol dimethyl ether, butyl carbitol, butyl triethylene glycol, methyl dipropylene glycol, methyl cellosolve acetate, propylene glycol monomethyl ether acetate, dipropylene glycol butyl ether acetate, diethylene glycol monobutyl ether acetate and other glycol solvents; diethyl ether, dipropyl Ether-based solvents such as ether, methyl cyclopropyl ether, tetrahydrofuran, dioxane, and ani
  • the monomer concentration is not particularly limited, but is, for example, 5 to 80% by mass, preferably 20 to 60% by mass. From the viewpoint of smoothly completing the polymerization, it is preferable that the monomer concentration is not too low. Further, from the viewpoint of preventing the viscosity of the polymerization liquid from becoming too high, which makes stirring difficult and the polymerization rate to deteriorate, it is preferable that the monomer concentration is not too high.
  • the polymerization temperature is not particularly limited and is 0°C to 150°C, more preferably 30°C to 120°C.
  • the polymerization temperature is adjusted by the half-life of each polymerization initiator.
  • the polymerization time is preferably continued until the monomer is exhausted, but is not particularly limited, and is, for example, 0.5 hour to 48 hours, preferably 1 hour to 24 hours as a practical time, and more preferably 2 hours. Hours to 12 hours.
  • the atmosphere of the polymerization reaction is not particularly limited, and for example, the polymerization may be carried out as it is in the atmosphere, that is, oxygen may be present in the system within a normal range, and oxygen may be removed if necessary. Therefore, it may be carried out under a stream of nitrogen or argon.
  • the materials used may be distilled, activated carbon or alumina to remove impurities, but commercially available products can be used as they are. Further, the polymerization may be carried out under light shielding or in a transparent container such as glass without any problem.
  • the operation and mechanism of the production method (polymerization method) of the block copolymer (dispersant) are as follows, for example.
  • a monofunctional organic iodide as an initiating compound
  • an addition-polymerizable monomer having at least an acid group is polymerized by the above method to obtain one polymer block (referred to as A block). Since the polymer terminal is substituted with an iodine group, it is stabilized, and the monomer can be added again and dissociated by heat or the like, or a small amount of radical initiator is added to restart the polymerization.
  • the A block is taken out, purified, dissolved again in an organic solvent, and the following monomer is added as the starting compound, preferably a catalyst and a polymerization initiator are added for polymerization, thereby polymer-terminated iodine. Is dissociated and polymerization is started again, and a diblock polymer in which the B block is linked to the A block can be obtained. Further, after forming the A block, the block copolymer (dispersant) can be obtained by adding the B block monomer as it is without taking out the polymer, and preferably adding a catalyst and a polymerization initiator to carry out the polymerization.
  • the formation of the above blocks is reversed, and the B block monomer, which is a hydrophilic polymer, is first polymerized, and then the monomer containing at least a monomer having a hydrophobic group is polymerized to form the AB diblock.
  • a polymer (the block copolymer) may be obtained.
  • the polymerization method used in the present invention may be accompanied by a side reaction of bimolecular termination or disproportionation, and may not reach the above theoretical molecular weight. Polymers free of these side reactions are preferable, but they may be coupled to increase the molecular weight or may be terminated to decrease the molecular weight. Further, the polymerization rate does not have to be 100%, and the remaining monomers are distilled off, removed when the block polymer is precipitated, or a desired block polymer is obtained, and then a polymerization initiator or a catalyst is added. The polymerization may be completed. It suffices that the diblock polymer used in the present invention is produced and contained, and there is no problem even if each block polymer unit is contained.
  • the block copolymer (dispersant) containing 50% by mass or more, more preferably 80% by mass or more of the block polymer of the present invention may be preferable.
  • the PDI is widened by accompanying the above-mentioned side reaction, but the PDI is not particularly limited, and is preferably 2.0 or less, more preferably 1.8 or less.
  • the diblock polymer which is the block copolymer (dispersant) used in the present invention is polymerized by using an organic iodide as an initiator compound and at least using an addition polymerizable monomer, a polymerization initiator and a catalyst. Can be obtained.
  • this production method polymerization method
  • the block copolymer (dispersant) used in the present invention may be produced by any method.
  • the method for producing a porous body of the present invention can be carried out, for example, as follows.
  • the manufacturing method using the said porous body raw material which mainly contains at least one of a thermosetting monomer and a prepolymer is demonstrated.
  • the porous body raw material containing at least one of an epoxy monomer and an epoxy prepolymer will be described.
  • the porous material is not limited to the following examples and is arbitrary.
  • a porous material containing at least one of a monomer and a prepolymer is dispersed in a dispersion medium to which the block copolymer (dispersant) is added in advance to prepare a dispersion (dispersion preparation step).
  • the porous material is as described above.
  • the dispersion liquid preparation step includes, for example, a thermosetting composition containing at least a solvent that becomes a pologene, and a hydrophobic organic solvent (dispersion medium) to which the block copolymer (dispersant) has been added in advance. To disperse the thermosetting composition in the form of particles in a hydrophobic organic solvent.
  • the thermosetting composition is, for example, an epoxy resin raw material composition containing an epoxy resin raw material (at least one of an epoxy monomer and an epoxy prepolymer), a curing agent, and a pologene. Then, after that, for example, the dispersion is heated to perform the polymerization step. In this polymerization step, a porous body made of epoxy resin is obtained by polymerization (curing). Then, if necessary, the porogen, the solvent, the unreacted material, and the like are removed from the porous body (particulate cured material).
  • the epoxy monomer and epoxy prepolymer used as raw materials are as described above, but among them, the epoxy monomer and epoxy prepolymer having an epoxy equivalent of 600 or less and being soluble in porogen are particularly preferable.
  • the curing agent used in the method for producing a porous body of the present invention is not particularly limited, and examples thereof include amines, polyamide amines, acid anhydrides, and phenols, as described above.
  • the polyfunctional amino group-containing compound is, for example, as described above. More specifically, metaphenylenediamine, diaminodiphenylmethane, diaminodiphenylsulfone, bis(4-amino-3-methylcyclohexyl)methane, bis(4-aminocyclohexyl)methane, aliphatic polyamidoamine composed of polyamines and dimer acid And so on.
  • a curing accelerator can also be used.
  • the curing accelerator is not particularly limited and may be any known compound as described above. Examples thereof include tertiary amines such as triethylamine and tributylamine, 2-phenol-4-methylimidazole, 2- Imidazoles such as ethyl-4-methylimidazole and 2-phenol-4,5-dihydroxymethylimidazole, and strong bases such as DBU and DBN can be preferably used.
  • thermosetting composition contains, for example, an epoxy compound (for example, at least one of an epoxy monomer and an epoxy prepolymer) and a curing agent, and additionally, a curing accelerator, a porogen, and the like. May be included.
  • the thermosetting composition (porous material) can be prepared, for example, by mixing the epoxy compound and the curing agent with the curing accelerator and the porogen to homogenize them.
  • the content ratio of the epoxy resin raw material (for example, a polyfunctional epoxy group-containing compound) and the curing agent (for example, a polyfunctional phenol resin) in the thermosetting composition is, for example, cured with respect to 1 equivalent of the epoxy group in the epoxy resin raw material. It is preferable to prepare such that the functional group (eg, phenolic hydroxyl group) in the agent is 1.1 to 4 equivalents, particularly 1.5 to 3 equivalents.
  • the equivalent ratio of the epoxy resin raw material is not less than the above lower limit, the crosslinking density of the obtained porous epoxy resin can be increased, and mechanical strength, heat resistance, solvent resistance, etc. tend to be improved, while When it is at most the above upper limit, the unreacted curing agent can be reduced, the curing agent can be prevented from remaining unreacted in the porous epoxy resin, and the crosslinking density tends to be increased.
  • the content ratio of the solvent that becomes porosity in the thermosetting composition affects, for example, the pore diameter, pore distribution, etc. of the obtained porous epoxy resin particles, and when the porosity content ratio is large, the pore diameter becomes If it is large or small, the pore diameter tends to be small. Further, when the content ratio of porogen is high, the pore distribution tends to be broad, and when it is low, the pore distribution tends to be sharp.
  • the content ratio of the porogen solvent in the thermosetting composition is usually 50 to 500% by weight based on the total of the polyfunctional epoxy group-containing compound and the polyfunctional amino group-containing compound contained in the thermosetting composition. It is preferably present, and more preferably 100 to 400% by weight. It is possible to form a porous structure having a higher porosity when the content ratio of the porogen is equal to or higher than the lower limit, while, on the other hand, when the content ratio of the porogen is equal to or lower than the upper limit, the porosity of the obtained porous epoxy resin is set in an appropriate range. It can be suppressed and the mechanical strength tends to be improved.
  • a curing accelerator may be added to the thermosetting composition.
  • the curing accelerator is not particularly limited, but is, for example, as described above.
  • a reaction raw material compound other than the epoxy resin raw material and the curing agent may be mixed and used in the thermosetting composition.
  • the reaction raw material compound that can be subjected to the addition polymerization reaction together with the epoxy resin raw material and the curing agent may be, for example, any compound that can be subjected to addition polymerization together with the epoxy resin raw material and the curing agent, and is not particularly limited.
  • One or more of the monomers and prepolymers exemplified as the raw materials for the polymers other than the epoxy resin described above can be mentioned. However, in order to effectively obtain the original impact resistance, chemical resistance, durability, handleability, productivity and other features of the porous epoxy resin, all the reaction raw material compounds other than the epoxy resin raw material and the curing agent are used.
  • thermosetting composition may be mixed with a non-reacting raw material compound other than the epoxy resin raw material and the curing agent.
  • a non-reacting raw material compound other than the epoxy resin raw material and the curing agent.
  • the method for preparing the thermosetting composition is not particularly limited, and a method of mixing the polyfunctional epoxy group-containing compound, the polyfunctional amino group-containing compound and the porogen at room temperature or while heating may be adopted.
  • a method may be adopted in which a mixture of a polyfunctional epoxy group-containing compound and a polyfunctional amino group-containing compound is added to Porogen to be mixed or dissolved while being heated or heated.
  • the porous body raw material (thermosetting composition) can be dispersed in a particulate form by applying sufficient shearing force and stirring.
  • an appropriate method can be taken in consideration of the size and particle size distribution of the particles.
  • the method for dispersing the porous material (thermosetting composition) may be a method that can provide a sufficient shearing force. More specifically, for example, not only a device having stirring blades of various shapes such as a propeller type, a paddle type, a turbine type, and a screw type, but also a rotating / revolving mixer and a test tube bottom swirling at high speed to provide a liquid content.
  • a known method such as a "vortex mixer" for stirring the mixture, ultrasonic stirring, and a membrane emulsification method can be used. It is preferable to select a method in which the particle size is as constant as possible.
  • the thermosetting composition and the hydrophobic organic solvent (dispersion medium) to which the block copolymer (dispersant) is added in advance are mixed and thermoset.
  • the sex composition may be dispersed in the form of particles in a hydrophobic organic solvent.
  • the concentration of the block copolymer (dispersant) in the hydrophobic organic solvent (dispersion medium) to which the block copolymer (dispersant) is added in advance is not particularly limited, but is, for example, 1 to 500 g / L as described above. It is 2 to 300 g/L, or 3 to 250 g/L.
  • the block copolymer concentration is at least the above lower limit
  • the particle size can be easily controlled and aggregation during polymerization can be suppressed, and when it is at least the above upper limit, bubbles are generated and the viscosity is increased during polymerization. It can be suppressed and manufacturing becomes easy.
  • the next polymerization step can be carried out in a state where a water-in-oil emulsion in which the thermosetting composition is dispersed in the form of particles in a hydrophobic organic solvent is formed.
  • the amount of the dispersant (for example, the block copolymer or the surfactant) used in the polymerization step of polymerizing the porous material in the dispersion is not particularly limited, but the epoxy resin raw material and the curing agent are not particularly limited. , And, for example, about 1 to 20% by weight, or 2 to 10% by weight, based on the total amount of porogen.
  • the amount of the dispersant used affects, for example, the average particle size and particle size distribution of the obtained porous body, and the aggregation of particles. When the amount of the dispersant used is large, the average particle size, particle size distribution and particle aggregation can be controlled, and when the amount is small, foaming and viscosity tend to be kept low.
  • the raw material mixed liquid can be uniformly emulsified, and the particle size distribution can be set in a narrow range, or aggregation of particles can be suppressed. Further, when it is not more than the above upper limit, foaming and an increase in viscosity can be suppressed, and production becomes easy.
  • the reaction temperature is not particularly limited and can be set as appropriate.
  • the reaction temperature is basically determined by the combination of the epoxy resin and the curing agent, and also varies depending on the stirring speed, the porogen, the amount of the surfactant used, etc., but for example, 20 to 250 ° C., 40 to 220 ° C. Alternatively, it is 50 to 200°C.
  • the heating temperature affects, for example, the pore size of the obtained porous body. When the heating temperature is high, the pore diameter of the obtained porous body tends to be small, and when the heating temperature is low, the pore diameter of the obtained porous body tends to be large.
  • the heating temperature is moderately high, the addition polymerization reaction proceeds smoothly, and when the heating temperature is moderately low, the reaction rate is prevented from becoming too fast, and the porous structure can be formed well.
  • the reaction time is not particularly limited and can be set as appropriate.
  • the reaction time varies depending on the stirring speed, heating temperature, porogen, amount of surfactant used, and the like, but is, for example, 0.01 to 100 hr, 0.05 to 24 hr, or 0.1 to 20 hr.
  • the reaction time affects, for example, the reaction rate of the obtained porous material.
  • the reaction time is long, the reaction rate is high and there are few unreacted substances, so the mechanical strength tends to be high.
  • the reaction time is short, the reaction rate is low and there are many unreacted substances, so the mechanical strength tends to be low.
  • the reaction time is moderately long, the addition polymerization reaction proceeds sufficiently to form a desired porous structure, and when the reaction time is moderately short, the possibility of crushing by stirring can be reduced.
  • the stirring speed is not particularly limited, and varies depending on the heating temperature, reaction scale, porogen, amount of surfactant used, etc., but for example, 10 to 20,000 rpm, 30 to 10,000 rpm, 50 to 5,000 rpm, 50 to 800 rpm, or 100-400 rpm. In addition, "rpm" represents the number of revolutions per minute.
  • the stirring speed affects, for example, the particle diameter of the obtained porous body. Generally, when the stirring speed is high, the particle size of the obtained porous body tends to be small, and when the stirring speed is low, the particle size of the obtained porous body tends to be large. When the stirring speed is moderately high, phase separation and the like are suppressed, and a product having a uniform particle size can be obtained. When the stirring speed is moderately low, the particle size is not too small and foaming can be suppressed.
  • porogen, solvent, unreacted material, etc. are removed from the porous body (particulate cured product), if necessary.
  • the dispersion medium containing the porous fine particles is diluted with a large amount of cleaning solvent, and the precipitated particles are separated by a centrifuge repeatedly to sufficiently wash the particles, and then the cleaning is performed with a vacuum dryer.
  • the cleaning solvent is preferably a solvent having high solubility in the dispersion medium and porogen, and preferably a solvent having a low boiling point and easy to remove.
  • Specific examples of the washing solvent include tetrahydrofuran. In this way, the porous body of the present invention can be obtained.
  • the material of the porous body of the present invention is not particularly limited.
  • the porous body in the case of a porous body formed from a material other than a thermosetting resin, instead of the porous body raw material containing at least one of a thermosetting monomer and a prepolymer, the porous body depends on the material of the porous body. It is not necessary to use the porogen and the curing agent by using the body material.
  • the manufactured porous body may be subjected to surface modification or the like by physical treatment or chemical treatment, for example.
  • the physical treatment or the chemical treatment can be performed, for example, for the purpose of improving the characteristics as a separating agent for chromatography.
  • Examples of the physical treatment or chemical treatment include surface hydrophilization, surface hydrophobization, and functional group introduction.
  • the porous body of the present invention does not contain a primary to tertiary amino group, or does not contain a nitrogen atom that is quaternized by acid treatment, so that the amino group or the nitrogen atom is contained. It is possible to suppress or prevent the hindrance of the introduction of the functional group (surface treatment).
  • the shape and size of the porous body of the present invention are not particularly limited.
  • the porous body of the present invention may be, for example, porous particles as described above. Further, the porous particles may be, for example, substantially spherical particles.
  • the shape and size of the porous body of the present invention are not limited to this, and may be arbitrary, and may be, for example, a bulk body or a thin film.
  • a liquid for example, a solution, a dispersion liquid, etc.
  • the porous body of the present invention is a flat plate such as a glass plate as an integrated filler having a uniform porosity if it is formed in a quadrangular, columnar, or cylindrical bulk form in an HPLC column. If it is prepared in between, a thin film can be produced, and in emulsion polymerization or dispersion polymerization in a hydrophobic solvent, various shapes such as a particle shape can be produced. Further, for example, it can be combined with a reinforcing material such as glass fiber, cellulose nanofiber, carbon fiber, non-woven fabric or Japanese paper.
  • a reinforcing material such as glass fiber, cellulose nanofiber, carbon fiber, non-woven fabric or Japanese paper.
  • the use of the porous body of the present invention is not particularly limited, but it is very useful, for example, as a novel adsorption/separation agent. More specifically, the porous body of the present invention, which is porous particles, can be used, for example, as a separating agent for chromatography. Examples of the object to be separated by the chromatography include separation of biological substances such as proteins, peptides, amino acids and nucleic acids and other chemical substances.
  • the use of the porous particles of the present invention is not limited to this, and for example, a column carrying a filler for cosmetics, a filler for tires, a filler for paints / inks, a base for sustained-release chemicals, and a reaction catalyst.
  • the thin film-shaped porous body of the present invention may be used, for example, the porous body of the present invention that is porous particles is coated on the surface of an electrode. It can be used as a battery separator.
  • the polystyrene-equivalent number average molecular weight in GPC is 2,000 to 100,000, the PDI is 1.6 or less, and the number average molecular weight of the polymer block A composed of (meth) acrylate having a hydrophobic group. Of less than 80,000 and 20 to 98% by mass of the total constituents. In the following, the number of copies of each substance is parts by mass (parts by weight) unless otherwise specified.
  • V-70 '-Azobis(4-methoxy-2,4-dimethylvaleronitrile)
  • V-65 azobisdimethylisovaleronitrile
  • BNI tetrabutylammonium iodide
  • AB block copolymer K-1 the block copolymer (dispersant) of the present synthesis example (synthesis example 1) thus obtained will be referred to as "block copolymer K-1".
  • V-70 '-Azobis(4-methoxy-2,4-dimethylvaleronitrile)
  • V-65 azobisdimethylisovaleronitrile
  • BNI tetrabutylammonium iodide
  • AB block copolymer K-2 the block copolymer (dispersant) of the present synthesis example (synthesis example 1) thus obtained will be referred to as "block copolymer K-2".
  • PEG10000 0.35 g and 0.15 g of PEG10000 are uniformly dissolved under heating at 80°C, and then 0.06 g of 2-methylimidazole (2-Methylimidazole, a curing accelerator) is added to sufficiently dissolve the mixture to obtain a uniform state, and thus it is porous.
  • a dispersion liquid (polymerization liquid) of the body raw material was prepared.
  • a polymerization step was carried out in which the above-mentioned polymerization liquid was polymerized in the dispersion liquid by allowing it to stand in a thermostat at 120° C. for 1 hour.
  • the obtained polymer together with the sample tube was immersed in a water tank for 2 days to replace the water-soluble components (PEG200, PEG10000) in the polymer with water to remove the polymer. During this time, the water in the sample tube bottle was replaced as appropriate.
  • the sample tube was taken out from the water tank, and the porous body in the sample tube was sufficiently dried in a blow dryer to obtain a white epoxy resin porous body of this example.
  • the obtained porous body had a through hole in which the porous structure communicated. A thin skin layer having almost no pores was formed on the surface of the porous body.
  • the through hole inside the porous body is a through hole formed by spinodal decomposition in the polymerization step.
  • the SEM photograph is shown in FIG.
  • Example 2 Example 1 except that a part of EHPE3150 of Example 1 was replaced with TETRAD-C (also called Tetrad-C, trade name of Mitsubishi Gas Chemical Co., Inc.) so that the molar amount of epoxy groups was the same.
  • TETRAD-C also called Tetrad-C, trade name of Mitsubishi Gas Chemical Co., Inc.
  • the porous body of this example was produced in the same manner as in the above.
  • Example 3 A porous body of this example was produced in the same manner as in Example 1 except that the curing accelerator of Example 1 was replaced with DBU.
  • Example 4 A porous body of this example was produced in the same manner as in Example 1 except that the curing agent of Example 1 was replaced with MEH-7500 (trade name of Meiwa Kasei Co., Ltd., triphenylmethane type phenol resin).
  • Example 1 a bulk resin was produced in the same manner except that H-4 (trade name of Meiwa Kasei Co., Ltd.) was used instead of DL-92 as a curing agent. The obtained resin did not have pores communicating with the porous structure.
  • H-4 trade name of Meiwa Kasei Co., Ltd.
  • Example 2 In Example 1, a bulk resin was produced in the same manner except that TETRAD-C (trade name of Mitsubishi Gas Chemical Company, Inc.) was used instead of EHPE-3150 as the epoxy compound. The obtained resin did not have pores communicating with the porous structure.
  • TETRAD-C trade name of Mitsubishi Gas Chemical Company, Inc.
  • ⁇ Polymerization process Polymerization is carried out by leaving the above polymerization solution in a constant temperature bath of 110° C. for 1 hour, and the obtained polymer is soaked in a water bath together with a sample tube for 2 days to dissolve the water-soluble component (PEG200) in the water. It was removed by replacing with. During this time, the water in the sample tube bottle was replaced as appropriate. After that, the sample tube was taken out from the water tank, and the monolith in the sample tube was sufficiently dried in a blow dryer to obtain a white epoxy resin porous body. The obtained porous body had a through hole in which the porous structure communicated. A thin skin layer having almost no pores was formed on the surface of the porous body. The through hole inside the porous body is a through hole formed by spinodal decomposition in the polymerization step.
  • porous epoxy particles (porous material which is porous particles) were produced according to the production method described in WO2017 / 026424 Example.
  • dodecane manufactured by Wako Pure Chemical Industries, Ltd.
  • the porous epoxy particles obtained by polymerization were placed in MEK (methyl ethyl ketone), stirred sufficiently, and then the particles were separated using a centrifuge. This washing step with MEK is repeated 10 times to sufficiently remove porogen, residual monomers and the like, and then dried under reduced pressure to obtain spherical porous particles made of epoxy resin (porous particles of this example which are porous particles). Obtained 11.85 g. The average particle diameter of the porous particles was 26 ⁇ m. The porous particles had through holes inside which the porous structure communicated. The appearance of the spherical porous particles (spherical fine particles) and an SEM photograph of the inside of the particles are shown in FIG.
  • MEK methyl ethyl ketone
  • Example 6 Particle 2
  • the porous epoxy particles (porous particles) of this example were the same as in [Example 5: Particle 1] except that the amount of polyethylene glycol 10000 (manufactured by Wako Pure Chemical Industries, Ltd.) was changed to 1.88 parts by weight.
  • the porous body of the present invention was obtained.
  • the epoxy particles had an average particle size of 29.4 ⁇ m and a pore diameter (using a mercury press-fitting porosimeter) of 1100 nm. Further, the porous particles had through holes in which the porous structure communicated.
  • FIG. 3 shows the appearance of the spherical porous particles (spherical fine particles) produced in this example and an SEM photograph of the inside of the particles. As shown in the figure, there was no skin layer on the surface of the epoxy resin porous particles, and the end portions of the through holes were open toward the outside of the porous particles.
  • ⁇ Dispersion preparation process> 11.15 g of the epoxy monomer composition obtained above was placed in a cylindrical glass sample bottle (having an inner diameter of 19 mm and a height of 60 mm), and the above block copolymer (dispersant) K-1 was added to 10 g of dodecane as a dispersion medium. A dispersion was prepared by adding it to a solution prepared by dissolving 0.6 g.
  • the average particle size of the porous particles was 28 ⁇ m.
  • the epoxy resin porous particles had through holes through which the porous structure communicated. Further, there was no skin layer on the surface of the epoxy resin porous particles, and the end portions of the through holes were open toward the outside of the porous particles.
  • the porous particles of Examples 5, 6 and Comparative Example 4 were placed in a measuring cylinder, immersed in pure water at room temperature (25 ° C.), 1 molar concentration of hydrochloric acid and an aqueous solution of caustic soda, and left for 24 hours.
  • the swelling ratio was measured by the same method as in Examples 1 to 4 and Comparative Examples 1 to 3 except that the height was measured. The results are shown in Table 2 below.
  • Example 5 Particle 1] Pure water; 100%, 1M caustic soda aqueous solution; 101%, 1M hydrochloric acid aqueous solution; 105%
  • Example 6 Particle 2] Pure water; 100%, 1M caustic soda aqueous solution; 101%, 1M hydrochloric acid aqueous solution; 106%
  • Comparative Example 4 Particle 3] Pure water; 100%, 1M caustic soda aqueous solution; 114%, 1M hydrochloric acid aqueous solution; 188%
  • the porous body of the example had a smaller swelling rate than the porous body of the comparative example, particularly under acidic conditions, so that swelling under acidic conditions occurred. It was confirmed that it could be suppressed.
  • the porous particle of the present invention is not particularly limited, but it is very useful, for example, as a novel adsorption/separation agent. More specifically, the porous particles of the present invention can be used, for example, as a separating agent for chromatography. Examples of the object to be separated by the chromatography include separation of biological substances such as proteins, peptides, amino acids and nucleic acids and other chemical substances.
  • porous particles of the present invention is not limited to this, and for example, a column carrying a filler for cosmetics, a filler for tires, a filler for paints / inks, a base for sustained-release chemicals, and a reaction catalyst. It can be used for various purposes such as a packing material for a reactor.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
  • Epoxy Resins (AREA)

Abstract

酸性条件下での膨潤が抑制された多孔質体および多孔質体の製造方法を提供する。 前記目的を達成するために、本発明の第1の多孔質体は、 エポキシ化合物と硬化剤との共重合体により形成された多孔質体であって、 前記多孔質体は、1~3級のアミノ基を含まない多孔質体であり、かつ、その内部に、多孔構造が連通している孔を有することを特徴とする。 本発明の第2の多孔質体は、 エポキシ化合物と硬化剤との共重合体により形成された多孔質体であって、 前記多孔質体は、酸処理により4級化する窒素原子を含まない多孔質体であり、かつ、その内部に、多孔構造が連通している孔を有することを特徴とする。

Description

多孔質体および多孔質体の製造方法
 本発明は、多孔質体および多孔質体の製造方法に関する。
 スピノーダル分解により形成される共連続構造の孔を有するエポキシ樹脂製多孔質体が、種々提案されている。これらは、例えば、電池用セパレーター用薄膜、分離剤用粒子等に用いられる(特許文献1~4)。
特許第5153142号公報 特許第4940367号公報 WO2017/026424 特開2017-037070号公報
 スピノーダル分解を用いたエポキシ樹脂製多孔質体の製造に使用されている硬化剤は、アミン系硬化剤が殆どである。アミン系硬化剤で硬化したエポキシ樹脂製多孔質体は、主鎖にアミノ基を含むため、酸性の条件下では4級化により膨潤するおそれがある。このようなエポキシ樹脂製多孔質体を、例えば、カラムの充填剤として使用した場合、酸性の液を流すと膨潤して液が流れにくくなるおそれがある。
 そこで、本発明は、酸性条件下での膨潤が抑制された多孔質体および多孔質体の製造方法の提供を目的とする。
 前記目的を達成するために、本発明の第1の多孔質体は、
 エポキシ化合物と硬化剤との共重合体により形成された多孔質体であって、
 前記多孔質体は、1~3級のアミノ基を含まない多孔質体であり、かつ、その内部に、多孔構造が連通している孔を有することを特徴とする。
 本発明の第2の多孔質体は、
 エポキシ化合物と硬化剤との共重合体により形成された多孔質体であって、
 前記多孔質体は、酸処理により4級化する窒素原子を含まない多孔質体であり、かつ、その内部に、多孔構造が連通している孔を有することを特徴とする。
 なお、以下において、本発明の第1の多孔質体と、本発明の第2の多孔質体とを、まとめて「本発明の多孔質体」ということがある。
 本発明の多孔質体の製造方法(以下、単に「本発明の製造方法」という場合がある。)は、本発明の多孔質体を製造する方法であり、
 エポキシ化合物と硬化剤とを含む多孔質体原料を、分散媒中に分散させて分散液を調製する分散液調製工程と、
 前記多孔質体原料を前記分散液中で重合させる重合工程と、を含み、
 前記重合工程において、スピノーダル分解により前記孔を形成する。
 本発明によれば、酸性条件下での膨潤が抑制された多孔質体および多孔質体の製造方法を提供することができる。
図1は、実施例1の多孔質体表面のSEM像である。 図2は、実施例5の多孔質体(粒子1)表面のSEM像である。 図3は、実施例6の多孔質体(粒子2)表面のSEM像である。
 以下、本発明について例を挙げて説明する。ただし、本発明は、以下の説明により限定されない。
 本発明の多孔質体は、例えば、前記エポキシ化合物が、1~3級のアミノ基を含まないエポキシ化合物であってもよい。
 本発明の多孔質体は、例えば、前記エポキシ化合物が、酸処理により4級化する窒素原子を含まないエポキシ化合物であってもよい。
 本発明の多孔質体は、例えば、前記エポキシ化合物が、下記化学式(E1)で表されるエポキシ化合物であってもよい。
Figure JPOXMLDOC01-appb-C000002
 前記化学式(E1)中において、nは、正の整数であり、Rは、水素原子または置換基である。
 本発明の多孔質体は、例えば、前記化学式(E1)において、nが、10~15であってもよい。
 本発明の多孔質体は、例えば、前記化学式(E1)で表されるエポキシ化合物が、2,2-ビス(ヒドロキシメチル)-1-ブタノールの1,2-エポキシ-4-(2-オキシラニル)シクロヘキサン付加物であってもよい。
 本発明の多孔質体は、例えば、前記硬化剤が、1~3級のアミノ基を含まない硬化剤であってもよい。
 本発明の多孔質体は、例えば、前記硬化剤が、酸処理により4級化する窒素原子を含まない硬化剤であってもよい。
 本発明の多孔質体は、例えば、前記硬化剤が、フェノール化合物であってもよい。
 本発明の多孔質体は、例えば、前記フェノール化合物が、1分子中にフェノール性水酸基を3個以上含むフェノール化合物であってもよい。
 本発明の多孔質体において、例えば、前記多孔構造が連通している孔は、多孔構造が連通している貫通孔であってもよい。
 本発明の多孔質体は、例えば、前記貫通孔の端部が、前記多孔質体の外部に向かって開口していてもよい。
 本発明の多孔質体は、例えば、多孔性粒子であってもよい。
 本発明の多孔質体は、例えば、前記多孔性粒子が、略球状の粒子であってもよい。
 本発明の多孔質体は、例えば、前記多孔性粒子の長径が短径の1.6倍以下であってもよい。
 本発明の多孔質体は、例えば、前記多孔性粒子の平均粒径が0.5~30,000μmの範囲であってもよい。
 本発明の多孔質体の製造方法は、例えば、前記分散液調製工程において、さらに、硬化促進剤を分散媒中に分散させてもよい。
 本発明の多孔質体の製造方法は、例えば、前記分散液調製工程において、前記多孔質体原料を、分散剤とともに分散媒中に分散させてもよい。
 本発明の多孔質体の製造方法は、例えば、前記分散剤が、疎水性ポリマーブロックおよび親水性ポリマーブロックを含んで形成されたブロックコポリマーであってもよい。
 本発明の多孔質体の製造方法は、例えば、さらに、前記分散剤を製造する分散剤製造工程を含み、前記分散剤製造工程が、リビングラジカル重合により前記疎水性ポリマーブロックおよび親水性ポリマーブロックの一方を形成する第1のリビングラジカル重合工程と、前記第1のリビングラジカル重合工程後に、リビングラジカル重合により前記疎水性ポリマーブロックおよび親水性ポリマーブロックの他方を形成する第2のリビングラジカル重合工程と、を含んでいてもよい。
 本発明の多孔質体の製造方法は、例えば、前記分散剤が、界面活性剤であってもよい。
[1.多孔質体]
 本発明の多孔質体は、前述のとおり、エポキシ化合物と硬化剤との共重合体により形成された多孔質体である。
[1-1.エポキシ化合物]
 前記エポキシ化合物は、1~3級のアミノ基を含まないことが好ましい。また、前記エポキシ化合物は、酸処理により4級化する窒素原子を含まないことが好ましい。アミド結合、ウレタン結合等の窒素原子であれば、酸性下でも4級化しない。
 本発明の第1の多孔質体は、前述のとおり、1~3級のアミノ基を含まない。この場合において、前記エポキシ化合物が1~3級のアミノ基を含んでいるか、または前記エポキシ化合物が酸処理により4級化する窒素原子を含んでいても、製造される本発明の第1の多孔質体が、1~3級のアミノ基を含まなければよい。
 本発明の第2の多孔質体は、前述のとおり、酸処理により4級化する窒素原子を含まない。この場合において、前記エポキシ化合物が1~3級のアミノ基を含んでいるか、または前記エポキシ化合物が酸処理により4級化する窒素原子を含んでいても、製造される本発明の第1の多孔質体が、酸処理により4級化する窒素原子を含まなければよい。
 前記エポキシ化合物は、1種類のみ用いても複数種類併用してもよい。また、例えば、膨潤による悪影響や付加反応時の阻害が許容できる範囲においては、窒素原子を含むエポキシ化合物の使用または併用も可能である。
 前記エポキシ化合物は、1分子中のエポキシ基の数が多い方が、多孔質構造が形成されやすく好ましい。具体的には、例えば、前記エポキシ化合物1分子中のエポキシ基の数が、5個以上または10個以上であってもよく、上限は特に限定されないが、例えば、30以下または15以下であってもよい。また、前記エポキシ化合物は、1分子中にエポキシ基が2個以下であるエポキシ化合物を含まないことが好ましい。
 前記エポキシ化合物は、例えば、エポキシモノマーおよびエポキシプレポリマーの少なくとも一方であってもよい。例えば、前記エポキシ化合物として、製造される多孔質体の構造に対応したエポキシモノマーおよびエポキシプレポリマーの少なくとも一方を用いることができる。
 前記エポキシ化合物の具体例は、特に限定されないが、例えば、以下のとおりである。
 1~3級の窒素原子を含まないエポキシ化合物としては、例えば、フェノールノボラック型エポキシ樹脂やEHPE3150(株式会社ダイセルの商品名、詳細は後述)等が挙げられる。
 1~3級の窒素原子を含むエポキシ化合物としては、例えば、グリシジルアミンタイプのTETRAD-C(テトラッド-Cともいう、三菱ガス化学株式会社の商品名)、トリアジン環を有するTEPIC(テピックともいう、日産化学株式会社の商品名)等が挙げられる。
 TETRAD-Cの構造は、下記化学式(1)で表される。
Figure JPOXMLDOC01-appb-C000003
 TEPICの構造は、下記化学式(4)で表される。また、TEPICのシリーズとしては、例えば、TEPIC-L(テピックL)、TEPIC-VL(テピックVL)、TEPIC-FL(テピックFL)、TEPIC-PAS(テピックPAS)、TEPIC-UC(テピックUC)が挙げられる。これらは、下記化学式(4)の構造の一部を変化させたものであり、TEPICと類似の構造を有する。
Figure JPOXMLDOC01-appb-C000004
 窒素原子を含まないエポキシ化合物としては、ビスフェノール型エポキシ化合物、ノボラック型エポキシ化合物、脂環式タイプのEHPE3150(株式会社ダイセルの商品名)などが挙げられる。特に、EHPE3150、ノボラック型エポキシ化合物が好ましい。なお、EHPE3150は「2,2-ビス(ヒドロキシメチル)-1-ブタノールの1,2-エポキシ-4-(2-オキシラニル)シクロヘキサン付加物」という化学構造を有し、下記化学式(E1)で表すことができる。下記化学式(E1)において、nは、正の整数であり、例えば、10~15である。
Figure JPOXMLDOC01-appb-C000005
 前記エポキシ化合物(例えば、エポキシモノマーおよびエポキシプレポリマーの少なくとも一方)は、例えば、多官能エポキシ基含有化合物であっても良い。
 前記多官能エポキシ基含有化合物は、1分子中にエポキシ基を2以上有するエポキシ化合物であり、1分子中にエポキシ基を3個以上、例えば3個または4個有することが好ましい。1分子中に3個以上のエポキシ基を有する多官能エポキシ化合物を用いることにより、例えば、適切な細孔径と強度を合わせ持った多孔性エポキシ樹脂粒子を製造することが可能となる。前記多官能エポキシ基含有化合物は、例えば、芳香族エポキシ化合物であっても非芳香族エポキシ化合物であってもよい。また、前記多官能エポキシ基含有化合物は、例えば、高分子化合物(例えばオリゴマーまたはプレポリマー)であっても、低分子化合物(例えばモノマー)であってもよい。
 前記芳香族エポキシ化合物としては、例えば、ビスフェノールA型エポキシ化合物、臭素化ビスフェノールA型エポキシ化合物、ビスフェノールF型エポキシ化合物、ビスフェノールAD型エポキシ化合物、スチルベン型エポキシ化合物、ビフェニル型エポキシ化合物、ビスフェノールAノボラック型エポキシ化合物、クレゾールノボラック型エポキシ化合物、ジアミノジフェニルメタン型エポキシ化合物、テトラキス(ヒドロキシフェニル)エタンベースなどのポリフェニルベースエポキシ化合物、フルオレン含有エポキシ化合物、トリアジン環含有エポキシ化合物等、複素芳香環を含むエポキシ化合物等が挙げられる。
 前記芳香族エポキシ化合物は、例えば、ビスフェノールA型エポキシ化合物、臭素化ビスフェノールA型エポキシ化合物、ビスフェノールF型エポキシ化合物、ビスフェノールAD型エポキシ化合物、フルオレン含有エポキシ化合物、トリグリシジルイソシアヌレートであり、特に好ましくは、エポキシ当量が500以下で、融点が100℃以下である、ビスフェノールA型エポキシ化合物、臭素化ビスフェノールA型エポキシ化合物、ビスフェノールF型エポキシ化合物、ビスフェノールAD型エポキシ化合物、フルオレン含有エポキシ化合物等であっても良い。また、前記芳香族エポキシ化合物は、例えば、N,N,N’,N’-テトラグリシジル-m-キシリレンジアミン(前記化学式(1)のシクロヘキサン環をベンゼン環に変えた化合物)等であっても良い。
 前記非芳香族エポキシ化合物としては、例えば、脂肪族グリシジルエーテル型エポキシ化合物、脂肪族グリシジルエステル型エポキシ化合物、脂環族グリシジルエーテル型エポキシ化合物、脂環族グリシジルエステル型エポキシ化合物などが挙げられる。好ましくは脂環族グリシジルエーテル型エポキシ化合物、脂環族グリシジルエステル型エポキシ化合物等が挙げられる。特に好ましくは、エポキシ当量が500以下で、融点が100℃以下の脂環族グリシジルエーテル型エポキシ化合物、または脂環族グリシジルエステル型エポキシ化合物である。
 また、前記非芳香族エポキシ化合物としては、前述の理由により、1分子中にエポキシ基を3個以上、例えば3~4個有する脂環式エポキシ化合物が好ましい。
 1分子中に3個以上のエポキシ基を有する脂環式エポキシ化合物としては特に限定されず、脂環式の炭化水素基と3個以上のエポキシ基とを有するものを適宜利用することができる。また、より親水性を高めるという観点からは、脂環式エポキシ化合物中に窒素原子を含むことが好ましい。脂環式エポキシ化合物中に窒素原子を含む化合物としては、例えば、下記化学式(A)で表される化合物でも良い。
 
X-(NY         (A)
 前記化学式(A)中、Xは、式中の窒素原子と直接または炭素数が1~5の直鎖アルキレン基を介して結合する炭素数が3~8の脂環式炭化水素基を表す。Yは、同一であっても異なっても良く、それぞれ、水素原子であるか、または、式中の窒素原子と直接または炭素数が1~5の直鎖アルキレン基を介して結合するエポキシ基である。mは、2、3または4(特に好ましくは2)である。ただし、Yおよびmは、前記化学式(A)中にエポキシ基が3個以上含まれるように選択される。また、各「NY」は、それぞれ同一でも異なっていても良い。
 前記化学式(A)中のXは、前述のとおり、式中の窒素原子と直接または炭素数が1~5(より好ましくは1~3、さらに好ましくは1)の直鎖アルキレン基を介して結合する炭素数が3~8(より好ましくは4~7、さらに好ましくは5~6)の脂環式炭化水素基である。また、窒素原子と脂環式炭化水素基との間に存在し得る前記直鎖アルキレン基は、例えば、メチレン基、エチレン基、プロピレン基等である。前記直鎖アルキレン基の炭素数は、多孔性粒子の機械的強度低下防止の観点から、前記上限を超えないことが好ましい。このようなXとしては、例えば、下記式(I)~(VI)で表される基が挙げられる。
Figure JPOXMLDOC01-appb-C000006
 また、前記化学式(A)中のYは、前述のとおり、式中の窒素原子と直接または炭素数が1~5(より好ましくは1~3、さらに好ましくは1)の直鎖アルキレン基を介して結合するエポキシ基である。前記直鎖アルキレン基は、特に限定されないが、例えば、Xで説明した直鎖アルキレン基と同様である。
 また、前記化学式(A)中のmは、前述のとおり2、3または4である。架橋反応が不十分とならない観点から、mは2以上が好ましく、立体障害による反応性の低下を引き起こさない観点から、mは4以下が好ましい。また、前記化学式(A)中の各「NY」において、前述のとおり、Yは、同一であっても異なっても良く、それぞれ、水素原子であるか、または、式中の窒素原子と直接または炭素数が1~5の直鎖アルキレン基を介して結合するエポキシ基である。各「NY」において、Yの少なくとも1つ(好ましくは2つとも)が、前記エポキシ基であることが好ましい。前記化学式(A)中のエポキシ基の数は、架橋反応が不十分とならない観点から、少なすぎないことが好ましく、立体障害による反応性の低下を引き起こさない観点から、多すぎないことが好ましい。
 1分子中に3個以上のエポキシ基を有する脂環式エポキシ化合物としては、具体的には、例えば、下記化学式(1A)または(1)で表される化合物が挙げられる。
Figure JPOXMLDOC01-appb-C000007
 前記非芳香族エポキシ化合物としては、例えば、後述の実施例の化学式(4)で表される「イソシアヌル酸トリグリシジル」すなわちトリグリシジルイソシアヌレート(2,2,2,-トリ-(2,3-エポキシプロピル)-イソシアヌレート)のように、イソシアヌル環を有する化合物であっても良い。
 得られる多孔質体に高い親水性を付与できる観点から、多官能エポキシ基含有化合物としては窒素原子を有するものが好ましい。特に多官能アミノ基含有化合物との相溶性や反応性、得られる多孔性エポキシ樹脂粒子の強度の観点から、N,N,N’,N’-テトラグリシジル-m-キシリレンジアミンが好ましい。また、高い親水性および原料の汎用性の観点からトリグリシジルイソシアヌレートが好ましい。
 これらの多官能エポキシ基含有化合物は、1種類のみを用いてもよく、2種類以上を併用してもよい。
 また、前記多孔質体の原料となる多官能エポキシ基含有化合物は、例えば、芳香族アミノ化合物であっても非芳香族アミノ化合物であってもよい。
 前記芳香族アミノ化合物としては、例えば、メタフェニレンジアミン、ジアミノジフェニルメタン、ジアミノジフェニルスルホン、ベンジルジメチルアミン、ジメチルアミノメチルベンゼン等の芳香族アミノ化合物、無水フタル酸、無水トリメリット酸、無水ピロメリット酸などの芳香族酸無水物、フェノール樹脂、フェノールノボラック樹脂、トリアジン環などの複素芳香環を有するアミノ化合物等が挙げられる。好ましくは分子内に一級アミノ基を2以上有する芳香族アミノ化合物であり、特に好ましくは、メタフェニレンジアミン、ジアミノジフェニルメタン、ジアミノジフェニルスルホンである。
 前記非芳香族アミノ化合物としては、例えば、エチレンジアミン、ジエチレントリアミン、トリエチレンテトラミン、テトラエチレンペンタミン、イミノビスプロピルアミン、ビス(ヘキサメチレン)トリアミン、1,3,6-トリスアミノメチルヘキサン、ポリメチレンジアミン、トリメチルヘキサメチレンジアミン、ポリエーテルジアミン等の脂肪族アミノ化合物、イソホロンジアミン、メンタンジアミン、N-アミノエチルピペラジン、3,9-ビス(3-アミノプロピル)2,4,8,10-テトラオキサスピロ(5,5)ウンデカンアダクト、ビス(4-アミノ-3-メチルシクロヘキシル)メタン、ビス(4-アミノシクロヘキシル)メタンやこれらの変性物等の脂環式アミノ化合物、その他、ポリアミノ化合物とダイマー酸からなる脂肪族ポリアミドアミノ化合物等が挙げられる。
 これらのうち、効率的な架橋反応を達成するという観点から、分子内に1級アミノ基を2個以上有する脂環式アミノ化合物が好ましく、イソホロンジアミン、メンタンジアミン、ビス(4-アミノ-3-メチルシクロヘキシル)メタン、ビス(4-アミノシクロヘキシル)メタン、およびこれらの変性物からなる群の中から選択される少なくとも1種であることがより好ましく、中でも、ビス(4-アミノ-3-メチルシクロヘキシル)メタン、後述の実施例の化学式(2)で表されるビス(4-アミノシクロヘキシル)メタンが特に好ましい。なお、このようなアミンの変性物としては、エポキシ変性物、カルボン酸変性物、尿素変性物、ケトン化合物による変性物、シラン化合物による変性物等の各種変性物が挙げられ、前述のような脂環式アミノ化合物を公知の方法で変性させたものを適宜用いることができる。
 これらの多官能アミノ基含有化合物は、1種類のみを用いてもよく、2種類以上を併用してもよい。
[1-2.硬化剤]
 本発明の多孔質体は、前述のとおり、エポキシ化合物と硬化剤との共重合体により形成された多孔質体である。前記硬化剤は、特に限定されない。また、前記硬化剤は、1種類のみ用いても複数種類を併用しても良い。
 本発明の第1の多孔質体は、前述のとおり、1~3級のアミノ基を含まない。この場合において、前記硬化剤が1~3級のアミノ基を含んでいるか、または前記硬化剤が酸処理により4級化する窒素原子を含んでいても、製造される本発明の第1の多孔質体が、1~3級のアミノ基を含まなければよい。
 本発明の第2の多孔質体は、前述のとおり、酸処理により4級化する窒素原子を含まない。この場合において、前記硬化剤が1~3級のアミノ基を含んでいるか、または前記硬化剤が酸処理により4級化する窒素原子を含んでいても、製造される本発明の第2の多孔質体が、酸処理により4級化する窒素原子を含まなければよい。
 前記硬化剤としては、例えば、一般的なエポキシ樹脂用の硬化剤を用いることができる。1~3級のアミノ基を含まない硬化剤としては、フェノール化合物、酸無水物、ポリメルカプタン等が挙げられ、特にフェノール化合物が好ましい。
 エポキシ化合物と、1~3級の窒素原子を含まない硬化剤との共重合体により実際に多孔質体を製造した例は、これまでになかった。本発明者らは、本発明の多孔質体を発明するにあたり、エポキシ化合物とフェノール化合物の組み合わせを種々検討した。その結果、一般的なフェノールノボラック樹脂ではなく水酸基が二個以下の低官能基成分を除去したフェノール樹脂を使用することにより、窒素原子を含まない硬化剤で多孔質構造が形成できることを見出した。ただし、本発明の多孔質体において、前記エポキシ化合物および前記フェノール化合物は、前述のとおり、これらに限定されるものではない。
 前記硬化剤として用いるフェノール化合物としては、フェノールノボラックタイプ、トリフェニルメタンタイプ、テトラキスフェノールエタンタイプ、キシリレンタイプ、ビフェニレンタイプ、ナフトール/クレゾールタイプ、ジシクロペンタジエンタイプなどがあるが、1分子中にフェノール性水酸基を3個(3官能)以上含むことが好ましい。また、前記フェノール化合物は、1分子中にフェノール性水酸基が2個(2官能)以下であるフェノール化合物を含まないことが好ましい。前記硬化剤において、1分子中に含まれるフェノール性水酸基が多い方が、スピノーダル分解による相分離で共連続構造(多孔構造が連通している孔を有する構造)が形成されやすいためである。
 前記硬化剤としては、好ましくは、2官能以下の成分を含まないフェノールノボラックタイプ、トリフェニルメタンタイプ、キシリレンタイプ、ビフェニレンタイプ、ナフトール/クレゾールタイプであり、特に好ましくは2官能以下の成分を含まないフェノールノボラックタイプ、トリフェニルメタンタイプである。
 前記硬化剤は、前述のとおり、2種類以上の併用も可能であり、スピノーダル分解による相分離で共連続構造ができる限りにおいては2官能成分以下の併用も可能である。2官能以下の成分を含まないフェノールノボラックタイプとしてはDL-92(明和化成株式会社の商品名、同社製品のフェノールノボラックタイプH-4からダイマー(2量体)を除いたもの)、MEH-7500(明和化成株式会社の商品名)などが挙げられる。DL-92は、下記化学式(F1)で表すことができる。下記化学式(F1)において、nは、正の整数であり、例えば、3~10程度である。
Figure JPOXMLDOC01-appb-C000008
[1-3.硬化促進剤]
 本発明の多孔質体の製造においては、前記エポキシ化合物および前記硬化剤以外の他の物質を適宜用いてもよいし、用いなくてもよい。なお、本発明の多孔質体の製造方法については、後述する。前記他の物質としては、例えば、硬化促進剤を使用することもできる。硬化促進剤としては特に限定されず、既知のあらゆる化合物を使用することができるが、例えば、トリエチルアミン、トリブチルアミン等の三級アミン、2-フェノール-4-メチルイミダゾール、2-エチル-4-メチルイミダゾール、2-フェノール-4,5-ジヒドロキシメチルイミダゾールなどのイミダゾール類などを好適に用いることができる。また、前記硬化促進剤は、1種類のみ用いても複数種類併用してもよい。
 前記硬化促進剤を使用することで、例えば、反応温度を低下させて前記エポキシ化合物と前記硬化剤との共重合を促進することができる。
 硬化促進剤としては、前述のとおり、特に限定されず、公知のものが使用できるが、イミダゾールおよびその誘導体、三級アミンとしてDBU、DBNおよびそれらの有機酸との塩が好ましい。イミダゾールおよびその誘導体は、一部が本発明の多孔質体中に残存した場合は、例えば、酸性下での膨潤や付加反応時の阻害要因になるおそれがある。DBUおよびDBNは、そのような問題が生じにくいのでより好ましい。なお、DBUおよびDBNの正式名称および化学構造式は、下記のとおりである。
DBU                      
ジアザビシクロウンデセン           
 (1,8-diazabicyclo[5.4.0]undec-7-ene)    
Figure JPOXMLDOC01-appb-C000009
DBN
ジアザビシクロノネン
(1,5-diazabicyclo[4.3.0]non-5-ene)
Figure JPOXMLDOC01-appb-C000010
[1-4.ポロゲン]
 本発明の多孔質体の製造においては、前記エポキシ化合物および前記硬化剤以外の他の物質としては、例えば、ポロゲンを使用することもできる。
 本発明において、用語「ポロゲン」とは、細孔形成剤としての不活性溶媒または不活性溶媒混合物を指称する。ポロゲンは、重合のある段階で多孔性ポリマーを形成させる重合反応中に存在し、所定の段階でこれを反応混合物中から除去することによって、三次元網目状骨格構造および連通する空隙を有するエポキシ樹脂硬化物多孔体が得られる。
 本発明において、前記ポロゲンは、例えば、前記多孔性粒子原料および前記硬化剤を溶解させることができ、かつ前記多孔性粒子原料および前記硬化剤が重合した後、反応誘起相分離を生じさせることが可能な溶媒である。前記ポロゲンとしては、例えば、メチルセロソルブ、エチルセロソルブなどのセロソルブ類、エチレングリコールモノメチルエーテルアセテート、プロピレングリコールモノメチルエーテルアセテート等のエステル類、ポリエチレングリコール、ポリプロピレングリコールなどのグリコール類等が挙げられる。中でも分子量200~20,000程度のポリエチレングリコール、メチルセロソルブ、エチルセロソルブ、エチレングリコールモノメチルエーテルアセテート、プロピレングリコールモノメチルエーテルアセテートが好ましく、特に分子量200~20,000程度のポリエチレングリコール(PEG)、プロピレングリコールモノメチルエーテルアセテートが好ましい。前記ポロゲンは、1種類のみ用いても良いし、2種類以上併用しても良い。
 本発明においては、ポロゲンとして、例えば、水酸基を有し、水酸基価100(mgKOH/g)以上のポリアルキレングリコールまたはポリアルキレングリコール誘導体を使用することが望ましい。水酸基価が100(mgKOH/g)より小さくなると粘度が高くなり、形成されるエポキシ樹脂硬化物多孔体の孔径を大きくすることが困難になったり、エポキシ樹脂硬化物多孔体への親水性の付与効果が低下することがある。エポキシ樹脂硬化物多孔体表面の水酸基量とポロゲンの水酸基当量とは密接な関係にあり、ポロゲンの水酸基価が小さくなるに連れてエポキシ樹脂硬化物表面に現れる水酸基量も減少し、表面の親水性が低下するためと考えられる。また、前記ポロゲンは、エポキシ樹脂製多孔性粒子の合成のみならず、他の材質から形成された多孔性粒子の合成においても同様に用いることができる。
 前記ポロゲンとしては、前述のとおり、特に限定されないが、例えば、分子量約200のPEGと、より大きな分子量のPEGを併用することが好ましい。特に分子量約200と約10000のPEGを併用することが好ましい。
[2.本発明の多孔質体の製造方法]
 本発明の多孔質体の製造方法は、前述のとおり、エポキシ化合物と硬化剤とを含む多孔質体原料を、分散媒中に分散させて分散液を調製する分散液調製工程と、前記多孔質体原料を前記分散液中で重合させる重合工程と、を含み、前記重合工程において、スピノーダル分解により前記孔を形成する。前記孔は、例えば、前述のとおり、貫通孔であってもよい。
 本発明の多孔質体の製造方法は、例えば、前記分散液調製工程において、前記多孔質体原料を、分散剤とともに分散媒中に分散させる。前記分散剤は、例えば、界面活性剤であっても良い。
 本発明の多孔質体の製造方法において、例えば、前記分散剤が、疎水性ポリマーブロックおよび親水性ポリマーブロックを含んで形成されたブロックコポリマーであっても良い。なお、以下において、このようなブロックコポリマーを「本発明のブロックコポリマー」ということがある。この場合において、例えば、本発明の多孔質体の製造方法が、さらに、前記分散剤(本発明のブロックコポリマー)を製造する分散剤製造工程を含み、前記分散剤製造工程が、リビングラジカル重合により前記疎水性ポリマーブロックおよび親水性ポリマーブロックの一方を形成する第1のリビングラジカル重合工程と、前記第1のリビングラジカル重合工程後に、リビングラジカル重合により前記疎水性ポリマーブロックおよび親水性ポリマーブロックの他方を形成する第2のリビングラジカル重合工程と、を含んでいても良い。なお、前記本発明のブロックコポリマーは、疎水性ポリマーブロックおよび親水性ポリマーブロックを含んで形成されているから、広義の「界面活性剤」ということができる。
 本発明の製造方法により、例えば、多孔構造が連通している貫通孔を有する、外形が略球状の、スキン層がない多孔質体を製造することができる。このメカニズムは不明であるが、例えば、前記多孔質体原料と前記分散媒との界面を適切な状態に維持することができるためと推測される。具体的には、例えば、前記界面を適切な状態に維持することによって、前記多孔質体原料を凝集させずに重合することができるため、前記貫通孔を形成できると考えられる。また、例えば、前記多孔質体原料が前記分散媒中に粒子状に分散した状態を維持できるので、略球状の本発明の多孔質体を製造できると考えられる。また、例えば、前記界面において、前記多孔質体原料中の親水性物質または疎水性物質の一方が偏在すると、それが重合等を起こすことにより、スキン層が形成されるおそれがある。このスキン層により、多孔質体表面で貫通孔が塞がれてしまいやすい。しかし、前記界面において、親水性物質と疎水性物質との比を適切な状態に制御することで、スキン層の形成を防止することができる。ただし、このメカニズムは例示であり、本発明をなんら限定しない。
 前記多孔質体原料と前記分散媒との界面を適切な状態に維持する方法は、特に限定されないが、例えば、前記界面活性剤、または広義の界面活性剤であるブロックコポリマー(分散剤)を用いる方法が挙げられる。また、前記界面活性剤または本発明のブロックコポリマー(分散剤)において、後述するように、疎水性部分と親水性部分の比を適切に制御することが好ましい。また、前記多孔質体原料と前記分散媒との界面を適切な状態に維持する方法として、例えば、前記分散液を物理的に攪拌する方法等も挙げられる。
 本発明において「スピノーダル分解」は、多成分混合系が共連続構造を形成して相分離(例えば、2成分混合系が2相分離)する現象、または相分離した状態をいう。「スピノーダル分解」は、例えば、2成分混合系を高温度から急冷し不安定状態においた場合におこる2相分離の過程をいう場合もあるが、本発明では、前記急冷した場合に限定されない。すなわち、本発明において、前記スピノーダル分解を起こさせる方法は、特に限定されず、どのような方法でも良い。例えば、前記多孔質体原料が分散媒中に分散され、かつ、前記多孔質体原料と前記分散媒との界面を適切な状態に維持したまま、前記多孔質体原料を重合または架橋させることで、スピノーダル分解が生じてその構造が固定されると考えられる。前記多孔質体原料と前記分散媒との界面を適切な状態に維持する方法は、例えば、前述のとおりである。
 以下、本発明の多孔質体の製造方法について、例を挙げて、より具体的に説明する。
[2-1.分散液]
 本発明の製造方法では、まず、エポキシ化合物と硬化剤とを含む多孔質体原料を、分散媒中に分散させて分散液を調製する(分散液調製工程)。前記エポキシ化合物は、特に限定されないが、例えば、前述の各エポキシ化合物が挙げられる。前記エポキシ化合物は、製造しようとする多孔質体の形成材料(例えば、エポキシ樹脂)の原料である。前記エポキシ化合物としては、例えば、前記多孔質体の形成材料に対応したエポキシモノマーおよびエポキシプレポリマーの少なくとも一方を用いることができる。前記エポキシモノマーおよびエポキシプレポリマーは、1種類のみ用いても2種類以上併用しても良い。前記エポキシモノマーおよびエポキシプレポリマーとしては、例えば、前述のとおり、三菱ガス化学工業株式会社の商品名「テトラッド-C」、および日産化学株式会社の商品名「テピック」、三菱化学株式会社の商品名「エピコート828」等が挙げられる。
 前記エポキシモノマーおよびエポキシプレポリマーは、例えば、多官能エポキシ基含有化合物であっても良い。また、前記エポキシ樹脂は、例えば、前記エポキシモノマーおよびエポキシプレポリマーと、硬化剤とを重合させたものでも良い。前記硬化剤は、例えば、多官能アミノ基含有化合物であっても良い。すなわち、前記エポキシ樹脂は、例えば、多官能エポキシ基含有化合物と多官能アミノ基含有化合物との重合体であっても良い。また、前記エポキシモノマーおよびエポキシプレポリマーは、1種類のみ用いても複数種類を併用しても良く、前記硬化剤は、1種類のみ用いても複数種類を併用しても良い。
 前記多官能エポキシ基含有化合物は、1分子中にエポキシ基を2以上有するエポキシ化合物であり、1分子中にエポキシ基を3個以上、例えば3個または4個有することが好ましい。1分子中に3個以上のエポキシ基を有する多官能エポキシ化合物を用いることにより、例えば、適切な細孔径と強度を合わせ持った多孔性エポキシ樹脂粒子を製造することが可能となる。前記多官能エポキシ基含有化合物は、例えば、芳香族エポキシ化合物であっても非芳香族エポキシ化合物であってもよい。また、前記多官能エポキシ基含有化合物は、例えば、高分子化合物(例えばオリゴマーまたはプレポリマー)であっても、低分子化合物(例えばモノマー)であってもよい。
 前記芳香族エポキシ化合物としては、例えば、ビスフェノールA型エポキシ化合物、臭素化ビスフェノールA型エポキシ化合物、ビスフェノールF型エポキシ化合物、ビスフェノールAD型エポキシ化合物、スチルベン型エポキシ化合物、ビフェニル型エポキシ化合物、ビスフェノールAノボラック型エポキシ化合物、クレゾールノボラック型エポキシ化合物、ジアミノジフェニルメタン型エポキシ化合物、テトラキス(ヒドロキシフェニル)エタンベースなどのポリフェニルベースエポキシ化合物、フルオレン含有エポキシ化合物、トリアジン環含有エポキシ化合物等、複素芳香環を含むエポキシ化合物等が挙げられる。
 前記芳香族エポキシ化合物は、例えば、ビスフェノールA型エポキシ化合物、臭素化ビスフェノールA型エポキシ化合物、ビスフェノールF型エポキシ化合物、ビスフェノールAD型エポキシ化合物、フルオレン含有エポキシ化合物、トリグリシジルイソシアヌレートであり、特に好ましくは、エポキシ当量が500以下で、融点が100℃以下である、ビスフェノールA型エポキシ化合物、臭素化ビスフェノールA型エポキシ化合物、ビスフェノールF型エポキシ化合物、ビスフェノールAD型エポキシ化合物、フルオレン含有エポキシ化合物等であっても良い。また、前記芳香族エポキシ化合物は、例えば、N,N,N’,N’-テトラグリシジル-m-キシリレンジアミン(後述の化学式(1)のシクロヘキサン環をベンゼン環に変えた化合物)等であっても良い。
 前記非芳香族エポキシ化合物としては、例えば、脂肪族グリシジルエーテル型エポキシ化合物、脂肪族グリシジルエステル型エポキシ化合物、脂環族グリシジルエーテル型エポキシ化合物、脂環族グリシジルエステル型エポキシ化合物などが挙げられる。好ましくは脂環族グリシジルエーテル型エポキシ化合物、脂環族グリシジルエステル型エポキシ化合物等が挙げられる。特に好ましくは、エポキシ当量が500以下で、融点が100℃以下の脂環族グリシジルエーテル型エポキシ化合物、または脂環族グリシジルエステル型エポキシ化合物である。
 また、前記非芳香族エポキシ化合物としては、前述の理由により、1分子中にエポキシ基を3個以上、例えば3~4個有する脂環式エポキシ化合物が好ましい。
 1分子中に3個以上のエポキシ基を有する脂環式エポキシ化合物としては特に限定されず、脂環式の炭化水素基と3個以上のエポキシ基とを有するものを適宜利用することができる。また、より親水性を高めるという観点からは、脂環式エポキシ化合物中に窒素原子を含むことが好ましい。脂環式エポキシ化合物中に窒素原子を含む化合物としては、例えば、下記化学式(A)で表される化合物でも良い。
 
X-(NY         (A)
 前記化学式(A)中、Xは、式中の窒素原子と直接または炭素数が1~5の直鎖アルキレン基を介して結合する炭素数が3~8の脂環式炭化水素基を表す。Yは、同一であっても異なっても良く、それぞれ、水素原子であるか、または、式中の窒素原子と直接または炭素数が1~5の直鎖アルキレン基を介して結合するエポキシ基である。mは、2、3または4(特に好ましくは2)である。ただし、Yおよびmは、前記化学式(A)中にエポキシ基が3個以上含まれるように選択される。また、各「NY」は、それぞれ同一でも異なっていても良い。
 前記化学式(A)中のXは、前述のとおり、式中の窒素原子と直接または炭素数が1~5(より好ましくは1~3、さらに好ましくは1)の直鎖アルキレン基を介して結合する炭素数が3~8(より好ましくは4~7、さらに好ましくは5~6)の脂環式炭化水素基である。また、窒素原子と脂環式炭化水素基との間に存在し得る前記直鎖アルキレン基は、例えば、メチレン基、エチレン基、プロピレン基等である。前記直鎖アルキレン基の炭素数は、多孔質体の機械的強度低下防止の観点から、前記上限を超えないことが好ましい。このようなXとしては、例えば、下記式(I)~(VI)で表される基が挙げられる。
Figure JPOXMLDOC01-appb-C000011
 また、前記化学式(A)中のYは、前述のとおり、式中の窒素原子と直接または炭素数が1~5(より好ましくは1~3、さらに好ましくは1)の直鎖アルキレン基を介して結合するエポキシ基である。前記直鎖アルキレン基は、特に限定されないが、例えば、Xで説明した直鎖アルキレン基と同様である。
 また、前記化学式(A)中のmは、前述のとおり、例えば、2、3または4である。架橋反応が不十分とならない観点から、mは2以上が好ましく、立体障害による反応性の低下を引き起こさない観点から、mは4以下が好ましい。また、前記化学式(A)中の各「NY」において、前述のとおり、Yは、同一であっても異なっても良く、それぞれ、水素原子であるか、または、式中の窒素原子と直接または炭素数が1~5の直鎖アルキレン基を介して結合するエポキシ基である。各「NY」において、Yの少なくとも1つ(好ましくは2つとも)が、前記エポキシ基であることが好ましい。前記化学式(A)中のエポキシ基の数は、架橋反応が不十分とならない観点から、少なすぎないことが好ましく、立体障害による反応性の低下を引き起こさない観点から、多すぎないことが好ましい。
 1分子中に3個以上のエポキシ基を有する脂環式エポキシ化合物としては、具体的には、例えば、下記化学式(1A)または(1)で表される化合物が挙げられる。
Figure JPOXMLDOC01-appb-C000012
 前記非芳香族エポキシ化合物としては、例えば、後述の実施例の化学式(4)で表される「イソシアヌル酸トリグリシジル」すなわちトリグリシジルイソシアヌレート(2,2,2,-トリ-(2,3-エポキシプロピル)-イソシアヌレート)のように、イソシアヌル環を有する化合物であっても良い。
 得られる本発明の多孔質体(例えば、多孔性エポキシ樹脂粒子)に高い親水性を付与できる観点から、多官能エポキシ基含有化合物としては窒素原子を有するものが好ましい。特に多官能アミノ基含有化合物との相溶性や反応性、得られる多孔性エポキシ樹脂粒子の強度の観点から、N,N,N’,N’-テトラグリシジル-m-キシリレンジアミンが好ましい。また、高い親水性および原料の汎用性の観点からトリグリシジルイソシアヌレートが好ましい。
 これらの多官能エポキシ基含有化合物は、1種類のみを用いてもよく、2種類以上を併用してもよい。
 また、本発明の多孔質体(例えば、前記多孔性エポキシ樹脂粒子)の原料となる多官能エポキシ基含有化合物は、例えば、芳香族アミノ化合物であっても非芳香族アミノ化合物であってもよい。
 前記芳香族アミノ化合物としては、例えば、メタフェニレンジアミン、ジアミノジフェニルメタン、ジアミノジフェニルスルホン、ベンジルジメチルアミン、ジメチルアミノメチルベンゼン等の芳香族アミノ化合物、無水フタル酸、無水トリメリット酸、無水ピロメリット酸などの芳香族酸無水物、フェノール樹脂、フェノールノボラック樹脂、トリアジン環などの複素芳香環を有するアミノ化合物等が挙げられる。好ましくは分子内に一級アミノ基を2以上有する芳香族アミノ化合物であり、特に好ましくは、メタフェニレンジアミン、ジアミノジフェニルメタン、ジアミノジフェニルスルホンである。
 前記非芳香族アミノ化合物としては、例えば、エチレンジアミン、ジエチレントリアミン、トリエチレンテトラミン、テトラエチレンペンタミン、イミノビスプロピルアミン、ビス(ヘキサメチレン)トリアミン、1,3,6-トリスアミノメチルヘキサン、ポリメチレンジアミン、トリメチルヘキサメチレンジアミン、ポリエーテルジアミン等の脂肪族アミノ化合物、イソホロンジアミン、メンタンジアミン、N-アミノエチルピペラジン、3,9-ビス(3-アミノプロピル)2,4,8,10-テトラオキサスピロ(5,5)ウンデカンアダクト、ビス(4-アミノ-3-メチルシクロヘキシル)メタン、ビス(4-アミノシクロヘキシル)メタンやこれらの変性物等の脂環式アミノ化合物、その他、ポリアミノ化合物とダイマー酸からなる脂肪族ポリアミドアミノ化合物等が挙げられる。
 これらのうち、効率的な架橋反応を達成するという観点から、分子内に1級アミノ基を2個以上有する脂環式アミノ化合物が好ましく、イソホロンジアミン、メンタンジアミン、ビス(4-アミノ-3-メチルシクロヘキシル)メタン、ビス(4-アミノシクロヘキシル)メタン、およびこれらの変性物からなる群の中から選択される少なくとも1種であることがより好ましく、中でも、ビス(4-アミノ-3-メチルシクロヘキシル)メタン、後述の実施例の化学式(2)で表されるビス(4-アミノシクロヘキシル)メタンが特に好ましい。なお、このようなアミンの変性物としては、エポキシ変性物、カルボン酸変性物、尿素変性物、ケトン化合物による変性物、シラン化合物による変性物等の各種変性物が挙げられ、前述のような脂環式アミノ化合物を公知の方法で変性させたものを適宜用いることができる。
 これらの多官能アミノ基含有化合物は、1種類のみを用いてもよく、2種類以上を併用してもよい。
 また、前記多孔質体原料は、例えば、エポキシ化合物以外のモノマーおよびプレポリマーの少なくとも一方を含んでいてもよい。エポキシモノマーおよびエポキシプレポリマー以外のモノマーまたはプレポリマーの例としては、例えば、スチレン、エチルスチレン、メチルスチレン、ヒドロキシスチレン、クロロスチレン等のスチレン系単量体などの芳香族モノビニル化合物;(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸ヒドロキシエチル、(メタ)アクリル酸ヒドロキシプロピル、(メタ)アクリル酸ブチル、(メタ)アクリル酸2-エチルヘキシル、シクロヘキシル(メタ)アクリレート、グリセリンモノ(メタ)アクリレート等の(メタ)アクリル酸エステル類;(メタ)アクリルアミド、ジメチル(メタ)アクリルアミド、ヒドロキシエチル(メタ)アクリルアミド等の(メタ)アクリルアミド類;(メタ)アクリロニトリルのようなニトリル類;グリシジル(メタ)アクリレート、4,5-エポキシブチル(メタ)アクリレート、9,10-エポキシステアリル(メタ)アクリレート等のエポキシ基含有化合物;その他のビニルエステル類、ビニルエーテル類等のモノビニル単量体が挙げられる。本発明の多孔質体は、例えば、前記多孔質体原料の1種または2種以上を(共)重合物した後、得られた(共)重合物に対してエピクロルヒドリン、(ポリ)アルキレングリコールジグリシジルエーテル、アルキレンジイソシアネート等の架橋剤を用いて架橋構造を導入することにより多孔質架橋粒子としたものや、ジビニルベンゼン、トリビニルベンゼン等の芳香族ポリビニル化合物、(ポリ)エチレングリコールジ(メタ)アクリル酸エステル、グリセロールジ(メタ)アクリル酸エステル等のポリ(メタ)アクリル酸エステル類、ポリカルボン酸ポリビニルエステル類、ポリカルボン酸ポリアリルエステル類、ポリオールポリビニルエーテル類、ポリオールポリアリルエーテル類、ブタジエン、メチレンビスアクリルアミド、イソシアヌル酸トリアリル等のポリビニル化合物の1種または2種以上を(共)重合させたもの、もしくはこのようなポリビニル化合物の1種または2種以上と、上述のモノビニル単量体の1種または2種以上とを共重合して得られる多孔質架橋粒子などであっても良い。工業的な生産性の観点からは、ポリビニル化合物の1種または2種以上とモノビニル単量体の1種または2種以上を共重合させたものが好ましい。
 前記分散媒としては、特に限定されないが、有機溶媒および水が挙げられ、単独で用いても二種類以上併用しても良い。前記有機溶媒としては、例えば、ヘキサン、オクタン、デカン、ドデカン、イソデカン、シクロヘキサン、メチルシクロヘキサン、トルエン、キシレン、エチルベンゼン、クメンなどの炭化水素系溶剤;メタノール、エタノール、プロパノール、イソプロパノール、ブタノール、イソブタノール、ヘキサノール、ベンジルアルコール、シクロヘキサノールなどのアルコール系溶剤;エチレングリコール、ジエチレングリコール、プロピレングリコール、ジプロピレングリコール、メチルセロソルブ、エチルセロソルブ、ブチルセロソルブ、プロピレングリコールモノメチルエーテル、プロピレングリコールモノエチルエーテル、プロピレングリコールプロピルエーテル、ジグライム、トリグライム、ジプロピレングリコールジメチルエーテル、ブチルカルビトール、ブチルトリエチレングリコール、メチルジプロピレングリコール、メチルセロソルブアセテート、プロピレングリコールモノメチルエーテルアセテート、ジプロピレングリコールブチルエーテルアセテート、ジエチレングリコールモノブチルエーテルアセテートなどのグリコール系溶剤;ジエチルエーテル、ジプロピルエーテル、メチルシクロプロピルエーテル、テトラヒドロフラン、ジオキサン、アニソールなどのエーテル系溶剤;メチルエチルケトン、ジエチルケトン、メチルイソブチルケトン、シクロヘキサノン、イソホロン、アセトフェノンなどのケトン系溶剤;酢酸メチル、酢酸エチル、酢酸ブチル、酢酸プロピル、酪酸メチル、酪酸エチル、カプロラクトン、乳酸メチル、乳酸エチルなどのエステル系溶剤;クロロホルム、ジクロロエタンなどのハロゲン化溶剤;ジメチルホルムアミド、ジメチルアセトアミド、ピロリドン、N-メチルピロリドン、カプロラクタムなどのアミド系溶剤;ジメチルスルホキシド、スルホラン、テトラメチル尿素、エチレンカーボネート、プロピレンカーボネート、炭酸ジメチル、炭酸エチル、ニトロメタン、アセトニトリル、ニトロベンゼン、ジオクチルフタレートなどが挙げられ、1種類のみ用いても2種類以上併用しても良い。
 前記分散液中において、前記多孔質体原料の濃度は、特に限定されないが、前記分散媒に対し、例えば0.01~10,000g/L、1~5,000g/L、または5~3,000g/Lである。
 また、本発明の多孔質体の製造方法は、例えば、前記分散液調製工程において、前記多孔質体原料を、分散剤とともに分散媒中に分散させても良い。前記分散剤の濃度は、特に限定されないが、前記分散媒に対し、例えば1~500g/L、2~300g/L、または3~250g/Lである。
 前記分散剤は、例えば、界面活性剤であっても良い。前記界面活性剤としては、特に限定されないが、例えば、アニオン界面活性剤、カチオン界面活性剤、ノニオン界面活性剤、親水性ブロックと疎水性ブロックからなるブロックコポリマー、例えばポリアクリル酸ブロックとポリアクリルエステルブロックからなるブロックコポリマー、ポリオキシエチレンブロックとポリアクリルエステルブロックからなるブロックコポリマー、ポリオキシエチレンブロックとポリオキシプロピレンブロックからなるブロックコポリマー、等が挙げられる。
 アニオン界面活性剤としては、脂肪酸塩、高級アルコールの硫酸エステル塩、脂肪アルコールのリン酸エステル塩、アルキルアリルスルホン酸塩、ホルマリン縮合ナフタレンスルホン酸塩等が挙げられる。カチオン界面活性剤としては、アルキル1級アミン塩、アルキル2級アミン塩、アルキル3級アミン塩、アルキル4級アンモニウム塩、ピリジニウム塩等が挙げられる。ノニオン界面活性剤としては、ポリオキシエチレンアルキルエーテル類、ポリオキシエチレンアルキルフェニルエーテル類、ポリオキシエチレンアルキルエステル類、ソルビタンアルキルエステル類、ポリオキシエチレンソルビタンアルキルエステル類等が挙げられる。高分子界面活性剤としては、部分ケン化ポリビニルアルコール、澱粉、メチルセルロース、カルボキシメチルセルロース、ヒドロキシエチルセルロース、部分ケン化ポリメタクリル酸塩等が例示される。
 用いる界面活性剤を選択することにより、得られる多孔性エポキシ樹脂粒子の平均粒径や粒度分布、粒子の凝集状態を制御することができ、例えば、アニオン界面活性剤やカチオン界面活性剤、ノニオン界面活性剤を用いることにより、平均粒径を小さく且つ粒度分布を狭くすることができる。また、高分子界面活性剤を用いることにより平均粒径を大きくすると共に、粒子の凝集を抑制することができる。なかでも、界面活性剤として、親水性ブロックと疎水性ブロックからなるブロックコポリマーを用いる場合には、少量の添加で乳化できることから、重合反応時の溶液の粘度を低く保つことができるため撹拌が容易となり好ましい。
 これらの界面活性剤は、1種類のみ用いても良く、2種類以上併用しても良い。
 また、例えば、前記分散剤が、疎水性ポリマーブロックおよび親水性ポリマーブロックを含んで形成されたブロックコポリマーであっても良い。この場合において、例えば、本発明の多孔質体の製造方法が、さらに、前記分散剤を製造する分散剤製造工程を含み、前記分散剤製造工程が、リビングラジカル重合により前記疎水性ポリマーブロックおよび親水性ポリマーブロックの一方を形成する第1のリビングラジカル重合工程と、前記第1のリビングラジカル重合工程後に、リビングラジカル重合により前記疎水性ポリマーブロックおよび親水性ポリマーブロックの他方を形成する第2のリビングラジカル重合工程と、を含んでいても良い。なお、前記ブロックコポリマー(分散剤)および前記分散剤製造工程については、後述の[2-2.ブロックコポリマー(分散剤)および分散剤製造工程]において詳しく説明する。
 また、前記分散液調製工程において、前記分散液中に、前記多孔質体原料および前記分散剤以外の他の成分を含有させても良い。前記他の成分は、特に限定されないが、例えば、本来の分散に影響を生じない範囲でノニオン活性剤以外の他の界面活性剤、消泡剤等が挙げられる。
[2-2.ブロックコポリマー(分散剤)および分散剤製造工程]
 以下において、前記ブロックコポリマー(分散剤)および前記分散剤製造工程について詳しく説明する。
 まず、前記ブロックコポリマーは、疎水性ポリマーブロックおよび親水性ポリマーブロックを含んで形成されているから、前述のとおり、広義の「界面活性剤」ということができる。また、前記ブロックコポリマーおよび前記分散剤製造工程は、例えば、特開2015-83688号公報の記載と同様もしくはそれに準じても良いし、または、それを参考にしても良い。具体的には、例えば、以下のとおりである。
 前記ブロックコポリマーは、例えば、前記疎水性ポリマーブロック(以下、単に「疎水性ブロック」または「疎水性ブロックA」または「Aブロック」ということがある。)-前記親水性ポリマーブロック(以下、単に「親水性ブロック」または「親水性ブロックB」または「Bブロック」ということがある。)からなるジブロックコポリマーであっても良い。前記ブロックコポリマーは、例えば、有機ヨウ化物を重合開始化合物とし、有機リン化合物、有機窒素化合物または有機酸素化合物を触媒として、ラジカル発生剤を用いて付加重合性モノマーを重合して得られたブロックコポリマーであっても良い。
 前記ブロックコポリマー分子中において、前記Aブロック(疎水性ブロック)の含有率は、例えば、5~95質量%、10~90質量%、15~85質量%、または20~80質量%である。また、前記ブロックコポリマー分子中において、前記Bブロック(親水性ブロック)の含有率は、例えば、5~95質量%、10~90質量%、15~85質量%、または20~80質量%である。
 また、前記Aブロック(疎水性ブロック)の原料である疎水性モノマーは、例えば、疎水基を有する(メタ)アクリレート((メタ)アクリス酸エステル)、疎水基を有するビニル化合物、疎水基を有するアリル化合物、等が挙げられる。前記Bブロック(親水性ブロック)の原料である親水性モノマーは、例えば、親水基を有する(メタ)アクリレート((メタ)アクリス酸エステル)、親水基を有するビニル化合物、親水基を有するアリル化合物、等が挙げられる。例えば、前記疎水性モノマーがラウリル(メタ)アクリレートを含み、かつ、親水性モノマーがポリエチレングリコールメタクリレートを含んでいても良い。
 前記分散剤(ブロックコポリマー)は、前述のとおり、疎水性ポリマーブロックAおよび親水性ポリマーブロックBを含んで形成されたジブロックの構造で(以下「A-Bジブロックポリマー」という場合がある。)ある。例えば、前記分散液調製工程において、前記分散剤(ブロックコポリマー)を、前記多孔質体原料(モノマーおよびプレポリマーの少なくとも一方を含む)とともに前記分散媒中に分散させる。前記多孔質体原料が前記分散媒に対し相対的に親水性が高い場合、例えば、親水性ポリマーブロックBが前記多孔質体原料に吸着し、前記多孔質体原料が凝集してできた粒子の表面を、疎水性ポリマーブロックAが被覆する。これにより、疎水性ポリマーブロックAが、疎水性の前記分散媒に向き合う形となる。逆に、前記多孔質体原料が前記分散媒に対し相対的に疎水性が高い場合、例えば、疎水性ポリマーブロックAが前記多孔質体原料に吸着し、前記多孔質体原料が凝集してできた粒子の表面を、親水性ポリマーブロックBが被覆する。これにより、親水性ポリマーブロックBが、親水性の前記分散媒に向き合う形となる。このようにして、前記多孔質体原料が前記分散媒中に粒子状に分散した状態とすることができる。この状態は、例えば、前記多孔質体原料が前記分散媒中に乳化(懸濁)した状態ということもできる。これにより、例えば、重合前および重合後の前記分散液の分散安定性や保存安定性を向上させることもできる。
 なお、前記多孔質体原料(モノマーおよびプレポリマーの少なくとも一方を含む)については前述のとおりであるが、例えば、前記多孔性原料が、ラジカル重合性あるいは熱硬化性のモノマーおよびプレポリマーの少なくとも一方を含んでいても良い。また、前記モノマーおよびプレポリマーは、例えば、親水性のモノマーおよびプレポリマーであっても良い。
 つぎに、前記ブロックコポリマー(分散剤)の製造方法は、例えば、前述のとおり、有機ヨウ化物を重合開始化合物とし、有機リン化合物、有機窒素化合物または有機酸素化合物を触媒として、ラジカル発生剤を用いて付加重合性モノマー(疎水性モノマーおよび親水性モノマー)を重合する製造方法であっても良い。このような製造方法は、例えば、特開2015-83688号公報に記載されている。この製造方法によれば、重金属、臭気、着色、コストなどの問題がない。具体的には、例えば、下記(1)~(6)の利点がある。
 
(1)重金属化合物を使用しない;ATRP法やDT法のような重金属化合物を使用しない。
(2)精製が必須ではない;ATRP法やDT法は重金属、RAFT法やMADIX法は硫黄化合物の除去が必要である。
(3)特殊で高価な化合物を必要とせず、市場にある比較的安価な材料が使用でき、よって低コストである;他のリビングラジカル重合方法では特別な化合物が必要である。
(4)重合条件が温和で、従来のラジカル重合方法と同様の条件で重合を行うことができる;NMP法では高温が必要であり、ATRP法では酸素の除去が必要である。
(5)使用するモノマーや溶媒なども精製する必要がなく、様々なモノマーが使用でき、酸基、アミノ基などの様々な官能基を有するモノマーを使用することが可能で、ポリマーブロックに様々な官能基を導入することができる;特にATRP法では酸基がその触媒毒となり、酸基をそのまま使用することはできない。NMP法ではメタクリレートはうまく重合しない。
(6)分子量と構造が制御でき、所望の結合状態のブロックポリマーが容易に得られ、かつ重合率も非常によい。
 なお、前記説明は例示であって、本発明において、前記ブロックコポリマー(分散剤)の製造方法は、特に限定されない。すなわち、前記ブロックコポリマー(分散剤)の製造方法は、特開2015-83688号公報に記載の方法のみには限定されず、どのような製造方法でも良い。
 前記Aブロックを形成する疎水性モノマーとしては、特に限定されないが、例えば、メチル(メタ)アクリレート、エチル(メタ)アクリレート、プロピル(メタ)アクリレート、イソプロピル(メタ)アクリレート、ブチル(メタ)アクリレート、2-メチルプロパン(メタ)アクリレート、t-ブチル(メタ)アクリレート、ペンチル(メタ)アクリレート、ヘキシル(メタ)アクリレート、オクチル(メタ)アクリレート、2-エチルヘキシル(メタ)アクリレート、ノニル(メタ)アクリレート、デシル(メタ)アクリレート、イソデシル(メタ)アクリレート、ラウリル(メタ)アクリレート、テトラデシル(メタ)アクリレート、オクタデシル(メタ)アクリレート、べへニル(メタ)アクリレート、イソステアリル(メタ)アクリレート、シクロヘキシル(メタ)アクリレート、t-ブチルシクロヘキシル(メタ)アクリレート、イソボロニル(メタ)アクリレート、2,2,4-トリメチルシクロヘキシル(メタ)アクリレート、シクロデシル(メタ)アクリレート、シクロデシルメチル(メタ)アクリレート、ベンジル(メタ)アクリレート、t-ブチルベンゾトリアゾールフェニルエチル(メタ)アクリレート、フェニル(メタ)アクリレート、ナフチル(メタ)アクリレート、アリル(メタ)アクリレートなどの脂肪族、脂環族、芳香族アルキル(メタ)アクリレート等が挙げられ、特にラウリル(メタ)アクリレートなどのアルキル基の長いものが好ましい。前記疎水性モノマーは、1種類のみ用いても良いが、複数種類併用しても良い。
 Bブロックを構成する親水性モノマーは、特に限定されないが、例えば、ポリグリコール基を有するモノマーが挙げられ、より具体的には、例えば、ポリ(n=2以上)エチレングリコールモノ(メタ)アクリレート、ポリ(n=2以上)プロピレングリコールモノ(メタ)アクリレート、ポリ(n=2以上)テトラメチレングリコールモノ(メタ)アクリレート、モノまたはポリ(n=2以上)エチレングリコールモノまたはポリ(n=2以上)プロピレングリコールランダムコポリマーのモノ(メタ)アクリレート、モノまたはポリ(n=2以上)エチレングリコールモノまたはポリ(n=2以上)プロピレングリコールブロックコポリマーのモノ(メタ)アクリレート、などのポリアルキレングリコールのモノ(メタ)アクリレート、さらには(ポリ)エチレングリコールモノメチルエーテル(メタ)アクリレート、(ポリ)エチレングリコールモノオクチルエーテル(メタ)アクリレート、(ポリ)エチレングリコールモノラウリルエーテル(メタ)アクリレート、(ポリ)エチレングリコールモノステアリルエーテル(メタ)アクリレート、(ポリ)エチレングリコールモノオレイルエーテル(メタ)アクリレート、(ポリ)エチレングリコールモノステアリン酸エステル(メタ)アクリレート、(ポリ)エチレングリコールモノノニルフェニルエーテル(メタ)アクリレート、(ポリ)プロピレングリコールモノメチルエーテル(メタ)アクリレート、(ポリ)プロピレングリコールモノエチルエーテル(メタ)アクリレート、(ポリ)プロピレングリコールモノオクチルエーテル(メタ)アクリレート、(ポリ)プロピレングリコールモノラウリルエーテル(メタ)アクリレート、(ポリ)エチレングリコール(ポリ)プロピレングリコールモノメチルエーテル(メタ)アクリレートなどの(ポリアルキレン)グリコールモノアルキル、アルキレン、アルキンエーテルまたはエステルのモノ(メタ)アクリレート等が挙げられ、特にポリ(n=6以上)エチレングリコールモノ(メタ)アクリレートが望ましい。なお、前記nは、前記ポリグリコール基における重合度を表す。また、前記親水性モノマーは、1種類のみ用いても複数種類併用しても良い。
 また、前記ブロックコポリマー(分散剤)は、前記疎水性ポリマーブロックA(Aブロック)および親水性ポリマーブロックB(Bブロック)のみから形成されていても良いが、それ以外の構成要素を含んで(共重合されて)いても良い。前記AブロックおよびBブロックの基本的性質を変えない範囲で共重合し得るモノマーとしては、従来公知のモノマーが挙げられ、例えば、スチレン、ビニルトルエン、ビニルヒドロキシベンゼン、クロロメチルスチレン、ビニルナフタレン、ビニルビフェニル、ビニルエチルベンゼン、ビニルジメチルベンゼン、α-メチルスチレン、エチレン、プロピレン、イソプレン、ブテン、ブタジエン、1-ヘキセン、シクロヘキセン、シクロデセン、ジクロロエチレン、クロロエチレン、フロロエチレン、テトラフロロエチレン、アクリロニトリル、メタクリロニトリル、酢酸ビニル、プロピオン酸ビニル、イソシアナトジメチルメタンイソプロペニルベンゼン、フェニルマレイミド、シクロヘキシルマレイミド、ヒドロキシメチルスチレンなどのビニル系モノマー、水酸基を含有するモノマーとして、2-ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート、3-ヒドロキシプロピル(メタ)アクリレート、4-ヒドロキシブチル(メタ)アクリレート、6-ヒドロキシへキシル(メタ)アクリレート、シクロヘキサンジメタノールモノ(メタ)アクリレート、シクロヘキサンジオールモノ(メタ)アクリレートなどのアルキレングリコールのモノ(メタ)アクリル酸エステル、さらには、その他のモノマーとしては、(メタ)アクリロイロキシエチルモノまたはポリ(n=2以上)カプロラクトンなどの前記した(ポリ)アルキレングリコールモノ(メタ)アクリル酸エステル、ε-カプロラクトンやγ-ブチロラクトンなどのラクトン類を開環重合して得られるポリエステル系モノ(メタ)アクリル酸エステル;2-(メタ)アクリロイロキシエチル-2-ヒドロキシエチルフタレートや2-(メタ)アクリロイロキシエチル-2-ヒドロキシエチルスクシネートなどの前記した(ポリ)アルキレングリコールモノ(メタ)アクリル酸エステルに2塩基酸を反応させてハーフエステル化したのち、もう一方のカルボキシル基にアルコール、アルキレングリコールを反応させたエステル系(メタ)アクリレート;グリセロールモノ(メタ)アクリレートやジメチロールプロパンモノ(メタ)アクリレートなどの3個以上の水酸基をもつ多官能水酸基化合物のモノ(メタ)アクリレート;3-クロロ-2-ヒドロキシプロピル(メタ)アクリレート、オクタフルオロオクチル(メタ)アクリレート、テトラフルオロエチル(メタ)アクリレートなどのハロゲン元素含有(メタ)アクリレート;2-(4-ベンゾキシ-3-ヒドロキシフェノキシ)エチル(メタ)アクリレート、2-(2’-ヒドロキシ-5-(メタ)アクリロイロキシエチルフェニル)-2H-ベンゾトリアゾールの如き紫外線を吸収するモノマー、特にこのモノマーは色素の耐光性を向上させるのに共重合するとよい;エチル-α-ヒドロキシメチルアクリレートなどのα位水酸基メチル置換アクリレート類などが挙げられる。
 前記ブロックコポリマー(分散剤)の分子量は、特に限定されないが、ゲルパーミエーションクロマトグラフィ(以下GPC)におけるスチレン換算の数平均分子量(以下数平均分子量はGPCのスチレン換算を言い、単に分子量という)で、例えば1,000以上、1,500以上、2,000以上または3,000以上であり、例えば300,000以下、100,000以下、または50,000以下である。前記分子量の範囲は、例えば、1,000~300,000、好ましくは1,500~100,000、さらに好ましくは2,000~50,000、さらに好ましくは3,000~50,000である。前記多孔質体原料の、前記分散媒中への分散安定性の観点からは、前記ブロックコポリマー(分散剤)の分子量が1,000以上であることが好ましい。また、前記ブロックコポリマー(分散剤)の、前記分散媒に対する溶解性の観点からは、前記ブロックコポリマー(分散剤)の分子量が300,000以下であることが好ましい。前記ブロックコポリマー(分散剤)の分子量が大きすぎると分散媒中での分散剤同士の凝集や分子間の絡まりが強くなりすぎて前記多孔質体原料の分散が出来ないおそれがある。
 前記ブロックコポリマー(分散剤)における、重量平均分子量と数平均分子量の比である分散度(以下PDIと称す)は、特に限定されない。リビングラジカル重合では非常に小さいPDI(~1.3)の高分子分散剤とすることができるが、本発明では前記ブロックコポリマー(分散剤)が前記したブロック構造をとることが重要であるので、PDIは大きくは関与しない。しかし、あまりに広いPDIであると、前記ブロックコポリマー(分散剤)が、分子量の大きいポリマーから分子量の小さいポリマーまで含むことになり、前記した分子量範囲以外の現象が起こる可能性があり好ましくない。本発明で用いる前記ブロックコポリマー(分散剤)では、PDIは好ましくは2.0以下、さらに好ましくは1.8以下である。
 つぎに、前記ブロックコポリマー(分散剤)中における疎水性ブロックと親水性ブロックの質量比は、特に限定されないが、例えば、前述のとおりである。この疎水性ブロックと親水性ブロックの質量比を適切に制御することで、例えば、本発明の多孔質体の製造方法において、前記多孔質体原料と前記分散媒との界面を適切な状態に維持することができる。これによって、例えば、前記多孔質体原料が前記分散媒中に粒子状に分散した状態を維持できるので、略球状の本発明の多孔質体を製造できる。また、例えば、前記疎水性ブロックと親水性ブロックの質量比を適切に制御することで、前記多孔質体原料と前記分散媒との界面において、親水性物質と疎水性物質との比を適切な状態に制御することができる。例えば、前記界面において、親水性物質または疎水性物質の一方が偏在すると、それが重合等を起こすことにより、スキン層が形成されるおそれがある。このスキン層により、多孔質体表面で貫通孔が塞がれてしまいやすい。しかし、前記界面において、親水性物質と疎水性物質との比を適切な状態に制御することで、スキン層の形成を防止することができる。ただし、これらの説明は例示であって、本発明を限定しない。
 つぎに本発明で用いる前記ブロックコポリマー(分散剤)を得る重合方法(製造方法)について説明する。この重合方法は、特に限定されないが、例えば、前述のとおり、有機ヨウ化物を重合開始化合物とし、有機リン化合物、有機窒素化合物または有機酸素化合物を触媒として、ラジカル発生剤を用いて付加重合性モノマー(疎水性モノマーおよび親水性モノマー)を重合する方法であっても良い。この重合方法は、金属化合物やリガンドを使用せず、ニトロキサイド、ジチオカルボン酸エステルやザンテートなどの特殊な化合物を使用しなくてもよく、従来の付加重合性モノマーとラジカル発生剤である重合開始剤を使用するラジカル重合に、有機ヨウ化物である開始化合物と触媒を併用するだけで、容易に行えるリビングラジカル重合である。
 上記重合方法は、下記一般反応式1で表される反応機構で進み、ドーマント種Polymer-X(P-X)の成長ラジカルへの可逆的活性反応であると考えられる。この重合機構は触媒の種類によって変わる可能性があるが、つぎのように進むと考えられる。下記式1では、重合開始剤から発生したP・がXAと反応して、in siteで触媒A・が生成する。A・はP-Xの活性化剤として作用して、この触媒作用によってP-Xは高い頻度で活性化する。
Figure JPOXMLDOC01-appb-M000013
 さらに詳しくは、ヨウ素(X)が結合した開始化合物の存在下、重合開始剤から生じるラジカルが、触媒の活性水素や活性ハロゲン原子を引き抜き、触媒ラジカルA・となる。ついでそのA・が開始化合物のXを引き抜きXAとなり、その開始化合物がラジカルとなって、そのラジカルにモノマーが重合し、すぐにXAからXを引き抜き、停止反応を防止する。さらに熱などによってA・が末端XからXを引き抜きXAと末端ラジカルとなってそこにモノマーが反応して、すぐに末端ラジカルにXを与え安定化させる。この繰り返しで重合が進行して分子量や構造の制御ができる。但し、場合によっては、副反応として、二分子停止反応や不均化を伴うことがある。
 前記リビングラジカル重合を開始させる開始化合物は、従来公知の有機ヨウ化物であって特に限定されない。具体的に例示すると、ヨウ化メチル、ヨウ化エチル、ヨウ化プロピル、ヨウ化イソプロピル、ヨウ化ブチル、ヨウ化t-ブチル;アイオドフェニルメタン、アイオドジフェニルメタン、アイオドトリフェニルメタン、2-アイオド-1-フェニルエタン、1-アイオド-1-フェニルエタン、1-アイオド-1,1-ジフェニルエタン、ジヨードメタンなどのアルキルヨウ化物;アイオドジクロロメタン、アイオドクロロメタン、アイオドトリクロロメタン、アイオドジブロモメタンなどのヨウ素原子を含む有機ハロゲン化物;1-アイオドエタノール、1-アイオドプロパノール、2-アイオドプロパノール、2-アイオド-2-プロパノール、2-アイオド-2-メチルプロパノール、2-フェニル-1-アイオドエタノール、2-フェニル-2-アイオドエタノールなどのヨウ化アルコール;それらのヨウ化アルコールを酢酸、酪酸、フマル酸などのカルボン酸化合物とのエステル化合物;アイオド酢酸、α-アイオドプロピオン酸、α-アイオド酪酸、α-アイオドイソ酪酸、α-アイオド吉草酸、α-アイオドイソ吉草酸、α-アイオドカプロン酸、α-アイオドフェニル酢酸、α-アイオドジフェニル酢酸、α-アイオド-α-フェニルプロピオン酸、α-アイオド-β-フェニルプロピオン酸、β-アイオドプロピオン酸、β-アイオド酪酸、β-アイオドイソ酪酸、β-アイオド吉草酸、β-アイオドイソ吉草酸、β-アイオドカプロン酸、β-アイオドフェニル酢酸、β-アイオドジフェニル酢酸、β-アイオド-α-フェニルプロピオン酸、β-アイオド-β-フェニルプロピオン酸などのヨウ化カルボン酸;それらヨウ化カルボン酸のメタノール、エタノール、フェノール、ベンジルアルコール、さらには前記したヨウ化アルコールなどとのエステル化物;それらのヨウ化カルボン酸の酸無水物;それらのヨウ化カルボン酸のクロライド、ブロマイドなどの酸無水物;ヨードアセトニトリル、2-シアノ-2-アイオドプロパン、2-シアノ-2-アイオドブタン、1-シアノ-1-アイオドシクロヘキサン、2-シアノ-2-アイオドバレロニトリルなどのシアノ基含有ヨウ化物などが挙げられる。また、ヨウ素を2つもつ2官能開始化合物も使用でき、例えば、1,2-ジアイオドエタン、1,2-ジアイオドテトラフロロエタン、1,2-ジアイオドテトラクロロエタン、1,2-ジアイオド-1-フェニルエタン、前記したα-アイオドイソ酪酸などのヨウ化カルボン酸とエチレングリコールなどのジオール、ヘキサメチレンジアミンなどのジアミンとの反応物などが挙げられる。なお、「アイオド」は「ヨード」と同義であり、ヨウ化物を表す。以下において同様である。また、前記開始化合物は、1種類のみ用いても2種類以上併用しても良い。
 また、これらの化合物は、例えば、市販品をそのまま使用しても良いし、従来公知の方法で得ることもできる。例えば、アゾビスイソブチロニトリルなどのアゾ化合物とヨウ素の反応によって得られるし、または前記した有機ヨウ化物のヨウ素の代わりにブロマイド、クロライドなどの他のハロゲン原子が置換した有機ハロゲン化物を、第4級アンモニウムアイオダイドやヨウ化ナトリウムなどのヨウ化物塩を使用しハロゲン交換反応させて本発明で用いる有機ヨウ化物を得ることができる。それらは特に限定されない。
 前記触媒としては、例えば、前記開始化合物のヨウ素原子を引き抜き、ラジカルとなる有機リン化合物、有機窒素化合物、または有機酸素化合物であって、好ましくは、ヨウ素原子を含むハロゲン化リン、フォスファイト系化合物、フォスフィネート系化合物である有機リン化合物、またはイミド系化合物、ヒダントイン系化合物である有機窒素化合物、またはフェノール系化合物、アイオドオキシフェニル化合物、ビタミン類である有機酸素化合物の1種以上から選ばれる。これらの化合物は特に限定されないが、具体的に例示すると、リン化合物では、ヨウ素原子を含むハロゲン化リン、フォスファイト系化合物、フォスフィネート系化合物であり、例えば、ジクロロアイオドリン、ジブロモアイオドリン、三ヨウ化リン、ジメチルフォスファイト、ジエチルフォスファイト、ジブチルフォスファイト、ジパーフロロエチルフォスフィネート、ジフェニルフォスファイト、ジベンジルフォスファイト、ビス(2-エチルヘキシル)フォスファイト、ビス(2,2,2-トリフルオロエチル)フォスファイト、ジアリルフォスファイト、エチレンフォスファイト、エトキシフェニルフォスフィネート、フェニルフェノキシフォスフィネート、エトキシメチルフォスフィネート、フェノキシメチルフォスフィネートなどが挙げられる。窒素化合物ではイミド系化合物、ヒダントイン系化合物であり、例えば、スクシンイミド、2,2-ジメチルスクシンイミド、α,α-ジメチル-β-メチルスクシンイミド、3-エチル-3-メチル-2,5-ピロリジンジオン、シス-1,2,3,6-テトラヒドロフタルイミド、α-メチル-α-プロピルスクシンイミド、5-メチルヘキサヒドロイソインドール-1,3-ジオン、2-フェニルスクシンイミド、α-メチル-α-フェニルスクシンイミド、2,3-ジアセトキシスクシンイミド、マレイミド、フタルイミド、4-メチルフタルイミド、N-クロロフタルイミド、N-ブロモフタルイミド、N-ブロモフタルイミド、4-ニトロフタルイミド、2,3-ナフタレンカルボキシイミド、ピロメリットジイミド、5-ブロモイソインドール-1,3-ジオン、N-クロロスクシンイミド、N-ブロモスクシンイミド、N-アイオドスクシンイミド、ヒダントイン、ジアイオドヒダントインなどが挙げられる。酸素化合物としては、芳香環に水酸基を有するフェノール性水酸基であるフェノール系化合物、そのフェノール性水酸基のヨウ素化物であるアイオドオキシフェニル化合物、ビタミン類であり、例えば、フェノール類としてフェノール、ヒドロキノン、メトキシヒドロキノン、t-ブチルフェノール、t-ブチルメチルフェノール、カテコール、レソルシノール、ジ-t-ブチルヒドロキシトルエン、ジメチルフェノール、トリメチルフェノール、ジ-t-ブチルメトキシフェノール、ヒドロキシスチレンを重合したポリマーまたはそのヒドロキシフェニル基担持ポリマー微粒子などが挙げられる。これらはモノマーの保存として重合禁止剤として添加されているので、市販品のモノマーを精製せずそのまま使用することで効果を発揮することもできる。アイオドオキシフェニル化合物としてはチモールジアイオダイドなどが挙げられ、ビタミン類としてはビタミンC、ビタミンEなどが挙げられる。
 前記触媒の量としては、特に限定されないが、例えば、前記重合開始剤のモル数未満である。前記触媒のモル数が多すぎると、重合が制御されすぎて重合が進行しないおそれがある。
 つぎに、本発明で使用される重合開始剤としては、特に限定されないが、例えば、通常用いられている有機過酸化物やアゾ化合物等の、従来公知の重合開始剤を使用することができる。具体例としては、ベンゾイルパーオキシド、ジクミルパーオキシド、ジイソプロピルパーオキシド、ジ-t-ブチルパーオキシド、t-ブチルパーオキシベンゾエート、t-ヘキシルパーオキシベンゾエート、t-ブチルパーオキシ-2-エチルヘキサノエート、t-ヘキシルパーオキシ-2-エチルヘキサノエート、1,1-ビス(t-ブチルパーオキシ)3,3,5-トリメチルシクロヘキサン、2,5-ジメチル-2,5-ビス(t-ブチルパーオキシ)ヘキシル-3,3-イソプロピルヒドロパーオキシド、t-ブチルヒドロパーオキシド、ジクミルヒドロパーオキシド、アセチルパーオキシド、ビス(4-t-ブチルシクロヘキシル)パーオキシジカーボネート、イソブチルパーオキシド、3,3,5-トリメチルヘキサノイルパーオキシド、ラウリルパーオキシド、1,1-ビス(t-ブチルパーオキシ)3,3,5-トリメチルシクロヘキサン、1,1-ビス(t-ヘキシルパーオキシ)3,3,5-トリメチルシクロヘキサン、2,2’-アゾビス(イソブチロニトリル)、2,2’-アゾビス(2,4-ジメチルバレロニトリル)、2,2’-アゾビス(イソブチレート)、2,2’-アゾビス(メトキシジメチルバレロニトリル)などが挙げられ、1種類のみ用いても2種類以上併用しても良い。
 前記重合開始剤の使用量は特に限定されないが、例えば、モノマーモル数に対して0.001~0.1モル倍、さらに好ましくは0.002~0.05モル倍である。前記重合開始剤の使用量があまりに少ないと重合が不十分になる恐れがあり、また、多すぎると付加重合モノマーだけのポリマーができてしまう恐れがある。
 以上のとおり、有機ヨウ化物である開始化合物、付加重合性モノマー、重合開始剤および触媒を少なくとも使用して重合することによって、本発明で用いる前記ブロックコポリマー(分散剤)を得ることができる。上記重合は、有機溶剤を使用しないバルクで重合を行ってもよいが、溶媒を使用する溶液重合が好ましい。用いる有機溶剤は特に限定されず、本発明に使用する有機ヨウ化物、触媒、付加重合性モノマーおよび重合開始剤を溶解する溶媒であればよい。前記有機溶剤を例示すると、ヘキサン、オクタン、デカン、イソデカン、シクロヘキサン、メチルシクロヘキサン、トルエン、キシレン、エチルベンゼン、クメンなどの炭化水素系溶剤;メタノール、エタノール、プロパノール、イソプロパノール、ブタノール、イソブタノール、ヘキサノール、ベンジルアルコール、シクロヘキサノールなどのアルコール系溶剤;エチレングリコール、ジエチレングリコール、プロピレングリコール、ジプロピレングリコール、メチルセロソルブ、エチルセロソルブ、ブチルセロソルブ、プロピレングリコールモノメチルエーテル、プロピレングリコールモノエチルエーテル、プロピレングリコールプロピルエーテル、ジグライム、トリグライム、ジプロピレングリコールジメチルエーテル、ブチルカルビトール、ブチルトリエチレングリコール、メチルジプロピレングリコール、メチルセロソルブアセテート、プロピレングリコールモノメチルエーテルアセテート、ジプロピレングリコールブチルエーテルアセテート、ジエチレングリコールモノブチルエーテルアセテートなどのグリコール系溶剤;ジエチルエーテル、ジプロピルエーテル、メチルシクロプロピルエーテル、テトラヒドロフラン、ジオキサン、アニソールなどのエーテル系溶剤;メチルエチルケトン、ジエチルケトン、メチルイソブチルケトン、シクロヘキサノン、イソホロン、アセトフェノンなどのケトン系溶剤;酢酸メチル、酢酸エチル、酢酸ブチル、酢酸プロピル、酪酸メチル、酪酸エチル、カプロラクトン、乳酸メチル、乳酸エチルなどのエステル系溶剤;クロロホルム、ジクロロエタンなどのハロゲン化溶剤;ジメチルホルムアミド、ジメチルアセトアミド、ピロリドン、N-メチルピロリドン、カプロラクタムなどのアミド系溶剤;ジメチルスルホキシド、スルホラン、テトラメチル尿素、エチレンカーボネート、プロピレンカーボネート、炭酸ジメチル、炭酸エチル、ニトロメタン、アセトニトリル、ニトロベンゼン、ジオクチルフタレートなどが挙げられ、1種類のみ用いても2種類以上併用しても良い。
 モノマー濃度としては、特に限定されないが、例えば5~80質量%、好ましくは20~60質量%である。重合をスムーズに完結させる観点からは、前記モノマー濃度が低すぎないことが好ましい。また、重合液の粘度が高くなりすぎ、攪拌が困難になったり、重合率が悪くなったりすることを防止する観点からは、前記モノマー濃度が高すぎないことが好ましい。
 重合温度は特に限定されず、0℃~150℃、さらに好ましくは30℃~120℃である。重合温度は、それぞれの重合開始剤の半減期によって調製される。また、重合時間は、モノマーがなくなるまで重合を続けることが好ましいが、特に限定されず、例えば、0.5時間~48時間、実用的な時間として好ましくは1時間~24時間、さらに好ましくは2時間~12時間である。
 前記重合反応の雰囲気は、特に限定されず、例えば大気中でそのまま重合してもよく、すなわち、系内に通常の範囲内で酸素が存在してもよいし、必要に応じて、酸素を除去するため窒素やアルゴン気流下で行ってもよい。また、使用する材料は、蒸留、活性炭やアルミナで不純物を除去してもよいが、市販品をそのまま使用できる。また、重合は、遮光下で行ってもよいし、ガラスのような透明容器中で行ってもなんら問題はない。
 前記ブロックコポリマー(分散剤)の製造方法(重合方法)の操作およびメカニズムは、例えば、以下のとおりである。まず、1官能の有機ヨウ化物を開始化合物として、少なくとも酸基を有する付加重合性モノマーを前記方法によって重合し、1つのポリマーブロック(Aブロックとする)を得る。このポリマー末端はヨウ素基で置換されているため安定化しており、再度モノマーを添加し、熱などによって解離させ、あるいは更に少しラジカル開始剤を少し追加して再び重合を開始することができる。
 このAブロックを取り出して精製して、再び有機溶剤に溶解させ、これを開始化合物として、次のモノマーを追加して、好ましくは触媒および重合開始剤を追加して重合することにより、ポリマー末端ヨウ素が解離して再度重合が開始し、BブロックがAブロックに連結したジブロックポリマーを得ることができる。また、Aブロックを形成後、ポリマーを取り出さずにそのままBブロックモノマーを加えて、好ましくは触媒および重合開始剤を加えて重合を行うことによって前記ブロックコポリマー(分散剤)を得ることができる。
 同様にして、上記ブロックの生成を逆にして、先に親水性のポリマーであるBブロックモノマーを重合して、ついで疎水性基を有するモノマーを少なくとも含むモノマーを重合してA-Bのジブロックポリマー(前記ブロックコポリマー)を得てもよい。
 本発明で用いる重合では、例えば、開始化合物の量によってポリマーの分子量をコントロールすることができる。より具体的には、例えば、開始化合物のモル数に対してモノマーのモル数を設定することで、任意の分子量、または分子量の大小を制御できる。例えば、開始化合物を1モル使用して、分子量100のモノマーを500モル使用して重合した場合、1×100×500=50,000の理論分子量を与えるものであり、すなわち、設定分子量として、
[開始化合物1モル×モノマー分子量×モノマー対開始化合物モル比]
で算出することができる。
 しかし、本発明で用いる重合方法では、二分子停止や不均化の副反応を伴う場合があり、上記の理論分子量にならない場合がある。これらの副反応がないポリマーが好ましいが、カップリングして分子量が大きくなっても、停止して分子量が小さくなっていてもよい。また、重合率が100%でなくてもよく、残ったモノマーは留去したり、ブロックポリマーを析出する際に除去したり、所望のブロックポリマーを得た後、重合開始剤や触媒を加えて重合を完結させてもよい。本発明で用いるジブロックポリマーを生成、含有していればよく、それぞれのブロックポリマー単位を含んでいてもなんら問題はない。好ましくは、本発明のブロックポリマーを50質量%以上、さらに好ましくは80質量%以上含有する前記ブロックコポリマー(分散剤)であればよい。また、前記した副反応を伴うことによってPDIは広くなるが、そのPDIは特に限定されず、好ましくは2.0以下、さらに好ましくは1.8以下である。
 以上のようにして、有機ヨウ化物を開始化合物として、付加重合性モノマー、重合開始剤および触媒を少なくとも使用して重合することによって、本発明で用いる前記ブロックコポリマー(分散剤)であるジブロックポリマーを得ることができる。ただし、前述のとおり、この製造方法(重合方法)は任意であり、本発明で用いる前記ブロックコポリマー(分散剤)は、どのような方法で製造しても良い。
[2-3.重合による多孔質体の製造]
 本発明の多孔質体の製造方法は、具体的には、例えば、以下のようにして行うことができる。なお、以下においては、主に、熱硬化性のモノマーおよびプレポリマーの少なくとも一方を含む前記多孔質体原料を用いた製造方法について説明する。また、前記熱硬化性のモノマーおよびプレポリマーの中でも、特に、エポキシモノマーおよびエポキシプレポリマーの少なくとも一方を含む前記多孔質体原料について説明する。ただし、前記多孔質体原料は、前述のとおり、以下の例に限定されず任意である。
 まず、モノマーおよびプレポリマーの少なくとも一方を含む多孔質体原料を、前記ブロックコポリマー(分散剤)を予め添加している分散媒中に分散させて分散液を調製する(分散液調製工程)。多孔質体原料については、前述のとおりである。前記分散液調製工程は、具体的には、例えば、少なくともポロゲンとなる溶媒を含む熱硬化性組成物と、前記ブロックコポリマー(分散剤)を予め添加している疎水性有機溶剤(分散媒)とを混合して熱硬化性組成物を疎水性有機溶剤中に粒子状に分散させる。前記熱硬化性組成物(多孔質体原料)は、例えば、エポキシ樹脂原料(エポキシモノマーおよびエポキシプレポリマーの少なくとも一方)、硬化剤およびポロゲンを含むエポキシ樹脂原料組成物である。そして、その後、例えば、前記分散液を加熱して前記重合工程を行う。この重合工程において、重合(硬化)によりエポキシ樹脂製の多孔質体を得る。その後、必要に応じ、前記多孔質体(粒子状硬化物)からポロゲン、溶媒、未反応物等を除去する。
 原料であるエポキシモノマーおよびエポキシプレポリマーについては前述のとおりであるが、なかでも、エポキシ当量が600以下でポロゲンに溶解可能なエポキシモノマーおよびエポキシプレポリマーが特に好ましい。
 本発明の多孔質体の製造方法で用いる前記硬化剤としては、特に限定されないが、例えば、前述のとおり、アミン類、ポリアミドアミン類、酸無水物、フェノール系などを挙げることができる。前記硬化剤のうち、多官能アミノ基含有化合物については、例えば、前述のとおりである。より具体的には、メタフェニレンジアミン、ジアミノジフェニルメタン、ジアミノジフェニルスルホン、ビス(4-アミノ-3-メチルシクロヘキシル)メタン、ビス(4-アミノシクロヘキシル)メタン、ポリアミン類とダイマー酸からなる脂肪族ポリアミドアミンなどが挙げられる。本発明においては、エポキシ樹脂と反応して水酸基を形成し、得られる多孔体に親水性を付与する、あるいは後で化学的に修飾することの出来る機能を有する硬化剤を用いることが好ましい。
 本発明の多孔質体の製造方法においては、硬化促進剤を使用することもできる。硬化促進剤としては、前述のとおり、特に限定されず、既知のあらゆる化合物を使用することができるが、例えば、トリエチルアミン、トリブチルアミン等の三級アミン、2-フェノール-4-メチルイミダゾール、2-エチル-4-メチルイミダゾール、2-フェノール-4,5-ジヒドロキシメチルイミダゾールなどのイミダゾール類、DBUおよびDBNのなどの強塩基などを好適に用いることができる。
 前記熱硬化性組成物(多孔質体原料)は、前述のとおり、例えば、エポキシ化合物(例えば、エポキシモノマーおよびエポキシプレポリマーの少なくとも一方)および硬化剤を含み、その他に、硬化促進剤、ポロゲン等を含んでいてもよい。この前記熱硬化性組成物(多孔質体原料)は、例えば、前記エポキシ化合物および前記硬化剤を、前記硬化促進剤および前記ポロゲンに混合して均一化することにより調製することができる。
 前記熱硬化性組成物中におけるエポキシ樹脂原料(例えば多官能エポキシ基含有化合物)と硬化剤(例えば多官能フェノール樹脂)の含有割合は、例えば、エポキシ樹脂原料中のエポキシ基1当量に対して硬化剤中の官能基(例えばフェノール性水酸基)が1.1~4当量、特に1.5~3当量となるように調製することが好ましい。例えば、エポキシ樹脂原料の当量比を上記下限以上とすると、得られる多孔性エポキシ樹脂の架橋密度を高めることができ、機械的強度、耐熱性、耐溶剤性等が向上する傾向にあり、他方、上記上限以下とすると、未反応の硬化剤を低減することができ、前記硬化剤が未反応のまま多孔性エポキシ樹脂中に残留することを抑制し、架橋密度を高めることができる傾向にある。
 また、前記熱硬化性組成物中のポロゲンとなる溶媒の含有割合は、例えば、得られる多孔性エポキシ樹脂粒子の細孔径、細孔分布等に影響し、ポロゲンの含有割合が多いと細孔径は大きく、少ないと細孔径は小さくなる傾向にある。また、ポロゲンの含有割合が多いと細孔分布はブロードとなり、少ないとシャープとなる傾向にある。
 前記熱硬化性組成物中のポロゲン溶媒の含有割合は、前記熱硬化性組成物に含まれる多官能エポキシ基含有化合物と多官能アミノ基含有化合物の合計に対して、通常50~500重量%であることが好ましく、100~400重量%であることがより好ましい。ポロゲンの含有割合が上記下限以上であるとより空孔率の高い多孔質構造を形成することができ、他方、上記上限以下であると得られる多孔性エポキシ樹脂の空孔率を適度な範囲に抑えることができ、機械的強度が向上する傾向にある。
 また、前記熱硬化性組成物には、前述のとおり、硬化促進剤を添加してもよい。前記硬化促進剤としては、特に限定されないが、例えば、前述のとおりである。
 また、前記熱硬化性組成物には、前記エポキシ樹脂原料および前記硬化剤以外の反応原料化合物を混合して用いてもよい。前記エポキシ樹脂原料および前記硬化剤と共に付加重合反応に供し得る反応原料化合物としては、例えば、前記エポキシ樹脂原料および前記硬化剤と共に付加重合し得るものであればよく、特に制限はないが、例えば、前述の、エポキシ樹脂以外のポリマーの原料として例示したモノマーおよびプレポリマーの1種または2種以上が挙げられる。ただし、多孔性エポキシ樹脂本来の耐衝撃性、耐薬品性、耐久性、取り扱い性、生産性等の特長を有効に得る上で、前記エポキシ樹脂原料および前記硬化剤以外の反応原料化合物は、全反応原料化合物中に30重量%以下、特に0~15重量%であることが好ましい。また、前記熱硬化性組成物には、前記エポキシ樹脂原料および前記硬化剤以外の非反応原料化合物を混合して用いてもよい。例えば一次粒子径が数nmから数十nmの微粉シリカを添加して増粘すると重合体の表面に孔のないスキン層が生成するのを低減する効果が得られる。
 前記熱硬化性組成物の調製方法としては特に制限されず、常温でまたは加温しながら多官能エポキシ基含有化合物、多官能アミノ基含有化合物およびポロゲンを混合する方法を採用してもよく、常温でまたは加温しながら多官能エポキシ基含有化合物および多官能アミノ基含有化合物の混合物をポロゲン中に添加して混合ないしは溶解させる方法を採用してもよい。
 つぎに、前記分散液調製工程において、例えば、十分に剪断力を与えて撹拌すれば、前記多孔質体原料(熱硬化性組成物)を粒子状に分散させることが可能である。この場合において、前記粒子の大きさや粒径分布を考慮して適切な方法をとることが出来る。例えば、前記多孔質体原料(熱硬化性組成物)の分散方法としては、十分な剪断力を与えられる方法で良い。より具体的には、例えば、プロペラ型、パドル型、タービン型、スクリュー型などの各種の形状の撹拌羽根を有する装置だけでなく、自転・公転ミキサーや試験管の底部を高速旋回して内容液を撹拌する「ボルテックスミキサー」、超音波撹拌、膜乳化法など公知の方法が使用できる。出来るだけ粒径が一定になる方法を選ぶことが好ましい。
 前記分散液調製工程においては、前述のとおり、例えば、前記熱硬化性組成物と、前記ブロックコポリマー(分散剤)を予め添加している疎水性有機溶剤(分散媒)とを混合して熱硬化性組成物を疎水性有機溶剤中に粒子状に分散させても良い。前記ブロックコポリマー(分散剤)を予め添加している疎水性有機溶剤(分散媒)中において、前記ブロックコポリマー(分散剤)濃度は、特に限定されないが、例えば、前述のとおり1~500g/L、2~300g/L、または3~250g/Lである。前記ブロックコポリマー濃度を上記下限以上とすると、粒径の制御が容易であったり、重合時の凝集を抑制することができ、上記上限以下とすると、重合時に泡が立ったり粘度が上昇することを抑制でき、製造が容易となる。そして、前述のとおり、熱硬化性組成物を疎水性有機溶剤中に粒子状に分散させた油中水滴型の乳化物を形成した状態で、次の重合工程を行うことができる。
 また、前記多孔質体原料を前記分散液中で重合させる重合工程において、分散剤(例えば、前記ブロックコポリマーまたは界面活性剤)の使用量は、特に限定されないが、前記エポキシ樹脂原料、前記硬化剤、およびポロゲンの合計量に対して、例えば、1~20重量%、または2~10重量%程度である。前記分散剤の使用量は、例えば、得られる多孔質体の平均粒径や粒度分布、粒子の凝集に影響する。前記分散剤の使用量が多いと平均粒径や粒度分布、粒子の凝集を制御とすることができ、少ないと泡立ちや粘度を低く保つことができる傾向にある。よって、前記分散剤の使用量が上記下限以上であると、原料混合液を均一に乳化できて粒度分布を狭い範囲にすることができたり、粒子の凝集を抑制することができる。また、上記上限以下であると、泡立ちや粘度の上昇を抑制することができ、製造が容易となる。
 前記重合工程において、反応温度は、特に限定されず、適宜設定可能である。前記反応温度は、基本的にはエポキシ樹脂と硬化剤の組合せによって決まり、また、撹拌速度やポロゲン、界面活性剤の使用量等によっても異なるが、例えば、20~250℃、40~220℃、または50~200℃である。前記加熱温度は、例えば、得られる多孔質体の細孔径に影響する。加熱温度が高いと得られる多孔質体の細孔径が小さくなり、加熱温度が低いと得られる多孔質体の細孔径が大きくなる傾向がある。加熱温度が適度に高いと付加重合反応が円滑に進行し、加熱温度が適度に低いと反応速度が速くなり過ぎることを防止し、多孔質構造をうまく形成することができる。
 前記重合工程において、反応時間も特に限定されず、適宜設定可能である。前記反応時間は、撹拌速度、加熱温度やポロゲン、界面活性剤の使用量等によっても異なるが、例えば、0.01~100hr、0.05~24hr、または0.1~20hrである。前記反応時間は、例えば、得られる多孔質体の反応率に影響する。反応時間が長いと反応率が高く未反応物が少ないため機械的強度が高くなる傾向があり、反応時間が短いと反応率が低く未反応物が多いため機械的強度が低くなる傾向がある。反応時間が適度に長いと付加重合反応が十分に進行して所望の多孔質構造を形成でき、適度に短いと撹拌による破砕などの可能性を低減することができる。
 また、前記重合工程において、前記分散液を攪拌しながら反応を行うことが好ましい。攪拌速度は特に限定されず、加熱温度や反応スケール、ポロゲン、界面活性剤の使用量等によっても異なるが、例えば、10~20,000rpm、30~10,000rpm、50~5,000rpm、50~800rpm、または100~400rpmである。なお、「rpm」は、1分間あたりの回転数を表す。前記撹拌速度は、例えば、得られる多孔質体の粒径に影響する。一般的に、撹拌速度が大きいと得られる多孔質体の粒径が小さくなり、撹拌速度が小さいと得られる多孔質体の粒径が大きくなる傾向がある。撹拌速度が適度に大きいと相分離等が抑制され、均一な粒径のものを得ることができ、撹拌速度が適度に小さいと粒子径が小さくなりすぎず、泡立ちも抑制可能である。
 前記重合工程が終了したら、前述のとおり、必要に応じ、前記多孔質体(粒子状硬化物)からポロゲン、溶媒、未反応物等を除去する。具体的には、例えば、前記多孔性微粒子を含む分散媒を多量の洗浄用溶媒で希釈して沈降粒子を遠心分離機で分けることを繰り返して十分に洗浄した後、減圧乾燥機で前記洗浄用溶媒を除く。なお、前記洗浄用溶媒は、分散媒とポロゲンに対する溶解性が高い溶媒が好ましく、また、沸点が低く除去しやすい溶媒が好ましい。前記洗浄用溶媒としては、具体的には、テトラヒドロフラン等が挙げられる。このようにして、本発明の多孔質体を得ることが出来る。なお、本発明の多孔質体の材質は、前述のとおり、特に限定されない。例えば、熱硬化性樹脂以外から形成された多孔質体の場合は、熱硬化性のモノマーおよびプレポリマーの少なくとも一方を含む前記多孔質体原料に代えて、多孔質体の材質に応じた多孔質体原料を用い、ポロゲンおよび硬化剤を用いなくても良い。
 また、製造した前記多孔質体は、例えば、物理的処理または化学的処理による表面の改質等を行っても良い。前記物理的処理または化学的処理は、例えば、クロマトグラフィー用の分離剤としての特性を向上させる目的で行うことができる。前記物理的処理または化学的処理としては、例えば、表面親水化、表面疎水化、官能基導入等が挙げられる。本発明の多孔質体は、例えば、前述のとおり、1~3級のアミノ基を含まない、または、酸処理により4級化する窒素原子を含まないことにより、前記アミノ基または前記窒素原子が、前記官能基導入(表面処理)の妨げになることを抑制または防止できる。
[3.多孔質体の形状、用途(使用方法)等]
 本発明の多孔質体の形状および大きさは、特に限定されない。本発明の多孔質体は、例えば、前述のとおり、多孔性粒子であってもよい。また、前記多孔性粒子は、例えば、略球状の粒子であってもよい。また、本発明の多孔質体の形状および大きさは、これに限定されず任意であり、例えば、バルク体でも薄膜(フィルム)状でもよい。例えば、前述のとおり、重合前の多孔質体原料が液体(例えば、溶液、分散液等)であることから、適切な型の中で重合することにより自由な形状を作ることができる。例えば、本発明の多孔質体は、バルクとしての四角形や円柱状、円筒状に、HPLCのカラムの中で作成すれば均一な多孔性を持つ一体型の充填剤として、ガラス板などの平板の間で作成すれば薄膜状のものが、疎水性溶媒中での乳化重合あるいは分散重合では粒子形状のものなど様々な形状のものを製造することができる。また、例えば、ガラス繊維、セルロースナノファイバー、カーボンファイバー、不織布や和紙などの補強材と組み合わせることも可能である。
 本発明の多孔質体の用途は特に限定されないが、例えば、新規な吸着分離剤としてとして非常に有用である。より具体的には、多孔性粒子である本発明の多孔質体は、例えば、クロマトグラフィー用の分離剤として用いることができる。前記クロマトグラフィーの分離対象物としては、例えば、タンパク質、ペプチド、アミノ酸、核酸等の生体関連物質やそれ以外の化学物質の分離、等が挙げられる。また、本発明の多孔性粒子の用途は、これに限定されず、例えば、化粧品用フィラー、タイヤ用フィラー、塗料・インキ用のフィラー、徐放性薬剤用基剤、反応触媒を担持してカラムリアクター用充填剤、殺菌剤、電池用セパレータ等、種々の用途に使用可能である。なお、電池用セパレータの場合は、例えば、薄膜状である本発明の多孔質体を用いてもよいし、例えば、多孔性粒子である本発明の多孔質体を、電極の表面にコーティングして電池用セパレータとすることができる。
 以下、本発明の実施例について説明する。ただし、本発明は、以下の実施例に限定されない。
<合成例:A-Bブロックコポリマー(分散剤)の合成>
 以下の合成例1~2のようにして、疎水性ポリマーブロックAおよび親水性ポリマーブロックBから形成されたA-Bブロックコポリマー(分散剤)を製造(合成)した。これらのブロックコポリマーは、構成するモノマーがすべて(メタ)アクリレート系モノマーで、A鎖のポリマーブロックが、疎水性基を有する(メタ)アクリレートであり、B鎖のポリマーブロックが親水性基を有する(メタ)アクリレートを構成成分とする。また、GPCにおけるポリスチレン換算の数平均分子量が2,000~100,000であり、そのPDIが1.6以下であり、疎水性基を有する(メタ)アクリレートからなるAのポリマーブロックの数平均分子量が80,000未満かつ全体の構成成分の20~98質量%である。なお、以下において、各物質の部数は、特に断らない限り、質量部(重量部)である。
[合成例1]
 撹拌機、還流コンデンサー、温度計および窒素導入管を取り付けた反応容器に、トルエン5.23部、ラウリルメタクリレート(以下、LMAと略記)5部、ヨウ素0.0495部、重合開始剤として2,2’-アゾビス(4-メトキシ-2,4-ジメチルバレロニトリル)(以下、V-70と略記)0.909部、アゾビスジメチルイソバレロニトリル(以下、V-65と略記)0.0183部、およびテトラブチルアンモニウムヨージド(以下、BNIと略す)0.0726部を仕込んで、窒素を流しながら60℃で撹拌した。16時間重合して、ポリマーブロックAを得た。これをサンプリングして、固形分を測定し、不揮発分から換算した重合転化率は90%であった。この時のGPCの示差屈折計での数平均分子量(以下、RI-Mnと略記)は16,500であり、PDIは1.27であった。
 次いで、トルエン2.33部、ポリエチレングリコールメタクリレート(以下、PEGMAと略記)9.34部、V-70を0.121部、加え、さらに、上記と同じ60℃で3時間重合することにより、B鎖を形成、B鎖の数平均分子量は2,100、PDIは1.28、重合転化率は87%であった。このようにしてA-Bブロックコポリマーの溶液を得た。この重合溶液をほぼ同重量のテトラヒドロフランで溶解後、大量のメタノール中に沈殿させ暫く放置した後上澄み液を除去して遠心分離した。その後、得られた沈殿物を同様にテトラヒドロフランに溶解しメタノール中へ沈殿させる工程を2回行った後、得られた沈殿物を乾燥して半流動体状のA-Bブロックコポリマー(分散剤)を得た。収率は41%であった。得られたA-Bブロックコポリマーの数平均分子量は18,700、PDIは1.27であった。以下、このようにして得られた本合成例(合成例1)のブロックコポリマー(分散剤)を「ブロックコポリマーK-1」と称す。
[合成例2]
 撹拌機、還流コンデンサー、温度計および窒素導入管を取り付けた反応容器に、トルエン5.23部、ラウリルメタクリレート(以下、LMAと略記)3部、ヨウ素0.0495部、重合開始剤として2,2’-アゾビス(4-メトキシ-2,4-ジメチルバレロニトリル)(以下、V-70と略記)0.909部、アゾビスジメチルイソバレロニトリル(以下、V-65と略記)0.0183部、およびテトラブチルアンモニウムヨージド(以下、BNIと略す)0.0726部を仕込んで、窒素を流しながら60℃で撹拌した。16時間重合して、ポリマーブロックAを得た。これをサンプリングして、固形分を測定し、不揮発分から換算した重合転化率は90%であった。この時のGPCの示差屈折計での数平均分子量(以下、RI-Mnと略記)は9800であり、PDIは1.19であった。
 次いで、トルエン2.33部、ポリエチレングリコールメタクリレート(以下、PEGMAと略記)4.0部、V-70を0.121部、加え、さらに、上記と同じ60℃で3時間重合することにより、B鎖を形成、B鎖の数平均分子量は900、PDIは1.27、重合転化率は88%であった。このようにしてA-Bブロックコポリマーの溶液を得た。この重合溶液をほぼ同重量のテトラヒドロフランで溶解後、大量のメタノール中に沈殿させ暫く放置した後上澄み液を除去して遠心分離した。その後、得られた沈殿物を同様にテトラヒドロフランに溶解しメタノール中へ沈殿させる工程を2回行った後、得られた沈殿物を乾燥して半流動体状のA-Bブロックコポリマー(分散剤)を得た。収率は42%であった。得られたA-Bブロックコポリマーの数平均分子量は10,700、PDIは1.22であった。以下、このようにして得られた本合成例(合成例1)のブロックコポリマー(分散剤)を「ブロックコポリマーK-2」と称す。
 以下の各実施例では、それぞれ、本発明の多孔性粒子を製造した。
〔実施例1〕
<多孔質体原料の分散液調製工程>
 ガラス製の5号サンプル管瓶(容量20ml)に、PEG200 2.75g、EHPE3150(ダイセル化学株式会社の商品名、下記化学式(E1)、n=10~15、2,2-ビス(ヒドロキシメチル)-1-ブタノールの1,2-エポキシ-4-(2-オキシラニル)シクロヘキサン付加物)1.0g、DL-92(硬化剤、下記化学式(F1)、n=3~10程度、明和化成製株式会社製)0.35g、PEG10000 0.15gを80℃加温下に均一に溶解した後、2-メチルイミダゾール(2-Methylimidazole、硬化促進剤)0.06gを加えて十分に溶解し均一な状態とし、多孔質体原料の分散液(重合液)を調製した。
<重合工程>
 上記の重合液を120℃の恒温槽中に1時間静置することにより、前記多孔質体原料を前記分散液中で重合させる重合工程を行った。得られた重合物をサンプル管ごと水槽に二日間浸けて重合物中の水溶性成分(PEG200、PEG10000)を水と置換することで除去した。この間適宜サンプル管瓶中の水が入れ替わる様にした。その後サンプル管を水槽から取り出し、送風乾燥機中でサンプル管中の多孔質体を十分に乾燥させて白色の本実施例のエポキシ樹脂多孔質体を得た。得られた多孔質体は、その内部に、多孔構造が連通している貫通孔を有していた。なお、この多孔質体の表面には、孔のほとんどないスキン層が薄く形成されていた。この多孔質体内部の貫通孔は、前記重合工程におけるスピノーダル分解により形成された貫通孔である。図1に、そのSEM写真を示す。
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000015
〔実施例2〕
 実施例1のEHPE3150の一部をエポキシ基のモル量が同じようになる様にTETRAD-C(テトラッド-Cともいう、三菱ガス化学株式会社の商品名)に置き換えたこと以外は、実施例1と同様にして本実施例の多孔質体を製造した。
〔実施例3〕
 実施例1の硬化促進剤をDBUに置き換えた以外は、実施例1と同様にして本実施例の多孔質体を製造した。
〔実施例4〕
 実施例1の硬化剤をMEH-7500(明和化成株式会社の商品名、トリフェニルメタン型フェノール樹脂)に置き換えた以外は、実施例1と同様にして本実施例の多孔質体を製造した。
〔比較例1〕
 実施例1に於いて、硬化剤としてDL-92の代わりにH-4(明和化成株式会社の商品名)を使用した以外は同様にしてバルク状の樹脂を製造した。得られた樹脂は、多孔構造が連通している孔を有していなかった。
〔比較例2〕
 実施例1において、エポキシ化合物としてEHPE-3150の代わりにTETRAD-C(三菱ガス化学株式会社の商品名)を使用した以外は同様にしてバルク状の樹脂を製造した。得られた樹脂は、多孔構造が連通している孔を有していなかった。
〔比較例3〕
<多孔質体原料の分散液調製工程>
 ガラス製の5号サンプル管瓶(容量20ml)に、PEG200 4.0g、グリシジルアミン型のエポキシ化合物であるTETRAD-C 1.0g、アミン型の硬化剤としてBACM(試薬、和光純薬株式会社の商品名)0.32g、を60℃加温下に均一に溶解し、多孔質体原料の分散液(重合液)を調製した。
<重合工程>
 上記の重合液を110℃の恒温槽中に1時間静置することで重合を行ない、得られた重合物をサンプル管ごと水槽に二日間浸けて重合物中の水溶性成分(PEG200)を水と置換することで除去した。この間適宜サンプル管瓶中の水が入れ替わる様にした。その後サンプル管を水槽から取り出し、送風乾燥機中でサンプル管中のモノリスを十分に乾燥させて白色のエポキシ樹脂多孔質体を得た。得られた多孔質体は、その内部に、多孔構造が連通している貫通孔を有していた。なお、この多孔質体の表面には、孔のほとんどないスキン層が薄く形成されていた。この多孔質体内部の貫通孔は、前記重合工程におけるスピノーダル分解により形成された貫通孔である。
[耐水、耐酸、耐アルカリの測定方法]
 前記実施例1~4の多孔質体および前記比較例1~3のエポキシ樹脂を、それぞれ5mm程度の大きさの立方体にしたのち、これを常温(25℃)の純水、1モル濃度の塩酸および苛性ソーダ水溶液に浸漬し24時間放置した。各サンプルの最大辺の大きさ(長さ)を浸漬前後にノギスで測定し、浸漬前との比率(長さ)を%で表した。収縮膨潤がない場合を100%(長さ)とした。この結果を、下記表1に示す。
Figure JPOXMLDOC01-appb-T000016
 さらに、以下のとおり、WO2017/026424実施例に記載の製造方法に準じることで、多孔性エポキシ粒子(多孔性粒子である多孔質体)を製造した。
〔実施例5:粒子1〕
<エポキシモノマー組成物(分散液)の調製>
 分散相として、100mLの四つ口フラスコにポリエチレングリコール200(和光純薬工業株式会社製)27.5重量部およびポリエチレングリコール10000(和光純薬工業株式会社製)1.25重量部、エポキシ当量170~190(平均180)のエポキシ化合物(商品名「EHPE3150」、(株)ダイセル製)10.0重量部、フェノールノボラック(硬化剤、明和化成株式会社製)3.2重量部、2-メチルイミダゾール(硬化促進剤、和光純薬工業株式会社製)0.55重量部を80℃に加熱下、撹拌して均一溶液(分散液)とした。
<重合工程および後処理>
 連続相として200mLフラスコにドデカン(和光純薬工業株式会社製)40.0gにブロックポリマーK-2(ポリラウリルメタクリレート(Mn=9200、PDI=1.17)-b-ポリ-ポリエチレングリコールメタクリレート(Mn=900)(ブロックポリマー全体Mn=10700、PDI=1.22、固形分濃度99%)2.4gを80℃で十分に混合溶解したものに前記の分散相を全量入れ400回転/分で5分間乳化分散後、回転数を50回転/分とした後120℃に昇温して1時間重合することで、多孔性のエポキシ粒子を得た。
 重合して得られた多孔性のエポキシ粒子をMEK(メチルエチルケトン)に入れ十分撹拌した後遠心分離機を用いて粒子を分離した。このMEKによる洗浄工程を10回繰り返してポロゲンや残存モノマー等を十分に除去した後、減圧乾燥してエポキシ樹脂からなる球形の多孔性粒子(多孔性粒子である本実施例の多孔質体)を11.85g得た。前記多孔性粒子の平均粒径は、26μmであった。この多孔性粒子は、その内部に、多孔構造が連通している貫通孔を有していた。また、前記球形の多孔性粒子(球形微粒子)の外観および粒子内部のSEM写真を図2に示した。このエポキシ樹脂製多孔性粒子の表面にはスキン層が無く、前記貫通孔の端部が、前記多孔性粒子の外部に向かって開口していた。平均粒径(レーザー式粒度計使用)が26.7μm、細孔径(水銀圧入式ポロシメーター使用)が330nmのものが得られた。
〔実施例6:粒子2〕
 ポリエチレングリコール10000(和光純薬工業株式会社製)の使用量を1.88重量部とした以外は〔実施例5:粒子1〕と同じにして本実施例の多孔性のエポキシ粒子(多孔性粒子である本発明の多孔質体)が得られた。このエポキシ粒子は、平均粒径が29.4μm、細孔径(水銀圧入式ポロシメーター使用)が1100nmであった。また、この多孔性粒子は、その内部に、多孔構造が連通している貫通孔を有していた。本実施例で製造した前記球形の多孔性粒子(球形微粒子)の外観および粒子内部のSEM写真を図3に示す。図示のとおり、このエポキシ樹脂製多孔性粒子の表面にはスキン層が無く、前記貫通孔の端部が、前記多孔性粒子の外部に向かって開口していた。
〔比較例4:粒子3〕
<エポキシモノマー組成物の調製>
 エポキシモノマーとして、エポキシ当量が95~110(平均102)である下記式(1)で表されるエポキシ化合物(商品名「テトラッド-C」、三菱ガス化学工業株式会社)2.00重量部、硬化剤として、アミン価が520~550である下記式(2)で表されるビス(4-アミノシクロヘキシル)メタン(東京化成工業株式会社製)1.15重量部、ポロゲンとして、平均分子量が200である下記式(3)で表されるポリエチレングリコール200(和光純薬工業株式会社製)8重量部を用い、これらを、自転・公転ミキサーの「あわとり練太郎」(株式会社シンキーの商品名)で5分間混合することで、エポキシモノマー組成物を得た。
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000019
<分散液調製工程>
 円筒状のガラス製サンプル瓶(内径19mm、高さ60mmの)に上記で得られたエポキシモノマー組成物11.15gを、分散媒としてドデカン10gに上記の前記ブロックコポリマー(分散剤)K-1を0.6g溶解したものの中に加え、分散液を調製した。
<重合工程および後処理>
 前記分散液を、撹拌翼で常温で毎分2000回転で30分間撹拌して乳化分散させた後、毎分回転数を、粒子が沈降および相互付着しない程度の回転数である50回転に下げて高温浴槽中温度140℃で60分間重合した。重合して得られたものをMEKに入れ十分撹拌した後遠心分離機を用いて粒子を分離した。このMEKによる洗浄工程を10回繰り返してポロゲンや残存モノマー等を十分に除去した後、減圧乾燥してエポキシ樹脂からなる球形の多孔性粒子を2.85g得た。前記多孔性粒子の平均粒径は、28μmであった。なお、このエポキシ樹脂製多孔性粒子は、その内部に、多孔構造が連通している貫通孔を有していた。また、このエポキシ樹脂製多孔性粒子の表面にはスキン層が無く、前記貫通孔の端部が、前記多孔性粒子の外部に向かって開口していた。
 これら実施例5、実施例6および比較例4の多孔質粒子について、メスシリンダーに粒子を入れ、常温(25℃)の純水、1モル濃度の塩酸および苛性ソーダ水溶液に浸漬し24時間放置後の高さを測定したこと以外は実施例1~4および比較例1~3と同様の方法で膨潤率を測定した。その結果を、下記表2に示す。
(表2)
[実施例5:粒子1]  純水;100%、1M苛性ソーダ水溶液;101%、1M塩酸水溶液;105%
[実施例6:粒子2]  純水;100%、1M苛性ソーダ水溶液;101%、1M塩酸水溶液;106%
[比較例4:粒子3]  純水;100%、1M苛性ソーダ水溶液;114%、1M塩酸水溶液;188%
 前記表1および表2に示したとおり、実施例の多孔質体は、特に酸性条件下において、比較例の多孔質体と比較して膨潤率が小さかったことから、酸性条件下での膨潤が抑制できていることが確認された。
 さらに、実施例5~6の多孔性粒子をクロマトグラフィー用の分離剤として用いたところ、良好な分離特性を得ることができた。
 以上説明した通り、本発明によれば、酸性条件下での膨潤が抑制された多孔質体および多孔質体の製造方法を提供することができる。本発明の多孔性粒子の用途は特に限定されないが、例えば、新規な吸着分離剤としてとして非常に有用である。より具体的には、本発明の多孔性粒子は、例えば、クロマトグラフィー用の分離剤として用いることができる。前記クロマトグラフィーの分離対象物としては、例えば、タンパク質、ペプチド、アミノ酸、核酸等の生体関連物質やそれ以外の化学物質の分離、等が挙げられる。また、本発明の多孔性粒子の用途は、これに限定されず、例えば、化粧品用フィラー、タイヤ用フィラー、塗料・インキ用のフィラー、徐放性薬剤用基剤、反応触媒を担持してカラムリアクター用充填剤、等、種々の用途に使用可能である。
 この出願は、2019年3月4日に出願された日本出願特願2019-038971を基礎とする優先権を主張し、その開示の全てをここに取り込む。

Claims (23)

  1.  エポキシ化合物と硬化剤との共重合体により形成された多孔質体であって、
     前記多孔質体は、1~3級のアミノ基を含まない多孔質体であり、かつ、その内部に、多孔構造が連通している孔を有することを特徴とする多孔質体。
  2.  エポキシ化合物と硬化剤との共重合体により形成された多孔質体であって、
     前記多孔質体は、酸処理により4級化する窒素原子を含まない多孔質体であり、かつ、その内部に、多孔構造が連通している孔を有することを特徴とする多孔質体。
  3.  前記エポキシ化合物が、1~3級のアミノ基を含まないエポキシ化合物である請求項1または2記載の多孔質体。
  4.  前記エポキシ化合物が、酸処理により4級化する窒素原子を含まないエポキシ化合物である請求項1から3のいずれか一項に記載の多孔質体。
  5.  前記エポキシ化合物が、下記化学式(E1)で表されるエポキシ化合物である請求項1から4のいずれか一項に記載の多孔質体。
    Figure JPOXMLDOC01-appb-C000001
     前記化学式(E1)中において、nは、正の整数であり、Rは、水素原子または置換基である。
  6.  前記化学式(E1)において、nが、10~15である請求項5記載の多孔質体。
  7.  前記化学式(E1)で表されるエポキシ化合物が、2,2-ビス(ヒドロキシメチル)-1-ブタノールの1,2-エポキシ-4-(2-オキシラニル)シクロヘキサン付加物である請求項5または6記載の多孔質体。
  8.  前記硬化剤が、1~3級のアミノ基を含まない硬化剤である請求項1から7のいずれか一項に記載の多孔質体。
  9.  前記硬化剤が、酸処理により4級化する窒素原子を含まない硬化剤である請求項1から8のいずれか一項に記載の多孔質体。
  10.  前記硬化剤が、フェノール化合物である請求項1から9のいずれか一項に記載の多孔質体。
  11.  前記フェノール化合物が、1分子中にフェノール性水酸基を3個以上含むフェノール化合物である請求項10記載の多孔質体。
  12.  前記多孔構造が連通している孔は、多孔構造が連通している貫通孔である請求項1から11のいずれか一項に記載の多孔質体。
  13.  前記貫通孔の端部が、前記多孔質体の外部に向かって開口している請求項12記載の多孔質体。
  14.  多孔性粒子である請求項1から13のいずれか一項に記載の多孔質体。
  15.  前記多孔性粒子が、略球状の粒子である請求項14記載の多孔質体。
  16.  前記多孔性粒子の長径が短径の1.6倍以下である請求項14または15記載の多孔質体。
  17.  前記多孔性粒子の平均粒径が0.5~30,000μmの範囲である請求項14から16のいずれか一項に記載の多孔質体。
  18.  エポキシ化合物と硬化剤とを含む多孔質体原料を、分散媒中に分散させて分散液を調製する分散液調製工程と、
     前記多孔質体原料を前記分散液中で重合させる重合工程と、を含み、
     前記重合工程において、スピノーダル分解により前記孔を形成する請求項1から17のいずれか一項に記載の多孔質体の製造方法。
  19.  前記分散液調製工程において、さらに、硬化促進剤を分散媒中に分散させる請求項18記載の多孔質体の製造方法。
  20.  前記分散液調製工程において、前記多孔質体原料を、分散剤とともに分散媒中に分散させる請求項18または19記載の多孔質体の製造方法。
  21.  前記分散剤が、疎水性ポリマーブロックおよび親水性ポリマーブロックを含んで形成されたブロックコポリマーである請求項20記載の多孔質体の製造方法。
  22.  さらに、前記分散剤を製造する分散剤製造工程を含み、
     前記分散剤製造工程が、リビングラジカル重合により前記疎水性ポリマーブロックおよび親水性ポリマーブロックの一方を形成する第1のリビングラジカル重合工程と、
     前記第1のリビングラジカル重合工程後に、リビングラジカル重合により前記疎水性ポリマーブロックおよび親水性ポリマーブロックの他方を形成する第2のリビングラジカル重合工程と、を含む
    請求項21記載の多孔質体の製造方法。
  23.  前記分散剤が、界面活性剤である請求項20記載の多孔質体の製造方法。
PCT/JP2020/008184 2019-03-04 2020-02-27 多孔質体および多孔質体の製造方法 WO2020179642A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2021504033A JP7132659B2 (ja) 2019-03-04 2020-02-27 多孔質体および多孔質体の製造方法
EP20765487.2A EP3789444A4 (en) 2019-03-04 2020-02-27 POROUS BODY AND METHOD OF MAKING POROUS BODY
US15/734,138 US11613618B2 (en) 2019-03-04 2020-02-27 Porous body, and method for producing porous body
CN202080002913.0A CN112218913B (zh) 2019-03-04 2020-02-27 多孔质体和多孔质体的制造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-038971 2019-03-04
JP2019038971 2019-03-04

Publications (1)

Publication Number Publication Date
WO2020179642A1 true WO2020179642A1 (ja) 2020-09-10

Family

ID=72338667

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/008184 WO2020179642A1 (ja) 2019-03-04 2020-02-27 多孔質体および多孔質体の製造方法

Country Status (5)

Country Link
US (1) US11613618B2 (ja)
EP (1) EP3789444A4 (ja)
JP (1) JP7132659B2 (ja)
CN (1) CN112218913B (ja)
WO (1) WO2020179642A1 (ja)

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4940367B1 (ja) 1970-10-07 1974-11-01
JP2003073526A (ja) * 2001-08-31 2003-03-12 Taiyo Ink Mfg Ltd 加熱型発泡剤、およびそれを用いた発泡樹脂組成物と発泡樹脂シート、ならびに発泡樹脂シートの製造方法
WO2011019033A1 (ja) * 2009-08-10 2011-02-17 国立大学法人東北大学 エポキシ樹脂硬化物多孔体、水質保持材、抗菌材及びエポキシ樹脂硬化物多孔体の製造方法
JP2011137183A (ja) * 2003-09-25 2011-07-14 Daicel Chemical Industries Ltd 耐薬品性を有する多孔性フィルム
JP2011148911A (ja) * 2010-01-22 2011-08-04 Yokohama Rubber Co Ltd:The 大型成型用樹脂組成物
JP5153142B2 (ja) 2005-01-07 2013-02-27 株式会社エマオス京都 エポキシ樹脂硬化物多孔体
JP2013067794A (ja) * 2011-09-09 2013-04-18 Hokko Chem Ind Co Ltd エポキシ樹脂系組成物
JP2014114399A (ja) * 2012-12-11 2014-06-26 Tosoh Corp 多孔質体、その製造方法及び用途
JP2015083688A (ja) 2008-07-28 2015-04-30 大日精化工業株式会社 水性顔料分散液、および使用
WO2017026426A1 (ja) * 2015-08-10 2017-02-16 国立大学法人京都大学 有機ポリマー製多孔性粒子、有機ポリマー製多孔性粒子の製造方法およびブロックコポリマー
JP2017037070A (ja) 2015-08-10 2017-02-16 三菱化学株式会社 分離剤及び液体クロマトグラフィー用カラム
WO2017026424A1 (ja) 2015-08-10 2017-02-16 国立大学法人京都大学 多孔性粒子、多孔性粒子の製造方法およびブロックコポリマー
JP2019029460A (ja) * 2017-07-27 2019-02-21 パナソニックIpマネジメント株式会社 パッケージ用組成物、半導体パッケージの製造方法及び半導体パッケージ
JP2019038971A (ja) 2017-08-29 2019-03-14 ユシロ化学工業株式会社 非鉄金属の引抜用潤滑剤

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060135710A1 (en) * 2004-12-17 2006-06-22 Resolution Performance Products Llc Epoxy resin compositions, methods of preparing and articles made therefrom
JP2009269948A (ja) 2008-04-30 2009-11-19 Emaus Kyoto:Kk 多孔体及びその製造方法
JP4911795B2 (ja) 2008-09-01 2012-04-04 積水化学工業株式会社 積層体の製造方法
JP5134480B2 (ja) 2008-09-29 2013-01-30 日東電工株式会社 エポキシ樹脂多孔質膜及びその製造方法
JP5601115B2 (ja) 2010-09-17 2014-10-08 デクセリアルズ株式会社 潜在性硬化剤の製造方法
JP4940367B1 (ja) 2011-06-13 2012-05-30 日東電工株式会社 非水電解質蓄電デバイス用セパレータ、非水電解質蓄電デバイス及びそれらの製造方法
EP2861530A1 (en) 2012-06-15 2015-04-22 Dow Global Technologies LLC Porous carbon compositions
JP6088206B2 (ja) 2012-10-30 2017-03-01 日信工業株式会社 多孔質構造体
JP5996373B2 (ja) 2012-10-30 2016-09-21 日信工業株式会社 多孔質構造体の製造方法
US10583403B2 (en) 2013-03-15 2020-03-10 Mitsubishi Chemical Corporation Resin composition, membrane-forming stock solution, porous membrane, and hollow fiber membrane, water treatment device, electrolyte support, and separator using porous membrane
CN103435969B (zh) 2013-09-03 2015-03-11 四川大学 一种高强度耐温开孔酚醛树脂泡沫及其制备方法
JP2015084297A (ja) 2013-10-25 2015-04-30 日東電工株式会社 非水電解質蓄電デバイス用セパレータ、非水電解質蓄電デバイス及びそれらの製造方法
JP6522464B2 (ja) 2015-08-10 2019-05-29 株式会社エマオス京都 複合膜及びその製造方法
JP6758558B2 (ja) 2015-08-10 2020-09-23 国立大学法人京都大学 シリカゲル製多孔性粒子およびその製造方法

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4940367B1 (ja) 1970-10-07 1974-11-01
JP2003073526A (ja) * 2001-08-31 2003-03-12 Taiyo Ink Mfg Ltd 加熱型発泡剤、およびそれを用いた発泡樹脂組成物と発泡樹脂シート、ならびに発泡樹脂シートの製造方法
JP2011137183A (ja) * 2003-09-25 2011-07-14 Daicel Chemical Industries Ltd 耐薬品性を有する多孔性フィルム
JP5153142B2 (ja) 2005-01-07 2013-02-27 株式会社エマオス京都 エポキシ樹脂硬化物多孔体
JP2015083688A (ja) 2008-07-28 2015-04-30 大日精化工業株式会社 水性顔料分散液、および使用
WO2011019033A1 (ja) * 2009-08-10 2011-02-17 国立大学法人東北大学 エポキシ樹脂硬化物多孔体、水質保持材、抗菌材及びエポキシ樹脂硬化物多孔体の製造方法
JP2011148911A (ja) * 2010-01-22 2011-08-04 Yokohama Rubber Co Ltd:The 大型成型用樹脂組成物
JP2013067794A (ja) * 2011-09-09 2013-04-18 Hokko Chem Ind Co Ltd エポキシ樹脂系組成物
JP2014114399A (ja) * 2012-12-11 2014-06-26 Tosoh Corp 多孔質体、その製造方法及び用途
WO2017026426A1 (ja) * 2015-08-10 2017-02-16 国立大学法人京都大学 有機ポリマー製多孔性粒子、有機ポリマー製多孔性粒子の製造方法およびブロックコポリマー
JP2017037070A (ja) 2015-08-10 2017-02-16 三菱化学株式会社 分離剤及び液体クロマトグラフィー用カラム
WO2017026424A1 (ja) 2015-08-10 2017-02-16 国立大学法人京都大学 多孔性粒子、多孔性粒子の製造方法およびブロックコポリマー
JP2019029460A (ja) * 2017-07-27 2019-02-21 パナソニックIpマネジメント株式会社 パッケージ用組成物、半導体パッケージの製造方法及び半導体パッケージ
JP2019038971A (ja) 2017-08-29 2019-03-14 ユシロ化学工業株式会社 非鉄金属の引抜用潤滑剤

Also Published As

Publication number Publication date
EP3789444A4 (en) 2022-03-02
US20210214514A1 (en) 2021-07-15
US11613618B2 (en) 2023-03-28
JPWO2020179642A1 (ja) 2021-06-10
CN112218913B (zh) 2023-10-27
EP3789444A1 (en) 2021-03-10
JP7132659B2 (ja) 2022-09-07
CN112218913A (zh) 2021-01-12

Similar Documents

Publication Publication Date Title
JP6644216B2 (ja) 有機ポリマー製多孔性粒子、有機ポリマー製多孔性粒子の製造方法およびブロックコポリマー
JP6644215B2 (ja) 多孔性粒子、多孔性粒子の製造方法およびブロックコポリマー
Zheng et al. Grafting of poly (alkyl (meth) acrylates) from swellable poly (DVB80-co-HEMA) microspheres by atom transfer radical polymerization
CN106010062B (zh) 亲水改性的氟化薄膜
TW200911355A (en) Hydrophilic membrane
CN104159657B (zh) 复合膜
JP6124162B2 (ja) 親水性改質フッ素化膜(iii)
WO2004009650A1 (ja) 多孔質形成性光硬化型樹脂組成物および多孔質樹脂硬化物
TWI729280B (zh) 聚合物之製造方法
WO2020179642A1 (ja) 多孔質体および多孔質体の製造方法
JP6758558B2 (ja) シリカゲル製多孔性粒子およびその製造方法
JP5283893B2 (ja) モノリス状有機多孔質体、その製造方法及びモノリス状有機多孔質イオン交換体
TW201141890A (en) Method for reacting ethylene/terafluoroethylene copolymer having functional group
CN113717361B (zh) 一种气相聚合制备聚酯膜的方法及聚酯膜和应用
JP2023078733A (ja) 白金族元素担持多孔性粒子及び白金族元素触媒、並びにこれらが充填されたカラム
Nechifor et al. Green solvents in polymer synthesis
JP4401433B1 (ja) 有機ポリマー多孔質体、及びその製造方法
US7863345B2 (en) Process for producing microparticulate hardening catalyst
Tang et al. Facile synthesis of micron-size Janus particles by one-pot suspension polymerization and their functional modification
JPH10324718A (ja) ハロゲン基含有多孔質樹脂の製造方法
Guodong Macromolecular architectures based on well-defined poly (pentafluorostyrene): Design, synthesis, characterization and applications
JP2004256775A (ja) 水性樹脂分散体の製造方法及びその利用
JPH11286518A (ja) シアノ基含有多孔質ポリマーおよびその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20765487

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021504033

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2020765487

Country of ref document: EP

Effective date: 20201201

NENP Non-entry into the national phase

Ref country code: DE