WO2011019033A1 - エポキシ樹脂硬化物多孔体、水質保持材、抗菌材及びエポキシ樹脂硬化物多孔体の製造方法 - Google Patents

エポキシ樹脂硬化物多孔体、水質保持材、抗菌材及びエポキシ樹脂硬化物多孔体の製造方法 Download PDF

Info

Publication number
WO2011019033A1
WO2011019033A1 PCT/JP2010/063538 JP2010063538W WO2011019033A1 WO 2011019033 A1 WO2011019033 A1 WO 2011019033A1 JP 2010063538 W JP2010063538 W JP 2010063538W WO 2011019033 A1 WO2011019033 A1 WO 2011019033A1
Authority
WO
WIPO (PCT)
Prior art keywords
epoxy resin
cured
alicyclic
porous
epoxy
Prior art date
Application number
PCT/JP2010/063538
Other languages
English (en)
French (fr)
Inventor
憲 細矢
拓也 久保
雄一 冨永
Original Assignee
国立大学法人東北大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人東北大学 filed Critical 国立大学法人東北大学
Priority to JP2011526766A priority Critical patent/JP5590682B2/ja
Publication of WO2011019033A1 publication Critical patent/WO2011019033A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/28Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof by elimination of a liquid phase from a macromolecular composition or article, e.g. drying of coagulum
    • C08J9/286Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof by elimination of a liquid phase from a macromolecular composition or article, e.g. drying of coagulum the liquid phase being a solvent for the monomers but not for the resulting macromolecular composition, i.e. macroporous or macroreticular polymers
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N25/00Biocides, pest repellants or attractants, or plant growth regulators, characterised by their forms, or by their non-active ingredients or by their methods of application, e.g. seed treatment or sequential application; Substances for reducing the noxious effect of the active ingredients to organisms other than pests
    • A01N25/08Biocides, pest repellants or attractants, or plant growth regulators, characterised by their forms, or by their non-active ingredients or by their methods of application, e.g. seed treatment or sequential application; Substances for reducing the noxious effect of the active ingredients to organisms other than pests containing solids as carriers or diluents
    • A01N25/10Macromolecular compounds
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N25/00Biocides, pest repellants or attractants, or plant growth regulators, characterised by their forms, or by their non-active ingredients or by their methods of application, e.g. seed treatment or sequential application; Substances for reducing the noxious effect of the active ingredients to organisms other than pests
    • A01N25/34Shaped forms, e.g. sheets, not provided for in any other sub-group of this main group
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N33/00Biocides, pest repellants or attractants, or plant growth regulators containing organic nitrogen compounds
    • A01N33/02Amines; Quaternary ammonium compounds
    • A01N33/12Quaternary ammonium compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/22Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material
    • B01J20/26Synthetic macromolecular compounds
    • B01J20/262Synthetic macromolecular compounds obtained otherwise than by reactions only involving carbon to carbon unsaturated bonds, e.g. obtained by polycondensation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/281Sorbents specially adapted for preparative, analytical or investigative chromatography
    • B01J20/282Porous sorbents
    • B01J20/285Porous sorbents based on polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/20Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the epoxy compounds used
    • C08G59/32Epoxy compounds containing three or more epoxy groups
    • C08G59/3218Carbocyclic compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/40Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
    • C08G59/50Amines
    • C08G59/5026Amines cycloaliphatic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L63/00Compositions of epoxy resins; Compositions of derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2303/00Specific treatment goals
    • C02F2303/04Disinfection
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2363/00Characterised by the use of epoxy resins; Derivatives of epoxy resins

Definitions

  • the present invention relates to a cured epoxy resin porous body, a water quality retaining material, an antibacterial material, and a method for producing a cured epoxy resin porous body.
  • Patent Documents 1 and 2 a cured epoxy resin porous body in which an alicyclic epoxy compound and an aromatic amine-based curing agent are combined, an aromatic epoxy compound and an alicyclic amine-based curing agent, Although the epoxy resin cured material porous body which combined these is described, combining the alicyclic epoxy compound and the alicyclic amine-based curing agent is not described.
  • a porous body in which an aromatic epoxy compound and an alicyclic amine-based curing agent are combined is described in the column of Examples, and an alicyclic epoxy compound and There is no description about a cured epoxy resin porous body combined with an alicyclic amine-based curing agent.
  • Patent Documents 1 and 2 do not disclose a cured alicyclic epoxy resin having a porous structure obtained by combining an alicyclic epoxy compound and an alicyclic amine-based curing agent.
  • conventional cured epoxy resin porous materials as described in Patent Documents 1 and 2 do not always have sufficient performance when applied to a separation medium such as column chromatography.
  • conventional cured epoxy resin porous bodies as described in Patent Documents 1 and 2 do not always have sufficient water quality retention performance when applied to water quality retaining materials, and retain water quality at a higher level. The appearance of a porous epoxy resin cured material capable of satisfying the demand has been desired.
  • the conventional cured epoxy resin porous body as described in Patent Documents 1 and 2 does not always provide sufficient antibacterial performance even when used as a raw material for producing an antibacterial material or an antibacterial material. .
  • This invention is made
  • a raw material for preparing antibacterial materials with sufficiently high performance, sufficiently high water quality retention performance, and sufficiently high antibacterial performance It is an object of the present invention to provide a water quality retaining material and an antibacterial material using the same, and a production method thereof.
  • the present inventors have obtained a mixed solution containing an epoxy compound, an amine curing agent, and a solvent inert to the epoxy compound and the amine curing agent.
  • an alicyclic epoxy compound having three or more epoxy groups in one molecule is used as the epoxy compound, and
  • an alicyclic amine curing agent as the amine curing agent, the epoxy resin curing with a porous structure despite the use of the alicyclic epoxy compound and the alicyclic amine curing agent.
  • the epoxy resin cured product porous body of the present invention includes an alicyclic epoxy compound having three or more epoxy groups in one molecule, an alicyclic amine curing agent, the alicyclic epoxy compound, and the alicyclic ring.
  • a cured epoxy resin cured product obtained by heating a mixed solution containing a solvent inert to the formula amine curing agent to obtain a cured product, and then removing the solvent from the cured product. is there.
  • the alicyclic epoxy compound is represented by the following general formula (1):
  • X represents an alicyclic hydrocarbon group having 3 to 8 carbon atoms which is bonded to the nitrogen atom (N) in the formula directly or via a linear alkylene group having 1 to 5 carbon atoms.
  • Y represents an epoxy group bonded to the nitrogen atom (N) in the formula directly or via a linear alkylene group having 1 to 5 carbon atoms, and m and n are such that the total number of Y is 3 or more.
  • M is an integer selected from 2 to 4, n is each independently an integer of 1 or 2, p is each independently an integer of 0 or 1, The sum of p and n is 2. ] It is preferable that it is a compound represented by these.
  • the alicyclic epoxy compound has the following general formulas (2) to (3):
  • the alicyclic amine curing agent is preferably an alicyclic amine compound having two or more primary amino groups in the molecule, isophorone diamine, More preferably, it is at least one selected from the group consisting of menthanediamine, bis (4-amino-3-methylcyclohexyl) methane, bis (4-aminocyclohexyl) methane, and modified products thereof.
  • the solvent is preferably at least one selected from polyalkylene glycol having a hydroxyl value of 50 mgKOH / g or more and derivatives thereof.
  • the water quality retaining material of the present invention comprises the above-mentioned cured epoxy resin material of the present invention. Moreover, the 1st antimicrobial material of this invention is equipped with the epoxy resin hardened material porous body of the said invention.
  • the second antibacterial material of the present invention comprises a quaternized amine-containing epoxy porous body obtained by quaternizing the amino group in the porous epoxy resin cured body of the present invention.
  • the manufacturing method of the epoxy resin hardened material porous body of the present invention includes an alicyclic epoxy compound containing three or more epoxy groups in one molecule, an alicyclic amine curing agent, and the alicyclic epoxy compound. And a cured solution containing a solvent inert to the alicyclic amine curing agent to obtain a cured product, and then removing the solvent from the cured product to obtain a porous epoxy resin This is a method for obtaining a cured product.
  • Epoxy resin cured product porous body that can be used as a raw material for preparing antibacterial materials having retention performance and sufficiently advanced antibacterial performance, a method for producing the same, and water quality retention using the same It becomes possible to provide a material and an antibacterial material.
  • FIG. 2 is a scanning electron micrograph of a cured epoxy resin porous material obtained in Example 1.
  • FIG. 2 is a scanning electron micrograph of a cured epoxy resin porous material obtained in Example 2.
  • FIG. 4 is a scanning electron micrograph of a cured epoxy resin porous material obtained in Example 3.
  • FIG. 3 is a scanning electron micrograph of the cured epoxy resin porous material obtained in Examples 4 to 7.
  • FIG. 3 is a scanning electron micrograph of the cured epoxy resin porous material obtained in Examples 8 to 11.
  • FIG. FIG. 2 is a chromatogram measured when alkylbenzenes were separated using a capillary column made of a cured epoxy resin material obtained in Example 1.
  • FIG. Turbidity of water in a cup with cut flowers when the water quality holding material comprising the cured epoxy resin obtained in Example 12 and Comparative Examples 2 to 3 was used and when the water quality holding material was not used, respectively. It is a graph which shows the relationship between and elapsed days.
  • 3 is a scanning electron micrograph of the cured epoxy resin obtained in Examples 13 to 15.
  • 4 is a scanning electron micrograph of cured epoxy resins obtained in Comparative Examples 4 to 9.
  • the epoxy resin cured product porous body of the present invention includes an alicyclic epoxy compound having three or more epoxy groups in one molecule, an alicyclic amine curing agent, the alicyclic epoxy compound, and the alicyclic ring.
  • a cured epoxy resin cured product obtained by heating a mixed solution containing a solvent inert to the formula amine curing agent to obtain a cured product, and then removing the solvent from the cured product. is there.
  • the epoxy resin cured product porous body of the present invention is obtained by utilizing the above-described method for producing a cured epoxy resin cured product of the present invention.
  • porous structure refers to the structure of the porous body formed by the above production method, and is a non-particle aggregation type structure in which the columnar epoxy resin cured product is branched in three dimensions. (Three-dimensional network structure: so-called co-continuous structure) is preferable.
  • an alicyclic epoxy compound having 3 or more (more preferably 3 to 5, particularly preferably 4) epoxy groups in one molecule is used.
  • an alicyclic epoxy compound having three or more epoxy groups in one molecule a alicyclic epoxy compound and an alicyclic amine curing agent that could not be produced conventionally are combined.
  • a cured epoxy resin cured product having a porous structure is produced when an alicyclic epoxy compound and an alicyclic amine curing agent are combined. I can't do it.
  • the alicyclic epoxy compound which has 3 or more epoxy groups in 1 molecule
  • the thing which has an alicyclic hydrocarbon group and 3 or more epoxy groups is utilized suitably can do.
  • the alicyclic epoxy compound having three or more epoxy groups in one molecule from the viewpoint of developing higher antibacterial properties, the alicyclic epoxy compound contains an N atom. It is preferable to use a material having the following general formula (1):
  • X represents an alicyclic hydrocarbon group having 3 to 8 carbon atoms which is bonded to the nitrogen atom (N) in the formula directly or via a linear alkylene group having 1 to 5 carbon atoms.
  • Y represents an epoxy group bonded to the nitrogen atom (N) in the formula directly or via a linear alkylene group having 1 to 5 carbon atoms, and m and n are such that the total number of Y is 3 or more.
  • M is an integer selected from 2 to 4, n is each independently an integer of 1 or 2, p is each independently an integer of 0 or 1, The sum of p and n is 2. ] The compound represented by these is more preferable.
  • X in the general formula (1) is bonded to the nitrogen atom (N) in the formula directly or via a linear alkylene group having 1 to 5 (more preferably 1 to 3, more preferably 1) carbon atoms. And an alicyclic hydrocarbon group having 3 to 8 carbon atoms (more preferably 4 to 7 and still more preferably 5 to 6).
  • the linear alkylene group that may exist between the nitrogen atom (N) and the alicyclic hydrocarbon group is a methylene group, an ethylene group, a propylene group, or the like. When the value exceeds the upper limit, the mechanical strength of the porous body tends to decrease.
  • X for example, when m in the formula is 2, the following formulas (I) to (VI):
  • Y in the general formula (1) is bonded to the nitrogen atom (N) in the formula directly or via a linear alkylene group having 1 to 5 carbon atoms (more preferably 1 to 3, more preferably 1). It is an epoxy group.
  • linear alkylene groups are the same as those described for X.
  • m and n in the general formula (1) are integers selected so that the total number of Y is 3 or more. When the total number of Y is less than 3, the number of epoxy groups in the compound is less than 3. Further, m in the formula (1) is an integer of 2 to 4 (more preferably 2). When the numerical value of m is less than the lower limit, the crosslinking reaction tends to be insufficient. On the other hand, when the upper limit is exceeded, the reactivity tends to decrease due to steric hindrance. Moreover, n in the said Formula (1) is an integer of 1 or 2 each independently (more preferably 2). If such a numerical value is less than the lower limit, the crosslinking reaction tends to be insufficient.
  • p in the said General formula (1) is an integer of 0 or 1 each independently. Such a value of p indicates the number of hydrogen atoms (H) bonded to the nitrogen atom (N) in the formula (1). Therefore, p and n existing in one bracket are p when the number of bonds (n) of the epoxy group (Y) to the nitrogen atom (N) is 1, and the number of bonds of the epoxy group (Y) ( When n) is 2, p is 0. Thus, in the above general formula (1), the sum of p and n existing in one parenthesis is 2.
  • At least one of the compounds represented by the formula is particularly preferred.
  • the alicyclic amine curing agent is not particularly limited as long as it can be used as a curing agent when producing an epoxy resin, and a compound having an alicyclic hydrocarbon group and an amino group is appropriately used. it can.
  • Such an alicyclic amine curing agent is preferably an alicyclic amine compound having two or more primary amino groups in the molecule from the viewpoint of achieving an efficient crosslinking reaction, More preferably, it is at least one selected from the group consisting of menthanediamine, bis (4-amino-3-methylcyclohexyl) methane, bis (4-aminocyclohexyl) methane, and modified products thereof.
  • Bis (4-amino-3-methylcyclohexyl) methane and bis (4-aminocyclohexyl) methane are particularly preferred.
  • modified amines include epoxy-modified products, carboxylic acid-modified products, urea-modified products, modified products using ketone compounds, modified products using silane compounds, and the like. What modified the cyclic amine compound by the well-known method can be used suitably.
  • the solvent used in the present invention is an inert solvent for the alicyclic epoxy compound and the alicyclic amine curing agent. Since such a solvent is inactive with respect to the alicyclic epoxy compound and the alicyclic amine curing agent, it is possible to cause reaction-induced phase separation (spinodal phase separation). It is one that can form a co-continuous structure (sponge-like structure) with an epoxy-based polymer by heat polymerization (that can be used as a so-called “porogen (pore forming agent)”).
  • such a solvent is present in a polymerization reaction that forms a porous polymer at a certain stage of polymerization, and is removed from the reaction mixture at a predetermined stage to thereby obtain a porous structure (particularly preferably a three-dimensional structure). It is possible to obtain a porous epoxy resin cured product having a network skeleton structure).
  • Such a solvent is more preferably one that can dissolve the alicyclic epoxy compound and the alicyclic amine curing agent.
  • a solvent include cellosolves such as methyl cellosolve and ethyl cellosolve, esters such as ethylene glycol monomethyl ether acetate and propylene glycol monomethyl ether acetate, or glycols such as polyethylene glycol and polypropylene glycol.
  • cellosolves such as methyl cellosolve and ethyl cellosolve
  • esters such as ethylene glycol monomethyl ether acetate and propylene glycol monomethyl ether acetate
  • glycols such as polyethylene glycol and polypropylene glycol.
  • Such a solvent can be used individually by 1 type or in combination of 2 or more types.
  • Such a solvent is preferably at least one selected from polyalkylene glycols having a hydroxyl value of 50 mgKOH / g or more (more preferably 100 to 1000 mgKOH / g) and derivatives thereof. If the hydroxyl value is less than the lower limit, the viscosity of the solvent becomes high, and it becomes difficult to make the pore diameter of the formed epoxy cured product porous body sufficiently large, or the hydrophilicity of the epoxy resin cured product porous body. Tend to decrease.
  • the content ratio of the alicyclic epoxy compound and the alicyclic amine curing agent in the mixed liquid is such that the amino group in the curing agent is 0 with respect to 1 equivalent of the epoxy group in the alicyclic epoxy compound. It is preferable that the amount be 3 to 1.2 equivalents (more preferably 0.5 to 1.0 equivalents). If the equivalent ratio of the curing agent is less than the lower limit, the crosslinking density of the epoxy resin cured product tends to be low, and heat resistance, solvent resistance, etc. tend to decrease. On the other hand, if the upper limit is exceeded, unreacted amino groups , And the curing agent tends to remain in the cured product unreacted or hinder the improvement of the crosslinking density.
  • the content ratio of the solvent in the mixed solution is preferably 50 to 90% by mass, and more preferably 60 to 80% by mass.
  • the content of such a solvent is less than the lower limit, a porous structure tends not to be formed.
  • the content exceeds the upper limit the porosity tends to be too high and the mechanical strength tends not to be maintained.
  • a curing accelerator may be further added.
  • a curing accelerator known ones can be appropriately used.
  • tertiary amines such as triethylamine and tributylamine, 2-phenol-4-methylimidazole, 2-ethyl-4-methylimidazole, Imidazoles such as 2-phenol-4,5-dihydroxymethylimidazole and the like may be used.
  • the method for preparing such a mixed solution is not particularly limited, and a method of mixing the alicyclic epoxy compound, the alicyclic amine curing agent and the solvent at room temperature or while heating may be adopted. Alternatively, a method may be employed in which a mixture of the alicyclic epoxy compound and the alicyclic amine curing agent is added to the solvent and mixed or dissolved at room temperature or while heating.
  • the heating conditions such as the heating temperature, time, and pressure of the mixed solution in obtaining the cured product are the alicyclic epoxy compound and the alicyclic amine.
  • the heating conditions are different depending on the type and amount of the alicyclic epoxy compound, the alicyclic amine curing agent and the solvent (porogen) to be used, and cannot be generally described.
  • the temperature is preferably 50 to 200 ° C, more preferably 130 to 170 ° C, and the heating time is preferably 60 to 360 minutes, more preferably 120 to 240 minutes.
  • the heating temperature and time are less than the lower limit, the reaction tends to be difficult due to a crosslinking reaction, whereas if the upper limit is exceeded, the reaction rate tends to be too high and a porous structure tends not to be formed.
  • the said heating temperature means the temperature of the said liquid mixture. Therefore, for example, when polymerizing by heating in a dryer, there is a difference between the temperature setting of the dryer and the true temperature of the mixed solution. It is necessary to do.
  • such heating conditions temperature, pressure, time
  • the optimum conditions for obtaining the desired porous structure may be obtained by confirming the structure by, for example, and appropriately determined based on the result.
  • the method for removing the solvent from the cured product after obtaining such a cured product may be any method that can remove the solvent from the cured product, and is not particularly limited.
  • the cured product is taken out from the mixed solution, and the solvent is removed by immersing it in water.
  • the cured product is taken out from the mixed solution and immersed in an organic solvent capable of dissolving the solvent.
  • the solvent is removed, and the cured product is taken out from the mixed solution, immersed in an organic solvent capable of dissolving the solvent, and then immersed in water and washed to remove the solvent.
  • a method capable of removing the solvent such as a method, can be appropriately employed.
  • curing agent are combined and used by the manufacturing method of such an epoxy resin hardened
  • the reason why the cured product can be produced is not necessarily clear, the present inventors speculate as follows. That is, first, when the mixed liquid is heated to polymerize the alicyclic epoxy compound and the alicyclic amine curing agent, the solvent is used for the alicyclic epoxy compound and the alicyclic amine curing agent. Therefore, when the polymerization proceeds and the polymer component increases, spinodal phase separation occurs and a co-continuous structure (sponge-like structure) is formed.
  • the epoxy resin cured product porous body of the present invention preferably has a porosity of 20% to 90%, more preferably 60 to 80%.
  • the porosity is less than the lower limit, when the cured epoxy resin porous material is used as a separation medium, the porosity tends to be too low and the practicality tends to be insufficient, and on the other hand, exceeds the upper limit.
  • the strength of the porous body is lowered and the practicality tends to be lowered.
  • the average pore diameter is preferably 0.5 to 50 ⁇ m, and more preferably 1 to 10 ⁇ m. If the average pore diameter is less than the lower limit, the pores are likely to be clogged due to clogging and the like, and the pressure during liquid feeding is set to a high pressure when used for applications that allow liquid to permeate (separation medium, etc.). When it exceeds the said upper limit, it exists in the tendency for the intensity
  • the porosity and average pore diameter of such a cured epoxy resin material are the type of alicyclic epoxy compound, alicyclic amine curing agent and solvent (porogen) used, and the mixture thereof.
  • the content varies depending on the content ratio and heating conditions. Therefore, in order to obtain a cured epoxy resin porous body having a target design, a phase diagram of the system may be prepared in advance, and optimal conditions may be selected as appropriate according to the target design (structure).
  • the shape of the porous epoxy resin cured product is not particularly limited, and may be any shape such as a sheet shape, a rod shape, a cylindrical shape, and the like according to the application.
  • the cured epoxy resin porous material of the present invention is a cured product of an epoxy resin, it has a functional group on the surface and can be subjected to surface modification according to the purpose by a graft reaction or the like. Moreover, since the porous epoxy resin cured product according to the present invention is three-dimensionally cross-linked, it is excellent in chemical resistance and heat resistance and can be used even in harsh environments.
  • the cured epoxy resin porous material of the present invention is suitably used for a separation medium (for example, a packing medium for a column for liquid chromatography) in addition to a water quality retaining material and an antibacterial material described below. Can do.
  • the water quality retaining material of the present invention comprises the above-mentioned cured epoxy resin material of the present invention.
  • a water quality holding material should just be equipped with the epoxy resin hardened
  • known materials that can be used for the water quality retaining material can be used in appropriate combination.
  • the water quality retaining material of the present invention may be used for retaining the water quality, and may be utilized as, for example, a freshness retaining material for cut flowers, or a freshness retaining material for water in a water tank.
  • the reason why the water quality retaining material of the present invention can exhibit excellent water quality retaining performance is not necessarily clear, but when used as an example for a freshness retaining material such as cut flowers, it will be discharged from cut flowers.
  • the cured epoxy resin porous material of the present invention has sufficient antibacterial performance. The present inventors infer that this is because the bacteria in water can be sufficiently sterilized.
  • the water quality retaining material of the present invention is easy to handle, environmentally friendly and hygienic.
  • the entire cured epoxy resin porous body in the water quality retaining material of the present invention is submerged in water. It is preferable to use a part of the water which is not submerged in water. As described above, the reason why a higher effect can be obtained by using a part of the cured epoxy resin porous body on the water surface is not necessarily clear, but water evaporates from the surface of the porous body on the water surface. As a result, the amount of pumped water in the porous body increases, and the substance adsorbed by the porous body in the water is pushed up to the upper part of the water.
  • the surface of the porous body in the underwater part is always kept in a state with little adsorbed material.
  • the present inventors speculate.
  • the water quality retaining material of the present invention when used for a freshness retaining material such as cut flowers, the water with cut flowers etc. can always be kept clear without frequent water change, and cut flowers due to impurities. This eliminates the occlusion of the conduit and constantly clears the cut flower stem so that the freshness of the cut flower can be maintained for a long time.
  • the form of the water quality retaining material of the present invention is not particularly limited, and the design may be appropriately changed according to the method of use and the like.
  • the water quality retaining material of the present invention may be molded into a filter shape, a tube shape, a rod shape or the like and placed in water for use.
  • the 1st antibacterial material of this invention is equipped with the epoxy resin hardened material porous body of the said invention.
  • a 1st antibacterial material should just be equipped with the epoxy resin hardened
  • known materials that can be used for antibacterial materials can be used in appropriate combination.
  • the second antibacterial material of the present invention comprises a quaternized amine-containing epoxy porous material obtained by quaternizing the amino group in the epoxy resin cured material porous material of the present invention.
  • a 2nd antimicrobial material should just be equipped with the said quaternized amine containing epoxy porous body, and another structure is not restrict
  • known materials that can be used for antibacterial materials can be used in appropriate combination.
  • the method for quaternizing the amino group in such a cured epoxy resin cured material is not particularly limited, and a known method capable of quaternizing the amino group can be appropriately employed.
  • the cured epoxy resin porous material is immersed in a known amine quaternizing agent such as hydrochloric acid aqueous solution, nitric acid aqueous solution, phosphoric acid aqueous solution, sulfuric acid aqueous solution, acetic acid aqueous solution, etc. You may employ
  • the quaternizing agent is sufficiently introduced into the pores of the cured epoxy resin porous body to sufficiently quaternize the amino group present in the porous body. From the viewpoint of making the quaternizing agent and the amino group sufficiently contacted, after immersing the porous epoxy resin cured body in the quaternizing agent, irradiating with ultrasonic waves Also good.
  • the method of using the first and second antibacterial materials of the present invention is not particularly limited.
  • the first and second antibacterial materials can be used together with building materials by coating or kneading on building materials such as building interior and exterior walls, floors, ceilings, and bran Alternatively, it may be widely used for medical instruments, cooking utensils, sinks, ventilation fans, air conditioning equipment, footwear, and the like.
  • Example 1 First, a reaction tube was prepared by coating the inner wall of a capillary tube having an inner system of 0.1 mm and a length of 1000 mm with a thin film of 3-aminopropyltriethoxysilane. Next, 0.93 g of an alicyclic epoxy compound represented by the above general formula (3) (hereinafter sometimes simply referred to as “TETRAD-C”), the following general formula (4):
  • the sealed container is put into an oil bath having a temperature of 140 ° C. (constant), heated for 4 hours, and reacted (polymerized) with TETRAD-C and BACM in the mixed solution to obtain a cured epoxy resin.
  • the sealed container was taken out from the oil bath and cooled to room temperature.
  • methanol is fed into the capillary tube, and polyethylene glycol is removed, so that a porous epoxy resin cured product (epoxy resin cured product porous body) is formed in the capillary tube.
  • the porosity of the epoxy resin cured product thus obtained was 70%, and the average pore diameter was 1.2 ⁇ m.
  • Example 2 Except that the temperature of the oil bath was changed to 150 ° C., a porous epoxy resin cured product (epoxy resin cured porous material) was obtained in the same manner as in Example 1.
  • the porosity of the cured epoxy resin obtained as described above was 70%, and the average pore diameter was 1.0 ⁇ m.
  • Example 3 Except that the temperature of the oil bath was changed to 135 ° C., a cured epoxy resin material (epoxy resin cured material porous body) having a porous structure was obtained in the same manner as in Example 1.
  • the porosity of the epoxy resin cured product thus obtained was 70%, and the average pore diameter was 1.5 ⁇ m.
  • FIGS. 1 to 3 Scanning electron micrographs of the cured epoxy resin porous bodies obtained in Examples 1 to 3 are shown in FIGS. 1 to 3, respectively.
  • the cured epoxy resin porous material of the present invention (Examples 1 to 3) is a combination of an alicyclic epoxy compound and an alicyclic amine.
  • a three-dimensional network skeleton structure was formed, and it was confirmed that the cured epoxy resin had a porous structure.
  • all of the cured epoxy resin porous bodies obtained in Examples 1 to 3 had voids communicating therewith.
  • FIGS. 1 to 3 in the case of producing a cured epoxy resin porous body by combining an alicyclic epoxy compound and an alicyclic amine, by changing the temperature, It was also found that the structure such as the pore size can be changed.
  • Example 1 Example 1 except that the amount of PEG 300 used was 3.6 g (Example 4), 4.0 g (Example 5), 4.2 g (Example 6), and 4.4 g (Example 7), respectively.
  • a cured epoxy resin product having a porous structure epoxy resin cured product porous body
  • Example 1 except that the amount of BACM used was 0.34 g (Example 4), 0.36 g (Example 5), 0.38 g (Example 6), and 0.4 g (Example 7), respectively. Similarly, a cured epoxy resin product having a porous structure (epoxy resin cured product porous body) was obtained.
  • the alicyclic amine (BACM) to be used is used. It has also been found that the structure such as the pore diameter can be easily changed by changing the amount of.
  • a non-alicyclic epoxy compound represented by the following (hereinafter referred to as “TEPIC” in some cases)
  • the amount of BACM used is changed to 0.37 g
  • polyethylene glycol (Nacalai) is used instead of PEG 300.
  • hydroxyl value 550 mgKOH / g Made by Tesque Co., Ltd., hydroxyl value 550 mgKOH / g:
  • 7.0 g of “PEG 200” is sometimes used, and the oil bath temperature (reaction temperature) is changed from 140 ° C. to 80 ° C.
  • a cured epoxy resin porous material for comparison was obtained.
  • such a cured epoxy resin was confirmed to have a porous structure.
  • the separation factor ( ⁇ (pentylbenzne / butylbenzene) ) of the cured epoxy resin obtained in Example 1 is 2.74, which is obtained using TEPIC in Comparative Example 1.
  • the resulting cured epoxy resin porous material had a separation factor ( ⁇ (pentylbenzne / butylbenzene) ) of 1.04. From such a result, the hydrophobicity of the cured epoxy resin material (Example 1) of the present invention is greatly improved in hydrophobicity as compared with the cured cured epoxy resin material (Comparative Example 1). It was confirmed.
  • the cured epoxy resin porous material of the present invention (Example 1) is separated from the material using hydrophobic interaction as compared with the cured epoxy resin cured material (Comparative Example 1).
  • Example 1 is separated from the material using hydrophobic interaction as compared with the cured epoxy resin cured material (Comparative Example 1).
  • Such an improvement in hydrophobicity is an effect obtained by using an alicyclic epoxy compound and an alicyclic amine curing agent as a raw material for the porous body.
  • the present inventors infer that the effect is achieved by using a combination of cyclic amine curing agents.
  • Example 1 In order to confirm the separation performance of the cured epoxy resin porous material of the present invention (Example 1), a capillary column in which the cured epoxy resin material is formed inside the capillary tube obtained in Example 1 was used. Attempts were made to separate alkylbenzenes. As such alkylbenzenes, benzene, toluene, ethylbenzene, propylbenzene, butylbenzene, pentylbenzene, and hexylbenzene were used.
  • Example 1 the cured epoxy resin porous material of the present invention (Example 1) functions sufficiently as a separation medium and can sufficiently separate alkylbenzenes. Moreover, when the theoretical plate number of the epoxy resin cured material porous body (Example 1) obtained in Example 1 was determined, it was found that the theoretical plate number was 10,000 or more, and the porous body had sufficiently high performance as a separation column. It was also found to have.
  • Example 12 The amount of TETRAD-C used was 17.4 g, the amount of BACM used was 11.2 g, the amount of PEG 300 used was 71.4 g, and instead of a capillary tube, a cylindrical Teflon (inner diameter 12 mm, length 150 mm) The same procedure as in Example 1 except that when a polyethylene glycol was extracted and removed, the cured epoxy resin was taken out of the Teflon (registered trademark) tube and subjected to ultrasonic cleaning using acetone. As a result, a cured epoxy resin porous body was obtained. In addition, as a result of the measurement by a scanning electron microscope, such a cured epoxy resin was confirmed to have a porous structure. The porosity of the cured epoxy resin obtained as described above was 75%, and the average pore diameter was 2.0 ⁇ m.
  • the epoxy resin cured product porous body (diameter 12 mm, length 120 mm) obtained in Comparative Example 2 was obtained in Comparative Example 2, and the other cup (hereinafter referred to as “Copp C”) was obtained in Comparative Example 3.
  • the cured epoxy resin porous body (diameter 12 mm, length 120 mm) was inserted so that each part was in contact with air. Further, the last cup (hereinafter referred to as “Copp D”) into which no porous body was inserted was used as it was. Then, the turbidity of water in the cups A to D was visually confirmed when a predetermined number of days had elapsed, and the turbidity was relatively evaluated.
  • a graph showing the relationship between elapsed days and turbidity is shown in FIG.
  • Example 13 0.93 g of an alicyclic epoxy compound represented by the above general formula (2) (hereinafter sometimes simply referred to as “BDAC”), and an alicyclic amine (BACM) represented by the above general formula (4) 0.47 g and 3.6 g of polyethylene glycol (PEG 300) were prepared, and these were sufficiently mixed under atmospheric pressure at room temperature and degassed to prepare a mixed solution. Next, the mixed solution was poured into the reaction tube (inner diameter 12 mm, length 150 mm), sealed at both ends of the tube, and a sealed container filled with the mixed solution was obtained. Thereafter, the sealed container is put into an oil bath having a temperature of 140 ° C. (constant) and heated for 4 hours.
  • BDAC alicyclic epoxy compound represented by the above general formula (2)
  • ABM alicyclic amine
  • PEG 300 polyethylene glycol
  • Example 14 Except that the temperature of the oil bath was set to 150 ° C., a porous epoxy resin cured product (epoxy resin cured porous body: indicated as “BDB02” in FIG. 9) was obtained in the same manner as in Example 13.
  • Example 15 Except that the temperature of the oil bath was 160 ° C., a porous epoxy resin cured product (epoxy resin cured porous body: indicated as “BDB03” in FIG. 9) was obtained in the same manner as in Example 13.
  • HBADE an alicyclic epoxy compound represented by the following (hereinafter referred to as “HBADE” in some cases)
  • the amount of BACM used was changed to 0, 29, and instead of PEG 300, manufactured by Wako Pure Chemical Industries, Ltd.
  • PEG 600 polyethylene glycol
  • the oil bath temperature was 160 ° C.
  • An epoxy resin cured product (shown as “HB01” in FIG. 10) was obtained.
  • Comparative Example 5 A cured epoxy resin product (shown as “HB02” in FIG. 10) for comparison was obtained in the same manner as in Comparative Example 4 except that the temperature of the oil bath was set to 170 ° C.
  • Comparative Example 6 A cured epoxy resin product (shown as “HB03” in FIG. 10) for comparison was obtained in the same manner as in Comparative Example 4 except that the temperature of the oil bath was 180 ° C.
  • Comparative Example 7 In the same manner as in Comparative Example 4 except that 3.6 g of polyethylene glycol (hydroxyl value 110 mg KOH / g: hereinafter sometimes referred to simply as “PEG 1000”) manufactured by Wako Pure Chemical Industries, Ltd. was used instead of PEG 600. An epoxy resin cured product (shown as “HB04” in FIG. 10) was obtained.
  • PEG 1000 polyethylene glycol
  • Comparative Example 8 A cured epoxy resin product (shown as “HB05” in FIG. 10) for comparison was obtained in the same manner as in Comparative Example 7 except that the temperature of the oil bath was set to 170 ° C.
  • an alicyclic epoxy compound having at least three epoxy groups in one molecule is used. It turns out that it is necessary to use.
  • Example 16 7.44 g of the alicyclic epoxy compound (BDAC) represented by the above general formula (2), 3.7 g of the alicyclic amine (BACM) represented by the above general formula (4), polyethylene glycol (PEG 300 36.8 g) was prepared, and these were sufficiently mixed at room temperature under atmospheric pressure and degassed to prepare a mixed solution. Next, the mixed solution was poured into a Teflon (registered trademark) tube (inner system 12 mm, length 150 mm), sealed at both ends of the tube, and the interior was filled with the mixed solution. A sealed container was obtained. Thereafter, the sealed container is put into an oil bath having a temperature of 140 ° C.
  • Example 17 After the epoxy resin cured product porous body obtained in Example 16 was completely dried, it was immersed in a 1.0 N hydrochloric acid aqueous solution, reacted with ultrasonic irradiation for 15 minutes, and the amino group in the porous body was Was quaternized to obtain a quaternized amine-containing epoxy porous body.
  • Comparative Example 11 After the epoxy resin cured porous body obtained in Comparative Example 10 was completely dried, it was immersed in a 1.0 N aqueous hydrochloric acid solution and irradiated with ultrasonic waves for 15 minutes to react with the porous body. The amino group was quaternized to obtain a quaternized amine-containing epoxy porous material for comparison.
  • the antibacterial material (4.1 g) made of the containing epoxy porous body was charged, and the antibacterial material (4.1 g) made of the quaternized amine-containing epoxy porous material obtained in Comparative Example 11 was put into the beaker B. In addition, none of the antibacterial materials were used in the beaker C. Then, after adding each antibacterial material, each sample water in beakers A to C after 10 minutes has been dropped onto a bacterial culture sheet (trade name “Petrifilm”: manufactured by 3M) to culture the bacteria. Then, the amount of bacteria was examined to evaluate the antibacterial performance of each antibacterial material. In addition, even after 4 days, each sample water was collected in the same manner to cultivate bacteria, and the amount of bacteria was examined.
  • FIG. 12 A photograph showing the form of the organism on the bacterial culture sheet in which the sample water in the beaker using the antibacterial material obtained in step (water 10 minutes after addition of the antibacterial material) was dropped is shown in FIG. 12, and the antibacterial material was not used.
  • FIG. 12 A photograph showing the form of the organism on the bacterial culture sheet
  • Table 1 shows the number of bacteria when the sample water in each beaker after 4 days is used. The number of bacteria is a number obtained by counting the number of colonies colored in the bacterial culture sheet.
  • seat when not using an antibacterial material as shown in FIG. 13 was colored in the whole background, and there existed bacteria that could not be counted.
  • the antibacterial material of the present invention Example 17
  • the generation of bacteria was sufficiently suppressed
  • the antibacterial material of the present invention Example 17
  • the present invention is a cured epoxy resin product having a porous structure obtained by combining an alicyclic epoxy compound and an alicyclic amine curing agent, and has sufficiently high performance as a separation medium.
  • a cured epoxy resin porous body that can be used as a raw material when preparing an antibacterial material having a sufficiently high water quality retention performance and a sufficiently high antibacterial performance, and a method for producing the same, and It becomes possible to provide a water quality retaining material and an antibacterial material using the same. Therefore, the cured epoxy resin porous material of the present invention can be suitably used for various separation media, water quality retention materials, antibacterial materials, and the like.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Engineering & Computer Science (AREA)
  • Plant Pathology (AREA)
  • Zoology (AREA)
  • Pest Control & Pesticides (AREA)
  • Environmental Sciences (AREA)
  • Dentistry (AREA)
  • Analytical Chemistry (AREA)
  • Wood Science & Technology (AREA)
  • Agronomy & Crop Science (AREA)
  • Toxicology (AREA)
  • Materials Engineering (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
  • Epoxy Resins (AREA)
  • Agricultural Chemicals And Associated Chemicals (AREA)
  • Water Treatment By Sorption (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Abstract

 1分子中に3つ以上のエポキシ基を有する脂環式エポキシ化合物と、脂環式アミン硬化剤と、前記脂環式エポキシ化合物及び前記脂環式アミン硬化剤に対して不活性な溶媒とを含有する混合液を加熱して硬化物を得た後、前記硬化物から前記溶媒を除去することにより得られる多孔質構造のエポキシ樹脂硬化物である、エポキシ樹脂硬化物多孔体。

Description

エポキシ樹脂硬化物多孔体、水質保持材、抗菌材及びエポキシ樹脂硬化物多孔体の製造方法
 本発明は、エポキシ樹脂硬化物多孔体、水質保持材、抗菌材及びエポキシ樹脂硬化物多孔体の製造方法に関する。
 従来から、水質保持材やカラムクロマトグラフィー等に利用可能な多孔質構造の架橋型ポリマー樹脂の研究がなされてきた。そして、このような多孔質構造の架橋型ポリマー樹脂としては、エポキシ樹脂の硬化物からなる多孔体やその製造方法が開示されている。例えば、特開2008-13625号公報(特許文献1)や国際公開第2006/073173号パンフレット(特許文献2)においては、エポキシ樹脂と硬化剤とをポロゲンとしての不活性溶媒に溶解した混合液を加熱し、重合して硬化物を得た後、かかる硬化物からポロゲンを除去して得られるエポキシ樹脂硬化物多孔体が開示されている。
 しかしながら、上記特許文献1~2においては、脂環式エポキシ化合物と芳香族アミン系の硬化剤とを組み合わせたエポキシ樹脂硬化物多孔体と、芳香族エポキシ化合物と脂環式アミン系の硬化剤とを組み合わせたエポキシ樹脂硬化物多孔体は記載されているものの、脂環式エポキシ化合物と脂環式アミン系の硬化剤とを組み合わせることは記載されていない。実際に、上記特許文献1~2においては、実施例の欄において、芳香族エポキシ化合物と脂環式アミン系の硬化剤とを組み合わせた多孔体等が記載されており、脂環式エポキシ化合物と脂環式アミン系の硬化剤とを組み合わせたエポキシ樹脂硬化物多孔体については全く記載されていない。このように、特許文献1~2には、脂環式エポキシ化合物と脂環式アミン系の硬化剤とを組み合わせて得られる多孔質構造の脂環式エポキシ樹脂硬化物は開示されていない。また、特許文献1~2に記載のような従来のエポキシ樹脂硬化物多孔体は、これをカラムクロマトグラフィー等の分離媒体に応用した場合に必ずしも十分な性能が得られなかった。更に、特許文献1~2に記載のような従来のエポキシ樹脂硬化物多孔体は、水質保持材に応用した場合に水質保持性能が必ずしも十分なものではなく、より高い水準で水質を保持することが可能なエポキシ樹脂硬化物多孔体の出現が望まれていた。また、特許文献1~2に記載のような従来のエポキシ樹脂硬化物多孔体は、抗菌材や抗菌材を製造するための原料として使用しても必ずしも十分な抗菌性能が得られるものではなかった。
特開2008-13625号公報 国際公開第2006/073173号パンフレット
 本発明は、上記従来技術の有する課題に鑑みてなされたものであり、脂環式エポキシ化合物と脂環式アミン硬化剤とを組み合わせて得られる多孔質構造のエポキシ樹脂硬化物であり、分離媒体としての性能が十分に高く、十分に高度な水質保持性能を有し、しかも十分に高度な抗菌性能を有する抗菌材を調製する際の原料としても利用することが可能なエポキシ樹脂硬化物多孔体及びその製造方法、並びに、それを用いた水質保持材及び抗菌材を提供することを目的とする。
 本発明者らは、上記目的を達成すべく鋭意研究を重ねた結果、エポキシ化合物と、アミン硬化剤と、前記エポキシ化合物及び前記アミン硬化剤に対して不活性な溶媒とを含有する混合液を加熱して得られる硬化物から前記溶媒を除去することによってエポキシ樹脂硬化物を製造する方法に、前記エポキシ化合物として1分子中に3つ以上のエポキシ基を有する脂環式エポキシ化合物を用い且つ前記アミン硬化剤として脂環式のアミン硬化剤を用いることにより、驚くべきことに、脂環式エポキシ化合物と脂環式アミン硬化剤とを用いているにもかかわらず、多孔質構造のエポキシ樹脂硬化物(エポキシ樹脂硬化物多孔体)が得られ、かかるエポキシ樹脂硬化物多孔体が分離媒体としての性能が十分に高く、十分に高度な水質保持性能を有し、しかも十分に高度な抗菌性能を有する抗菌材を調製する際の原料としても利用可能なものとなることを見出し、本発明を完成するに至った。
 すなわち、本発明のエポキシ樹脂硬化物多孔体は、1分子中に3つ以上のエポキシ基を有する脂環式エポキシ化合物と、脂環式アミン硬化剤と、前記脂環式エポキシ化合物及び前記脂環式アミン硬化剤に対して不活性な溶媒とを含有する混合液を加熱して硬化物を得た後、前記硬化物から前記溶媒を除去することにより得られる多孔質構造のエポキシ樹脂硬化物である。
 上記本発明のエポキシ樹脂硬化物多孔体においては、前記脂環式エポキシ化合物が、下記一般式(1):
Figure JPOXMLDOC01-appb-C000003
[式(1)中、Xは式中の窒素原子(N)と直接又は炭素数が1~5の直鎖アルキレン基を介して結合する炭素数が3~8の脂環式炭化水素基を示し、Yは式中の窒素原子(N)と直接又は炭素数が1~5の直鎖アルキレン基を介して結合するエポキシ基を示し、m及びnはYの総数が3以上となるようにして選択される整数であって、mは2~4のうちのいずれかの整数を示し、nはそれぞれ独立に1又は2の整数を示し、pはそれぞれ独立に0又は1の整数を示し、pとnとの和が2である。]
で表される化合物であることが好ましい。
 また、上記本発明のエポキシ樹脂硬化物多孔体においては、前記脂環式エポキシ化合物が、下記一般式(2)~(3):
Figure JPOXMLDOC01-appb-C000004
で表される化合物のうちの少なくとも1種であることが好ましい。
 さらに、上記本発明のエポキシ樹脂硬化物多孔体においては、前記脂環式アミン硬化剤が、分子内に1級アミノ基を2つ以上有する脂環式アミン化合物であることが好ましく、イソホロンジアミン、メンタンジアミン、ビス(4-アミノ-3-メチルシクロヘキシル)メタン、ビス(4-アミノシクロヘキシル)メタン、及びこれらの変性物からなる群の中から選択される少なくとも1種であることがより好ましい。
 また、上記本発明のエポキシ樹脂硬化物多孔体においては、前記溶媒が、水酸基価が50mgKOH/g以上のポリアルキレングリコール及びその誘導体の中から選択される少なくとも1種であることが好ましい。
 本発明の水質保持材は、上記本発明のエポキシ樹脂硬化物多孔体を備えるものである。また、本発明の第一の抗菌材は、上記本発明のエポキシ樹脂硬化物多孔体を備えるものである。
 さらに、本発明の第二の抗菌材は、上記本発明のエポキシ樹脂硬化物多孔体中のアミノ基を4級化して得られる4級化アミン含有エポキシ多孔体を備えるものである。
 また、本発明のエポキシ樹脂硬化物多孔体の製造方法は、1分子中に3つ以上のエポキシ基を含有する脂環式エポキシ化合物と、脂環式アミン硬化剤と、前記脂環式エポキシ化合物及び前記脂環式アミン硬化剤に対して不活性な溶媒とを含有する混合液を加熱して硬化物を得た後、前記硬化物から前記溶媒を除去することにより、多孔質構造のエポキシ樹脂硬化物を得る方法である。
 本発明によれば、脂環式エポキシ化合物と脂環式アミン硬化剤とを組み合わせて得られる多孔質構造のエポキシ樹脂硬化物であり、分離媒体としての性能が十分に高く、十分に高度な水質保持性能を有し、しかも十分に高度な抗菌性能を有する抗菌材を調製する際の原料としても利用することが可能なエポキシ樹脂硬化物多孔体及びその製造方法、並びに、それを用いた水質保持材及び抗菌材を提供することが可能となる。
実施例1で得られたエポキシ樹脂硬化物多孔体の走査型電子顕微鏡写真である。 実施例2で得られたエポキシ樹脂硬化物多孔体の走査型電子顕微鏡写真である。 実施例3で得られたエポキシ樹脂硬化物多孔体の走査型電子顕微鏡写真である。 実施例4~7で得られたエポキシ樹脂硬化物多孔体の走査型電子顕微鏡写真である。 実施例8~11で得られたエポキシ樹脂硬化物多孔体の走査型電子顕微鏡写真である。 実施例1で得られたエポキシ樹脂硬化物多孔体からなるキャピラリーカラムを用いてアルキルベンゼン類を分離した際に測定されたクロマトグラムである。 実施例1で得られたエポキシ樹脂硬化物多孔体の分離媒体として用いた場合における移動相中の有機溶媒の濃度と溶質の保持係数(k)との関係を示すグラフである。 実施例12及び比較例2~3で得られたエポキシ樹脂硬化物からなる水質保持材をそれぞれ利用した場合及び水質保持材を利用しなかった場合における、切花を差し込んだコップ中の水の濁度と経過日数との関係を示すグラフである。 実施例13~15で得られたエポキシ樹脂硬化物の走査型電子顕微鏡写真である。 比較例4~9で得られたエポキシ樹脂硬化物の走査型電子顕微鏡写真である。 実施例17で得られた抗菌材を用いた場合におけるビーカー中のサンプル水(抗菌材添加10分後の水)を滴下したバクテリア培養シート上の生物の形態を示す写真である。 比較例11で得られた抗菌材を用いたビーカー中のサンプル水(抗菌材添加10分後の水)を滴下したバクテリア培養シート上の生物の形態を示す写真である。 抗菌材を用いなかった場合におけるビーカー中のサンプル水(調製後10分経過した水)を滴下したバクテリア培養シート上の生物の形態を示す写真である。
 以下、本発明をその好適な実施形態に即して詳細に説明する。
 先ず、本発明のエポキシ樹脂硬化物多孔体並びに本発明のエポキシ樹脂硬化物多孔体の製造方法について説明する。すなわち、本発明のエポキシ樹脂硬化物多孔体は、1分子中に3つ以上のエポキシ基を有する脂環式エポキシ化合物と、脂環式アミン硬化剤と、前記脂環式エポキシ化合物及び前記脂環式アミン硬化剤に対して不活性な溶媒とを含有する混合液を加熱して硬化物を得た後、前記硬化物から前記溶媒を除去することにより得られる多孔質構造のエポキシ樹脂硬化物である。このように、本発明のエポキシ樹脂硬化物多孔体は、上記本発明のエポキシ樹脂硬化物多孔体の製造方法を利用して得られるものである。なお、ここにいう「多孔質構造」とは、上記製造方法により形成される多孔体の構造をいい、非粒子凝集型の構造であって且つ柱状のエポキシ樹脂硬化物が三次元に分岐した構造(三次元網目構造:いわゆる共連続構造)であることが好ましい。
 本発明においては、1分子中に3つ以上(より好ましくは3つ~5つ、特に好ましくは4つ)のエポキシ基を有する脂環式エポキシ化合物を用いる。このように、1分子中に3つ以上のエポキシ基を有する脂環式エポキシ化合物を用いることにより、従来は製造することができなかった脂環式エポキシ化合物と脂環式アミン硬化剤とを組み合わせた多孔質構造(特に好ましくは3次元網目構造)のエポキシ樹脂硬化物を製造することが可能となる。このような脂環式エポキシ化合物の1分子中のエポキシ基の数が3未満では、脂環式エポキシ化合物と脂環式アミン硬化剤とを組み合わせた場合に多孔質構造のエポキシ樹脂硬化物を製造することはできない。
 また、このような1分子中に3つ以上のエポキシ基を有する脂環式エポキシ化合物としては特に制限されず、脂環式の炭化水素基と3つ以上のエポキシ基とを有するものを適宜利用することができる。更に、このような1分子中に3つ以上のエポキシ基を有する脂環式エポキシ化合物としては、より高度な抗菌性を発現させるという観点からは、前記脂環式エポキシ化合物中にN原子を含んだものを用いることが好ましく、下記一般式(1):
Figure JPOXMLDOC01-appb-C000005
[式(1)中、Xは式中の窒素原子(N)と直接又は炭素数が1~5の直鎖アルキレン基を介して結合する炭素数が3~8の脂環式炭化水素基を示し、Yは式中の窒素原子(N)と直接又は炭素数が1~5の直鎖アルキレン基を介して結合するエポキシ基を示し、m及びnはYの総数が3以上となるようにして選択される整数であって、mは2~4のうちのいずれかの整数を示し、nはそれぞれ独立に1又は2の整数を示し、pはそれぞれ独立に0又は1の整数を示し、pとnとの和は2である。]
で表される化合物がより好ましい。
 上記一般式(1)中のXは、式中の窒素原子(N)と直接又は炭素数が1~5(より好ましくは1~3、更に好ましくは1)の直鎖アルキレン基を介して結合する炭素数が3~8(より好ましくは4~7、更に好ましくは5~6)の脂環式炭化水素基である。また、窒素原子(N)と脂環式炭化水素基との間に存在し得る前記直鎖アルキレン基はメチレン基、エチレン基、プロピレン基等であるが、このような直鎖アルキレン基の炭素数が前記上限を超えると多孔質体の機械的強度が低下する傾向にある。このようなXとしては、例えば、式中のmが2である場合、下記式(I)~(VI):
Figure JPOXMLDOC01-appb-C000006
で表される置換基であってもよい。
 上記一般式(1)中のYは式中の窒素原子(N)と直接又は炭素数が1~5(より好ましくは1~3、更に好ましくは1)の直鎖アルキレン基を介して結合するエポキシ基である。このような直鎖アルキレン基はXで説明したものと同様のものである。
 また、上記一般式(1)中のm及びnはYの総数が3以上となるようにして選択される整数である。このようなYの総数が3未満では、化合物中のエポキシ基の数が3未満となってしまう。また、このような式(1)中のmは2~4のうちのいずれかの整数(より好ましくは2)である。このようなmの数値が前記下限未満では架橋反応が不十分となる傾向にあり、他方、前記上限を超えると立体障害による反応性の低下を引き起こす傾向にある。また、前記式(1)中のnはそれぞれ独立に1又は2の整数(より好ましくは2)である。このような数値が前記下限未満では架橋反応が不十分となる傾向にあり、他方、前記上限を超えると立体障害による反応性の低下を引き起こす傾向にある。また、上記一般式(1)中のpはそれぞれ独立に0又は1の整数である。このようなpの値は式(1)中の窒素原子(N)に結合した水素原子(H)の数を示すものである。そのため、1つの括弧内に存在するpとnは、窒素原子(N)に対するエポキシ基(Y)の結合数(n)が1の場合にpは1となり、エポキシ基(Y)の結合数(n)が2の場合にはpは0となる関係にある。このように、上記一般式(1)中においては、一つの括弧内に存在するpとnとの和はそれぞれ2である。
 また、このような1分子中に3つ以上のエポキシ基を有する脂環式エポキシ化合物としては、下記一般式(2)~(3):
Figure JPOXMLDOC01-appb-C000007
で表される化合物のうちの少なくとも1種が特に好ましい。
 前記脂環式アミン硬化剤としては、エポキシ樹脂を製造する際に硬化剤として利用できるものであればよく特に制限されず、脂環式炭化水素基とアミノ基とを有する化合物を適宜用いることができる。このような脂環式アミン硬化剤としては、効率的な架橋反応を達成するという観点から、分子内に1級アミノ基を2つ以上有する脂環式アミン化合物であることが好ましく、イソホロンジアミン、メンタンジアミン、ビス(4-アミノ-3-メチルシクロヘキシル)メタン、ビス(4-アミノシクロヘキシル)メタン、及びこれらの変性物からなる群の中から選択される少なくとも1種であることがより好ましく、中でも、ビス(4-アミノ-3-メチルシクロヘキシル)メタン、ビス(4-アミノシクロヘキシル)メタンが特に好ましい。なお、このようなアミンの変性物としては、エポキシ変性物、カルボン酸変性物、尿素変性物、ケトン化合物による変性物、シラン化合物による変性物等の各種変性物が挙げられ、前述のような脂環式アミン化合物を公知の方法で変性させたものを適宜用いることができる。
 本発明において用いられる溶媒は、前記脂環式エポキシ化合物及び前記脂環式アミン硬化剤に対して不活性な溶媒である。このような溶媒は、前記脂環式エポキシ化合物及び前記脂環式アミン硬化剤に対して不活性であるため、反応誘起相分離(スピノーダル相分離)を生ぜしめることが可能で、前記混合液を加熱重合することによりエポキシ系のポリマーとの間に共連続構造体(スポンジ状の構造)を形成することが可能なもの(いわゆる「ポロゲン(細孔形成剤)」として利用できるもの)である。すなわち、このような溶媒は、重合のある段階で多孔性ポリマーを形成させる重合反応中に存在させ、所定の段階でこれを反応混合物中から除去することによって、多孔質構造(特に好ましくは三次元網目状骨格構造)のエポキシ樹脂硬化物多孔体が得ることを可能とするものである。
 このような溶媒としては、前記脂環式エポキシ化合物及び前記脂環式アミン硬化剤を溶解させることができるものであることがより好ましい。このような溶媒としては、例えば、メチルセロソルブ、エチルセロソルブ等のセロソルブ類、エチレングリコールモノメチルエーテルアセテート、プロピレングリコールモノメチルエーテルアセテート等のエステル類、又はポリエチレングリコール、ポリプロピレングリコール等のグリコール類が挙げられる。このような溶媒は1種を単独で或いは2種以上を組み合わせて用いることができる。
 また、このような溶媒としては、水酸基価が50mgKOH/g以上(より好ましくは100~1000mgKOH/g)のポリアルキレングリコール及びその誘導体の中から選択される少なくとも1種が好ましい。このような水酸基価が前記下限未満では、溶媒の粘度が高くなり、形成されるエポキシ硬化物多孔体の孔径を十分な大きさにすることが困難になったり、エポキシ樹脂硬化物多孔体の親水性が低下する傾向にある。
 さらに、前記混合液中における前記脂環式エポキシ化合物及び前記脂環式アミン硬化剤の含有割合は、前記脂環式エポキシ化合物中のエポキシ基1当量に対して前記硬化剤中のアミノ基が0.3~1.2当量(より好ましくは0.5~1.0当量)となるようにすることが好ましい。前記硬化剤の当量比が前記下限未満では、エポキシ樹脂硬化物の架橋密度が低くなり、耐熱性、耐溶剤性等が低下する傾向にあり、他方、前記上限を超えると、未反応のアミノ基が多くなり、硬化剤が未反応のまま硬化物中に残留したり、架橋密度の向上を阻害してしまう傾向にある。
 また、前記混合液中の前記溶媒の含有割合は、50~90質量%であることが好ましく、60~80質量%であることがより好ましい。このような溶媒の含有割合が前記下限未満では多孔質構造が形成されない傾向にあり、他方、前記上限を超えると空孔率が高すぎるために,機械的強度を維持できない傾向にある。
 さらに、このような混合液においては、硬化促進剤を更に添加してもよい。このような硬化促進剤としては、公知のものを適宜使用することができ、例えば、トリエチルアミン、トリブチルアミン等の三級アミン、2-フェノール-4-メチルイミダゾール、2-エチル-4-メチルイミダゾール、2-フェノール-4,5-ジヒドロキシメチルイミダゾールなどのイミダゾール類等を用いてもよい。
 また、このような混合液の調製方法としては特に制限されず、常温で又は加温しながら前記脂環式エポキシ化合物、前記脂環式アミン硬化剤及び前記溶媒を混合する方法を採用してもよく、常温で又は加温しながら前記脂環式エポキシ化合物及び前記脂環式アミン硬化剤の混合物を前記溶媒中に添加して混合又は溶解する方法を採用してもよい。
 このような混合液を加熱して硬化物を得る工程と、前記硬化物から前記溶媒を除去する工程とについて、以下において説明する。
 このような混合液を加熱する工程(加熱工程)において、前記硬化物を得る際の前記混合液の加熱温度や時間、圧力等の加熱条件は、前記脂環式エポキシ化合物及び前記脂環式アミン硬化剤を反応せしめて多孔質構造を形成することが可能な条件であればよく、特に制限されるものではない。また、このような加熱条件は、用いる前記脂環式エポキシ化合物や前記脂環式アミン硬化剤や溶媒(ポロゲン)の種類や量等によっても異なるものであり、一概に言えるものではないが、加熱温度は50~200℃とすることが好ましく、130~170℃とすることがより好ましく、加熱時間は60~360分とすることが好ましく、120~240分とすることがより好ましい。このような加熱温度及び時間が前記下限未満では架橋反応により反応し難い傾向にあり、他方、前記上限を超えると反応速度が速くなり過ぎて、多孔質構造が形成されない傾向にある。なお、上記加熱温度は、前記混合液の温度を意味する。そのため、例えば乾燥機の中で加熱して重合させる場合には、乾燥機の温度設定と混合液の真の温度との間には差が生じるため、この点を勘案して乾燥機の温度設定をする必要がある。また、このような加熱条件(温度、圧力、時間)は、あらかじめ試験的に前記脂環式エポキシ化合物や前記脂環式アミン硬化剤や溶媒(ポロゲン)の種類や量等を変化させながら電子顕微鏡等で構造の確認をし、目的の多孔質構造(三次元網目構造)とするために最適な条件を求めて、その結果に基づいて適宜決定してもよい。
 また、前記硬化物を得る際に、前記脂環式エポキシ化合物と前記硬化剤との重合成分(ポリマー成分)の架橋反応が十分に進行しなかった場合には、得られる多孔体は液体クロマト分離媒体として利用した場合に理論段数の低いものとなってしまう傾向にあるため、多孔体を分離媒体として利用した場合に十分に機能するものとならない傾向にある。そのため、このような硬化物を得る際には、架橋反応をより十分に進行させるという観点から、前記加熱処理後にアフターキュアーを実施してもよい。このようなアフターキュアーの方法としては、短時間の高温処理(70~200℃で30~120分程度の処理)を施す方法を採用することが好ましい。また、このようなアフターキュアーは、前記溶媒の除去後に実施するとエポキシ樹脂の硬化物に収縮が発生して多孔構造に変化を生じる傾向にあるため、前記硬化物から溶媒を除去する前に実施することが好ましい。また、前記溶媒が低沸点のものである場合には、高沸点溶剤に置換した後アフターキュアーを行ってもよい。
 さらに、このような硬化物を得た後に前記硬化物から前記溶媒を除去する方法としては前記硬化物から前記溶媒を除去することが可能な方法であればよく、特に制限されず、例えば、前記混合液中から前記硬化物を取り出し、これを水中に浸漬して溶媒を除去する方法、前記混合液中から前記硬化物を取り出し、これを前記溶媒を溶解することが可能な有機溶媒中に浸漬して溶媒を除去する方法、前記硬化物を前記混合液中から取り出し、これを前記溶媒を溶解することが可能な有機溶媒中に浸漬した後に、水中に浸漬して洗浄して溶媒を除去する方法等、前記溶媒を除去することが可能な方法を適宜採用することができる。
 なお、このような本発明のエポキシ樹脂硬化物多孔体の製造方法によって、前記脂環式エポキシ化合物及び前記脂環式アミン硬化剤を組み合わせて用いているにもかかわらず、多孔質構造のエポキシ樹脂硬化物を製造することが可能な理由は必ずしも定かではないが、本発明者らは以下のように推察する。すなわち、先ず、前記混合液を加熱して前記脂環式エポキシ化合物及び前記脂環式アミン硬化剤を重合させる際に、前記溶媒が前記脂環式エポキシ化合物及び前記脂環式アミン硬化剤に対して不活性であるため、重合が進行してポリマー成分が増大するとスピノーダル相分離が起こり、共連続構造(スポンジ状の構造)が形成される。そして、相分離が更に進行して前記共連続構造が消滅する前に前記ポリマー成分の架橋反応が進行すると、その構造が凍結固定されて、三次元網目構造(多孔質構造)が形成されるものと推察される。そのため、多孔質構造の硬化物を得るためには、共連続構造が消滅する前に架橋反応を進行せしめる必要があり、架橋反応の速度を十分なものする必要がある。本発明においては、1分子中に3つ以上のエポキシ基を有する脂環式エポキシ化合物を用いているため、脂環式エポキシ化合物と脂環式アミン硬化剤とを組み合わせているにもかかわらず、十分な速度で架橋反応を進行せしめることができ、これにより三次元網目構造を形成させることが達成されるものと推察される。そして、このような細孔が形成された硬化物から、前記溶媒を除去すると、溶媒の存在していた箇所に空孔が形成され、多孔質構造のエポキシ樹脂硬化物が得られるものと推察される。
 また、このようにして得られる本発明のエポキシ樹脂硬化物多孔体としては、空孔率が20%~90%のものが好ましく、60~80%のものがより好ましい。前記空孔率が前記下限未満では、前記エポキシ樹脂硬化物多孔体を分離媒体として使用した場合、空孔率が低すぎて実用性が十分なものとならない傾向にあり、他方、前記上限を超えると多孔体の強度が低下してしまい、やはり実用性が低下する傾向にある。なお、多孔体の空孔率としては、下記式:
[空孔率(%)]=(1-W/ρV)×100
(式中、Wは多孔体の乾燥重量(g)を示し、Vは多孔体の見掛けの体積(cm)を示し、ρは樹脂の真密度(g/cm)を示す。)
を計算して求められる値を採用する。なお、前記式中の「樹脂の真密度」としては、多孔体をエタノールに入れて脱泡した後、JIS-K7112(B法I)に従って測定した値を採用する。
 また、このようなエポキシ樹脂硬化物多孔体においては、平均細孔直径が0.5~50μmであることが好ましく、1~10μmであることがより好ましい。このような平均細孔直径が前記下限未満では、目詰まり等によって細孔が閉塞し易くなるとともに液体を透過させるような用途(分離媒体等)に利用する場合に送液時の圧力を高圧とする必要性が生じ、実用性が低下する傾向にあり、他方、前記上限を超えると、多孔体の強度が低下してしまう傾向にある。
 なお、このようなエポキシ樹脂硬化物多孔体の空孔率、平均細孔直径は、使用される脂環式エポキシ化合物、脂環式アミン硬化剤及び溶媒(ポロゲン)の種類やこれらの混合液中への含有比率、加熱条件等によって変化するものである。そのため、目的とする設計のエポキシ樹脂硬化物多孔体を得るために、あらかじめ系の相図を作成し、目的とする設計(構造)に応じて最適な条件を適宜選択しておいてもよい。
 また、前記エポキシ樹脂硬化物多孔体の形状は特に制限されず、その用途に応じて、シート状、棒状、筒状等の任意の形状とすることができる。
 また、本発明のエポキシ樹脂硬化物多孔体は、エポキシ樹脂の硬化物であることから、表面に官能基を有しており、グラフト反応等で目的に応じた表面修飾を行うことも可能である。更に、本発明になる多孔性エポキシ樹脂硬化物は三次元架橋されているため、耐薬品性、耐熱性に優れており、過酷な環境下においても使用可能である。
 また、本発明のエポキシ樹脂硬化物多孔体は、以下に説明する水質保持材、抗菌材等の他、分離媒体(例えば、液体クロマトグラフィー用のカラム用充填媒体)等にも好適に使用することができる。
 以上、本発明のエポキシ樹脂硬化物多孔体及びエポキシ樹脂硬化物多孔体の製造方法について説明したが、以下、本発明の水質保持材について説明する。
 本発明の水質保持材は、上記本発明のエポキシ樹脂硬化物多孔体を備えるものである。このような水質保持材は、上記本発明のエポキシ樹脂硬化物多孔体を備えていればよく、他の構成は特に制限されるものではない。このような他の構成物としては、水質保持材に使用することが可能な公知の材料を適宜組み合わせて用いることができる。
 また、本発明の水質保持材は、水質を保持するために利用すればよく、例えば、切花等の鮮度保持材として利用したり、水槽中の水の鮮度保持材等として利用してもよい。なお、本発明の水質保持材が優れた水質保持性能を発揮することができる理由は必ずしも定かではないが、切花等の鮮度保持材に使用した場合を例に挙げて説明すると、切花から排出される老化促進物質や老廃物がエポキシ樹脂硬化物多孔体の細孔内に吸着及び保持される結果、水が浄化されることに加えて、本発明のエポキシ樹脂硬化物多孔体が十分な抗菌性能を有するため、水中の菌を十分に殺菌できるためであると本発明者らは推察する。また、本発明の水質保持材は取り扱いが簡単で且つ環境にやさしく衛生的である。
 さらに、本発明の水質保持材を切花等の鮮度保持材等に利用する場合、より高い効果を得るという観点からは、本発明の水質保持材中の前記エポキシ樹脂硬化物多孔体の全体を水中に沈めるのでなく、その一部を水面上に出して利用することが好ましい。このように、前記エポキシ樹脂硬化物多孔体の一部を水面上に出して利用することでより高い効果が得られる理由は必ずしも定かではないが、水面上にある多孔体の表面から水が蒸発するのに伴って、多孔体内の揚水量が増加し、水中で多孔体に吸着された物質が水上部に押し上げられ、結果として水中部分の多孔体表面は常時、吸着物の少ない状態に維持されるためであると本発明者らは推察する。なお、このように、本発明の水質保持材を切花等の鮮度保持材に用いた場合には、頻繁な水替えを行わなくとも常に切花等を生けた水が清澄に保持でき、不純物による切花の導管閉塞が解消され、切花の茎へ常に清澄な水揚げが行われるため、切花の鮮度を長期にわたって保持できる。
 また、本発明の水質保持材の形態は特に制限されず、使用方法等に応じてその設計を適宜変更してもよい。例えば、本発明の水質保持材は、フィルター状、チューブ状、棒状等に成型して水中に配置して利用してもよい。
 次に、本発明の第一及び第二の抗菌材について説明する。本発明の第一の抗菌材は、上記本発明のエポキシ樹脂硬化物多孔体を備えるものである。このような第一の抗菌材は、上記本発明のエポキシ樹脂硬化物多孔体を備えていればよく、他の構成は特に制限されるものではない。このような他の構成物としては、抗菌材に使用することが可能な公知の材料を適宜組み合わせて用いることができる。
 本発明の第二の抗菌材は、上記本発明のエポキシ樹脂硬化物多孔体中のアミノ基を4級化して得られる4級化アミン含有エポキシ多孔体を備えるものである。このように、アミノ基を4級化することにより、より高度な殺菌性能を発揮させることが可能となる。また、このような第二の抗菌材は上記4級化アミン含有エポキシ多孔体を備えていればよく、他の構成は特に制限されるものではない。また、このような他の構成物としては、抗菌材に使用することが可能な公知の材料を適宜組み合わせて用いることができる。
 さらに、このようなエポキシ樹脂硬化物多孔体中のアミノ基を4級化する方法としては特に制限されず、アミノ基を4級化することが可能な公知の方法を適宜採用することができ、例えば、塩酸水溶液、硝酸水溶液,リン酸水溶液,硫酸水溶液,酢酸水溶液等の公知のアミンの4級化剤中に、前記エポキシ樹脂硬化物多孔体を浸漬して十分にアミン(アミノ基)の4級化反応を進行させる方法を採用してもよい。
 また、アミノ基を4級化する際には、エポキシ樹脂硬化物多孔体の細孔内に十分に前記4級化剤を導入して多孔体の内部に存在するアミノ基を十分に4級化させるという観点や前記4級化剤とアミノ基との接触が十分に行われるようにするといった観点から、前記4級化剤中にエポキシ樹脂硬化物多孔体を浸漬した後に超音波を照射してもよい。
 また、本発明の第一及び第二の抗菌材の使用方法は特に制限されず、例えば、建築内外壁、床、天井、ふすまなどの建材にコーティング或いは練りこむ等して建築材料とともに使用してもよく、あるいは、医療器具、調理器具、シンク、換気扇、空調設備、履物等に広範に使用してもよい。
 以下、実施例及び比較例に基づいて本発明をより具体的に説明するが、本発明は以下の実施例に限定されるものではない。
 (実施例1)
 先ず、内系が0.1mmで長さが1000mmのキャピラリー管内壁に3-アミノプロピルトリエトキシシランの薄膜をコートした反応管を準備した。次に、上記一般式(3)で表される脂環式エポキシ化合物(以下、場合により単に「TETRAD-C」という。)を0.93g、下記一般式(4):
Figure JPOXMLDOC01-appb-C000008
で表される脂環式アミン(ビス(4-アミノシクロヘキシル)メタン、東京化成株式会社製、:以下、場合により単に「BACM」という。)を0.38g、ポリエチレングリコール(和光純薬工業社製、水酸基価380mgKOH/g:以下、場合により単に「PEG 300」という。)を4.0g準備し、これらを大気圧下、室温条件で十分に混合した後、真空脱気して混合液を調製した。次に、前記混合液を前記反応管内に注入し、その管の両端に栓をして密封し、内部に前記混合液を充填させた密封容器を得た。その後、前記密封容器を温度が140℃(一定)のオイルバス中に投入して4時間加熱し、前記混合液中のTETRAD-CとBACMとを反応(重合)させて、エポキシ樹脂の硬化物を形成せしめた。次に、前記密封容器をオイルバス中から取り出し、室温まで冷却した。次いで、液体クロマトグラフィー用の送液ポンプを用いて、キャピラリー管内にメタノールを送液し、ポリエチレングリコールを除去することで、前記キャピラリー管内に多孔質構造のエポキシ樹脂硬化物(エポキシ樹脂硬化物多孔体)を得た。このようにして得られたエポキシ樹脂硬化物多孔体の空孔率は70%であり、平均細孔直径は1.2μmであった。
 (実施例2)
 オイルバスの温度を150℃に変更した以外は実施例1と同様にして多孔質構造のエポキシ樹脂硬化物(エポキシ樹脂硬化物多孔体)を得た。このようにして得られたエポキシ樹脂硬化物多孔体の空孔率は70%であり、平均細孔直径は1.0μmであった。
 (実施例3)
 オイルバスの温度を135℃に変更した以外は実施例1と同様にして多孔質構造のエポキシ樹脂硬化物(エポキシ樹脂硬化物多孔体)を得た。このようにして得られたエポキシ樹脂硬化物多孔体の空孔率は70%であり、平均細孔直径は1.5μmであった。
 <実施例1~3で得られたエポキシ樹脂硬化物の構造確認>
 実施例1~3で得られたエポキシ樹脂硬化物多孔体の走査型電子顕微鏡写真を図1~3にそれぞれ示す。図1~3に示す走査型電子顕微鏡写真からも明らかなように、本発明のエポキシ樹脂硬化物多孔体(実施例1~3)は、脂環式エポキシ化合物と脂環式アミンとを組み合わせて得られたものであるにもかかわらず、三次元網目状の骨格構造が形成されており、多孔質構造のエポキシ樹脂硬化物であることが確認された。また、実施例1~3で得られたエポキシ樹脂硬化物多孔体は、いずれも連通する空隙を有していることが確認された。また、図1~3に示す結果からも明らかなように、脂環式エポキシ化合物と脂環式アミンとを組み合わせてエポキシ樹脂硬化物多孔体を製造する場合においては、温度を変化させることにより、細孔の大きさ等の構造を変化させることが可能であることも分かった。
 (実施例4~7)
 PEG 300の使用量を、それぞれ3.6g(実施例4)、4.0g(実施例5)、4.2g(実施例6)、4.4g(実施例7)とした以外は実施例1と同様にして多孔質構造のエポキシ樹脂硬化物(エポキシ樹脂硬化物多孔体)をそれぞれ得た。
 <実施例4~7で得られたエポキシ樹脂硬化物の構造確認>
 実施例4~7で得られたエポキシ樹脂硬化物多孔体の走査型電子顕微鏡写真を図4に示す。図4に示す走査型電子顕微鏡写真からも明らかなように、本発明のエポキシ樹脂硬化物多孔体(実施例4~7)は、脂環式エポキシ化合物と脂環式アミンとを組み合わせて得られたものであるにもかかわらず、三次元網目状の骨格構造が形成されており、多孔質構造のエポキシ樹脂硬化物であることが確認された。また、図4に示す結果からも明らかなように、脂環式エポキシ化合物と脂環式アミンとを組み合わせてエポキシ樹脂硬化物多孔体を製造する場合においては、使用する溶媒(PEG 300)の量を変化させることにより細孔径等の構造を変化させることが可能であることも分かった。
 (実施例8~11)
 BACMの使用量を、それぞれ0.34g(実施例4)、0.36g(実施例5)、0.38g(実施例6)、0.4g(実施例7)とした以外は実施例1と同様にして多孔質構造のエポキシ樹脂硬化物(エポキシ樹脂硬化物多孔体)をそれぞれ得た。
 <実施例8~11で得られたエポキシ樹脂硬化物の構造確認>
 実施例8~11で得られたエポキシ樹脂硬化物多孔体の走査型電子顕微鏡写真を図5に示す。図5に示す走査型電子顕微鏡写真からも明らかなように、本発明のエポキシ樹脂硬化物多孔体(実施例8~11)は、脂環式エポキシ化合物と脂環式アミンとを組み合わせて得られたものであるにもかかわらず、三次元網目状の骨格構造が形成されており、多孔質構造のエポキシ樹脂硬化物であることが確認された。また、図5に示す結果からも明らかなように、脂環式エポキシ化合物と脂環式アミンとを組み合わせてエポキシ樹脂硬化物多孔体を製造する場合においては、使用する脂環式アミン(BACM)の量を変化させることにより細孔径等の構造を容易に変化させることが可能であることも分かった。
 (比較例1)
 TETRAD-Cの代わりに、下記一般式(5):
Figure JPOXMLDOC01-appb-C000009
で表される非脂環式のエポキシ化合物(以下、場合により「TEPIC」という。)を1.6gを用い、BACMの使用量を0.37gに変更し、PEG 300の代わりにポリエチレングリコール(ナカライテスク株式会社製、水酸基価550mgKOH/g:以下、場合により、単に「PEG 200」という。)を7.0g用い、オイルバスの温度(反応温度)を140℃から80℃に変更した以外は実施例1と同様にして、比較のためのエポキシ樹脂硬化物多孔体を得た。なお、このようなエポキシ樹脂硬化物は走査型電子顕微鏡による測定の結果、多孔質構造を有するものであることが確認された。
 [実施例1及び比較例1で得られた多孔体の特性の評価]
 〈分離性能の評価〉
 実施例1で得られたエポキシ樹脂硬化物多孔体と、比較例1で得られたエポキシ樹脂硬化物多孔体をそれぞれクロマトグラフィーとして利用して、分離媒体としての性能を評価した。すなわち、各多孔体が内部に形成されたキャピラリー管をそれぞれキャピラリーカラムとし、下記溶質aとしてペンチルベンゼン(pentylbenzne)を用い、下記溶質bとしてブチルベンゼン(butylbenzene)を用い、非保持溶質としてウラシル(Uracil)を用い、移動相にアセトニトリルと水の混合溶媒を使用し、流量1.0μL/分、温度30℃の条件で溶質をカラム内に注入し、その溶出時間をUV検出器で検出することにより溶質a及びbの保持時間及び非保持溶質の保持時間をそれぞれ測定し、下記式:
[溶質の保持係数(k)]={(溶質の保持時間)-(非保持溶質の保持時間)}/(非保持溶質の保持時間)
[分離係数α(a/b)]=(溶質aの保持係数)/(溶質bの保持係数)
を計算することにより、分離係数(α(pentylbenzne/butylbenzene))の値を求め、分離媒体としての性能を評価した。なお、このようなαの値は、より大きな値になるほど、疎水性が高いことを示すものである。
 このような分離係数の測定の結果、実施例1で得られたエポキシ樹脂硬化物多孔体の分離係数(α(pentylbenzne/butylbenzene))は2.74であり、比較例1でTEPICを用いて得られたエポキシ樹脂硬化物多孔体の分離係数(α(pentylbenzne/butylbenzene))は1.04であった。このような結果から、本発明のエポキシ樹脂硬化物多孔体(実施例1)は、比較のためのエポキシ樹脂硬化物多孔体(比較例1)と比べて飛躍的に疎水性が向上していることが確認された。これにより、本発明のエポキシ樹脂硬化物多孔体(実施例1)は、比較のためのエポキシ樹脂硬化物多孔体(比較例1)と比べて疎水性相互作用を利用して物質を分離する際の分離性能が非常に高く、分離媒体として非常に有用であることが分かった。なお、このような疎水性の向上は、多孔体の原料として、脂環式のエポキシ化合物と脂環式のアミン硬化剤を用いたことにより得られる効果であり、脂環式のエポキシ化合物と脂環式のアミン硬化剤を組み合わせて用いることにより達成される効果であると本発明者らは推察する。
 本発明のエポキシ樹脂硬化物多孔体(実施例1)の分離性能を確認するために、実施例1で得られたキャピラリー管の内部にエポキシ樹脂硬化物多孔体が形成されているキャピラリーカラムを用いて、アルキルベンゼン類の分離を試みた。このようなアルキルベンゼン類としてはベンゼン,トルエン,エチルベンゼン,プロピルベンゼン,ブチルベンゼン,ペンチルベンゼン,ヘキシルベンゼンを用いた。また、このようなアルキルベンゼン類の分離の際には、CHCN60容量%と20mMのナトリウムリン酸塩バッファー(pH:7.0)40容量%の混合液(CHCN/buffer=60/40(v/v))を移動相として用い、その注入量を10nLとした。得られた結果を図6に示す。なお、図6中のピーク1はベンゼンを示し、ピーク2はトルエンを示し、ピーク3はエチルベンゼンを示し、ピーク4はプロピルベンゼンを示し、ピーク5はブチルベンゼンを示し、ピーク6はペンチルベンゼンを示し、ピーク7はヘキシルベンゼンを示す。
 図6に示す結果からも明らかなように、本発明のエポキシ樹脂硬化物多孔体(実施例1)は分離媒体として十分に機能し、アルキルベンゼン類を十分に分離できることが確認された。また、実施例1で得られたエポキシ樹脂硬化物多孔体(実施例1)の理論段数を求めたところ、理論段数は10000以上であることが分かり、かかる多孔体が分離カラムとして十分に高い性能を有することも分かった。
 さらに、実施例1で得られたエポキシ樹脂硬化物多孔体の分離媒体としての特性を評価するために、CHCN60容量%と20mMのナトリウムリン酸塩バッファー(pH:7.0)40容量%の混合液(CHCN/buffer=60/40(v/v))を移動相として用い、溶質としてシトシン、アデニン、ウラシル、チミン、ベンゼン、トルエンをそれぞれ用いて、クロマトグラフィーにおける移動相中の有機溶媒濃度を変化させて、各濃度ごとに各溶質の保持係数をそれぞれ求めた。なお、各溶質の保持係数は、各溶質の溶出時間を測定し、上記溶質の保持係数(k)の計算式を計算することにより求めた。得られた結果を図7に示す。
 図7に示す結果からも明らかなように、溶質の濃度が低い条件では、疎水性の物質を保持する性質が高いことが分かった。これは、実施例1で得られたエポキシ樹脂硬化物多孔体において、疎水性相互作用が寄与していることに起因するものであることが分かる。一方、溶質の濃度が高い条件では、親水性の化合物を保持する性質が高いことが分かった。これは、実施例1で得られたエポキシ樹脂硬化物多孔体において、典型的な親水性相互作用が寄与していることに起因するものであることが分かる。このような結果から、本発明のエポキシ樹脂硬化物多孔体(実施例1)においては、親水性及び疎水性の双方の性質を有していることが確認され、様々な物質の分離媒体として非常に有用であることが確認された。
 (実施例12)
 TETRAD-Cの使用量を17.4gとし、BACMの使用量を11.2gとし、PEG 300の使用量を71.4gとし、キャピラリー管の代わりに内径12mm、長さ150mmの円筒形のテフロン(登録商標)製の管を用い、ポリエチレングリコールを抽出除去する際にエポキシ樹脂硬化物をテフロン(登録商標)製の管から取り出してアセトンを用いた超音波洗浄を行った以外は実施例1と同様にして、エポキシ樹脂硬化物多孔体を得た。なお、このようなエポキシ樹脂硬化物は走査型電子顕微鏡による測定の結果、多孔質構造を有するものであることが確認された。このようにして得られたエポキシ樹脂硬化物多孔体の空孔率は75%であり、平均細孔直径は2.0μmであった。
 (比較例2)
 ビスフェノールA型エポキシ樹脂(ジャパンエポキシレジン株式会社製、商品名「エピコート828」)23.2gと、BACM5.2gとをポリエチレングリコール(ナカライテスク株式会社製、水酸基価550mgKOH/g:以下、場合により、単に「PEG 200」という。)71.6gに溶解し、真空脱泡して混合液とし、これを内径12mm、長さ150mmの円筒形のテフロン(登録商標)製の管の内部に注入して栓をし、そのまま120℃オイルバスに投入して1時間オイルバス中で重合させた後、オイルバスの温度を150℃に上げて更に1時間加熱した。その後、前記ガラス管をオイルバスから取り出し、室温まで冷却した後、テフロン(登録商標)製の管から重合物を取り出し、60℃の水中に20時間浸漬してポリエチレングリコールを抽出除去して、比較のための芳香族系のエポキシ樹脂硬化物多孔体を得た。なお、このようなエポキシ樹脂硬化物は走査型電子顕微鏡による測定の結果、多孔質構造を有するものであることが確認された。このようにして得られたエポキシ樹脂硬化物多孔体の空孔率は70%であり、平均細孔直径は1.0μmであった。
 (比較例3)
 ビスフェノールA型エポキシ樹脂(ジャパンエポキシレジン株式会社製、商品名「エピコート828」)20.2gとポリアミノアミド硬化剤(富士化成工業株式会社製、商品名「トーマイド245-S」、アミン価535)8.6gとをそれぞれPEG 200(水酸基価550mgKOH/g)71.2gに溶解し、真空脱泡して混合液とし、これを内径12mm、長さ150mmの円筒形のテフロン(登録商標)製の管の内部に注入して栓をし、そのまま60℃オイルバスに投入して1時間オイルバス中で重合した後、オイルバスの温度を100℃に上げて更に1時間加熱した。その後、前記テフロン(登録商標)製の管をオイルバスから取り出し、室温まで冷却した後、ガラス管から重合物を取り出し、50℃の水中に20時間浸漬してポリエチレングリコールを抽出除去して、比較のための芳香族系のエポキシ樹脂硬化物多孔体を得た。なお、このようなエポキシ樹脂硬化物は走査型電子顕微鏡による測定の結果、多孔質構造を有するものであることが確認された。このようにして得られたエポキシ樹脂硬化物多孔体の空孔率は70%であり、平均細孔直径は1.0μmであった。
 [実施例12及び比較例2~3で得られたエポキシ樹脂硬化物の特性の評価]
 〈水質保持性能の評価〉
 4個のガラス製コップ(直径50mm、高さ100mm)に高さ50mmまで水を注ぎ、それぞれにバラを差し込んだ。そして、1つのコップ(以下、「コップA」という。)には実施例12で得られたエポキシ樹脂硬化物多孔体(直径12mm、長さ120mm)を、他のコップ(以下、「コップB」という。)には比較例2で得られたエポキシ樹脂硬化物多孔体(直径12mm、長さ120mm)を、更に他のコップ(以下、「コップC」という。)には比較例3で得られたエポキシ樹脂硬化物多孔体(直径12mm、長さ120mm)を、それぞれ一部が空気と接するようにして差し込んだ。また、多孔体を何ら差し込んでいない最後の1つのコップ(以下、「コップD」という。)はそのまま用いた。そして、所定に日数が経過した段階でコップA~D中の水の濁度を目視により確認し、濁度を相対的に評価した。経過日数と濁度との関係を示すグラフを図8に示す。
 図8に示す結果からも明らかなように、本発明のエポキシ樹脂硬化物多孔体(実施例12)においては、14日経過した後においても全く濁りが確認されず、比較例2~3で得られたエポキシ樹脂硬化物多孔体と比べても十分に高度な水準で水質が保持されることが確認された。また、本発明のエポキシ樹脂硬化物多孔体(実施例12)においては、上述のように水の濁度が変化しないことから、水中の菌に対する十分な殺菌効果が得られていることが分かる。このような結果から、本発明のエポキシ樹脂硬化物多孔体(実施例12)は、水質保持材や抗菌材として有用であることが分かった。
 (実施例13)
 上記一般式(2)で表される脂環式エポキシ化合物(以下、場合により単に「BDAC」という。)を0.93g、上記一般式(4)で表される脂環式アミン(BACM)を0.47g、ポリエチレングリコール(PEG 300)を3.6g準備し、これらを大気圧下、室温条件で十分に混合し、脱気して混合液を調製した。次に、前記混合液を前記反応管(内径12mm、長さ150mm)内に注入し、その管の両端に栓をして密封し、内部が前記混合液で満たされた密封容器を得た。その後、前記密封容器を温度が140℃(一定)のオイルバス中に投入して4時間加熱し、前記密封容器中において、前記混合液中のBDACとBACMとを反応(重合)させて、エポキシ樹脂の硬化物を得た。次に、前記密封容器をオイルバス中から取り出し、室温まで冷却した。次いで、前記密封容器から前記硬化物を取り外し、前記硬化物をアセトン中で超音波洗浄し、前記硬化物中からポリエチレングリコールを抽出除去して、多孔質構造のエポキシ樹脂硬化物(エポキシ樹脂硬化物多孔体:図9中、「BDB01」と示す。)を得た。
 (実施例14)
 オイルバスの温度を150℃とした以外は実施例13と同様にして多孔質構造のエポキシ樹脂硬化物(エポキシ樹脂硬化物多孔体:図9中、「BDB02」と示す。)を得た。
 (実施例15)
 オイルバスの温度を160℃とした以外は実施例13と同様にして多孔質構造のエポキシ樹脂硬化物(エポキシ樹脂硬化物多孔体:図9中、「BDB03」と示す。)を得た。
 (比較例4)
 BDACの代わりに、下記一般式(6):
Figure JPOXMLDOC01-appb-C000010
で表される脂環式エポキシ化合物(以下、場合により「HBADE」という。)を1.11g用い、BACMの使用量を0,29に変更し、PEG 300の代わりに和光純薬工業社製のポリエチレングリコール(水酸基価190mgKOH/g:以下、場合により単に「PEG 600」という。)を3.6g用い、オイルバスの温度を160℃とした以外は実施例13と同様にして、比較のためのエポキシ樹脂硬化物(図10中、「HB01」と示す。)を得た。
 (比較例5)
 オイルバスの温度を170℃とした以外は比較例4と同様にして、比較のためのエポキシ樹脂硬化物(図10中、「HB02」と示す。)を得た。
 (比較例6)
 オイルバスの温度を180℃とした以外は比較例4と同様にして、比較のためのエポキシ樹脂硬化物(図10中、「HB03」と示す。)を得た。
 (比較例7)
 PEG 600の代わりに和光純薬工業社製のポリエチレングリコール(水酸基価110mgKOH/g:以下、場合により単に「PEG 1000」という。)を3.6g用いた以外は比較例4と同様にして、比較のためのエポキシ樹脂硬化物(図10中、「HB04」と示す。)を得た。
 (比較例8)
 オイルバスの温度を170℃とした以外は比較例7と同様にして、比較のためのエポキシ樹脂硬化物(図10中、「HB05」と示す。)を得た。
 (比較例9)
 オイルバスの温度を180℃とした以外は比較例7と同様にして、比較のためのエポキシ樹脂硬化物(図10中、「HB06」と示す。)を得た。
 <実施例13~15及び比較例4~9で得られたエポキシ樹脂硬化物の構造確認>
 実施例13~15及び比較例4~9で得られたエポキシ樹脂硬化物の構造をそれぞれ走査型電子顕微鏡により測定した。実施例13~15で得られたエポキシ樹脂硬化物の走査型電子顕微鏡写真を図9に示す。また、比較例4~9で得られたエポキシ樹脂硬化物の走査型電子顕微鏡写真を図10に示す。
 図9に示す結果からも明らかなように、本発明のエポキシ樹脂硬化物多孔体(実施例13~15)はいずれも、三次元網目構造となっていることが確認された。一方、比較のためのエポキシ樹脂硬化物(比較例4~9)はいずれも粒子状となってしまい、粒子が凝集した構造なっていた。このような結果から、1分子中にエポキシ基が2つしかない脂環式のエポキシ化合物(HBADE)を利用した場合には、合成条件を色々と変化させても多孔質構造(三次元網目構造)のエポキシ樹脂硬化物を得ることができないことが分かった。そして、脂環式エポキシ化合物と脂環式アミンとを組み合わせて多孔質構造のエポキシ樹脂硬化物を製造するためには、1分子中に少なくとも3つ以上のエポキシ基を有する脂環式エポキシ化合物を用いる必要があることが分かる。
 (実施例16)
 上記一般式(2)で表される脂環式エポキシ化合物(BDAC)を7.44g、上記一般式(4)で表される脂環式アミン(BACM)を3.7g、ポリエチレングリコール(PEG 300)を36.8g準備し、これらを大気圧下、室温で十分に混合し、脱気して混合液を調製した。次に、前記混合液をテフロン(登録商標)製のチューブ(内系12mm、長さ150mm)内に注入し、そのチューブの両端に栓をして密封し、内部が前記混合液で満たされた密封容器を得た。その後、前記密封容器を温度が140℃(一定)のオイルバス中に投入して3時間加熱し、前記混合液中のBDACとBACMとを反応(重合)させて、エポキシ樹脂の硬化物を得た。次に、前記密封容器をオイルバス中から取り出し、室温まで冷却した。次いで、前記密封容器中から前記硬化物を取り外し、前記硬化物をアセトン中で超音波洗浄して前記硬化物中からポリエチレングリコールを抽出除去して、多孔質構造のエポキシ樹脂硬化物(エポキシ樹脂硬化物多孔体)を得た。なお、得られたエポキシ樹脂硬化物を走査型電子顕微鏡で観測したところ、前記エポキシ樹脂硬化物は三次元網目構造を有する多孔体であることが確認された。また、このようにして得られたエポキシ樹脂硬化物多孔体の空孔率は76%であり、平均細孔直径は1.5μmであった。
 (実施例17)
 実施例16で得られたエポキシ樹脂硬化物多孔体を完全に乾燥させた後、1.0規定の塩酸水溶液に浸漬し、超音波照射して15分間反応させて、前記多孔体中のアミノ基を4級化させて、4級化アミン含有エポキシ多孔体を得た。
 (比較例10)
 ビスフェノールA型エポキシ樹脂(ジャパンエポキシレジン株式会社製、商品名「エピコート828」)10.1gとポリアミノアミド硬化剤(富士化成工業株式会社製、商品名「トーマイド245-S」、アミン価535)4.2gとをそれぞれPEG 200(水酸基価550mgKOH/g)35.7g中に溶解し、真空脱泡して混合液を得た。次に、前記混合液をテフロン(登録商標)製のチューブ(内径12mm、長さ150mm)内に注入して栓をし、そのまま60℃のオイルバスに投入して1時間加熱した後、オイルバスの温度を100℃に上げてさらに1時間加熱した。その後、硬化物をテフロン(登録商標)製の管から取り出し、50℃の水中に20時間浸漬し、ポリエチレングリコールを抽出除去して、比較のための芳香族系のエポキシ樹脂硬化物多孔体を得た。なお、このようなエポキシ樹脂硬化物は走査型電子顕微鏡による測定の結果、多孔質構造を有するものであることが確認された。また、このようにして得られたエポキシ樹脂硬化物多孔体の空孔率は70%であり、平均細孔直径は1.0μmであった。
 (比較例11)
 比較例10で得られたエポキシ樹脂硬化物多孔体を完全に乾燥させた後、1.0規定の塩酸水溶液に浸漬し、超音波を照射して15分間反応させることにより、前記多孔体中のアミノ基を4級化させて、比較のための4級化アミン含有エポキシ多孔体を得た。
 [実施例17及び比較例11で得られた多孔体の特性の評価]
 〈抗菌性能の評価〉
 実施例17で得られた4級化アミン含有エポキシ多孔体及び比較例11で得られた比較のための4級化アミン含有エポキシ多孔体をそれぞれ抗菌材として使用して抗菌性能を評価した。すなわち、先ず、切花に使用していた水を純粋で100倍に希釈して、細菌の含有するサンプル水とした。次に、前記サンプル水を50mLずつ、3つのビーカーに入れて、サンプル水が導入されたビーカーA~Cを得た。次いで、実施例17及び比較例11で得られた各4級化アミン含有エポキシ多孔体をそれぞれ4.1gとなるようにして切断し、ビーカーAには実施例17で得られた4級化アミン含有エポキシ多孔体からなる抗菌材(4.1g)を投入し、ビーカーBには比較例11で得られた4級化アミン含有エポキシ多孔体からなる抗菌材(4.1g)を投入した。なお、ビーカーCにはいずれの抗菌材も使用しなかった。そして、各抗菌材を添加後、10分経過した後のビーカーA~C中の各サンプル水を、それぞれバクテリア培養シート(商品名「ペトリフィルム」:3M社製)上に滴下し、バクテリアを培養してバクテリア量を調べて各抗菌材の抗菌性能を評価した。また、4日後においても、同様に各サンプル水を採取してバクテリアを培養し、バクテリア量を調べた。実施例17で得られた抗菌材を用いたビーカー中のサンプル水(抗菌材添加10分後の水)を滴下したバクテリア培養シート上の生物の形態を示す写真を図11に示し、比較例11で得られた抗菌材を用いたビーカー中のサンプル水(抗菌材添加10分後の水)を滴下したバクテリア培養シート上の生物の形態を示す写真を図12に示し、抗菌材を用いなかったビーカー中のサンプル水(調製後10分経過した水)を滴下したバクテリア培養シート上の生物の形態を示す写真を図13に示す。また、4日経過後の各ビーカー中のサンプル水をそれぞれ用いた場合におけるバクテリアの数を表1に示す。なお、バクテリアの数は、バクテリア培養シートにおいてコロニーが着色することから、その数をカウントすることにより求められた数である。
Figure JPOXMLDOC01-appb-T000011
 図11~13に示す結果からも明らかなように、本発明の抗菌材(実施例17)を用いた場合には、抗菌材添加10分後のサンプル水中にバクテリアが全く確認されなかった。一方、比較のための抗菌材(比較例11)を用いた場合においても、抗菌材を用いなかった場合(図13)と比較すると、抗菌材添加10分後のサンプル水中のバクテリアの数が少なく殺菌効果があることは認められた。しかしながら、比較のための抗菌材(比較例11)と本発明の抗菌材(実施例17)とを比較すると、比較のための抗菌材(比較例11)は殺菌効果が必ずしも十分なものではないことが分かった。なお、図13に示すような抗菌材を用いなかった場合のバクテリア培養シートは、背景が全体的に着色しており、カウントできないほどのバクテリアが存在していた。また、表1に示す結果からも明らかなように、本発明の抗菌材(実施例17)を用いた場合にはバクテリアの発生が十分に抑制されており、本発明の抗菌材(実施例17)が比較のための抗菌材(比較例11)と比べても、十分に高度な殺菌効果を有することが確認された。このような結果から、本発明の抗菌材(実施例17)は非常に高度な殺菌性能を有するものであることが分かった。
 以上説明したように、本発明によれば、脂環式エポキシ化合物と脂環式アミン硬化剤とを組み合わせて得られる多孔質構造のエポキシ樹脂硬化物であり、分離媒体としての性能が十分に高く、十分に高度な水質保持性能を有し、しかも十分に高度な抗菌性能を有する抗菌材を調製する際の原料としても利用することが可能なエポキシ樹脂硬化物多孔体及びその製造方法、並びに、それを用いた水質保持材及び抗菌材を提供することが可能となる。したがって、本発明のエポキシ樹脂硬化物多孔体は、各種分離媒体、水質保持材及び抗菌材等に好適に利用することが可能である。

Claims (10)

  1.  1分子中に3つ以上のエポキシ基を有する脂環式エポキシ化合物と、脂環式アミン硬化剤と、前記脂環式エポキシ化合物及び前記脂環式アミン硬化剤に対して不活性な溶媒とを含有する混合液を加熱して硬化物を得た後、前記硬化物から前記溶媒を除去することにより得られる多孔質構造のエポキシ樹脂硬化物である、エポキシ樹脂硬化物多孔体。
  2.  前記脂環式エポキシ化合物が、下記一般式(1):
    [化1]
    Figure JPOXMLDOC01-appb-I000001
    [式(1)中、Xは式中の窒素原子(N)と直接又は炭素数が1~5の直鎖アルキレン基を介して結合する炭素数が3~8の脂環式炭化水素基を示し、Yは式中の窒素原子(N)と直接又は炭素数が1~5の直鎖アルキレン基を介して結合するエポキシ基を示し、m及びnはYの総数が3以上となるようにして選択される整数であって、mは2~4のうちのいずれかの整数を示し、nはそれぞれ独立に1又は2の整数を示し、pはそれぞれ独立に0又は1の整数を示し、pとnとの和が2である。]
    で表される化合物である、請求項1に記載のエポキシ樹脂硬化物多孔体。
  3.  前記脂環式エポキシ化合物が、下記一般式(2)~(3):
    [化2]
    Figure JPOXMLDOC01-appb-I000002
    で表される化合物のうちの少なくとも1種である、請求項1又は2に記載のエポキシ樹脂硬化物多孔体。
  4.  前記脂環式アミン硬化剤が、分子内に1級アミノ基を2つ以上有する脂環式アミン化合物である、請求項1~3のうちのいずれか一項に記載のエポキシ樹脂硬化物多孔体。
  5.  前記脂環式アミン硬化剤が、イソホロンジアミン、メンタンジアミン、ビス(4-アミノ-3-メチルシクロヘキシル)メタン、ビス(4-アミノシクロヘキシル)メタン、及びこれらの変性物からなる群の中から選択される少なくとも1種である、請求項1~4のうちのいずれか一項に記載のエポキシ樹脂硬化物多孔体。
  6.  前記溶媒が、水酸基価が50mgKOH/g以上のポリアルキレングリコール及びその誘導体の中から選択される少なくとも1種である、請求項1~5のうちのいずれか一項に記載のエポキシ樹脂硬化物多孔体。
  7.  請求項1~6のうちのいずれか一項に記載のエポキシ樹脂硬化物多孔体を備える、水質保持材。
  8.  請求項1~6のうちのいずれか一項に記載のエポキシ樹脂硬化物多孔体を備える、抗菌材。
  9.  請求項1~6のうちのいずれか一項に記載のエポキシ樹脂硬化物多孔体中のアミノ基を4級化して得られる4級化アミン含有エポキシ多孔体を備える、抗菌材。
  10.  1分子中に3つ以上のエポキシ基を含有する脂環式エポキシ化合物と、脂環式アミン硬化剤と、前記脂環式エポキシ化合物及び前記脂環式アミン硬化剤に対して不活性な溶媒とを含有する混合液を加熱して硬化物を得た後、前記硬化物から前記溶媒を除去することにより、多孔質構造のエポキシ樹脂硬化物を得る、エポキシ樹脂硬化物多孔体の製造方法。
PCT/JP2010/063538 2009-08-10 2010-08-10 エポキシ樹脂硬化物多孔体、水質保持材、抗菌材及びエポキシ樹脂硬化物多孔体の製造方法 WO2011019033A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011526766A JP5590682B2 (ja) 2009-08-10 2010-08-10 エポキシ樹脂硬化物多孔体、水質保持材、抗菌材及びエポキシ樹脂硬化物多孔体の製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-185665 2009-08-10
JP2009185665 2009-08-10

Publications (1)

Publication Number Publication Date
WO2011019033A1 true WO2011019033A1 (ja) 2011-02-17

Family

ID=43586208

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/063538 WO2011019033A1 (ja) 2009-08-10 2010-08-10 エポキシ樹脂硬化物多孔体、水質保持材、抗菌材及びエポキシ樹脂硬化物多孔体の製造方法

Country Status (2)

Country Link
JP (1) JP5590682B2 (ja)
WO (1) WO2011019033A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017037070A (ja) * 2015-08-10 2017-02-16 三菱化学株式会社 分離剤及び液体クロマトグラフィー用カラム
WO2020179642A1 (ja) * 2019-03-04 2020-09-10 株式会社エマオス京都 多孔質体および多孔質体の製造方法
JP2022067097A (ja) * 2020-03-13 2022-05-02 株式会社リコー 抗病原体構造体、抗病原体構造体の製造方法、抗病原体構造体の製造装置、及び液体組成物

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101511719B (zh) 2006-09-28 2013-01-16 奥蒂斯电梯公司 用于人工控制电梯系统的细长构件的竖直移动的装置

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006073173A1 (ja) * 2005-01-07 2006-07-13 Asahi Kasei Kabushiki Kaisha エポキシ樹脂硬化物多孔体
WO2007083348A1 (ja) * 2006-01-17 2007-07-26 Shimadzu Corporation クロマトグラフィー用モノリス分離媒体及びその製造方法
JP2008013625A (ja) * 2006-07-04 2008-01-24 Emaus Kyoto:Kk 水質保持材及びその製造方法
JP2008281368A (ja) * 2007-05-08 2008-11-20 Hitachi Chem Co Ltd マイクロ流体システム用支持ユニットの製造方法
JP2008281366A (ja) * 2007-05-08 2008-11-20 Hitachi Chem Co Ltd マイクロ流体システム用支持ユニット
JP2009039350A (ja) * 2007-08-09 2009-02-26 Hitachi Chem Co Ltd 血球分離材及び血球分離材の製造方法
WO2009050801A1 (ja) * 2007-10-17 2009-04-23 Shimadzu Corporation クロマトグラフィー用モノリス分離媒体及びその製造方法
JP2009269948A (ja) * 2008-04-30 2009-11-19 Emaus Kyoto:Kk 多孔体及びその製造方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006073173A1 (ja) * 2005-01-07 2006-07-13 Asahi Kasei Kabushiki Kaisha エポキシ樹脂硬化物多孔体
WO2007083348A1 (ja) * 2006-01-17 2007-07-26 Shimadzu Corporation クロマトグラフィー用モノリス分離媒体及びその製造方法
JP2008013625A (ja) * 2006-07-04 2008-01-24 Emaus Kyoto:Kk 水質保持材及びその製造方法
JP2008281368A (ja) * 2007-05-08 2008-11-20 Hitachi Chem Co Ltd マイクロ流体システム用支持ユニットの製造方法
JP2008281366A (ja) * 2007-05-08 2008-11-20 Hitachi Chem Co Ltd マイクロ流体システム用支持ユニット
JP2009039350A (ja) * 2007-08-09 2009-02-26 Hitachi Chem Co Ltd 血球分離材及び血球分離材の製造方法
WO2009050801A1 (ja) * 2007-10-17 2009-04-23 Shimadzu Corporation クロマトグラフィー用モノリス分離媒体及びその製造方法
JP2009269948A (ja) * 2008-04-30 2009-11-19 Emaus Kyoto:Kk 多孔体及びその製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
KEN HOSOYA ET AL.: "Properties of a Non-Aromatic Epoxy Polymer-Based Monolithic Capillary Column for µ-HPLC", CHROMATOGRAPHIA, vol. 70, 5 August 2009 (2009-08-05), pages 699 - 704, XP019726439, DOI: doi:10.1365/s10337-009-1260-3 *

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017037070A (ja) * 2015-08-10 2017-02-16 三菱化学株式会社 分離剤及び液体クロマトグラフィー用カラム
WO2017026453A1 (ja) * 2015-08-10 2017-02-16 三菱化学株式会社 分離剤及び液体クロマトグラフィー用カラム
US10773241B2 (en) 2015-08-10 2020-09-15 Mitsubishi Chemical Corporation Separating medium and column for liquid chromatography
WO2020179642A1 (ja) * 2019-03-04 2020-09-10 株式会社エマオス京都 多孔質体および多孔質体の製造方法
JPWO2020179642A1 (ja) * 2019-03-04 2021-06-10 株式会社エマオス京都 多孔質体および多孔質体の製造方法
JP7132659B2 (ja) 2019-03-04 2022-09-07 株式会社エマオス京都 多孔質体および多孔質体の製造方法
US11613618B2 (en) 2019-03-04 2023-03-28 Emaus Kyoto, Inc. Porous body, and method for producing porous body
JP2022067097A (ja) * 2020-03-13 2022-05-02 株式会社リコー 抗病原体構造体、抗病原体構造体の製造方法、抗病原体構造体の製造装置、及び液体組成物
JP7347557B2 (ja) 2020-03-13 2023-09-20 株式会社リコー 抗微生物又は抗ウイルス用樹脂構造体、抗微生物又は抗ウイルス用樹脂構造体の製造方法、及び抗微生物又は抗ウイルス用樹脂構造体の製造装置

Also Published As

Publication number Publication date
JP5590682B2 (ja) 2014-09-17
JPWO2011019033A1 (ja) 2013-01-17

Similar Documents

Publication Publication Date Title
Guo et al. Non-polyamide based nanofiltration membranes using green metal–organic coordination complexes: implications for the removal of trace organic contaminants
JP5590682B2 (ja) エポキシ樹脂硬化物多孔体、水質保持材、抗菌材及びエポキシ樹脂硬化物多孔体の製造方法
KR101893239B1 (ko) 내오염성이 우수한 폴리아미드계 수처리 분리막 및 그 제조 방법
CN107158980A (zh) 基于气/液界面反应的薄层复合膜及其制备方法和应用
JPWO2007018284A1 (ja) 親水化剤によって親水化された芳香族エーテル系高分子からなる液体処理分離膜
EP3706890A1 (en) Asymmetric composite membranes and uses thereof
JPH1052268A (ja) 微生物担持体及びその製造方法
CN107583112A (zh) 一种医用聚氨酯抗菌纳米银涂层的制备方法
CN112221354B (zh) 基于迈克尔加成反应的抗菌抗污染微孔膜及其制备方法
CN111004411A (zh) 一种用于选择性分离四环素的生物质基分子印迹复合膜的制备方法
CN106268362B (zh) 一种抗菌复合膜的制备方法及其由该方法制备的抗菌复合膜以及其在水处理领域中的应用
CN107486037A (zh) 一种具有超亲水性能的pvdf/pda复合膜
Gao et al. Dot-matrix-initiated molecularly imprinted nanocomposite membranes for selective recognition: a high-efficiency separation system with an anti-oil fouling layer
CN101228214A (zh) 芳族聚酰胺复合膜的制备方法
JPH01107812A (ja) 多孔質膜の親水化方法
US20220274064A1 (en) Filtration membrane and method of production thereof
JP4657576B2 (ja) 選択的にガスを分離するための膜
Sivasankari et al. Cellulose acetate (CA) membrane tailored with Fe3O4@ ZnO core shell nanoparticles: fabrication, structural analysis and its adsorption analysis
Nigiz et al. Halloysite Nanotube doped poly lactic acid membrane preparation and seawater desalination
KR20140129742A (ko) 바이러스 제거용 중공사막 및 이의 제조방법
EP3515968A1 (en) Polymers having intrinsic microporosity including sub-units with troger's base and spirobisindane moieties
JP2016521207A (ja) 正浸透の用途のために転相により形成されるポリアニリン膜
WO2019117242A1 (ja) 微生物固定化担体
CN110684158A (zh) 一种永久抗菌的聚醚砜膜材料及其制备方法
Khezraqa et al. Investigating the effect of polyamidoamine generation 2 (PAMAM-G2) polymeric nanostructures dendrimer on the performance of polycarbonate thin film nanocomposite membranes for water treatment

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10808216

Country of ref document: EP

Kind code of ref document: A1

DPE2 Request for preliminary examination filed before expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2011526766

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10808216

Country of ref document: EP

Kind code of ref document: A1