WO2020170819A1 - 二軸延伸ポリエステルフィルムロール - Google Patents

二軸延伸ポリエステルフィルムロール Download PDF

Info

Publication number
WO2020170819A1
WO2020170819A1 PCT/JP2020/004323 JP2020004323W WO2020170819A1 WO 2020170819 A1 WO2020170819 A1 WO 2020170819A1 JP 2020004323 W JP2020004323 W JP 2020004323W WO 2020170819 A1 WO2020170819 A1 WO 2020170819A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
thickness
film roll
less
roll
Prior art date
Application number
PCT/JP2020/004323
Other languages
English (en)
French (fr)
Inventor
雅幸 春田
多保田 規
Original Assignee
東洋紡株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東洋紡株式会社 filed Critical 東洋紡株式会社
Priority to EP20758785.8A priority Critical patent/EP3928956B1/en
Priority to JP2021501837A priority patent/JP7563374B2/ja
Priority to CN202080015038.XA priority patent/CN113453870B/zh
Priority to KR1020217029120A priority patent/KR20210129678A/ko
Priority to US17/431,308 priority patent/US12059831B2/en
Publication of WO2020170819A1 publication Critical patent/WO2020170819A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/02Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds
    • C08G63/12Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds derived from polycarboxylic acids and polyhydroxy compounds
    • C08G63/16Dicarboxylic acids and dihydroxy compounds
    • C08G63/18Dicarboxylic acids and dihydroxy compounds the acids or hydroxy compounds containing carbocyclic rings
    • C08G63/181Acids containing aromatic rings
    • C08G63/183Terephthalic acids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/001Combinations of extrusion moulding with other shaping operations
    • B29C48/0018Combinations of extrusion moulding with other shaping operations combined with shaping by orienting, stretching or shrinking, e.g. film blowing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/03Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the shape of the extruded material at extrusion
    • B29C48/07Flat, e.g. panels
    • B29C48/08Flat, e.g. panels flexible, e.g. films
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/28Storing of extruded material, e.g. by winding up or stacking
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/30Extrusion nozzles or dies
    • B29C48/305Extrusion nozzles or dies having a wide opening, e.g. for forming sheets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/30Extrusion nozzles or dies
    • B29C48/305Extrusion nozzles or dies having a wide opening, e.g. for forming sheets
    • B29C48/307Extrusion nozzles or dies having a wide opening, e.g. for forming sheets specially adapted for bringing together components, e.g. melts within the die
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/88Thermal treatment of the stream of extruded material, e.g. cooling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/92Measuring, controlling or regulating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C55/00Shaping by stretching, e.g. drawing through a die; Apparatus therefor
    • B29C55/02Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets
    • B29C55/10Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets multiaxial
    • B29C55/12Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets multiaxial biaxial
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C55/00Shaping by stretching, e.g. drawing through a die; Apparatus therefor
    • B29C55/02Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets
    • B29C55/10Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets multiaxial
    • B29C55/12Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets multiaxial biaxial
    • B29C55/14Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets multiaxial biaxial successively
    • B29C55/143Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets multiaxial biaxial successively firstly parallel to the direction of feed and then transversely thereto
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/78Preparation processes
    • C08G63/82Preparation processes characterised by the catalyst used
    • C08G63/84Boron, aluminium, gallium, indium, thallium, rare-earth metals, or compounds thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/78Preparation processes
    • C08G63/82Preparation processes characterised by the catalyst used
    • C08G63/87Non-metals or inter-compounds thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/08Metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L67/00Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L67/00Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
    • C08L67/02Polyesters derived from dicarboxylic acids and dihydroxy compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2948/00Indexing scheme relating to extrusion moulding
    • B29C2948/92Measuring, controlling or regulating
    • B29C2948/92504Controlled parameter
    • B29C2948/92704Temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2067/00Use of polyesters or derivatives thereof, as moulding material
    • B29K2067/003PET, i.e. poylethylene terephthalate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2367/00Characterised by the use of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Derivatives of such polymers
    • C08J2367/02Polyesters derived from dicarboxylic acids and dihydroxy compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2467/00Characterised by the use of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Derivatives of such polymers
    • C08J2467/02Polyesters derived from dicarboxylic acids and dihydroxy compounds

Definitions

  • the present invention relates to a hygienic biaxially stretched polyester film roll, and in particular, even after long-term storage after film formation, wrinkles do not occur, and there are problems in processing steps such as printing and bag making.
  • the present invention relates to a biaxially stretched polyester fill roll, which does not occur and is suitably used for food packaging bags and label applications.
  • Polyester resins such as polyethylene terephthalate (PET) and polybutylene terephthalate (PBT), which are thermoplastic resins with excellent heat resistance and mechanical properties, are used in a wide variety of fields such as plastic films, electronics, energy, packaging materials, and automobiles. It's being used.
  • PET polyethylene terephthalate
  • PBT polybutylene terephthalate
  • plastic films biaxially stretched PET film is widely used in industrial and packaging fields because it has a good balance of mechanical strength, heat resistance, dimensional stability, chemical resistance, optical characteristics, and other costs. There is.
  • the PET film imparted with hydrolysis resistance is also used as a film for a solar cell backsheet, and is used for various purposes as a functional film and a base film.
  • a film having an excellent gas barrier property is used as a packaging material that is required to be airtight for foods, pharmaceuticals, electronic components, or the like, or a gas barrier material, and in recent years, demand has been increasing. It is common to perform vapor deposition processing using a film roll in order to provide a barrier property.
  • the film roll of the present invention When the thickness is reduced, the feeling of stiffness is lowered, and the film roll is stored after slitting, resulting in a defective appearance of the film roll, which exposes the defect. Therefore, a problem occurs when printing or processing the film roll.
  • the position where the slack is generated has poor flatness, and the position where the slack is generated in the width direction of the film roll causes printing loss or the like, which causes a problem of loss. Due to the thinning of the film, the speeding up of printing, and the increase in the number of colors, these deficiencies caused by slack and appearance changes due to storage are becoming more apparent.
  • the present inventors have newly found that it is difficult to apply the film roll of the present invention.
  • the polyester film contains few foreign substances, since it comes into direct contact with food and is hygienic.
  • the antimony catalyst used in the process of producing (polymerizing) the polyester raw material may be carcinogenic, it is desirable that the polyester film contains as little antimony as possible or no antimony.
  • polyester raw materials that do not use an antimony catalyst as described in Patent Documents 2 and 3, for example. However, it does not describe a method for reducing foreign matter in the film or desired film characteristics.
  • the purpose of the present invention is that the content of antimony is extremely low, and also that there are few foreign substances, and that it has excellent transparency and heat resistance, and not only that the slack of the film roll does not easily occur immediately after film formation, but it is stored for a long time
  • Another object of the present invention is to provide a biaxially stretched polyester fill roll in which slack of the film roll is less likely to occur over time and which is less likely to cause defects during printing.
  • a polyester film having a target surface roughness in a slit step of slitting a product roll from a master roll to an arbitrary width, winding after slitting
  • the hardness of the roll can be set within the above range, and it is found that the film roll is less likely to cause slack after long-term storage.
  • the invention was completed.
  • the present invention has the following configurations.
  • a biaxially stretched polyester film having an antimony content of 10 ppm or less, a phosphorus content of 25 ppm or more and 75 ppm or less, and an arithmetic average roughness of the film surface of 0.02 ⁇ m or more and 0.05 ⁇ m or less is wound.
  • a biaxially stretched polyester film and a film roll obtained by satisfying the following requirements (1) to (6) in the film roll.
  • Film roll winding length is 8000 m or more and 80000 m or less
  • Film roll width is 500 mm or more and 4000 mm or less
  • the variation in hardness when the hardness of the outermost layer of the film roll is measured at intervals of 50 mm in the film width direction is 10% or more and 20% or less (5)
  • Film The thickness is 5 ⁇ m or more and 40 ⁇ m or less (6)
  • the thickness pattern has a concave portion, and the concave portion having the largest thickness difference (maximum concave portion) has the maximum concave portion.
  • the thickness unevenness of the maximum concave portion obtained from the maximum thickness difference and the average thickness of the film is less than 10%.
  • the thickness unevenness obtained from the maximum thickness difference in the largest concave portion and the average film thickness is 10% or less in all the samples.
  • the absolute value of the difference in the refractive index in the width direction between the maximum concave portion and any one of the maximum thickness portions on both ends of the concave portion is 0.010 or less. ⁇ 2.
  • the number of defects of 1 mm or more per 10,000 square meters of film is 1.0 or less. ⁇ 3.
  • the coefficient of static friction and the coefficient of dynamic friction between the outer surface of the film and the inner surface of the film are both 0.1 and 0.8.
  • the film has an intrinsic viscosity of 0.51 dl/g or more and 0.70 dl/g or less.
  • the raw polyester resin is melt extruded and then cooled and solidified to obtain an unstretched film so that the difference between the intrinsic viscosity of the raw polyester resin and the intrinsic viscosity of the polyester film is 0.06 dl/g or less. 1.
  • the film is biaxially stretched and then heat-set, and then the biaxially stretched film is wound as a master roll, and then the master roll is slit and wound into a roll.
  • the content of antimony is extremely low, and also the amount of foreign matter is small, and while having excellent transparency and heat resistance, not only the slack of the film roll does not easily occur immediately after film formation, but even when stored for a long time, It is possible to provide a biaxially stretched polyester-based fill roll in which slack of the film roll is less likely to occur over time and which does not cause defects during printing.
  • the biaxially stretched polyester film of the present invention contains a polyethylene terephthalate resin as a constituent component.
  • the polyethylene terephthalate-based resin contains an ethylene glycol-derived component and a terephthalic acid-derived component as main constituent components.
  • the "main constituent” means that terephthalic acid is 80 mol% or more in 100 mol% of all dicarboxylic acid components, and ethylene glycol is 80 mol% or more in 100 mol% of all glycol components.
  • the copolymerization amount of the other dicarboxylic acid component and the glycol component is less than 20 mol %, preferably 10 mol% or less, and preferably 5 mol% or less with respect to the total dicarboxylic acid component or the total glycol component. Is particularly preferable.
  • dicarboxylic acid components include aromatic dicarboxylic acids such as isophthalic acid, phthalic acid, naphthalenedicarboxylic acid, 4,4′-dicarboxybiphenyl and 5-sodium sulfoisophthalic acid, 1,4-cyclohexanedicarboxylic acid, Alicyclic dicarboxylic acids such as 1,3-cyclohexanedicarboxylic acid, 1,2-cyclohexanedicarboxylic acid, 2,5-norbornenedicarboxylic acid and tetrahydrophthalic acid, oxalic acid, malonic acid, succinic acid, adipic acid, azelaic acid And aliphatic dicarboxylic acids such as sebacic acid, undecanedioic acid, dodecanedioic acid, octadecanedioic acid, fumaric acid, maleic acid, itaconic acid,
  • aromatic dicarboxylic acids
  • glycols examples include 1,2-propanediol, 1,3-propanediol, 1,2-butanediol, 1,3-butanediol, 1,4-butanediol, 2-methyl-1, 3-propanediol, 2-amino-2-ethyl-1,3-propanediol, 2-amino-2-methyl-1,3-propanediol, 1,10-decanediol, dimethyloltricyclodecane, diethylene glycol, Aliphatic glycols such as triethylene glycol, bisphenol A, bisphenol S, bisphenol C, bisphenol Z, bisphenol AP, 4,4'-biphenol ethylene oxide adduct or propylene oxide adduct, 1,2-cyclohexanedimethanol, 1 And alicyclic glycols such as 3-cyclohexanedimethanol and 1,4-cyclohexanedimethanol, polyethylene glycol, Aliphatic glycol
  • Such a polyethylene terephthalate-based resin can be polymerized by directly reacting terephthalic acid with ethylene glycol, and optionally other dicarboxylic acid component and glycol component, and dimethyl ester of terephthalic acid (if necessary. (Including methyl ester of other dicarboxylic acid) and ethylene glycol (including other glycol component if necessary) are subjected to transesterification reaction and then polycondensation reaction is used. Can be done.
  • recycled resins made from recycled PET bottles as polyester resins, and polyester resins containing biomass-derived monomer components.
  • polyamide, polystyrene, polyolefin may contain other resins such as polyesters other than the above, in the mechanical properties of the biaxially stretched polyester film, in terms of heat resistance
  • the content of other resins is preferably 30% by mass or less, more preferably 20% by mass or less, still more preferably 10% by mass or less, and particularly preferably 5% by mass or less, based on the total resin components of the polyester film, and 0% by mass.
  • % All resin components constituting the polyester film are substantially polyethylene terephthalate resin) are most preferable.
  • the intrinsic viscosity of the polyethylene terephthalate resin is preferably in the range of 0.57 to 0.76 dl/g, more preferably 0.60 to 0.73 dl/g, and further preferably 0.63 to 0. It is 70 dl/g. If the intrinsic viscosity is lower than 0.57 dl/g, the polyester film is likely to tear during production (so-called breakage), and if higher than 0.76 dl/g, the filtration pressure rises significantly and high precision filtration is possible. It is difficult to extrude the resin through the filter.
  • the intrinsic viscosity of the resin of the polyester film is preferably in the range of 0.51 to 0.70 dl/g, more preferably 0.56 to 0.68 dl/g, and further preferably 0.59 to 0. It is 65 dl/g.
  • the polyester film is easy to tear in the processing such as printing, and when the intrinsic viscosity is higher than 0.76 dl/g, the effect of improving the mechanical properties is saturated. Prone.
  • the polymerization catalyst used in the present invention is a polymerization catalyst characterized by having the ability to promote esterification.
  • a polymerization catalyst of an antimony compound such as antimony trioxide, which has been conventionally used, as described below.
  • a polymerization catalyst containing at least one selected from aluminum compounds and at least one selected from phosphorus compounds is preferable.
  • a publicly known aluminum compound can be used without limitation as the aluminum compound constituting the polymerization catalyst used when synthesizing the raw material polyester resin used in the present invention.
  • the aluminum compound examples include aluminum acetate, basic aluminum acetate, aluminum lactate, aluminum chloride, aluminum hydroxide, aluminum hydroxide chloride and aluminum acetylacetonate, and aluminum oxalate and other organoaluminum compounds and portions thereof. Hydrolyzate etc. are mentioned.
  • carboxylates, inorganic acid salts and chelate compounds are preferable, and among these, aluminum acetate, basic aluminum acetate, aluminum lactate, aluminum chloride, aluminum hydroxide, aluminum hydroxide chloride and aluminum acetylacetonate are more preferable, Aluminum acetate, basic aluminum acetate, aluminum chloride, aluminum hydroxide and aluminum hydroxide chloride are more preferable, and aluminum acetate and basic aluminum acetate are most preferable.
  • the amount of the aluminum compound used in the polymerization catalyst according to the present invention is preferably 1 to 80 ppm, more preferably 2 to 60 ppm, as aluminum atoms based on the total mass of the obtained polyester resin. , More preferably 3 to 50 ppm, particularly preferably 5 to 40 ppm, most preferably 10 to 30 ppm. If it is less than the above, the catalytic activity may be poor, and if it exceeds the above, aluminum-based foreign matter may be generated. Even when the aluminum compound is placed in a reduced pressure environment during polyester polymerization, almost 100% of the used amount remains, so it can be considered that the used amount becomes the residual amount.
  • the phosphorus compound used in the polymerization catalyst is not particularly limited, but a phosphonic acid-based compound, a phosphinic acid-based compound is preferably used because the effect of improving the catalytic activity is large, and among these, a phosphonic acid-based compound is used to improve the catalytic activity. Is particularly large and preferred.
  • phosphorus compounds having a phenol part in the same molecule are preferable.
  • a phosphorus compound having a phenol structure but it is a catalyst when one or more compounds selected from the group consisting of a phosphonic acid compound and a phosphinic acid compound having a phenol moiety in the same molecule are used.
  • This is preferable because the effect of improving activity is large.
  • it is preferable to use one or two or more kinds of phosphonic acid compounds having a phenol moiety in the same molecule because the effect of improving the catalytic activity is particularly large.
  • examples of the phosphorus compound having a phenol moiety in the same molecule include compounds represented by the following general formulas (Formula 1) and (Formula 2).
  • R 1 is a hydrocarbon group having 1 to 50 carbon atoms including a phenol moiety, a substituent such as a hydroxyl group, a halogen group, an alkoxyl group or an amino group, and a carbon including a phenol moiety.
  • R 4 represents hydrogen, a hydrocarbon group of 1 to 50 carbon atoms, a hydroxyl group, a halogen group, an alkoxyl group, or a carbon group of 1 to 50 carbon atoms containing a substituent such as an amino group.
  • R 2 and R 3 each independently represent hydrogen, a hydrocarbon group having 1 to 50 carbon atoms, or a hydrocarbon group having 1 to 50 carbon atoms containing a substituent such as a hydroxyl group or an alkoxyl group.
  • the hydrocarbon group may contain a branched structure, an alicyclic structure such as cyclohexyl, or an aromatic ring structure such as phenyl or naphthyl.
  • the ends of R 2 and R 4 may be bonded to each other.
  • Examples of the phosphorus compound having a phenol moiety in the same molecule include p-hydroxyphenylphosphonic acid, dimethyl p-hydroxyphenylphosphonate, diethyl p-hydroxyphenylphosphonate, diphenyl p-hydroxyphenylphosphonate, and bis( p-Hydroxyphenyl)phosphinic acid, methyl bis(p-hydroxyphenyl)phosphinate, phenyl bis(p-hydroxyphenyl)phosphinate, p-hydroxyphenylphenylphosphinic acid, methyl p-hydroxyphenylphenylphosphinate, p-hydroxy Examples thereof include phenyl phenylphenylphosphinate, p-hydroxyphenylphosphinic acid, methyl p-hydroxyphenylphosphinate, and phenyl p-hydroxyphenylphosphinate.
  • Other examples include phosphorus compounds represented by the following general formula (Formula 3).
  • X 1 and X 2 each represent hydrogen, an alkyl group having 1 to 4 carbon atoms, or a monovalent or higher valent metal. Further, X 1 may be a metal having a valence of 2 or more and X 2 may be absent. Furthermore, an anion corresponding to the excess valence of the metal with respect to the phosphorus compound may be arranged. Li, Na, K, Ca, Mg, and Al are preferable as the metal.
  • the phosphorus compound preferably used as the polycondensation catalyst is at least one phosphorus compound selected from the compounds represented by the chemical formulas (chemical formula 4) and chemical formula (chemical formula 5).
  • Irganox 1222 (manufactured by BSF) is commercially available.
  • Irganox 1425 (manufactured by BSF) is commercially available and can be used.
  • the amount of the phosphorus compound used in the polymerization catalyst according to the present invention is preferably 10 to 100 ppm, more preferably 15 to 90 ppm, as a phosphorus atom based on the total mass of the obtained raw material polyester resin. %, more preferably 20 to 80 ppm, particularly preferably 25 to 70 ppm, and most preferably 30 to 60 ppm. If the phosphorus atom is present in an amount exceeding the above upper and lower limits, the polymerization activity may be reduced. When the phosphorus compound is placed in a reduced pressure environment during polyester polymerization, about 10 to 30% of the used amount is removed out of the system depending on the conditions. Therefore, in practice, it is necessary to carry out several trial experiments to determine the residual ratio of the phosphorus compound in the polyester and then determine the amount to be used.
  • the heat resistance of the resin can be improved by using the above phosphorus compound.
  • the cause is not clear, but it is considered that the hindered phenol portion in the phosphorus compound improves the heat resistance of the copolyester resin.
  • the residual amount of the phosphorus compound is less than 10 ppm, the effect of improving the heat resistance is weakened, and as a result, the effect of improving the heat resistance and coloring of the copolyester resin of the present invention may not be seen.
  • a metal-containing polycondensation catalyst such as an antimony compound, a titanium compound, a tin compound, or a germanium compound may be used in combination as long as the effect of the present invention is not impaired.
  • the antimony compound is preferably 10 ppm or less as an antimony atom with respect to the mass of the obtained copolyester resin
  • the germanium compound is preferably 10 ppm or less as a germanium atom with respect to the mass of the copolyester resin obtained.
  • the titanium compound preferably has a titanium atom content of 3 ppm or less with respect to the mass of the obtained copolyester resin, and the tin compound preferably has a tin atom content of 3 ppm or less with respect to the mass of the polyester resin obtained.
  • these metal-containing polycondensation catalysts such as antimony compounds, titanium compounds, tin compounds and germanium compounds as much as possible.
  • a small amount of at least one selected from alkali metals, alkaline earth metals and compounds thereof may coexist as the second metal-containing component.
  • the coexistence of such a second metal-containing component in the catalyst system is effective for improving the productivity, since in addition to the effect of suppressing the production of diethylene glycol, the catalytic activity is enhanced, and thus the catalyst component having a higher reaction rate is obtained. ..
  • the amount used (mol %) is preferably 1 ⁇ 10 ⁇ 5 with respect to the number of moles of the dicarboxylic acid component constituting the polyester resin. ⁇ 0.01 mol %.
  • Alkali metal, alkaline earth metal, or a compound thereof remains almost 100% of the amount used even when placed in a reduced pressure environment during polyester polymerization, and therefore it may be considered that the amount used remains.
  • the polymerization catalyst according to the present invention has catalytic activity not only for polycondensation reaction but also for esterification reaction and transesterification reaction.
  • the transesterification reaction between an alkyl ester of a dicarboxylic acid such as dimethyl terephthalate and a glycol such as ethylene glycol is usually carried out in the presence of a transesterification catalyst such as zinc, but the catalyst of the present invention is used in place of these catalysts.
  • the polymerization catalyst according to the present invention has catalytic activity not only in melt polymerization but also in solid phase polymerization or solution polymerization.
  • the polyester polymerization catalyst used in the present invention can be added to the reaction system at any stage of the polymerization reaction.
  • it can be added to the reaction system at any stage before and during the esterification reaction or transesterification reaction, immediately before the start of the polycondensation reaction, or at any stage during the polycondensation reaction.
  • the addition of the aluminum compound and the phosphorus compound according to the present invention is preferably performed immediately before the start of the polycondensation reaction.
  • the biaxially stretched polyester film of the present invention may have a laminated structure of one layer, two layers, three layers, or four or more layers.
  • each layer contains polyethylene terephthalate-based resin, inorganic particles, and a resin other than polyethylene terephthalate-based resin as a constituent component as described above, but any constituent component of each layer adjacent to each other. It is preferable that the types or the contents of are different.
  • the A layer in the present invention is the entire biaxially stretched polyester film.
  • the A layer in the present invention is either one or both layers.
  • the layer A in the present invention is any one layer or two layers of both side surface layers.
  • the surface roughness of the film can be controlled by controlling the amount of added particles only in the surface layer portion, and the inorganic particles are contained in the film.
  • the amount can be made smaller, which is preferable. This is because the odor component escapes through the voids (voids) formed at the boundary between the inorganic particles and the polyester resin, which also leads to the improvement of the deterioration in aroma retention.
  • the inorganic particles for example, silica, alumina, titanium dioxide, calcium carbonate, kaolin, barium sulfate and the like can be used.
  • the average particle size of the inorganic particles is preferably in the range of 0.05 to 3.0 ⁇ m when measured with a Coulter counter.
  • the lower limit of the content of inorganic particles in the film is preferably 0.01% by weight, more preferably 0.015% by weight, and further preferably 0.02% by weight. If it is less than 0.01% by weight, the slipperiness may decrease.
  • the upper limit is preferably 1% by weight, more preferably 0.2% by weight, still more preferably 0.1% by weight. If it exceeds 1% by weight, the transparency may decrease, which is not preferable.
  • inorganic particles are dispersed in a predetermined ratio in ethylene glycol which is a diol component, and the ethylene glycol slurry is added at an arbitrary stage before completion of polyester polymerization.
  • the particles when the particles are added, for example, it is preferable to add the water sol or alcohol sol obtained during the synthesis of the particles without once drying, because the dispersibility of the particles is good and the generation of coarse projections can be suppressed.
  • a method in which an aqueous slurry of particles is directly mixed with a predetermined polyester pellet, supplied to a vent type twin-screw kneading extruder, and kneaded into polyester.
  • the resin it is preferable to extrude the resin at an extruder at a resin melting point +2°C or higher and a resin melting point +6°C or lower. If the extrusion temperature is lower than the melting point +2° C., the resin is not melted and an unmelted material is discharged, which becomes a foreign matter, which is not preferable. Further, extruding at a temperature higher than the melting point +6° C. is not preferable because the resin is thermally deteriorated and foreign matter is generated.
  • an unstretched film can be obtained by extruding the extruded sheet-shaped molten resin with a T-die and then rapidly cooling it.
  • a method of quenching the molten resin a method of obtaining a substantially unoriented resin sheet by casting the molten resin on a rotary drum from a T die and quenching and solidifying can be suitably adopted.
  • Sublimates (oligomers, etc.) of the molten resin are likely to adhere to the T-die, and if the deposits fall off, the unstretched sheet becomes foreign matter in the film, which is not preferable. Therefore, attach a sticky sheet to the T-die in advance to prevent sublimates from falling, and also clean it with a cleaner so that it will not transfer to the unstretched sheet even if foreign matter adheres to the cooling roll.
  • a sticky sheet to the T-die in advance to prevent sublimates from falling, and also clean it with a cleaner so that it will not transfer to the unstretched sheet even if foreign matter
  • the obtained unstretched film is biaxially stretched, and then heat set and relaxed.
  • film-forming conditions such as the following stretching conditions in the longitudinal direction and the width direction, heat setting conditions, and heat relaxation conditions, the preferable film properties described below can be achieved. The details will be described below.
  • the stretching method may be simultaneous biaxial stretching or sequential biaxial stretching, but sequential biaxial stretching is preferred from the viewpoint of high film forming speed and high productivity.
  • sequential biaxial stretching method in which longitudinal stretching is performed first and then transverse stretching is performed-longitudinal stretching-horizontal stretching is described, but lateral stretching-longitudinal stretching in which the order is reversed may be performed.
  • the stretching temperature in the longitudinal (longitudinal) direction may be (Tg+5) to (Tg+55)° C. from the viewpoint of reducing bowing, and the stretching ratio may be 3 to 5 times. preferable.
  • MD longitudinal (longitudinal) direction
  • the stretching ratio may be 3 to 5 times. preferable.
  • the stretching temperature is higher than (Tg+55)° C. or lower than 3 times, bowing is reduced, but orientation in the longitudinal direction becomes insufficient and thickness unevenness in the longitudinal direction deteriorates, which is not preferable. Further, the flatness of the obtained biaxially stretched polyester film is also deteriorated, which is not preferable.
  • shrinkage stress increases and bowing increases, which is not preferable.
  • the unstretched film is guided to a tenter device that can heat by holding both ends of the film with clips, and the film is heated to a predetermined temperature by hot air. After being heated to, the film is stretched in the width direction by increasing the distance between the clips while being conveyed in the longitudinal direction.
  • the stretching temperature in the width direction is less than Tg+5°C, breakage easily occurs during stretching, which is not preferable.
  • Tg+70° C. uniform stretching in the width direction cannot be performed, and thickness unevenness in the width direction becomes large, so that the hardness of the film roll becomes large, which is not preferable.
  • the stretching ratio in the width direction is not particularly specified, but is preferably 3 times or more and 7 times or less.
  • productivity is deteriorated, orientation in the width direction is insufficient, thickness unevenness in the width direction is deteriorated, and variations in hardness in the width direction of the film roll are not preferable.
  • the stretching ratio exceeds 7 times, the film is likely to break during the stretch film formation, which is not preferable. Further, it is preferable to stretch in multiple stages such as two stages and three stages because the thickness unevenness in the width direction is improved.
  • the heat setting temperature (heat treatment temperature) after TD stretching is preferably 230 to 255°C.
  • the heat setting temperature is higher than 255° C.
  • the temperature is around the melting point of the polyester resin, and the film melts and breaks, which is not preferable.
  • the surface of the film is roughened and whitened due to melting and impairs transparency, which is not preferable.
  • the temperature is lower than 230° C., the heat shrinkage rate becomes high in both the longitudinal direction and the width direction, and the thermal dimensional stability during vapor deposition processing deteriorates, which is not preferable.
  • the orientation angle of the obtained biaxially stretched polyester film and the amount of change in the difference in the oblique heat shrinkage ratio vary greatly depending on the transport state of the film.
  • the heat relaxation rate in the width direction is preferably 4 to 8%.
  • the thermal relaxation rate is less than 4%, the resulting biaxially stretched polyester film has a high thermal shrinkage rate in the width direction, and the dimensional stability during vapor deposition processing deteriorates, which is not preferable.
  • the thermal relaxation rate is higher than 8%, bowing increases or sags, and the thickness unevenness in the width direction increases, which causes large variations in hardness of the film roll, which is not preferable.
  • oligomers are generated.
  • the oligomer adheres to the film, it causes a defect, and printing defects occur, which is not preferable. Therefore, it is preferable to remove the oligomer in the TD or to remove the oligomer at the TD outlet using an adhesive roll or the like.
  • the method shown in FIG. 3 is preferable.
  • the oligomer is generated only by blowing the cooling air to the film, and the generated oligomer flies in the zone and adheres to the film. Therefore, by providing a plenum duct for sucking the oligomer after blowing the cooling air, the amount of the oligomer flying in the zone was reduced and it was made difficult for the oligomer to adhere to the film.
  • the film stretched and formed by the above method is wound by a winder device to produce a master roll. Then, a slitter is used to slit the film into a specified width and winding length, and the film is wound on a winding core (core) to obtain a biaxially stretched polyester film roll.
  • a winding core a plastic core of 3 inches, 6 inches, 8 inches or the like, a metal core or a paper tube can be usually used.
  • the preferable winding length and width of the film roll are as described above. In addition, it is preferable to reduce the slack generated at the time of slitting by adopting the following slit conditions.
  • the initial tension is 70 to 160 N/m, preferably 80 to 150 N/m, and the initial surface pressure is 200 to 400 N/m, preferably 250 to 350 N/m.
  • the initial tension is higher than 160 N/m, the uneven thickness portion of the recess is slightly stretched by the tension during slitting, which causes slack, which is not preferable.
  • the initial tension is 70 N/m or less, the tension is insufficient when the film is wound by the slit, and the end faces of the film roll become uneven (so-called end face deviation), which is not preferable. It is also desirable to reduce the tension after the winding length reaches 500 m.
  • the tension at 300 m before the end of the slit is 50 to 80%, preferably 60 to 70% of the initial tension.
  • the surface pressure is preferably as constant as possible over the entire length of the winding.
  • the initial surface pressure is preferably ⁇ 5% or less over the entire winding length, and more preferably the initial surface pressure ⁇ 3% or less.
  • a film that has been continuously formed is continuously wound, and if the film forming conditions are constant, the degree of thickness unevenness in the film width direction is Although it is almost constant over the entire length, a slight fluctuation occurs in the entire length of the winding due to a minute fluctuation in each process during film formation.
  • the thickness unevenness in the film width direction is preferably controlled over the entire length of winding. Whether the thickness unevenness is controlled over the entire length of the winding length can be confirmed by, for example, taking a sample of the film of the film roll from the surface layer for each winding length at regular intervals and measuring the thickness unevenness of each sample. it can.
  • the thickness unevenness can be taken as a representative value in the film roll by sampling and measuring a sample of the surface layer portion of the film roll.
  • a sample is taken from a portion where the film is removed by 5 m from the surface layer of the film roll and measured to obtain a representative value.
  • the preferable range of the thickness unevenness in the film width direction in the film roll surface layer (the maximum concave portion and the thickness unevenness in the entire width direction) is as described above.
  • a preferred aspect of the present invention is that a sample is taken every 1000 m of winding length and measured, and the thickness unevenness (maximum concave portion and thickness unevenness in the entire width direction) of all the samples is within a predetermined range.
  • the preferable range of the thickness unevenness in the film width direction in the entire length of the film roll is as described above.
  • the content of antimony in the film is preferably 10 ppm or less. Since antimony is a substance that may cause carcinogenicity, the smaller the amount, the more preferable. It is preferably 5 ppm, and more preferably 0 ppm.
  • the antimony of the raw material resin used in the present invention is preferably 0 ppm, but may be mixed in during production, and was set to 10 ppm or less.
  • the difference between the intrinsic viscosity of the polyester resin and the intrinsic viscosity of the polyester film is preferably 0.06 dl/g or less.
  • the difference in the intrinsic viscosity is an index of the degree of deterioration when the polyester resin is melt-extruded. When it is higher than 0.06 dl/g, the resin deteriorates in the extruder and causes foreign matter, which is not preferable.
  • the difference in intrinsic viscosity is preferably 0 dl/g, but it is difficult to set it to 0 dl/g because it practically melts. It is preferably 0.05 dl/g or less, and more preferably 0.04 dl/g or less.
  • the resin at the extruder In order to control the difference in the intrinsic viscosity as described above, in the present invention, it is preferable to extrude the resin at the extruder with the resin melting point +2°C or higher and the resin melting point +6°C or lower. If the extrusion temperature is lower than the melting point +2° C., the resin is not melted and an unmelted material is discharged, which becomes a foreign matter, which is not preferable. Also, extruding at a temperature higher than the melting point +6° C. is not preferable because the resin is thermally deteriorated and becomes a foreign substance.
  • the biaxially stretched polyester film of the present invention preferably has 1 or less defects with a size of 1 mm or more per 10,000 square meters. In this way, by reducing the number of defects having a size of 1 mm or more per large area of 1000 square meters to 1 or less, the printability becomes very good. If the number of defects due to foreign matter is large, ink will be removed during printing, which is not preferable.
  • the arithmetic average roughness of the surface of the biaxially stretched polyester film of the present invention is preferably 0.02 ⁇ m or more and 0.05 ⁇ m or less. If the thickness is less than 0.02 ⁇ m, blocking that causes the film in the film roll to adhere to each other may occur, and abnormal noise (sound of peeling the adhered film) may occur during unwinding or the film may break, which is not preferable. .. On the other hand, if it exceeds 0.05 ⁇ m, the vapor-deposited thin film is likely to come off in the processing step such as vapor deposition, and the gas barrier property is deteriorated, which is not preferable.
  • the thickness of the biaxially stretched polyester film of the present invention is preferably 5 ⁇ m or more and 40 ⁇ m or less.
  • the upper limit of the film thickness is more preferably 35 ⁇ m or less, further preferably 30 ⁇ m or less. Since it was confirmed in the present invention that the thickness was up to 5 ⁇ m, the lower limit of the thickness was set to 5 ⁇ m or more. Further, the thicker the film, the more comfortable the waist is, and the more the film tends to be less slack, which is preferable. Therefore, the thicker film is acceptable, but the thinner film is against the environment. It should be noted that, as the film thickness is thinner, the slack is more likely to occur. Therefore, in the embodiment of the present invention, the thin film thickness is more difficult.
  • both the coefficient of static friction and the coefficient of dynamic friction between the film surface of the outer surface and the inner surface of the biaxially stretched polyester film of the present invention are 0.1 or more and 0.8 or less. If it is lower than 0.1, it may slip too much and the end face may be displaced. On the other hand, if it is larger than 0.8, the amount of air entrained at the time of slitting becomes large, and slack and wrinkles easily occur due to the escape of air from the concave portion of the film roll, which is not preferable. It is preferably 0.13 or more and 0.77 or less, and more preferably 0.16 or more and 0.74 or less.
  • the winding length of the biaxially stretched polyester film roll of the present invention is preferably 8,000 m or more and 80,000 m or less. In processing such as printing and vapor deposition, the longer the winding length, the less frequently the rolls are replaced, and the better the working efficiency. It is preferably 10000 m or more, more preferably 12000 m or more, particularly preferably 14000 m or more. There is no particular upper limit and it is preferable that the winding length is long. However, since the inventors have confirmed only a winding length of 80,000 m, the upper limit is 80,000 m. Incidentally, as the winding length of the film roll increases, the area of the film increases and the chance of occurrence of a slack defect increases. Therefore, in the embodiment of the present invention, the winding length of the film roll is more difficult. ..
  • the width of the biaxially stretched polyester film roll of the present invention is preferably 500 mm or more and 4000 mm or less. There is no particular upper limit, and it is preferable that the width of the film roll is long because loss in the printing process is small, but since the inventors have confirmed only up to 4000 mm, the upper limit is 4000 mm. A wider film roll is preferable because the efficiency in processing such as printing is increased as described above.
  • the width is preferably 700 mm or more, more preferably 900 mm or more, and particularly preferably 1100 mm or more. It should be noted that, as the width of the film roll increases, the area of the film increases and the chance of occurrence of the sagging defect increases, so that the width of the film roll is more difficult in the embodiment of the present invention.
  • the recess in the present invention in the thickness unevenness in the film width direction measured using a continuous contact type thickness gauge as described later, the point that the thickness decreases in both directions of the measurement direction at that point as a boundary.
  • a peak is defined and a point at which the thickness increases with respect to both of the measuring directions with the point as a boundary is defined as a valley, it means a part of the thickness pattern of peak-valley-peak.
  • a film having no such thickness pattern that is, a film having no recess is not included in the present invention.
  • the larger value of the thickness differences between the peaks and the valleys both values in the case of the same value
  • the thickness unevenness of the maximum concave portion is higher than 10%, air is entrapped and air is collected when the concave portion is slit and wound as a film roll, and then air is released when the film roll is stored. It causes wrinkles and looseness, which is not preferable. Further, since the concave portion has a smaller thickness than other portions in the width direction, it is stretched in the longitudinal direction by the tension when slitting and winding the film roll. Therefore, the length of the concave portion of the film roll in the longitudinal direction is longer than other positions in the width direction, and the portion becomes slack. It has been found from the investigation by the present inventors that it becomes apparent especially when the thickness difference between the recess and the both ends thereof is large.
  • the thickness unevenness of the maximum concave portion is preferably 9% or less, more preferably 8% or less. It is preferable that the thickness unevenness of the maximum concave portion be low, and 3% was the lowest in the test conducted by the present inventors.
  • the thickness unevenness of the recess as shown above should be measured using a continuous contact type thickness gauge as shown in the following examples.
  • a continuous contact type thickness gauge as shown in the following examples.
  • the maximum thickness difference of the concave portion may be an unmeasured position, and the accurate thickness difference in the concave portion may occur. Is difficult to ask for.
  • the thickness unevenness in the present invention refers to that measured using a continuous contact type thickness meter.
  • the thickness unevenness obtained from the maximum thickness difference in the maximum concave portion and the average film thickness is preferably 10% or less in all the samples.
  • the concave portion has a smaller thickness than other portions in the width direction, the concave portion is elongated in the longitudinal direction by the tension at the time of slitting. Therefore, the length of the concave portion of the film roll in the longitudinal direction is longer than other positions in the width direction, and the portion becomes slack.
  • the thickness unevenness of the recesses is preferably 9% or less, more preferably 8% or less.
  • a maximum thickness portion of either end of the concave portion (a peak portion having a larger thickness of the two peak portions) and a minimum thickness portion of the concave portion. It is preferable that the absolute value of the difference in the refractive index in the width direction from the (valley portion) is 0.01 or less. When the absolute value of the difference in the refractive index in the width direction between the maximum thickness portion of either end of the concave portion and the minimum thickness portion of the concave portion is higher than 0.01, the minimum thickness portion and the maximum thickness portion of the concave portion are easily stretched in the longitudinal direction.
  • the absolute value of the refractive index difference in the width direction is preferably 0.008 or less, more preferably 0.006 or less.
  • the absolute value of the refractive index difference in the width direction is preferably low, and 0.0003 was the lowest in the tests conducted by the inventors.
  • the average hardness when the hardness of the outermost layer of the polyester film roll of the present invention is measured at intervals of 50 mm in the film width direction is in the range of 500 or more and 700 or less, and the variation in the hardness is 10% or more and 20% or less. Is preferred.
  • the "outermost layer" of the film roll means the roll surface portion after the film is unwound from the roll and removed by 5 m from the end in the longitudinal direction.
  • the hardness is to be measured by using a hardness tester Palotester 2 manufactured by Swiss Proceo.
  • the winding hardness of the surface layer of the film roll is less than 500, for example, when the film roll is stored for half a year in a warehouse, the air caught at the time of slitting escapes and the film roll becomes loose, which is not preferable.
  • the winding hardness of the surface layer of the film roll is higher than 700, the film roll is hard-wound and slack occurs due to compression of the recesses as described above, which is not preferable.
  • the winding hardness of the surface layer of the film roll is preferably 530 or more and 670 or less, and more preferably 560 or more and 640 or less.
  • the variation in hardness measured in the width direction of the film roll is preferably 10% or more and 20% or less.
  • the film roll in the warehouse has a poor thickness unevenness in the film width direction for half a year, or the slitting equipment has a difference in tension in the width direction, which is apt to cause slack after storage, which is not preferable.
  • it is preferably less than 10%, and in the present invention, 10% was the lower limit, so it was set to 10%.
  • the upper limit of the variation in winding hardness in the width direction is preferably 19% or less, and more preferably 18% or less.
  • the evaluation method of the film is as follows. [Tg (glass transition point), Tm (melting point)] Using a differential scanning calorimeter (manufactured by Seiko Denshi Kogyo Co., Ltd., DSC220), 5 mg of an unstretched film was put in a sample pan, the pan was covered, and the temperature was changed from -40°C to 300°C at 10°C/under a nitrogen gas atmosphere. The temperature was raised at a heating rate of a minute to measure. Tg (°C) and Tm (°C) were determined based on JIS-K7121-1987.
  • (B) Phosphorus atom A phosphorus compound is prepared by dry ash decomposition of 1 g of a sample in the presence of sodium carbonate, or by wet decomposition with a mixed solution of sulfuric acid/nitric acid/perchloric acid or a mixed solution of sulfuric acid/hydrogen peroxide solution. Was orthophosphoric acid. Then, molybdate was reacted in a 1 mol/L sulfuric acid solution to form phosphomolybdic acid, which was reduced with hydrazine sulfate to form heteropoly blue. The absorbance at a wavelength of 830 nm was measured with an absorptiometer (UV-150-02, manufactured by Shimadzu Corporation). The amount of phosphorus atoms in the sample was quantified from a calibration curve prepared in advance.
  • SRa of film surface (arithmetic mean roughness)
  • the surface roughness of the film was measured by the following method. ⁇ Device: Scanning confocal laser microscope (Olympus LEXT) -Laser type: 405 nm semiconductor laser-Objective lens: 50 times-Photographing mode: high precision A confocal image of the measurement surface was captured under the above-mentioned device and conditions. Surface roughness analysis/measurement range: vertical 256 ⁇ m x horizontal 256 ⁇ m ⁇ Analysis software: OLS4100 -No cut-off Surface roughness analysis was performed under the above conditions, and arithmetic average roughness (SRa) was measured. The measurement was performed 10 times while changing the measurement position, and the average value was obtained. However, when a partial abnormality such as a scratch was clearly observed from the image, the measurement value was not included and the measurement was performed again while avoiding the abnormal portion.
  • the obtained printed sample was rewound using a rewinding machine.
  • the number of missing prints was examined using a defect detector (model F MAX MR) manufactured by FUTEC. Then, the number of print omissions having a size of 1 mm or more was determined in one of the vertical direction and the horizontal direction.
  • the number of print defects per 10,000 square meters was calculated from the total number of print defects by the formula (6).
  • Number of print omissions total number of print omissions / ⁇ film roll width (m) x film roll winding length (10,000 m) ⁇ (Equation 6)
  • the solution was filtered through a glass filter (3G) to obtain an aqueous solution of an aluminum compound.
  • 3G glass filter
  • 2.0 liters of the aqueous solution of the aluminum compound and 2.0 liters of ethylene glycol were charged into a flask equipped with a distillation apparatus at room temperature and normal pressure, and the mixture was stirred at 200 rpm for 30 minutes, and then a uniform water/ethylene glycol mixed solution was added. Obtained.
  • the jacket temperature setting was changed to 110° C. and the temperature was raised to distill water from the solution. When the amount of distilled water reached 2.0 liters, heating was stopped and the mixture was allowed to cool to room temperature to obtain an ethylene glycol solution of aluminum compound.
  • part means “part by mass”. 2130 parts of terephthalic acid, 1955 parts of ethylene glycol and 0.7 part of triethylamine were added to a reaction can equipped with a stirrer, a thermometer and a distilling cooler, and gradually increased from 220°C to 250°C under a pressure of 0.35 MPa. The temperature was raised and the esterification reaction was carried out while removing the distilled water out of the system.
  • the above polymerization catalyst solution was mixed with an ethylene glycol solution of a phosphorus compound and an ethylene glycol mixed solution of an aluminum compound in an amount of 0.047 mol% as a phosphorus atom and 0 as an aluminum atom with respect to the dicarboxylic acid component in the polyester resin.
  • initial polymerization under reduced pressure was performed up to 1.3 kPa over 1 hour, the temperature was raised to 270° C., and further polymerization was performed at 0.13 kPa or less to obtain a polyester resin.
  • polyesters used in Examples and Comparative Examples are as follows. ⁇ Polyester 1: Polyethylene terephthalate (IV 0.73 dl/g) Polyester 2: Polyethylene terephthalate (IV 0.73 dl/g) in which SiO 2 (spherical silica having an average particle size of 2 ⁇ m) was added as a lubricant at a ratio of 7,500 ppm to the polyester when the above Polyester 1 was produced.
  • SiO 2 spherical silica having an average particle size of 2 ⁇ m
  • Example 1 The above polyester 1 and polyester 2 were mixed at a weight ratio of 96:4 and charged into an extruder. Then, the mixed resin is melted at 270° C., cooled to 260° C., extruded from a T-die, wound around a rotating metal roll cooled to a surface temperature of 30° C., and rapidly cooled to obtain a layer having a thickness of 220 ⁇ m. An unstretched film was obtained. The take-up speed (rotational speed of the metal roll) of the unstretched film at this time was about 80 m/min. The unstretched film had Tg of 75°C and Tm of 256°C. A laser cleaner was installed on the cooling metal roll to prevent foreign matter from adhering.
  • the obtained unstretched sheet was heated to 110° C., and stretched in the longitudinal direction at a total stretching ratio of 4.5 times by two-stage stretching of 1.5 times in the first step and 3 times in the second step.
  • the transverse stretching step hereinafter referred to as a tenter
  • the first stage was doubled at a temperature of 130° C.
  • the second stage was drawn in 2.3 stages, and stretched in the width direction at a total draw ratio of 4.6 times (FIG. 2). reference).
  • FOG. 2 transverse stretching step
  • the heat-relaxed film was cooled to 50° C.
  • the slit was started at an initial tension of 150 N/m and an initial surface pressure of 330 N/m. The tension was reduced at a constant rate so that the winding length was from 1000 m to 79000 m and the tension was from 150 to 80 N/m. Further, slitting was performed so that the surface pressure was constant at 330 N/m. Table 2 shows film forming process conditions and slit conditions. Then, the characteristics of the obtained film were evaluated by the methods described above. The evaluation results are shown in Tables 3 and 4. A film having the target characteristics was obtained, and the sag was good. Regarding the slack, in addition to the results of Table 3 (surface layer of film roll), all 1000 m samples were evaluated, and as a result, all samples of the above three film rolls were ⁇ (no slack).
  • Example 2 A biaxially stretched polyester film roll was obtained in the same manner as in Example 1 except that polyester 1 and polyester 2 were mixed in a weight ratio of 94:6 and charged into an extruder.
  • the film forming process conditions and slit conditions are shown in Table 2, and the evaluation results are shown in Tables 3 and 4. The film was of good quality.
  • Example 3 A biaxially stretched polyester film roll was obtained in the same manner as in Example 1 except that the film thickness was changed to 6 ⁇ m and the roll length was set to 30,000 m.
  • the film forming process conditions and slit conditions are shown in Table 2, and the evaluation results are shown in Tables 3 and 4. The film was of good quality.
  • Example 1 As conditions for the slit, the slit was started at an initial tension of 120 N/m and an initial surface pressure of 280 N/m. The tension was reduced at a constant rate so that the winding length was from 1000 m to 79000 m and the tension was from 120 to 50 N/m. Further, slitting was performed so that the surface pressure was constant at 280 N/m.
  • the conditions were the same as in Example 1 except for the slit conditions.
  • the film forming process conditions and slit conditions are shown in Table 2, and the evaluation results are shown in Tables 3 and 4.
  • the roll hardness was low, resulting in poor appearance of the film roll after storage in the warehouse and film slack. In addition, the number of print defects after long-term storage was large.
  • Example 2 The unstretched sheet obtained by the same method as in Example 1 was heated to 110° C. and stretched in the longitudinal direction at a total stretching ratio of 3 times by stretching the first stage at 1.5 times and the second stage at 2 times. It was stretched. Subsequently, in the transverse stretching step (hereinafter referred to as a tenter), the first stage was doubled at a temperature of 140° C., the second stage was drawn at a temperature of 170° C. in a 2.3 stage, and a total draw ratio was 4.6 times in the width direction. did. After being stretched in the width direction by 4.6 times, it was heat-set at 243° C. and heat-relaxed by 5% in the width direction.
  • a tenter the transverse stretching step
  • the heat-relaxed film was cooled to 50° C. or less in a tenter, and the oligomer was sucked in the width direction at the exit of the tenter with the exhaust device shown in FIG. Then, both ends of the stretched film were cut and removed, and then the roll was wound into a roll by a winder through a corona discharge treatment to prepare a master roll of a biaxially stretched polyester film having a thickness of 12 ⁇ m, a width of 8 m, and a winding length of 35000 m. ..
  • the slit was started at an initial tension of 150 N/m and an initial surface pressure of 330 N/m.
  • the tension was reduced at a constant rate so that the winding length was from 1000 m to 29000 m and the tension was from 150 to 80 N/m. Further, slitting was performed so that the surface pressure was kept constant at 330 N/m to obtain a film roll having a winding length of 30,000 m.
  • the film forming process conditions and slit conditions are shown in Table 2, and the evaluation results are shown in Tables 3 and 4.
  • the polyester film roll was inferior in quality because the thickness unevenness in the width direction was poor, the winding hardness varied widely, and the appearance and slack of the film roll were poor.
  • the biaxially stretched polyester film roll of the present invention has good slack as described above, it can be suitably used in processing such as printing.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Polymers & Plastics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Shaping By String And By Release Of Stress In Plastics And The Like (AREA)
  • Rolls And Other Rotary Bodies (AREA)

Abstract

【課題】 アンチモン含有量が極めて少なく、また異物も少なく、優れた透明性、耐熱性を有するとともに、製膜直後にフィルムロールの弛みが発生しにくいのみならず、長期にわたって保管しても、経時によるフィルムロールの弛みが発生しにくく、印刷性、加工性に優れたポリエステルフィルムロールを提供する事。 【解決手段】 フィルム中のアンチモンの含有量が10ppm以下であり かつ リンの含有量が2 5ppm以上75ppm以下であり、またフィルム表面の算術平均粗さが0.02μm 以上0.05μm以下の二軸延伸ポリエステルフィルムが巻き取られてなるフィルムロ ールで、該二軸延伸ポリエステルフィルム及び該フィルムロールにおいて、下記要件( 1)~(6)を満たすことを特徴とする二軸延伸ポリエステルフィルムロール。 (2)フィルムロール巻長が8000m以上80000m以下 (2)フィルムロール幅が500mm以上4000mm以下 (3)前記フィルムロールの最表層の硬度をフィルム幅方向50mmの間隔で測定した際 の平均硬さが500以上700以下の範囲であること (4)前記フィルムロールの最表層の硬度をフィルム幅方向50mmの間隔で測定した際 の硬さのばらつきが10%以上20%以下であること (5)フィルム厚みが5μm以上40μm以下 (6)フィルムロールの表層におけるフィルム幅方向の厚みムラにおいて、厚みパターンが凹部になっている箇所を有し、厚み差の最も大きい凹部(最大凹部)において、該最大凹部における最大厚み差とフィルム平均厚みより求めた最大凹部の厚みムラが10%以下

Description

二軸延伸ポリエステルフィルムロール
 本発明は、衛生性に優れた二軸延伸ポリエステルフィルムロールに関するものであり、詳しくはフィルム製膜後に長期保管した後も、シワなどが発生せず、印刷や製袋などの加工工程において不具合が生じず、食品包装用の袋やラベル用途などに好適に使用される二軸延伸ポリエステルフィルロールに関するものである。
 耐熱性や機械物性に優れた熱可塑性樹脂であるポリエチレンテレフタレート(PET)やポリブチレンテレフタレート(PBT)などのポリエステル樹脂は、プラスチックフィルム、エレクトロニクス、エネルギー、包装材料、自動車等の非常に多岐な分野で利用されている。プラスチックフィルムのなかでも、二軸延伸PETフィルムは機械特性強度、耐熱性、寸法安定性、耐薬品性、光学特性などとコストのバランスに優れることから,工業用,包装用分野において幅広く用いられている。
 工業用フィルムの分野では、優れた透明性を有することから液晶ディスプレイやプラズマディスプレイなどのフラットパネルディスプレイ(FPD)向けの機能フィルムとして用いることができる。また耐加水分解性を付与したPETフィルムは太陽電池バックシート用フィルムとしても利用されており、機能性フィルム、ベースフィルムとして様々な目的で使われている。
 包装用フィルムの分野では、食品包装用、ガスバリアフィルム用途として利用されている。特に、ガスバリア性に優れるフィルムは、食品、医薬品、電子部品等の気密性を要求される包装材料、または、ガス遮断材料として使用され、近年需要が高まっている。バリア性を持たせるためにフィルムロールを使用して蒸着加工を行うのが一般的である。
 近年、蒸着ポリエステルフィルムの加工工程は、生産性向上のため、高速化や基材となるフィルムロールの広幅化、長尺化が進められている。ロールの広幅化、長尺化に伴い走行性の悪化や巻ジワや巻ズレ、スポーキングシワなどが発生しやすくなり、部分的に蒸着薄膜の斑や抜けが生じ、ガスバリア性が悪化したり、蒸着後の巻取り時にもシワが発生して外観不良となり、製品として使用できなくなるなどの問題があった。
 また包装用の袋は最終的にゴミとして廃棄される事が多く、環境対応から薄肉化が求められている。厚みが薄くなる事によって、腰感が下がりフィルムをスリットした後の保管でフィルムロールの外観不良が生じて不具合が露呈する。そのためフィルムロールに印刷や加工を行う際にトラブルが生じる。特に弛みが生じている位置は平面性が悪く、フィルムロール幅方向で弛みが生じている位置は印刷抜け等が生じてしまい、ロスとなる課題が有る。フィルムの薄膜化、印刷の高速化および多色化により、弛み、保管による外観変化に起因するこれらの悪さはより顕在化しており、従来は問題とはならず許容されてきた範囲の弛みをフィルムに有するフィルムロールでは適用が困難であることを、本発明者らは新たに知見した。
 このような問題を改善する方法としては、接圧ロールによる面圧を、巻芯部における面圧に比べ、表層部における面圧を増大させるフィルムロールの巻取方法が提案されている(特許文献1)。しかし、前述の特許文献1では、表層ジワや巻芯ジワ巻ズレが生じないための巻硬度や巻取面圧や巻取張力などの記載はあるものの、長期保管によるフィルムロールの外観変化に関して記載が無い。
 また食品包装用フィルムでは 食品へ直接接触するので衛生性の点から、ポリエステルフィルムの異物が少ないことが望ましい。またポリエステルの原料を生産(重合)する工程で使用されるアンチモン触媒は 発癌性の可能性がある為、ポリエステルフィルムへアンチモンは極力少ないか、または含まれていない事が望ましい。従来 例えば特許文献2、3に記載されているように、アンチモン触媒を使用しないポリエステル原料がある。しかし、フィルム異物を低下させる方法や望まれているフィルム特性については記されていない。
特開昭63-252853号公報 特許3461175号公報 特許3506236号公報 特開2001-151907号公報
 本発明の目的は、アンチモン含有量が極めて少なく、また異物も少なく、優れた透明性、耐熱性を有するとともに、製膜直後にフィルムロールの弛みが発生しにくいのみならず、長期にわたって保管しても、経時によるフィルムロールの弛みが発生しにくく、印刷加工時に不良を起こしにくい二軸延伸ポリエステルフィルロールを提供することである。
 本発明者らが鋭意検討した結果、アンチモンを使用せず、狙いの表面粗さをもったポリエステルフィルムを、マスターロールから任意の幅にスリットして製品ロールとするスリット工程において、スリット後の巻取り張力と、コンタクトロールの接圧を制御することにより、ロールに硬さを上記した範囲内にすることができ、そのフィルムロールは長期間保管後の弛みが発生しにくくなることを見出し、本発明を完成するに至った。
 本発明は、以下の構成からなる。
 1.フィルム中のアンチモンの含有量が10ppm以下であり かつ リンの含有量が25ppm以上75ppm以下であり、またフィルム表面の算術平均粗さが0.02μm以上0.05μm以下の二軸延伸ポリエステルフィルムが巻き取られてなるフィルムロールで、該二軸延伸ポリエステルフィルム及び該フィルムロールにおいて、下記要件(1)~(6)を満たすことを特徴とする二軸延伸ポリエステルフィルムロール。
(1) フィルムロール巻長が8000m以上80000m以下
(2)フィルムロール幅が500mm以上4000mm以下
(3)前記フィルムロールの最表層の硬度をフィルム幅方向50mmの間隔で測定した際の平均硬さが500以上700以下の範囲であること
(4)前記フィルムロールの最表層の硬度をフィルム幅方向50mmの間隔で測定した際の硬さのばらつきが10%以上20%以下であること
(5)フィルム厚みが5μm以上40μm以下
(6)フィルムロールの表層におけるフィルム幅方向の厚みムラにおいて、厚みパターンが凹部になっている箇所を有し、厚み差の最も大きい凹部(最大凹部)において、該最大凹部における最大厚み差とフィルム平均厚みより求めた最大凹部の厚みムラが10%未満
 2.フィルムロールの表層から巻長1000m間隔でサンプリングした各試料のフィルムの幅方向の厚みムラにおいて、最大凹部における最大厚み差とフィルム平均厚みより求めた厚みムラが全ての試料で10%以下である1.に記載の二軸延伸ポリエステルフィルムロール。
 3.前記最大凹部における凹部の両端のいずれかの最大厚み箇所との幅方向屈折率の差の絶対値が0.010以下である1.~2.のいずれかに記載の二軸延伸ポリエステルフィルムロール。
 4.フィルム10000平方メートル当りでの1mm以上の欠点数が1.0個以下であることを特徴とする1.~3.のいずれかに記載の二軸延伸ポリエステルフィルムロール。
 5.フィルムの巻外面と巻内面の静摩擦係数と動摩擦係数がいずれも0.1以上0.8以下である1.~4.のいずれかに記載の二軸延伸ポリエステルフィルムロール。
 6.フィルムの極限粘度が0.51dl/g以上0.70dl/g以下であることを特徴とする1.~5.のいずれかに記載の二軸延伸ポリエステルフィルムロール。
 7.原料ポリエステル樹脂の極限粘度とポリエステルフィルムの極限粘度の差が0.06dl/g以下となるように、原料ポリエステル樹脂を溶融押出しし、次いで冷却固化して未延伸フィルムを得た後に、該未延伸フィルムを二軸延伸し、次いで熱固定処理を行った後、二軸延伸フィルムをマスターロールとして巻き取り、次いで該マスターロールをスリットしてロール状に巻き取ることを特徴とする、1.~6.のいずれかに記載の二軸延伸ポリエステルフィルムロールを製造する方法。
 本発明により、アンチモン含有量が極めて少なく、また異物も少なく、優れた透明性、耐熱性を有するとともに、製膜直後にフィルムロールの弛みが発生しにくいのみならず、長期にわたって保管しても、経時によるフィルムロールの弛みが発生しにくく、印刷加工時に不良を起こしにくい二軸延伸ポリエステル系フィルロールを提供することができる。
本発明のフィルム幅方向厚みムラにおける最大凹部を示す図である。 本発明のフィルム横延伸(TD)工程の一例を示す図である。 本発明のフィルム横延伸(TD)工程における冷却工程の一例を示す図である。
 以下に本発明の実施の形態について述べるが、本発明は以下の実施例を含む実施の形態に限定して解釈されるものではなく、発明の目的を達成できて、かつ、発明の要旨を逸脱しない範囲においての種々の変更は当然あり得る。
(原料ポリエステル樹脂)
 本発明の二軸延伸ポリエステルフィルムは、ポリエチレンテレフタレート系樹脂を構成成分とする。ここで、ポリエチレンテレフタレート系樹脂は、エチレングリコール由来成分およびテレフタル酸由来成分を主たる構成成分として含有する。「主たる構成成分」とは、ジカルボン酸全成分100モル%中、テレフタル酸が80モル%以上であり、グリコール全成分100モル%中、エチレングリコールが80モル%以上である。
 本発明の目的を阻害しない範囲であれば、他のジカルボン酸成分およびグリコール成分を共重合させても良い。他のジカルボン酸成分およびグリコール成分の共重合量は、全ジカルボン酸成分あるいは全グリコール成分に対して、それぞれ20モル%未満であり、10モル%以下であることが好ましく、5モル%以下であることが特に好ましい。
 上記の他のジカルボン酸成分としては、イソフタル酸、フタル酸、ナフタレンジカルボン酸、4、4’-ジカルボキシビフェニル、5-ナトリウムスルホイソフタル酸等の芳香族ジカルボン酸、1,4-シクロヘキサンジカルボン酸、1,3-シクロヘキサンジカルボン酸、1,2-シクロヘキサンジカルボン酸、2,5-ノルボルネンジカルボン酸、テトラヒドロフタル酸等の脂環族ジカルボン酸や、シュウ酸、マロン酸、コハク酸、アジピン酸、アゼライン酸、セバシン酸、ウンデカン二酸、ドデカン二酸、オクタデカン二酸、フマル酸、マレイン酸、イタコン酸、メサコン酸、シトラコン酸、ダイマー酸等の脂肪族ジカルボン酸等が挙げられる。
 上記の他のグリコール成分としては、1,2-プロパンジオール、1,3-プロパンジオール、1,2-ブタンジオール、1,3-ブタンジオール、1,4-ブタンジオール、2-メチル-1,3-プロパンジオール、2-アミノ-2-エチル-1,3-プロパンジオール、2-アミノ-2-メチル-1,3-プロパンジオール、1,10-デカンジオール、ジメチロールトリシクロデカン、ジエチレングリコール、トリエチレングリコール等の脂肪族グリコール、ビスフェノールA、ビスフェノールS、ビスフェノールC、ビスフェノールZ、ビスフェノールAP、4,4’-ビフェノールのエチレンオキサイド付加体またはプロピレンオキサイド付加体、1,2-シクロヘキサンジメタノール、1,3-シクロヘキサンジメタノール、1,4-シクロヘキサンジメタノール等の脂環族グリコール、ポリエチレングリコール、ポリプロピレングリコール等が挙げられる
 このようなポリエチレンテレフタレート系樹脂の重合法としては、テレフタル酸とエチレングリコール、および必要に応じて他のジカルボン酸成分およびグリコール成分を直接反応させる直接重合法、およびテレフタル酸のジメチルエステル(必要に応じて他のジカルボン酸のメチルエステルを含む)とエチレングリコール(必要に応じて他のグリコール成分を含む)とをエステル交換反応させた後に重縮合反応を行うエステル交換法等の任意の製造方法が利用され得る。
 ポリエステル樹脂としてペットボトルを再生利用したリサイクル樹脂やバイオマス由来のモノマー成分を含むポリエステル樹脂も使用することが可能である。
 本発明の二軸延伸ポリエステルフィルムの構成成分として、ポリアミド、ポリスチレン、ポリオレフィン、及び上記以外のポリエステルなどの他の樹脂を含んでも良いが、二軸延伸ポリエステルフィルムの機械特性、耐熱性の点で、他の樹脂の含有量はポリエステルフィルムの全樹脂成分に対して30質量%以下、さらには20質量%以下、またさらには10質量%以下、特には5質量%以下であることが好ましく、0質量%(ポリエステルフィルムを構成する全樹脂成分が実質的にポリエチレンテレフタレート系樹脂)であることが最も好ましい。
 また、前記ポリエチレンテレフタレート系樹脂の固有粘度は、0.57~0.76dl/gの範囲が好ましく、より好ましくは0.60~0.73dl/gであり、さらに好ましくは0.63~0.70dl/gである。固有粘度が0.57dl/gよりも低いと、ポリエステルフィルムを生産途中でフィルムが裂けやすくなり(所謂破断が発生)、0.76dl/gより高いと濾圧上昇が大きくなって高精度濾過が困難となり、フィルタを介して樹脂を押出すことが困難となりやすい。
 また、前記ポリエステルフィルムの樹脂の固有粘度は、0.51~0.70dl/gの範囲が好ましく、より好ましくは0.56~0.68dl/gであり、さらに好ましくは0.59~0.65dl/gである。固有粘度が0.51dl/gよりも低いと、ポリエステルフィルムが印刷等の加工工程で裂けやすくなり、固有粘度が0.76dl/gよりも高いと、機械的特性を向上する効果が飽和状態になりやすい。
(重合触媒)
 次に、本発明に使用する原料ポリエステル樹脂を製造する際に使用する重合触媒について説明する。本発明に用いられる重合触媒は、エステル化を促進させる能力を有することを特徴とする重合触媒である。本発明においては、後述するように従来使用されている三酸化アンチモン等のアンチモン化合物の重合触媒はできるだけ使用しないことが好ましい。このような重合触媒としては、アルミニウム化合物から選ばれる少なくとも1種と、リン系化合物から選択される少なくとも1種を含む重合触媒が好ましい。
 本発明に使用する原料ポリエステル樹脂を合成する際に、使用する重合触媒を構成するアルミニウム化合物としては、公知のアルミニウム化合物が限定なく使用できる。
 アルミニウム化合物としては、具体的には、酢酸アルミニウム、塩基性酢酸アルミニウム、乳酸アルミニウム、塩化アルミニウム、水酸化アルミニウム、水酸化塩化アルミニウム及びアルミニウムアセチルアセトネート、シュウ酸アルミニウムなどの有機アルミニウム化合物及びこれらの部分加水分解物などが挙げられる。これらのうちカルボン酸塩、無機酸塩及びキレート化合物が好ましく、これらの中でも酢酸アルミニウム、塩基性酢酸アルミニウム、乳酸アルミニウム、塩化アルミニウム、水酸化アルミニウム、水酸化塩化アルミニウム及びアルミニウムアセチルアセトネートがより好ましく、酢酸アルミニウム、塩基性酢酸アルミニウム、塩化アルミニウム、水酸化アルミニウム及び水酸化塩化アルミニウムがさらに好ましく、酢酸アルミニウム、塩基性酢酸アルミニウムが最も好ましい。
 本発明にかかる重合触媒に用いられるアルミニウム化合物の使用量は、アルミニウム原子として、得られるポリエステル樹脂の全質量に対して1~80ppm残留するようにすることが好ましく、より好ましくは2~60ppmであり、更に好ましくは3~50ppmであり、特に好ましくは5~40ppmであり、最も好ましくは10~30ppmである。
 上記を下回ると触媒活性不良となる可能性があり、上記を超えるとアルミニウム系異物生成を引き起こす可能性がある。
 アルミニウム化合物は、ポリエステル重合時に減圧環境下に置かれても、使用量のほぼ100%が残留するので、使用量が残留量になると考えてよい。
 重合触媒に用いられるリン化合物は、特に限定されないが、ホスホン酸系化合物、ホスフィン酸系化合物を用いると触媒活性の向上効果が大きく好ましく、これらの中でもホスホン酸系化合物を用いると触媒活性の向上効果が特に大きく好ましい。
 これらのリン化合物のうち、同一分子内にフェノール部を有するリン化合物が好ましい。フェノール構造を有するリン化合物であれば特に限定はされないが、同一分子内にフェノール部を有する、ホスホン酸系化合物、ホスフィン酸系化合物からなる群より選ばれる一種または二種以上の化合物を用いると触媒活性の向上効果が大きく好ましい。これらの中でも、一種または二種以上の同一分子内にフェノール部を有するホスホン酸系化合物を用いると触媒活性の向上効果が特に大きく好ましい。
 また、同一分子内にフェノール部を有するリン化合物としては、下記一般式(化1)、(化2)で表される化合物などが挙げられる。
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000002
 (式(化1)~(化2)中、R1はフェノール部を含む炭素数1~50の炭化水素基、水酸基またはハロゲン基またはアルコキシル基またはアミノ基などの置換基およびフェノール部を含む炭素数1~50の炭化水素基を表す。R4は、水素、炭素数1~50の炭化水素基、水酸基またはハロゲン基またはアルコキシル基またはアミノ基などの置換基を含む炭素数1~50の炭化水素基を表す。R2、R3はそれぞれ独立に水素、炭素数1~50の炭化水素基、水酸基またはアルコキシル基などの置換基を含む炭素数1~50の炭化水素基を表す。ただし、炭化水素基は分岐構造やシクロヘキシル等の脂環構造やフェニルやナフチル等の芳香環構造を含んでいてもよい。R2とR4の末端どうしは結合していてもよい。)
 前記の同一分子内にフェノール部を有するリン化合物としては、例えば、p-ヒドロキシフェニルホスホン酸、p-ヒドロキシフェニルホスホン酸ジメチル、p-ヒドロキシフェニルホスホン酸ジエチル、p-ヒドロキシフェニルホスホン酸ジフェニル、ビス(p-ヒドロキシフェニル)ホスフィン酸、ビス(p-ヒドロキシフェニル)ホスフィン酸メチル、ビス(p-ヒドロキシフェニル)ホスフィン酸フェニル、p-ヒドロキシフェニルフェニルホスフィン酸、p-ヒドロキシフェニルフェニルホスフィン酸メチル、p-ヒドロキシフェニルフェニルホスフィン酸フェニル、p-ヒドロキシフェニルホスフィン酸、p-ヒドロキシフェニルホスフィン酸メチル、p-ヒドロキシフェニルホスフィン酸フェニルなどが挙げられる。その他、下記一般式(化3)で表されるリン化合物を挙げることができる。
Figure JPOXMLDOC01-appb-C000003
 式(化3)中、X1、X2は、それぞれ、水素、炭素数1~4のアルキル基、または1価以上の金属を表す。
 また、X1は、金属が2価以上であって、X2が存在しなくても良い。さらには、リン化合物に対して金属の余剰の価数に相当するアニオンが配置されていても良い。
 金属としては、Li、Na、K、Ca、Mg、Alが好ましい。
 これらの同一分子内にフェノール部を有するリン化合物をポリエステルの重合時に添加することによってアルミニウム化合物の触媒活性が向上するとともに、重合した共重合ポリエステル樹脂の熱安定性も向上する。
 上記の中でも、重縮合触媒として使用することが好ましいリン化合物は、化学式(化4)、化学式(化5)で表される化合物から選ばれる少なくとも一種のリン化合物である。
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000005
 上記の化学式(化4)で示される化合物としては、Irganox1222(ビーエーエスエフ社製)が市販されている。また、化学式(化5)にて示される化合物としては、Irganox1425(ビーエーエスエフ社製)が市販されており、使用可能である。
 本発明にかかる重合触媒に用いられるリン化合物の使用量は、リン原子として、得られる原料ポリエステル樹脂の全質量に対して10~100ppm残留するようにすることが好ましく、より好ましくは15~90ppmであり、更に好ましくは20~80ppmであり、特に好ましくは25~70ppmであり、最も好ましくは30~60ppmである。
 上記の上下限を超える量のリン原子が残存する場合は、重合活性を低下させる可能性がある。
 リン化合物は、ポリエステル重合時に減圧環境下に置かれる際、その条件により、使用量の約10~30%が系外に除去される。そこで、実際は、数回の試行実験を行い、リン化合物のポリエステル中への残留率を見極めた上で、使用量を決める必要がある。
 また、上記のリン化合物を使用することで、樹脂の耐熱性を向上させることができる。原因は定かではないが、リン化合物中のヒンダートフェノール部分により共重合ポリエステル樹脂の耐熱性を向上させていると考えられる。
 リン化合物の残留量が10ppmより少なくなると、上記の耐熱性向上の効果が薄れ、結果として、本発明の共重合ポリエステル樹脂の耐熱性、着色改善効果が見られなくなることがある。
 本発明の効果を損なわない範囲で、触媒活性をさらに向上させるために、アンチモン化合物、チタン化合物、スズ化合物、ゲルマニウム化合物等の金属含有重縮合触媒を併用しても良い。その場合、アンチモン化合物は、得られる共重合ポリエステル樹脂の質量に対して、アンチモン原子として10ppm以下が好ましく、ゲルマニウム化合物は、得られる共重合ポリエステル樹脂の質量に対して、ゲルマニウム原子として10ppm以下が好ましく、チタン化合物は、得られる共重合ポリエステル樹脂の質量に対して、チタン原子として3ppm以下であることが好ましく、スズ化合物は、得られるポリエステル樹脂の質量に対して、スズ原子として3ppm以下が好ましい。本発明の目的からは、これらアンチモン化合物、チタン化合物、スズ化合物、ゲルマニウム化合物等の金属含有重縮合触媒は、極力使用しないことが好ましい。
 本発明においてアルミニウム化合物に加えて少量のアルカリ金属、アルカリ土類金属並びにその化合物から選択される少なくとも1種を第2金属含有成分として共存させても良い。かかる第2金属含有成分を触媒系に共存させることは、ジエチレングリコールの生成を抑制する効果に加えて触媒活性を高め、従って反応速度をより高めた触媒成分が得られ、生産性向上に有効である。アルカリ金属、アルカリ土類金属、またはそれらの化合物を併用添加する場合、その使用量(mol%)は、ポリエステル樹脂を構成するジカルボン酸成分のモル数に対して、好ましくは、1×10-5~0.01mol%である。アルカリ金属、アルカリ土類金属、またはそれらの化合物は、ポリエステル重合時に減圧環境下に置かれても、使用量のほぼ100%が残留するので、使用量が残留量になると考えてよい。
 本発明に係る重合触媒は、重縮合反応のみならずエステル化反応およびエステル交換反応にも触媒活性を有する。テレフタル酸ジメチルなどのジカルボン酸のアルキルエステルとエチレングリコールなどのグリコールとのエステル交換反応は、通常亜鉛などのエステル交換触媒の存在下で行われるが、これらの触媒の代わりに本発明の触媒を用いることもできる。また、本発明に係る重合触媒は、溶融重合のみならず固相重合や溶液重合においても触媒活性を有する。
 本発明で用いるポリエステルの重合触媒は、重合反応の任意の段階で反応系に添加することができる。例えば、エステル化反応もしくはエステル交換反応の開始前および反応途中の任意の段階、重縮合反応の開始直前、あるいは重縮合反応途中の任意の段階で、反応系への添加することができる。特に、本発明に係るアルミニウム化合物およびリン化合物の添加は重縮合反応の開始直前に添加することが好ましい。
(二軸延伸ポリエステルフィルムの好ましい製造方法)
 本発明の二軸延伸ポリエステルフィルムは、1層、2層、3層、あるいは4層以上の積層構造であってもよい。2層構造以上の場合においては、各層は上述のようにポリエチレンテレフタレート系樹脂、及び無機粒子、さらにはポリエチレンテレフタレート系樹脂以外の樹脂を構成成分とするが、互いに隣接する各層のいずれかの構成成分の種類又は含有量は異なるものとすることが好ましい。
 A層からなる単層構造の場合には、本発明におけるA層は二軸延伸ポリエステルフィルム全体となる。
 A層を含む2層構造の場合には、本発明におけるA層はいずれか一方あるいは両方の層となる。3層構造の場合には、本発明におけるA層はいずれかの1層あるいは両側表層の2層となる。
 特に、3層構造の場合は、内部層に無機粒子がなくても、表層部のみの添加粒子量を制御することでフィルムの表面粗さを制御することができ、フィルム中に無機粒子の含有量をより少なくすることができ、好ましい。これは、無機粒子とポリエステル樹脂との境界に出来るボイド(空隙)を介して、におい成分が抜け、保香性が低下する点を改善することにもつながるためである。
 さらに内層部にフィルム表面の特性に悪影響を与えない範囲で、製膜工程で発生するエッジ部分をトリミングした回収原料、あるいは他の製膜工程のリサイクル原料などを適時混合して使用することが容易となり、コスト的にも優位である。
 前記の無機粒子としては、例えば、シリカ、アルミナ、二酸化チタン、炭酸カルシウム、カオリン、硫酸バリウムなどを使用することができる。無機粒子の平均粒径は、コールターカウンターにて測定したときに0.05~3.0μmの範囲内であることが好ましい。フィルム中の無機粒子含有率の下限は好ましくは0.01重量%であり、より好ましくは0.015重量%であり、さらに好ましくは0.02重量%である。0.01重量%未満であると滑り性が低下することがある。上限は好ましくは1重量%であり、より好ましくは0.2重量%であり、さらに好ましくは0.1重量%である。1重量%を超えると透明性が低下することがあり、あまり好ましくない。
 ポリエステルに無機粒子を含有せしめる方法としては、例えばジオール成分であるエチレングリコールに無機粒子を所定の割合にてスラリーの形で分散せしめ、このエチレングリコールスラリーをポリエステル重合完結前の任意段階で添加することが挙げられる。
 ここで、粒子を添加する際には、例えば、粒子の合成時に得られる水ゾルやアルコールゾルを一旦乾燥させることなく添加すると粒子の分散性が良好であり、粗大突起の発生を抑制でき好ましい。
 また、粒子の水スラリーを直接、所定のポリエステルペレットと混同し、ベント方式の2軸混練押出機に供給しポリエステルに練り込む方法も有効である。
 本発明では 押出機の樹脂温度を樹脂の融点+2℃以上、樹脂の融点+6℃以下で押出すことが好ましい。押出し温度が融点+2℃未満であると樹脂が溶融せず未溶融物が吐出され、それが異物となるので好ましくない。また融点+6℃より高い温度で押し出すと、樹脂が熱劣化して異物発生の原因となるので好ましくない。
 そして、押し出し後のシート状の溶融樹脂をTダイで押出しした後に急冷することによって未延伸フィルムを得ることができる。なお、溶融樹脂を急冷する方法としては、溶融樹脂をTダイより回転ドラム上にキャストして急冷固化することにより実質的に未配向の樹脂シートを得る方法を好適に採用することができる。
 またTダイには、溶融樹脂の昇華物(オリゴマー等)が付着しやすく、付着物が落ちると未延伸シートにつき、フィルムの異物となり好ましくない。その為 Tダイには昇華物が落下し難いように粘着性のあるシートをあらかじめ貼っておく、また冷却ロールに異物が付着しても未延伸シートに転写しないようにクリーナーで稼働中も掃除をすることが好ましい。
 さらに、得られた未延伸フィルムを、二軸延伸し次いで熱固定処理及び熱弛緩処理を行う。以下のような長手方向および幅方向の延伸条件、熱固定条件、熱弛緩条件等の製膜条件を適宜組み合わせることで後述する好ましいフィルム特性が達成可能となる。以下に詳細に説明する。
延伸方法は同時二軸延伸でも逐次二軸延伸でも可能であるが、製膜速度が速く生産性が高いという点からは逐次二軸延伸が好ましい。以下では、最初に縦延伸、次に横延伸を実施する縦延伸-横延伸による逐次二軸延伸法について説明するが、順番を逆にする横延伸-縦延伸であっても構わない。
 長手(縦)方向(以下、MDと略す場合がある)の延伸温度としては、ボーイングの低減の点から、(Tg+5)~(Tg+55)℃、延伸倍率としては3~5倍に延伸することが好ましい。延伸温度が(Tg+55)℃よりも高く、または3倍より低い場合、ボーイングが低減されるものの、長手方向の配向が不十分となり、長手方向の厚みムラが悪化するので好ましくない。また、得られる二軸延伸ポリエステルフィルムの平面性も悪化するため好ましくない。一方、(Tg+5)℃よりも低く、または5倍よりも高い場合、収縮応力が増加し、ボーイングが増加するため好ましくない。
 また、長手方向の延伸において、一段階での延伸でなく、複数のロール間で多段階に延伸する方法では、延伸速度を制御しながら徐々に長手方向に延伸されるため、フィルム幅方向での物性差を低減させることができる。効果や設備面、コストの点から二段~五段延伸が好ましい。
 幅(横)方向(以下、TDと略す場合がある)に延伸する場合、未延伸フィルムをフィルムの両端をクリップで把持して加熱することができるテンター装置に導き、熱風によりフィルムを所定の温度まで加熱した後、長手方向に搬送しながらクリップ間の距離を広げることでフィルムを幅方向に延伸する。
 また幅方向の延伸温度がTg+5℃未満であると、延伸時に破断が生じやすくなり、好ましくない。またTg+70℃より高いと、均一な幅方向の延伸ができなくなり、幅方向の厚み斑が大きくなるため、フィルムロールの硬さのばらつきが大きくなり好ましくない。より好ましくはTg+10℃以上Tg+65℃以下であり、更に好ましくはTg+15℃以上Tg+60℃以下である。
 幅方向の延伸倍率は特に規定は無いが、3倍以上7倍以下が好ましい。延伸倍率が3倍未満であると、生産性が悪くなり、また幅方向の配向が不足して幅方向の厚み斑が悪化し、フィルムロールの幅方向の硬さのばらつきが生じ好ましくない。また延伸倍率が7倍を上回ると、延伸製膜時に破断しやすくなり好ましくない。また2段、3段と多段で延伸することにより幅方向の厚み斑が良化して好ましい。
 TD延伸後の熱固定温度(熱処理温度)としては、230~255℃が好ましい。熱固定温度が255℃よりも高い場合、ポリエステル樹脂の融点付近となるのでフィルムが溶融して破断が生じるので好ましくない。またフィルム表面が溶融により荒れて白化し、透明性を損なうので好ましくない。一方、230℃よりも小さい場合、長手方向および幅方向ともに熱収縮率が高くなり、蒸着加工時の熱寸法安定性が悪くなるため好ましくない。
 熱弛緩処理工程では、フィルムが熱緩和により収縮されるまでの間、幅方向の拘束力が減少して自重により弛んでしまったり、また、随伴気流によってフィルムが膨らんでしまうことがあるため、フィルムが非常に上下に変動し易い状況下にある。このため、この熱弛緩工程では、フィルムの搬送状態により、得られる二軸延伸ポリエステルフィルムの配向角や斜め熱収縮率差の変化量が大きく変動する。軽減させる方法としては、例えば、上下部のノズルから吹き出す風速を適宜調整することで、フィルムが平行になるように保つことが挙げられる。幅方向の熱弛緩率としては、4~8%が好ましい。熱緩和率が4%未満の場合、得られる二軸延伸ポリエステルフィルムの幅方向の熱収縮率が高くなり、蒸着加工時の寸法安定性が悪くなるため好ましくない。一方、熱緩和率が8%より大きい場合、ボーイングの増加や弛みなどが生じて、幅方向の厚み斑が大きくなるため、フィルムロールの硬さのばらつきが大きくなり好ましくない。
 またTD内で熱処理を行ったフィルムを冷却すると、オリゴマーが発生する。オリゴマーがフィルムに付着すると欠点となり、印刷抜けが生じて好ましくない。従ってTD内でのオリゴマー除去やTD出口で粘着ロール等を用いてオリゴマーを除去することが好ましい。オリゴマーを除去する具体的な例として図3に示すような方法が良い。フィルムへ冷却風を吹き付けるだけではオリゴマーが発生し、発生したオリゴマーがゾーン内を舞ってフィルムへ付着する。そこで冷却風を吹き付けた後に、オリゴマーを吸引するプレナムダクトを設ける事によって、ゾーン内でのオリゴマーが舞う量を減らし、オリゴマーがフィルムへ付着し難くした。
 上記の方法で延伸製膜されたフィルムは、ワインダー装置により巻き取られ、マスターロールが作製される。次いでスリッターを用いて指定の幅、巻長にスリットして巻取りコア(芯)に巻取り、二軸延伸ポリエステル系フィルムロールが得られる。巻取りコアとしては、通常、3インチ、6インチ、8インチ等のプラスチックコア、金属製コアあるいは紙管を使用することができる。なお、該フィルムロールの好ましい巻長及び幅については、前述の通りである。
 加えて、以下のスリット条件を採用することによりスリットの際に発生する弛みを低減することが好ましい。
 具体的なスリットの条件としては、初期張力を70~160N/m、好ましくは80~150N/m、初期面圧を200~400N/m、好ましくは250~350N/mでスリットを開始する。初期張力が160N/mより高いと凹部の厚みムラ部がスリット時に張力により若干伸ばされてしまい弛みの原因となるので好ましくない。また初期張力が70N/m以下であると、フィルムをスリットで巻き取るさいに張力が不足し、フィルムロールの端面が不揃いとなり(所謂端面ズレ)が生じて好ましくない。また、巻長が500mに達した後、張力を減少させることが望ましい。具体的にはスリット終了前300m時の張力が初期張力の50~80%、好ましくは60~70%となるように巻長と相関するように一定して張力を低下させることが望ましい。また面圧は巻長全長に亘り、できるだけ一定とするのが好ましい。巻長全長に亘り初期面圧±5%以下であると好ましく、更に好ましくは初期面圧±3%以下である。
 一般に工業的に生産されるフィルムロールにおいては、連続して製膜したフィルムが連続的に巻き取られており、製膜条件が一定であれば、フィルム幅方向の厚みムラの程度は巻長全長に亘ってほぼ一定となるが、製膜時の各工程の微小な変動により、巻長全長に対して若干の変動が起きる。フィルム幅方向の厚みムラは、巻長全長に亘り制御されていることが好ましい。巻長全長に亘り厚みムラが制御されているかどうかは、例えばフィルムロールのフィルムを表層より一定間隔の巻長毎に試料を採取して、各試料の厚みムラを測定することにより確認することができる。本発明のフィルムロールにおいては、厚みムラはフィルムロールの表層部分の試料を採取して測定して、該フィルムロールにおける代表値とすることが可能である。本発明においては後述の実施例に記載されているように、フィルムロール表層よりフィルムを5m除去した部分より試料を採取して測定して代表値とするものである。フィルムロール表層におけるフィルム幅方向の厚みムラ(最大凹部および幅方向全体の厚みムラ)の好適な範囲は前述の通りである。
 本発明の好ましい様態は、巻長1000m毎に試料を採取して測定し、全ての試料について厚みムラ(最大凹部および幅方向全体の厚みムラ)が所定範囲となることである。フィルムロール全長におけるフィルム幅方向の厚みムラ(最大凹部および幅方向全体の厚みムラ)の好適な範囲は前述の通りである。
(二軸延伸ポリエステルフィルムの構成および特性)
 本発明の二軸延伸ポリエステルフィルムは フィルム中のアンチモンの含有量が10ppm以下であることが好ましい。アンチモンは発癌性が懸念される物質なので、量が少なければ少ないほど好ましく、5ppmであると好ましく、0ppmであるとより好ましい。本発明で使用している原料樹脂のアンチモンは0ppmであることが好ましいが、生産時に混入する可能性があり10ppm以下とした。
 本発明の二軸延伸ポリエステルフィルムはポリエステル樹脂の極限粘度とポリエステルフィルムの極限粘度の差が0.06dl/g以下であると好ましい。前記の極限粘度の差は、ポリエステル樹脂を溶融押出しする際の劣化の程度の指標となる。0.06dl/gより高いと、押出機内で樹脂が劣化して異物の原因となるので好ましくない。また極限粘度差は 好ましくは0dl/gであるが、実質上溶融する為 0dl/gにすることは難しい。0.05dl/g以下が好ましく、0.04dl/g以下であるとより好ましい。極限粘度の差を上記のように制御する為 本発明では 押出機の樹脂温度を樹脂の融点+2℃以上、樹脂の融点+6℃以下で押出すことが好ましい。押出し温度が融点+2℃未満であると樹脂が溶融せず未溶融物が吐出され、それが異物となるので好ましくない。また融点+6℃より高い温度で押し出すと、樹脂が熱劣化して異物となるので好ましくない。
 本発明の二軸延伸ポリエステルフィルムは 10000平方メートル当りで1mm以上のサイズの欠点数が1個以下であることが好ましい。このように1000平方メートルの大面積当たりにおける1mm以上のサイズの欠点数を1個以下にまで低減することにより、印刷性が非常に良好となる。異物による欠点数が多いと、印刷でインキ抜けが生じて好ましくない。1mm以上のサイズの欠点数は少なければ少ないほど好ましく、0.5個以下がより好ましく、0.3個以下がさらに好ましく、0.1個以下が特に好ましく、0個が最も好ましい。本発明では、予期せぬトラブル時に異物が混入する可能性があり1個以下とした。
 本発明の二軸延伸ポリエステルフィルム表面の算術平均粗さは、0.02μm以上0.05μm以下が好ましい。0.02μm未満であるとフィルムロール内のフィルムが癒着するブロッキングが発生していまい、巻出し時に異音(癒着したフィルムが剥離する音)が発生したり、フィルムが破断したりするため好ましくない。また0.05μmを超えると、蒸着等の加工工程で、蒸着薄膜の抜けなどが生じやすくなり、ガスバリア性が悪化したりするため好ましくない。
 また、本発明の二軸延伸ポリエステルフィルムの厚みは、5μm以上40μm以下が好ましい。フィルム厚みの上限は、35μm以下がより好ましく、30μm以下がさらに好ましい。本発明で確認したのが厚み5μmまでであったので厚みの下限を5μm以上とした。またフィルム厚みは厚い方が腰感があり、より弛みが少なく好ましい傾向であるので、厚い分には構わないが、厚みを薄くすることによる環境対応には逆行することになる。なお、フィルム厚みは薄いほうがより弛みは発生しやすくなるので、本発明の様態においてはフィルム厚みが薄いことは、より困難性を伴う。
 また、本発明の二軸延伸ポリエステルフィルムの巻外面と巻内面のフィルム面同士の静摩擦係数と動摩擦係数はいずれも0.1以上0.8以下であることが好ましい。0.1より低いと滑りすぎて端面のズレが生じる可能性がある。また0.8より大きいと、スリット時にエアーの巻き込み量が多くなり、フィルムロール凹部のエアー抜けにより弛みやシワが入り易くなり好ましくない。好ましくは0.13以上0.77以下であり、更に好ましくは0.16以上0.74以下である。
(二軸延伸ポリエステルフィルムロールの特性)
 本発明の二軸延伸ポリエステルフィルムロールの巻長は、8000m以上80000m以下が好ましい。印刷や蒸着等の加工において、巻長が長い方がロールを交換する頻度が低減し作業効率は良くなる。好ましくは10000m以上であり、更に好ましくは12000m以上、特に好ましくは14000m以上である。上限は特に無く巻長が長い方が好ましいが、発明者らは80000m巻長までしか確認できていない為、巻長80000mを上限とした。なお、フィルムロールの巻長が長くなるほどフィルムの面積は増加して弛みの欠点が発生する機会は増大するので、本発明の様態においてはフィルムロールの巻長が長いことは、より困難性を伴う。
 また、本発明の二軸延伸ポリエステルフィルムロールの幅は、500mm以上4000mm以下が好ましい。上限は特に無くフィルムロールの幅が長いと、印刷工程におけるロスが少なくて好ましいが、発明者らは4000mmまでしか確認できていない為、幅4000mmを上限とした。またフィルムロールの幅は広い方が、上記したように印刷等の加工における効率が上がるので、広い方が好ましい。好ましい幅は700mm以上であり、更に好ましくは900mm以上、特に好ましくは1100mm以上である。なお、フィルムロールの幅が長くなるほどフィルムの面積は増加して弛みの欠点が発生する機会は増大するので、本発明の様態においてはフィルムロールの幅が長いことは、より困難性を伴う。
 また、本発明の二軸延伸ポリエステルフィルムロールは、フィルムロールの幅方向の厚みムラにおいて、厚みパターンが凹部になっている箇所を有し、厚み差の最も大きい凹部(最大凹部)において、該最大凹部における最大厚み差とフィルム平均厚みより下式1により求めた最大凹部の厚みムラが10%以下が好ましい(例を図1に示す)。
 凹部の厚みムラ=(凹部の最大高さ厚み-凹部の最小高さ厚み)÷平均厚み×100(%)  ・・式1               
 なお、本発明における凹部とは、後述のように連続接触式厚み計を用いて測定したフィルム幅方向の厚みムラにおいて、その点を境にして測定方向の両方向に対して厚みが減少する点を山部とし、その点を境にして測定方向の両方向に対して厚みが増加する点を谷部としたとき、山部―谷部―山部となる厚みパターンの部分をさす。なお、このような厚みパターンを有しないフィルム、すなわち凹部を有さないフィルムは本発明には含まれない。凹部における2つの山部と1つの谷部において、各山部と谷部の厚み差のいずれか大きい値(同値の場合は両方の値)を、凹部における最大厚み差と称する。
 最大凹部の厚みムラが10%より高いと、凹部の位置をスリットしてフィルムロールとして巻き取る際に、エアーが巻き込まれて空気が溜まり、その後フィルムロールを保管している際にエアー抜けが生じて皺や弛みの原因となり好ましくない。また凹部は、幅方向の他の箇所より厚みが薄いのでスリットしてフィルムロールとして巻き取る際の張力により長手方向に伸ばされてしまう。そのためフィルムロールで凹部の箇所は、長手方向の長さが幅方向の他位置より長くなり、その箇所が弛みとなる。特に凹部とその両端の厚み差が大きいときに顕在化することが本発明者らの調査により分かった。好ましい最大凹部の厚みムラは9%以下であり、更に好ましくは8%以下である。最大凹部の厚みムラは低い方が好ましく、本発明者らのテストにおいては3%が最も低かった。
 上記に示したような凹部の厚みムラは、以下実施例で示すような連続接触式厚み計を用いて測定すべきである。例えば特許文献4に示されているように、測定方向に30mm間隔から500mm間隔で厚みの測定を行うと、凹部の最大厚み差が未測定位置になる可能性があり、正確な凹部に厚み差を求めることが困難である。本発明における厚みムラは、連続接触式厚み計を用いて測定したものをさす。
 また本発明の二軸延伸ポリエステルフィルムのフィルムロールの表層から巻長1000m間隔でサンプリングした各試料のフィルムの幅方向の厚みムラにおいて、前記最大凹部における最大厚み差とフィルム平均厚みより求めた厚みムラが全ての試料で10%以下であることが好ましい。
 前述しているが、最大凹部の厚みムラが10%より高いと、凹部の位置をスリットしてフィルムロールとして巻き取る際に、エアーを巻き込まれて空気が溜まり、その後フィルムロールを保管しているさいにエアー抜けが生じて皺や弛みの原因となり好ましくない。また凹部は、幅方向の他の箇所より厚みが薄いのでスリット時の張力により長手方向に伸ばされてしまう。そのためフィルムロールで凹部の箇所は、長手方向の長さが幅方向の他位置より長くなり、その箇所が弛みとなる。特に凹部とその両端の厚み差(前記谷部と山部の厚み差)が大きいときに顕在化することが本発明者らの調査により分かった。そのため、ロールの幅方向の凹部の厚みムラが重要である。好ましい凹部の厚みムラは9%以下であり、更に好ましくは8%以下である。
 また、本発明のポリエステルフィルムロールの幅方向厚みパターンおける前記最大凹部において、凹部の両端のいずれかの最大厚み箇所(前記2つの山部のうち厚みのより大きい山部)と凹部の最小厚み箇所(前記谷部)との幅方向屈折率の差の絶対値が0.01以下であることが好ましい。凹部の両端のいずれかの最大厚み箇所と凹部の最小厚み箇所との幅方向屈折率の差の絶対値が0.01より高いと、凹部の最小厚み箇所と最大厚み箇所は長手方向の伸び易さが異なり、スリット時の張力により長手方向に伸ばされてしまう差が生じる。そのためフィルムロールで長手方向の長さが長くなり、その箇所が弛みとなる。好ましい前記幅方向屈折率差の絶対値は0.008以下であり、更に好ましくは0.006以下である。前記幅方向屈折率差の絶対値は低い方が好ましく、本発明者らのテストにおいては0.0003が最も低かった。
 本発明のポリエステルフィルムロールの最表層の硬さをフィルム幅方向50mmの間隔で測定した際の平均硬さが500以上700以下の範囲であり、かつ その硬さのバラツキが10%以上20%以下であることが好ましい。フィルムロールの「最表層」とはロールからフィルムを巻き出して、長手方向端部から5m除去した後のロール表面部を言うものとする。また、硬さはスイス プロセオ社製の硬さ試験機パロテスター2を使用して測定するものとする。フィルムロール表層の巻硬度が500未満であると、例えば倉庫でフィルムロールを半年間保管した時にスリット時に巻き込まれたエアーが抜け、フィルムロールが弛むので好ましくない。またフィルムロール表層の巻硬度が700より高いと、フィルムロールが硬巻となり、前述したような凹部が圧縮されることによって弛みが生じるので好ましくない。好ましいフィルムロール表層の巻硬度は530以上670以下であり、さらに好ましくは560以上640以下である。
 またフィルムロールの幅方向に測定した硬さのバラツキが10%以上20%以下であることが好ましい。20%より高いと、例えば倉庫でフィルムロールを半年間フィルム幅方向の厚み斑が悪い、または、スリット設備で幅方向に張力差があることを示し、保管後に弛みが生じやすくなり好ましくない。また10%より少ない方が好ましく、本発明では10%が下限であったので、10%とした。好ましい幅方向の巻硬度のばらつきの上限は19%以下であり、更に好ましくは18%以下である。
 以下、実施例によって本発明をより詳細に説明するが、本発明は、かかる実施例の態様に何ら限定されるものではなく、本発明の趣旨を逸脱しない範囲で、適宜変更することが可能である。実施例、比較例で使用した原料の組成、実施例、比較例におけるフィルムの延伸方式、製造条件を、それぞれ表に示す。
 また、フィルムの評価方法は下記の通りである。
[Tg(ガラス転移点)、Tm(融点)]
 示差走査熱量分析装置(セイコー電子工業株式会社製、DSC220)を用いて、未延伸フィルム5mgをサンプルパンに入れ、パンのふたをし、窒素ガス雰囲気下で-40℃から300℃に10℃/分の昇温速度で昇温して測定した。Tg(℃)とTm(℃)はJIS-K7121-1987に基づいて求めた。
[極限粘度 (IV)]
 ポリエステル0.2gをフェノール/1,1,2,2-テトラクロルエタン(60/40(重量比))の混合溶媒50ml中に溶解し、30℃でオストワルド粘度計を用いて測定した。単位はdl/gである。
[ポリエステルフィルム中の各種原子の含有量]
以下に示す方法で定量した。
(a)アンチモン原子
 試料1gを硫酸/過酸化水素水の混合液で湿式分解させた。次いで、亜硝酸ナトリウムを加えてSb原子をSb5+とし、ブリリアングリーンを添加してSbとの青色錯体を生成させた。この錯体をトルエンで抽出後、吸光光度計(島津製作所製、UV-150-02)を用いて、波長625nmにおける吸光度を測定し、予め作成した検量線から、試料中のSb原子の量を比色定量した。
(b)リン原子
 試料1gを、炭酸ナトリウム共存下で乾式灰化分解させる方法、あるいは硫酸/硝酸/過塩素酸の混合液または硫酸/過酸化水素水の混合液で湿式分解させる方法によってリン化合物を正リン酸とした。次いで、1モル/Lの硫酸溶液中においてモリブデン酸塩を反応させてリンモリブデン酸とし、これを硫酸ヒドラジンで還元してヘテロポリ青を生成させた。吸光光度計(島津製作所製、UV-150-02)により波長830nmにおける吸光度を測定した。予め作成した検量線から、試料中のリン原子の量を定量した。
(c)アルミニウム原子
 資料0.1gを6M塩酸溶液に溶解させ一日放置した後、純粋で希釈し1.2M塩酸測定溶液とした。調製した溶液資料を高周波プラズマ発光分析により求めた。
[フィルム表面のSRa(算術平均粗さ)]
 フィルムの表面粗さ測定は、以下の方法で行った。
・装置:走査型共焦点レーザー顕微鏡(オリンパスLEXT)
・レーザー種:405nm半導体レーザー
・対物レンズ:50倍
・撮影モード:高精度
上記装置・条件にて測定面の共焦点画像を取り込んだ。
表面粗さ解析
・測定範囲:縦256μm×横256μm
・解析ソフト:OLS4100
・カットオフなし
上記条件で面粗さ解析を実施し、算術平均粗さ(SRa)を測定した。測定は測定位置を変えて10回行い、平均値を求めた。但し、画像から明らかに傷など部分的な異常が認められた場合、測定値には入れず、異常部を避けて再度測定し直した。
[幅方向全体の厚みムラ]
 ロールをスリッターに設置した。その後、ロール表層から5m除去した後にフィルムロールを幅方向に全幅、長手方向に40mmにサンプリングし、ミクロン計測器社製の連続接触式厚み計を用いて、5m/sで連続的に幅方向の厚みを測定した。測定時の最大厚みをTmax.、最小厚みをTmin.、平均厚みをTave.とし、下式(1)から、フィルム幅方向の厚みムラを算出した。
 厚みムラ={(Tmax.-Tmin.)/Tave.}×100 (%)  式(1)
[凹部の厚みムラ]
 上記した幅方向の連続接触厚みを求め、図1に示すように最大凹部になっている箇所を探した。下式(2)より最大凹部の厚みムラを求めた。また最大凹部の両端での高さが異なるときは、高い方の値を選択して求めた。
 最大凹部の厚みムラ=(最大凹部の最大高さ厚み-最大凹部の最小高さ厚み)÷平均厚み×100(%)   式(2)
[ロール巻長での、ロール幅方向最大凹部の厚みムラ]
 ロールをスリッターに設置した。その後、ロール表層から5m除去した後に上述した方法でロール幅方向の最大凹部の厚みムラを測定した。測定後、スリッターで1000m巻返して上述した方法でロール幅方向の凹部の厚みムラを測定した。1000m巻返してロール幅方向の最大凹部の厚みムラを測定を繰り返し行った。
[最大凹部と最大凹部両端との屈折率の差]
 上記した最大凹部と最大凹部両端の厚みが高い方の位置のフィルムの幅方向の屈折率をアッベ屈折計を用いて測定した。そして下式(3)より差を求め、絶対値とした。
 最大凹部と最大凹部両端との屈折率の差=|最大凹部の幅方向屈折率―最大凹部の両端の高い方の位置の幅方向屈折率|   式(3)
[摩擦係数]
 JIS K-7125に準拠し、引張試験機(ORIENTEC社製テンシロン)を用い、23℃・65%RH環境下で、フィルムの表面と裏面とを接合させた場合の静摩擦係数と動摩擦係数を求めた。なお、上側のフィルムを巻き付けたスレッド(錘)の重量は、1.5kgであり、スレッドの底面積の大きさは、縦63mm×横63mmであった。また、摩擦測定の際の引張速度は、200mm/min.であった。
[弛みの評価]
 フィルムロールから幅方向には全幅、長手方向へは4m以上6m以下にサンプリングし平面台の上にのせた。この時、長手方向へ連続して平面性が他の部分よりも少しでも悪くなっている帯状の箇所が目視で確認されればそれを弛みとした。以下のように評価を行った。また同様に温度23℃の倉庫で1年間保管後にも同様の評価を行った。
  弛み無し :  ○
  弛みが1箇所以上有り  :  ×
[巻き硬度の評価]
 スイス プロセオ社の硬さ試験機パロテスター2を使用して、ロール幅方向に端部から50mm間隔で測定を行った。ロール幅方向に測定した値の平均値を、測定値として用いた。また式(4)より硬さのばらつきを求めた。
  (幅方向巻硬度の最大値-幅方向巻硬度の最少値)÷平均巻硬度×100 (%)
                   式(4)
フィルムロールのシワ評価
 製膜したポリエステルフィルムロールを生産直後、及び温度23℃の倉庫で1年間保管した後に、下記基準でロール表層にあるシワの評価を目視で行った。判定○、△を合格とした。
○:シワがない
△:弱いシワがあるが、引き出したフィルムに張力20N/m程度をかけるとシワが消える
×:強いシワがあり、引き出したフィルムに張力20N/m程度をかけてもシワが消えない
[欠点数] 得られたフィルムロールを、巻返し機を用いて巻返した。巻返す際 FUTEC社製の欠点検知機(型式 F MAX MR)を用いて欠点数を調査した。そしてタテ方向 または ヨコ方向のどちらか1つの方向で1mm以上のサイズの欠点数を求めた。全ての欠点数から式(5)により、10000平方メートル当りの欠点数を求めた。
欠点数=全ての欠点数÷{フィルムロール幅(m)×フィルムロール巻長(万m)}
               式(5) 
                                   
[印刷]
 製膜したポリエステルフィルムロールを生産直後、及び温度23℃の倉庫で1年間保管した後に、フィルムロールをグラビア印刷機(東谷鉄工所社製)を使用して速度300m/minで網点5%でグラビア印刷を実施した。このときのインキは、グラビア印刷インキ(東洋インキ社製:商品名ファインスターR92墨)であり、希釈溶剤(東洋インキ社製:商品名SL302)で77:23の比率で混合したものを用いた。得られた印刷サンプルを巻返し機を用いて巻返した。巻返す際 FUTEC社製の欠点検知機(型式 F MAX MR)を用いて印刷抜け数を調査した。そしてタテ方向 または ヨコ方向のどちらか1つの方向で1mm以上のサイズの印刷抜け数を求めた。全ての印刷抜け数から式(6)により、10000平方メートル当りの印刷抜け数を求めた。
印刷抜け数=全ての印刷抜け数÷{フィルムロール幅(m)×フィルムロール巻長(万m)}
               (式6)
<重合触媒溶液の調製>
(リン化合物のエチレングリコール溶液)
 窒素導入管、冷却管を備えたフラスコに、常温常圧下、エチレングリコール2.0リットルを加えた後、窒素雰囲気下200rpmで攪拌しながら、リン化合物として化学式(4)で表されるIrganox1222(ビーエーエスエフ社製)200gを加えた。さらに2.0リットルのエチレングリコールを追加した後、ジャケット温度の設定を196℃に変更して昇温し、内温が185℃以上になった時点から60分間還流下で攪拌した。その後加熱を止め、直ちに溶液を熱源から取り去り、窒素雰囲気下を保ったまま、30分以内に120℃以下まで冷却した。
(アルミニウム化合物のエチレングリコール溶液)
 冷却管を備えたフラスコに、常温常圧下、純水5.0リットルを加えた後、200rpmで攪拌しながら、塩基性酢酸アルミニウム(ヒドロキシアルミニウムジアセテート)200gを純水とのスラリーとして加えた。さらに、全体として10.0リットルとなるよう純水を追加して、常温常圧で12時間攪拌した。その後、ジャケット温度の設定を100.5℃に変更して昇温し、内温が95℃以上になった時点から3時間還流下で攪拌した。攪拌を止め、室温まで放冷した。その際、未溶解粒子が見られた場合は、溶液をガラスフィルター(3G)にてろ過してアルミニウム化合物の水溶液を得た。
 続いて、蒸留装置を備えたフラスコに、常温常圧下、前記アルミニウム化合物の水溶液2.0リットルとエチレングリコール2.0リットルを仕込み、200rpmで30分間攪拌後、均一な水/エチレングリコール混合溶液を得た。次いで、ジャケット温度の設定を110℃に変更して昇温し、該溶液から水を留去した。留出した水の量が2.0リットルになった時点で加熱を止め、室温まで放冷することでアルミニウム化合物のエチレングリコール溶液を得た。
 以下において、「部」は「質量部」を表す。
 攪拌機、温度計、溜出用冷却機を装備した反応缶にテレフタル酸2130部、エチレングリコール1955部、トリエチルアミン0.7部を添加して0.35MPaの加圧下、220℃から250℃まで徐々に昇温し、溜出する水を系外に除きつつエステル化反応を行った。続いて、前記の重合触媒溶液を、リン化合物のエチレングリコール溶液およびアルミニウム化合物のエチレングリコール混合溶液をポリエステル樹脂中のジカルボン酸成分に対して、リン原子として0.047モル%を、アルミニウム原子として0.021モル%となるように添加した後、1時間かけて1.3kPaまで減圧初期重合を行うとともに270℃まで上昇し、さらに0.13kPa以下で後期重合を行い、ポリエステル樹脂を得た。
 また、実施例および比較例に用いたポリエステルは以下の通りである。
・ポリエステル1:ポリエチレンテレフタレート(IV 0.73 dl/g)
・ポリエステル2:上記ポリエステル1の製造の際に、滑剤としてSiO2(平均粒径サイズ2μmの球状シリカ)をポリエステルに対して7,500ppmの割合で添加したポリエチレンテレフタレート(IV 0.73 dl/g)
Figure JPOXMLDOC01-appb-T000006
〔実施例1〕
 上記したポリエステル1とポリエステル2とを重量比96:4で混合して押出機に投入した。しかる後、その混合樹脂を270℃で溶融させて、260℃まで冷却してTダイから押出し、表面温度30℃に冷却された回転する金属ロールに巻き付けて急冷することにより、厚さが220μmの未延伸フィルムを得た。このときの未延伸フィルムの引取速度(金属ロールの回転速度)は、約80m/minであった。未延伸フィルムのTgは75℃、Tmは256℃であった。また異物付着防止として冷却の金属ロールにはレーザークリーナーを設置した。
 得られた未延伸シートを110℃に加熱し、一段目を1.5倍、二段目に3倍の2段延伸にて、全延伸倍率4.5倍で長手方向に延伸した。引き続き、横延伸工程(以下テンターと記す)で温度130℃で一段目を2倍、二段目に2.3段延伸にて、全延伸倍率4.6倍で幅方向に延伸した(図2参照)。4.6倍にて幅方向に延伸した後に、243℃で熱固定し、幅方向に5%熱弛緩処理させた。熱弛緩後のフィルムをテンター内で50℃以下まで冷却し、テンターの出口で図3に示す排気装置で幅方向にフィルム全幅に亘ってオリゴマーを吸引した。次いで該当延伸後のフィルムの両端部を裁断除去後、コロナ放電処理を経てワインダーでロール状に巻取ることで、厚み12μm、幅8m、巻長85000mの二軸延伸ポリエステルフィルムのマスターロールを作製した。
 上記得られた二軸延伸フィルムをスリッターで、幅4000mm、2000mm、1000mmのサイズに巻長80000mになるようにスリットした。また、6インチの金属製のコアを用いた。
 具体的なスリットの条件としては、初期張力を150N/m、初期面圧を330N/mでスリットを開始した。巻長が1000mから79000mまで、張力が150から80N/mとなるように一定比率で張力を減少させた。また面圧は330N/mで一定となるようにスリットを行った。製膜工程条件及びスリット条件を表2に示す。
 そして得られたフィルムの特性を上記した方法によって評価した。評価結果を表3及び表4に示す。目標の特性となるフィルムが得られ、弛みが良好な結果であった。なお、弛みについては表3の結果(フィルムロール表層)に加えて1000m毎の試料を全て評価した結果、上記3つのフィルムロールの全ての試料において○(弛み無し)であった。
〔実施例2〕
 ポリエステル1とポリエステル2とを重量比94:6で混合して押出機に投入した以外は実施例1と同じ方法で二軸延伸ポリエステルフィルムロールを得た。製膜工程条件及びスリット条件を表2に示し、評価結果を表3及び表4に示す。良好な品位のフィルムであった。
〔実施例3〕
 フィルムの厚みを6μmに変更して、ロールの巻長を30,000mにした以外は実施例1と同じ方法で二軸延伸ポリエステルフィルムロールを得た。製膜工程条件及びスリット条件を表2に示し、評価結果を表3及び表4に示す。良好な品位のフィルムであった。
〔比較例1〕
 スリットの条件としては、初期張力を120N/m、初期面圧を280N/mでスリットを開始した。巻長が1000mから79000mまで、張力が120から50N/mとなるように一定比率で張力を減少させた。また面圧は280N/mで一定となるようにスリットを行った。スリットの条件以外は実施例1と同じ条件で行った。製膜工程条件及びスリット条件を表2に示し、評価結果を表3及び表4に示す。巻硬さが低く、倉庫で保管後のフィルムロールの外観や、フィルム弛みが劣る結果となった。また、長期保管後の印刷抜け数も多かった。
 〔比較例2〕
 実施例1と同じ方法で得られた未延伸シートを110℃に加熱し、一段目を1.5倍、二段目に2倍と2段延伸にて、全延伸倍率3倍で長手方向に延伸した。引き続き、横延伸工程(以下テンターと記す)で温度140℃で一段目を2倍、二段目に温度170℃で2.3段延伸にて、全延伸倍率4.6倍で幅方向に延伸した。4.6倍にて幅方向に延伸した後に、243℃で熱固定し、幅方向に5%熱弛緩処理させた。熱弛緩後のフィルムをテンター内で50℃以下まで冷却し、テンターの出口で図3に示す排気装置で幅方向にオリゴマーを吸引した。次いで該当延伸後のフィルムの両端部を裁断除去後、コロナ放電処理を経てワインダーでロール状に巻取ることで、厚み12μm、幅8m、巻長35000mの二軸延伸ポリエステルフィルムのマスターロールを作製した。具体的なスリットの条件としては、初期張力を150N/m、初期面圧を330N/mでスリットを開始した。巻長が1000mから29000mまで、張力が150から80N/mとなるように一定比率で張力を減少させた。また面圧は330N/mで一定となるようにスリットを行い巻長30000mのフィルムロールを得た。製膜工程条件及びスリット条件を表2に示し、評価結果を表3及び表4に示す。
 幅方向の厚み斑が悪く、巻硬さのばらつきが大きく、フィルムロールの外観や弛みも悪く、品位に劣るポリエステルフィルムロールとなった。
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000009
 本発明の二軸延伸ポリエステルフィルムロールは、上記の如く弛みが良好なので、印刷等の加工において好適に用いることができる。

Claims (7)

  1.   フィルム中のアンチモンの含有量が10ppm以下であり かつ リンの含有量が25ppm以上75ppm以下であり、またフィルム表面の算術平均粗さが0.02μm以上0.05μm以下の二軸延伸ポリエステルフィルムが巻き取られてなるフィルムロールで、該二軸延伸ポリエステルフィルム及び該フィルムロールにおいて、下記要件(1)~(6)を満たすことを特徴とする二軸延伸ポリエステルフィルムロール。
    (1)フィルムロール巻長が8000m以上80000m以下
    (2)フィルムロール幅が500mm以上4000mm以下
    (3)前記フィルムロールの最表層の硬度をフィルム幅方向50mmの間隔で測定した際の平均硬さが500以上700以下の範囲であること
    (4)前記フィルムロールの最表層の硬度をフィルム幅方向50mmの間隔で測定した際の硬さのばらつきが10%以上20%以下であること
    (5)フィルム厚みが5μm以上40μm以下
    (6)フィルムロールの表層におけるフィルム幅方向の厚みムラにおいて、厚みパターンが凹部になっている箇所を有し、厚み差の最も大きい凹部(最大凹部)において、該最大凹部における最大厚み差とフィルム平均厚みより求めた最大凹部の厚みムラが10%未満
  2.  フィルムロールの表層から巻長1000m間隔でサンプリングした各試料のフィルムの幅方向の厚みムラにおいて、最大凹部における最大厚み差とフィルム平均厚みより求めた厚みムラが全ての試料で10%以下である請求項1に記載の二軸延伸ポリエステルフィルムロール。
  3.  前記最大凹部における凹部の両端のいずれかの最大厚み箇所との幅方向屈折率の差の絶対値が0.010以下である請求項1~2のいずれかに記載の二軸延伸ポリエステルフィルムロール。
  4.  フィルム10000平方メートル当りでの1mm以上の欠点数が1.0個以下であることを特徴とする請求項1~3のいずれかに記載の二軸延伸ポリエステルフィルムロール。
  5.  フィルムの巻外面と巻内面の静摩擦係数と動摩擦係数がいずれも0.1以上0.8以下である請求項1~4のいずれかに記載の二軸延伸ポリエステルフィルムロール。
  6.  フィルムの極限粘度が0.51dl/g以上0.70dl/g以下であることを特徴とする請求項1~5のいずれかに記載の二軸延伸ポリエステルフィルムロール。
  7.  原料ポリエステル樹脂の極限粘度とポリエステルフィルムの極限粘度の差が0.06dl/g以下となるように、原料ポリエステル樹脂を溶融押出しし、次いで冷却固化して未延伸フィルムを得た後に、該未延伸フィルムを二軸延伸し、次いで熱固定処理を行った後、二軸延伸フィルムをマスターロールとして巻き取り、次いで該マスターロールをスリットしてロール状に巻き取ることを特徴とする、請求項1~6のいずれかに記載の二軸延伸ポリエステルフィルムロールを製造する方法。
PCT/JP2020/004323 2019-02-18 2020-02-05 二軸延伸ポリエステルフィルムロール WO2020170819A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP20758785.8A EP3928956B1 (en) 2019-02-18 2020-02-05 Biaxially stretched polyester film roll
JP2021501837A JP7563374B2 (ja) 2019-02-18 2020-02-05 二軸延伸ポリエステルフィルムロール
CN202080015038.XA CN113453870B (zh) 2019-02-18 2020-02-05 双轴拉伸聚酯膜卷
KR1020217029120A KR20210129678A (ko) 2019-02-18 2020-02-05 이축연신 폴리에스테르 필름 롤
US17/431,308 US12059831B2 (en) 2019-02-18 2020-02-05 Biaxially oriented polyester film roll

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019026449 2019-02-18
JP2019-026449 2019-02-18

Publications (1)

Publication Number Publication Date
WO2020170819A1 true WO2020170819A1 (ja) 2020-08-27

Family

ID=72144168

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/004323 WO2020170819A1 (ja) 2019-02-18 2020-02-05 二軸延伸ポリエステルフィルムロール

Country Status (7)

Country Link
US (1) US12059831B2 (ja)
EP (1) EP3928956B1 (ja)
JP (1) JP7563374B2 (ja)
KR (1) KR20210129678A (ja)
CN (1) CN113453870B (ja)
TW (1) TWI824107B (ja)
WO (1) WO2020170819A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022168703A1 (ja) * 2021-02-03 2022-08-11 東洋紡株式会社 二軸配向ポリエステルフィルム及びその製造方法
JP7196970B1 (ja) 2021-09-01 2022-12-27 東洋紡株式会社 二軸配向ポリエチレンテレフタレートフィルムロール
JP2023036069A (ja) * 2021-09-01 2023-03-13 東洋紡株式会社 二軸配向ポリエチレンテレフタレートフィルムロール
JP7524988B2 (ja) 2022-12-06 2024-07-30 東洋紡株式会社 二軸配向ポリエチレンテレフタレートフィルムロール

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US12110200B2 (en) * 2018-10-30 2024-10-08 Toyobo Co., Ltd. Biaxially oriented polyester film roll

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS506236B1 (ja) 1970-12-08 1975-03-12
JPS63252853A (ja) 1987-04-08 1988-10-19 Toray Ind Inc フイルムロ−ルの巻取方法
JP2001151907A (ja) 1999-11-26 2001-06-05 Mitsubishi Plastics Ind Ltd ポリ乳酸系収縮フィルムまたはシート
JP3461175B2 (ja) 2000-09-12 2003-10-27 東洋紡績株式会社 ポリエステル重合触媒及びこれを用いて製造されたポリエステル並びにポリエステルの製造方法
JP2008248135A (ja) * 2007-03-30 2008-10-16 Mitsubishi Plastics Ind Ltd フォトマスク保護テープ用ポリエステルフィルム
JP2011171399A (ja) * 2010-02-17 2011-09-01 Mitsubishi Plastics Inc 太陽電池裏面封止用二軸配向ポリエステルフィルム
JP2014111790A (ja) * 2012-09-27 2014-06-19 Toyobo Co Ltd ポリエステルフィルム
JP2015021119A (ja) * 2013-07-23 2015-02-02 富士フイルム株式会社 二軸延伸ポリエステルフィルム及びその製造方法
JP2018090803A (ja) * 2016-12-06 2018-06-14 東レ株式会社 ポリエステルフィルムロール

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3443338B2 (ja) * 1998-09-11 2003-09-02 帝人株式会社 二軸配向ポリエチレン−2,6−ナフタレートフィルム
DE60016447T2 (de) 1999-08-24 2005-12-08 Toyo Boseki K.K. Polymerisationskatalysatoren für Polyester, damit hergestellte Polyester und Verfahren zur Herstellung von Polyester
JP3506236B2 (ja) 1999-08-24 2004-03-15 東洋紡績株式会社 ポリエステル重合触媒およびこれを用いて製造されたポリエステルならびにポリエステルの製造方法
WO2001098058A1 (fr) * 2000-06-23 2001-12-27 Teijin Limited Procede permettant de produire une feuille et un film de polyester
JP5421045B2 (ja) * 2008-10-01 2014-02-19 富士フイルム株式会社 フィルムおよびフィルムの製造方法
JP5553619B2 (ja) * 2010-01-15 2014-07-16 三菱樹脂株式会社 太陽電池裏面封止用二軸配向ポリエステルフィルム
JP2011189623A (ja) * 2010-03-15 2011-09-29 Teijin Dupont Films Japan Ltd 光学用二軸延伸ポリエステルフィルムロール
JP2012250446A (ja) * 2011-06-03 2012-12-20 Mitsubishi Plastics Inc 光学用二軸延伸ポリエステルフィルムロール
WO2013027678A1 (ja) * 2011-08-25 2013-02-28 富士フイルム株式会社 二軸延伸ポリエステルフィルム及びその製造方法並びに太陽電池モジュール
JP2014073598A (ja) 2012-10-03 2014-04-24 Toray Ind Inc ガスバリア性フィルム
JP2015145086A (ja) * 2014-02-03 2015-08-13 三菱樹脂株式会社 ポリエステルフィルムロール
JP6400938B2 (ja) * 2014-04-30 2018-10-03 ファスフォードテクノロジ株式会社 ダイボンダ及びボンディング方法
JP6747450B2 (ja) 2015-11-06 2020-08-26 コニカミノルタ株式会社 サーモクロミックフィルム及びサーモクロミック複合体
US10941244B2 (en) 2016-03-30 2021-03-09 Toyobo Co., Ltd. Polyester film
JP7172025B2 (ja) 2016-09-30 2022-11-16 東レ株式会社 二軸配向ポリエステルフィルムおよびその製造方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS506236B1 (ja) 1970-12-08 1975-03-12
JPS63252853A (ja) 1987-04-08 1988-10-19 Toray Ind Inc フイルムロ−ルの巻取方法
JP2001151907A (ja) 1999-11-26 2001-06-05 Mitsubishi Plastics Ind Ltd ポリ乳酸系収縮フィルムまたはシート
JP3461175B2 (ja) 2000-09-12 2003-10-27 東洋紡績株式会社 ポリエステル重合触媒及びこれを用いて製造されたポリエステル並びにポリエステルの製造方法
JP2008248135A (ja) * 2007-03-30 2008-10-16 Mitsubishi Plastics Ind Ltd フォトマスク保護テープ用ポリエステルフィルム
JP2011171399A (ja) * 2010-02-17 2011-09-01 Mitsubishi Plastics Inc 太陽電池裏面封止用二軸配向ポリエステルフィルム
JP2014111790A (ja) * 2012-09-27 2014-06-19 Toyobo Co Ltd ポリエステルフィルム
JP2015021119A (ja) * 2013-07-23 2015-02-02 富士フイルム株式会社 二軸延伸ポリエステルフィルム及びその製造方法
JP2018090803A (ja) * 2016-12-06 2018-06-14 東レ株式会社 ポリエステルフィルムロール

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3928956A4

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022168703A1 (ja) * 2021-02-03 2022-08-11 東洋紡株式会社 二軸配向ポリエステルフィルム及びその製造方法
JP7196970B1 (ja) 2021-09-01 2022-12-27 東洋紡株式会社 二軸配向ポリエチレンテレフタレートフィルムロール
WO2023032595A1 (ja) * 2021-09-01 2023-03-09 東洋紡株式会社 二軸配向ポリエチレンテレフタレートフィルムロール
JP2023036069A (ja) * 2021-09-01 2023-03-13 東洋紡株式会社 二軸配向ポリエチレンテレフタレートフィルムロール
JP2023035545A (ja) * 2021-09-01 2023-03-13 東洋紡株式会社 二軸配向ポリエチレンテレフタレートフィルムロール
JP7243912B2 (ja) 2021-09-01 2023-03-22 東洋紡株式会社 二軸配向ポリエチレンテレフタレートフィルムロール
JP7524988B2 (ja) 2022-12-06 2024-07-30 東洋紡株式会社 二軸配向ポリエチレンテレフタレートフィルムロール

Also Published As

Publication number Publication date
CN113453870A (zh) 2021-09-28
JP7563374B2 (ja) 2024-10-08
TWI824107B (zh) 2023-12-01
EP3928956A1 (en) 2021-12-29
US20220126495A1 (en) 2022-04-28
TW202041581A (zh) 2020-11-16
CN113453870B (zh) 2023-04-18
EP3928956A4 (en) 2022-08-24
EP3928956B1 (en) 2024-10-09
US12059831B2 (en) 2024-08-13
KR20210129678A (ko) 2021-10-28
JPWO2020170819A1 (ja) 2021-12-23

Similar Documents

Publication Publication Date Title
WO2020170819A1 (ja) 二軸延伸ポリエステルフィルムロール
US5958581A (en) Polyester film and methods for making same
JP7380601B2 (ja) 二軸延伸ポリエステルフィルム
WO2022168703A1 (ja) 二軸配向ポリエステルフィルム及びその製造方法
JP4664825B2 (ja) 積層二軸配向ポリエステルフィルムおよび磁気記録テープ
EP0922726B1 (en) Biaxially oriented polyethylene naphthalate copolymer film
JP5034145B2 (ja) ポリエステルフィルム
JP2000159910A (ja) 離形フィルムおよびその製造方法
JP2004285145A (ja) 二軸配向ポリエステルフィルム
JPH07323512A (ja) 二軸配向積層ポリエステルフイルム
JP5074298B2 (ja) 共重合ポリエチレン−2,6−ナフタレンジカルボキシレートおよび二軸配向フィルム
JP2000006349A (ja) 離形フィルム
JP2008246681A (ja) 磁気記録媒体用積層ポリエステルフィルムロール
JPS62233227A (ja) 二軸配向ポリエステルフイルム
JPH11302362A (ja) ポリエチレンナフタレート共重合体およびそのフイルム
JP2002283450A (ja) 二軸配向ポリエステルフィルム
JP2008243277A (ja) 熱可塑性樹脂フィルムロールおよび磁気記録テープ
JP2003128810A (ja) 二軸配向ポリエステルフィルム
JPH07301884A (ja) 写真フイルム用ベースフイルム
JPH11199661A (ja) 共重合ポリエチレンナフタレンジカルボキシレートからなるフイルム
JPH1160708A (ja) ポリエチレンナフタレート共重合体およびそのフイルム
MXPA00010292A (en) Polyester film and methods for making same
JPH1121339A (ja) ポリエチレンナフタレート共重合体およびそのフイルム
JP2004175961A (ja) ポリエステルフィルム及びその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20758785

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021501837

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20217029120

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2020758785

Country of ref document: EP

Effective date: 20210920