CN112221354B - 基于迈克尔加成反应的抗菌抗污染微孔膜及其制备方法 - Google Patents

基于迈克尔加成反应的抗菌抗污染微孔膜及其制备方法 Download PDF

Info

Publication number
CN112221354B
CN112221354B CN202010970541.2A CN202010970541A CN112221354B CN 112221354 B CN112221354 B CN 112221354B CN 202010970541 A CN202010970541 A CN 202010970541A CN 112221354 B CN112221354 B CN 112221354B
Authority
CN
China
Prior art keywords
pollution
antibacterial
microporous membrane
membrane
component
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202010970541.2A
Other languages
English (en)
Other versions
CN112221354A (zh
Inventor
方立峰
朱明明
朱宝库
田华
喻文翰
薛云云
沈宇杰
邱泽霖
韩俊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhejiang University ZJU
Original Assignee
Zhejiang University ZJU
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhejiang University ZJU filed Critical Zhejiang University ZJU
Priority to CN202010970541.2A priority Critical patent/CN112221354B/zh
Publication of CN112221354A publication Critical patent/CN112221354A/zh
Application granted granted Critical
Publication of CN112221354B publication Critical patent/CN112221354B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/02Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor characterised by their properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0002Organic membrane manufacture
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/10Supported membranes; Membrane supports
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/44Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/48Antimicrobial properties
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/124Water desalination
    • Y02A20/131Reverse-osmosis

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Organic Chemistry (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

本发明公开了一种基于迈克尔加成反应的抗菌抗污染微孔膜及其制备方法。所述抗菌抗污染微孔膜由抗菌抗污染分离层和支撑层组成,抗菌抗污染分离层含有抗菌组分和抗污染组分,抗菌组分与抗污染组分通过共价键相连,支撑层由膜基体材料和含叔胺两亲共聚物构成。本发明还进一步公开了所述抗菌抗污染微孔膜的制备方法通过调节季铵化时间与温度,以及抗污染分子的分子量和迈克尔加成反应时间与温度的条件,很容易实现微孔膜表面抗菌组分和抗污染组分的调节。该微孔膜将可应用于污水处理、自来水净化、食品工业、海水淡化前处理、生物医用等领域。

Description

基于迈克尔加成反应的抗菌抗污染微孔膜及其制备方法
技术领域
本发明属于水处理和膜分离科学与技术领域,特别涉及一种基于迈克尔加成反应的抗菌抗污染微孔膜及其制备方法。
背景技术
膜分离技术具有分离效率高、占地面积小、能耗低、操作简便等优点,成为目前分离科学中最重要的手段之一。但是膜污染问题一直困扰着聚合物膜分离技术的更深远发展。通常聚合物膜表面疏水性较强,很容易吸附蛋白质等有机大分子导致有机污染。除此之外,细菌粘附快速生长繁殖,造成生物污染会膜通量衰减,分离能耗升高,分离效果变差。通过提高膜表面的亲水性,使得最初蛋白质或者细菌在膜表面的粘附减小,可以提升抗污性性能,但如果粘附的少量细菌存活,就会生长繁殖造成生物污染。通过提高膜表面的杀菌效果,使得粘附的细菌被杀死,残留死菌和其他有机物依然会粘附表面导致有机污染。因此单纯的抗菌或抗污染表面都不能长效抗污染,制备同时具有抗菌抗污染表面的膜有重要意义
目前有一些关于聚合物分离膜抗菌抗污染改性的相关报道。例如,发明专利CN104524986A将基膜浸泡在多巴胺溶液中,利用多巴胺的自聚在基膜表面形成一层聚多巴胺层,然后与聚乙烯亚胺水溶液进行反应,最后经过阳离子化反应,得到亲水抗菌膜。发明专利CN106669439A用阿魏酸对天然木质素进行接枝处理,和交联剂一起涂覆在聚砜膜表面作为抗污染层,再将间苯二胺、均苯三甲酰氯溶液先后涂覆发生反应,得到抗生物污染的反渗透膜。发明专利CN104190274A以聚偏氟乙烯、银离子及两性离子单体为主要原料制得银纳米颗粒两性离子聚合物刷,接枝于聚偏氟乙烯膜表面,达到抗菌抗污染的效果。发明专利CN107670506A将相转化得到的PVDF微孔膜浸没在载银壳聚糖成膜溶液中,进行表面涂覆,干燥之后制备得到亲水性抗菌耐污染的PVDF微孔膜。发明专利CN 108927018 A将聚砜基膜一次浸泡间苯二胺溶液、均苯三甲酰氯溶液、聚乙烯亚胺溶液和纳米银胶体中制得抗污染抗菌正渗透膜。但以上改性方法中,抗菌层和抗污染层为同种物质,无法同时得到抗菌和抗污染俱佳效果,无法解决分离膜长期使用过程中的膜污染问题。例如,文献(Desalination,2013,324:48-56)报道原位形成银纳米粒子改性超滤膜,该超滤膜具有抗菌抗污染性能,但在研究中也发现了纳米银会以银离子的形式而逐渐流失。有效抗菌抗污染组分的逐渐消失,会影响膜的长期性能。
季铵盐作为一类广谱杀菌剂,具有高效、低毒、不易受pH值变化的影响、化学性能稳定等特点,且季铵盐具有很强的化学设计性,能够通过简易的方法接枝到材料表面。聚乙二醇(或聚氧化乙烯)和聚两性离子应用广泛的抗污染材料,其通过与水分子发生作用紧密结合后形成水合层,成为污染物在膜表面吸附的屏障,因此有优良的抗蛋白质吸附和抗生物污染性能。同时结合季铵盐的广谱杀菌性能和聚乙二醇(或聚氧化乙烯)/聚两性离子抗污染性能,并将其稳定地结合在微孔膜表面协同发挥作用,对于实现微孔膜长期抗污染性能方面具有重要意义。
发明内容
为克服现有膜分离技术中膜长期使用的污染问题,本发明通过由共价键相连的抗菌组分和抗污染组分制备一种抗菌抗污染微孔膜。
本发明的目的之一在于制备一种兼具抗菌抗污染的微孔膜。改性后的微孔膜表面具有长期抗污染效果,能够抑制细菌、微生物的生长和粘附。
本发明提出的抗菌抗污染微孔膜是由抗菌抗污染分离层和支撑层组成,所述抗菌抗污染分离层含有抗菌组分和抗污染组分,抗菌组分与抗污染组分通过共价键相连,支撑层由膜基体材料和含叔胺两亲共聚物构成。抗菌组分是由含叔胺两亲共聚物和卤化α,β-不饱和羰基化合物通过季铵化反应生成,抗污染组分是抗污染分子通过和α,β-不饱和羰基化合物的迈克尔加成反应生成共价键连接生成。
优选的,所述含叔胺两亲共聚物是含叔胺单体和疏水性单体共聚得到;所述的含叔胺单体选自甲基丙烯酸二甲氨基乙酯、甲基丙烯酸二乙氨基乙酯、丙烯酸二甲氨基乙酯、丙烯酸二乙氨基乙酯、二甲氨丙基甲基丙烯酰胺、二甲氨基丙基丙烯酰胺、4-乙烯基吡啶、2-乙烯基吡啶、乙烯基咪唑中的任意一种或任意多种;所述疏水性单体选自甲基丙烯酸甲酯、丙烯酸甲酯、苯乙烯、氯乙烯、甲基丙烯酸三氟乙酯、甲基丙烯酸全氟代辛酯、丙烯酸三氟乙酯、丙烯酸全氟代辛酯中的任意一种或任意多种;所述的卤化α,β-不饱和羰基化合物选自甲基丙烯酸3-氯-2-羟基丙酯、3-氯-2-羟基丙基甲基丙烯酸酯、2-氯甲基丙烯酸乙酯、2-氯乙基甲基丙烯酸酯、2-溴乙基丙烯酸酯、2,3-二溴丙基丙烯酸酯、2-溴甲基丙烯酸乙酯、2-溴甲基丙烯酸甲酯、2,3-二溴丙基丙烯酸酯中的任意一种或任意多种。
优选的,所述抗污染组分是通过抗污染分子的端基与α,β-不饱和羰基化合物通过迈克尔加成反应连接,所述抗污染分子选自单端巯基聚乙二醇、单端炔基聚乙二醇、单端氨基聚乙二醇、双端巯基聚乙二醇、双端炔基聚乙二醇、双端氨基聚乙二醇、单端巯基聚磷酰胆碱型两性离子、单端巯基聚磺基甜菜碱型两性离子、单端巯基聚羧基甜菜碱型两性离子中的任意一种或任意多种。
优选的,所述膜基体材料选自聚偏氟乙烯、聚酰胺、聚氯乙烯、聚砜、聚醚砜、聚丙烯腈、聚苯乙烯、聚甲基丙烯酸甲酯、聚苯醚、聚醚醚酮。
优选的,所选聚乙二醇的分子量范围为200~100,000Da,聚磷酰胆碱型两性离子的分子量范围为300~100,000Da,聚磺基甜菜碱型两性离子的分子量范围为300~100,000Da,聚羧基甜菜碱型两性离子的分子量范围为300~100,000Da。
本发明还提供一种抗菌抗污染微孔膜的制备方法,包括如下步骤:
(1)将膜基体材料和含叔胺两亲共聚物溶解在溶剂中,混合均匀后,通过非溶剂诱导相转化的方法制备成含叔胺两亲共聚物的前体膜I;
(2)将卤化α,β-不饱和羰基化合物制成溶液,将(1)中制备的前体膜I浸入该溶液,发生季铵化反应,得到表面带有季铵盐荷正电层的前体膜II;
(3)将抗污染分子制成溶液,将(2)制备的前体膜II浸入该溶液,经催化使膜表面α,β-不饱和双键基团和抗污染分子发生迈克尔加成反应,得到抗菌抗污染微孔膜。
优选的,步骤(1)所述的膜基体材料选自聚偏氟乙烯、聚酰胺、聚氯乙烯、聚砜、聚醚砜、聚丙烯腈、聚苯乙烯、聚甲基丙烯酸甲酯、聚苯醚、聚醚醚酮;步骤(1)所述的含叔胺两亲共聚物是由含叔胺单体和疏水性单体共聚得到;所述的含叔胺单体选自甲基丙烯酸二甲氨基乙酯、甲基丙烯酸二乙氨基乙酯、丙烯酸二甲氨基乙酯、丙烯酸二乙氨基乙酯、二甲氨丙基甲基丙烯酰胺、二甲氨基丙基丙烯酰胺、4-乙烯基吡啶、2-乙烯基吡啶、乙烯基咪唑中的任意一种或任意多种;所述疏水性单体选自甲基丙烯酸甲酯、丙烯酸甲酯、苯乙烯、氯乙烯、甲基丙烯酸三氟乙酯、甲基丙烯酸全氟代辛酯、丙烯酸三氟乙酯、丙烯酸全氟代辛酯中的任意一种或任意多种;步骤(1)所述的溶剂选自N,N-二甲基乙酰胺、N,N-二甲基甲酰胺、N-甲基吡咯烷酮、二甲亚砜、四氢呋喃、丙酮、二氧六环。
优选的含叔胺两亲共聚物与膜基体材料的质量比为1/19~3/2。
本发明中,为了进一步增加膜基体材料的亲水性和渗透性能,在含叔胺两亲共聚物的活性前体膜可以加入亲水添加剂,所述亲水添加剂,选自聚乙二醇,聚乙烯吡咯烷酮、聚醚嵌段共聚物、二氧化钛、二氧化硅、石墨烯、碳纳米管、聚多巴胺纳米颗粒、氯化锂的任意一种或多种。该类亲水添加剂与本发明中设计的抗污染组分有本质区别。所述亲水添加剂,与膜基体仅为物理相互作用,在使用初期能保持亲水性,但随着使用时间增加会逐渐流失;所述抗污染组分与基体材料有共价键相连,因此该抗污染组分不会随着使用时间延长而丧失。
优选的,步骤(2)所述的卤化α,β-不饱和羰基化合物选自甲基丙烯酸3-氯-2-羟基丙酯、3-氯-2-羟基丙基甲基丙烯酸酯、2-氯甲基丙烯酸乙酯、2-氯乙基甲基丙烯酸酯、2-溴乙基丙烯酸酯、2,3-二溴丙基丙烯酸酯、2-溴甲基丙烯酸乙酯、2-溴甲基丙烯酸甲酯、2,3-二溴丙基丙烯酸酯中的任意一种或任意多种。
优选的,步骤(2)所述溶液的溶剂(II)选自水,乙醇、正庚烷、环己烷、甲醇、甘油、正己烷中的任意一种或任意多种。
优选的,卤化α,β-不饱和羰基化合物溶液的浓度为0.5%~10%。
优选的,步骤(2)所述的反应温度为25~80℃,所述的反应时间为10分钟~48小时。
优选的,步骤(3)所述抗污染分子选自单端巯基聚乙二醇、单端炔基聚乙二醇、单端氨基聚乙二醇、双端巯基聚乙二醇、双端炔基聚乙二醇、双端氨基聚乙二醇、单端巯基聚磷酰胆碱型两性离子、单端巯基聚磺基甜菜碱型两性离子、单端巯基聚羧基甜菜碱型两性离子中的任意一种或任意多种。
优选的,所选聚乙二醇的分子量范围为200~100,000Da,聚磷酰胆碱型两性离子的分子量范围为300~100,000Da,聚磺基甜菜碱型两性离子的分子量范围为300~100,000Da,聚羧基甜菜碱型两性离子的分子量范围为300~100,000Da。
优选的,步骤(3)所述迈克尔加成反应的催化剂选自氢氧化钠、氢氧化钾、氢氧化锂、六氢吡啶、乙醇钠、氨基钠、三乙胺中任意一种。
优选的,迈克尔加成反应的催化剂浓度为抗污染分子的物质的量的0.01~0.1。
优选的,步骤(3)所述的溶剂为水、甲醇、乙醇、乙二醇、异丙醇、正丁醇、叔丁醇、甘油中的一种或多种。
优选的,卤化α,β-不饱和羰基化合物溶液的浓度为0.5%~10%。
优选的,步骤(3)所述的反应温度为20~80℃,反应时间为10分钟~8小时。
优选的,所述抗菌抗污染微孔膜孔径范围为2纳米~1微米。
所述抗菌抗污染微孔膜可应用于污水处理、自来水净化、食品工业、海水淡化前处理、生物医用等领域。
本发明与现有技术相比的有益效果有:
本发明提供的抗菌抗污染微孔膜同时实现微孔膜95%以上的通量回复率和99%以上的细菌杀灭率,同时赋予微孔膜抗菌性和抗污染功能。若微孔膜只具备抗污染性能时,少量或者微量微生物仍会吸附到微孔膜表面,由于微生物的繁殖与生长,吸附表面的微生物会逐渐生成生物膜,从而破坏微孔膜的抗污染性能;若微孔膜只具备抗菌性能,则微孔膜具备杀死微生物的能力,但是微生物尸体仍会与微孔膜表面有强烈的吸附作用,而逐渐覆盖表面从而使表面丧失抗菌能力。
本发明提供的一种抗菌抗污染微孔膜中抗菌组分和抗污染组分通过共价键与基底膜相连,该微孔膜抗菌性和抗污染功能具有长期稳定性。与基于银离子的抗菌抗污染膜相比,由于银离子在使用过程中会逐渐流失,而同时丧失抗菌抗污染功能,不具备长期稳定性。
本发明提供的一种抗菌抗污染微孔膜的制备方法,通过调节季铵化时间与温度,以及抗污染分子的分子量和迈克尔加成反应时间与温度的条件,很容易实现微孔膜表面抗菌组分和抗污染组分的调节。
本发明提供的一种抗菌抗污染微孔膜的制备方法,使得基底膜的组成可调,抗菌组分与抗污染组分比例可调,很容易实现微孔膜的包括膜孔径、膜渗透性、膜抗污染性能和膜抗菌性能等综合性能调节。
附图说明
图1为本发明抗菌抗污染膜表面和断面形貌图;
图2为本发明抗菌抗污染膜表面荷电性;
图3为本发明抗菌抗污染膜污染测试曲线;
图4为未改性膜与本发明抗菌抗污染膜的抗菌性能对比结果。
具体实施方式
下面结合实施例详细说明本发明
本发明的基于迈克尔加成反应的抗菌抗污染微孔膜是由抗菌抗污染分离层和支撑层组成,所述抗菌抗污染分离层含有抗菌组分和抗污染组分,抗菌组分与抗污染组分通过共价键相连,支撑层由膜基体材料和含叔胺两亲共聚物构成。抗菌组分是由含叔胺两亲共聚物和卤化α,β-不饱和羰基化合物通过季铵化反应生成,抗污染组分是抗污染分子通过和α,β-不饱和羰基化合物的迈克尔加成反应生成共价键连接生成。
本发明的抗菌抗污染微孔膜,其制备方法主要包括如下步骤:
(1)将膜基体材料和含叔胺两亲共聚物溶解在溶剂中,混合均匀后,通过非溶剂诱导相转化的方法制备成含叔胺两亲共聚物的前体膜I;
(2)将卤化α,β-不饱和羰基化合物制成溶液,将(1)中制备的前体膜I浸入该溶液,发生季铵化反应,得到表面带有季铵盐荷正电层的前体膜II;
(3)将抗污染分子制成溶液,将(2)制备的前体膜II浸入该溶液,经催化使膜表面α,β-不饱和双键基团和抗污染分子发生迈克尔加成反应,得到抗菌抗污染微孔膜。所述抗菌抗污染微孔膜孔径范围为2纳米~1微米。
所述抗菌抗污染微孔膜可应用于污水处理、自来水净化、食品工业、海水淡化前处理、生物医用等领域。
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及具体实施方式,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施方式仅用以解释本发明,并不用于限定本发明。
膜结构表征:场发射扫描电镜观察微孔膜表面和断面形貌;接触角仪测定微孔膜的表面亲疏水性;Zeta电位测定微孔膜表面荷电性;PEG截留实验或者气孔计测定微孔膜孔径。
膜渗透性能表征:纯水通量通过错流池测试,测试压力为0.1MPa,流速设定为800mL/min。
抗污染性能测试:将微孔膜样品置于错流池装置中,以0.5g/L的牛血清白蛋白溶液为进料液,过滤30min;用去离子水将装置清洗干净,后将微孔膜样品在错流中倒置,并在0.02MPa压力下反冲5min;再反转微孔膜样品,在0.1MPa下测定测量纯水通量,计算通量回复率(通量回复率=反冲清洗后纯水通量/纯水通量×100%)。
抗菌性能测试:用TSB细菌培养基于37℃下培养金黄色葡萄球菌或大肠杆菌至浓度为108CFU/ml,用PBS溶液稀释至107CFU/ml;将微孔膜样品用打孔器裁成直径为8mm的圆片,用75%酒精灭菌后放入多孔板中,在超净台中将10uL菌液滴加在膜表面,将孔板在37℃恒温振荡箱中培养24h;用PBS将附着在微孔膜样品上菌液洗下并收集,再用PBS溶液稀释并涂板计数,计算杀菌率(杀菌率=1-实验样上菌斑数/对照样上菌斑数×100%)。
实施例1
将6.75g聚偏氟乙烯粉末、2.25g甲基丙烯酸甲酯膜-甲基丙烯酸二甲氨基乙酯共聚物(其中甲基丙烯酸二甲氨基乙酯含量为42%)和2.5g聚乙烯吡咯烷酮溶解于41g N,N-二甲基乙酰胺中,在60℃下搅拌均匀,静置脱泡。将铸膜液倒在玻璃板上,用刮刀均匀地刮制成厚度约为250mm的平板膜,放入30℃去离子水中,相转化成膜,得到表面含有叔胺基团的活性前体膜。将活性前体膜浸入20g甲基丙烯酸3-氯-2-羟基丙酯(3wt%)的异丙醇溶液,在25℃反应1小时,得到表面带有季铵盐荷正电层的前体膜。将该膜浸入20g单端氨基聚乙二醇(分子量:1000Da,浓度10wt%)氢氧化钠溶液中,在60℃下反应4h,得到抗菌抗污染微孔膜。
采用场发射扫描电镜观察微孔膜表面和断面形貌(附图1);采用接触角仪测定微孔膜的表面亲疏水性(附表2);采用Zeta电位测定微孔膜表面荷电性(附图2);采用PEG截留实验测定微孔膜孔径(附表2);采用错流池测定微孔膜纯水通量(附表2);测定微孔膜抗污染性能(附图3)和抗菌性能(附图4,附表2)。从图和表中可见,实施例1的抗菌抗污染微孔膜表面为致密层,断面为指状孔结构,有利于实现微孔膜高效分离性能和高渗透性能;实施例1的活性前体膜经季铵化反应处理,微孔膜表面荷正电化,进一步引入抗污染单体后,抗菌抗污染微孔膜表面荷电性降低;实施例1的抗菌抗污染微孔膜经污染后通过简单的水洗即可实现通量95%以上的回复,表明微孔膜优异的抗污染性能;实施例1的抗菌抗污染微孔膜对金黄色葡萄球菌和大肠杆菌有99%以上的杀菌率;抗菌抗污染微孔膜的6nm,纯水通量为150L m-2 h-1bar-1,亲水接触角为63°。
通过对实施例1,采用热水(60℃)浸泡的方法,考察抗菌抗污染微孔膜结构和性能的稳定性(参考文献:Langmuir,2007,23,5779-5786)。结果表明,经过1个月时间的浸泡,实施例1的抗菌抗污染微孔膜对金黄色葡萄球菌和大肠杆菌有99%以上的杀菌率;纯水通量为151L m-2 h-1bar-1,亲水接触角为65°,经污染后通过简单的水洗即可实现通量95%以上的回复。由此说明,通过抗菌组分与抗污染组分通过碳碳键相连,有效的促进了微孔膜结构和性能的稳定性。
实施例2-实施例16:
抗菌抗污染微孔膜制备过程同实施例1类似,其中选用试剂和反应条件如附表1所示。对微孔膜的表征结果如表2所示。从表中可见,由于本发明提供的制备方法通过调节季铵化时间与温度,以及抗污染分子的分子量和迈克尔加成反应时间与温度的条件,很容易实现微孔膜表面抗菌组分和抗污染组分的调节。另外,本发明方法使得基底膜的组成可调,抗菌组分与抗污染组分比例可调,很容易实现微孔膜的包括膜孔径、膜渗透性、膜抗污染性能和膜抗菌性能等综合性能调节。从表2可知,实施例制备得到的抗菌抗污染微孔膜可同时实现微孔膜95%以上的通量回复率和99%以上的细菌杀灭率,赋予同时赋予微孔膜抗菌性和抗污染功能。由于膜中抗菌组分和抗污染组分通过共价键与基底膜相连,该微孔膜抗菌性和抗污染功能具有长期稳定性。
Figure BDA0002682809200000091
Figure BDA0002682809200000101
Figure BDA0002682809200000111
Figure BDA0002682809200000121
附表2
Figure BDA0002682809200000131

Claims (9)

1.一种基于迈克尔加成反应的抗菌抗污染微孔膜,其特征在于,所述抗菌抗污染微孔膜是由抗菌抗污染分离层和支撑层组成,所述抗菌抗污染分离层含有抗菌组分和抗污染组分,所述抗污染组分是由抗污染分子与卤化α,β-不饱和羰基化合物通过迈克尔加成反应生成,抗菌组分与抗污染组分通过碳碳键相连,支撑层由膜基体材料和含叔胺两亲共聚物构成;
所述抗菌组分是由含叔胺两亲共聚物与卤化α,β-不饱和羰基化合物通过季铵化反应生成;所述含叔胺两亲共聚物是含叔胺单体和疏水性单体共聚得到;所述的含叔胺单体选自甲基丙烯酸二甲氨基乙酯、甲基丙烯酸二乙氨基乙酯、丙烯酸二甲氨基乙酯、丙烯酸二乙氨基乙酯、二甲氨丙基甲基丙烯酰胺、二甲氨基丙基丙烯酰胺、4-乙烯基吡啶、2-乙烯基吡啶、乙烯基咪唑中的任意一种或任意多种;所述疏水性单体选自甲基丙烯酸甲酯、丙烯酸甲酯、苯乙烯、氯乙烯、甲基丙烯酸三氟乙酯、甲基丙烯酸全氟代辛酯、丙烯酸三氟乙酯、丙烯酸全氟代辛酯中的任意一种或任意多种;所述的卤化α,β-不饱和羰基化合物选自甲基丙烯酸3-氯-2-羟基丙酯、3-氯-2-羟基丙基甲基丙烯酸酯、2-氯甲基丙烯酸乙酯、2-氯乙基甲基丙烯酸酯、2-溴乙基丙烯酸酯、2,3-二溴丙基丙烯酸酯、2-溴甲基丙烯酸乙酯、2-溴甲基丙烯酸甲酯、2,3-二溴丙基丙烯酸酯等中的任意一种或任意多种。
2.根据权利要求1所述的抗菌抗污染微孔膜,其特征在于,所述抗污染分子选自单端巯基聚乙二醇、单端炔基聚乙二醇、单端氨基聚乙二醇、双端巯基聚乙二醇、双端炔基聚乙二醇、双端氨基聚乙二醇、单端巯基聚磷酰胆碱型两性离子、单端巯基聚磺基甜菜碱型两性离子、单端巯基聚羧基甜菜碱型两性离子中的一种或任意多种。
3.根据权利要求1所述的抗菌抗污染微孔膜,其特征在于,所述膜基体材料选自聚偏氟乙烯、聚酰胺、聚氯乙烯、聚砜、聚醚砜、聚丙烯腈、聚苯乙烯、聚甲基丙烯酸甲酯、聚苯醚、聚醚醚酮。
4.一种权利要求1所述抗菌抗污染微孔膜的制备方法,其特征在于包括如下步骤:
(1)将膜基体材料和含叔胺两亲共聚物溶解在溶剂中,混合均匀后,通过非溶剂诱导相转化的方法制备成含叔胺两亲共聚物的前体膜I;
(2)将卤化α,β-不饱和羰基化合物制成溶液,将(1)中制备的前体膜I浸入该溶液,发生季铵化反应,得到表面带有季铵盐荷正电层的前体膜II;
(3)将抗污染分子制成溶液,将(2)制备的前体膜II浸入该溶液,经催化使膜表面α,β-不饱和双键基团和抗污染分子发生迈克尔加成反应,得到抗菌抗污染微孔膜。
5.根据权利要求4所述的抗菌抗污染微孔膜的制备方法,其特征在于,步骤(2)所述溶液的溶剂选自水,乙醇、正庚烷、环己烷、甲醇、甘油、正己烷中的一种或任意多种;卤化α,β-不饱和羰基化合物溶液的浓度为0.5%~10%,所述的反应温度为25~80℃,所述的反应时间为10分钟~48小时。
6.根据权利要求4所述的抗菌抗污染微孔膜的制备方法,其特征在于,步骤(3)所述迈克尔加成反应的催化剂选自氢氧化钠、氢氧化钾、氢氧化锂、六氢吡啶、乙醇钠、氨基钠、三乙胺中任意一种;所述溶液的溶剂为水、甲醇、乙醇、乙二醇、异丙醇、正丁醇、叔丁醇、甘油中的一种或多种。
7.根据权利要求4所述的抗菌抗污染微孔膜的制备方法,其特征在于,步骤(3)所述的反应温度为20~80℃,反应时间为10分钟~8小时。
8.根据权利要求1所述的抗菌抗污染微孔膜或权利要求4所述方法制备的抗菌抗污染微孔膜,其特征在于所述抗菌抗污染微孔膜孔径范围为2纳米~1微米。
9.权利要求1所述的抗菌抗污染微孔膜或权利要求4所述方法制备的抗菌抗污染微孔膜在污水处理、自来水净化、食品工业、海水淡化前处理、生物医用中的应用。
CN202010970541.2A 2020-09-15 2020-09-15 基于迈克尔加成反应的抗菌抗污染微孔膜及其制备方法 Active CN112221354B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010970541.2A CN112221354B (zh) 2020-09-15 2020-09-15 基于迈克尔加成反应的抗菌抗污染微孔膜及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010970541.2A CN112221354B (zh) 2020-09-15 2020-09-15 基于迈克尔加成反应的抗菌抗污染微孔膜及其制备方法

Publications (2)

Publication Number Publication Date
CN112221354A CN112221354A (zh) 2021-01-15
CN112221354B true CN112221354B (zh) 2021-10-26

Family

ID=74117117

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010970541.2A Active CN112221354B (zh) 2020-09-15 2020-09-15 基于迈克尔加成反应的抗菌抗污染微孔膜及其制备方法

Country Status (1)

Country Link
CN (1) CN112221354B (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113318277B (zh) * 2021-05-28 2022-04-19 中国科学院长春应用化学研究所 一种可持续型抗菌膜材料及其制备方法
CN113577401B (zh) * 2021-07-15 2022-06-07 南通纺织丝绸产业技术研究院 一种长效抗菌抗狭窄功能尿道支架及其制备方法
CN114682107B (zh) * 2022-04-07 2023-08-11 中山大学 一种抗污染超滤膜及其制备方法与应用
CN114957665B (zh) * 2022-06-29 2023-05-23 郑州大学 基于巯基-迈克尔加成点击反应的聚酰胺及其合成方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104190265A (zh) * 2014-08-31 2014-12-10 浙江大学 一种具有稳定分离层的低压高通量含氯聚合物纳滤膜及其制备方法
CN110314561A (zh) * 2018-03-29 2019-10-11 东华大学 一种聚合物膜材料及其制备方法
CN109331667B (zh) * 2018-11-05 2021-01-26 长治学院 一种芳香聚酰胺复合膜的表面改性方法

Also Published As

Publication number Publication date
CN112221354A (zh) 2021-01-15

Similar Documents

Publication Publication Date Title
CN112221354B (zh) 基于迈克尔加成反应的抗菌抗污染微孔膜及其制备方法
Zhang et al. Guanidinium-functionalized nanofiltration membranes integrating anti-fouling and antimicrobial effects
You et al. Preparation and characterization of antibacterial polyamine-based cyclophosphazene nanofiltration membranes
Chiang et al. A facile zwitterionization in the interfacial modification of low bio-fouling nanofiltration membranes
Kochkodan et al. A comprehensive review on surface modified polymer membranes for biofouling mitigation
Li et al. The double effects of silver nanoparticles on the PVDF membrane: Surface hydrophilicity and antifouling performance
Heidi Lynn et al. Metal nanoparticle modified polysulfone membranes for use in wastewater treatment: a critical review
Xu et al. Development of an antibacterial copper (II)-chelated polyacrylonitrile ultrafiltration membrane
Tripathi et al. Polyethylene glycol cross-linked sulfonated polyethersulfone based filtration membranes with improved antifouling tendency
Qin et al. Surface modification of polyacrylonitrile membrane by chemical reaction and physical coating: Comparison between static and pore-flowing procedures
Zhang et al. A novel long-lasting antifouling membrane modified with bifunctional capsaicin-mimic moieties via in situ polymerization for efficient water purification
CN112237853B (zh) 一种抗菌抗污染微孔膜及其制备方法
Saraswathi et al. Cellulose acetate ultrafiltration membranes customized with bio-inspired polydopamine coating and in situ immobilization of silver nanoparticles
Karatas et al. A review on dendrimers in preparation and modification of membranes: Progress, applications, and challenges
CN107694357B (zh) 一种改性耐污染杂化反渗透膜的制备方法
Zhang et al. High hydrophilic antifouling membrane modified with capsaicin-mimic moieties via microwave assistance (MWA) for efficient water purification
CN111420567B (zh) 原位还原纳米银抗污染聚酰胺反渗透膜的制备方法
Pandey et al. Enhanced water flux and bacterial resistance in cellulose acetate membranes with quaternary ammoniumpropylated polysilsesquioxane
CN109046033B (zh) 聚乙烯亚胺/羧甲基壳聚糖复合纳滤膜及其制备方法
KR102185206B1 (ko) 자가 세척 기능화된 수처리용 고분자 분리막
Li et al. Excellent hydrophilic and anti-bacterial fouling PVDF membrane based on ag nanoparticle self-assembled PCBMA polymer brush
CN114917776B (zh) 一种高通量抗菌反渗透膜及其制备方法与应用
CN111686594A (zh) 一种高通量高截留的复合膜及其制备方法
Zhang et al. Sulfaguanidine nanofiltration active layer towards anti-adhesive and antimicrobial attributes for desalination and dye removal
Khan et al. Grafting d-amino acid onto MF polyamide nylon membrane for biofouling control using biopolymer alginate dialdehyde as a versatile platform

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant