WO2013027678A1 - 二軸延伸ポリエステルフィルム及びその製造方法並びに太陽電池モジュール - Google Patents
二軸延伸ポリエステルフィルム及びその製造方法並びに太陽電池モジュール Download PDFInfo
- Publication number
- WO2013027678A1 WO2013027678A1 PCT/JP2012/070929 JP2012070929W WO2013027678A1 WO 2013027678 A1 WO2013027678 A1 WO 2013027678A1 JP 2012070929 W JP2012070929 W JP 2012070929W WO 2013027678 A1 WO2013027678 A1 WO 2013027678A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- group
- polyester
- temperature
- film
- resin
- Prior art date
Links
- 229920006267 polyester film Polymers 0.000 title claims abstract description 147
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 37
- 108091093017 HSUR Proteins 0.000 claims abstract description 8
- 238000010248 power generation Methods 0.000 claims abstract description 6
- -1 aluminum compound Chemical class 0.000 claims description 257
- 229920000728 polyester Polymers 0.000 claims description 184
- 229920005989 resin Polymers 0.000 claims description 174
- 239000011347 resin Substances 0.000 claims description 174
- 238000001816 cooling Methods 0.000 claims description 106
- 229920001225 polyester resin Polymers 0.000 claims description 96
- 239000004645 polyester resin Substances 0.000 claims description 96
- 238000000034 method Methods 0.000 claims description 79
- 239000002994 raw material Substances 0.000 claims description 76
- 150000001875 compounds Chemical class 0.000 claims description 51
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 claims description 50
- 238000002844 melting Methods 0.000 claims description 46
- 230000008018 melting Effects 0.000 claims description 46
- 229910052698 phosphorus Inorganic materials 0.000 claims description 44
- 239000011574 phosphorus Substances 0.000 claims description 39
- 229910052751 metal Inorganic materials 0.000 claims description 30
- 239000002184 metal Substances 0.000 claims description 30
- 150000003609 titanium compounds Chemical class 0.000 claims description 30
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims description 27
- 125000005647 linker group Chemical group 0.000 claims description 24
- 125000004122 cyclic group Chemical group 0.000 claims description 23
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 claims description 22
- KKEYFWRCBNTPAC-UHFFFAOYSA-N Terephthalic acid Chemical group OC(=O)C1=CC=C(C(O)=O)C=C1 KKEYFWRCBNTPAC-UHFFFAOYSA-N 0.000 claims description 18
- 229910052757 nitrogen Inorganic materials 0.000 claims description 14
- 239000002685 polymerization catalyst Substances 0.000 claims description 13
- VPKDCDLSJZCGKE-UHFFFAOYSA-N carbodiimide group Chemical group N=C=N VPKDCDLSJZCGKE-UHFFFAOYSA-N 0.000 claims description 10
- 229910052782 aluminium Inorganic materials 0.000 claims description 9
- 150000002291 germanium compounds Chemical class 0.000 claims description 6
- MMINFSMURORWKH-UHFFFAOYSA-N 3,6-dioxabicyclo[6.2.2]dodeca-1(10),8,11-triene-2,7-dione Chemical group O=C1OCCOC(=O)C2=CC=C1C=C2 MMINFSMURORWKH-UHFFFAOYSA-N 0.000 claims description 5
- 239000010408 film Substances 0.000 description 171
- 239000010936 titanium Substances 0.000 description 68
- 125000004432 carbon atom Chemical group C* 0.000 description 64
- 238000006116 polymerization reaction Methods 0.000 description 57
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 53
- 238000006243 chemical reaction Methods 0.000 description 49
- 238000001125 extrusion Methods 0.000 description 48
- 229910052719 titanium Inorganic materials 0.000 description 47
- 238000005886 esterification reaction Methods 0.000 description 46
- 125000003118 aryl group Chemical group 0.000 description 44
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 43
- KRKNYBCHXYNGOX-UHFFFAOYSA-N citric acid Chemical compound OC(=O)CC(O)(C(O)=O)CC(O)=O KRKNYBCHXYNGOX-UHFFFAOYSA-N 0.000 description 42
- 238000002425 crystallisation Methods 0.000 description 40
- 230000008025 crystallization Effects 0.000 description 40
- 238000006460 hydrolysis reaction Methods 0.000 description 36
- 230000007062 hydrolysis Effects 0.000 description 35
- 239000010410 layer Substances 0.000 description 35
- 238000010438 heat treatment Methods 0.000 description 31
- 210000004027 cell Anatomy 0.000 description 30
- 125000001424 substituent group Chemical group 0.000 description 30
- 238000006068 polycondensation reaction Methods 0.000 description 27
- 239000007790 solid phase Substances 0.000 description 27
- 239000003054 catalyst Substances 0.000 description 26
- 239000013522 chelant Substances 0.000 description 26
- OFOBLEOULBTSOW-UHFFFAOYSA-N Malonic acid Chemical class OC(=O)CC(O)=O OFOBLEOULBTSOW-UHFFFAOYSA-N 0.000 description 24
- 125000002723 alicyclic group Chemical group 0.000 description 23
- 125000001931 aliphatic group Chemical group 0.000 description 23
- 230000001965 increasing effect Effects 0.000 description 23
- YIMQCDZDWXUDCA-UHFFFAOYSA-N [4-(hydroxymethyl)cyclohexyl]methanol Chemical compound OCC1CCC(CO)CC1 YIMQCDZDWXUDCA-UHFFFAOYSA-N 0.000 description 21
- 230000000694 effects Effects 0.000 description 21
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 20
- 239000000203 mixture Substances 0.000 description 20
- 230000002829 reductive effect Effects 0.000 description 20
- 238000000576 coating method Methods 0.000 description 19
- 229920000642 polymer Polymers 0.000 description 19
- 230000008569 process Effects 0.000 description 19
- 239000003795 chemical substances by application Substances 0.000 description 18
- 230000015572 biosynthetic process Effects 0.000 description 17
- 239000011777 magnesium Substances 0.000 description 17
- 239000011248 coating agent Substances 0.000 description 16
- 150000002681 magnesium compounds Chemical class 0.000 description 16
- 229920000139 polyethylene terephthalate Polymers 0.000 description 16
- 239000005020 polyethylene terephthalate Substances 0.000 description 16
- 239000000243 solution Substances 0.000 description 16
- 229910019142 PO4 Inorganic materials 0.000 description 15
- 125000005842 heteroatom Chemical group 0.000 description 15
- 235000021317 phosphate Nutrition 0.000 description 15
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 15
- 208000028659 discharge Diseases 0.000 description 14
- 239000008188 pellet Substances 0.000 description 14
- 238000005809 transesterification reaction Methods 0.000 description 14
- 150000002009 diols Chemical class 0.000 description 13
- 230000009477 glass transition Effects 0.000 description 13
- 239000000463 material Substances 0.000 description 13
- 238000005259 measurement Methods 0.000 description 13
- 239000010452 phosphate Substances 0.000 description 13
- 238000005979 thermal decomposition reaction Methods 0.000 description 13
- 238000011282 treatment Methods 0.000 description 13
- 239000002253 acid Substances 0.000 description 12
- 125000000217 alkyl group Chemical group 0.000 description 12
- 239000007795 chemical reaction product Substances 0.000 description 12
- 150000002148 esters Chemical class 0.000 description 12
- 230000020169 heat generation Effects 0.000 description 12
- 238000009998 heat setting Methods 0.000 description 12
- 239000000047 product Substances 0.000 description 12
- 125000000732 arylene group Chemical group 0.000 description 11
- 125000004429 atom Chemical group 0.000 description 11
- 239000003431 cross linking reagent Substances 0.000 description 11
- 230000007423 decrease Effects 0.000 description 11
- 229910052749 magnesium Inorganic materials 0.000 description 11
- 239000000843 powder Substances 0.000 description 11
- 238000012360 testing method Methods 0.000 description 11
- 125000003172 aldehyde group Chemical group 0.000 description 10
- 125000003368 amide group Chemical group 0.000 description 10
- 125000001033 ether group Chemical group 0.000 description 10
- 125000005843 halogen group Chemical group 0.000 description 10
- QQVIHTHCMHWDBS-UHFFFAOYSA-N isophthalic acid Chemical compound OC(=O)C1=CC=CC(C(O)=O)=C1 QQVIHTHCMHWDBS-UHFFFAOYSA-N 0.000 description 10
- 239000000178 monomer Substances 0.000 description 10
- 125000000449 nitro group Chemical group [O-][N+](*)=O 0.000 description 10
- 230000036961 partial effect Effects 0.000 description 10
- 238000002360 preparation method Methods 0.000 description 10
- 239000000126 substance Substances 0.000 description 10
- 239000000654 additive Substances 0.000 description 9
- 125000002843 carboxylic acid group Chemical group 0.000 description 9
- 239000013078 crystal Substances 0.000 description 9
- 238000010292 electrical insulation Methods 0.000 description 9
- 125000004185 ester group Chemical group 0.000 description 9
- 238000004898 kneading Methods 0.000 description 9
- 239000006096 absorbing agent Substances 0.000 description 8
- 125000002947 alkylene group Chemical group 0.000 description 8
- 150000001718 carbodiimides Chemical class 0.000 description 8
- 238000000354 decomposition reaction Methods 0.000 description 8
- 230000032050 esterification Effects 0.000 description 8
- 239000004611 light stabiliser Substances 0.000 description 8
- 239000000155 melt Substances 0.000 description 8
- ARCGXLSVLAOJQL-UHFFFAOYSA-N trimellitic acid Chemical compound OC(=O)C1=CC=C(C(O)=O)C(C(O)=O)=C1 ARCGXLSVLAOJQL-UHFFFAOYSA-N 0.000 description 8
- 239000002585 base Substances 0.000 description 7
- 238000004040 coloring Methods 0.000 description 7
- 238000009826 distribution Methods 0.000 description 7
- 239000003446 ligand Substances 0.000 description 7
- 239000007788 liquid Substances 0.000 description 7
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 description 7
- 238000003756 stirring Methods 0.000 description 7
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 6
- 239000012298 atmosphere Substances 0.000 description 6
- 125000002993 cycloalkylene group Chemical group 0.000 description 6
- 239000000428 dust Substances 0.000 description 6
- 239000007789 gas Substances 0.000 description 6
- 239000012948 isocyanate Substances 0.000 description 6
- 230000009257 reactivity Effects 0.000 description 6
- 239000007787 solid Substances 0.000 description 6
- 238000003786 synthesis reaction Methods 0.000 description 6
- KKEYFWRCBNTPAC-UHFFFAOYSA-L terephthalate(2-) Chemical compound [O-]C(=O)C1=CC=C(C([O-])=O)C=C1 KKEYFWRCBNTPAC-UHFFFAOYSA-L 0.000 description 6
- 239000006097 ultraviolet radiation absorber Substances 0.000 description 6
- KRKNYBCHXYNGOX-UHFFFAOYSA-K Citrate Chemical compound [O-]C(=O)CC(O)(CC([O-])=O)C([O-])=O KRKNYBCHXYNGOX-UHFFFAOYSA-K 0.000 description 5
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 5
- YSMRWXYRXBRSND-UHFFFAOYSA-N TOTP Chemical compound CC1=CC=CC=C1OP(=O)(OC=1C(=CC=CC=1)C)OC1=CC=CC=C1C YSMRWXYRXBRSND-UHFFFAOYSA-N 0.000 description 5
- 239000002981 blocking agent Substances 0.000 description 5
- 239000000470 constituent Substances 0.000 description 5
- 238000005520 cutting process Methods 0.000 description 5
- 230000006866 deterioration Effects 0.000 description 5
- 238000000113 differential scanning calorimetry Methods 0.000 description 5
- 238000001035 drying Methods 0.000 description 5
- 238000001914 filtration Methods 0.000 description 5
- 150000002513 isocyanates Chemical class 0.000 description 5
- 239000002346 layers by function Substances 0.000 description 5
- 229920005672 polyolefin resin Polymers 0.000 description 5
- 238000011144 upstream manufacturing Methods 0.000 description 5
- PUPZLCDOIYMWBV-UHFFFAOYSA-N (+/-)-1,3-Butanediol Chemical compound CC(O)CCO PUPZLCDOIYMWBV-UHFFFAOYSA-N 0.000 description 4
- QPFMBZIOSGYJDE-UHFFFAOYSA-N 1,1,2,2-tetrachloroethane Chemical compound ClC(Cl)C(Cl)Cl QPFMBZIOSGYJDE-UHFFFAOYSA-N 0.000 description 4
- IMSODMZESSGVBE-UHFFFAOYSA-N 2-Oxazoline Chemical compound C1CN=CO1 IMSODMZESSGVBE-UHFFFAOYSA-N 0.000 description 4
- FJKROLUGYXJWQN-UHFFFAOYSA-N 4-hydroxybenzoic acid Chemical compound OC(=O)C1=CC=C(O)C=C1 FJKROLUGYXJWQN-UHFFFAOYSA-N 0.000 description 4
- 239000004925 Acrylic resin Substances 0.000 description 4
- 229920000178 Acrylic resin Polymers 0.000 description 4
- HEDRZPFGACZZDS-UHFFFAOYSA-N Chloroform Chemical compound ClC(Cl)Cl HEDRZPFGACZZDS-UHFFFAOYSA-N 0.000 description 4
- 239000004593 Epoxy Chemical class 0.000 description 4
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N Phenol Chemical compound OC1=CC=CC=C1 ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 4
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 4
- 150000001732 carboxylic acid derivatives Chemical class 0.000 description 4
- 230000003197 catalytic effect Effects 0.000 description 4
- 230000000052 comparative effect Effects 0.000 description 4
- 230000003247 decreasing effect Effects 0.000 description 4
- 238000007872 degassing Methods 0.000 description 4
- 238000001938 differential scanning calorimetry curve Methods 0.000 description 4
- 125000000623 heterocyclic group Chemical group 0.000 description 4
- 230000001771 impaired effect Effects 0.000 description 4
- 230000014759 maintenance of location Effects 0.000 description 4
- 239000011259 mixed solution Substances 0.000 description 4
- 238000002156 mixing Methods 0.000 description 4
- 150000007524 organic acids Chemical class 0.000 description 4
- 239000002245 particle Substances 0.000 description 4
- 125000000843 phenylene group Chemical group C1(=C(C=CC=C1)*)* 0.000 description 4
- 230000037048 polymerization activity Effects 0.000 description 4
- 238000001556 precipitation Methods 0.000 description 4
- CYIDZMCFTVVTJO-UHFFFAOYSA-N pyromellitic acid Chemical compound OC(=O)C1=CC(C(O)=O)=C(C(O)=O)C=C1C(O)=O CYIDZMCFTVVTJO-UHFFFAOYSA-N 0.000 description 4
- YGSDEFSMJLZEOE-UHFFFAOYSA-N salicylic acid Chemical compound OC(=O)C1=CC=CC=C1O YGSDEFSMJLZEOE-UHFFFAOYSA-N 0.000 description 4
- 238000007789 sealing Methods 0.000 description 4
- 239000004094 surface-active agent Substances 0.000 description 4
- WVLBCYQITXONBZ-UHFFFAOYSA-N trimethyl phosphate Chemical compound COP(=O)(OC)OC WVLBCYQITXONBZ-UHFFFAOYSA-N 0.000 description 4
- DNIAPMSPPWPWGF-GSVOUGTGSA-N (R)-(-)-Propylene glycol Chemical compound C[C@@H](O)CO DNIAPMSPPWPWGF-GSVOUGTGSA-N 0.000 description 3
- KWKAKUADMBZCLK-UHFFFAOYSA-N 1-octene Chemical group CCCCCCC=C KWKAKUADMBZCLK-UHFFFAOYSA-N 0.000 description 3
- 125000003504 2-oxazolinyl group Chemical group O1C(=NCC1)* 0.000 description 3
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 3
- 239000004721 Polyphenylene oxide Substances 0.000 description 3
- 229910000831 Steel Inorganic materials 0.000 description 3
- ORLQHILJRHBSAY-UHFFFAOYSA-N [1-(hydroxymethyl)cyclohexyl]methanol Chemical compound OCC1(CO)CCCCC1 ORLQHILJRHBSAY-UHFFFAOYSA-N 0.000 description 3
- 238000010521 absorption reaction Methods 0.000 description 3
- 150000007933 aliphatic carboxylic acids Chemical class 0.000 description 3
- 125000005907 alkyl ester group Chemical group 0.000 description 3
- QRUDEWIWKLJBPS-UHFFFAOYSA-N benzotriazole Chemical compound C1=CC=C2N[N][N]C2=C1 QRUDEWIWKLJBPS-UHFFFAOYSA-N 0.000 description 3
- 239000012964 benzotriazole Substances 0.000 description 3
- 230000015556 catabolic process Effects 0.000 description 3
- 150000001869 cobalt compounds Chemical class 0.000 description 3
- 230000007797 corrosion Effects 0.000 description 3
- 238000005260 corrosion Methods 0.000 description 3
- 125000004976 cyclobutylene group Chemical group 0.000 description 3
- 125000004977 cycloheptylene group Chemical group 0.000 description 3
- 125000004956 cyclohexylene group Chemical group 0.000 description 3
- 125000004978 cyclooctylene group Chemical group 0.000 description 3
- 125000004979 cyclopentylene group Chemical group 0.000 description 3
- 125000004980 cyclopropylene group Chemical group 0.000 description 3
- 238000006731 degradation reaction Methods 0.000 description 3
- 125000000816 ethylene group Chemical group [H]C([H])([*:1])C([H])([H])[*:2] 0.000 description 3
- 239000000835 fiber Substances 0.000 description 3
- 239000010419 fine particle Substances 0.000 description 3
- 125000004836 hexamethylene group Chemical group [H]C([H])([*:2])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[*:1] 0.000 description 3
- 238000005347 high resolution inductively coupled plasma mass spectrometry (HR-ICP-MS) Methods 0.000 description 3
- 238000001095 inductively coupled plasma mass spectrometry Methods 0.000 description 3
- 239000011254 layer-forming composition Substances 0.000 description 3
- 125000003327 methanetetrayl group Chemical group *C(*)(*)* 0.000 description 3
- 125000001800 methanetriyl group Chemical group C(*)(*)* 0.000 description 3
- 125000001570 methylene group Chemical group [H]C([H])([*:1])[*:2] 0.000 description 3
- 238000006864 oxidative decomposition reaction Methods 0.000 description 3
- 125000004817 pentamethylene group Chemical group [H]C([H])([*:2])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[*:1] 0.000 description 3
- 230000000704 physical effect Effects 0.000 description 3
- 229920000570 polyether Polymers 0.000 description 3
- 125000004805 propylene group Chemical group [H]C([H])([H])C([H])([*:1])C([H])([H])[*:2] 0.000 description 3
- 230000001681 protective effect Effects 0.000 description 3
- 230000002441 reversible effect Effects 0.000 description 3
- 238000010008 shearing Methods 0.000 description 3
- 239000010959 steel Substances 0.000 description 3
- 125000000383 tetramethylene group Chemical group [H]C([H])([*:1])C([H])([H])C([H])([H])C([H])([H])[*:2] 0.000 description 3
- JJTUDXZGHPGLLC-QWWZWVQMSA-N (3r,6r)-3,6-dimethyl-1,4-dioxane-2,5-dione Chemical compound C[C@H]1OC(=O)[C@@H](C)OC1=O JJTUDXZGHPGLLC-QWWZWVQMSA-N 0.000 description 2
- BDNKZNFMNDZQMI-UHFFFAOYSA-N 1,3-diisopropylcarbodiimide Chemical compound CC(C)N=C=NC(C)C BDNKZNFMNDZQMI-UHFFFAOYSA-N 0.000 description 2
- RNFJDJUURJAICM-UHFFFAOYSA-N 2,2,4,4,6,6-hexaphenoxy-1,3,5-triaza-2$l^{5},4$l^{5},6$l^{5}-triphosphacyclohexa-1,3,5-triene Chemical compound N=1P(OC=2C=CC=CC=2)(OC=2C=CC=CC=2)=NP(OC=2C=CC=CC=2)(OC=2C=CC=CC=2)=NP=1(OC=1C=CC=CC=1)OC1=CC=CC=C1 RNFJDJUURJAICM-UHFFFAOYSA-N 0.000 description 2
- KKKKCPPTESQGQH-UHFFFAOYSA-N 2-(4,5-dihydro-1,3-oxazol-2-yl)-4,5-dihydro-1,3-oxazole Chemical compound O1CCN=C1C1=NCCO1 KKKKCPPTESQGQH-UHFFFAOYSA-N 0.000 description 2
- CDOWNLMZVKJRSC-UHFFFAOYSA-N 2-hydroxyterephthalic acid Chemical compound OC(=O)C1=CC=C(C(O)=O)C(O)=C1 CDOWNLMZVKJRSC-UHFFFAOYSA-N 0.000 description 2
- LLLVZDVNHNWSDS-UHFFFAOYSA-N 4-methylidene-3,5-dioxabicyclo[5.2.2]undeca-1(9),7,10-triene-2,6-dione Chemical group C1(C2=CC=C(C(=O)OC(=C)O1)C=C2)=O LLLVZDVNHNWSDS-UHFFFAOYSA-N 0.000 description 2
- 238000012935 Averaging Methods 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical group [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- 229920001651 Cyanoacrylate Polymers 0.000 description 2
- QOSSAOTZNIDXMA-UHFFFAOYSA-N Dicylcohexylcarbodiimide Chemical compound C1CCCCC1N=C=NC1CCCCC1 QOSSAOTZNIDXMA-UHFFFAOYSA-N 0.000 description 2
- KLDXJTOLSGUMSJ-JGWLITMVSA-N Isosorbide Chemical compound O[C@@H]1CO[C@@H]2[C@@H](O)CO[C@@H]21 KLDXJTOLSGUMSJ-JGWLITMVSA-N 0.000 description 2
- MWCLLHOVUTZFKS-UHFFFAOYSA-N Methyl cyanoacrylate Chemical compound COC(=O)C(=C)C#N MWCLLHOVUTZFKS-UHFFFAOYSA-N 0.000 description 2
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 2
- BELBBZDIHDAJOR-UHFFFAOYSA-N Phenolsulfonephthalein Chemical compound C1=CC(O)=CC=C1C1(C=2C=CC(O)=CC=2)C2=CC=CC=C2S(=O)(=O)O1 BELBBZDIHDAJOR-UHFFFAOYSA-N 0.000 description 2
- 150000008065 acid anhydrides Chemical class 0.000 description 2
- 230000000996 additive effect Effects 0.000 description 2
- WNLRTRBMVRJNCN-UHFFFAOYSA-N adipic acid Chemical compound OC(=O)CCCCC(O)=O WNLRTRBMVRJNCN-UHFFFAOYSA-N 0.000 description 2
- AZDRQVAHHNSJOQ-UHFFFAOYSA-N alumane Chemical class [AlH3] AZDRQVAHHNSJOQ-UHFFFAOYSA-N 0.000 description 2
- ADCOVFLJGNWWNZ-UHFFFAOYSA-N antimony trioxide Chemical compound O=[Sb]O[Sb]=O ADCOVFLJGNWWNZ-UHFFFAOYSA-N 0.000 description 2
- GCAIEATUVJFSMC-UHFFFAOYSA-N benzene-1,2,3,4-tetracarboxylic acid Chemical compound OC(=O)C1=CC=C(C(O)=O)C(C(O)=O)=C1C(O)=O GCAIEATUVJFSMC-UHFFFAOYSA-N 0.000 description 2
- QMKYBPDZANOJGF-UHFFFAOYSA-N benzene-1,3,5-tricarboxylic acid Chemical compound OC(=O)C1=CC(C(O)=O)=CC(C(O)=O)=C1 QMKYBPDZANOJGF-UHFFFAOYSA-N 0.000 description 2
- RWCCWEUUXYIKHB-UHFFFAOYSA-N benzophenone Chemical compound C=1C=CC=CC=1C(=O)C1=CC=CC=C1 RWCCWEUUXYIKHB-UHFFFAOYSA-N 0.000 description 2
- 239000012965 benzophenone Substances 0.000 description 2
- WVDDGKGOMKODPV-UHFFFAOYSA-N benzyl alcohol Substances OCC1=CC=CC=C1 WVDDGKGOMKODPV-UHFFFAOYSA-N 0.000 description 2
- IISBACLAFKSPIT-UHFFFAOYSA-N bisphenol A Chemical compound C=1C=C(O)C=CC=1C(C)(C)C1=CC=C(O)C=C1 IISBACLAFKSPIT-UHFFFAOYSA-N 0.000 description 2
- WERYXYBDKMZEQL-UHFFFAOYSA-N butane-1,4-diol Chemical compound OCCCCO WERYXYBDKMZEQL-UHFFFAOYSA-N 0.000 description 2
- 150000001735 carboxylic acids Chemical class 0.000 description 2
- 239000000919 ceramic Substances 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 239000007809 chemical reaction catalyst Substances 0.000 description 2
- 239000003086 colorant Substances 0.000 description 2
- 238000006482 condensation reaction Methods 0.000 description 2
- 239000000498 cooling water Substances 0.000 description 2
- 229920001577 copolymer Polymers 0.000 description 2
- NNBZCPXTIHJBJL-UHFFFAOYSA-N decalin Chemical compound C1CCCC2CCCCC21 NNBZCPXTIHJBJL-UHFFFAOYSA-N 0.000 description 2
- 230000007547 defect Effects 0.000 description 2
- BGRWYRAHAFMIBJ-UHFFFAOYSA-N diisopropylcarbodiimide Natural products CC(C)NC(=O)NC(C)C BGRWYRAHAFMIBJ-UHFFFAOYSA-N 0.000 description 2
- WOZVHXUHUFLZGK-UHFFFAOYSA-N dimethyl terephthalate Chemical compound COC(=O)C1=CC=C(C(=O)OC)C=C1 WOZVHXUHUFLZGK-UHFFFAOYSA-N 0.000 description 2
- 238000007599 discharging Methods 0.000 description 2
- SNRUBQQJIBEYMU-UHFFFAOYSA-N dodecane Chemical compound CCCCCCCCCCCC SNRUBQQJIBEYMU-UHFFFAOYSA-N 0.000 description 2
- 230000005611 electricity Effects 0.000 description 2
- 238000011156 evaluation Methods 0.000 description 2
- 239000003063 flame retardant Substances 0.000 description 2
- 239000013505 freshwater Substances 0.000 description 2
- 230000004927 fusion Effects 0.000 description 2
- 229910052732 germanium Inorganic materials 0.000 description 2
- GNPVGFCGXDBREM-UHFFFAOYSA-N germanium atom Chemical compound [Ge] GNPVGFCGXDBREM-UHFFFAOYSA-N 0.000 description 2
- YBMRDBCBODYGJE-UHFFFAOYSA-N germanium dioxide Chemical compound O=[Ge]=O YBMRDBCBODYGJE-UHFFFAOYSA-N 0.000 description 2
- 235000011187 glycerol Nutrition 0.000 description 2
- 125000003055 glycidyl group Chemical group C(C1CO1)* 0.000 description 2
- 230000006872 improvement Effects 0.000 description 2
- 229960002479 isosorbide Drugs 0.000 description 2
- JVTAAEKCZFNVCJ-UHFFFAOYSA-N lactic acid Chemical compound CC(O)C(O)=O JVTAAEKCZFNVCJ-UHFFFAOYSA-N 0.000 description 2
- 230000007774 longterm Effects 0.000 description 2
- 239000000314 lubricant Substances 0.000 description 2
- UEGPKNKPLBYCNK-UHFFFAOYSA-L magnesium acetate Chemical compound [Mg+2].CC([O-])=O.CC([O-])=O UEGPKNKPLBYCNK-UHFFFAOYSA-L 0.000 description 2
- 229940069446 magnesium acetate Drugs 0.000 description 2
- 239000011654 magnesium acetate Substances 0.000 description 2
- 235000011285 magnesium acetate Nutrition 0.000 description 2
- 229940097364 magnesium acetate tetrahydrate Drugs 0.000 description 2
- 159000000003 magnesium salts Chemical class 0.000 description 2
- XKPKPGCRSHFTKM-UHFFFAOYSA-L magnesium;diacetate;tetrahydrate Chemical compound O.O.O.O.[Mg+2].CC([O-])=O.CC([O-])=O XKPKPGCRSHFTKM-UHFFFAOYSA-L 0.000 description 2
- 229910052748 manganese Inorganic materials 0.000 description 2
- 239000011572 manganese Substances 0.000 description 2
- 238000000691 measurement method Methods 0.000 description 2
- YDSWCNNOKPMOTP-UHFFFAOYSA-N mellitic acid Chemical compound OC(=O)C1=C(C(O)=O)C(C(O)=O)=C(C(O)=O)C(C(O)=O)=C1C(O)=O YDSWCNNOKPMOTP-UHFFFAOYSA-N 0.000 description 2
- 239000012046 mixed solvent Substances 0.000 description 2
- 239000012299 nitrogen atmosphere Substances 0.000 description 2
- BDJRBEYXGGNYIS-UHFFFAOYSA-N nonanedioic acid Chemical compound OC(=O)CCCCCCCC(O)=O BDJRBEYXGGNYIS-UHFFFAOYSA-N 0.000 description 2
- 239000002736 nonionic surfactant Substances 0.000 description 2
- 239000002667 nucleating agent Substances 0.000 description 2
- 230000002093 peripheral effect Effects 0.000 description 2
- WVDDGKGOMKODPV-ZQBYOMGUSA-N phenyl(114C)methanol Chemical compound O[14CH2]C1=CC=CC=C1 WVDDGKGOMKODPV-ZQBYOMGUSA-N 0.000 description 2
- 150000003013 phosphoric acid derivatives Chemical class 0.000 description 2
- XNGIFLGASWRNHJ-UHFFFAOYSA-N phthalic acid Chemical compound OC(=O)C1=CC=CC=C1C(O)=O XNGIFLGASWRNHJ-UHFFFAOYSA-N 0.000 description 2
- 239000000049 pigment Substances 0.000 description 2
- WLJVNTCWHIRURA-UHFFFAOYSA-N pimelic acid Chemical compound OC(=O)CCCCCC(O)=O WLJVNTCWHIRURA-UHFFFAOYSA-N 0.000 description 2
- 229920005749 polyurethane resin Polymers 0.000 description 2
- 238000010926 purge Methods 0.000 description 2
- WQGWDDDVZFFDIG-UHFFFAOYSA-N pyrogallol Chemical compound OC1=CC=CC(O)=C1O WQGWDDDVZFFDIG-UHFFFAOYSA-N 0.000 description 2
- 239000010453 quartz Substances 0.000 description 2
- 230000005855 radiation Effects 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- 229960004889 salicylic acid Drugs 0.000 description 2
- CXMXRPHRNRROMY-UHFFFAOYSA-N sebacic acid Chemical compound OC(=O)CCCCCCCCC(O)=O CXMXRPHRNRROMY-UHFFFAOYSA-N 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- 239000002002 slurry Substances 0.000 description 2
- 238000007711 solidification Methods 0.000 description 2
- 230000008023 solidification Effects 0.000 description 2
- 239000003381 stabilizer Substances 0.000 description 2
- 239000012086 standard solution Substances 0.000 description 2
- TYFQFVWCELRYAO-UHFFFAOYSA-N suberic acid Chemical compound OC(=O)CCCCCCC(O)=O TYFQFVWCELRYAO-UHFFFAOYSA-N 0.000 description 2
- 239000000758 substrate Substances 0.000 description 2
- 238000001308 synthesis method Methods 0.000 description 2
- 230000002194 synthesizing effect Effects 0.000 description 2
- XJDNKRIXUMDJCW-UHFFFAOYSA-J titanium tetrachloride Chemical compound Cl[Ti](Cl)(Cl)Cl XJDNKRIXUMDJCW-UHFFFAOYSA-J 0.000 description 2
- 238000012546 transfer Methods 0.000 description 2
- DQWPFSLDHJDLRL-UHFFFAOYSA-N triethyl phosphate Chemical compound CCOP(=O)(OCC)OCC DQWPFSLDHJDLRL-UHFFFAOYSA-N 0.000 description 2
- ZIBGPFATKBEMQZ-UHFFFAOYSA-N triethylene glycol Chemical compound OCCOCCOCCO ZIBGPFATKBEMQZ-UHFFFAOYSA-N 0.000 description 2
- 239000011800 void material Substances 0.000 description 2
- 238000004383 yellowing Methods 0.000 description 2
- 239000011701 zinc Substances 0.000 description 2
- 229910052725 zinc Inorganic materials 0.000 description 2
- 229910052726 zirconium Inorganic materials 0.000 description 2
- DNIAPMSPPWPWGF-VKHMYHEASA-N (+)-propylene glycol Chemical compound C[C@H](O)CO DNIAPMSPPWPWGF-VKHMYHEASA-N 0.000 description 1
- IQVLXQGNLCPZCL-UHFFFAOYSA-N (2,5-dioxopyrrolidin-1-yl) 2,6-bis[(2-methylpropan-2-yl)oxycarbonylamino]hexanoate Chemical compound CC(C)(C)OC(=O)NCCCCC(NC(=O)OC(C)(C)C)C(=O)ON1C(=O)CCC1=O IQVLXQGNLCPZCL-UHFFFAOYSA-N 0.000 description 1
- GGAUUQHSCNMCAU-ZXZARUISSA-N (2s,3r)-butane-1,2,3,4-tetracarboxylic acid Chemical compound OC(=O)C[C@H](C(O)=O)[C@H](C(O)=O)CC(O)=O GGAUUQHSCNMCAU-ZXZARUISSA-N 0.000 description 1
- VNFXPOAMRORRJJ-UHFFFAOYSA-N (4-octylphenyl) 2-hydroxybenzoate Chemical compound C1=CC(CCCCCCCC)=CC=C1OC(=O)C1=CC=CC=C1O VNFXPOAMRORRJJ-UHFFFAOYSA-N 0.000 description 1
- BJEPYKJPYRNKOW-REOHCLBHSA-N (S)-malic acid Chemical compound OC(=O)[C@@H](O)CC(O)=O BJEPYKJPYRNKOW-REOHCLBHSA-N 0.000 description 1
- RYSXWUYLAWPLES-MTOQALJVSA-N (Z)-4-hydroxypent-3-en-2-one titanium Chemical compound [Ti].C\C(O)=C\C(C)=O.C\C(O)=C\C(C)=O.C\C(O)=C\C(C)=O.C\C(O)=C\C(C)=O RYSXWUYLAWPLES-MTOQALJVSA-N 0.000 description 1
- CEGRHPCDLKAHJD-UHFFFAOYSA-N 1,1,1-propanetricarboxylic acid Chemical compound CCC(C(O)=O)(C(O)=O)C(O)=O CEGRHPCDLKAHJD-UHFFFAOYSA-N 0.000 description 1
- JYEUMXHLPRZUAT-UHFFFAOYSA-N 1,2,3-triazine Chemical compound C1=CN=NN=C1 JYEUMXHLPRZUAT-UHFFFAOYSA-N 0.000 description 1
- FYADHXFMURLYQI-UHFFFAOYSA-N 1,2,4-triazine Chemical compound C1=CN=NC=N1 FYADHXFMURLYQI-UHFFFAOYSA-N 0.000 description 1
- VUMCUSHVMYIRMB-UHFFFAOYSA-N 1,3,5-tri(propan-2-yl)benzene Chemical compound CC(C)C1=CC(C(C)C)=CC(C(C)C)=C1 VUMCUSHVMYIRMB-UHFFFAOYSA-N 0.000 description 1
- YPFDHNVEDLHUCE-UHFFFAOYSA-N 1,3-propanediol Substances OCCCO YPFDHNVEDLHUCE-UHFFFAOYSA-N 0.000 description 1
- UYLNEXRLQPVSOZ-UHFFFAOYSA-N 1-[3-(hydroxymethyl)-2,2,5,5-tetramethylpyrrol-1-yl]ethanone Chemical compound CC(=O)N1C(C)(C)C=C(CO)C1(C)C UYLNEXRLQPVSOZ-UHFFFAOYSA-N 0.000 description 1
- VRJRCVKEUQCCCN-UHFFFAOYSA-N 1-isocyanato-2,3-di(propan-2-yl)benzene Chemical compound CC(C)C1=CC=CC(N=C=O)=C1C(C)C VRJRCVKEUQCCCN-UHFFFAOYSA-N 0.000 description 1
- RTBFRGCFXZNCOE-UHFFFAOYSA-N 1-methylsulfonylpiperidin-4-one Chemical compound CS(=O)(=O)N1CCC(=O)CC1 RTBFRGCFXZNCOE-UHFFFAOYSA-N 0.000 description 1
- PVQMWZDAOPIATO-UHFFFAOYSA-N 2,3,5-trihydroxyterephthalic acid Chemical compound OC(=O)C1=CC(O)=C(C(O)=O)C(O)=C1O PVQMWZDAOPIATO-UHFFFAOYSA-N 0.000 description 1
- OHLSHRJUBRUKAN-UHFFFAOYSA-N 2,3-dihydroxyterephthalic acid Chemical compound OC(=O)C1=CC=C(C(O)=O)C(O)=C1O OHLSHRJUBRUKAN-UHFFFAOYSA-N 0.000 description 1
- ZXDDPOHVAMWLBH-UHFFFAOYSA-N 2,4-Dihydroxybenzophenone Chemical compound OC1=CC(O)=CC=C1C(=O)C1=CC=CC=C1 ZXDDPOHVAMWLBH-UHFFFAOYSA-N 0.000 description 1
- LEVFXWNQQSSNAC-UHFFFAOYSA-N 2-(4,6-diphenyl-1,3,5-triazin-2-yl)-5-hexoxyphenol Chemical compound OC1=CC(OCCCCCC)=CC=C1C1=NC(C=2C=CC=CC=2)=NC(C=2C=CC=CC=2)=N1 LEVFXWNQQSSNAC-UHFFFAOYSA-N 0.000 description 1
- VHOJALQDYQKSMT-UHFFFAOYSA-N 2-(4-carboxyphenyl)-9H-fluorene-1-carboxylic acid Chemical compound C(=O)(O)C1=CC=C(C=C1)C1=C(C=2CC3=CC=CC=C3C=2C=C1)C(=O)O VHOJALQDYQKSMT-UHFFFAOYSA-N 0.000 description 1
- YEVQZPWSVWZAOB-UHFFFAOYSA-N 2-(bromomethyl)-1-iodo-4-(trifluoromethyl)benzene Chemical compound FC(F)(F)C1=CC=C(I)C(CBr)=C1 YEVQZPWSVWZAOB-UHFFFAOYSA-N 0.000 description 1
- KMJHEUHUGMDAIY-UHFFFAOYSA-N 2-[10-(4,5-dihydro-1,3-oxazol-2-yl)decyl]-4,5-dihydro-1,3-oxazole Chemical compound N=1CCOC=1CCCCCCCCCCC1=NCCO1 KMJHEUHUGMDAIY-UHFFFAOYSA-N 0.000 description 1
- KFNAHVKJFHDCSK-UHFFFAOYSA-N 2-[2-(4,5-dihydro-1,3-oxazol-2-yl)ethyl]-4,5-dihydro-1,3-oxazole Chemical compound N=1CCOC=1CCC1=NCCO1 KFNAHVKJFHDCSK-UHFFFAOYSA-N 0.000 description 1
- VOGDKZZTBPDRBD-UHFFFAOYSA-N 2-[2-(4,5-dihydro-1,3-oxazol-2-yl)phenyl]-4,5-dihydro-1,3-oxazole Chemical compound O1CCN=C1C1=CC=CC=C1C1=NCCO1 VOGDKZZTBPDRBD-UHFFFAOYSA-N 0.000 description 1
- MUBZACKCHQIRSY-UHFFFAOYSA-N 2-[3-(4,4-Dimethyl-5H-1,3-oxazol-2-yl)phenyl]-4,4-dimethyl-5H-1,3-oxazole Chemical compound CC1(C)COC(C=2C=C(C=CC=2)C=2OCC(C)(C)N=2)=N1 MUBZACKCHQIRSY-UHFFFAOYSA-N 0.000 description 1
- HMOZDINWBHMBSQ-UHFFFAOYSA-N 2-[3-(4,5-dihydro-1,3-oxazol-2-yl)phenyl]-4,5-dihydro-1,3-oxazole Chemical compound O1CCN=C1C1=CC=CC(C=2OCCN=2)=C1 HMOZDINWBHMBSQ-UHFFFAOYSA-N 0.000 description 1
- UMWUESWLHCAWKP-UHFFFAOYSA-N 2-[4-(4,4-dimethyl-5h-1,3-oxazol-2-yl)butyl]-4,4-dimethyl-5h-1,3-oxazole Chemical compound CC1(C)COC(CCCCC=2OCC(C)(C)N=2)=N1 UMWUESWLHCAWKP-UHFFFAOYSA-N 0.000 description 1
- GATDZUUWVARTOQ-UHFFFAOYSA-N 2-[4-(4,4-dimethyl-5h-1,3-oxazol-2-yl)phenyl]-4,4-dimethyl-5h-1,3-oxazole Chemical compound CC1(C)COC(C=2C=CC(=CC=2)C=2OCC(C)(C)N=2)=N1 GATDZUUWVARTOQ-UHFFFAOYSA-N 0.000 description 1
- GZQKJQLFIGBEIE-UHFFFAOYSA-N 2-[4-(4,5-dihydro-1,3-oxazol-2-yl)butyl]-4,5-dihydro-1,3-oxazole Chemical compound N=1CCOC=1CCCCC1=NCCO1 GZQKJQLFIGBEIE-UHFFFAOYSA-N 0.000 description 1
- ZDNUPMSZKVCETJ-UHFFFAOYSA-N 2-[4-(4,5-dihydro-1,3-oxazol-2-yl)phenyl]-4,5-dihydro-1,3-oxazole Chemical compound O1CCN=C1C1=CC=C(C=2OCCN=2)C=C1 ZDNUPMSZKVCETJ-UHFFFAOYSA-N 0.000 description 1
- LDXQWLJXDIZULP-UHFFFAOYSA-N 2-[6-(4,5-dihydro-1,3-oxazol-2-yl)hexyl]-4,5-dihydro-1,3-oxazole Chemical compound N=1CCOC=1CCCCCCC1=NCCO1 LDXQWLJXDIZULP-UHFFFAOYSA-N 0.000 description 1
- MPPNPBNSYXFIBF-UHFFFAOYSA-N 2-[8-(4,5-dihydro-1,3-oxazol-2-yl)octyl]-4,5-dihydro-1,3-oxazole Chemical compound N=1CCOC=1CCCCCCCCC1=NCCO1 MPPNPBNSYXFIBF-UHFFFAOYSA-N 0.000 description 1
- WVDGHGISNBRCAO-UHFFFAOYSA-N 2-hydroxyisophthalic acid Chemical compound OC(=O)C1=CC=CC(C(O)=O)=C1O WVDGHGISNBRCAO-UHFFFAOYSA-N 0.000 description 1
- RKFNMGWLDGIONW-UHFFFAOYSA-N 3,4,5-trihydroxychromen-2-one Chemical compound O1C(=O)C(O)=C(O)C2=C1C=CC=C2O RKFNMGWLDGIONW-UHFFFAOYSA-N 0.000 description 1
- QLHSZVGLSUHUOI-UHFFFAOYSA-N 3,5,6-trihydroxy-2-phenylchromen-4-one Chemical compound OC=1C(=O)C2=C(O)C(O)=CC=C2OC=1C1=CC=CC=C1 QLHSZVGLSUHUOI-UHFFFAOYSA-N 0.000 description 1
- MFJDFPRQTMQVHI-UHFFFAOYSA-N 3,5-dioxabicyclo[5.2.2]undeca-1(9),7,10-triene-2,6-dione Chemical compound O=C1OCOC(=O)C2=CC=C1C=C2 MFJDFPRQTMQVHI-UHFFFAOYSA-N 0.000 description 1
- KOAMXHRRVFDWRQ-UHFFFAOYSA-N 4,4-dimethyl-5h-1,3-oxazole Chemical compound CC1(C)COC=N1 KOAMXHRRVFDWRQ-UHFFFAOYSA-N 0.000 description 1
- UITKHKNFVCYWNG-UHFFFAOYSA-N 4-(3,4-dicarboxybenzoyl)phthalic acid Chemical compound C1=C(C(O)=O)C(C(=O)O)=CC=C1C(=O)C1=CC=C(C(O)=O)C(C(O)=O)=C1 UITKHKNFVCYWNG-UHFFFAOYSA-N 0.000 description 1
- NEQFBGHQPUXOFH-UHFFFAOYSA-N 4-(4-carboxyphenyl)benzoic acid Chemical compound C1=CC(C(=O)O)=CC=C1C1=CC=C(C(O)=O)C=C1 NEQFBGHQPUXOFH-UHFFFAOYSA-N 0.000 description 1
- RWGLROKEYRSHME-UHFFFAOYSA-N 4-benzyl-4,5-dihydro-1,3-oxazole Chemical compound C=1C=CC=CC=1CC1COC=N1 RWGLROKEYRSHME-UHFFFAOYSA-N 0.000 description 1
- VITTZDWCUGTYIB-UHFFFAOYSA-N 4-butyl-4,5-dihydro-1,3-oxazole Chemical compound CCCCC1COC=N1 VITTZDWCUGTYIB-UHFFFAOYSA-N 0.000 description 1
- CJFNLGVLNYZLEA-UHFFFAOYSA-N 4-cyclohexyl-4,5-dihydro-1,3-oxazole Chemical compound C1OC=NC1C1CCCCC1 CJFNLGVLNYZLEA-UHFFFAOYSA-N 0.000 description 1
- RWMKXFCUXJWKBU-UHFFFAOYSA-N 4-ethyl-4,5-dihydro-1,3-oxazole Chemical compound CCC1COC=N1 RWMKXFCUXJWKBU-UHFFFAOYSA-N 0.000 description 1
- YTDWINDMGUQTBS-UHFFFAOYSA-N 4-hexyl-4,5-dihydro-1,3-oxazole Chemical compound CCCCCCC1COC=N1 YTDWINDMGUQTBS-UHFFFAOYSA-N 0.000 description 1
- WSGMRMBWRVIQRG-UHFFFAOYSA-N 4-methyl-2-[2-(4-methyl-4,5-dihydro-1,3-oxazol-2-yl)ethyl]-4,5-dihydro-1,3-oxazole Chemical compound CC1COC(CCC=2OCC(C)N=2)=N1 WSGMRMBWRVIQRG-UHFFFAOYSA-N 0.000 description 1
- RSCVPGQKACSLBP-UHFFFAOYSA-N 4-methyl-2-[3-(4-methyl-4,5-dihydro-1,3-oxazol-2-yl)phenyl]-4,5-dihydro-1,3-oxazole Chemical compound CC1COC(C=2C=C(C=CC=2)C=2OCC(C)N=2)=N1 RSCVPGQKACSLBP-UHFFFAOYSA-N 0.000 description 1
- FYQUELMPDYVBFY-UHFFFAOYSA-N 4-methyl-2-[4-(4-methyl-4,5-dihydro-1,3-oxazol-2-yl)phenyl]-4,5-dihydro-1,3-oxazole Chemical compound CC1COC(C=2C=CC(=CC=2)C=2OCC(C)N=2)=N1 FYQUELMPDYVBFY-UHFFFAOYSA-N 0.000 description 1
- IFIUFEBEPGGBIJ-UHFFFAOYSA-N 4-methyl-4,5-dihydro-1,3-oxazole Chemical compound CC1COC=N1 IFIUFEBEPGGBIJ-UHFFFAOYSA-N 0.000 description 1
- DBTPMQIQJZFVAB-UHFFFAOYSA-N 4-phenyl-4,5-dihydro-1,3-oxazole Chemical compound C1OC=NC1C1=CC=CC=C1 DBTPMQIQJZFVAB-UHFFFAOYSA-N 0.000 description 1
- HLIYUPUYSLFMEB-UHFFFAOYSA-N 4-propyl-4,5-dihydro-1,3-oxazole Chemical compound CCCC1COC=N1 HLIYUPUYSLFMEB-UHFFFAOYSA-N 0.000 description 1
- YWFPGFJLYRKYJZ-UHFFFAOYSA-N 9,9-bis(4-hydroxyphenyl)fluorene Chemical compound C1=CC(O)=CC=C1C1(C=2C=CC(O)=CC=2)C2=CC=CC=C2C2=CC=CC=C21 YWFPGFJLYRKYJZ-UHFFFAOYSA-N 0.000 description 1
- JBRZTFJDHDCESZ-UHFFFAOYSA-N AsGa Chemical compound [As]#[Ga] JBRZTFJDHDCESZ-UHFFFAOYSA-N 0.000 description 1
- 229920002799 BoPET Polymers 0.000 description 1
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 description 1
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 1
- 239000004971 Cross linker Substances 0.000 description 1
- XDTMQSROBMDMFD-UHFFFAOYSA-N Cyclohexane Chemical compound C1CCCCC1 XDTMQSROBMDMFD-UHFFFAOYSA-N 0.000 description 1
- JYFHYPJRHGVZDY-UHFFFAOYSA-N Dibutyl phosphate Chemical compound CCCCOP(O)(=O)OCCCC JYFHYPJRHGVZDY-UHFFFAOYSA-N 0.000 description 1
- JJOJFIHJIRWASH-UHFFFAOYSA-N Eicosanedioic acid Natural products OC(=O)CCCCCCCCCCCCCCCCCCC(O)=O JJOJFIHJIRWASH-UHFFFAOYSA-N 0.000 description 1
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 1
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 description 1
- 239000005977 Ethylene Substances 0.000 description 1
- VWYIWOYBERNXLX-KTKRTIGZSA-N Glycidyl oleate Chemical compound CCCCCCCC\C=C/CCCCCCCC(=O)OCC1CO1 VWYIWOYBERNXLX-KTKRTIGZSA-N 0.000 description 1
- 239000005058 Isophorone diisocyanate Substances 0.000 description 1
- 229920000877 Melamine resin Polymers 0.000 description 1
- 241000555745 Sciuridae Species 0.000 description 1
- KDYFGRWQOYBRFD-UHFFFAOYSA-N Succinic acid Natural products OC(=O)CCC(O)=O KDYFGRWQOYBRFD-UHFFFAOYSA-N 0.000 description 1
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 1
- ZJCCRDAZUWHFQH-UHFFFAOYSA-N Trimethylolpropane Chemical compound CCC(CO)(CO)CO ZJCCRDAZUWHFQH-UHFFFAOYSA-N 0.000 description 1
- QCWXUUIWCKQGHC-UHFFFAOYSA-N Zirconium Chemical compound [Zr] QCWXUUIWCKQGHC-UHFFFAOYSA-N 0.000 description 1
- YWMLORGQOFONNT-UHFFFAOYSA-N [3-(hydroxymethyl)phenyl]methanol Chemical compound OCC1=CC=CC(CO)=C1 YWMLORGQOFONNT-UHFFFAOYSA-N 0.000 description 1
- BWVAOONFBYYRHY-UHFFFAOYSA-N [4-(hydroxymethyl)phenyl]methanol Chemical compound OCC1=CC=C(CO)C=C1 BWVAOONFBYYRHY-UHFFFAOYSA-N 0.000 description 1
- DCBNMBIOGUANTC-UHFFFAOYSA-N [5-[(5-benzoyl-4-hydroxy-2-methoxyphenyl)methyl]-2-hydroxy-4-methoxyphenyl]-phenylmethanone Chemical compound COC1=CC(O)=C(C(=O)C=2C=CC=CC=2)C=C1CC(C(=CC=1O)OC)=CC=1C(=O)C1=CC=CC=C1 DCBNMBIOGUANTC-UHFFFAOYSA-N 0.000 description 1
- UGACIEPFGXRWCH-UHFFFAOYSA-N [Si].[Ti] Chemical compound [Si].[Ti] UGACIEPFGXRWCH-UHFFFAOYSA-N 0.000 description 1
- 230000001133 acceleration Effects 0.000 description 1
- INNSZZHSFSFSGS-UHFFFAOYSA-N acetic acid;titanium Chemical compound [Ti].CC(O)=O.CC(O)=O.CC(O)=O.CC(O)=O INNSZZHSFSFSGS-UHFFFAOYSA-N 0.000 description 1
- 125000005396 acrylic acid ester group Chemical group 0.000 description 1
- 230000004913 activation Effects 0.000 description 1
- JISINGGEJRZDCJ-UHFFFAOYSA-N adamantane-1,2,2,3,4,4-hexacarboxylic acid Chemical compound C1C(C2)CC3CC1(C(=O)O)C(C(O)=O)(C(O)=O)C2(C(O)=O)C3(C(O)=O)C(O)=O JISINGGEJRZDCJ-UHFFFAOYSA-N 0.000 description 1
- JXRZUHPTUFAFSQ-UHFFFAOYSA-N adamantane-1,2,2,3,4-pentacarboxylic acid Chemical compound C1C(C2)CC3(C(O)=O)CC1C(C(=O)O)C2(C(O)=O)C3(C(O)=O)C(O)=O JXRZUHPTUFAFSQ-UHFFFAOYSA-N 0.000 description 1
- LBVBDLCCWCJXFA-UHFFFAOYSA-N adamantane-1,2-dicarboxylic acid Chemical compound C1C(C2)CC3CC1C(C(=O)O)C2(C(O)=O)C3 LBVBDLCCWCJXFA-UHFFFAOYSA-N 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 239000012790 adhesive layer Substances 0.000 description 1
- 239000001361 adipic acid Substances 0.000 description 1
- 235000011037 adipic acid Nutrition 0.000 description 1
- 239000003570 air Substances 0.000 description 1
- 150000001339 alkali metal compounds Chemical class 0.000 description 1
- 150000001341 alkaline earth metal compounds Chemical class 0.000 description 1
- 150000004703 alkoxides Chemical class 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- BJEPYKJPYRNKOW-UHFFFAOYSA-N alpha-hydroxysuccinic acid Natural products OC(=O)C(O)CC(O)=O BJEPYKJPYRNKOW-UHFFFAOYSA-N 0.000 description 1
- VSCWAEJMTAWNJL-UHFFFAOYSA-K aluminum chloride Substances Cl[Al](Cl)Cl VSCWAEJMTAWNJL-UHFFFAOYSA-K 0.000 description 1
- 150000001412 amines Chemical class 0.000 description 1
- 229910021417 amorphous silicon Inorganic materials 0.000 description 1
- JFCQEDHGNNZCLN-UHFFFAOYSA-N anhydrous glutaric acid Natural products OC(=O)CCCC(O)=O JFCQEDHGNNZCLN-UHFFFAOYSA-N 0.000 description 1
- 125000000129 anionic group Chemical group 0.000 description 1
- 239000003945 anionic surfactant Substances 0.000 description 1
- MLVUJAOMAFIVBM-UHFFFAOYSA-N anthracene-1,2,3,4,5,10-hexacarboxylic acid Chemical compound OC(=O)C1=C(C(O)=O)C(C(O)=O)=C2C(C(O)=O)=C3C(C(=O)O)=CC=CC3=CC2=C1C(O)=O MLVUJAOMAFIVBM-UHFFFAOYSA-N 0.000 description 1
- STTZXRSDHVPZRO-UHFFFAOYSA-N anthracene-1,2,3,4,5,6,10-heptacarboxylic acid Chemical compound OC(=O)C1=C(C(O)=O)C(C(O)=O)=C(C(O)=O)C2=C(C(O)=O)C3=C(C(O)=O)C(C(=O)O)=CC=C3C=C21 STTZXRSDHVPZRO-UHFFFAOYSA-N 0.000 description 1
- YUZBGMHFHKMDLM-UHFFFAOYSA-N anthracene-1,2,3,4,5,6,7,10-octacarboxylic acid Chemical compound OC(=O)C1=C(C(O)=O)C(C(O)=O)=C2C(C(O)=O)=C(C(C(O)=O)=C(C(C(=O)O)=C3)C(O)=O)C3=CC2=C1C(O)=O YUZBGMHFHKMDLM-UHFFFAOYSA-N 0.000 description 1
- VBSLSHMYAWTHQM-UHFFFAOYSA-N anthracene-1,2,3,4,9-pentacarboxylic acid Chemical class C1=CC=CC2=CC3=C(C(O)=O)C(C(=O)O)=C(C(O)=O)C(C(O)=O)=C3C(C(O)=O)=C21 VBSLSHMYAWTHQM-UHFFFAOYSA-N 0.000 description 1
- RSHYBLDYLNAJJV-UHFFFAOYSA-N anthracene-1,2,3,4-tetracarboxylic acid Chemical compound C1=CC=CC2=CC3=C(C(O)=O)C(C(=O)O)=C(C(O)=O)C(C(O)=O)=C3C=C21 RSHYBLDYLNAJJV-UHFFFAOYSA-N 0.000 description 1
- HGMQPWXYDSTESW-UHFFFAOYSA-N anthracene-1,2,3-tricarboxylic acid Chemical compound C1=CC=C2C=C(C(C(O)=O)=C(C(C(=O)O)=C3)C(O)=O)C3=CC2=C1 HGMQPWXYDSTESW-UHFFFAOYSA-N 0.000 description 1
- SLOLMTWBBAFOKJ-UHFFFAOYSA-N anthracene-1,2,3-triol Chemical compound C1=CC=C2C=C(C(O)=C(C(O)=C3)O)C3=CC2=C1 SLOLMTWBBAFOKJ-UHFFFAOYSA-N 0.000 description 1
- FNGGVJIEWDRLFV-UHFFFAOYSA-N anthracene-1,2-dicarboxylic acid Chemical compound C1=CC=CC2=CC3=C(C(O)=O)C(C(=O)O)=CC=C3C=C21 FNGGVJIEWDRLFV-UHFFFAOYSA-N 0.000 description 1
- 229910052787 antimony Inorganic materials 0.000 description 1
- WATWJIUSRGPENY-UHFFFAOYSA-N antimony atom Chemical compound [Sb] WATWJIUSRGPENY-UHFFFAOYSA-N 0.000 description 1
- 229940058905 antimony compound for treatment of leishmaniasis and trypanosomiasis Drugs 0.000 description 1
- 150000001463 antimony compounds Chemical class 0.000 description 1
- 239000003963 antioxidant agent Substances 0.000 description 1
- 230000003078 antioxidant effect Effects 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 230000004888 barrier function Effects 0.000 description 1
- QNSOHXTZPUMONC-UHFFFAOYSA-N benzene pentacarboxylic acid Natural products OC(=O)C1=CC(C(O)=O)=C(C(O)=O)C(C(O)=O)=C1C(O)=O QNSOHXTZPUMONC-UHFFFAOYSA-N 0.000 description 1
- WPYMKLBDIGXBTP-UHFFFAOYSA-N benzoic acid Chemical compound OC(=O)C1=CC=CC=C1 WPYMKLBDIGXBTP-UHFFFAOYSA-N 0.000 description 1
- IHWUGQBRUYYZNM-UHFFFAOYSA-N bicyclo[2.2.1]hept-2-ene-3,4-dicarboxylic acid Chemical compound C1CC2(C(O)=O)C(C(=O)O)=CC1C2 IHWUGQBRUYYZNM-UHFFFAOYSA-N 0.000 description 1
- 239000011230 binding agent Substances 0.000 description 1
- 230000008033 biological extinction Effects 0.000 description 1
- WXNRYSGJLQFHBR-UHFFFAOYSA-N bis(2,4-dihydroxyphenyl)methanone Chemical compound OC1=CC(O)=CC=C1C(=O)C1=CC=C(O)C=C1O WXNRYSGJLQFHBR-UHFFFAOYSA-N 0.000 description 1
- MRDNMQDAPCZRNE-UHFFFAOYSA-N bis(oxiran-2-ylmethyl) 2-heptadecylpropanedioate Chemical compound C1OC1COC(=O)C(CCCCCCCCCCCCCCCCC)C(=O)OCC1CO1 MRDNMQDAPCZRNE-UHFFFAOYSA-N 0.000 description 1
- VKEFGOTVPWVWCH-UHFFFAOYSA-N bis(oxiran-2-ylmethyl) 2-methylbenzene-1,4-dicarboxylate Chemical compound CC1=CC(C(=O)OCC2OC2)=CC=C1C(=O)OCC1CO1 VKEFGOTVPWVWCH-UHFFFAOYSA-N 0.000 description 1
- JRPRCOLKIYRSNH-UHFFFAOYSA-N bis(oxiran-2-ylmethyl) benzene-1,2-dicarboxylate Chemical compound C=1C=CC=C(C(=O)OCC2OC2)C=1C(=O)OCC1CO1 JRPRCOLKIYRSNH-UHFFFAOYSA-N 0.000 description 1
- ZXOATMQSUNJNNG-UHFFFAOYSA-N bis(oxiran-2-ylmethyl) benzene-1,3-dicarboxylate Chemical compound C=1C=CC(C(=O)OCC2OC2)=CC=1C(=O)OCC1CO1 ZXOATMQSUNJNNG-UHFFFAOYSA-N 0.000 description 1
- NEPKLUNSRVEBIX-UHFFFAOYSA-N bis(oxiran-2-ylmethyl) benzene-1,4-dicarboxylate Chemical compound C=1C=C(C(=O)OCC2OC2)C=CC=1C(=O)OCC1CO1 NEPKLUNSRVEBIX-UHFFFAOYSA-N 0.000 description 1
- JQDCYGOHLMJDNA-UHFFFAOYSA-N bis(oxiran-2-ylmethyl) butanedioate Chemical compound C1OC1COC(=O)CCC(=O)OCC1CO1 JQDCYGOHLMJDNA-UHFFFAOYSA-N 0.000 description 1
- KTPIWUHKYIJBCR-UHFFFAOYSA-N bis(oxiran-2-ylmethyl) cyclohex-4-ene-1,2-dicarboxylate Chemical compound C1C=CCC(C(=O)OCC2OC2)C1C(=O)OCC1CO1 KTPIWUHKYIJBCR-UHFFFAOYSA-N 0.000 description 1
- UTDPRMMIFFJALK-UHFFFAOYSA-N bis(oxiran-2-ylmethyl) cyclohexane-1,1-dicarboxylate Chemical compound C1CCCCC1(C(=O)OCC1OC1)C(=O)OCC1CO1 UTDPRMMIFFJALK-UHFFFAOYSA-N 0.000 description 1
- XFUOBHWPTSIEOV-UHFFFAOYSA-N bis(oxiran-2-ylmethyl) cyclohexane-1,2-dicarboxylate Chemical compound C1CCCC(C(=O)OCC2OC2)C1C(=O)OCC1CO1 XFUOBHWPTSIEOV-UHFFFAOYSA-N 0.000 description 1
- NFVGWOSADNLNHZ-UHFFFAOYSA-N bis(oxiran-2-ylmethyl) decanedioate Chemical compound C1OC1COC(=O)CCCCCCCCC(=O)OCC1CO1 NFVGWOSADNLNHZ-UHFFFAOYSA-N 0.000 description 1
- KBWLNCUTNDKMPN-UHFFFAOYSA-N bis(oxiran-2-ylmethyl) hexanedioate Chemical compound C1OC1COC(=O)CCCCC(=O)OCC1CO1 KBWLNCUTNDKMPN-UHFFFAOYSA-N 0.000 description 1
- AUNDMQBAPCPNJA-UHFFFAOYSA-N bis(oxiran-2-ylmethyl) naphthalene-1,2-dicarboxylate Chemical compound C=1C=C2C=CC=CC2=C(C(=O)OCC2OC2)C=1C(=O)OCC1CO1 AUNDMQBAPCPNJA-UHFFFAOYSA-N 0.000 description 1
- FQUNFJULCYSSOP-UHFFFAOYSA-N bisoctrizole Chemical compound N1=C2C=CC=CC2=NN1C1=CC(C(C)(C)CC(C)(C)C)=CC(CC=2C(=C(C=C(C=2)C(C)(C)CC(C)(C)C)N2N=C3C=CC=CC3=N2)O)=C1O FQUNFJULCYSSOP-UHFFFAOYSA-N 0.000 description 1
- 238000007664 blowing Methods 0.000 description 1
- FJTUUPVRIANHEX-UHFFFAOYSA-N butan-1-ol;phosphoric acid Chemical compound CCCCO.OP(O)(O)=O FJTUUPVRIANHEX-UHFFFAOYSA-N 0.000 description 1
- 239000001273 butane Substances 0.000 description 1
- ULCATBZEAGEBAW-UHFFFAOYSA-N butane-1,1,1,2,2,3,3-heptacarboxylic acid Chemical compound OC(=O)C(C)(C(O)=O)C(C(O)=O)(C(O)=O)C(C(O)=O)(C(O)=O)C(O)=O ULCATBZEAGEBAW-UHFFFAOYSA-N 0.000 description 1
- VSPPGHYPJUBMQG-UHFFFAOYSA-N butane-1,1,1,2,2-pentacarboxylic acid Chemical compound CCC(C(O)=O)(C(O)=O)C(C(O)=O)(C(O)=O)C(O)=O VSPPGHYPJUBMQG-UHFFFAOYSA-N 0.000 description 1
- ZNFNDZCXTPWRLQ-UHFFFAOYSA-N butane-1,1,1-tricarboxylic acid Chemical compound CCCC(C(O)=O)(C(O)=O)C(O)=O ZNFNDZCXTPWRLQ-UHFFFAOYSA-N 0.000 description 1
- KDYFGRWQOYBRFD-NUQCWPJISA-N butanedioic acid Chemical compound O[14C](=O)CC[14C](O)=O KDYFGRWQOYBRFD-NUQCWPJISA-N 0.000 description 1
- QHIWVLPBUQWDMQ-UHFFFAOYSA-N butyl prop-2-enoate;methyl 2-methylprop-2-enoate;prop-2-enoic acid Chemical compound OC(=O)C=C.COC(=O)C(C)=C.CCCCOC(=O)C=C QHIWVLPBUQWDMQ-UHFFFAOYSA-N 0.000 description 1
- 210000004899 c-terminal region Anatomy 0.000 description 1
- RPPBZEBXAAZZJH-UHFFFAOYSA-N cadmium telluride Chemical compound [Te]=[Cd] RPPBZEBXAAZZJH-UHFFFAOYSA-N 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 150000004649 carbonic acid derivatives Chemical class 0.000 description 1
- 150000007942 carboxylates Chemical class 0.000 description 1
- 239000000969 carrier Substances 0.000 description 1
- 238000009750 centrifugal casting Methods 0.000 description 1
- 150000004697 chelate complex Chemical class 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 239000011651 chromium Substances 0.000 description 1
- VNTLIPZTSJSULJ-UHFFFAOYSA-N chromium molybdenum Chemical compound [Cr].[Mo] VNTLIPZTSJSULJ-UHFFFAOYSA-N 0.000 description 1
- OGSYQYXYGXIQFH-UHFFFAOYSA-N chromium molybdenum nickel Chemical compound [Cr].[Ni].[Mo] OGSYQYXYGXIQFH-UHFFFAOYSA-N 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 239000011247 coating layer Substances 0.000 description 1
- 229910017052 cobalt Inorganic materials 0.000 description 1
- 239000010941 cobalt Substances 0.000 description 1
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 1
- 239000013065 commercial product Substances 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 238000011437 continuous method Methods 0.000 description 1
- 238000007334 copolymerization reaction Methods 0.000 description 1
- UIPVMGDJUWUZEI-UHFFFAOYSA-N copper;selanylideneindium Chemical compound [Cu].[In]=[Se] UIPVMGDJUWUZEI-UHFFFAOYSA-N 0.000 description 1
- 238000003851 corona treatment Methods 0.000 description 1
- 238000004132 cross linking Methods 0.000 description 1
- WLWKIJKUDWYINL-UHFFFAOYSA-N cyclohexane-1,1,2,2,3,3-hexacarboxylic acid Chemical compound OC(=O)C1(C(O)=O)CCCC(C(O)=O)(C(O)=O)C1(C(O)=O)C(O)=O WLWKIJKUDWYINL-UHFFFAOYSA-N 0.000 description 1
- DTLWQZBOAYMHTO-UHFFFAOYSA-N cyclohexane-1,1,2,2,3-pentacarboxylic acid Chemical compound OC(=O)C1CCCC(C(O)=O)(C(O)=O)C1(C(O)=O)C(O)=O DTLWQZBOAYMHTO-UHFFFAOYSA-N 0.000 description 1
- RZIPTXDCNDIINL-UHFFFAOYSA-N cyclohexane-1,1,2,2-tetracarboxylic acid Chemical compound OC(=O)C1(C(O)=O)CCCCC1(C(O)=O)C(O)=O RZIPTXDCNDIINL-UHFFFAOYSA-N 0.000 description 1
- QYQADNCHXSEGJT-UHFFFAOYSA-N cyclohexane-1,1-dicarboxylate;hydron Chemical compound OC(=O)C1(C(O)=O)CCCCC1 QYQADNCHXSEGJT-UHFFFAOYSA-N 0.000 description 1
- KQWGXHWJMSMDJJ-UHFFFAOYSA-N cyclohexyl isocyanate Chemical compound O=C=NC1CCCCC1 KQWGXHWJMSMDJJ-UHFFFAOYSA-N 0.000 description 1
- STZIXLPVKZUAMV-UHFFFAOYSA-N cyclopentane-1,1,2,2-tetracarboxylic acid Chemical compound OC(=O)C1(C(O)=O)CCCC1(C(O)=O)C(O)=O STZIXLPVKZUAMV-UHFFFAOYSA-N 0.000 description 1
- 239000007857 degradation product Substances 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 150000001990 dicarboxylic acid derivatives Chemical class 0.000 description 1
- 150000001991 dicarboxylic acids Chemical class 0.000 description 1
- GYZLOYUZLJXAJU-UHFFFAOYSA-N diglycidyl ether Chemical class C1OC1COCC1CO1 GYZLOYUZLJXAJU-UHFFFAOYSA-N 0.000 description 1
- 239000000539 dimer Substances 0.000 description 1
- JFHGLVIOIANSIN-UHFFFAOYSA-N dimethyl butanedioate;1-(2-hydroxyethyl)-2,2,6,6-tetramethylpiperidin-4-ol Chemical compound COC(=O)CCC(=O)OC.CC1(C)CC(O)CC(C)(C)N1CCO JFHGLVIOIANSIN-UHFFFAOYSA-N 0.000 description 1
- 229910001873 dinitrogen Inorganic materials 0.000 description 1
- HTDKEJXHILZNPP-UHFFFAOYSA-N dioctyl hydrogen phosphate Chemical compound CCCCCCCCOP(O)(=O)OCCCCCCCC HTDKEJXHILZNPP-UHFFFAOYSA-N 0.000 description 1
- USIUVYZYUHIAEV-UHFFFAOYSA-N diphenyl ether Chemical compound C=1C=CC=CC=1OC1=CC=CC=C1 USIUVYZYUHIAEV-UHFFFAOYSA-N 0.000 description 1
- NJLLQSBAHIKGKF-UHFFFAOYSA-N dipotassium dioxido(oxo)titanium Chemical compound [K+].[K+].[O-][Ti]([O-])=O NJLLQSBAHIKGKF-UHFFFAOYSA-N 0.000 description 1
- IRXRGVFLQOSHOH-UHFFFAOYSA-L dipotassium;oxalate Chemical compound [K+].[K+].[O-]C(=O)C([O-])=O IRXRGVFLQOSHOH-UHFFFAOYSA-L 0.000 description 1
- 238000004821 distillation Methods 0.000 description 1
- WZCNWCLFWMINNF-UHFFFAOYSA-N dodecane-2,3-dione Chemical compound CCCCCCCCCC(=O)C(C)=O WZCNWCLFWMINNF-UHFFFAOYSA-N 0.000 description 1
- MCPKSFINULVDNX-UHFFFAOYSA-N drometrizole Chemical compound CC1=CC=C(O)C(N2N=C3C=CC=CC3=N2)=C1 MCPKSFINULVDNX-UHFFFAOYSA-N 0.000 description 1
- BXKDSDJJOVIHMX-UHFFFAOYSA-N edrophonium chloride Chemical compound [Cl-].CC[N+](C)(C)C1=CC=CC(O)=C1 BXKDSDJJOVIHMX-UHFFFAOYSA-N 0.000 description 1
- 230000002708 enhancing effect Effects 0.000 description 1
- DIZMSOQXELWOLG-UHFFFAOYSA-N ethane-1,1,1,2,2-pentacarboxylic acid Chemical compound OC(=O)C(C(O)=O)C(C(O)=O)(C(O)=O)C(O)=O DIZMSOQXELWOLG-UHFFFAOYSA-N 0.000 description 1
- HFKBPAKZRASAGX-UHFFFAOYSA-N ethane-1,1,1,2-tetracarboxylic acid Chemical compound OC(=O)CC(C(O)=O)(C(O)=O)C(O)=O HFKBPAKZRASAGX-UHFFFAOYSA-N 0.000 description 1
- MCOFCVVDZHTYIX-UHFFFAOYSA-N ethane-1,1,1-tricarboxylic acid Chemical compound OC(=O)C(C)(C(O)=O)C(O)=O MCOFCVVDZHTYIX-UHFFFAOYSA-N 0.000 description 1
- ZYTORELQXHLDOY-UHFFFAOYSA-N ethane-1,2-diol;trimethyl phosphate Chemical compound OCCO.COP(=O)(OC)OC ZYTORELQXHLDOY-UHFFFAOYSA-N 0.000 description 1
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 description 1
- AIJZIRPGCQPZSL-UHFFFAOYSA-N ethylenetetracarboxylic acid Chemical compound OC(=O)C(C(O)=O)=C(C(O)=O)C(O)=O AIJZIRPGCQPZSL-UHFFFAOYSA-N 0.000 description 1
- UKFXDFUAPNAMPJ-UHFFFAOYSA-N ethylmalonic acid Chemical compound CCC(C(O)=O)C(O)=O UKFXDFUAPNAMPJ-UHFFFAOYSA-N 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 239000000945 filler Substances 0.000 description 1
- 238000011049 filling Methods 0.000 description 1
- 229940119177 germanium dioxide Drugs 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 150000004820 halides Chemical class 0.000 description 1
- 150000004679 hydroxides Chemical class 0.000 description 1
- WGCNASOHLSPBMP-UHFFFAOYSA-N hydroxyacetaldehyde Natural products OCC=O WGCNASOHLSPBMP-UHFFFAOYSA-N 0.000 description 1
- 229910052809 inorganic oxide Inorganic materials 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 239000011810 insulating material Substances 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- IQPQWNKOIGAROB-UHFFFAOYSA-N isocyanate group Chemical group [N-]=C=O IQPQWNKOIGAROB-UHFFFAOYSA-N 0.000 description 1
- DXDRHHKMWQZJHT-FPYGCLRLSA-N isoliquiritigenin Chemical compound C1=CC(O)=CC=C1\C=C\C(=O)C1=CC=C(O)C=C1O DXDRHHKMWQZJHT-FPYGCLRLSA-N 0.000 description 1
- NIMLQBUJDJZYEJ-UHFFFAOYSA-N isophorone diisocyanate Chemical compound CC1(C)CC(N=C=O)CC(C)(CN=C=O)C1 NIMLQBUJDJZYEJ-UHFFFAOYSA-N 0.000 description 1
- QPPQHRDVPBTVEV-UHFFFAOYSA-N isopropyl dihydrogen phosphate Chemical compound CC(C)OP(O)(O)=O QPPQHRDVPBTVEV-UHFFFAOYSA-N 0.000 description 1
- 239000004310 lactic acid Substances 0.000 description 1
- 235000014655 lactic acid Nutrition 0.000 description 1
- 150000002611 lead compounds Chemical class 0.000 description 1
- 230000031700 light absorption Effects 0.000 description 1
- 239000007791 liquid phase Substances 0.000 description 1
- 229920001684 low density polyethylene Polymers 0.000 description 1
- 239000004702 low-density polyethylene Substances 0.000 description 1
- ZLNQQNXFFQJAID-UHFFFAOYSA-L magnesium carbonate Chemical compound [Mg+2].[O-]C([O-])=O ZLNQQNXFFQJAID-UHFFFAOYSA-L 0.000 description 1
- 239000001095 magnesium carbonate Substances 0.000 description 1
- 229910000021 magnesium carbonate Inorganic materials 0.000 description 1
- VTHJTEIRLNZDEV-UHFFFAOYSA-L magnesium dihydroxide Chemical compound [OH-].[OH-].[Mg+2] VTHJTEIRLNZDEV-UHFFFAOYSA-L 0.000 description 1
- 239000000347 magnesium hydroxide Substances 0.000 description 1
- 229910001862 magnesium hydroxide Inorganic materials 0.000 description 1
- 239000000395 magnesium oxide Substances 0.000 description 1
- CPLXHLVBOLITMK-UHFFFAOYSA-N magnesium oxide Inorganic materials [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 description 1
- AXZKOIWUVFPNLO-UHFFFAOYSA-N magnesium;oxygen(2-) Chemical compound [O-2].[Mg+2] AXZKOIWUVFPNLO-UHFFFAOYSA-N 0.000 description 1
- FPYJFEHAWHCUMM-UHFFFAOYSA-N maleic anhydride Chemical compound O=C1OC(=O)C=C1 FPYJFEHAWHCUMM-UHFFFAOYSA-N 0.000 description 1
- 239000001630 malic acid Substances 0.000 description 1
- 235000011090 malic acid Nutrition 0.000 description 1
- 150000002697 manganese compounds Chemical class 0.000 description 1
- JDSHMPZPIAZGSV-UHFFFAOYSA-N melamine Chemical compound NC1=NC(N)=NC(N)=N1 JDSHMPZPIAZGSV-UHFFFAOYSA-N 0.000 description 1
- FRVOOSTVCDXSRG-UHFFFAOYSA-N methanediimine;3,5,5-trimethylcyclohex-2-en-1-one Chemical compound N=C=N.CC1=CC(=O)CC(C)(C)C1 FRVOOSTVCDXSRG-UHFFFAOYSA-N 0.000 description 1
- RKGQUTNLMXNUME-UHFFFAOYSA-N methanetricarboxylic acid Chemical compound OC(=O)C(C(O)=O)C(O)=O RKGQUTNLMXNUME-UHFFFAOYSA-N 0.000 description 1
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 1
- ZIYVHBGGAOATLY-UHFFFAOYSA-N methylmalonic acid Chemical compound OC(=O)C(C)C(O)=O ZIYVHBGGAOATLY-UHFFFAOYSA-N 0.000 description 1
- 239000003595 mist Substances 0.000 description 1
- 229910021421 monocrystalline silicon Inorganic materials 0.000 description 1
- DNIAPMSPPWPWGF-UHFFFAOYSA-N monopropylene glycol Natural products CC(O)CO DNIAPMSPPWPWGF-UHFFFAOYSA-N 0.000 description 1
- KMBWMZQYDLDUQQ-UHFFFAOYSA-N n'-[2,6-di(propan-2-yl)phenyl]methanediimine Chemical compound CC(C)C1=CC=CC(C(C)C)=C1N=C=N KMBWMZQYDLDUQQ-UHFFFAOYSA-N 0.000 description 1
- SQEHYBILZVXINP-UHFFFAOYSA-N n'-tert-butyl-n-propan-2-ylmethanediimine Chemical compound CC(C)N=C=NC(C)(C)C SQEHYBILZVXINP-UHFFFAOYSA-N 0.000 description 1
- JEQPWXGHMRFTRF-UHFFFAOYSA-N n,n'-bis(2-methylpropyl)methanediimine Chemical compound CC(C)CN=C=NCC(C)C JEQPWXGHMRFTRF-UHFFFAOYSA-N 0.000 description 1
- NASVTBDJHWPMOO-UHFFFAOYSA-N n,n'-dimethylmethanediimine Chemical compound CN=C=NC NASVTBDJHWPMOO-UHFFFAOYSA-N 0.000 description 1
- ATYQZACNIHLXIS-UHFFFAOYSA-N n,n'-dinaphthalen-2-ylmethanediimine Chemical compound C1=CC=CC2=CC(N=C=NC3=CC4=CC=CC=C4C=C3)=CC=C21 ATYQZACNIHLXIS-UHFFFAOYSA-N 0.000 description 1
- NWBVGPKHJHHPTA-UHFFFAOYSA-N n,n'-dioctylmethanediimine Chemical compound CCCCCCCCN=C=NCCCCCCCC NWBVGPKHJHHPTA-UHFFFAOYSA-N 0.000 description 1
- CMESPBFFDMPSIY-UHFFFAOYSA-N n,n'-diphenylmethanediimine Chemical compound C1=CC=CC=C1N=C=NC1=CC=CC=C1 CMESPBFFDMPSIY-UHFFFAOYSA-N 0.000 description 1
- IDVWLLCLTVBSCS-UHFFFAOYSA-N n,n'-ditert-butylmethanediimine Chemical compound CC(C)(C)N=C=NC(C)(C)C IDVWLLCLTVBSCS-UHFFFAOYSA-N 0.000 description 1
- GHHOKORHSWHMCC-UHFFFAOYSA-N naphthalene-1,2,3,4,5,6,7,8-octacarboxylic acid Chemical compound OC(=O)C1=C(C(O)=O)C(C(O)=O)=C(C(O)=O)C2=C(C(O)=O)C(C(=O)O)=C(C(O)=O)C(C(O)=O)=C21 GHHOKORHSWHMCC-UHFFFAOYSA-N 0.000 description 1
- YSMULDKSBPCDFH-UHFFFAOYSA-N naphthalene-1,2,3,4,5,6,7-heptacarboxylic acid Chemical compound OC(=O)C1=C(C(O)=O)C(C(O)=O)=C2C(C(O)=O)=C(C(O)=O)C(C(=O)O)=CC2=C1C(O)=O YSMULDKSBPCDFH-UHFFFAOYSA-N 0.000 description 1
- NMIOQQFCVOLKMH-UHFFFAOYSA-N naphthalene-1,2,3,4,5,6-hexacarboxylic acid Chemical compound OC(=O)C1=C(C(O)=O)C(C(O)=O)=C(C(O)=O)C2=C(C(O)=O)C(C(=O)O)=CC=C21 NMIOQQFCVOLKMH-UHFFFAOYSA-N 0.000 description 1
- UAKKJHRECUCKMN-UHFFFAOYSA-N naphthalene-1,2,3,4,5-pentacarboxylic acid Chemical compound OC(=O)C1=C(C(O)=O)C(C(O)=O)=C2C(C(=O)O)=CC=CC2=C1C(O)=O UAKKJHRECUCKMN-UHFFFAOYSA-N 0.000 description 1
- MZYHMUONCNKCHE-UHFFFAOYSA-N naphthalene-1,2,3,4-tetracarboxylic acid Chemical compound C1=CC=CC2=C(C(O)=O)C(C(=O)O)=C(C(O)=O)C(C(O)=O)=C21 MZYHMUONCNKCHE-UHFFFAOYSA-N 0.000 description 1
- KVQQRFDIKYXJTJ-UHFFFAOYSA-N naphthalene-1,2,3-tricarboxylic acid Chemical compound C1=CC=C2C(C(O)=O)=C(C(O)=O)C(C(=O)O)=CC2=C1 KVQQRFDIKYXJTJ-UHFFFAOYSA-N 0.000 description 1
- NCIAGQNZQHYKGR-UHFFFAOYSA-N naphthalene-1,2,3-triol Chemical compound C1=CC=C2C(O)=C(O)C(O)=CC2=C1 NCIAGQNZQHYKGR-UHFFFAOYSA-N 0.000 description 1
- ABMFBCRYHDZLRD-UHFFFAOYSA-N naphthalene-1,4-dicarboxylic acid Chemical compound C1=CC=C2C(C(=O)O)=CC=C(C(O)=O)C2=C1 ABMFBCRYHDZLRD-UHFFFAOYSA-N 0.000 description 1
- DFFZOPXDTCDZDP-UHFFFAOYSA-N naphthalene-1,5-dicarboxylic acid Chemical compound C1=CC=C2C(C(=O)O)=CC=CC2=C1C(O)=O DFFZOPXDTCDZDP-UHFFFAOYSA-N 0.000 description 1
- HRRDCWDFRIJIQZ-UHFFFAOYSA-N naphthalene-1,8-dicarboxylic acid Chemical compound C1=CC(C(O)=O)=C2C(C(=O)O)=CC=CC2=C1 HRRDCWDFRIJIQZ-UHFFFAOYSA-N 0.000 description 1
- RXOHFPCZGPKIRD-UHFFFAOYSA-N naphthalene-2,6-dicarboxylic acid Chemical compound C1=C(C(O)=O)C=CC2=CC(C(=O)O)=CC=C21 RXOHFPCZGPKIRD-UHFFFAOYSA-N 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- TXIYCNRKHPXJMW-UHFFFAOYSA-N nickel;1-octyl-2-(2-octylphenyl)sulfanylbenzene Chemical compound [Ni].CCCCCCCCC1=CC=CC=C1SC1=CC=CC=C1CCCCCCCC TXIYCNRKHPXJMW-UHFFFAOYSA-N 0.000 description 1
- 239000003921 oil Substances 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 239000012788 optical film Substances 0.000 description 1
- 238000005457 optimization Methods 0.000 description 1
- 150000003891 oxalate salts Chemical class 0.000 description 1
- BBJSDUUHGVDNKL-UHFFFAOYSA-J oxalate;titanium(4+) Chemical compound [Ti+4].[O-]C(=O)C([O-])=O.[O-]C(=O)C([O-])=O BBJSDUUHGVDNKL-UHFFFAOYSA-J 0.000 description 1
- 150000002918 oxazolines Chemical class 0.000 description 1
- LOGTZDQTPQYKEN-HZJYTTRNSA-N oxiran-2-ylmethyl (9z,12z)-octadeca-9,12-dienoate Chemical compound CCCCC\C=C/C\C=C/CCCCCCCC(=O)OCC1CO1 LOGTZDQTPQYKEN-HZJYTTRNSA-N 0.000 description 1
- XRQKARZTFMEBBY-UHFFFAOYSA-N oxiran-2-ylmethyl benzoate Chemical compound C=1C=CC=CC=1C(=O)OCC1CO1 XRQKARZTFMEBBY-UHFFFAOYSA-N 0.000 description 1
- BEJZOPYRAQVYHS-UHFFFAOYSA-N oxiran-2-ylmethyl cyclohexanecarboxylate Chemical compound C1CCCCC1C(=O)OCC1CO1 BEJZOPYRAQVYHS-UHFFFAOYSA-N 0.000 description 1
- PGXFPHPLDLNGQY-UHFFFAOYSA-N oxiran-2-ylmethyl docosanoate Chemical compound CCCCCCCCCCCCCCCCCCCCCC(=O)OCC1CO1 PGXFPHPLDLNGQY-UHFFFAOYSA-N 0.000 description 1
- PTLZMJYQEBOHHM-UHFFFAOYSA-N oxiran-2-ylmethyl dodecanoate Chemical compound CCCCCCCCCCCC(=O)OCC1CO1 PTLZMJYQEBOHHM-UHFFFAOYSA-N 0.000 description 1
- KYVUJPJYTYQNGJ-UHFFFAOYSA-N oxiran-2-ylmethyl hexadecanoate Chemical compound CCCCCCCCCCCCCCCC(=O)OCC1CO1 KYVUJPJYTYQNGJ-UHFFFAOYSA-N 0.000 description 1
- DJTYNOVDSWHTJM-UHFFFAOYSA-N oxiran-2-ylmethyl nonanoate Chemical compound CCCCCCCCC(=O)OCC1CO1 DJTYNOVDSWHTJM-UHFFFAOYSA-N 0.000 description 1
- DXGLGDHPHMLXJC-UHFFFAOYSA-N oxybenzone Chemical compound OC1=CC(OC)=CC=C1C(=O)C1=CC=CC=C1 DXGLGDHPHMLXJC-UHFFFAOYSA-N 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- LPNBBFKOUUSUDB-UHFFFAOYSA-N p-toluenecarboxylic acid Natural products CC1=CC=C(C(O)=O)C=C1 LPNBBFKOUUSUDB-UHFFFAOYSA-N 0.000 description 1
- 238000004806 packaging method and process Methods 0.000 description 1
- WXZMFSXDPGVJKK-UHFFFAOYSA-N pentaerythritol Chemical compound OCC(CO)(CO)CO WXZMFSXDPGVJKK-UHFFFAOYSA-N 0.000 description 1
- IIRQFYOJRCHRIK-UHFFFAOYSA-N pentane-1,1,1,2,2-pentacarboxylic acid Chemical compound CCCC(C(O)=O)(C(O)=O)C(C(O)=O)(C(O)=O)C(O)=O IIRQFYOJRCHRIK-UHFFFAOYSA-N 0.000 description 1
- FVDOBFPYBSDRKH-UHFFFAOYSA-N perylene-3,4,9,10-tetracarboxylic acid Chemical compound C=12C3=CC=C(C(O)=O)C2=C(C(O)=O)C=CC=1C1=CC=C(C(O)=O)C2=C1C3=CC=C2C(=O)O FVDOBFPYBSDRKH-UHFFFAOYSA-N 0.000 description 1
- 239000012071 phase Substances 0.000 description 1
- AJDJKHROQJQURF-UHFFFAOYSA-N phenanthrene-1,2-dicarboxylic acid Chemical compound C1=CC=C2C3=CC=C(C(=O)O)C(C(O)=O)=C3C=CC2=C1 AJDJKHROQJQURF-UHFFFAOYSA-N 0.000 description 1
- 150000003014 phosphoric acid esters Chemical class 0.000 description 1
- 125000004437 phosphorous atom Chemical group 0.000 description 1
- 150000003018 phosphorus compounds Chemical class 0.000 description 1
- 238000001782 photodegradation Methods 0.000 description 1
- 229920003229 poly(methyl methacrylate) Polymers 0.000 description 1
- 229910021420 polycrystalline silicon Inorganic materials 0.000 description 1
- 229920000120 polyethyl acrylate Polymers 0.000 description 1
- 230000000379 polymerizing effect Effects 0.000 description 1
- 239000004926 polymethyl methacrylate Substances 0.000 description 1
- 229920000098 polyolefin Polymers 0.000 description 1
- 229920000166 polytrimethylene carbonate Polymers 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- HKJYVRJHDIPMQB-UHFFFAOYSA-N propan-1-olate;titanium(4+) Chemical compound CCCO[Ti](OCCC)(OCCC)OCCC HKJYVRJHDIPMQB-UHFFFAOYSA-N 0.000 description 1
- 235000013772 propylene glycol Nutrition 0.000 description 1
- 238000010298 pulverizing process Methods 0.000 description 1
- 150000003254 radicals Chemical class 0.000 description 1
- 239000003507 refrigerant Substances 0.000 description 1
- 230000001846 repelling effect Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 229960001860 salicylate Drugs 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 238000010187 selection method Methods 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 238000004904 shortening Methods 0.000 description 1
- 238000007086 side reaction Methods 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 239000002210 silicon-based material Substances 0.000 description 1
- 238000004088 simulation Methods 0.000 description 1
- GROMGGTZECPEKN-UHFFFAOYSA-N sodium metatitanate Chemical compound [Na+].[Na+].[O-][Ti](=O)O[Ti](=O)O[Ti]([O-])=O GROMGGTZECPEKN-UHFFFAOYSA-N 0.000 description 1
- HZJQZHXRILHFBL-UHFFFAOYSA-L sodium oxalate titanium(4+) Chemical compound C(C(=O)[O-])(=O)[O-].[Na+].[Ti+4] HZJQZHXRILHFBL-UHFFFAOYSA-L 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 125000003003 spiro group Chemical group 0.000 description 1
- 239000007921 spray Substances 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 229910052717 sulfur Inorganic materials 0.000 description 1
- 150000003464 sulfur compounds Chemical class 0.000 description 1
- CXVGEDCSTKKODG-UHFFFAOYSA-N sulisobenzone Chemical compound C1=C(S(O)(=O)=O)C(OC)=CC(O)=C1C(=O)C1=CC=CC=C1 CXVGEDCSTKKODG-UHFFFAOYSA-N 0.000 description 1
- 230000001629 suppression Effects 0.000 description 1
- 230000002195 synergetic effect Effects 0.000 description 1
- 238000009864 tensile test Methods 0.000 description 1
- 229920001897 terpolymer Polymers 0.000 description 1
- 150000000000 tetracarboxylic acids Chemical class 0.000 description 1
- 229920002803 thermoplastic polyurethane Polymers 0.000 description 1
- 150000003608 titanium Chemical class 0.000 description 1
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 description 1
- 239000005341 toughened glass Substances 0.000 description 1
- STCOOQWBFONSKY-UHFFFAOYSA-N tributyl phosphate Chemical compound CCCCOP(=O)(OCCCC)OCCCC STCOOQWBFONSKY-UHFFFAOYSA-N 0.000 description 1
- JLEXUIVKURIPFI-UHFFFAOYSA-N tris phosphate Chemical compound OP(O)(O)=O.OCC(N)(CO)CO JLEXUIVKURIPFI-UHFFFAOYSA-N 0.000 description 1
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
- 239000010937 tungsten Substances 0.000 description 1
- 239000000326 ultraviolet stabilizing agent Substances 0.000 description 1
- 238000009834 vaporization Methods 0.000 description 1
- 230000008016 vaporization Effects 0.000 description 1
- PXXNTAGJWPJAGM-UHFFFAOYSA-N vertaline Natural products C1C2C=3C=C(OC)C(OC)=CC=3OC(C=C3)=CC=C3CCC(=O)OC1CC1N2CCCC1 PXXNTAGJWPJAGM-UHFFFAOYSA-N 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
- 238000004804 winding Methods 0.000 description 1
- 150000003752 zinc compounds Chemical class 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L31/00—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L31/04—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
- H01L31/042—PV modules or arrays of single PV cells
- H01L31/048—Encapsulation of modules
- H01L31/049—Protective back sheets
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J5/00—Manufacture of articles or shaped materials containing macromolecular substances
- C08J5/18—Manufacture of films or sheets
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29B—PREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
- B29B7/00—Mixing; Kneading
- B29B7/30—Mixing; Kneading continuous, with mechanical mixing or kneading devices
- B29B7/34—Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices
- B29B7/38—Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices rotary
- B29B7/46—Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices rotary with more than one shaft
- B29B7/48—Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices rotary with more than one shaft with intermeshing devices, e.g. screws
- B29B7/482—Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices rotary with more than one shaft with intermeshing devices, e.g. screws provided with screw parts in addition to other mixing parts, e.g. paddles, gears, discs
- B29B7/483—Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices rotary with more than one shaft with intermeshing devices, e.g. screws provided with screw parts in addition to other mixing parts, e.g. paddles, gears, discs the other mixing parts being discs perpendicular to the screw axis
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29B—PREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
- B29B7/00—Mixing; Kneading
- B29B7/30—Mixing; Kneading continuous, with mechanical mixing or kneading devices
- B29B7/34—Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices
- B29B7/38—Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices rotary
- B29B7/46—Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices rotary with more than one shaft
- B29B7/48—Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices rotary with more than one shaft with intermeshing devices, e.g. screws
- B29B7/488—Parts, e.g. casings, sealings; Accessories, e.g. flow controlling or throttling devices
- B29B7/489—Screws
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29B—PREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
- B29B7/00—Mixing; Kneading
- B29B7/30—Mixing; Kneading continuous, with mechanical mixing or kneading devices
- B29B7/58—Component parts, details or accessories; Auxiliary operations
- B29B7/72—Measuring, controlling or regulating
- B29B7/726—Measuring properties of mixture, e.g. temperature or density
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29B—PREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
- B29B7/00—Mixing; Kneading
- B29B7/80—Component parts, details or accessories; Auxiliary operations
- B29B7/82—Heating or cooling
- B29B7/823—Temperature control
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29B—PREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
- B29B7/00—Mixing; Kneading
- B29B7/80—Component parts, details or accessories; Auxiliary operations
- B29B7/82—Heating or cooling
- B29B7/826—Apparatus therefor
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29B—PREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
- B29B7/00—Mixing; Kneading
- B29B7/80—Component parts, details or accessories; Auxiliary operations
- B29B7/84—Venting or degassing ; Removing liquids, e.g. by evaporating components
- B29B7/845—Venting, degassing or removing evaporated components in devices with rotary stirrers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C48/00—Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
- B29C48/03—Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the shape of the extruded material at extrusion
- B29C48/07—Flat, e.g. panels
- B29C48/08—Flat, e.g. panels flexible, e.g. films
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C48/00—Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
- B29C48/25—Component parts, details or accessories; Auxiliary operations
- B29C48/36—Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die
- B29C48/395—Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die using screws surrounded by a cooperating barrel, e.g. single screw extruders
- B29C48/40—Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die using screws surrounded by a cooperating barrel, e.g. single screw extruders using two or more parallel screws or at least two parallel non-intermeshing screws, e.g. twin screw extruders
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C48/00—Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
- B29C48/25—Component parts, details or accessories; Auxiliary operations
- B29C48/36—Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die
- B29C48/50—Details of extruders
- B29C48/505—Screws
- B29C48/57—Screws provided with kneading disc-like elements, e.g. with oval-shaped elements
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C48/00—Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
- B29C48/25—Component parts, details or accessories; Auxiliary operations
- B29C48/88—Thermal treatment of the stream of extruded material, e.g. cooling
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C55/00—Shaping by stretching, e.g. drawing through a die; Apparatus therefor
- B29C55/02—Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets
- B29C55/10—Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets multiaxial
- B29C55/12—Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets multiaxial biaxial
- B29C55/14—Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets multiaxial biaxial successively
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C55/00—Shaping by stretching, e.g. drawing through a die; Apparatus therefor
- B29C55/02—Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets
- B29C55/10—Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets multiaxial
- B29C55/12—Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets multiaxial biaxial
- B29C55/14—Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets multiaxial biaxial successively
- B29C55/143—Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets multiaxial biaxial successively firstly parallel to the direction of feed and then transversely thereto
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G63/00—Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
- C08G63/78—Preparation processes
- C08G63/82—Preparation processes characterised by the catalyst used
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K5/00—Use of organic ingredients
- C08K5/16—Nitrogen-containing compounds
- C08K5/29—Compounds containing one or more carbon-to-nitrogen double bonds
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K5/00—Use of organic ingredients
- C08K5/16—Nitrogen-containing compounds
- C08K5/34—Heterocyclic compounds having nitrogen in the ring
- C08K5/35—Heterocyclic compounds having nitrogen in the ring having also oxygen in the ring
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L101/00—Compositions of unspecified macromolecular compounds
- C08L101/02—Compositions of unspecified macromolecular compounds characterised by the presence of specified groups, e.g. terminal or pendant functional groups
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L31/00—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L31/04—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
- H01L31/042—PV modules or arrays of single PV cells
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C48/00—Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
- B29C48/001—Combinations of extrusion moulding with other shaping operations
- B29C48/0018—Combinations of extrusion moulding with other shaping operations combined with shaping by orienting, stretching or shrinking, e.g. film blowing
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C48/00—Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
- B29C48/022—Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the choice of material
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C48/00—Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
- B29C48/03—Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the shape of the extruded material at extrusion
- B29C48/07—Flat, e.g. panels
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C48/00—Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
- B29C48/25—Component parts, details or accessories; Auxiliary operations
- B29C48/36—Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die
- B29C48/395—Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die using screws surrounded by a cooperating barrel, e.g. single screw extruders
- B29C48/40—Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die using screws surrounded by a cooperating barrel, e.g. single screw extruders using two or more parallel screws or at least two parallel non-intermeshing screws, e.g. twin screw extruders
- B29C48/402—Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die using screws surrounded by a cooperating barrel, e.g. single screw extruders using two or more parallel screws or at least two parallel non-intermeshing screws, e.g. twin screw extruders the screws having intermeshing parts
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C48/00—Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
- B29C48/25—Component parts, details or accessories; Auxiliary operations
- B29C48/36—Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die
- B29C48/50—Details of extruders
- B29C48/505—Screws
- B29C48/535—Screws with thread pitch varying along the longitudinal axis
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C48/00—Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
- B29C48/25—Component parts, details or accessories; Auxiliary operations
- B29C48/88—Thermal treatment of the stream of extruded material, e.g. cooling
- B29C48/911—Cooling
- B29C48/9135—Cooling of flat articles, e.g. using specially adapted supporting means
- B29C48/914—Cooling of flat articles, e.g. using specially adapted supporting means cooling drums
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29K—INDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
- B29K2067/00—Use of polyesters or derivatives thereof, as moulding material
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2367/00—Characterised by the use of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Derivatives of such polymers
- C08J2367/02—Polyesters derived from dicarboxylic acids and dihydroxy compounds
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K5/00—Use of organic ingredients
- C08K5/04—Oxygen-containing compounds
- C08K5/15—Heterocyclic compounds having oxygen in the ring
- C08K5/151—Heterocyclic compounds having oxygen in the ring having one oxygen atom in the ring
- C08K5/1515—Three-membered rings
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K5/00—Use of organic ingredients
- C08K5/16—Nitrogen-containing compounds
- C08K5/34—Heterocyclic compounds having nitrogen in the ring
- C08K5/35—Heterocyclic compounds having nitrogen in the ring having also oxygen in the ring
- C08K5/353—Five-membered rings
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
Definitions
- the present invention relates to a biaxially stretched polyester film, a method for producing the same, and a solar cell module.
- Polyester films are used in various applications such as electrical insulation and optical applications.
- solar cell applications such as solar cell backsheets have attracted attention as electrical insulation applications.
- a polyester film for a back protective sheet for a solar cell (appropriately referred to as a back sheet for a solar cell or a back sheet) is required to have excellent hydrolysis resistance in order to protect the element over a long period of time.
- the polyester film for the back sheet is required to have high electrical insulation.
- a solar cell system corresponding to 1000V has been proposed, but in order to further improve the performance in the future, further increase in the system voltage is required, and the insulation of the backsheet is further increased. Improvement is eagerly desired.
- Polyester films for outdoor display applications are required to have weather resistance, strength, and transparency.
- Japanese Patent Application Laid-Open No. 2006-253264 discloses a solar cell in which a gas barrier vapor-deposited film in which a vapor-deposited layer made of an inorganic oxide is provided on a base film and a polyester film having electrical insulation are laminated and integrated. Back seats have been proposed.
- Japanese Patent Application Laid-Open No. 2008-166338 proposes a solar cell backsheet having a resin film in contact with a filler and a hydrolysis-resistant white resin film as an outermost layer and having a partial discharge voltage of 1000 V or more. Yes.
- the present invention can provide a polyester film having transparency as well as sufficient hydrolysis resistance, electrical insulation and strength that can withstand long-term use outdoors, and a method for producing the same. Moreover, this invention can provide the solar cell module which can maintain a photoelectric conversion characteristic over a long period of time.
- the thickness is 200 ⁇ m or more and 800 ⁇ m or less
- the breaking strengths in the longitudinal stretching direction and the transverse stretching direction are both 180 MPa or more and 300 MPa or less
- the internal haze (Hin) is 0.3% or more and 20% or less
- ⁇ 2> The biaxially stretched polyester film according to ⁇ 1>, wherein the content of voids having a maximum length of 1 ⁇ m or more is 1 or less per 400 ⁇ m 2 of the biaxially stretched polyester film.
- ⁇ 3> The structural unit according to ⁇ 1> or ⁇ 2>, wherein 80 mol% or more of the structural unit is an ethylene terephthalate unit or a 1,4-cyclohexanedimethylene terephthalate unit, and the terminal carboxyl group concentration is 25 eq / ton or less.
- Biaxially stretched polyester film is an ethylene terephthalate unit or a 1,4-cyclohexanedimethylene terephthalate unit, and the terminal carboxyl group concentration is 25 eq / ton or less.
- ⁇ 4> Polyester synthesized using at least one selected from the group consisting of glycol-soluble titanium compounds, aluminum compounds, and germanium compounds as a polymerization catalyst, and the content of phosphorus element and the content of metal element
- ⁇ 5> The structural unit according to any one of ⁇ 1> to ⁇ 4>, wherein 0.1 mol% to 20 mol% or 80 mol% to 100 mol% of the structural unit is a 1,4-cyclohexanedimethylene terephthalate unit. Biaxially stretched polyester film.
- ⁇ 6> A method for producing a biaxially stretched polyester film according to any one of ⁇ 1> to ⁇ 5>, A raw material polyester synthesized using at least one selected from a glycol-soluble titanium compound, an aluminum compound, and a germanium compound as a polymerization catalyst, and having a total of a phosphorus element content and a metal element content of 300 ppm or less Preparing the resin, The raw material polyester resin is plasticized at a temperature not lower than a temperature 10 ° C. higher than the melting point of the raw material polyester and not higher than 35 ° C. higher than the melting point, melt-extruded, and cooled to be 2.5 mm thick.
- a solar cell power generation module comprising the biaxially stretched polyester film according to any one of ⁇ 1> to ⁇ 5>.
- the present invention can provide a polyester film having transparency as well as sufficient hydrolysis resistance, electrical insulation and strength that can withstand long-term use outdoors, and a method for producing the same. Moreover, this invention can provide the solar cell module which can maintain a photoelectric conversion characteristic over a long period of time.
- the display of a numerical range in this specification indicates a range including a numerical value displayed as a lower limit value of the numerical range as a minimum value and a numerical value displayed as an upper limit value of the numerical range as a maximum value.
- the amount is the plural present in the composition unless otherwise defined. Means the total amount of substances.
- the term “process” includes not only an independent process but also a process that achieves the intended effect of this process even when it cannot be clearly distinguished from other processes.
- the unit “ppm” indicating the abundance of a certain component in the composition is based on mass (ie, indicating the mass of the component with respect to the total mass of the composition).
- the polyester film has high transparency while having a thickness of 200 ⁇ m or more. In other words, it is a thick polyester with low haze. Moreover, the said polyester film has high hydrolysis resistance and a fracture stress, although it is 200 micrometers or more in thickness.
- the biaxially stretched polyester film has a thickness of 200 ⁇ m to 800 ⁇ m, preferably 240 ⁇ m to 500 ⁇ m, particularly preferably 240 ⁇ m to 400 ⁇ m. If the thickness of the film is less than 200 ⁇ m, it may be difficult to obtain a partial discharge voltage of 1 kV or more. From the viewpoint of more stably securing a partial discharge voltage of 1 kV or more, the film thickness is preferably 240 ⁇ m or more. When the film thickness exceeds 800 ⁇ m, extremely large tension is required to perform biaxial stretching, and productivity may be inferior. From the viewpoint of winding, cutting, and transportability for secondary processing of the obtained biaxially stretched film, the film thickness is preferably 500 ⁇ m or less.
- the breaking strength in the longitudinal and transverse stretching directions of the polyester film is 180 MPa or more and 300 MPa or less, and 200 MPa or more and 250 MPa or less. Is preferred. If the breaking strength exceeds 300 MPa, the film tends to break when the film is stretched, and the productivity may be inferior.
- the optimum range that can ensure both good productivity and practical strength of the film may be 205 MPa or more and 240 MPa or less.
- the internal haze (Hin) of the polyester film is 0.3% or more and 20% or less, preferably 0.5% or more and 15% or less, and particularly preferably 1% or more and 10% or less. If the internal haze is less than 0.3%, the breaking strength of the film may not be sufficiently secured. On the other hand, if the internal haze exceeds 20%, the film tends to break when the film is stretched, resulting in poor production suitability.
- Hsur means the magnitude of scattering of the reflected light on the film surface.
- ⁇ H exceeds 2%, the flatness of the film surface is poor and the surface glossiness is lowered.
- ⁇ H is 1% or less, good film surface flatness and / or surface gloss can be obtained. For this reason, in an embodiment, ⁇ H is preferably 0.1% or more and 1% or less.
- the biaxially stretched film was put in a 10 mm thick quartz cell filled with tricresyl phosphate, and a haze meter (for example, SM color computer manufactured by Suga Test Instruments Co., Ltd., trade name: SM-) T-H1 type).
- a haze meter for example, SM color computer manufactured by Suga Test Instruments Co., Ltd., trade name: SM-
- T-H1 type for example, SM color computer manufactured by Suga Test Instruments Co., Ltd., trade name: SM-
- the external haze (Hsur) is measured directly using a similar apparatus without immersing the biaxially stretched film in tricresyl phosphate.
- the biaxially stretched polyester film preferably has a gap having a maximum length of 1 ⁇ m or more in the film of 1 piece / 400 ⁇ m 2 or less, and substantially does not have a gap of the above size.
- the voids in the film are confirmed by cutting the film with a sharp cutter and observing the cross section with an electron microscope having a magnification of 1000 times. If an insoluble component is present in the polyester in the film production process, the interface between the insoluble component and the polyester peels off during biaxial stretching, and voids are generated in the film. Catalysts and additives used for the polymerization of polyester and foreign substances in the starting glycol and dicarboxylic acid compounds also cause voids.
- voids When such voids are present, breakage tends to occur when stretching in the longitudinal direction or the transverse direction in the film production process. Further, the interstitial spaces are the starting points when the film is broken, and the breaking strength is not stable. More preferable void content is 0.5 or less, more preferably 0.2 or less voids having a maximum length of 1 ⁇ m or more per 400 ⁇ m 2 of film.
- the polyester film is preferably made of a polyester mainly composed of polyethylene terephthalate or poly-1,4-cyclohexanedimethylene terephthalate.
- the content of ethylene terephthalate units in the polyester is 80 with respect to all the polymerizable components (that is, constituent units) constituting the polyester. It is preferably at least mol%, more preferably at least 85 mol%, still more preferably at least 90 mol%.
- the polyester film is made of a polyester mainly composed of poly-1,4-cyclohexanedimethylene terephthalate
- the content of 1,4-cyclohexanedimethanol (CHDM) units in the polyester constitutes the polyester. It is preferably 80% by mole or more, more preferably 85% by mole or more, and still more preferably 90% by mole or more with respect to all of the polymerizable components (that is, structural units).
- the ethylene terephthalate unit or CHDM unit is 80 mol% or more, the heat resistance and hydrolysis resistance of the film can be excellent.
- the content of ethylene terephthalate units or CHDM units is within the above preferred range, and other copolymerization components are added in a range not exceeding 20 mol%, whereby polyethylene terephthalate or poly-1,4-cyclohexane diethylene is added.
- the content of 1,4-cyclohexanedimethylene terephthalate (CHDM) units in the polyester is It may be 0.1 mol% to 100 mol% with respect to all the structural units, and in some embodiments, it is preferably 80 mol% or more. In some embodiments, it is preferably 0.1 mol% to 20 mol%, or 80 mol% to 100 mol%, and preferably 0.5 mol% to 16 mol%, or 83 mol% to 98 mol%. More preferably, it is more preferably 1 mol% to 12 mol% or 86 mol% to 96 mol%.
- CHDM 1,4-cyclohexanedimethylene terephthalate
- the weather resistance of the film can be excellent.
- polyester is easy to form crystals, and it is easy to form a “tie chain” in which the amorphous incorporated between the crystals bridges. That is, in these two regions, the polyester easily takes a crystal structure and easily exhibits high mechanical strength and high heat resistance.
- the presence of such a CHDM unit-derived structure in the polyester molecule increases the orientation of the polyester molecule and promotes the generation of a tie chain. This is thought to be due to the following reasons.
- the polyester film comprises (A) a polyester and (B) a compound having a cyclic structure in which a first nitrogen and a second nitrogen of a carbodiimide group are bonded by a bonding group (hereinafter also referred to as a cyclic carbodiimide compound). ) And at least one of components having a structure derived from the cyclic carbodiimide compound.
- a cyclic carbodiimide compound a compound having a cyclic structure in which a first nitrogen and a second nitrogen of a carbodiimide group are bonded by a bonding group
- a cyclic carbodiimide compound a compound having a cyclic structure in which a first nitrogen and a second nitrogen of a carbodiimide group are bonded by a bonding group
- a cyclic carbodiimide compound a compound having a cyclic structure in which a first nitrogen and a second nitrogen of a carbodiimide group are bonded by a bond
- the cyclic carbodiimide compound preferably has a molecular weight of 400 or more, more preferably 500 to 1500.
- the cyclic carbodiimide compound may have a plurality of cyclic structures.
- the cyclic structure has one carbodiimide group (—N ⁇ C ⁇ N—), and the first nitrogen and the second nitrogen are bonded by a linking group.
- One cyclic structure has only one carbodiimide group.
- a cyclic carbodiimide compound may have one or more carbodiimide groups in its molecule.
- each cyclic structure bonded to the spiro atom has one carbodiimide group, thereby One molecule may have a plurality of carbodiimide groups.
- the number of atoms in the cyclic structure may be preferably 8-50, more preferably 10-30, still more preferably 10-20, and even more preferably 10-15.
- the number of atoms in the ring structure means the number of atoms directly constituting the ring structure.
- the number of atoms is 8 or more, the stability of the cyclic carbodiimide compound is improved, and storage and use can be facilitated.
- the number of atoms in the cyclic structure is 50 from the viewpoint of avoiding cost increase due to difficulty in synthesis. obtain.
- the ring structure is preferably a structure represented by the following formula (1).
- Q is a divalent to tetravalent linking group selected from the group consisting of an aliphatic group, an alicyclic group, an aromatic group, and a combination of two or more groups selected from these. .
- the combination of two or more groups may be an embodiment in which the same kind of groups are combined.
- the aliphatic group, alicyclic group and aromatic group constituting Q may each contain at least one of a heteroatom and a substituent.
- a heteroatom in this case refers to O, N, S or P.
- Two of the valences of this linking group are used to form a cyclic structure.
- Q is a trivalent or tetravalent linking group, Q is bonded to a polymer or another cyclic structure via at least one of a single bond, a double bond, an atom, and an atomic group.
- the linking group is preferably a divalent to tetravalent aliphatic group having 1 to 20 carbon atoms, each of which may contain at least one of a heteroatom and a substituent, and a divalent to tetravalent carbon group having 3 to 20 carbon atoms.
- a linking group having Examples of the combination include an alkylene-arylene group structure in which an alkylene group and an arylene group are bonded.
- the linking group (Q) is preferably a divalent to tetravalent linking group represented by the following formula (1-1), (1-2) or (1-3).
- Ar 1 and Ar 2 each independently represent a divalent to tetravalent aromatic group having 5 to 15 carbon atoms.
- Ar 1 and Ar 2 may each independently contain at least one of a heteroatom and a monovalent substituent.
- the aromatic group each of which contains a hetero atom and may have a heterocyclic structure, an arylene group having 5 to 15 carbon atoms, an arenetriyl group having 5 to 15 carbon atoms, or a group having 5 to 15 carbon atoms
- An arenetetrayl group may be mentioned.
- Examples of the arylene group (divalent) include a phenylene group and a naphthalenediyl group.
- Examples of the arenetriyl group include a benzenetriyl group and a naphthalenetriyl group.
- Examples of the arenetetrayl group include a benzenetetrayl group and a naphthalenetetrayl group.
- These aromatic groups may have a substituent.
- Examples of the substituent include an alkyl group having 1 to 20 carbon atoms, an aryl group having 6 to 15 carbon atoms, a halogen atom, a nitro group, an amide group, a hydroxyl group, an ester group, an ether group, and an aldehyde group.
- R 1 and R 2 each independently contain at least one of a heteroatom and a monovalent substituent, respectively, a divalent to tetravalent aliphatic group having 1 to 20 carbon atoms, and a divalent to tetravalent group. Or a combination of two or more groups selected from these, or an aliphatic group or an alicyclic group and a divalent to tetravalent aromatic group having 5 to 15 carbon atoms. Represents a combination with a group.
- Examples of the aliphatic group include an alkylene group having 1 to 20 carbon atoms, an alkanetriyl group having 1 to 20 carbon atoms, and an alkanetetrayl group having 1 to 20 carbon atoms.
- Examples of the alkylene group include a methylene group, an ethylene group, a propylene group, a butylene group, a pentylene group, a hexylene group, a heptylene group, an octylene group, a nonylene group, a decylene group, a dodecylene group, and a hexadecylene group.
- alkanetriyl group methanetriyl group, ethanetriyl group, propanetriyl group, butanetriyl group, pentanetriyl group, hexanetriyl group, heptanetriyl group, octanetriyl group, nonanetriyl group, decantriyl group, dodecantriyl group
- alkanetriyl group methanetriyl group, ethanetriyl group, propanetriyl group, butanetriyl group, pentanetriyl group, hexanetriyl group, heptanetriyl group, octanetriyl group, nonanetriyl group, decantriyl group, dodecantriyl group.
- Examples include a hexadecantriyl group.
- Alkanetetrayl groups include methanetetrayl, ethanetetrayl, propanetetrayl, butanetetrayl, pentanetetrayl, hexanetetrayl, heptanetetrayl, octanetetrayl, nonanetetrayl Group, decanetetrayl group, dodecanetetrayl group, hexadecanetetrayl group and the like. These aliphatic groups may have a substituent.
- substituents examples include an alkyl group having 1 to 20 carbon atoms, an aryl group having 6 to 15 carbon atoms, a halogen atom, a nitro group, an amide group, a hydroxyl group, an ester group, an ether group, and an aldehyde group.
- Examples of the alicyclic group include a cycloalkylene group having 3 to 20 carbon atoms, a cycloalkanetriyl group having 3 to 20 carbon atoms, and a cycloalkanetetrayl group having 3 to 20 carbon atoms.
- Examples of the cycloalkylene group include a cyclopropylene group, a cyclobutylene group, a cyclopentylene group, a cyclohexylene group, a cycloheptylene group, a cyclooctylene group, a cyclononylene group, a cyclodecylene group, a cyclododecylene group, and a cyclohexadecylene group.
- alkanetriyl group cyclopropanetriyl group, cyclobutanetriyl group, cyclopentanetriyl group, cyclohexanetriyl group, cycloheptanetriyl group, cyclooctanetriyl group, cyclononanetriyl group, cyclodecanetriyl group , Cyclododecanetriyl group, cyclohexadecanetriyl group and the like.
- alkanetetrayl group cyclopropanetetrayl group, cyclobutanetetrayl group, cyclopentanetetrayl group, cyclohexanetetrayl group, cycloheptanetetrayl group, cyclooctanetetrayl group, cyclononanetetrayl group, cyclodecanetetrayl group Group, cyclododecanetetrayl group, cyclohexadecanetetrayl group and the like.
- These alicyclic groups may have a substituent.
- substituents examples include an alkyl group having 1 to 20 carbon atoms, an aryl group having 6 to 15 carbon atoms, a halogen atom, a nitro group, an amide group, a hydroxyl group, an ester group, an ether group, and an aldehyde group.
- an aromatic group each of which contains a hetero atom and may have a heterocyclic structure
- an arylene group having 5 to 15 carbon atoms an arenetriyl group having 5 to 15 carbon atoms, or a group having 5 to 15 carbon atoms
- An arenetetrayl group may be mentioned.
- the arylene group include a phenylene group and a naphthalenediyl group.
- examples of the arenetriyl group (trivalent) include a benzenetriyl group and a naphthalenetriyl group.
- examples of the arenetetrayl group (tetravalent) include a benzenetetrayl group and a naphthalenetetrayl group.
- aromatic groups may have a substituent.
- substituents include an alkyl group having 1 to 20 carbon atoms, an aryl group having 6 to 15 carbon atoms, a halogen atom, a nitro group, an amide group, a hydroxyl group, an ester group, an ether group, and an aldehyde group.
- X 1 and X 2 may each independently contain at least one of a heteroatom and a monovalent substituent.
- An aliphatic group having 1 to 20 carbon atoms, a bivalent to tetravalent alicyclic group having 3 to 20 carbon atoms, a bivalent to tetravalent aromatic group having 5 to 15 carbon atoms, or two or more selected from these groups Represents a combination of groups.
- Examples of the aliphatic group include an alkylene group having 1 to 20 carbon atoms, an alkanetriyl group having 1 to 20 carbon atoms, and an alkanetetrayl group having 1 to 20 carbon atoms.
- Examples of the alkylene group include a methylene group, an ethylene group, a propylene group, a butylene group, a pentylene group, a hexylene group, a heptylene group, an octylene group, a nonylene group, a decylene group, a dodecylene group, and a hexadecylene group.
- alkanetriyl group methanetriyl group, ethanetriyl group, propanetriyl group, butanetriyl group, pentanetriyl group, hexanetriyl group, heptanetriyl group, octanetriyl group, nonanetriyl group, decantriyl group, dodecantriyl group
- alkanetriyl group methanetriyl group, ethanetriyl group, propanetriyl group, butanetriyl group, pentanetriyl group, hexanetriyl group, heptanetriyl group, octanetriyl group, nonanetriyl group, decantriyl group, dodecantriyl group.
- Examples include a hexadecantriyl group.
- alkanetetrayl group methanetetrayl group, ethanetetrayl group, propanetetrayl group, butanetetrayl group, pentanetetrayl group, hexanetetrayl group, heptanetetrayl group, octanetetrayl group, nonanetetrayl group Decanetetrayl group, dodecanetetrayl group, hexadecanetetrayl group and the like.
- These aliphatic groups may have a substituent.
- substituents examples include an alkyl group having 1 to 20 carbon atoms, an aryl group having 6 to 15 carbon atoms, a halogen atom, a nitro group, an amide group, a hydroxyl group, an ester group, an ether group, and an aldehyde group.
- Examples of the alicyclic group include a cycloalkylene group having 3 to 20 carbon atoms, a cycloalkanetriyl group having 3 to 20 carbon atoms, and a cycloalkanetetrayl group having 3 to 20 carbon atoms.
- Examples of the cycloalkylene group include a cyclopropylene group, a cyclobutylene group, a cyclopentylene group, a cyclohexylene group, a cycloheptylene group, a cyclooctylene group, a cyclononylene group, a cyclodecylene group, a cyclododecylene group, and a cyclohexadecylene group.
- alkanetriyl group cyclopropanetriyl group, cyclobutanetriyl group, cyclopentanetriyl group, cyclohexanetriyl group, cycloheptanetriyl group, cyclooctanetriyl group, cyclononanetriyl group, cyclodecanetriyl group Group, cyclododecane triyl group, cyclohexadecane triyl group and the like.
- alkanetetrayl group examples include cyclopropanetetrayl group, cyclobutanetetrayl group, cyclopentanetetrayl group, cyclohexanetetrayl group, cycloheptanetetrayl group, cyclooctanetetrayl group, cyclononanetetrayl group, cyclodecanetetrayl group Yl group, cyclododecanetetrayl group, cyclohexadecanetetrayl group and the like.
- These alicyclic groups may have a substituent.
- substituents examples include an alkyl group having 1 to 20 carbon atoms, an aryl group having 6 to 15 carbon atoms, a halogen atom, a nitro group, an amide group, a hydroxyl group, an ester group, an ether group, and an aldehyde group.
- an aromatic group each of which contains a hetero atom and may have a heterocyclic structure
- an arylene group having 5 to 15 carbon atoms an arenetriyl group having 5 to 15 carbon atoms, or a group having 5 to 15 carbon atoms
- An arenetetrayl group may be mentioned.
- the arylene group include a phenylene group and a naphthalenediyl group.
- examples of the arenetriyl group (trivalent) include a benzenetriyl group and a naphthalenetriyl group.
- examples of the arenetetrayl group (tetravalent) include a benzenetetrayl group and a naphthalenetetrayl group.
- aromatic groups may have a substituent.
- substituents include an alkyl group having 1 to 20 carbon atoms, an aryl group having 6 to 15 carbon atoms, a halogen atom, a nitro group, an amide group, a hydroxyl group, an ester group, an ether group, and an aldehyde group.
- s and k each represent an integer of 0 to 10, preferably an integer of 0 to 3, more preferably an integer of 0 to 1.
- s and k are 10 or less, an increase in cost due to difficulty in synthesis of the cyclic carbodiimide compound can be avoided.
- X 1 or X 2 as a repeating unit may be the same as or different from other X 1 or X 2 .
- X 3 may each contain at least one of a heteroatom and a monovalent substituent, a divalent to tetravalent C 1-20 aliphatic group, It represents a tetravalent alicyclic group having 3 to 20 carbon atoms, a 2- to 4-valent aromatic group having 5 to 15 carbon atoms, or a combination of two or more groups selected from these.
- Examples of the aliphatic group include an alkylene group having 1 to 20 carbon atoms, an alkanetriyl group having 1 to 20 carbon atoms, and an alkanetetrayl group having 1 to 20 carbon atoms.
- Examples of the alkylene group include a methylene group, an ethylene group, a propylene group, a butylene group, a pentylene group, a hexylene group, a heptylene group, an octylene group, a nonylene group, a decylene group, a dodecylene group, and a hexadecylene group.
- alkanetriyl group methanetriyl group, ethanetriyl group, propanetriyl group, butanetriyl group, pentanetriyl group, hexanetriyl group, heptanetriyl group, octanetriyl group, nonanetriyl group, decantriyl group, dodecantriyl group And hexadecantriyl group.
- Alkanetetrayl groups include methanetetrayl, ethanetetrayl, propanetetrayl, butanetetrayl, pentanetetrayl, hexanetetrayl, heptanetetrayl, octanetetrayl, nonanetetrayl Group, decanetetrayl group, dodecanetetrayl group, hexadecanetetrayl group and the like. These aliphatic groups may contain a substituent.
- substituents examples include an alkyl group having 1 to 20 carbon atoms, an aryl group having 6 to 15 carbon atoms, a halogen atom, a nitro group, an amide group, a hydroxyl group, and an ester group. , Ether group, aldehyde group and the like.
- Examples of the alicyclic group include a cycloalkylene group having 3 to 20 carbon atoms, a cycloalkanetriyl group having 3 to 20 carbon atoms, and a cycloalkanetetrayl group having 3 to 20 carbon atoms.
- Examples of the cycloalkylene group include a cyclopropylene group, a cyclobutylene group, a cyclopentylene group, a cyclohexylene group, a cycloheptylene group, a cyclooctylene group, a cyclononylene group, a cyclodecylene group, a cyclododecylene group, and a cyclohexadecylene group.
- alkanetriyl group cyclopropanetriyl group, cyclobutanetriyl group, cyclopentanetriyl group, cyclohexanetriyl group, cycloheptanetriyl group, cyclooctanetriyl group, cyclononanetriyl group, cyclodecanetriyl group Group, cyclododecane triyl group, cyclohexadecane triyl group and the like.
- alkanetetrayl group examples include cyclopropanetetrayl group, cyclobutanetetrayl group, cyclopentanetetrayl group, cyclohexanetetrayl group, cycloheptanetetrayl group, cyclooctanetetrayl group, cyclononanetetrayl group, cyclodecanetetrayl group Yl group, cyclododecanetetrayl group, cyclohexadecanetetrayl group and the like.
- These alicyclic groups may contain a substituent, such as an alkyl group having 1 to 20 carbon atoms, an arylene group having 6 to 15 carbon atoms, a halogen atom, a nitro group, an amide group, a hydroxyl group, an ester.
- a substituent such as an alkyl group having 1 to 20 carbon atoms, an arylene group having 6 to 15 carbon atoms, a halogen atom, a nitro group, an amide group, a hydroxyl group, an ester.
- a substituent such as an alkyl group having 1 to 20 carbon atoms, an arylene group having 6 to 15 carbon atoms, a halogen atom, a nitro group, an amide group, a hydroxyl group, an ester.
- Group, ether group, aldehyde group and the like such as an alkyl group having 1 to 20 carbon atoms, an arylene group having 6 to 15 carbon atoms, a
- an aromatic group each of which contains a hetero atom and may have a heterocyclic structure
- an arylene group having 5 to 15 carbon atoms an arenetriyl group having 5 to 15 carbon atoms, or a group having 5 to 15 carbon atoms
- An arenetetrayl group may be mentioned.
- the arylene group include a phenylene group and a naphthalenediyl group.
- examples of the arenetriyl group (trivalent) include a benzenetriyl group and a naphthalenetriyl group.
- examples of the arenetetrayl group (tetravalent) include a benzenetetrayl group and a naphthalenetetrayl group.
- aromatic groups may have a substituent.
- substituents include an alkyl group having 1 to 20 carbon atoms, an aryl group having 6 to 15 carbon atoms, a halogen atom, a nitro group, an amide group, a hydroxyl group, an ester group, an ether group, and an aldehyde group.
- Ar 1 , Ar 2 , R 1 , R 2 , X 1 , X 2 and X 3 may contain a hetero atom.
- Q is a divalent linking group
- Ar 1 , Ar 2 , R 1 , R 2 , X 1 , X 2 and X 3 are all divalent groups.
- Q is a trivalent linking group
- one of Ar 1 , Ar 2 , R 1 , R 2 , X 1 , X 2 and X 3 is a trivalent group.
- Q is a tetravalent linking group
- one of Ar 1 , Ar 2 , R 1 , R 2 , X 1 , X 2 and X 3 is a tetravalent group or two are trivalent It is a group.
- Examples of the cyclic carbodiimide compound include compounds represented by the following (a) to (c).
- Cyclic carbodiimide compound (a) examples include a compound represented by the following formula (2) (hereinafter sometimes referred to as “cyclic carbodiimide compound (a)”).
- Q a is an aliphatic group, an alicyclic group, an aromatic group, or a divalent linking group that is a combination of two or more groups selected from these, and may contain a hetero atom.
- Q a is preferably a divalent linking group represented by the following formula (2-1), (2-2) or (2-3).
- Ar a 1 , Ar a 2 , R a 1 , R a 2 , X a 1 , X a 2 , X a 3 , s and k and the details thereof are represented by the formulas (1-1) to ( The same as described for Ar 1 , Ar 2 , R 1 , R 2 , X 1 , X 2 , X 3 , s and k in 1-3). However, Ar a 1 , Ar a 2 , R a 1 , R a 2 , X a 1 , X a 2 , and X a 3 are all divalent.
- Examples of the cyclic carbodiimide compound (a) include the following compounds.
- Cyclic carbodiimide compound (b) examples include a compound represented by the following formula (3) (hereinafter sometimes referred to as “cyclic carbodiimide compound (b)”).
- Q b is an aliphatic group, an alicyclic group, an aromatic group, or a trivalent linking group that is a combination of two or more groups selected from these, and contains a heteroatom. Also good. t represents an integer of 2 or more.
- Y is a carrier supporting a cyclic structure. Definition of aliphatic group, alicyclic group, aromatic group, and group that is a combination and details thereof are the aliphatic group, alicyclic group, aromatic group, and combination represented by Q in formula (1) Are the same as those described for the group. However, in the compound of formula (3), Q b is trivalent. Therefore, if Q b is a trivalent linking group is the above combination, the inner one of the group constituting the combination is trivalent.
- Q b is preferably a trivalent linking group represented by the following formula (3-1), (3-2) or (3-3).
- Ar b 1 , Ar b 2 , R b 1 , R b 2 , X b 1 , X b 2 , X b 3 , s and k are as defined in formulas (1-1) to ( The same as described for Ar 1 , Ar 2 , R 1 , R 2 , X 1 , X 2 , X 3 , s and k in 1-3). However, one of Ar b 1 , Ar b 2 , R b 1 , R b 2 , X b 1 , X b 2 , and X b 3 is a trivalent group.
- Y is preferably a single bond, a double bond, an atom, an atomic group or a polymer.
- a plurality of cyclic structures are bonded through Y to form a structure represented by the formula (3).
- Examples of the cyclic carbodiimide compound (b) include the following compounds.
- Cyclic carbodiimide compound (c) examples include a compound represented by the following formula (4) (hereinafter sometimes referred to as “cyclic carbodiimide compound (c)”).
- Q c is an aliphatic group, an alicyclic group, an aromatic group, or a tetravalent linking group that is a combination of two or more groups selected from these, and has a heteroatom.
- Good. t represents an integer of 2 or more.
- Z 1 and Z 2 are carriers that support a cyclic structure. Z 1 and Z 2 may be bonded to each other to form a cyclic structure. Definition of aliphatic group, alicyclic group, aromatic group, and group that is a combination and details thereof are the aliphatic group, alicyclic group, aromatic group, and combination represented by Q in formula (1) Each of them is the same as that described for the group. However, in the compound of formula (4), Q c is tetravalent.
- Q c is a tetravalent linking group that is the above combination
- one of the groups constituting the combination is a tetravalent group or two are trivalent groups.
- Q c is preferably a tetravalent linking group represented by the following formula (4-1), (4-2) or (4-3).
- Ar c 1 , Ar c 2 , R c 1 , R c 2 , X c 1 , X c 2 , X c 3 , s and k are given in formulas (1-1) to (1-3 ) Of Ar 1 , Ar 2 , R 1 , R 2 , X 1 , X 2 , X 3 , s and k.
- Ar c 1 , Ar c 2 , R c 1 , R c 2 , X c 1 , X c 2 and X c 3 are one of which is a tetravalent group or two of which are trivalent It is a group.
- Z 1 and Z 2 are preferably each independently a single bond, a double bond, an atom, an atomic group or a polymer.
- a plurality of cyclic structures are bonded through Z 1 and Z 2 to form a structure represented by the formula (4).
- Examples of the cyclic carbodiimide compound (c) include the following compounds.
- a cyclic carbodiimide compound When a cyclic carbodiimide compound is added to the polyester, it reacts with the carboxylic acid at the end of the polyester, and the compound produced by this reaction reacts with the hydroxyl group at the end of the polyester, water in the polyester film, etc., and can produce various structures.
- the reaction product (1) which is a component having a structure derived from the cyclic carbodiimide compound according to the reaction scheme shown below.
- a reaction product (2), and a part of the reaction product reacts with a hydroxyl group at the terminal of the polyester to produce a reaction product (3) or a reaction product (4).
- the cyclic carbodiimide compound can be synthesized based on the method described in JP2011-256337A.
- the intrinsic viscosity (IV) of the polyester constituting the film is 0.68 or more and 0.90 or less. By setting IV to 0.68 or more and 0.90 or less, the film can be produced with high productivity with less breakage during film stretching.
- the terminal carboxyl group concentration (AV) of the polyester constituting the film is preferably 25 eq / ton or less. When the AV is 25 eq / ton or less, the hydrolysis resistance of the film is improved, and the outdoor usable period can be extended. The higher IV is, the higher the breaking strength of the film is. However, when IV is increased, the melt viscosity of the polyester is increased.
- AV is more preferably 22 eq / ton or less and IV is 0.70 or more and 0.90 or less, particularly preferably AV is 20 eq / ton or less and IV is 0.72 or more and 0.85 or less.
- the polyester constituting the polyester film is synthesized using at least one of glycol-soluble titanium compound (Ti compound), aluminum compound (Al compound), and germanium compound (Ge compound) as a polymerization catalyst, And it is preferable that the sum total of content (phosphorus element conversion value) of P component in a film and content (metal element conversion value) of a metal component is 10 ppm or more and 300 ppm or less.
- the P component and the metal component are, in addition to the polymerization catalyst, a phosphorus compound (P compound) for improving heat-resistant colorability, acceleration of esterification reaction, imparting polyester film forming suitability, and color adjustment.
- the total of the P component content (phosphorus element equivalent value) and the metal component content (metal element equivalent value) in the film is preferably 20 ppm to 250 ppm, more preferably 50 ppm to 200 ppm. The smaller the amount of the metal component in the polyester, the less insoluble particles are generated, the voids in the film are reduced, and the breaking strength of the film is stabilized.
- the application of the biaxially stretched polyester film is not particularly limited. Because it is a thick polyester film that can maintain film strength and electrical insulation over a long period of time and has high transparency, it can be used for outdoor displays, electrical insulation films, various packaging, and protective films in addition to solar cell backsheets. Etc. can be suitably used.
- a power generation element (solar cell element) connected by a lead wiring for taking out electricity is made of an ethylene / vinyl acetate copolymer (EVA) resin or the like.
- EVA ethylene / vinyl acetate copolymer
- Solar cell elements include silicon-based materials such as single crystal silicon, polycrystalline silicon, and amorphous silicon, III-V groups such as copper-indium-gallium-selenium, copper-indium-selenium, cadmium-tellurium, gallium-arsenic, and II Various known solar cell elements such as a group VI compound semiconductor can be applied.
- the polyester film is synthesized using at least one selected from a glycol-soluble Ti compound, an Al compound, and a Ge compound as a polymerization catalyst, and P Preparing a raw material polyester resin in which the sum of the component content (phosphorus element conversion value) and the metal component content (metal element conversion value) is 300 ppm or less; Forming an unstretched polyester film having a thickness of 2.5 mm to 7.0 mm by melting and extruding the raw material polyester resin and cooling; Forming a biaxially stretched polyester film having a thickness of 200 ⁇ m or more and 800 ⁇ m or less by longitudinally stretching and transversely stretching the unstretched polyester film; The method which has at least is mentioned.
- an internal haze of 0.3% or more and 20% or less is realized by combining the following components (1) to (3) and suppressing crystallization near the center of thickness. can do.
- Insoluble components include precipitates such as catalysts and additives added during the polymerization process of polyester, foreign materials in the raw materials, foreign materials and dust mixed in all processes from polyester polymerization to resin drying to extrusion to stretching. Insoluble degradation products (gel, koge) produced by heat degradation or hydrolysis during the melt extrusion of polyester, unmelted products, and the like.
- Deposits such as catalysts and additives added during the polyester polymerization process use at least one of a glycol-soluble Ti compound, Al compound, and Ge compound as a polymerization catalyst, and the content of P component in the film (phosphorus)
- the sum of the element conversion value) and the metal component content (metal element conversion value) can be reduced to 300 ppm or less.
- the P component and the metal component are, in addition to the polymerization catalyst, a phosphorus compound (P compound) for improving heat-resistant colorability, promotion of esterification reaction, imparting polyester film forming suitability, and color adjustment Including known compounds used in the above, such as Mg, Mn, Zn, Co compounds, and the like.
- the total of the P component content (phosphorus element equivalent value) and the metal component content (metal element equivalent value) in the film is preferably 20 ppm to 250 ppm, more preferably 50 ppm to 200 ppm.
- the filter used in the polyester melt polymerization and / or extrusion has a filtration accuracy of 3 ⁇ m to 20 ⁇ m, and removes foreign substances from the medium (water, air, nitrogen gas in the solid phase polymerization process, etc.) in contact with the resin. It is preferable that the filter used in the above has a filtration accuracy of 0.5 ⁇ m to 10 ⁇ m.
- the raw material polyester resin preferably has a content of components having a melting point of 300 ° C. or higher of 1000 ppm or lower.
- the method for obtaining the raw material polyester resin may include obtaining a chip-like polyester having an intrinsic viscosity of 0.4 to 0.65 by melt polymerization and increasing the intrinsic viscosity to 0.69 to 0.90 by solid phase polymerization.
- Components having a melting point of 300 ° C. or higher include chip powder adhered to polyester chips having an intrinsic viscosity of 0.5 to 0.65 used for solid-phase polymerization, and string-like materials produced by contacting the pipe wall surface in the air pipe.
- a polyester having a specific surface area larger than that of a chip can be generated by increasing the molecular weight of the chip to be higher than that of the chip by solid phase polymerization. For this reason, in order to make a component having a melting point of 300 ° C. or more 1000 ppm or less, it is preferable to set the concentration of the chip powder in the polyester chip subjected to solid-phase polymerization to 500 ppm or less. Moreover, it is preferable that the polyester chip after solid-phase polymerization is dust-removed by a dust separator at an arbitrary stage in the air feeding path before melt extrusion.
- the melted polyester is made into chips with an underwater cutter, and fresh water is added so that the concentration of the chip powder in the cooling water to be used is 100 ppm or less.
- the unstretched sheet can be stretched, but slightly crystallized. It is preferable to use a glycol-soluble catalyst and to set the metal component contained in a specific range, and in addition to adjusting the IV to a specific range, the crystallinity of the unstretched film is set to a specific range. It is preferable. In order to bring the crystallinity of the unstretched film into a specific range, for example, when melt-extruding polyester, a method of controlling plasticization is preferably used. It is preferable to do.
- the maximum resin temperature during melt extrusion is preferably 295 ° C. or lower.
- the crystallization temperature is preferably 120 ° C to 140 ° C.
- the crystallinity of the unstretched sheet can be controlled preferably in the range of 0.1% to 5%, more preferably 0.5% to 3%.
- the breaking strength of the stretched film can be reduced. Further, if the crystallinity of the unstretched sheet is higher than 5%, the film is likely to be broken at the time of stretching, the productivity may be lowered, and voids may be generated in the obtained film, so that the breaking strength may be lowered. .
- the unstretched sheet can have a thickness of 2.5 mm or more. A method of producing a uniform unstretched sheet having a thickness of 2.5 mm or more is preferable. Further, both surfaces of the sheet are cooled at a cooling rate of 350 ° C./min to 590 ° C./min. By this method, an unstretched sheet having a specific range of crystallinity can be obtained. By biaxially stretching this, a polyester film having a specific haze and good surface flatness can be obtained.
- the raw material resin is preferably a polyester resin having an intrinsic viscosity IV of 0.68 to 0.95.
- the IV of the raw material resin can be adjusted by the polymerization method and polymerization conditions. By performing solid phase polymerization after liquid phase polymerization, a polyester resin having an intrinsic viscosity IV of 0.68 to 0.95 as a raw material can be obtained. If IV is 0.68 or more, a biaxially stretched film that is difficult to break when stretched and has good strength is obtained, and if it is 0.95 or less, there is little deterioration due to shear heat generation during melt extrusion of polyester, and terminal carboxyl. A polyester having a low group concentration can be obtained. From this viewpoint, IV is more preferably 0.70 to 0.90, and particularly preferably 0.72 to 0.85.
- the terminal carboxyl group concentration (AV) of the raw material resin is preferably 20 eq / ton or less, and more preferably 18 eq / ton or less.
- the terminal carboxyl group concentration AV is a value measured by the following method. That is, after dissolving 0.1 g of the raw material resin in 10 ml of benzyl alcohol, chloroform is further added to obtain a mixed solution, and phenol red indicator is added dropwise thereto. This solution is titrated with a standard solution (0.01 N KOH-benzyl alcohol mixed solution), and the terminal carboxyl group concentration is determined from the amount added.
- the polyester resin constituting the raw material resin is preferably a polyester mainly composed of polyethylene terephthalate or poly-1,4-cyclohexanedimethylene terephthalate. In one embodiment, 80 mol% or more of the structural unit is ethylene terephthalate. Polyesters that are units or CHDM units are preferred.
- the polyester resin can be obtained by subjecting dicarboxylic acid or an ester derivative thereof and a diol compound to an esterification reaction and / or a transesterification reaction by a known method.
- the main component is terephthalic acid or its ester derivative, and as other components, for example, malonic acid, succinic acid, glutaric acid, adipic acid, suberic acid, sebacic acid, dodecanedione Acid, dimer acid, eicosandioic acid, pimelic acid, azelaic acid, aliphatic dicarboxylic acids such as methylmalonic acid, ethylmalonic acid, adamantane dicarboxylic acid, norbornene dicarboxylic acid, isosorbide, cyclohexane dicarboxylic acid, decalin dicarboxylic acid, etc.
- Alicyclic dicarboxylic acid isophthalic acid, phthalic acid, 1,4-naphthalenedicarboxylic acid, 1,5-naphthalenedicarboxylic acid, 2,6-naphthalenedicarboxylic acid, 1,8-naphthalenedicarboxylic acid, 4,4′-diphenyl Dicarboxylic acid, 4,4'-di Dicarboxylic acids such as phenyl ether dicarboxylic acid, 5-sodium sulfoisophthalic acid, phenylendane dicarboxylic acid, anthracene dicarboxylic acid, phenanthrene dicarboxylic acid, aromatic dicarboxylic acid such as 9,9′-bis (4-carboxyphenyl) fluorenic acid or the like An ester derivative is mentioned.
- the main component of the diol compound is ethylene glycol or cyclohexanedimethanol, and the other components are 1,2-propanediol, 1,3-propanediol, 1,4-butanediol, 1,2-butane.
- Diols aliphatic diols such as 1,3-butanediol, cycloaliphatic diols such as cyclohexanedimethanol, spiroglycol and isosorbide, bisphenol A, 1,3-benzenedimethanol, 1,4-benzendimethanol, And aromatic diols such as 9,9'-bis (4-hydroxyphenyl) fluorene.
- a diol compound other than CHDM examples include the diol compounds described above, and ethylene glycol is preferable.
- the dicarboxylic acid used when synthesizing the CHDM polyester resin the dicarboxylic acid described above or an ester derivative thereof is used, and terephthalic acid is preferable.
- IPA isophthalic acid
- IPA isophthalic acid
- the amount of IPA is preferably 0 mol% to 15 mol%, more preferably 0 mol% to 12 mol%, more preferably 0 mol% to 9 mol%, based on the total amount of dicarboxylic acid used in the polyester resin synthesis. More preferably it is.
- reaction catalysts and stabilizers can be used for the esterification reaction and / or transesterification reaction.
- the reaction catalyst include alkali metal compounds, alkaline earth metal compounds, zinc compounds, lead compounds, manganese compounds, cobalt compounds, aluminum compounds, antimony compounds, and titanium compounds, and stabilizers include phosphorus compounds and sulfur compounds.
- stabilizers include phosphorus compounds and sulfur compounds.
- a titanium (Ti) -based compound is used in a range of 1 ppm to 30 ppm, more preferably 2 ppm to 20 ppm, and further preferably 3 ppm to 15 ppm in terms of Ti element with respect to the total mass of the constituent components of the polyester. It is preferred to carry out the polymerization.
- the polyester film manufactured by the method according to one embodiment of the present invention contains 1 ppm or more and 30 ppm or less of titanium. When the amount of the Ti-based catalyst is 1 ppm or more, preferable IV is obtained, and when it is 30 ppm or less, the terminal carboxyl group concentration can be kept low, which is advantageous in improving hydrolysis resistance.
- a polyfunctional monomer having a total of 3 or more carboxylic acid groups and hydroxyl groups (hereinafter referred to as “trifunctional or higher polyfunctional monomer” or “polyfunctional monomer”) And polyester obtained by polycondensation reaction can be used.
- examples of the polyfunctional monomer having a sum (a + b) of the number of carboxylic acid groups (a) and the number of hydroxyl groups (b) of 3 or more include carboxylic acids having a number of carboxylic acid groups (a) of 3 or more, These ester derivatives, acid anhydrides, etc., polyfunctional monomers having a hydroxyl number (b) of 3 or more, and “having both hydroxyl groups and carboxylic acid groups in one molecule, the number of carboxylic acid groups (a) and hydroxyl groups Oxyacids whose total (a + b) with the number (b) of 3 is 3 or more.
- carboxylic acids having 3 or more carboxylic acid groups (a) are trifunctional aromatic carboxylic acids such as trimesic acid, trimellitic acid, pyromellitic acid, naphthalenetricarboxylic acid, anthracentricarboxylic acid, etc.
- aliphatic carboxylic acids include methanetricarboxylic acid, ethanetricarboxylic acid, propanetricarboxylic acid, and butanetricarboxylic acid.
- Tetrafunctional aromatic carboxylic acids include benzenetetracarboxylic acid, benzophenonetetracarboxylic acid, naphthalenetetracarboxylic acid, and anthracenetetracarboxylic acid.
- Acid, perylenetetracarboxylic acid, etc. are tetrafunctional aliphatic carboxylic acids such as ethanetetracarboxylic acid, ethylenetetracarboxylic acid, butanetetracarboxylic acid, cyclopentanetetracarboxylic acid, cyclohexanetetracarboxylic acid, ada Nthane tetracarboxylic acid is a pentafunctional or higher functional aromatic carboxylic acid such as benzene pentacarboxylic acid, benzene hexacarboxylic acid, naphthalene pentacarboxylic acid, naphthalene hexacarboxylic acid, naphthalene heptacarboxylic acid, naphthalene octacarboxylic acid, anthracene pentacarboxylic acid Acids, anthracene hexacarboxylic acid, anthrac
- ethanepentacarboxylic acid ethaneheptacarboxylic acid
- butanepentacarboxylic acid butaneheptacarboxylic acid
- cyclohexane examples include pentanepentacarboxylic acid, cyclohexanepentacarboxylic acid, cyclohexanehexacarboxylic acid, adamantanepentacarboxylic acid, adamantanehexacarboxylic acid, and the like.
- ester derivatives and acid anhydrides, and the like as examples without limitation.
- carboxy terminal of the above-mentioned carboxylic acid is preferably used by adding oxyacids such as l-lactide, d-lactide, hydroxybenzoic acid and the like, derivatives thereof, and a combination of a plurality of such oxyacids. It is done. Moreover, these may be used independently or may be used in multiple types as needed.
- Examples of the polyfunctional monomer having a hydroxyl number (b) of 3 or more include trihydroxy benzene, trihydroxynaphthalene, trihydroxyanthracene, trihydroxychalcone, trihydroxyflavone, trihydroxycoumarin,
- Examples of the trifunctional aliphatic alcohol include glycerin, trimethylolpropane, propanetriol, and examples of the tetrafunctional aliphatic alcohol include pentaerythritol.
- the compound which added diol to the hydroxyl-terminal of the above-mentioned compound is also preferably used. These may be used alone, or a plurality of types may be used as necessary.
- one molecule has both a hydroxyl group and a carboxylic acid group, and the total (a + b) of the number of carboxylic acid groups (a) and the number of hydroxyl groups (b) is 3 or more.
- Some oxyacids are mentioned. Examples of such oxyacids include hydroxyisophthalic acid, hydroxyterephthalic acid, dihydroxyterephthalic acid, and trihydroxyterephthalic acid.
- a product obtained by adding oxyacids such as l-lactide, d-lactide, hydroxybenzoic acid and the like, or a combination of a plurality of such oxyacids to the carboxy terminus of the above-mentioned polyfunctional monomer is also preferably used. It is done. Moreover, these may be used independently or may be used together in multiple types as needed.
- the content ratio of the polyfunctional monomer is preferably 0.005 mol% or more and 2.5 mol% or less, more preferably 0.020 mol% or more and 1 mol% or less, based on all the structural units in the polyester.
- it is 0.025 mol% or more and 1 mol% or less, More preferably, it is 0.035 mol% or more and 0.5 mol% or less, More preferably, it is 0.05 mol% or more and 0.5 mol% or less, Especially preferably, It is 0.1 mol% or more and 0.25 mol% or less.
- the raw material resin may be prepared by mixing pulverized pieces of resin film.
- a polyester film is preferable, and a polyester film of the same type as the polyester resin in the raw resin is preferable.
- the pulverized piece of the resin film is a pulverized product obtained by pulverizing an unnecessary film into small pieces (so-called chips) or scrap pieces, for example.
- the polyester film may contain at least one of a terminal blocking agent and a component having a structure derived from the terminal blocking agent. If the polyester film has a structure having molecules (tie chains) that bridge between the polyester crystals, the polyester film becomes strong and can be excellent in weather resistance. When the polyester film contains at least one of the end-capping agent and the component having a structure derived from the end-capping agent, the tie chain does not develop too much, and the heat resistance is reduced while suppressing embrittlement. Can increase.
- a polyester film may be manufactured so that at least 1 out of the component which has a structure derived from terminal blocker and terminal blocker may be contained in the polyester film obtained.
- the end-capping agent can be mixed with the raw material polyester resin at any time before the molten raw material polyester resin is cooled (that is, before the preparation of the unstretched polyester film is completed). May be.
- the end-capping agent may be mixed with the raw material polyester resin before the raw material polyester resin is supplied to the raw material supply port of the twin screw extruder, or the raw material polyester resin is melt-kneaded with the twin screw extruder. It may be mixed with the raw material polyester resin during the process, or may be mixed with the discharged molten resin after discharging the molten resin from the twin-screw extruder.
- the raw material polyester resin and the end capping agent are melt-mixed so that the end capping agent is 10% by mass to 60% by mass with respect to the total amount of the raw material polyester resin, thereby producing a master pellet.
- the master pellet By putting the master pellet into a twin screw extruder, at least one of the end capping agent and the component having a structure derived from the end capping agent can be included in the polyester film.
- the end-capping agent is an additive that reacts with the carboxyl group at the terminal of the polyester to reduce the terminal carboxyl group concentration of the polyester.
- Preferred end-capping agents include oxazoline compounds, carbodiimide compounds, and epoxy compounds. These may be used alone or in combination.
- the coating solution penetrates into the low crystallinity portion of the polyester film and penetrates and improves adhesion.
- the terminal of the polyester film reacts with the sealing agent and becomes bulky, so that the coating solution component It becomes difficult to pull out from (anchor effect). As a result, it is considered that the interaction force increases and the adhesion becomes stronger.
- end-capping agents are preferably added in an amount of 0.1% by mass or more and 5% by mass or less, more preferably 0.3% by mass or more and 4% by mass or less, and further preferably 0.5% by mass with respect to the polyester resin. % To 2% by mass. If the added amount of the end-capping agent with respect to the polyester resin is 0.1% by mass or more, the anchor effect is easily exhibited, and the adhesion is further improved. On the other hand, if it is 5 mass% or less, it will be difficult to arrange the polyester molecules due to the bulky ends, and it will be easier to form crystals. As a result, the high crystal region increases, it becomes easy to form a crystallinity distribution, and the adhesion is improved.
- the carbodiimide compound having a carbodiimide group includes a monofunctional carbodiimide and a polyfunctional carbodiimide.
- monofunctional carbodiimides include dicyclohexylcarbodiimide, diisopropylcarbodiimide, dimethylcarbodiimide, diisobutylcarbodiimide, dioctylcarbodiimide, t-butylisopropylcarbodiimide, diphenylcarbodiimide, di-t-butylcarbodiimide and di- ⁇ -naphthylcarbodiimide. Particularly preferred are dicyclohexylcarbodiimide and diisopropylcarbodiimide.
- polycarbodiimide having a polymerization degree of 3 to 15 is preferably used.
- the polycarbodiimide generally has a repeating unit represented by “—R—N ⁇ C ⁇ N—” or the like, and the R represents a divalent linking group such as alkylene or arylene.
- repeating units examples include 1,5-naphthalene carbodiimide, 4,4′-diphenylmethane carbodiimide, 4,4′-diphenyldimethylmethane carbodiimide, 1,3-phenylene carbodiimide, 2,4-tolylene carbodiimide, 2,6-tolylenecarbodiimide, mixture of 2,4-tolylenecarbodiimide and 2,6-tolylenecarbodiimide, hexamethylenecarbodiimide, cyclohexane-1,4-carbodiimide, xylylenecarbodiimide, isophoronecarbodiimide, dicyclohexylmethane-4, 4'-carbodiimide, methylcyclohexanecarbodiimide, tetramethylxylylene carbodiimide, 2,6-diisopropylphenylcarbodiimide and 1,3,5-triisopropylbenzene Such as 2,4-
- the end-capping agent is preferably a carbodiimide compound having high heat resistance.
- the molecular weight degree of polymerization
- the end of the carbodiimide compound has a structure with high heat resistance.
- a carbodiimide compound tends to undergo further thermal decomposition once it undergoes thermal decomposition.
- the polyester film to which the carbodiimide compound is added preferably has an isocyanate gas generation amount of 0% by mass to 0.02% by mass when held at a temperature of 300 ° C. for 30 minutes.
- Isocyanate-based gas is a gas having an isocyanate group, such as diisopropylphenyl isocyanate, 1,3,5-triisopropylphenyl diisocyanate, 2-amino-1,3,5-triisopropylphenyl-6-isocyanate, 4, Examples thereof include 4′-dicyclohexylmethane diisocyanate, isophorone diisocyanate and cyclohexyl isocyanate.
- the isocyanate-based gas is 0.02% by mass or less, bubbles (voids) are not easily generated in the polyester film, and stress-concentrated sites are difficult to be formed. it can. Thereby, the close_contact
- the epoxy compound include glycidyl ester compounds and glycidyl ether compounds.
- glycidyl ester compounds include benzoic acid glycidyl ester, t-Bu-benzoic acid glycidyl ester, P-toluic acid glycidyl ester, cyclohexanecarboxylic acid glycidyl ester, pelargonic acid glycidyl ester, stearic acid glycidyl ester, lauric acid glycidyl ester , Glycidyl palmitate, glycidyl behenate, glycidyl versatate, glycidyl oleate, glycidyl linoleate, glycidyl linolein, glycidyl behenol, glycidyl stearol, diglycidyl terephthalate, isophthalic acid Diglycidyl ester, diglycidyl phthalate, diglycidyl naphthalene dicar
- oxazoline compound it can be appropriately selected from compounds having an oxazoline group, and among them, a bisoxazoline compound is preferable.
- 2,2′-bis (2-oxazoline) is most preferably used from the viewpoint of good reactivity with polyester and a high effect of improving weather resistance.
- the bisoxazoline compounds mentioned above may be used alone or in combination of two or more, as long as the effects of the present invention are not impaired.
- carbodiimide which is the aforementioned “cyclic structure compound” is particularly preferable. That is, the compound containing a cyclic structure in which the first nitrogen and the second nitrogen of the carbodiimide group are bonded to each other by the bonding group seals the terminal carboxyl group of the polyester as a terminal blocking agent, and the wet heat durability of the polyester film Can be improved particularly effectively.
- the polyester film may further contain additives such as a light stabilizer and an antioxidant.
- a light stabilizer When a light stabilizer is contained, UV degradation can be prevented.
- the light stabilizer include a compound that absorbs light such as ultraviolet rays and converts it into heat energy, and a material that captures radicals generated by light absorption and decomposition of the resin and suppresses the decomposition chain reaction.
- the light stabilizer is preferably a compound that absorbs light such as ultraviolet rays and converts it into heat energy.
- the content of the light stabilizer in the polyester film is preferably 0.1% by mass or more and 10% by mass or less, and more preferably 0.3% by mass or more and 7% by mass or less with respect to the total mass of the polyester film. More preferably, it is 0.7 mass% or more and 4 mass% or less.
- the polyester film contains, for example, an easy lubricant (fine particles), an ultraviolet absorber, a colorant, a nucleating agent (crystallization agent), a flame retardant, and the like as additives. be able to.
- any of the organic ultraviolet absorber, the inorganic ultraviolet absorber, and a combination thereof are preferably used without any particular limitation. Can do.
- the ultraviolet absorber is excellent in wet heat resistance and can be uniformly dispersed in the resin.
- ultraviolet absorbers include, for example, salicylic acid-based, benzophenone-based, benzotriazole-based, cyanoacrylate-based ultraviolet absorbers, hindered amine-based ultraviolet stabilizers, and the like as organic ultraviolet absorbers.
- salicylic acid-based pt-butylphenyl salicylate p-octylphenyl salicylate
- benzophenone-based 2,4-dihydroxybenzophenone 2-hydroxy-4-methoxybenzophenone, 2-hydroxy-4-methoxy -5-sulfobenzophenone, 2,2 ', 4,4'-tetrahydroxybenzophenone, bis (2-methoxy-4-hydroxy-5-benzoylphenyl) methane
- UV absorbers triazine-based ultraviolet absorbers are more preferable in that they have high resistance to repeated ultraviolet absorption.
- These UV absorbers may be added to the film as a single UV absorber as described above, or are introduced in the form of a copolymer of an organic conductive material or a water-insoluble resin and a monomer that has UV absorber capabilities. May be.
- the raw material polyester resin can be obtained, for example, by the following method.
- An organic chelate titanium complex in which an aromatic dicarboxylic acid or a lower alkyl ester thereof and an aliphatic diol are polymerized in the presence of a catalyst containing a titanium compound, and at least one of the titanium compounds has an organic acid as a ligand.
- An ester comprising at least adding (1) the organic chelate titanium complex, (2) a magnesium compound, and (3) a pentavalent phosphate ester having no aromatic ring as a substituent in this order.
- a raw material polyester resin is produced by a method comprising: a polycondensation reaction or transesterification step and a polycondensation reaction of the product produced in the esterification reaction or transesterification step be able to.
- the magnesium chelate compound is added in the presence of the organic chelate titanium complex as the titanium compound, and then a specific pentavalent phosphorus compound is added.
- the reaction activity of a titanium catalyst can be kept moderately high, the electrostatic application characteristic by magnesium can be provided, and the decomposition reaction in polycondensation can be suppressed effectively.
- a polyester resin having a color tone and transparency comparable to that of a catalyst-based polyester resin and excellent in heat resistance can be provided. Further, a polyester resin having high transparency and less yellowness can be obtained without using a color tone adjusting material such as a cobalt compound or a pigment.
- This polyester resin can be used for applications requiring high transparency (for example, optical film, industrial squirrel, etc.), and it is not necessary to use an expensive germanium-based catalyst, so that the cost can be greatly reduced.
- the occurrence of failures and quality defects in the film forming process can be reduced, and the cost can be reduced by improving the yield.
- esterification reaction or transesterification reaction In the esterification reaction or transesterification reaction, at least one of aromatic dicarboxylic acid and its lower alkyl ester and diol are reacted in the presence of a catalyst containing a titanium compound.
- a catalyst containing a titanium compound In this esterification reaction, an organic chelate titanium complex having an organic acid as a ligand is used as a titanium compound as a catalyst, and at least an organic chelate titanium complex, a magnesium compound, and an aromatic ring as a substituent are not included. Adding the valent phosphate ester in this order.
- the period until the polycondensation reaction starts is defined as the esterification step, and for example, a pipe for transferring from the esterification to the polycondensation reaction tank is included in the esterification step.
- an organic chelate titanium complex, a magnesium compound, and a pentavalent phosphate are added in this order, it is not always necessary to add all of the desired amounts in this order.
- an aromatic dicarboxylic acid and its lower alkyl ester and a diol are mixed with a catalyst containing an organic chelate titanium complex, which is a titanium compound, prior to the addition of the magnesium compound and the phosphorus compound.
- Titanium compounds such as organic chelate titanium complexes have high catalytic activity for esterification reactions, so that esterification reactions can be performed satisfactorily.
- the titanium compound may be added to the mixture of the dicarboxylic acid component and the diol component, or after mixing the dicarboxylic acid component (or diol component) and the titanium compound, the diol component (or dicarboxylic acid component) is mixed. May be. You may mix a dicarboxylic acid component, a diol component, and a titanium compound simultaneously.
- the mixing is not particularly limited, and can be performed by a conventionally known method.
- esterification reaction a process of adding an organic chelate titanium complex which is a titanium compound and a magnesium compound and a pentavalent phosphorus compound as additives in this order is provided. At this time, the esterification reaction proceeds in the presence of the organic chelate titanium complex, and thereafter, the addition of the magnesium compound is started before the addition of the phosphorus compound.
- titanium compound As the titanium compound as the catalyst component, at least one kind of organic chelate titanium complex having an organic acid as a ligand is used.
- organic acid include citric acid, lactic acid, trimellitic acid, malic acid, and the like.
- an organic chelate complex having citric acid or citrate as a ligand is preferable.
- the titanium catalyst also has a catalytic effect of the esterification reaction.
- the polyester resin has a higher hydrolysis resistance as the terminal carboxyl group concentration is higher.
- the terminal carboxyl group concentration of the polyester resin is lowered, so that the hydrolysis resistance is expected to be improved.
- citric acid chelate titanium complex for example, VERTEC (registered trademark) AC-420 manufactured by Johnson Matthey is easily available as a commercial product.
- a Ti catalyst is used, and the amount of Ti added is 1 ppm or more and 30 ppm or less, more preferably 3 ppm or more and 20 ppm or less, more preferably 5 ppm or more and 15 ppm with respect to the total mass of the constituent components of the polyester resin.
- An embodiment in which the polymerization reaction is performed within the following range is preferable. If the amount of titanium added is 1 ppm or more, it is advantageous in that the polymerization rate is increased, and if it is 30 ppm or less, it is advantageous in that a good color tone is obtained.
- titanium compound examples include oxides, hydroxides, alkoxides, carboxylates, carbonates, oxalates, halides, and the like, in addition to the organic chelate titanium complex. As long as the effects of the present invention are not impaired, other titanium compounds may be used in combination with the organic chelate titanium complex.
- titanium compounds examples include tetra-n-propyl titanate, tetra-i-propyl titanate, tetra-n-butyl titanate, tetra-n-butyl titanate tetramer, tetra-t-butyl titanate, tetracyclohexyl titanate, Titanium alkoxide such as tetraphenyl titanate and tetrabenzyl titanate, titanium oxide obtained by hydrolysis of titanium alkoxide, titanium-silicon or zirconium composite oxide obtained by hydrolysis of a mixture of titanium alkoxide and silicon alkoxide or zirconium alkoxide, Titanium acetate, titanium oxalate, potassium potassium oxalate, sodium titanium oxalate, potassium titanate, sodium titanate, titanium titanate-aluminum hydroxide mixture, titanium chloride, titanium chloride Down - aluminum chloride mixture, and titanium acetylacetonate.
- Titanium alkoxide such
- Examples of the synthesis of Ti-based polyesters using such a titanium compound include, for example, Japanese Patent Publication No. 8-30119, Japanese Patent No. 2543624, Japanese Patent No. 3335683, Japanese Patent No. 3717380, Japanese Patent No. 3897756, Japanese Patent No. 396226, Japanese Patent No. 3978666, The methods described in Japanese Patent No. 3996687, Patent No. 40000867, Japanese Patent No. 4053837, Japanese Patent No. 4127119, Japanese Patent No. 4134710, Japanese Patent No. 4159154, Japanese Patent No. 4269704, Japanese Patent No. 431538, and the like can be applied.
- pentavalent phosphorus compound As the pentavalent phosphorus compound, at least one pentavalent phosphate having no aromatic ring as a substituent is used.
- pentavalent phosphate having no aromatic ring as a substituent is used.
- trimethyl phosphate triethyl phosphate, tri-n-butyl phosphate, trioctyl phosphate, tris phosphate (triethylene glycol), methyl acid phosphate, ethyl acid phosphate, isopropyl acid phosphate, butyl acid phosphate Monobutyl phosphate, dibutyl phosphate, dioctyl phosphate, triethylene glycol acid phosphate, and the like.
- the pentavalent phosphate ester when a chelate titanium complex coordinated with citric acid or a salt thereof is used as the catalyst as the titanium compound, the pentavalent phosphate ester has better polymerization activity and color tone than the trivalent phosphate ester. Furthermore, in the case of adding a pentavalent phosphate having 2 or less carbon atoms, the balance of polymerization activity, color tone, and heat resistance can be particularly improved.
- the amount of the phosphorus compound added is preferably such that the P element conversion value is in the range of 50 ppm to 90 ppm with respect to the total mass of the constituent components of the polyester resin.
- the amount of the phosphorus compound is more preferably 60 ppm to 80 ppm, and still more preferably 65 ppm to 75 ppm.
- Magneium compound Inclusion of the magnesium compound improves electrostatic applicability. In this case, although it is easy to color, in this invention, coloring is suppressed and the outstanding color tone and heat resistance are obtained.
- magnesium compound examples include magnesium salts such as magnesium oxide, magnesium hydroxide, magnesium alkoxide, magnesium acetate, and magnesium carbonate.
- magnesium acetate is most preferable from the viewpoint of solubility in ethylene glycol.
- the amount of magnesium compound added is preferably such that, in order to impart high electrostatic applicability, the Mg element conversion value is 50 ppm or more with respect to the total mass of the constituent components of the polyester resin, and is in the range of 50 ppm to 100 ppm. Is more preferred.
- the addition amount of the magnesium compound is preferably an amount that is in the range of 60 ppm to 90 ppm, more preferably 70 ppm to 80 ppm in terms of imparting electrostatic applicability.
- the titanium compound as the catalyst component and the magnesium compound and the phosphorus compound as the additives are set so that the value Z calculated from the following formula (i) satisfies the following inequality (ii). Particularly preferred is the case of adding and melt polymerizing.
- the P content is the amount of phosphorus derived from the entire phosphorus compound including the pentavalent phosphate ester having no aromatic ring
- the Ti content is the amount of titanium derived from the entire Ti compound including the organic chelate titanium complex. It is.
- a chelate titanium complex having 1 ppm or more and 30 ppm or less of citric acid or citrate as a ligand to the aromatic dicarboxylic acid and the aliphatic diol
- a magnesium salt of weak acid of 60 ppm or more and 90 ppm or less (more preferably 70 ppm or more and 80 ppm or less) is added, and after the addition, 60 ppm or more and 80 ppm or less (more preferably 65 ppm or more and 75 ppm or less).
- a pentavalent phosphate having no aromatic ring as a substituent is added.
- the esterification reaction can be carried out under conditions where ethylene glycol is refluxed while removing water or alcohol produced by the reaction out of the system.
- the esterification reaction may be performed in one stage or may be performed in multiple stages.
- the esterification reaction temperature is preferably 230 to 260 ° C, more preferably 240 to 250 ° C.
- the temperature of the esterification reaction in the first reaction tank is preferably 230 ° C. to 260 ° C., more preferably 240 ° C. to 250 ° C.
- the pressure is 1.0 kg / cm 2. It is preferably ⁇ 5.0 kg / cm 2 , more preferably 2.0 kg / cm 2 to 3.0 kg / cm 2 .
- the temperature of the esterification reaction in the second reaction tank is preferably 230 ° C.
- the conditions for the esterification reaction in the intermediate stage is 0.5 kg / cm 2 to 5.0 kg / cm 2 , more preferably 1 0.0 kg / cm 2 to 3.0 kg / cm 2 .
- the esterification reaction product produced by the esterification reaction is subjected to a polycondensation reaction to produce a polycondensate.
- the polycondensation reaction may be performed in one stage or may be performed in multiple stages.
- the esterification reaction product such as an oligomer generated by the esterification reaction is subsequently subjected to a polycondensation reaction.
- This polycondensation reaction can be suitably performed by supplying it to a multistage polycondensation reaction tank.
- the polycondensation temperature is preferably 260 to 300 ° C, more preferably 275 to 285 ° C.
- the pressure is 10 to 0.1 torr (1.33 ⁇ 10 ⁇ 3 to 1.33 ⁇ 10 ⁇ 5 MPa), more preferably 5 to 0.1 torr (6.67 ⁇ 10 ⁇ 4 to 6.67 ⁇ 10). ⁇ 5 MPa).
- the polycondensation reaction conditions are as follows.
- the first reaction tank has a reaction temperature of 255 to 280 ° C., more preferably 265 to 275 ° C.
- reaction temperature is 265 to 285 ° C., more preferably 270 to 280 ° C.
- the pressure is 20 to 1 torr (2.67 ⁇ 10 ⁇ 3 to 1.33 ⁇ 10 ⁇ 4 MPa), more preferably 10 to 3 torr (1 .33 ⁇ 10 ⁇ 3 to 4.0 ⁇ 10 ⁇ 4 MPa)
- the third reaction vessel in the final reaction vessel has a reaction temperature of 270 to 290 ° C., more preferably 275 to 285 ° C., and pressure 10 ⁇ 0.1t rr (1.33 ⁇ 10 -3 ⁇ 1.33 ⁇ 10 -5 MPa), a mode is more preferably from 5 ⁇ 0.1torr (6.67 ⁇ 10 -4 ⁇ 1.33 ⁇ 10 -5 MPa) preferable.
- the value Z calculated from the above formula (i), including the titanium atom (Ti), the magnesium atom (Mg), and the phosphorus atom (P), is the inequality (ii).
- a polyester resin composition satisfying the above can be generated.
- the polyester resin composition satisfies 0 ⁇ Z ⁇ + 5.0, the balance of the three elements of Ti, P, and Mg is appropriately adjusted, so that the polymerization reactivity is maintained. , Excellent in color tone and heat resistance (reduction of yellow coloring under high temperature), and high electrostatic applicability can be maintained.
- a polyester resin having high transparency and less yellowness can be obtained without using a color tone adjusting material such as a cobalt compound or a pigment.
- the formula (i) is a quantitative expression of the balance between the phosphorus compound, the magnesium compound, and the phosphorus compound, and the phosphorus content acting on the magnesium from the total amount of phosphorus that can be reacted. This represents the amount of phosphorus that can act on titanium. If the value Z is less than 0, that is, the amount of phosphorus acting on titanium is too small, the catalytic activity (polymerization reactivity) of titanium is increased, but the heat resistance is lowered, and the color of the resulting polyester resin is yellowish and polymerized. For example, it is colored at the time of film formation (melting) later, and the color tone is further lowered.
- the inequality (ii) preferably satisfies + 1.5 ⁇ Z ⁇ + 5.0, preferably satisfies + 1.5 ⁇ Z ⁇ + 4.0, and +1 More preferably, 5 ⁇ Z ⁇ + 3.0 is satisfied.
- Measurement of each element of Ti, Mg, and P is performed by using high resolution high frequency inductively coupled plasma-mass spectrometry (HR-ICP-MS, trade name: AttoM, manufactured by SII Nanotechnology Co., Ltd.). It can be carried out by quantifying and calculating the content [ppm] from the obtained results.
- HR-ICP-MS high resolution high frequency inductively coupled plasma-mass spectrometry
- the amount of terminal carboxyl groups (—COOH) (acid value (AV)), that is, the concentration of terminal carboxyl groups, is 25 eq / t (tons) or less with respect to the total mass of the polyester resin composition.
- the terminal carboxyl group concentration is 25 eq / t or less, the hydrolysis reaction caused by H + of the COOH group at the end of the polyester molecule can be reduced, so that the hydrolysis resistance of the polyester film is improved.
- the terminal carboxyl group concentration is preferably in the range of 5 to 25 eq / t.
- the lower limit value of the terminal carboxyl group concentration is preferably 5 eq / t in that the carboxyl group does not become too small.
- the intrinsic viscosity (Intrinsic Viscosity (IV)) of the polyester resin composition obtained by melt polymerization can be appropriately selected according to the purpose, but is preferably in the range of 0.40 or more and 0.65 or less, more preferably 0. .45 to 0.65, more preferably 0.50 to 0.63.
- IV is 0.40 or more, cohesive failure does not easily occur at the interface in close contact with the adherend, and good adhesion is easily obtained.
- concentration in melt polymerization is obtained as IV is 0.65 or less.
- Solid-phase polymerization may be a continuous method (a method in which a tower is filled with a resin, which is slowly heated for a predetermined period of time while being heated, and then sent out sequentially), or a batch method (a resin is charged into a container). , A method of heating for a predetermined time).
- the temperature of the solid phase polymerization is preferably 170 ° C. or higher and 240 ° C. or lower, more preferably 180 ° C. or higher and 230 ° C. or lower, and further preferably 190 ° C. or higher and 220 ° C. or lower. When the temperature is within the above range, it is preferable for achieving hydrolysis resistance.
- the solid phase polymerization time is preferably 5 hours to 100 hours, more preferably 10 hours to 75 hours, and still more preferably 15 hours to 50 hours. When the time is within the above range, it is preferable for achieving hydrolysis resistance.
- the solid phase polymerization is preferably performed in a vacuum or in a nitrogen atmosphere.
- the IV of the polyester resin composition after solid phase polymerization is preferably in the range of 0.68 to 0.95, more preferably in the range of 0.70 to 0.85.
- Polyester is produced by increasing the molecular weight beyond the chip by solid phase polymerization. For this reason, in order to make a component with melting
- the polyester chip after solid-phase polymerization is subjected to dust removal by a dust separator at an arbitrary stage in the air feeding path before melt extrusion.
- the melted polyester is made into chips with an underwater cutter, and fresh water is added so that the concentration of the chip powder in the cooling water to be used is 100 ppm or less.
- the -Extruder- Melt extrusion may be performed using an extruder.
- the extruder may be a single screw extruder or a twin screw extruder.
- a barrel having a supply port and an extruder outlet, each having a diameter of 140 mm or more It is preferable to use a twin-screw extruder provided with two rotating screws and temperature control means arranged around the barrel and controlling the temperature of the barrel.
- the raw material polyester resin is supplied to a twin screw extruder, and the resin temperature in the extruder has a maximum value in a range of 295 ° C. or less at a position of 40% to 80% of the total length of the extruder from the upstream end of the extruder.
- FIG. 1 schematically shows an example of the configuration of a twin-screw extruder used in carrying out a method for producing a polyester film according to an embodiment of the present invention.
- FIG. 2 shows an example of a flow for carrying out the method for producing the polyester film.
- a twin-screw extruder 100 shown in FIG. 1 is disposed around a cylinder 10 (barrel) having a supply port 12 and an extruder outlet 14, two screws 20A and 20B rotating in the cylinder 10, and the cylinder 10.
- Temperature control means 30 for controlling the temperature in the cylinder 10.
- a raw material supply device 46 is provided in front of the supply port 12. Further, a gear pump 44, a filter 42, and a die 40 are provided at the tip of the extruder outlet 14 as shown in FIG.
- the cylinder 10 has a supply port 12 for supplying the raw material resin and an extruder outlet 14 through which the heat-melted resin is extruded.
- a material that is excellent in heat resistance, wear resistance, and corrosion resistance and that can ensure friction with the resin.
- nitrided steel whose inner surface is nitrided is used, but chromium molybdenum steel, nickel chromium molybdenum steel, and stainless steel can also be nitrided and used.
- a bimetallic cylinder in which a corrosion-resistant and wear-resistant material alloy such as nickel, cobalt, chromium or tungsten is lined on the inner wall surface of the cylinder 10 by centrifugal casting. It is effective to use or form a ceramic sprayed coating.
- a corrosion-resistant and wear-resistant material alloy such as nickel, cobalt, chromium or tungsten
- the cylinder 10 is provided with vents 16A and 16B for drawing a vacuum. By evacuating through the vents 16A and 16B, volatile components such as moisture in the resin in the cylinder 10 can be efficiently removed. By appropriately arranging the vents 16A and 16B, raw materials (pellets, powders, flakes, etc.) in an undried state, crushed waste (fluffs) of the film produced during film formation, etc. can be used as raw material resins as they are. .
- the vents 16A and 16B are required to have an appropriate opening area and number of vents in relation to the deaeration efficiency.
- the twin screw extruder 100 desirably has one or more vents 16A and 16B.
- vents 16A and 16B are too large, there is a concern that the molten resin may overflow from the vent and there is a concern that the staying deterioration foreign matter may increase. Therefore, it is preferable to provide one or two vents.
- the resin staying on the wall surface near the vent or the deposited volatile component falls into the extruder 100 (cylinder 10), it may be manifested as a foreign substance in the product, so care must be taken.
- optimization of the shape of the vent lid and appropriate selection of the upper vent and the side vent are effective, and precipitation of volatile components is generally performed by a method of preventing precipitation by heating the piping or the like.
- oxidative decomposition can be suppressed by evacuating the resin supply port 12 or performing a nitrogen purge. Further, by providing the vents 16A and 16B at a plurality of locations, even when the raw material moisture content is about 2000 ppm, the same extrusion as when the resin dried to 50 ppm or less is extruded on a single axis is possible.
- the vent pressure is preferably 0.01 Torr to 5 Torr (1.333 Pa to 666.5 Pa). More preferably, the pressure is set at 01 Torr to 4 Torr (1.333 Pa to 533.2 Pa).
- two screws 20 ⁇ / b> A and 20 ⁇ / b> B that are rotated by a driving unit 21 including a motor and a gear are provided.
- the screw diameter D is preferably 30 to 250 mm or less, and more preferably 50 to 200 mm or less.
- the twin screw extruder is roughly divided into a meshing type and a non-meshing type of the two screws 20A and 20B, and the meshing type has a larger kneading effect than the non-meshing type.
- any of a meshing type and a non-meshing type may be used, but it is preferable to use a meshing type from the viewpoint of sufficiently kneading the raw material resin and suppressing melting unevenness.
- the rotational directions of the two screws 20A and 20B are divided into the same direction and different directions.
- the different-direction rotating screws 20A and 20B have a higher kneading effect than the same-direction rotating type, and the same-direction rotating type has a self-cleaning effect, which is effective for preventing retention in the extruder.
- the axial direction of the screw is also parallel and oblique, and there is also a conical type shape used when applying strong shear.
- screw segments of various shapes can be used.
- As the shape of the screws 20 ⁇ / b> A and 20 ⁇ / b> B for example, a full flight screw provided with a single spiral flight 22 having an equal pitch is used.
- a segment that imparts shear such as a kneading disk or a rotor, in the heating and melting part, the raw material resin can be more reliably melted.
- a reverse screw or a seal ring it is possible to dam the resin and form a melt seal when pulling the vents 16A and 16B.
- kneading parts 24A and 24B that promote melting of the raw material resin as described above can be provided in the vicinity of the vents 16A and 16B.
- a temperature control zone for cooling the molten resin is effective.
- the heat transfer efficiency of the cylinder 10 is higher than the shear heat generation, for example, by providing a screw 28 with a short pitch in the temperature control zone (cooling section), the resin moving speed of the wall surface of the cylinder 10 is increased and the temperature control efficiency is increased. Can do.
- a temperature control means 30 is provided around the cylinder 10.
- heating / cooling devices C1 to C9 divided into nine in the longitudinal direction from the raw material supply port 12 to the extruder outlet 14 constitute the temperature control means 30.
- the heating / cooling devices C1 to C9 arranged separately around the cylinder 10 are divided into, for example, heating / melting parts C1 to C7 and cooling parts C8 and C9, and the inside of the cylinder 10 is divided. Each region can be controlled to a desired temperature.
- the heating is usually performed using a band heater or a sheathed wire aluminum cast heater, but is not limited thereto, and for example, a heating medium circulating heating method can also be used.
- air cooling by a blower is generally used for cooling, but there is also a method of flowing water or oil through a pipe (water passage) wound around the cylinder 10.
- a die 40 is provided at the extruder outlet 14 of the cylinder 10 for discharging the molten resin extruded from the extruder outlet 14 into a film (strip shape). Further, a filter 42 is provided between the extruder outlet 14 of the cylinder 10 and the die 40 to prevent unmelted resin and foreign matter from entering the film.
- the time from when the raw material resin melted by heating in the barrel exits from the exit of the extruder until it is extruded into a film from the die (the time required for the process indicated by the double arrow in FIG. 2) is referred to as “residence time”. Called.
- a gear pump 44 may be provided between the extruder 100 and the die 40 in order to reduce the variation in the extrusion amount as much as possible. By supplying a certain amount of resin from the gear pump 44, the thickness accuracy can be improved. In particular, when using a twin screw extruder, it is preferable to stabilize the extrusion by the gear pump 44 because the pressurization capacity of the extruder itself is low.
- the pressure fluctuation on the secondary side of the gear pump 44 can be reduced to 1/5 or less on the primary side, and the resin pressure fluctuation range can be within ⁇ 1%.
- the gear pump 44 is installed, the length of the equipment becomes long depending on the equipment selection method, and the residence time of the resin becomes long, and the shearing stress of the gear pump section may cause the molecular chain to be broken. It is.
- the differential pressure during operation is set to 20 MPa or less, preferably 15 MPa, and more preferably 10 MPa or less. In order to make the film thickness uniform, it is also effective to control the screw rotation of the extruder or to use a pressure control valve in order to keep the primary pressure of the gear pump 44 constant.
- a polyester resin having an intrinsic viscosity IV of 0.68 to 0.95 is supplied as a raw material from the supply port, and the temperature of the inner wall of the barrel on the outlet side of the extruder is set to the melting point Tm (° C.) of the polyester resin by the temperature control means.
- Tm melting point
- the following inequality (1) is satisfied after the average residence time of 10 to 20 minutes after heating and melting in the barrel while being controlled so as to become a cooling part and extruding from the extruder outlet. It is preferable to form a polyester film by performing melt extrusion into a film under conditions.
- the above extrusion method it is possible to melt and extrude into a sheet while suppressing deterioration of the polyester resin having an IV of 0.68 to 0.95.
- segments such as kneading are not provided as much as possible within a range in which both extrusion and degassing can be achieved.
- the pitch of the screw located in the cooling section is 0.5D to 0.8D with respect to the screw diameter D. It is preferable that
- a gear pump may be provided between the extruder and the die in order to reduce the variation in the extrusion amount as much as possible. By supplying a certain amount of resin from the gear pump, the thickness accuracy can be improved. In particular, when a twin screw extruder is used, it is preferable to stabilize the extrusion with a gear pump because the pressure raising capability of the extruder itself is low.
- polyester resin raw material (raw material resin) having an intrinsic viscosity IV of 0.68 to 0.95 as described above, heat the barrel by temperature control means, rotate the screw, and supply the raw material resin from the supply port .
- the raw material resin supplied into the barrel is melted by the heat generated by the friction between the resins accompanying the rotation of the screw, the friction between the resin and the screw or the barrel, and the rotation of the screw. And gradually move toward the exit of the extruder.
- the raw material resin supplied into the barrel is heated to a temperature equal to or higher than the melting point Tm (° C.).
- the cylinder 10 is heated by the temperature control means 30 and the screw is rotated to supply the polyester resin raw material (raw material resin) from the supply port 12.
- the supply port 12 is preferably cooled to prevent heat transfer of the raw material resin pellets and the like, and to protect the screw drive equipment such as the motor.
- the raw material resin supplied into the cylinder is melted not only by heating by the temperature control means 30, but also by heat generated by friction between the resins accompanying rotation of the screws 20A and 20B, friction between the resin and the screws 20A and 20B and the cylinder 10, and the like. And gradually moves toward the extruder outlet 14 as the screw rotates.
- the raw material resin supplied into the cylinder is heated to a temperature equal to or higher than the melting point Tm (° C.). If the resin temperature is too low, melting at the time of melt extrusion may be insufficient, making it difficult to discharge from the die 40. If the resin temperature is too high, the terminal COOH group concentration is significantly increased due to thermal decomposition, resulting in poor hydrolysis resistance. Can be invited.
- the resin temperature in the extruder is positioned 40% to 80% of the total length of the extruder from the upstream end of the extruder.
- the melt extrusion is carried out so that the resin has a maximum value of 295 ° C. or less and the resin temperature at the exit of the extruder is 275 ° C. to 285 ° C.
- the upstream end of the extruder means the root position where the screw groove is located.
- the maximum value of the resin temperature in the twin screw extruder is less than a temperature 10 ° C. higher than the melting point of the resin (melting point + 10 ° C.), a part of the molten resin may solidify to generate an unmelted resin, which is higher than the melting point of the resin.
- the temperature exceeds 35 ° C. melting point + 35 ° C.
- the crystallization temperature becomes high, and it may be difficult to control the crystallinity within a specific range.
- the terminal COOH group concentration of the resin increases, and the hydrolysis resistance can be greatly reduced. From such a viewpoint, in one embodiment, the maximum value of the resin temperature in the twin-screw extruder is the melting point of the resin + 10 ° C.
- the melting point of the resin + 35 ° C. or less preferably the melting point of the resin + 15 ° C. or more and the melting point of the resin + 35 ° C. or less.
- the melting point of the resin + 20 ° C. or higher and the melting point of the resin + 30 ° C. or lower is particularly preferable.
- the maximum value of the resin temperature in the twin screw extruder is at a position less than 40% of the total length of the extruder from the upstream end of the extruder, the heat generation becomes large and it becomes difficult to sufficiently reduce the outlet resin temperature. If it is at a position exceeding 80%, the resin cooling effect due to cooling becomes insufficient.
- the maximum value of the resin temperature in the twin-screw extruder is 40% to 80% of the total length of the extruder from the upstream end of the extruder, and 45% to 70% of the total length of the extruder.
- the position is preferably at a position of 50% to 60%.
- the conventional general melt extrusion is usually extruded at about 300 ° C., but if the resin temperature at the exit of the extruder is less than 275 ° C., unmelted foreign matter can be generated, If it exceeds 285 ° C., the terminal COOH increases and the hydrolysis resistance may be greatly reduced.
- the resin temperature at the exit of the extruder can be 275 ° C. to 285 ° C., preferably 278 ° C. to 283 ° C., more preferably 280 ° C. to 282 ° C.
- air cooling may be used, but it is preferable to control the temperature at the exit of the cylinder with a liquid heat medium.
- a liquid heat medium for example, in the heating / cooling device C9 arranged near the outlet of the cylinder, a water passage is provided so as to surround the cylinder, and a liquid such as water is passed through the water passage so that the resin temperature at the outlet of the extruder is efficiently increased. It can be lowered and controlled accurately.
- the cylinder temperature at the tip of the extruder outlet side is preferably less than the melting point of the polyester resin. If the cylinder temperature at the tip of the extruder outlet is controlled to be lower than the melting point of the polyester resin, the resin at the extruder outlet can be efficiently cooled to control the resin temperature between 275 ° C. and 285 ° C. However, if the cylinder temperature is too low, the molten resin may be solidified. Therefore, the cylinder temperature at the end of the extruder outlet is preferably 150 ° C. or higher than the melting point of the polyester resin. More preferably, the temperature is 100 ° C. lower than the melting point.
- the work of the screw is transferred to the resin as frictional heat and is greatly related to the resin temperature.
- the extrusion amount (kg / h) is Q and the heat capacity (J / kgK) of the polyester resin is Cp
- the specific power of the extruder with respect to the polyester resin can be calculated from the screw current and the voltage as the work amount of the screw.
- the heat exchange amount Epoly (J / s) of the polyester resin is calculated by the following formula.
- Epoly QCp (Tout ⁇ Tin) + QE (Q: resin discharge rate (kg / s), Cp: resin heat capacity (J / kg ° C.), Tout: extruder exit resin temperature (° C.), Tin: raw material temperature (° C.), E: latent heat of fusion (J / Kg))
- the polyester resin will melt by giving the heat exchange amount Epoly of the polyester resin, but the viewpoint of reliably suppressing the increase in the terminal COOH while reliably suppressing the remaining of the unmelted resin and the solidification of the molten resin. Therefore, it is preferable to add the heat amount (work amount) to the heat exchange amount of the polyester resin within a certain range. If the specific power Esp of the extruder with respect to the polyester resin is larger than (Epoly + 20QCp), the remaining of the unmelted resin and the solidification of the molten resin can be suppressed, while if smaller than (Epoly + 50QCp), the increase in the terminal COOH is suppressed. can do.
- the specific power Esp of the extruder with respect to the polyester resin more preferably satisfies the relationship of the following inequality (3), and more preferably satisfies the relationship of the inequality (4).
- the temperature-induced crystallization temperature Tc (° C.) of the strand cooled by water after the polyester resin is melt-extruded by a twin screw extruder is 130 ⁇ Tc ⁇ 150.
- the polyester resin obtained by melting and extruding the polyester resin by controlling the resin temperature in the twin screw extruder and the resin temperature at the outlet of the extruder (strand) is heated by DSC (differential scanning calorimetry).
- the crystallization temperature Tc (° C.) is measured.
- Tc is low (about 120 ° C.), but if Tc is greater than 130, there is almost no unmelted resin, and if Tc is less than 150, decomposition of the resin is suppressed and sufficient weather resistance is achieved. Can be obtained.
- the vent pressure is preferably 0.01 Torr to 5 Torr (1.333 Pa to 666.5 Pa), and 0.01 Torr to 4 Torr. (1.333 Pa to 533.2 Pa) is more preferable.
- the average time (average residence time) from when the raw material resin is heated and melted in the barrel, after exiting the extruder exit, and extruded from the die into a film is preferably 10 to 20 minutes. If the average residence time is less than 10 minutes, the unmelted resin tends to remain. On the other hand, if it exceeds 20 minutes, the terminal carboxyl group concentration increases due to thermal decomposition and the hydrolysis resistance decreases. From such a viewpoint, the average residence time is preferably 10 minutes to 20 minutes, more preferably 10 minutes to 15 minutes.
- the inner wall on the barrel extruder outlet side is controlled by the temperature control means so as to be a cooling portion having a melting point Tm (° C.) or less of the polyester resin (raw material resin).
- Tm melting point
- the inner wall of the barrel outlet side of the extruder is used as a cooling section and controlled to be equal to or lower than the melting point Tm (° C.) of the raw material resin, it is possible to suppress the resin from being heated excessively and increasing the terminal carboxyl group concentration.
- the temperature in the cooling section is preferably within the range of (Tm ⁇ 150) ° C. to Tm ° C., and within the range of (Tm ⁇ 100) ° C. to (Tm) ° C. Is more preferable.
- the length of the cooling part is preferably 4D to 11D with respect to the screw diameter D. If the length of the cooling part is 4D or more, the molten and heated resin is effectively cooled to suppress an increase in the terminal carboxyl group concentration. On the other hand, if the length of the cooling part is 11D or less, it is possible to prevent the resin from being overcooled and solidified, and to smoothly perform melt extrusion. It is preferable that the resin temperature Tout at the exit of the extruder is Tm + 30 ° C. or less. However, if the resin temperature Tout at the exit of the extruder is too low, part of the molten resin may be solidified. Therefore, the resin temperature Tout at the exit of the extruder is more preferably Tm to (Tm + 25) ° C. or less (Tm + 10 ) ° C. to (Tm + 20) ° C. is more preferable.
- the screw rotation speed N is preferably 1.9 ⁇ 10 2 ⁇ D ⁇ 0.5 rpm to 8.4 ⁇ 10 2 ⁇ D ⁇ 0.5 rpm, 6.3 ⁇ 10 2 ⁇ D ⁇ 0.5 rpm to 7 9 ⁇ 10 2 ⁇ D ⁇ 0.5 rpm is more preferable.
- the extrusion amount Q is too small, it is likely to be heated excessively, and when it is too large, unmelted resin is likely to be generated.
- the extrusion rate Q is preferably 1.1 ⁇ 10 ⁇ 3 ⁇ D 2.5 kg / hr to 7.6 ⁇ 10 ⁇ 3 ⁇ D 2.5 kg / hr, and 3.8 ⁇ 10 ⁇ 3 ⁇ D 2.5 More preferably, kg / hr to 7.1 ⁇ 10 ⁇ 3 ⁇ D 2.5 kg / hr.
- the resin extruded from the extruder outlet of the barrel is passed through a filter and extruded from a die (for example, to a cooling roll) to be formed into a film.
- the humidity it is preferable to adjust the humidity to 5% RH to 60% RH and to 15% RH to 50% RH during the period from when the melt (molten resin) is extruded from the die until it contacts the cooling roll (air gap). It is more preferable to adjust. It is possible to adjust the amount of COOH and OH on the film surface by adjusting the humidity in the air gap to the above range, and the amount of carboxylic acid on the film surface can be reduced by adjusting to low humidity. . According to the above method, by increasing the resin temperature once and then decreasing it at the cooling section, it is possible to suppress the increase in the amount of terminal COOH, to suppress the generation of unmelted foreign matter, and to control the haze increase of the film. The effect which becomes easy is acquired.
- the thickness of the unstretched film is preferably 2.5 mm to 8 mm, more preferably 2.5 mm to 7 mm, and still more preferably 2.5 mm to 5 mm.
- Tg glass transition temperature
- the polyester to be melt-extruded preferably has a half-value width of the temperature drop crystallization temperature of 25 ° C. or more and 50 ° C. or less.
- the physical property that the half-value width of the temperature-falling crystallization temperature is 25 ° C. or more and 50 ° C. or less may be provided in the polyester (molten resin) when melt-extruded from the extruder. That is, before the polyester as the raw material is put into the extruder, it is melted and passes through the extruder even if it has no physical property that the half-value width of the temperature drop crystallization temperature is 25 ° C. or more and 50 ° C. or less.
- the half-value width of the cooling crystallization temperature is 25 ° C. or more and 50 ° C. or less.
- the half-value width of temperature-fall crystallization exceeds 50 ° C., the crystallization speed of the unstretched sheet tends to be too low. If the full width at half maximum is less than 25 ° C., the crystallization speed of the unstretched sheet becomes too high, and the stretching characteristics can be deteriorated.
- the half-value width of the temperature-falling crystallization temperature of the melt-extruded polyester is within such a range, crystallization can be suppressed in the cooling step described later. More specifically, by setting the half-value width of the temperature-falling crystallization temperature to 25 ° C. or more, it is possible to suppress the generation of spherulites in the cooling step, and by setting it to 50 ° C. or less, crystal growth Can be suppressed.
- the cooling crystallization temperature is determined by measuring the calorific value of the molten resin using a differential scanning calorimetry (DSC) manufactured by Shimadzu Corporation while cooling the molten resin.
- DSC differential scanning calorimetry
- Tc the temperature at the apex of the obtained exothermic peak
- Tc the temperature at the apex of the obtained exothermic peak
- the heat generation absorption causes the DSC curve from the baseline.
- the temperature width between the temperature at which the peak begins to rise and the temperature at which the heat generation absorption disappears and reaches the baseline is defined as the half-value width.
- the full width at half maximum of the temperature-falling crystallization temperature (Tc) is preferably 25 ° C. or higher and 40 ° C. or lower, and more preferably 30 ° C. or higher and 37 ° C. or lower.
- the temperature lowering crystallization temperature is preferably 160 ° C. or higher and 220 ° C. or lower.
- the cooling rate can be increased when the temperature-falling crystallization temperature is 160 ° C. or more (at a low temperature, the temperature difference with the refrigerant is small and the cooling rate cannot be achieved), and when it is 220 ° C. or less, crystallization starts. Can be late.
- the temperature-falling crystallization temperature is more preferably 170 ° C. or higher and 210 ° C. or lower.
- the half width of the temperature-falling crystallization temperature of the polyester to be melt-extruded can be controlled, for example, by giving a fluctuation such as a pressure fluctuation to the molten resin in the extruder.
- a fluctuation such as a pressure fluctuation
- the pressure at which the molten resin is extruded that is, the back pressure is changed
- the temperature inside the extruder is changed to change the temperature distribution of the molten resin, or the screw speed of the extruder is changed.
- the back pressure, temperature distribution, screw rotation speed, etc. and setting the full width at half maximum to 25 ° C. or more and 50 ° C. or less, thermal decomposition products are easily generated in the molten resin.
- the molten resin contains a pyrolyzate, it will be difficult to grow crystals even if spherulites are generated in the molten resin, and as a result, the crystallization of the polyester sheet can be controlled. It is done.
- the half-value width of the temperature drop crystallization temperature of the molten resin is easily set to 25 ° C. or more and 50 ° C. or less. If the numerical range of the pressure or temperature fluctuation shown below is smaller than the lower limit, the half-value width of the temperature-falling crystallization temperature is difficult to be 25 ° C. If it is larger than the upper limit, thermal decomposition of the molten resin occurs too much, and on the contrary There is a risk of promoting crystallization.
- the back pressure is preferably varied by applying pressure in the range of 0.5% to 1.5% with respect to the average pressure in the extruder barrel. The back pressure fluctuation is more preferably 0.8% or more and 1.1% or less.
- the temperature distribution of the molten resin is preferably changed by heating in the range of 0.5% to 4% with respect to the average temperature in the extruder barrel. Further, it is more preferably 0.8% or more and 2.5% or less.
- controlling the half-value width of the temperature-falling crystallization temperature of polyester only one of back pressure, temperature distribution, and screw rotation speed may be changed, or two or more may be changed in combination. As described above, by controlling the temperature-falling crystallization temperature of the polyester, the crystallization speed of the sheet-like polyester can be easily controlled. Control.
- the cooling step it is preferable to cool the melt-extruded sheet-like polyester so that the surface temperature of the polyester decreases at 350 ° C./min or more and 590 ° C./min or less.
- the thickness of the polyester sheet is large, a difference is likely to occur between the cooling rate of the polyester surface, which is the cooling surface, and the cooling rate inside the polyester.
- the cooling rate is slow, spherulites are generated inside the polyester sheet, and voids are generated during stretching or breakage tends to occur. For this reason, it is preferable to cool the polyester by forced cooling from the surface opposite to the cooling drum.
- the cooling rate of the molten resin is more preferably 370 ° C./min or more and 590 ° C./min or less, and particularly preferably 400 ° C./min or more and 590 ° C./min or less.
- the cooling means cools the molten resin extruded from the extruder. It is preferable that the molten resin is cooled in contact with the cooling cast drum.
- Cooling with cold air is preferable when the temperature of the cold air is low. However, since the cooling cost of the supply air increases, it can also be performed at a temperature near room temperature as long as haze control of the sheet-like polyester is possible.
- the cold air temperature is preferably 0 ° C. or more and 50 ° C. or less, more preferably 5 ° C. or more and 40 ° C. or less, and further preferably 10 ° C. or more and 35 ° C. or less.
- the wind speed is preferably higher from the viewpoint of cooling, but if the wind speed is excessively increased, the flatness of the sheet surface is impaired.
- it is preferably 20 m / sec or more and 70 m / sec or less, more preferably 40 m / sec or more and 65 m / sec or less, and further preferably 50 m / sec or more and 60 m / sec or less.
- the temperature of the cooling cast drum is preferably from ⁇ 10 ° C. to 30 ° C., more preferably from ⁇ 5 ° C. to 25 ° C., still more preferably from 0 ° C. to 15 ° C. Furthermore, from the viewpoint of improving the adhesion between the molten resin and the cooling cast drum and increasing the cooling efficiency, it is preferable to apply static electricity before the molten resin contacts the cooling cast drum. In addition, it is preferable to adjust the haze of the target sheet by changing the temperature and speed of the cooling air and the temperature of the cooling drum.
- Tg-10 ⁇ TL ⁇ Tg Inequality (8) [In inequality (8), Tg indicates the glass transition temperature (° C.) of the polyester, and TL indicates the surface temperature of the cooled polyester. ]
- the polyester sheet when the surface temperature TL of the cooled polyester sheet becomes lower than the glass transition temperature Tg of the polyester, it is preferable to peel the polyester sheet from the cooling cast drum. Moreover, it is preferable to peel the polyester sheet from the cooling cast drum before the surface temperature TL of the cooled polyester sheet becomes 10 ° C. or lower than the glass transition temperature Tg of the polyester.
- the polyester sheet When the surface temperature TL of the cooled polyester sheet is lower than the glass transition temperature Tg of the polyester, the polyester sheet is sufficiently solidified and the flexibility is reduced, so that a part of the polyester sheet is extended at the time of peeling. Etc. can be suppressed.
- the surface temperature TL of the cooled polyester sheet is peeled off at a temperature higher than a temperature 10 ° C. lower than the glass transition temperature Tg of the polyester, defects such as cracks in the polyester sheet can be suppressed.
- the glass transition temperature (Tg) of the polyester that is the raw material for the polyester sheet is not particularly limited, but is preferably 65 ° C. or higher and 80 ° C. or lower, and more preferably 70 ° C. or higher and 80 ° C. or lower.
- peeling of the cooled polyester from the cooling cast drum is performed using a peeling roll disposed so as to face the cooling cast drum.
- the cooled polyester can be peeled off without imparting a biased tensile stress, so that the cooled polyester is hardly damaged.
- the roll diameter of the peeling roll satisfies the following inequality (9) between the roll diameter of the cooling cast drum. (D1 / D2) ⁇ 7 inequality (9) [In inequality (9), D1 shows the roll diameter of a cooling cast drum, D2 shows the roll diameter of a peeling roll.
- the roll diameter of the peeling roll satisfies the following inequality (9-2) between the roll diameter of the cooling cast drum. 3 ⁇ (D1 / D2) ⁇ 7 Inequality (9-2) [In inequality (9-2), D1 represents the roll diameter of the cooling cast drum, and D2 represents the roll diameter of the peeling roll. ]
- D1 / D2 is 3 or more, when the cooled polyester is peeled off from the cooling cast drum, the polyester can be peeled off along the peeling roll without being biased.
- the glass transition temperature Tg of polyester is measured using the above-mentioned DSC. Specifically, 10 mg of a polyester sheet is weighed as a sample, set in an aluminum pan, and the amount of heat with respect to temperature is measured with a DSC apparatus while raising the temperature from room temperature to a final temperature of 300 ° C. at a heating rate of 10 ° C./min. The temperature at which the DSC curve bends was taken as the glass transition temperature. In addition, melting
- a polyester sheet having a thickness of 2.5 mm or more and 8 mm or less is obtained by the above polyester sheet manufacturing method. If the thickness exceeds 5 mm, the cooling rate in the vicinity of the central portion in the thickness direction of the molten resin is excessively lowered, and the haze is likely to increase rapidly. Therefore, means for further increasing the cooling rate may be used in combination. Specifically, as a preferred example, there is a method of mixing water mist with cooling air and performing cooling by latent heat of vaporization.
- the thickness of the sheet is preferably 2.5 mm to 7 mm, more preferably 2.5 mm to 5 mm. If the thickness of the polyester sheet is less than 3 mm, when the thickness of the biaxially stretched film is 200 ⁇ m or more, the stretch ratio must be lowered, resulting in a film having a small breaking stress.
- a preferred biaxially stretched film for example, when producing a biaxially stretched film having a thickness of 250 ⁇ m, an internal haze of 1.5%, an external haze of 2.0%, and a breaking stress of 210 MPa, an unstretched polyester film formed on a cooling drum is For example, it is preferable to mold so that the thickness is 3.0 to 3.5 mm and the external haze is 30 to 80%.
- An unstretched polyester film having a thickness of 2.5 mm or more and 7.0 mm or less is preferably stretched in a stretching process described later.
- an unstretched polyester film is heated by a preheating roll and then stretched by a stretching roll while being heated by a near infrared heater or a far infrared heater.
- the unstretched polyester film subjected to stretching satisfies the relationship that the average temperature T1 (° C.) is represented by the above formula (1), and the surface temperature is 0.3 ° C. or more and less than 15 ° C. than the center temperature. It is preferable to heat so that it may become high.
- the surface of the film can be suppressed to such an extent that generation of scratches during stretching can be suppressed. While the vicinity can be softened, the orientation can be maintained inside the film.
- a thick unstretched polyester film having a thickness of 2.5 mm or more and 7.0 mm or less can be stretched without suppressing the occurrence of scratches and without reducing the orientation of the film.
- the polyester film is excellent in both hydrolysis resistance and voltage resistance while maintaining the smoothness of the film surface.
- the average temperature T1 (° C.) of the unstretched polyester film is an average value of the surface temperature and the center temperature of the heated unstretched polyester film.
- the detail of the measuring method of temperature is as showing below.
- the surface temperature of the film is measured by attaching a thermocouple to two surfaces (both sides) of the film to be measured.
- the center temperature of the film is measured by embedding a thermocouple in the center in the film thickness direction of the film to be measured.
- the measurement range is set so that the measurement start point is 3 m before the stretching start point (length in the film transport direction) from the measurement starting point to the stretching start point for both the surface temperature and the center temperature of the film.
- the “stretch start point” means a point where the conveyed unstretched polyester film comes into contact with the stretching roll.
- the measurement is performed by measuring both the surface temperature and the center temperature of the film every time 100 msec elapses from the measurement start point and the measurement start.
- the average temperature T1 (° C.) is calculated by calculating an average value of the measured surface temperature and center temperature for each measurement point and arithmetically averaging them.
- the difference between the surface temperature and the center temperature of the film is calculated by calculating a value obtained by subtracting the center temperature from the measured surface temperature for each measurement point, and averaging these values.
- the aspect which adjusts the temperature of a preheating roll the aspect which adjusts the temperature of a preheating roll and the temperature around a preheating roll, the aspect which adjusts the distance between rolls, and a film conveyance speed are mentioned.
- the average temperature T1 (° C.) of the unstretched polyester film more preferably satisfies the relationship of the following inequality (10-2).
- Tg-10 ° C ⁇ T1 ⁇ Tg + 20 ° C inequality (10-2) [In the inequality (10-2), Tg represents the glass transition temperature (° C.) of the polyester resin. ]
- the relationship between the surface temperature of the unstretched polyester film heated by the preheating roll and the center temperature is more preferably higher than the center temperature by 1 ° C. or more and 10 ° C. or less.
- the surface temperature of the preheating roll used for heating the unstretched polyester film and the ambient atmosphere temperature are both temperatures T2 (° C.) satisfying the relationship represented by the following inequality (11).
- Tg-25 ° C ⁇ T2 ⁇ Tg + 40 ° C Inequality (11) [In inequality (11), Tg represents the glass transition temperature (° C.) of the polyester. ]
- the surface temperature of the preheating roll and the ambient atmosphere temperature are the surface temperatures of all the preheating rolls, and the ambient atmosphere temperature of these preheating rolls is the above inequality (11). It is preferable to satisfy the relationship shown.
- T2 ° C.
- the surface temperature of the preheating roll can be measured with a radiation thermometer (trade name: model number RT60, manufactured by Chino Corporation).
- the ambient temperature of the preheating roll is a measurement value obtained by measuring a temperature (° C.) at a position in the surrounding space on the surface of the preheating roll and not affected by heat radiation from the preheating roll with a thermocouple.
- Examples of methods for adjusting the ambient temperature around the preheating roll so as to satisfy the relationship shown by inequality (11) include hot air blowing, heating with an IR heater, and a casing made of heat insulating material around the preheating roll.
- One of the preferred embodiments of the stretching method is that while the atmospheric temperature of the preheating roll is controlled, the unstretched polyester film is preheated with the preheating roll and the heating is started with the near infrared heater at a predetermined speed ratio.
- This is a stretching method in which longitudinal uniaxial stretching is performed in the transport direction with a stretching roll adjusted to, and then lateral stretching is performed with a tenter.
- Biaxial stretching is, for example, a longitudinal stretching of a polyester sheet in the longitudinal direction of the polyester sheet, a stretching stress of 5 MPa to 20 MPa, and a stretching ratio of 2.5 to 4.5, and a stretching ratio in the width direction. May be stretched by 2.5 to 5 times.
- the polyester sheet is led to a roll group heated to a temperature of 70 ° C. or higher and 120 ° C. or lower, and the stretching stress is 5 MPa or higher and 20 MPa or lower in the longitudinal direction (longitudinal direction, that is, the film traveling direction), and Further, it is possible to perform longitudinal stretching in which the stretching ratio is 2.5 to 4.5 times, more preferably, the stretching stress is 8 to 18 MPa and the stretching ratio is 3.0 to 4.0 times. It is preferable to cool with the roll group of the temperature of 20 to 50 degreeC after longitudinal stretching.
- the stretching stress is 8 MPa or more and 20 MPa in the direction perpendicular to the longitudinal direction, that is, in the width direction. It is preferable that the transverse stretching is performed at a stretching ratio of 3.4 times or more and 4.5 times or less, a stretching stress of 10 MPa or more and 18 MPa or less, and a stretching ratio of 3.6 times or more and 5 times or less. More preferably, transverse stretching is performed.
- the stretching area ratio (longitudinal stretching ratio ⁇ lateral stretching ratio) by biaxial stretching is preferably 9 to 20 times.
- the area magnification is 9 times or less, the breaking stress of the biaxially stretched film becomes small, and the weather resistance performance of the film is lowered.
- the stretching area ratio is 20 times or more, the stretching tension becomes enormous, and the cost of equipment (such as a high-tension roll and an ultra-high torque motor) that can withstand this becomes expensive. Further, since the film is easily broken during stretching, productivity is lowered.
- a more preferable stretching area ratio is 10 times or more and 18 times or less. From the viewpoint of uniformity such as breaking stress in the longitudinal and lateral biaxial directions of the film, the longitudinal / lateral stretching ratio is preferably 0.5 to 1.3, and more preferably 0.6 to 1.2.
- the biaxial stretching method may be a sequential biaxial stretching method in which the stretching in the longitudinal direction and the width direction are separated, and simultaneous biaxial stretching in which stretching in the longitudinal direction and the width direction is performed simultaneously. Any of the methods may be used.
- a colored layer including a light reflecting layer that reflects sunlight
- a battery substrate base material for example, EVA sealing
- One or a plurality of functional layers such as an easy-adhesive layer that enhances the adhesiveness to the material) may or may not be provided.
- an undercoat layer can be provided between the surface of the polyester film serving as the polymer support and the functional layer.
- the coating film may be dried, or the coating liquid may be applied to the polyester film after uniaxial stretching. After the coating is applied and the coating film is dried, it may be stretched in a direction different from the initial stretching. Furthermore, you may extend
- the thickness of the undercoat layer is preferably in the range of 2 ⁇ m or less, more preferably 0.005 ⁇ m to 2 ⁇ m, and still more preferably 0.01 ⁇ m to 1.5 ⁇ m. When the thickness is 0.005 ⁇ m or more, it is easy to avoid the occurrence of coating unevenness.
- the undercoat layer preferably contains one or more polymers selected from the group consisting of polyolefin resins, acrylic resins, polyester resins, and polyurethane resins.
- polystyrene resin for example, a modified polyolefin copolymer is preferable.
- Commercially available products may be used as the polyolefin resin, for example, Arrow Base (registered trademark) SE-1013N, Arrow Base (registered trademark) SD-1010, Arrow Base (registered trademark) TC-4010, Arrow Base (registered trademark).
- TD-4010 manufactured by Unitika Ltd.
- Hitech S3148, Hitech S3121, Hitech S8512 all trade names, manufactured by Toho Chemical Co., Ltd.
- Chemipearl (registered trademark) S-120, Chemipearl (registered trademark) S-75N Chemipearl (registered trademark) V100, Chemipearl (registered trademark) EV210H manufactured by Mitsui Chemicals, Inc.
- Arrow Base registered trademark
- SE-1013N manufactured by Unitika Ltd.
- acrylic resin for example, a polymer containing polymethyl methacrylate, polyethyl acrylate, or the like is preferable.
- acrylic resin a commercially available product may be used.
- AS-563A (trade name, manufactured by Daicel Einchem Co., Ltd.) can be preferably used.
- polyester resin for example, polyethylene terephthalate (PET), polyethylene-2,6-naphthalate (PEN) and the like are preferable.
- PET polyethylene terephthalate
- PEN polyethylene-2,6-naphthalate
- the polyester resin a commercially available product may be used.
- Vylonal (registered trademark) MD-1245 manufactured by Toyobo Co., Ltd.
- the polyurethane resin for example, a carbonate-based urethane resin is preferable, and for example, Superflex (registered trademark) 460 (manufactured by Daiichi Kogyo Seiyaku Co., Ltd.) can be preferably used.
- a polyolefin resin from the viewpoint of ensuring adhesion between the polymer support and the white layer.
- These polymers may be used alone or in combination of two or more. When using 2 or more types together, the combination of an acrylic resin and polyolefin resin is preferable.
- the undercoat layer contains a crosslinking agent
- the durability of the undercoat layer can be improved.
- the crosslinking agent include an epoxy crosslinking agent, an isocyanate crosslinking agent, a melamine crosslinking agent, a carbodiimide crosslinking agent, and an oxazoline crosslinking agent.
- the crosslinking agent contained in the undercoat layer is an oxazoline crosslinking agent.
- Epocross (registered trademark) K2010E Epocross (registered trademark) K2020E
- Epocross (registered trademark) K2030E Epocross (registered trademark) WS-500
- Epocross (registered trademark) WS-700 all in Japan Catalyst Chemical Industry Co., Ltd.
- the addition amount of the crosslinking agent is preferably 0.5% by mass to 30% by mass, more preferably 5% by mass to 20% by mass, and further preferably 3% by mass with respect to the total mass of the binder constituting the undercoat layer. More than 15% by mass.
- the addition amount of the crosslinking agent is 0.5% by mass or more, a sufficient crosslinking effect is obtained while maintaining the strength and adhesiveness of the undercoat layer, and when it is 30% by mass or less, the pot life of the coating liquid Can be kept long, and the coating surface shape can be improved if it is less than 15% by mass.
- the undercoat layer preferably contains an anionic or nonionic surfactant.
- the range of the surfactant that can be used for the undercoat layer is the same as the range of the surfactant that can be used for the white layer. Of these, nonionic surfactants are preferred.
- the addition amount is preferably 0.1 mg / m 2 to 10 mg / m 2 , more preferably 0.5 mg / m 2 to 3 mg / m 2 .
- the addition amount of the surfactant is 0.1 mg / m 2 or more, the formation of a good layer can be suppressed while suppressing the occurrence of repelling, and when it is 10 mg / m 2 or less, Adhesion can be performed satisfactorily.
- the undercoat layer may contain a light stabilizer, a lubricant (fine particles), an ultraviolet absorber, a colorant, a nucleating agent (crystallization agent), and / or a flame retardant as an additive.
- a known coating method is appropriately adopted.
- any method such as a reverse roll coater, a gravure coater, a rod coater, an air doctor coater, a coating method using a spray or a brush can be used.
- the polymer support may be immersed in an aqueous solution for forming an undercoat layer.
- the undercoat layer is formed by a method including applying the undercoat layer forming composition to the polymer support by a so-called in-line coating method in the polymer support manufacturing process.
- a method including applying the undercoat layer forming composition to the polymer support by a so-called in-line coating method in the polymer support manufacturing process Preferably formed.
- the undercoat layer-forming composition in the production of a polymer support including an undercoat layer, (1) supplying an unstretched sheet containing a polymer constituting the polymer support, (2) an undercoat layer of the unstretched sheet Stretching the unstretched sheet in one direction (first direction) parallel to the surface to be formed (first stretching), (3) at least one surface of the sheet stretched in the first direction The undercoat layer-forming composition, and (4) the sheet provided with the undercoat layer-forming composition in a direction orthogonal to the first direction in the undercoat layer-forming surface.
- a method including at least stretching including at least stretching (second stretching). More specifically, for example, (1) a polymer constituting a polymer support is extruded and cast on a cooling drum while using an electrostatic adhesion method or the like to obtain an unstretched sheet.
- the stretched sheet is stretched in the machine direction (MD), (3) 'applying the undercoat layer-forming aqueous liquid to one surface of the longitudinally stretched sheet; A method such as stretching in the transverse direction (TD) can be used.
- the unstretched sheet is previously stretched at least once in one direction to give a composition for forming an undercoat layer, and then stretched at least once in a direction orthogonal to the direction.
- the undercoat layer the adhesion between the polymer support and the undercoat layer can be improved, the uniformity of the undercoat layer can be improved, and the undercoat layer can be made thinner.
- the conditions for drying and heat treatment during the formation of the undercoat layer depend on the thickness of the coating layer and the conditions of the apparatus, but immediately after coating, they are sent to the second stretching step, and in the preheating zone or the second stretching zone of the second stretching step. It is preferable to dry. In such a case, drying and heat treatment are usually performed at about 50 ° C to 250 ° C.
- the surface of the undercoat layer and the surface of the polymer support may be subjected to corona discharge treatment or other surface activation treatment.
- the solid content concentration in the aqueous coating solution that can be used as the composition for forming the undercoat layer is preferably 30% by mass or less, more preferably 10% by mass or less.
- the lower limit of the solid content concentration is preferably 1% by mass, more preferably 3% by mass, and still more preferably 5% by mass.
- An undercoat layer having a good surface shape can be formed within the above range.
- the film after biaxial stretching is preferably subjected to heat setting treatment at a tension of 1 kg / m to 10 kg / m and 170 ° C. to 230 ° C.
- the flatness and dimensional stability are improved.
- the difference in moisture content measured at an arbitrary 10 cm interval is 0.01% by mass or more and 0.06% by mass or less. Can be.
- a heat setting treatment is performed for 1 second to 30 seconds at a temperature not lower than the glass transition temperature (Tg) and lower than the melting point (Tm) of the polyester that is a raw material of the polyester sheet, and after uniform cooling, the temperature is cooled to room temperature.
- Tg glass transition temperature
- Tm melting point
- the heat treatment temperature is preferably high.
- the heat setting temperature (Ts) of the polyester film is preferably 40 ° C.
- the heat setting temperature (Ts) is 50 ° C. ⁇ (Tm ⁇ Ts) ⁇ 80 ° C., more preferably 55 ° C. ⁇ (Tm ⁇ Ts) ⁇ 75 ° C.
- the obtained polyester film can be used as a back sheet constituting a solar cell module, but when the module is used, the ambient temperature may rise to about 100 ° C., so the heat setting treatment temperature (Ts) is 160 ° C.
- the temperature is preferably Tm-40 ° C (however, Tm-40 ° C> 160 ° C) or less. More preferably, it is 170 ° C. or higher and Tm ⁇ 50 ° C. (where Tm ⁇ 50 ° C.> 170 ° C.), and more preferably Ts is 180 ° C. or higher and Tm ⁇ 55 ° C. (where Tm ⁇ 55 ° C.> 180 ° C.).
- the heat setting treatment temperature is preferably set in two or more regions, and the heat setting is performed while the temperature difference is sequentially lowered within a range of 1 to 100 ° C.
- a relaxation treatment of 1 to 12% may be performed in the width direction or the longitudinal direction.
- the heat-set polyester film is usually cooled to Tg or less, and the clip gripping portions at both ends of the polyester film are cut and wound into a roll.
- the cooling is preferably performed by gradually cooling from the final heat setting temperature to room temperature at a cooling rate of 1 ° C. to 100 ° C. per second.
- the means for cooling and relaxation treatment is not particularly limited and can be performed by a conventionally known means. However, it is preferable to perform these treatments while sequentially cooling in a plurality of temperature regions in view of improving the dimensional stability of the polyester film. .
- stretching used for known stretched films such as multi-stage longitudinal stretching, re-longitudinal stretching, re-longitudinal and transverse stretching, and transverse / longitudinal stretching may be performed. The order of longitudinal stretching and lateral stretching may be reversed.
- Terminal carboxyl group concentration After dissolving 0.1 g of a polyester sample in 10 ml of benzyl alcohol, chloroform was further added to obtain a mixed solution, and a phenol red indicator was added dropwise thereto. This solution was titrated with a standard solution (0.01N KOH-benzyl alcohol mixed solution), and the terminal carboxyl group concentration was determined from the amount added.
- Internal haze is a SM color computer manufactured by Suga Test Instruments Co., Ltd. (trade name: trade name: Suga Test Instruments Co., Ltd.) in a 10 mm thick quartz cell filled with tricresyl phosphate. SM-T-H1 type). Further, the external haze was measured directly using a similar apparatus without immersing the biaxially stretched film in tricresyl phosphate.
- a partial discharge tester (trade name: KPD2050, Kikusui Electronics Co., Ltd.) was prepared by using a partial discharge voltage of a polyester film left in a room at 23 ° C. and 65% RH overnight. The partial discharge voltage was measured. For each of the case where one side of the sample film was (i) the upper electrode side and (ii) the lower electrode side, the measurement was carried out at any 10 points within the film plane, and the obtained The average value of 10 measured values was obtained. Of the average value obtained for (i) and the average value obtained for (ii), the higher value was used as the partial discharge voltage V0.
- the test conditions are as follows.
- the output voltage application pattern on the output sheet is a pattern in which the first stage simply increases the voltage from 0 V to a predetermined test voltage, the second stage is a pattern that maintains a predetermined test voltage, and the third stage is a predetermined test A pattern composed of three stages of patterns in which the voltage is simply dropped from 0 to 0 V is selected.
- the frequency is 50 Hz.
- the test voltage is 1 kV.
- the first stage time T1 is 10 sec
- the second stage time T2 is 2 sec
- the third stage time T3 is 10 sec.
- the counting method on the pulse count sheet is “+” (plus), and the detection level is 50%.
- the charge amount in the range sheet is in the range of 1000 pC.
- Table 2 shows the partial discharge voltage, stretchability, hydrolysis resistance, and comprehensive evaluation results of the polyester film.
- Comprehensive evaluation displays the suitability as a polyester film for solar battery backsheets in the following four stages.
- SS Particularly excellent and can be suitably used for backsheet applications S; Very excellent and can be suitably used for backsheet applications A: Suitable for backsheet applications B; Performance and / or productivity Inferior, not preferred for backsheet applications
- the reaction product was transferred to a second esterification reaction vessel and reacted with stirring at a temperature in the reaction vessel of 250 ° C. and an average residence time of 1.2 hours to obtain an oligomer having an acid value of 200 equivalents / ton.
- the inside of the second esterification reactor is divided into three zones, and the ethylene glycol solution of magnesium acetate tetrahydrate is continuously supplied from the second zone so that the amount of added Mg is 75 ppm in terms of element. Subsequently, an ethylene glycol solution of trimethyl phosphate was continuously supplied from the third zone so that the amount of P added was 65 ppm in terms of element.
- reaction tank the temperature in the reaction tank was 278 ° C.
- the pressure in the reaction tank was 1.5 torr (2.0 ⁇ 10 ⁇ 4 MPa)
- the average residence time was 1.5. Reaction (polycondensation) was carried out under the conditions of time to obtain a reaction product (polyethylene terephthalate (PET)).
- PET polyethylene terephthalate
- polyester resin pellets cross section: major axis: about 4 mm, minor axis: about 2 mm, length: about 3 mm).
- the obtained polyester resin was measured using a high resolution high frequency inductively coupled plasma-mass spectrometry (HR-ICP-MS, trade name: AttoM, manufactured by SII Nanotechnology) as shown below.
- HR-ICP-MS high resolution high frequency inductively coupled plasma-mass spectrometry
- P 60 ppm
- the total of the P component and the metal component in the polyester was 144 ppm.
- P is slightly reduced with respect to the initial addition amount, but is estimated to have volatilized during the polymerization process.
- the PET sample polymerized above was pelletized (diameter 3 mm, length 7 mm), and the resulting resin pellet was subjected to solid phase polymerization by a batch method.
- the solid phase polymerization was performed under the following conditions while putting the resin pellets into a container and then stirring under vacuum. After precrystallization at 150 ° C., a solid state polymerization reaction was performed at 190 ° C. for 30 hours.
- the extruder is provided with a screw having the following configuration in a cylinder provided with vents at two locations as shown in FIG. 1, and the temperature can be controlled by dividing the cylinder into nine zones in the longitudinal direction.
- a double vent type co-rotating mesh type twin screw extruder equipped with a heater (temperature control means) was prepared.
- Screw diameter D 65mm Length L [mm] / screw diameter D [mm]: 31.5 (width of one zone: 3.5D)
- Screw shape plasticization kneading section just before the first vent, degassing promotion kneading section just before the second vent
- a gear pump, a metal fiber filter, and a die were connected after the extruder exit of the twin-screw extruder, the set temperature of the heater for heating the die was 280 ° C., and the average residence time was 10 minutes.
- Each zone (C1 to C9) of the twin screw extruder was melt-extruded with the temperature set as follows.
- the rotation speed of the screw was set to 120 rpm, the raw material resin was supplied from the supply port 12 and heated and melted, the extrusion rate was set to 250 kg / h, and melt extrusion was performed.
- the maximum resin temperature for plasticization in the extruder at this time was 290 ° C.
- the melt (melt) extruded from the exit of the extruder was passed through a gear pump and a metal fiber filter, and then extruded from a die to a cooling (chill) roll.
- the extruded melt was brought into close contact with the cooling roll using an electrostatic application method.
- As the cooling roll a hollow chill roll is used, and the temperature of the cooling roll can be controlled by passing water as a heating medium.
- cold air of 25 ° C. was blown out at a wind speed of 60 m / sec from a cold air generator installed facing the cooling roll and applied to the molten resin
- the surface temperature of the polyester decreased at a cooling rate of 450 ° C./min.
- the conveyance area (air gap) from the die exit to the cooling roll surrounds this conveyance area, and humidity is adjusted to 30% RH by introducing humidity-conditioned air therein.
- the cooling rate was determined as follows. The surface temperature of the polyester is measured every 5 seconds from when the molten polyester (molten resin) is extruded onto the cooling cast drum until the polyester is cooled and peeled off from the cooling cast drum. Based on the temperature, a temperature simulation inside the sheet was performed, and the longest time required for the temperature to decrease from 220 ° C. to 120 ° C. was obtained and converted into a speed.
- the cooled polyester was peeled off from the cooling cast drum by using a peeling roll disposed to face the cooling cast drum.
- a peeling roll a roll having a dimension of D1 / D2 of 6.3 was used when the roll diameter of the cooling cast drum was D1 and the roll diameter of the peeling roll was D2.
- the thickness of the unstretched film was measured with an automatic thickness meter (WEBBREX (registered trademark), manufactured by Yokogawa Electric Corporation) installed behind the stripping roll.
- WEBBREX registered trademark
- a polyester sheet having a thickness of 4 mm was obtained.
- the falling temperature crystallization temperature of this polyester sheet was 185 ° C., and the crystallinity calculated from the density method was 1.2%.
- the unstretched film was biaxially stretched by the following method to obtain a PET film.
- the temperature of the atmosphere around the preheating roll was controlled by a hot air generator using a ceramic heater, and adjusted to 30 ° C. by supplying hot air of 42 ° C.
- the unstretched film obtained above was transported by 15 preheating rolls having a diameter of 180 mm to 200 mm, an installation interval (distance between rollers) of 10 mm, and a surface temperature of 75 to 85 ° C. .
- the difference between the surface temperature of the film and the center temperature measured by the measurement method was 3.5 ° C.
- This unstretched film was stretched 3.5 times in the film transport direction (longitudinal direction) by two stretching rolls with different peripheral speeds installed before and after the near infrared heater.
- This longitudinally stretched film was transported in contact with five cooling rolls arranged in a zigzag shape with a diameter of 350 mm and a surface temperature of 20 ° C., and cooled to 40 ° C.
- the tenter is preheated zone temperature: 110 ° C., stretching zone temperature: 120 ° C., heat fixing zone temperature: 200 ° C., thermal relaxation zone temperature: 175 ° C. It was.
- Example 1 the biaxially stretched polyester film could be obtained without breaking for 24 hours.
- the characteristics and the like of the obtained polyester film are shown in Tables 1 and 2.
- polyester film of Example 5 (Preparation of polyester film of Example 5) Except that trimellitic acid was mixed and added to ethylene glycol trimethyl phosphate to 0.5 mol% of the terephthalic acid component of the polyester to obtain a polyester, and this polyester was solid-phase polymerized. A biaxially stretched film was produced in the same manner as in Example 1.
- polyester films of Examples 6 and 7 As a polymerization catalyst, instead of an ethylene glycol solution of a citric acid chelate titanium complex (VERTEC (registered trademark) AC-420, manufactured by Johnson Matthey) in which citric acid is coordinated to Ti metal, germanium dioxide (manufactured by MERCK) is used. Except that ethylene glycol solution or ethylene glycol solution of aluminum acetylate (MERCH) was added in amounts of 50 ppm as Ge and 30 ppm as Al, respectively, and then polyester was prepared. A biaxially stretched film was produced in the same manner as in Example 1.
- VERTEC registered trademark
- MERCK ethylene glycol solution or ethylene glycol solution of aluminum acetylate
- polyester films of Examples 16 and 17 (CHDM polyester film)
- a polyester containing 80 mol% or more of 1,4-cyclohexanedimethanol component was produced by a transesterification method as shown below using a batch polymerization apparatus.
- Dimethyl terephthalate was used as the dicarboxylic acid component.
- diol component 1,4-cyclohexanedimethanol and, if necessary, ethylene glycol were used so as to be 2.5 times the molar amount of the dicarboxylic acid.
- a catalyst an ethylene glycol solution of a citrate chelate titanium complex (VERTEC (registered trademark) AC-420, manufactured by Johnson Matthey Co.) in which citric acid is coordinated to Ti metal is used as a Ti element amount on a weight basis with respect to the finished polyester.
- VERTEC registered trademark
- a predetermined amount of these are charged into the transesterification reaction layer, the inside of the tank is made into a nitrogen atmosphere, the temperature in the reaction tank is raised from room temperature to 230 ° C. over 3 hours, and the methanol produced by the reaction is allowed to undergo the transesterification reaction with stirring.
- the temperature was raised to 250 ° C. over 2 hours, and the reaction was continued until the distillation of methanol stopped.
- the content of the transesterification reaction tank was moved in the polycondensation reaction tank connected in series with the said tank, and the polymerization reaction was performed.
- the polycondensation reaction was performed at a final temperature of 285 ° C. and a degree of vacuum of 0.1 Torr to obtain a polyester, and then the inside of the polycondensation tank was returned to atmospheric pressure with nitrogen and further pressurized by 0.1 MPa.
- the obtained reaction product was discharged in a strand shape, cooled with water, and immediately cut to prepare a CHDM polyester resin pellet ⁇ (cross-section: major axis about 4 mm, minor axis about 2 mm, length: about 3 mm>).
- Example 16 In the above method, a polyester composed of polycyclohexanedimethanol terephthalate was prepared using only 1,4-cyclohexanedimethanol as the diol component. This polyester had an intrinsic viscosity of 0.80 and a melting point of 281 ° C. A biaxially stretched film of Example 16 was produced in the same manner as in Example 1 except that this polyester pellet was used in place of the polyester pellet in Example 1. The conditions used for the production and the properties of the produced biaxially stretched film are shown in Tables 1 and 2.
- Example 17 In the above method, a polyester was prepared using 80 mol% of 1,4-cyclohexanedimethanol and 20 mol% of ethylene terephthalate as diol components. This polyester had an intrinsic viscosity of 0.81 and a melting point of 276 ° C. A biaxially stretched film of Example 17 was produced in the same manner as in Example 1 except that this polyester pellet was used in place of the polyester pellet in Example 1. The conditions used for the production and the properties of the produced biaxially stretched film are shown in Tables 1 and 2.
- Cyclic carbodiimide (1) which is a compound having a molecular weight of 516 described in Examples of JP2011-256337A and synthesized with reference to the synthesis method described in Reference Example 2 of JP2011-256337A, is described in Examples. 18 was used.
- Cyclic carbodiimide (2) Cyclic carbodiimide (2), which is a compound having a molecular weight of 252 described in Examples of JP 2011-256337 A and synthesized with reference to the synthesis method described in Reference Example 1 of JP 2011-256337 A 19 was used.
- Comparative Example 1 As a polymerization catalyst, instead of an ethylene glycol solution of a citrate chelate titanium complex (VERTEC (registered trademark) AC-420, manufactured by Johnson Matthey) in which citric acid is coordinated to Ti metal, antimony trioxide (Nippon Seiko Co., Ltd.) The same method as in Example 2 except that an Sb content of 250 ppm was added to the polyester to obtain a polyester having an Sb content of 210 ppm, and this polyester was solid-phase polymerized. A biaxially stretched film was prepared.
- VERTEC registered trademark
- AC-420 citrate chelate titanium complex
- Examples 20 to 38 ⁇ Production of solar cell module> Using each polyester film of Examples 1 to 19 as a solar cell backsheet, solar cell modules of Examples 20 to 38 were produced as follows. A tempered glass having a thickness of 3.2 mm, a first EVA sheet [trade name: SC50B, manufactured by Mitsui Chemicals, Inc.], a crystalline solar cell, and a second EVA sheet [trade name: SC50B, Mitsui Chemicals, Fabro] And the polyester film of Examples 1 to 19 are superposed in this order and hot-pressed using a vacuum laminator (Nisshinbo Co., Ltd.) to obtain the first EVA sheet and The crystalline solar battery cell, the second EVA sheet, and the back sheet were adhered. Specifically, using a vacuum laminator, vacuuming was performed at 128 ° C. for 3 minutes, pressure was applied for 2 minutes, and then temporary bonding was performed, followed by adhesion treatment at 150 ° C. for 30 minutes in a dry oven.
- the crystalline solar cell modules of Examples 20 to 38 were produced.
- the power generation operation was performed using the produced solar cell module, all of them exhibited good power generation performance as a solar cell.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Chemical & Material Sciences (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Manufacturing & Machinery (AREA)
- Physics & Mathematics (AREA)
- Materials Engineering (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Electromagnetism (AREA)
- General Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Thermal Sciences (AREA)
- Manufacture Of Macromolecular Shaped Articles (AREA)
- Photovoltaic Devices (AREA)
- Shaping By String And By Release Of Stress In Plastics And The Like (AREA)
Abstract
Description
太陽電池用裏面保護シート(適宜、太陽電池用バックシート、又は、バックシートと記す)用のポリエステルフィルムには、長期間にわたって素子を保護するために優れた耐加水分解性能が求められる。また、太陽電池システムの作動時に高い電圧が長時間かかるため、バックシート用のポリエステルフィルムには高い電気絶縁性が求められる。現在、太陽電池システムは、1000Vに対応したものが提案されているが、今後更なる高性能化のため、システム電圧の更なる高電圧化が求められており、バックシートの絶縁性も更なる改良が切望されている。
屋外用ディスプレイ用途などのポリエステルフィルムには、耐候性と強度、および透明性が求められている。
特開2008-166338号公報には、充填剤に接する樹脂フィルム及び最外層となる耐加水分解性白色樹脂フィルムとを有し、部分放電電圧が1000V以上である太陽電池用バックシートが提案されている。
<1> 厚みが200μm以上800μm以下であり、縦延伸方向及び横延伸方向の破断強度がいずれも180MPa以上300MPa以下であり、内部ヘイズ(Hin)が0.3%以上20%以下であり、外部ヘイズ(Hsur)と内部ヘイズ(Hin)との差(ΔH=Hsur-Hin)が2%以下であり、かつ、極限粘度が0.68以上0.90以下である二軸延伸ポリエステルフィルム。
<2> 最大長さが1μm以上の空隙の含有量が、二軸延伸ポリエステルフィルム400μm2あたり1個以下である、<1>に記載の二軸延伸ポリエステルフィルム。
<3> 構成単位の80モル%以上がエチレンテレフタレート単位または1,4-シクロヘキサンジメチレンテレフタレート単位であり且つ末端カルボキシル基濃度が25eq/ton以下であるポリエステルからなる<1>又は<2>に記載の二軸延伸ポリエステルフィルム。
<4> グリコール可溶性のチタン化合物、アルミニウム化合物、及びゲルマニウム化合物からなる群より選択される少なくとも1つを重合触媒として用いて合成されたポリエステルを含み、かつ、リン元素の含有量と金属元素の含有量の総和が10ppm以上300ppm以下である<1>~<3>のいずれか一つに記載の二軸延伸ポリエステルフィルム。
<5> 構成単位の0.1モル%~20モル%または80モル%~100モル%が1,4-シクロヘキサンジメチレンテレフタレート単位である<1>~<4>のいずれか一項に記載の二軸延伸ポリエステルフィルム。
<6> <1>~<5>のいずれか一つに記載の二軸延伸ポリエステルフィルムを製造する方法であって、
グリコール可溶性のチタン化合物、アルミニウム化合物、及びゲルマニウム化合物から選ばれる少なくとも1つを重合触媒として用いて合成され、かつ、リン元素の含有量と金属元素の含有量との総和が300ppm以下である原料ポリエステル樹脂を準備すること、
前記原料ポリエステル樹脂を、当該原料ポリエステルの融点より10℃高い温度以上であり且つ融点より35℃高い温度以下の範囲にある温度で可塑化させ、溶融押出して冷却することにより、厚みが2.5mm~7.0mmの未延伸ポリエステルフィルムを形成すること、及び
前記未延伸ポリエステルフィルムを縦延伸及び横延伸して厚みが200μm以上800μm以下である二軸延伸ポリエステルフィルムを形成すること、
を含む方法。
<7> 前記原料ポリエステル樹脂の極限粘度IVが0.68~0.95である<6>に記載のポリエステルフィルムの製造方法。
<8> カルボジイミド基の第一窒素と第二窒素とが結合基により結合されている環状構造を含む化合物が、前記冷却以前に、前記原料ポリエステル樹脂の質量に対して0.1質量%~5質量%の量で前記原料ポリエステル樹脂に添加される、<6>又は<7>に記載の方法。
<9> <1>~<5>のいずれか一つに記載の二軸延伸ポリエステルフィルムを備えた太陽電池発電モジュール。
組成物中のある成分の量について言及する場合において、組成物中に当該成分に該当する物質が複数存在する場合には、特に別途定義しない限り、当該量は、組成物中に存在する当該複数の物質の合計量を意味する。
「工程」との語には、独立した工程だけでなく、他の工程と明確に区別できない場合であっても本工程の所期の作用を達成する工程であれば、本用語に含まれる。
組成物中のある成分の存在量を表示する単位「ppm」は、特に別途定義しない限り、質量基準(すなわち、組成物の全質量に対する当該成分の質量の表示)である。
本発明の一実施形態である二軸延伸ポリエステルフィルム(適宜、「ポリエステルフィルム」又は「フィルム」と記す。)は、厚みが200μm以上800μm以下であり、縦延伸方向及び横延伸方向の破断強度がいずれも180MPa以上300MPa以下であり、内部ヘイズ(Hin)が0.3%以上20%以下であり、かつ、外部ヘイズ(Hsur)と内部ヘイズ(Hin)との差(ΔH=Hsur-Hin)が2%以下であり、極限粘度が0.68以上0.90以下である。
前記二軸延伸ポリエステルフィルムの厚みは200μm~800μmであり、好ましくは240μm~500μmであり、特に好ましくは240μm~400μmである。
フィルムの厚みが200μm未満では、1kV以上の部分放電電圧を得がたいことがある。1kV以上の部分放電電圧をより安定的に確保する観点からは、フィルム厚みは240μm以上であることが好ましい。
フィルム厚みが800μmを超えると、二軸延伸を行うために極めて大きな張力が必要となり、生産性が劣り得る。得られた二軸延伸フィルムの2次加工のための巻き取り、切断、搬送性の観点からは、フィルム厚みは500μm以下であることが好ましい。
太陽電池用バックシートや屋外ディスプレイ用保護フィルムとして十分な物理的強度を確保する観点から、前記ポリエステルフィルムの縦横延伸方向の破断強度はいずれも180MPa以上300MPa以下であり、200MPa以上250MPa以下であることが好ましい。破断強度が300MPaを越えると、フィルムの延伸時に破断が起き易くなり、生産性が劣り得る。良好な生産性とフィルムの実用強度を共に確保し得る最適な範囲は、205MPa以上240MPa以下であり得る。
フィルムのヘイズは小さいほど透明性が良化するので好ましいが、フィルムの破断強度が低下する。この観点から、前記ポリエステルフィルムの内部ヘイズ(Hin)は0.3%以上20%以下とされ、好ましくは0.5%以上15%以下であり、特に好ましくは1%以上10%以下である。内部ヘイズが0.3%未満であると、フィルムの破断強度が十分確保できない場合がある。また、内部ヘイズが20%を越えると、フィルムの延伸時に破断しやすくなり、生産適性が乏しい。
ここで、内部ヘイズ(Hin)は、二軸延伸フィルムをリン酸トリクレジルを満たした厚み10mmの石英セル中に入れ、ヘイズメータ(例えば、スガ試験機(株)製SMカラーコンピュータ、商品名:SM-T-H1型)によって測定する。フィルムをリン酸トリクレジル中に浸すことで、フィルム表面のキズや凹凸などによる反射や散乱等の影響が消去され、フィルム内部のヘイズを測定することができる。また、外部ヘイズ(Hsur)は、同様の装置を用い、二軸延伸フィルムをリン酸トリクレジルに浸さず直接測定する。
前記二軸延伸ポリエステルフィルムは、フィルム中の最大長さが1μm以上の空隙が、1個/400μm2以下であることが好ましく、実質的に上記サイズの空隙を有しないことが好ましい。フィルム中の空隙は、フィルムを鋭利なカッターで切断し、その断面を倍率1000倍の電子顕微鏡で観察することで確認される。
フィルムの製造工程におけるポリエステル中に不溶成分が存在すると、二軸延伸時に不溶成分とポリエステルとの界面が剥離し、フィルム中に空隙が生成する。ポリエステル重合のために使用した触媒や添加剤類、および原料のグリコール、ジカルボン酸化合物中の異物も空隙生成の原因となる。かかる空隙が存在すると、フィルム製造工程において、縦方向または横方向に延伸する際、破断が生じやすい。また、空隙の点在がフィルム破断時の起点になり、破断強度が安定しない。より好ましい空隙含有量は、フィルム400μm2あたり最大長さ1μm以上の空隙が0.5個以下、さらに好ましくは0.2個以下である。
前記ポリエステルフィルムは、ポリエチレンテレフタレートまたはポリ-1,4-シクロヘキサンジメチレンテレフタレートを主としたポリエステルからなることが好ましい。
前記ポリエステルフィルムがポリエチレンテレフタレートを主としたポリエステルからなる場合、ある実施形態において、ポリエステル中のエチレンテレフタレート単位の含有量は、ポリエステルを構成する重合性成分(すなわち、構成単位)の全てに対して80モル%以上であることが好ましく、85モル%以上であることがより好ましく、さらに好ましくは90モル%以上である。
前記ポリエステルフィルムがポリ-1,4-シクロヘキサンジメチレンテレフタレートを主としたポリエステルからなる場合、ある実施形態において、ポリエステル中の1,4-シクロヘキサンジメタノール(CHDM)単位の含有量は、ポリエステルを構成する重合性成分(すなわち、構成単位)の全てに対して80モル%以上であることが好ましく、85モル%以上であることがより好ましく、さらに好ましくは90モル%以上である。エチレンテレフタレート単位またはCHDM単位が80モル%以上であると、フィルムの耐熱性や耐加水分解性が優れ得る。
ある実施形態では、エチレンテレフタレート単位またはCHDM単位の含有量を前記好ましい範囲とし且つ20モル%を超えない範囲で他の共重合成分を添加することにより、ポリエチレンテレフタレートまたはポリ-1,4-シクロヘキサンジメチレンテレフタレートの結晶化速度および結晶化度を変化させ、これによりフィルムの内部ヘイズを低減することができる。
前記好ましい態様においてはCHDM単位の含有量が少ない領域(0.1モル%~20モル%)と多い領域(80モル%~100モル%)との二つの領域が存在するのは、これらの領域において、特に、ポリエステルが結晶を形成し易く、結晶間に取り込まれた非晶が橋渡しする「タイチェーン」を形成し易いためである。すなわち、この二つの領域に於いてポリエステルが結晶構造を取りやすく、高い力学強度および高い耐熱性を発揮し易くなる。ポリエステルの分子内に、このようなCHDM単位由来の構造が存在することで、ポリエステル分子の配向性が増加し、タイチェーンの生成を促す。これは以下の理由によるものと考えられる。
ある実施形態において前記ポリエステルフィルムは、(A)ポリエステルと、(B)カルボジイミド基の第一窒素と第二窒素とが結合基により結合されている環状構造を含む化合物(以下、環状カルボジイミド化合物とも称する)及び当該環状カルボジイミド化合物に由来する構造を有する成分の少なくとも一方と、を含有し得る。
ある実施形態においては、前記ポリエステルフィルムの作製において、前記ポリエステルフィルムを構成するポリエステルの量に対して、環状カルボジイミド化合物を0.1質量%~5質量%添加し得る。
(B)環状カルボジイミド化合物は、いわゆる末端封止剤として前記(A)ポリエステルの末端カルボキシル基を封止して、ポリエステルフィルムの湿熱耐久性を改善することができる。
結合基(Q)は、下記式(1-1)、(1-2)または(1-3)で表される2~4価の結合基であることが好ましい。
芳香族基としては、それぞれへテロ原子を含んで複素環構造を有していてもよい、炭素数5~15のアリーレン基、炭素数5~15のアレーントリイル基、炭素数5~15のアレーンテトライル基が挙げられる。アリーレン基(2価)としては、フェニレン基、ナフタレンジイル基などが挙げられる。アレーントリイル基(3価)としては、ベンゼントリイル基、ナフタレントリイル基などが挙げられる。アレーンテトライル基(4価)としては、ベンゼンテトライル基、ナフタレンテトライル基などが挙げられる。これらの芳香族基は置換基を有していても良い。置換基としては、炭素数1~20のアルキル基、炭素数6~15のアリール基、ハロゲン原子、ニトロ基、アミド基、ヒドロキシル基、エステル基、エーテル基、アルデヒド基などが挙げられる。
環状カルボジイミド化合物として下記式(2)で表される化合物(以下、「環状カルボジイミド化合物(a)」ということがある。)を挙げることができる。
環状カルボジイミド化合物(a)の例としては、以下の化合物が挙げられる。
環状カルボジイミド化合物としてはまた下記式(3)で表される化合物(以下、「環状カルボジイミド化合物(b)」ということがある。)を挙げることができる。
Qbは、下記式(3-1)、(3-2)または(3-3)で表される3価の結合基であることが好ましい。
Yは、単結合、二重結合、原子、原子団またはポリマーであることが好ましい。複数の環状構造がYを介して結合し、式(3)で表される構造を形成している。
環状カルボジイミド化合物(b)の例としては、下記化合物が挙げられる。
環状カルボジイミド化合物としてはまた下記式(4)で表される化合物(以下、「環状カルボジイミド化合物(c)」ということがある。)を挙げることができる。
Qcは、下記式(4-1)、(4-2)または(4-3)で表される4価の結合基であることが好ましい。
Z1およびZ2は各々独立に、単結合、二重結合、原子、原子団またはポリマーであることが好ましい。複数の環状構造がZ1およびZ2を介して結合し、式(4)で表される構造を形成している。
環状カルボジイミド化合物(c)の例としては、下記化合物を挙げることができる。
前記環状カルボジイミド化合物は、特開2011-256337号公報に記載の方法などに基づいて合成することができる。
前記フィルムを構成するポリエステルの極限粘度(IV)は0.68以上0.90以下である。IVが0.68以上0.90以下とすることで、フィルム延伸時の破断が少なく、高い生産性でフィルムを製造することが可能になる。前記フィルムを構成するポリエステルの末端カルボキシル基濃度(AV)は25eq/ton以下であることが好ましい。AVが25eq/ton以下とすることでフィルムの耐加水分解性が向上し、屋外使用可能期間が延び得る。IVは、高いほどフィルムの破断強度が増加するが、IVが増加するとポリエステルの溶融粘度が増加するため、フィルムを製造する溶融押出工程において剪断発熱が起き易くなる。この発熱によってポリエステルが分解し、この分解によってAVが増加し得る。かかる観点から、さらに好ましくは、AVは22eq/ton以下且つIVは0.70以上0.90以下、特に好ましくは、AVは20eq/ton以下且つIVは0.72以上0.85以下である。ある実施形態においては、AVを低減するために、カルボン酸基と反応可能な他の化合物を、ポリエステル重合中および/またはポリエステルフィルム製造工程中に添加することも好ましい。
前記ポリエステルフィルムを構成するポリエステルは、グリコール可溶性の、チタン化合物(Ti化合物)、アルミニウム化合物(Al化合物)、及びゲルマニウム化合物(Ge化合物)の少なくとも1種を重合触媒として用いて合成したものであり、かつ、フィルム中のP成分の含有量(リン元素換算値)と金属成分の含有量(金属元素換算値)との総和が、10ppm以上300ppm以下であることが好ましい。ここで、P成分、金属成分とは、前記重合触媒の他、耐熱着色性を向上せしめるためのリン化合物(P化合物)、エステル化反応の促進、ポリエステルの製膜適性を付与、および色味調整等の目的で使用される公知の化合物、例えば、Mg、Mn、Zn、Co化合物、などを含む。これにより、ポリエステルの重合中および溶融押し出し中の不溶粒子の析出を効果的に抑制することができる。フィルム中のP成分の含有量(リン元素換算値)と金属成分の含有量(金属元素換算値)との総和は、好ましくは20ppm以上250ppm以下、より好ましくは50ppm以上200ppm以下である。ポリエステル中の金属成分量が少ないほど、不溶粒子の発生が少なくなり、フィルム中の空隙が減少し、フィルムの破断強度が安定する。一方、フィルム中のP成分の含有量(リン元素換算値)と金属成分の含有量(金属元素換算値)との総和が10ppm未満では、ポリエステルの重合速度が減少するため生産性が劣り得、また、溶融時の着色安定性が低下する傾向がある。
前記二軸延伸ポリエステルフィルムの用途は特に限定されない。長期にわたりフィルム強度と電気絶縁性を維持することができ、透明性が高い厚手のポリエステルフィルムであるため、太陽電池用バックシートの他、屋外用ディスプレイ、電気絶縁フィルム、種々の包装用、保護フィルム等に好適に使用できる。
本願発明の一実施形態である太陽電池モジュールの用途の構成例としては、電気を取り出すリード配線で接続された発電素子(太陽電池素子)をエチレン・酢酸ビニル共重合体系(EVA系)樹脂等の封止剤で封止し、これを、ガラス等の透明基板と、前記ポリエステルフィルム(バックシート)とで挟んで互いに張り合わせた構成が挙げられる。太陽電池素子としては、単結晶シリコン、多結晶シリコン、アモルファスシリコンなどのシリコン系、銅-インジウム-ガリウム-セレン、銅-インジウム-セレン、カドミウム-テルル、ガリウム-砒素などのIII-V族やII-VI族化合物半導体系など、各種公知の太陽電池素子を適用することができる。
本願発明の一実施形態である前記ポリエステルフィルムを製造する方法の例としては、グリコール可溶性のTi化合物、Al化合物、及びGe化合物から選ばれる少なくとも1つを重合触媒として用いて合成され、かつ、P成分の含有量(リン元素換算値)と金属成分の含有量(金属元素換算値)との総和が300ppm以下である原料ポリエステル樹脂を準備することと、
前記原料ポリエステル樹脂を溶融押出して冷却することにより、厚みが2.5mm~7.0mmの未延伸ポリエステルフィルムを形成することと、
前記未延伸ポリエステルフィルムを縦延伸及び横延伸して厚みが200μm以上800μm以下である二軸延伸ポリエステルフィルムを形成することと、
を少なくとも有する方法が挙げられる。
十分な破断強度のポリエステルフィルムを得るためには、二軸延伸を、低めの温度で、かつ、高い延伸倍率で行い、ポリエステルを構成するポリエステル分子を延伸方向に十分に配向させる。
フィルムの耐加水分解性は、同一ポリエステル材料であれば、分子の配向度が高いほど高くなるため、耐加水分解を高めるには、高い延伸倍率で行う。
ある実施形態では、未延伸シートの厚みが3mm以上の場合、延伸による空隙の生成を防ぐために、縦延伸において延伸ゾーン内に設置する近赤外ヒーターは、シートを挟むように上下の対とし、これを流れ方向に2対以上配置してシートの内部まで十分加熱することが好ましい。また、延伸ゾーン(周速の異なる2本の延伸ロールの間)内に、駆動力を持たないフリーロールを設置し、延伸ゾーンを2分化することで、延伸によるシートの幅方向の収縮(ネックイン現象)を小さくすることが好ましい。
ポリエステルフィルムの空隙は、未延伸ポリエステルシート中の不溶成分とポリエステルとの界面剥離によって生成すると考えられる。そのため、本実施形態では、ポリエステル中に不溶成分が少ないことが好ましい。不溶成分としては、ポリエステルの重合工程中に添加する触媒・添加剤などの析出物、原料中の異物、ポリエステル重合~樹脂乾燥~押し出し~延伸までの全ての工程内で混入する異物・塵埃の他、ポリエステルの溶融押し出し時に熱劣化や加水分解などで生じた不溶性劣化物(ゲル、コゲ)、および未溶融物などが挙げられる。
フィルタの目開きは、小さいほど異物濾過効果は高いが、フィルタ目詰まりによる生産性の低下が起きやすい。ある実施形態においては、ポリエステル溶融重合および/又は押し出しで使用されるフィルタは3μm~20μmの濾過精度を有し、樹脂に接する媒体(水、空気、固相重合工程における窒素ガスなど)の異物除去に使用されるフィルタは0.5μm~10μmの濾過精度を有することが好ましい。
融点が300℃以上の成分は、固相重合に供する極限粘度0.5~0.65のポリエステルチップに付着したチップ粉や、風送配管中に配管壁面と接触して生成した紐状物など、チップに比べて比表面積が大きいポリエステルが、固相重合によってチップ以上に高分子量化することで生成し得る。このため、融点が300℃以上の成分を1000ppm以下にするには、固相重合に供するポリエステルチップ中のチップ粉の濃度を500ppm以下にすることが好ましい。また、固相重合後のポリエステルチップは、溶融押し出し前までの風送経路の任意の段階でダスト分離機によるダスト除去を行うことが好ましい。固相重合に供するポリエステルチップ中のチップ粉を500ppm以下にする方法としては、溶融ポリエステルのチップ化を水中カッターで行い、使用する冷却水中のチップ粉の濃度が100ppm以下になるように新鮮水を供給しつつ、循環時にフィルタでチップ粉を除去する方法が挙げられる。
フィルムのヘイズを0.3%以上20%以下にするためには、未延伸シートが延伸可能でありながら、僅かに結晶を生成させることが好ましく、グリコール可溶性触媒の使用と含有する金属成分を特定の範囲にすること、また、IVを特定の範囲に調整することに加え、未延伸フィルムの結晶化度を特定の範囲にすることが好ましい。
未延伸フィルムの結晶化度を特定の範囲にするためには、例えば、ポリエステルを溶融押し出しする際に、可塑化を制御する方法が好ましく用いられ、ポリエステルの融点より35℃高い温度以下で可塑化することが好ましい。
具体的には、融点が260℃であるポリエチレンテレフタレートの場合では、溶融押し出し時の最高樹脂温度を295℃以下にすることが好ましい。この場合に295℃よりも高い温度で可塑化させると、未延伸シートに成形する際、ポリエステルの結晶化が遅くなり、ヘイズを上記範囲にすることが困難になり得る。
ポリエステルの結晶化特性として、結晶化温度が120℃~140℃であることが好ましい。
延伸によるフィルム中の空隙を抑制するためには、未延伸シートの結晶化度を好ましくは0.1%~5%、より好ましくは0.5%~3%の範囲に制御し得る。
未延伸シートの結晶化度が0.1%よりも低い場合には、延伸フィルムの破断強度が低下し得る。また、未延伸シートの結晶化度が5%を超えて高くなると、延伸時にフィルムが破断しやすくなり、生産性が低下し得る上、得られたフィルムに空隙が生じるため破断強度が低下し得る。高延伸倍率でフィルムを作製するためには、未延伸シートは2.5mm以上の厚さを有し得る。2.5mm以上の厚さで、かつ均一な未延伸シートを作製する方法が好ましい。さらに、シートの両面を350℃/分~590℃/分の冷却速度の範囲で冷却する。この方法によって、特定の範囲の結晶化度の未延伸シートを得うる。これを二軸延伸せしめることで、特定のヘイズを有し、かつ表面平坦性が良好なポリエステルフィルムを得ることができる。
原料樹脂は、極限粘度IVが0.68~0.95であるポリエステル樹脂であることが好ましい。
原料樹脂のIVは、重合方式および重合条件によって調整することができる。液相重合の後に固相重合を行うことによって、原料となる極限粘度IVが0.68~0.95のポリエステル樹脂を得ることができる。IVが0.68以上であれば、延伸時に破断しにくく、強度が良好な2軸延伸フィルムが得られ、0.95以下であればポリエステルの溶融押し出し時の剪断発熱による劣化が少ない、末端カルボキシル基濃度の小さいポリエステルを得ることができる。かかる観点から、IVはより好ましくは0.70~0.90であり、特に好ましくは0.72~0.85である。
原料樹脂を構成するポリエステル樹脂は、ポリエチレンテレフタレートまたはポリ-1,4-シクロヘキサンジメチレンテレフタレートを主成分とするポリエステルであることが好ましく、ある実施形態においては、構成単位の80モル%以上がエチレンテレフタレート単位またはCHDM単位であるポリエステルであることが好ましい。ポリエステル樹脂は、ジカルボン酸又はそのエステル誘導体と、ジオール化合物とを公知の方法でエステル化反応及び/又はエステル交換反応させることによって得ることができる。
前記ジカルボン酸又はそのエステル誘導体としては、主成分はテレフタル酸又はそのエステル誘導体であり、その他の成分としては、例えば、マロン酸、コハク酸、グルタル酸、アジピン酸、スベリン酸、セバシン酸、ドデカンジオン酸、ダイマー酸、エイコサンジオン酸、ピメリン酸、アゼライン酸、メチルマロン酸、エチルマロン酸等の脂肪族ジカルボン酸類、アダマンタンジカルボン酸、ノルボルネンジカルボン酸、イソソルビド、シクロヘキサンジカルボン酸、デカリンジカルボン酸、などの脂環族ジカルボン酸、イソフタル酸、フタル酸、1,4-ナフタレンジカルボン酸、1,5-ナフタレンジカルボン酸、2,6-ナフタレンジカルボン酸、1,8-ナフタレンジカルボン酸、4,4’-ジフェニルジカルボン酸、4,4’-ジフェニルエーテルジカルボン酸、5-ナトリウムスルホイソフタル酸、フェニルエンダンジカルボン酸、アントラセンジカルボン酸、フェナントレンジカルボン、9,9’-ビス(4-カルボキシフェニル)フルオレン酸等の芳香族ジカルボン酸などのジカルボン酸又はそのエステル誘導体が挙げられる。
前記ジオール化合物としては、主成分はエチレングリコールもしくはシクロヘキサンジメタノールであり、その他の成分としては、1,2-プロパンジオール、1,3-プロパンジオール、1,4-ブタンジオール、1,2-ブタンジオール、1,3-ブタンジオール等の脂肪族ジオール類、シクロヘキサンジメタノール、スピログリコール、イソソルビドなどの脂環式ジオール類、ビスフェノールA、1,3―ベンゼンジメタノール,1,4-ベンセンジメタノール、9,9’-ビス(4-ヒドロキシフェニル)フルオレン、などの芳香族ジオール類等が挙げられる。
CHDM系ポリエステル樹脂を合成するときに用いるジカルボン酸は、既述のジカルボン酸又はそのエステル誘導体が用いられ、テレフタル酸が好ましい。ジカルボン酸としては、テレフタル酸に加えてイソフタル酸(IPA)を用いてもよい。IPA量は、ポリエステル樹脂合成に使用される全ジカルボン酸量に対して0モル%~15モル%が好ましく、0モル%~12モル%であることがより好ましく、0モル%~9モル%であることがさらに好ましい。
例えば、チタン(Ti)系化合物を、ポリエステルの構成成分の全質量に対してTi元素換算値で1ppm以上30ppm以下、より好ましくは2ppm以上20ppm以下、さらに好ましくは3ppm以上15ppm以下の範囲で用いて重合を行なうことが好ましい。この場合、本発明の一実施形態である前記方法によって製造されるポリエステルフィルムには、1ppm以上30ppm以下のチタンが含まれる。
Ti系触媒の量は、1ppm以上であると好ましいIVが得られ、30ppm以下であると、末端カルボキシル基濃度を低く抑えることができ、耐加水分解性の向上に有利である。
ここで、カルボン酸基の数(a)と水酸基の数(b)との合計(a+b)が3以上である多官能モノマーとしては、カルボン酸基の数(a)が3以上のカルボン酸並びにこれらのエステル誘導体や酸無水物等、水酸基数(b)が3以上の多官能モノマー、並びに「一分子中に水酸基とカルボン酸基の両方を有し、カルボン酸基の数(a)と水酸基の数(b)との合計(a+b)が3以上であるオキシ酸類」などを挙げることができる。
また、上述のカルボン酸のカルボキシ末端に、l-ラクチド、d-ラクチド、ヒドロキシ安息香酸などのオキシ酸類、およびその誘導体、そのオキシ酸類が複数個連なったもの等を付加させたものも好適に用いられる。また、これらは単独で用いても、必要に応じて、複数種類用いても構わない。
前記多官能モノマーの含有比率は、ポリエステル中の全構成単位に対して、0.005モル%以上2.5モル%以下であることが好ましく、より好ましくは0.020モル%以上1モル%以下、更に好ましくは0.025モル%以上1モル%以下、更に好ましくは0.035モル%以上0.5モル%以下、更に好ましくは0.05モル%以上0.5モル%以下、特に好ましくは0.1モル%以上0.25モル%以下である。
ある実施形態では、ポリエステルフィルムは、末端封止剤及び末端封止剤に由来する構造を有する成分のうち少なくとも一つを含有し得る。
ポリエステルフィルムは、ポリエステル結晶間を橋架けする分子(タイチェーン)を有する構造であると、強固となり、耐候性に優れ得る。ポリエステルフィルムが末端封止剤及び末端封止剤に由来する構造を有する成分のうち少なくとも一つを含有していると、タイチェーンが発達し過ぎることがなく、脆化を抑えつつも耐熱性を高め得る。
ある実施形態では、得られるポリエステルフィルム中に末端封止剤及び末端封止剤に由来する構造を有する成分のうち少なくとも一つが含まれるようにポリエステルフィルムを製造し得る。末端封止剤は、溶融された原料ポリエステル樹脂が冷却されるより前の時点(すなわち、未延伸ポリエステルフィルムの作製が完了するより前の時点)であれば、どの時点で原料ポリエステル樹脂と混合させてもよい。ある実施形態では、末端封止剤は、原料ポリエステル樹脂を二軸押出機の原料供給口に供給する前に原料ポリエステル樹脂と混合してもよいし、二軸押出機で原料ポリエステル樹脂を溶融混練しているときに原料ポリエステル樹脂と混合してもよいし、二軸押出機から溶融樹脂を排出した後で排出された溶融樹脂と混合してもよい。
好ましい末端封止剤として、オキサゾリン化合物、カルボジイミド化合物、エポキシ化合物を挙げることができる。これらは単独で用いてもよく、組合せて用いても良い。末端封止剤を添加し、特に5%以上50%以下の結晶化度分布を持つポリエステルフィルムを製造することで、末端カルボキシル基濃度が減少し、耐加水分解性能が向上する。また、上記範囲の結晶化度分布を持つポリエステルフィルム中に前記末端封止剤が含有されていると、相乗効果により、塗布層との密着性が促進される。即ち、ポリエステルフィルムの結晶化度の低い部分に塗布液が浸透し、相互貫入し密着を向上させるが、その時、ポリエステルフィルムの末端が上記封止剤と反応し嵩高くなることで、塗布液成分から引き抜き難くなる(アンカー効果)。この結果相互作用力が高まり密着が強くなると考えられる。
エポキシ化合物の好ましい例としては、グリシジルエステル化合物やグリシジルエーテル化合物などが挙げられる。
これらの末端封止剤の中でも、特に、前述の「環状構造化合物」であるカルボジイミドが好ましい。すなわち、カルボジイミド基の第一窒素と第二窒素とが結合基により結合されている環状構造を含む化合物は、末端封止剤としてポリエステルの末端カルボキシル基を封止して、ポリエステルフィルムの湿熱耐久性を特に効果的に改善することができる。
前記ポリエステルフィルムは、光安定化剤、酸化防止剤などの添加剤を更に含有することができる。
光安定化剤を含有すると、紫外線劣化を防ぐことができる。光安定化剤とは、紫外線などの光線を吸収して熱エネルギーに変換する化合物、樹脂が光吸収して分解して発生したラジカルを捕捉し、分解連鎖反応を抑制する材料などが挙げられる。光安定化剤として好ましくは、紫外線などの光線を吸収して熱エネルギーに変換する化合物である。このような光安定化剤を含有することで、長期間継続的に紫外線の照射を受けても、部分放電電圧の向上効果を長期間高く保つことが可能になったり、樹脂中の紫外線による色調変化、強度劣化等が防止される。
紫外線吸収剤の例としては、有機系の紫外線吸収剤として、サリチル酸系、ベンゾフェノン系、ベンゾトリアゾール系、シアノアクリレート系等の紫外線吸収剤及びヒンダードアミン系等の紫外線安定剤などが挙げられる。具体的には、例えば、サリチル酸系のp-t-ブチルフェニルサリシレート、p-オクチルフェニルサリシレート、ベンゾフェノン系の2,4-ジヒドロキシベンゾフェノン、2-ヒドロキシ-4-メトキシベンゾフェノン、2-ヒドロキシ-4-メトキシ-5-スルホベンゾフェノン、2,2’,4,4’-テトラヒドロキシベンゾフェノン、ビス(2-メトキシ-4-ヒドロキシ-5-ベンゾイルフェニル)メタン、ベンゾトリアゾール系の2-(2’-ヒドロキシ-5’-メチルフェニル)ベンゾトリアゾール、2-(2’-ヒドロキシ-5’-メチルフェニル)ベンゾトリアゾール、2,2’-メチレンビス[4-(1,1,3,3-テトラメチルブチル)-6-(2Hベンゾトリアゾール-2-イル)フェノール]、シアノアクリレート系のエチル-2-シアノ-3,3’-ジフェニルアクリレート)、トリアジン系として2-(4,6-ジフェニル-1,3,5-トリアジン-2-イル)-5-[(ヘキシル)オキシ]-フェノール、ヒンダードアミン系のビス(2,2,6,6-テトラメチル-4-ピペリジル)セバケート、コハク酸ジメチル・1-(2-ヒドロキシエチル)-4-ヒドロキシ-2,2,6,6-テトラメチルピペリジン重縮合物、そのほかに、ニッケルビス(オクチルフェニル)サルファイド、及び2,4-ジ-t-ブチルフェニル-3’,5’-ジ-t-ブチル-4’-ヒドロキシベンゾエート、などが挙げられる。
これらの紫外線吸収剤のうち、繰り返し紫外線吸収に対する耐性が高いという点で、トリアジン系紫外線吸収剤がより好ましい。これらの紫外線吸収剤は、上述の紫外線吸収剤単体でフィルムに添加してもよいし、有機系導電性材料や、非水溶性樹脂に紫外線吸収剤能を有するモノマーを共重合させた形態で導入してもよい。
原料ポリエステル樹脂は、例えば、以下の方法によって得ることができる。
芳香族ジカルボン酸、またはその低級アルキルエステルと脂肪族ジオールとを、チタン化合物を含有する触媒の存在下で重合するとともに、前記チタン化合物の少なくとも一種が有機酸を配位子とする有機キレートチタン錯体であって、(1)前記有機キレートチタン錯体と、(2)マグネシウム化合物と、(3)置換基として芳香環を有しない5価のリン酸エステルとをこの順序で添加することを少なくとも含むエステル化反応、またはエステル交換反応工程と、前記エステル化反応またはエステル交換反応工程で生成された生成物を重縮合反応させて重縮合物を生成することと、を含む方法によって原料ポリエステル樹脂を製造することができる。
これにより、重合時の着色及びその後の溶融製膜時における着色が少なくなり、従来のアンチモン(Sb)触媒系のポリエステル樹脂に比べて黄色味が軽減され、また、透明性の比較的高いゲルマニウム(Ge)触媒系のポリエステル樹脂に比べて遜色のない色調、透明性を持ち、しかも耐熱性に優れたポリエステル樹脂を提供できる。また、コバルト化合物や色素などの色調調整材を用いずに高い透明性を有し、黄色味の少ないポリエステル樹脂が得られる。
エステル化反応またはエステル交換反応では、芳香族ジカルボン酸及びその低級アルキルエステルのうち少なくとも一つとジオールとを、チタン化合物を含有する触媒の存在下で反応させる。このエステル化反応は、触媒であるチタン化合物として、有機酸を配位子とする有機キレートチタン錯体を用いると共に、少なくとも、有機キレートチタン錯体と、マグネシウム化合物と、置換基として芳香環を有しない5価のリン酸エステルとをこの順序で添加することを含む。
触媒成分であるチタン化合物として、有機酸を配位子とする有機キレートチタン錯体の少なくとも1種が用いられる。有機酸としては、例えば、クエン酸、乳酸、トリメリット酸、リンゴ酸等を挙げることができる。中でも、クエン酸又はクエン酸塩を配位子とする有機キレート錯体が好ましい。
また、一般に、ポリエステル樹脂は末端カルボキシル基濃度が高いほど耐加水分解性が悪化することが知られている。前記添加方法によってポリエステル樹脂の末端カルボキシル基濃度が低くなることで、耐加水分解性の向上が期待される。
このようなチタン化合物の例としては、テトラ-n-プロピルチタネート、テトラ-i-プロピルチタネート、テトラ-n-ブチルチタネート、テトラ-n-ブチルチタネートテトラマー、テトラ-t-ブチルチタネート、テトラシクロヘキシルチタネート、テトラフェニルチタネート、テトラベンジルチタネート等のチタンアルコキシド、チタンアルコキシドの加水分解により得られるチタン酸化物、チタンアルコキシドと珪素アルコキシドもしくはジルコニウムアルコキシドとの混合物の加水分解により得られるチタン-珪素もしくはジルコニウム複合酸化物、酢酸チタン、蓚酸チタン、蓚酸チタンカリウム、蓚酸チタンナトリウム、チタン酸カリウム、チタン酸ナトリウム、チタン酸-水酸化アルミニウム混合物、塩化チタン、塩化チタン-塩化アルミニウム混合物、チタンアセチルアセトナート等が挙げられる。
5価のリン化合物として、置換基として芳香環を有しない5価のリン酸エステルの少なくとも一種が用いられる。例えば、リン酸トリメチル、リン酸トリエチル、リン酸トリ-n-ブチル、リン酸トリオクチル、リン酸トリス(トリエチレングリコール)、リン酸メチルアシッド、リン酸エチルアシッド、リン酸イソプロピルアシッド、リン酸ブチルアシッド、リン酸モノブチル、リン酸ジブチル、リン酸ジオクチル、リン酸トリエチレングリコールアシッド等が挙げられる。
マグネシウム化合物を含めることにより、静電印加性が向上する。この場合に着色がおきやすいが、本発明においては、着色を抑え、優れた色調、耐熱性が得られる。
(i)Z=5×(P含有量[ppm]/P原子量)-2×(Mg含有量[ppm]/Mg原子量)-4×(Ti含有量[ppm]/Ti原子量)
(ii)0≦Z≦+5.0
これは、リン化合物はチタンに作用するのみならずマグネシウム化合物とも相互作用することから、3者のバランスを定量的に表現する指標となるものである。
前記式(i)は、反応可能な全リン量から、マグネシウムに作用するリン分を除き、更にチタンに作用可能なリンの量を表現したものである。値Zが正の場合は、チタンを阻害するリンが余剰な状況にあり、逆に負の場合はチタンを阻害するために必要なリンが不足する状況にあるといえる。反応においては、Ti、Mg、Pの各原子1個は等価ではないことから、式中の各々の粒子数(ppm/原子量)に価数を乗じて重み付けを施してある。
エステル化反応を一段階で行なう場合、エステル化反応温度は230~260℃が好ましく、240~250℃がより好ましい。
エステル化反応を多段階に分けて行なう場合、第一反応槽のエステル化反応の温度は230℃~260℃が好ましく、より好ましくは240℃~250℃であり、圧力は1.0kg/cm2~5.0kg/cm2が好ましく、より好ましくは2.0kg/cm2~3.0kg/cm2である。第二反応槽のエステル化反応の温度は230℃~260℃が好ましく、より好ましくは245℃~255℃であり、圧力は0.5kg/cm2~5.0kg/cm2、より好ましくは1.0kg/cm2~3.0kg/cm2である。さらに3段階以上に分けて実施する場合は、中間段階のエステル化反応の条件は、前記第一反応槽と最終反応槽の間の条件に設定するのが好ましい。
前記エステル化反応で生成されたエステル化反応生成物を重縮合反応させて重縮合物を生成する。
重縮合反応は、1段階で行なってもよいし、多段階に分けて行なうようにしてもよい。
また、例えば3段階の反応槽で行なう場合、重縮合反応条件は、第一反応槽は、反応温度が255~280℃、より好ましくは265~275℃であり、圧力が100~10torr(13.3×10-3~1.3×10-3MPa)、より好ましくは50~20torr(6.67×10-3~2.67×10-3MPa)であって、第二反応槽は、反応温度が265~285℃、より好ましくは270~280℃であり、圧力が20~1torr(2.67×10-3~1.33×10-4MPa)、より好ましくは10~3torr(1.33×10-3~4.0×10-4MPa)であって、最終反応槽内における第三反応槽は、反応温度が270~290℃、より好ましくは275~285℃であり、圧力が10~0.1torr(1.33×10-3~1.33×10-5MPa)、より好ましくは5~0.1torr(6.67×10-4~1.33×10-5MPa)である態様が好ましい。
ある実施形態においては、上記同様の理由から、前記不等式(ii)は、+1.5≦Z≦+5.0を満たす場合が好ましく、+1.5≦Z≦+4.0を満たす場合が好ましく、+1.5≦Z≦+3.0を満たす場合がより好ましい。
上記の重縮合を終了した後には、得られたポリエステル樹脂をペレット状等に加工し、これを用いて固相重合を行なってもよい。
固相重合は、連続法(タワーの中に樹脂を充満させ、これを加熱しながらゆっくり所定の時間滞流させた後、順次送り出す方法)でもよく、バッチ法(容器の中に樹脂を投入し、所定の時間加熱する方法)でもよい。具体的には、固相重合として、特許第2621563号、特許第3121876号、特許第3136774号、特許第3603585号、特許第3616522号、特許第3617340号、特許第3680523号、特許第3717392号、特許第4167159号等に記載の方法を用いることができる。
未延伸フィルム形成では、後述するポリエステル樹脂を冷却ドラム上にシート状に溶融押出しし、冷却ドラムの反対側から冷却風をあてることで、溶融ポリエステルシートを冷却固化する。シート状ポリエステルの厚みは2.5mm以上7.0mm以下であることが好ましい。
溶融押出しは押出機を用いて実施し得る。押出機は、単軸押出機でも二軸押出機でもよい。原料ポリエステ樹脂を十分溶融せしめ、加水分解・熱分解などの劣化を抑制しつつ押し出すために、例えば、供給口及押出機出口を有するバレルと、それぞれ140mm以上の径を有し、前記バレル内で回転する2つのスクリュと、前記バレルの周囲に配置され、該バレルの温度を制御する温度制御手段とを備えた二軸押出機を用いることが好ましい。
図1に示す二軸押出機100は、供給口12及び押出機出口14を有するシリンダー10(バレル)と、シリンダー10内で回転する2つのスクリュ20A,20Bと、シリンダー10の周囲に配置され、該シリンダー10内の温度を制御する温度制御手段30と、を備えている。供給口12の手前には原料供給装置46が設けられている。また、押出機出口14の先には、図2に示すようにギアポンプ44と、フィルタ42と、ダイ40が設けられている。
シリンダー10は原料樹脂を供給するための供給口12と、加熱溶融された樹脂が押し出される押出機出口14を有する。
シリンダー10の内壁面は、耐熱、耐磨耗性、及び腐食性に優れ、樹脂との摩擦が確保可能な素材を用いることが必要である。一般的には内面を窒化処理した窒化鋼が使用されているが、クロムモリブデン鋼、ニッケルクロムモリブデン鋼、ステンレス鋼を窒化処理して用いることもできる。特に耐摩耗性、耐食性を要求される用途では、遠心鋳造法によりニッケル、コバルト、クロム、タングステン等の耐腐食性、耐磨耗性素材合金をシリンダー10の内壁面にライニングさせたバイメタリックシリンダーを用いることや、セラミックの溶射皮膜を形成させることが有効である。
ベント16A,16Bは脱気効率との関係で、開口面積やベントの数を適正にすることが求められる。二軸押出機100は、1箇所以上のベント16A,16Bを有することが望ましい。なお、ベント16A,16Bの数が多過ぎると、溶融樹脂がベントから溢れ出るおそれ、滞留劣化異物増加の懸念があるので、ベントは1箇所又は2箇所設けることが好ましい。
また、ベント付近の壁面に滞留した樹脂や析出した揮発成分が押出機100(シリンダー10)の内部に落下すると、製品に異物として顕在化する可能性があり、注意が必要である。滞留については、ベント蓋の形状の適正化や、上部ベント、側面ベントの適正な選定が有効であり、揮発成分の析出は、配管等の加熱で析出を防止する手法が一般的に用いられる。
例えば、樹脂供給口12を真空化したり、窒素パージを行うことで酸化分解を抑えることができる。
また、ベント16A,16Bを複数箇所に設けることで、原料水分量が2000ppm程度の場合でも、50ppm以下に乾燥した樹脂を単軸で押出した場合と同様の押出しが可能である。
剪断発熱による樹脂分解を抑えるため、押出と脱気が両立できる範囲でニーディング等のセグメントは極力設けないことが好ましい。
また、スクリュ出口(押出機出口)14の圧力が大きいほど剪断発熱が大きくなるため、ベント16A,16Bによる脱気効率と押出の安定性が確保できる範囲内で、押出機出口14の圧力は極力低くすることが好ましい。
シリンダー10内には、モータおよびギアを含む駆動手段21によって回転する2つのスクリュ20A,20Bが設けられている。スクリュ径Dが大きくなるほど、大量生産が可能である一方、溶融ムラが生じ易い。スクリュ径Dは、30~250mm以下が好ましく、より好ましくは50~200mm以下である。
2つのスクリュ20A,20Bの回転方向は同方向と異方向とに分かれる。異方向回転スクリュ20A,20Bは同方向回転型よりも混練効果が高く、同方向回転型は自己清掃効果を持っているため、押出機内の滞留防止には有効である。
スクリュの軸方向も平行と斜交があり、強いせん断を付与する場合に用いられるコニカルタイプの形状もある。
加熱溶融部に、ニーディングディスクやローターなどの剪断を付与するセグメントを用いることで、原料樹脂をより確実に溶融することができる。また、逆スクリュやシールリングを用いることにより、樹脂をせき止め、ベント16A,16Bを引く際のメルトシールを形成することができる。例えば、図1に示すように、ベント16A,16B付近に、上記のような原料樹脂の溶融を促進する混練部24A,24Bを設けることができる。
シリンダー10の周囲には、温度制御手段30が設けられている。図1に示す押出機100では、原料供給口12から押出機出口14に向けて長手方向に9つに分割された加熱/冷却装置C1~C9が温度制御手段30を構成している。このようにシリンダー10の周囲に分割して配置された加熱/冷却装置C1~C9によって、例えば加熱溶融部C1~C7と冷却部C8,C9の各領域(ゾーン)に区画し、シリンダー10内を領域ごとに所望の温度に制御することができる。
シリンダー10の押出機出口14には、押出機出口14から押出された溶融樹脂をフィルム状(帯状)に吐出するためのダイ40が設けられている。また、シリンダー10の押出機出口14とダイ40との間には、フィルムに未溶融樹脂や異物が混入することを防ぐためのフィルタ42が設けられている。バレル内で加熱溶融された原料樹脂が押出機出口を出てから、ダイからフィルム状に押出されるまでの時間(図2において両矢印で示される過程に要する時間)を、以下「滞留時間」と称する。
厚み精度を向上させるためには、押出量の変動を極力減少させることが重要である。押出量の変動を極力減少させるために押出機100とダイ40との間にギアポンプ44を設けてもよい。ギアポンプ44から一定量の樹脂を供給することにより、厚み精度を向上させることができる。特に、二軸スクリュ押出機を用いる場合には、押出機自身の昇圧能力が低いため、ギアポンプ44による押出安定化を図ることが好ましい。
6.0×10-6×D3≦Q/N≦1.1×10-5×D3 不等式(1)
(不等式(1)中、Dは二軸押出機のスクリュ径(mm)、Nはスクリュ回転数(rpm)、Qは押出量(kg/hr)をそれぞれ表す。)
また、例えば、PETを押出す場合、加水分解、熱分解、酸化分解をさらに抑制するために、樹脂供給口を減圧真空化を行ったり、窒素パージを行うことが好ましい。また、ベントを複数箇所に設けることで、原料であるポリエステル樹脂の水分による加水分解を抑えることができるため、好ましい。
また、剪断発熱による樹脂分解を抑えるため、押出と脱気が両立できる範囲でニーディング等のセグメントは極力設けないことが好ましい。
また、スクリュ出口(押出機出口)の圧力が大きいほど剪断発熱が大きくなるため、ベントによる脱気効率と押出の安定性が確保できる範囲内で、押出機出口の圧力は極力低くすることが好ましい。
上記のような極限粘度IVが0.68~0.95のポリエステル樹脂の原料(原料樹脂)を用意し、温度制御手段によりバレルを加熱するとともにスクリュを回転させ、供給口から原料樹脂を供給する。
バレル内に供給された原料樹脂は、温度制御手段による加熱のほか、スクリュの回転に伴う樹脂同士の摩擦、樹脂とスクリュやバレルとの摩擦などによる発熱によって溶融されるとともに、スクリュの回転に伴って押出機出口に向けて徐々に移動する。
バレル内に供給された原料樹脂は融点Tm(℃)以上の温度に加熱される。樹脂温度が低過ぎると溶融押出時の溶融が不足し、ダイからの吐出が困難になり得、樹脂温度が高過ぎると熱分解によって末端カルボキシル基濃度が著しく増加して耐加水分解性の低下を招き得る。
シリンダー内に供給された原料樹脂は融点Tm(℃)以上の温度に加熱される。樹脂温度が低過ぎると溶融押出時の溶融が不足し、ダイ40からの吐出が困難になり得、樹脂温度が高過ぎると熱分解によって末端COOH基濃度が著しく増加して耐加水分解性の低下を招き得る。
ある実施形態では、温度制御手段30による加熱温度及びスクリュ20A,20Bの回転数を調整することにより、押出機内の樹脂温度が押出機の上流端から押出機全長の40%~80%の位置に295℃以下の最大値を有し、かつ、押出機出口の樹脂温度が275℃~285℃となるように溶融押出しを行う。なお、押出機の上流端とは、スクリュの溝がある根元の位置を意味する。
Epoly+20QCp<Esp<Epoly+50QCp (2)
なお、ポリエステル樹脂に対する押出機の比動力は、スクリュの仕事量として、スクリュ電流、電圧から算出することができる。
また、ポリエステル樹脂の熱交換量Epoly(J/s)は下記式により算出される。
Epoly=QCp(Tout-Tin)+QE
(Q:樹脂の吐出量(kg/s)、Cp:樹脂の熱容量(J/kg℃)、Tout:押出機出口樹脂温度(℃)、Tin:原料温度(℃)、E:融解潜熱(J/kg))
ポリエステル樹脂に対する押出機の比動力Espが(Epoly+20QCp)よりも大きければ、未溶融樹脂の残存及び溶融樹脂の固化を抑制することができ、一方、(Epoly+50QCp)よりも小さければ末端COOHの増加を抑制することができる。このよう観点から、ポリエステル樹脂に対する押出機の比動力Espは下記不等式(3)の関係を満たすことがより好ましく、不等式(4)の関係を満たすことがさらに好ましい。
Epoly+25QCp<Esp<Epoly+40QCp (3)
Epoly+25QCp<Esp<Epoly+35QCp (4)
ベントを通じて真空引きをすることでバレル内の樹脂中の水分等の揮発成分を効率的に除去することができる。ベント圧力が低過ぎると溶融樹脂がバレルの外に溢れ出るおそれがあり、ベント圧力が高過ぎると揮発成分の除去が不十分となり、得られたフィルムの加水分解が生じ易くなるおそれがある。溶融樹脂がベントから溢れ出ることを防ぐとともに揮発成分を選択的に除去する観点から、ベント圧力は0.01Torr~5Torr(1.333Pa~666.5Pa)とすることが好ましく、0.01Torr~4Torr(1.333Pa~533.2Pa)とすることがより好ましい。
バレル内で原料樹脂が加熱溶融され、押出機出口を出た後、ダイからフィルム状に押出されるまでの時間の平均(平均滞留時間)は10分~20分が好ましい。平均滞留時間が10分未満では未溶融樹脂が残留し易く、一方、20分を超えると、熱分解によって末端カルボキシル機基濃度が増加して耐加水分解性が低下する。このような観点から、平均滞留時間は、10分~20分が好ましく、10分~15分がより好ましい。
ここで、平均滞留時間は、下記式で定義される。
平均滞留時間(秒)=[{押出機下流配管容積(cm3)×溶融体密度(g/cm3)×3600}/1000]÷押出量(kg/h)
上記のように原料樹脂をバレル内で加熱溶融する一方、温度制御手段によりバレル押出機出口側の内壁がポリエステル樹脂(原料樹脂)の融点Tm(℃)以下の冷却部となるように制御する。バレルの押出機出口側の内壁を冷却部として原料樹脂の融点Tm(℃)以下に制御すれば、樹脂が過剰に加熱されて末端カルボキシル基濃度が増加することを抑制することができる。末端カルボキシル基濃度の増加を確実に抑制する観点から、かかる冷却部における温度は、(Tm-150)℃~Tm℃の範囲内が好ましく、(Tm-100)℃~(Tm)℃の範囲内がより好ましい。
押出機出口における樹脂温度ToutがTm+30℃以下となるようにすることが好ましい。ただし、押出機出口における樹脂温度Toutが低過ぎると溶融樹脂の一部が固化する恐れもあるため、押出機出口における樹脂温度ToutはTm~(Tm+25)℃以下とすることがより好ましく、(Tm+10)℃~(Tm+20)℃とすることがさらに好ましい。
原料樹脂をバレル内で加熱溶融して押出機出口から押出された後、10分~20分の平均滞留時間を経て、スクリュ径Dを考慮してスクリュ回転数N(rpm)と押出量Q(kg/hr)を制御することで下記不等式(5)を満たす条件下でフィルム状に溶融押出しを行うことが好ましい。
6.0×10-6×D3≦Q/N≦1.1×10-5×D3 不等式(5)
一方、上記不等式(5)を満たす条件下で溶融押出しを行う場合、ベントから樹脂が溢れ出ることが防止されるとともに、スクリュ回転数Nが比較的遅くなり、押出機出口の手前の冷却部によって過剰な加熱が抑制されるとともに、樹脂とスクリュやバレルとの接触による発熱が抑制され、熱分解による末端カルボキシル基濃度の増加を抑制することができる。
7×10-6×D3≦Q/N≦1×10-5×D3 不等式(6)
8×10-6×D3≦Q/N≦9×10-6×D3 不等式(7)
押出量Qが少な過ぎると過度に加熱され易くなり、多過ぎると未溶融樹脂が生じ易くなる。押出量Qは1.1×10-3×D2.5kg/hr~7.6×10-3×D2.5kg/hrが好ましく、3.8×10-3×D2.5kg/hr~7.1×10-3×D2.5kg/hrがより好ましい。
バレルの押出機出口から押し出された樹脂をフィルタに通してダイから(例えば冷却ロールに)押し出してフィルム状に成形する。
前記方法によれば、樹脂温度を一度上げてから冷却部で下げることで、末端COOH量の増加を抑制するとともに、未溶融異物の発生を抑制することができるほか、フィルムのヘイズ上昇を制御しやすくなる効果が得られる。特に本発明の一実施形態における厚手製膜をする際は、冷却ドラムおよび逆面からのエア冷却の条件と組み合わせることにより、シートの厚み方向中央付近での結晶化によるヘイズ量の制御が可能となる。
未延伸フィルムの厚さは、2.5mm~8mmが好ましく、より好ましくは2.5mm~7mmであり、さらに好ましくは2.5mm~5mmである。厚みを厚くすることで、押出されたメルトがガラス転移温度(Tg)以下に冷却するまでの所要時間を長くすることができる。この間に、フィルム表面のCOOH基はポリエステル内部に拡散され、表面COOH量を低減することができる。
ここで、降温結晶化温度の半値幅が25℃以上50℃以下であるとする物性は、押出機より溶融押出しされる際のポリエステル(溶融樹脂)が備えていればよい。すなわち、原料であるポリエステルが、押出機に投入される前は、降温結晶化温度の半値幅が25℃以上50℃以下である物性を備えていなくとも、溶融され、押出機の中を通過して押出ダイから押出されるときに、降温結晶化温度の半値幅が25℃以上50℃以下である物性を備えていることが好ましい。
降温結晶化の半値幅が50℃を超えると、未延伸シートの結晶化速度が低くなりすぎる傾向がある。半値幅が25℃未満では、未延伸シートの結晶化速度が高くなりすぎ、延伸特性が低下し得る。
半値幅の測定方法の詳細は、次のとおりである。
(2)最終温度の300℃に到達後、保持せずに、降温速度-10℃/minで、最終温度60℃まで降温する。
(3)300℃から60まで降温する間に検出される凸状の発熱ピークの頂点の温度を降温結晶化温度(Tc)とし、当該発熱ピークの幅を半値幅とする。より具体的には、縦軸に試料の熱量を、横軸に温度を取った座標系で、高温側から低温側にプロットして作成したDSC曲線において、発熱吸収により、DSC曲線のベースラインからピークが立ち上がり始める温度と、発熱吸収が無くなり、ベースラインに到達する温度との温度幅を半値幅とする。
また、降温結晶化温度は、160℃以上220℃以下であることが好ましい。降温結晶化温度が160℃以上であることで冷却速度を大きくすることができ(低温では冷媒との温度差小さく、冷却速度を稼げない)、220℃以下であることで結晶化が始まるのを遅くすることができる。降温結晶化温度は、170℃以上210℃以下であることがより好ましい。
背圧、温度分布、及びスクリュ回転数等を変動して、半値幅を25℃以上50℃以下とすることで、溶融樹脂中に熱分解物が生じ易くなる。溶融樹脂に熱分解物が含まれていると、溶融樹脂中に球晶が発生していても、結晶が成長しにくくなるため、結果、ポリエステルシートの結晶化を制御することが可能になると考えられる。
背圧は、押出機バレル内での平均圧力に対して0.5%以上1.5%以下の範囲で加圧することで変動させることが好ましい。背圧変動は、0.8%以上1.1%以下である
ことがより好ましい。
なお、ポリエステルの降温結晶化温度の半値幅を制御するに当たり、背圧、温度分布、スクリュ回転数のいずかのみを変動させてもよいし、2つ以上を組み合わせて変動させてもよい。
以上のようにポリエステルの降温結晶化温度を制御することで、シート状ポリエステルの結晶化速度を制御しやすくし、以下に述べる冷却方法と組み合わせることで、シート厚み方向の中心近傍の結晶化生成を制御する。
冷却工程では、溶融押出しされたシート状のポリエステルを、前記ポリエステルの表面温度が350℃/min以上590℃/min以下で低下するように冷却することが好ましい。
本発明では、ポリエステルシート(未延伸フィルム)の厚みが大きいため、冷却面であるポリエステルの表面の冷却速度と、ポリエステルの内部の冷却速度とに差が生じやすい。冷却速度が遅いと、ポリエステルシート内部で球晶が生じ、延伸時に空隙(ボイド)が生成したり、破断しやすくなる。このため、ポリエステルの冷却は、冷却ドラムと反対側の面からの強制冷却を行うことが好ましい。
冷却手段は、連続運転時のシート表面へのオリゴマー付着防止の観点および、ポリエステルシートの厚み方向中心近傍の結晶化速度の制御のしやすさの観点から、押出機から押出された溶融樹脂を冷風で冷却すると共に、溶融樹脂を冷却キャストドラムに接触させて冷却することが好ましい。
冷風温度は、具体的には、0℃以上50℃以下とすることが好ましく、5℃以上40℃以下とすることがより好ましく、10℃以上35℃以下とすることがさらに好ましい。また、風速は、冷却の観点からは高い方が好ましいが、過度に風速を高めると、シート表面の平坦性が損なわれる。したがって、20m/sec以上70m/sec以下とすることが好ましく、40m/sec以上65m/sec以下とすることがより好ましく、50m/sec以上60m/sec以下とすることがさらに好ましい。
なお、上記冷却風の温度と風速、および冷却ドラムの温度を変更することで、目的とするシートのヘイズを調整することが好ましい。
溶融樹脂を、冷却キャストドラムを用いて冷却した場合、冷却したポリエステルシートの表面温度が、下記不等式(8)を満たす温度であるときに、冷却キャストドラムから剥離することが好ましい。
Tg-10<TL<Tg 不等式(8)
〔不等式(8)中、Tgはポリエステルのガラス転移温度(℃)を示し、TLは冷却されたポリエステルの表面温度を示す。〕
なお、ポリエステルシートの原料であるポリエステルのガラス転移温度(Tg)は、特に制限されないが、65℃以上80℃以下であることが好ましく、70℃以上80℃以下であることがより好ましい。
剥ぎ取りロールを用いて、冷却したポリエステルを冷却キャストドラムから剥離することで、冷却したポリエステルに偏った引っ張り応力を与えずに剥離することができるため、冷却したポリエステルを損ない難い。
また、剥ぎ取りロールのロール径は、冷却キャストドラムのロール径との間に、下記不等式(9)を満たす大きさであることが好ましい。
(D1/D2)<7 不等式(9)
〔不等式(9)中、D1は冷却キャストドラムのロール径を示し、D2は剥ぎ取りロールのロール径を示す。〕
さらに、剥ぎ取りロールのロール径は、冷却キャストドラムのロール径との間に、下記不等式(9-2)を満たす大きさであることがより好ましい。
3≦(D1/D2)<7 不等式(9-2)
〔不等式(9-2)中、D1は冷却キャストドラムのロール径を示し、D2は剥ぎ取りロールのロール径を示す。〕
D1/D2が3以上となると、冷却したポリエステルを冷却キャストドラムから剥離するときに、ポリエステルが、剥ぎ取りロールに沿って、偏らずに剥離することができる。
好ましい二軸延伸フィルムとして、例えば、250μm、内部ヘイズ1.5%、外部ヘイズ2.0%、破断応力210MPaの二軸延伸フィルムを製造する場合、冷却ドラム上で形成される未延伸ポリエステルフィルムは、例えば、厚み3.0~3.5mm、外部ヘイズは30~80%、となるように成形することが好ましい。
未延伸フィルム形成工程により得られた未延伸ポリエステルフィルム(ポリエステルシート)を、例えば、平均温度T1(℃)が下記不等式(10)で示す関係を満たし、且つ、表面温度が中心温度よりも0.3℃以上15℃未満高くなるように加熱した後、縦横の方向(搬送方向及び幅方向)に延伸する。
Tg-20℃<T1<Tg+25℃ 不等式(10)
[不等式(10)中、Tgは前記ポリエステル樹脂のガラス転移温度(℃)を表す。]
なお、上記延伸方法に関し、温度の測定方法の詳細は、以下に示す通りである。
測定範囲は、フィルムの表面温度及び中心温度のいずれについても、測定開始点を延伸開始点より3m前(フィルム搬送方向長)とし、該測定開始点から延伸開始点までとする。ここで、「延伸開始点」とは、搬送された未延伸ポリエステルフィルムが、延伸ロールと接触する点を意味する。
測定は、測定開始点及び測定開始から100msec経過する毎に、フィルムの表面温度及び中心温度の双方を測定することにより行う。
平均温度T1(℃)は、測定された表面温度及び中心温度の平均値を各測定点毎に算出し、それらを相加平均することにより算出する。
フィルムの表面温度と中心温度との差は、測定された表面温度から中心温度を減じた値を測定点毎に算出し、それらの値を相加平均することにより算出する。
Tg-10℃<T1<Tg+20℃ ・・・不等式(10-2)
[不等式(10-2)中、Tgは前記ポリエステル樹脂のガラス転移温度(℃)を表す。]
Tg-25℃<T2<Tg+40℃ 不等式(11)
[不等式(11)中、Tgは前記ポリエステルのガラス転移温度(℃)を表す。]
予熱ロールの表面温度及び周辺雰囲気温度の双方が、上記不等式(11)で示す関係を満たす温度T2(℃)であることで、延伸時における傷の発生をより効果的に抑制することができる。
予熱ロールの周辺雰囲気温度は、予熱ロール表面の周辺空間であって、予熱ロールからの熱放射の影響を受けない位置における温度(℃)を、熱電対にて測定した測定値である。
延伸の面積倍率が20倍以上では、延伸張力が膨大になるため、これに耐えうる設備(高張力化ロール、および超高トルクモータなど)コストが高価になる。また、延伸時にフィルムの破断が生じやすくなるため、生産性が低下する。
より好ましい延伸面積倍率は、10倍以上18倍以下である。
フィルムの縦・横の二軸方向の破断応力などの均一性の観点から、縦/横の延伸倍率は0.5~1.3が好ましく、さらに好ましくは0.6~1.2である。
下塗り層の厚みは、2μm以下の範囲が好ましく、より好ましくは0.005μm~2μmであり、更に好ましくは0.01μm~1.5μmである。厚みが0.005μm以上であると、塗布ムラの発生を回避し易く、2μm以下であると、ポリマー支持体がベタつくのを回避し得、良好な加工性を得うる。
ポリウレタン樹脂としては、例えば、カーボネート系ウレタン樹脂が好ましく、例えば、スーパーフレックス(登録商標)460(第一工業製薬(株)製)を好ましく用いることができる。
界面活性剤を添加する場合、その添加量は0.1mg/m2~10mg/m2が好ましく、より好ましくは0.5mg/m2~3mg/m2である。界面活性剤の添加量は、0.1mg/m2以上であると、ハジキの発生を抑えて良好な層形成が得られ、10mg/m2以下であると、ポリマー支持体前記白色層との接着を良好に行なうことができる。
本実施形態の具体例としては、下塗り層を含むポリマー支持体の作製において、(1)ポリマー支持体を構成するポリマーを含む未延伸シートを供給すること、(2)未延伸シートの、下塗り層が形成されるべき面に対して平行な一方向(第一の方向)に、未延伸シートを延伸すること(第一延伸)、(3)第一の方向に延伸されたシートの少なくとも一表面の上に、下塗り層形成用組成物を付与すること、及び、(4)下塗り層形成用組成物が付与されたシートを、第一の方向に対して下塗り層形成面内で直交する方向に延伸すること(第二延伸)、を少なくとも含む方法が挙げられる。
より具体的には、例えば、(1)’ポリマー支持体を構成するポリマーを、押し出し、静電密着法等を併用しつつ冷却ドラム上にキャストして未延伸シートを得、(2)’未延伸シートを縦方向(MD)に延伸し、(3)’当該縦方向延伸済シートの一表面に下塗り層形成用水性液を塗布し、(4)’下塗り層形成用水性液塗布済みシートを横方向(TD)に延伸するなどの方法を使用することができる。
このように、未延伸シートを予め少なくとも一回一方向に延伸し、下塗り層形成用組成物を付与し、その後に当該方向に対して直交する方向に少なくとも一回延伸する工程によってポリマー支持体と下塗り層とを形成することにより、ポリマー支持体と下塗り層との密着性が向上し、下塗り層の均一性を高め、且つ下塗り層をより薄膜状となし得る。
なお、下塗り層の表面及びポリマー支持体の表面にコロナ放電処理、その他の表面活性化処理を施してもよい。
得られた二軸延伸フィルムの結晶配向を完了させて、平面性と寸法安定性を付与するために、引き続きテンター内にて、熱固定処理を行うことが好ましい。二軸延伸後のフィルムを、張力が1kg/m以上10kg/m以下、かつ、170℃以上230℃以下で熱固定処理を行うことが好ましい。このような条件下で熱固定処理を行うことで、平面性と寸法安定性が向上し、例えば、任意の10cm間隔で測定した含水率の差を0.01質量%以上0.06質量%以下にすることができる。
必要に応じて、幅方向あるいは長手方向に1~12%の弛緩処理を施してもよい。
熱固定されたポリエステルフィルムは通常Tg以下まで冷却され、ポリエステルフィルム両端のクリップ把持部分をカットしロール状に巻き取られる。この際、最終熱固定処理温度以下、Tg以上の温度範囲内で、幅方向及び/または長手方向に1~12%弛緩処理することが好ましい。
冷却は、最終熱固定温度から室温までを毎秒1℃以上100℃以下の冷却速度で徐冷することが寸法安定性の点で好ましい。特に、Tg+50℃からTgまでを、毎秒1℃以上100℃以下の冷却速度で徐冷することが好ましい。冷却、弛緩処理する手段は特に限定はなく、従来公知の手段で行えるが、特に複数の温度領域で順次冷却しながら、これらの処理を行うことが、ポリエステルフィルムの寸法安定性向上の点で好ましい。
上記ポリエステルフィルムの製造に際し、ポリエステルフィルムの強度を向上させる目的で、多段縦延伸、再縦延伸、再縦横延伸、横・縦延伸など公知の延伸フィルムに用いられる延伸を行ってもよい。縦延伸と横延伸の順序を逆にしてもよい。
(1)極限粘度 (IV)
ウベローデ型粘度計を用い、ポリエステルを1,1,2,2-テトラクロルエタン/フェノール(=2/3[質量比])混合溶媒に溶解させ、本文前記の方法にて25℃にて測定した。
ポリエステル試料0.1gをベンジルアルコール10mlに溶解後、さらにクロロホルムを加えて混合溶液を得、これにフェノールレッド指示薬を滴下した。この溶液を、基準液(0.01N KOH-ベンジルアルコール混合溶液)で滴定し、滴下量から末端カルボキシル基濃度を求めた。
ポリエステルフィルムを、1cm幅×20cmのサイズで製膜流れ方向(MD)、フィルム幅方向(TD)に各々10本切り出した。これらの試料に対して、テンシロン万能引張試験機(商品名:RTC-1210、オリエンテック株式会社製)を用いて引っ張り試験を行った。測定は25℃60%RHの環境下、試料の両端において端から5cmまでの領域をそれぞれチャッキングし、延伸される部分の長さを10cmとし、引っ張り速度を毎分20%/分として、破断伸度と破断強度を求めた。そして、MD、TDのそれぞれ10本の破断伸度、破断強度の平均値をそれぞれ求めた。
内部ヘイズ(Hin)は、二軸延伸フィルムをリン酸トリクレジルを満たした厚み10mmの石英セル中に入れ、スガ試験機(株)製SMカラーコンピュータ(商品名:SM-T-H1型)で測定した。
また、外部ヘイズは、同様の装置を用い、二軸延伸フィルムをリン酸トリクレジルに浸さずに直接測定した。
二軸延伸フィルムを鋭利なカッターで切断し、その切断面をミクロトームで切削した後、切断面を倍率1000倍の電子顕微鏡で観察し、最大長さが1μm以上の空隙の数を観察面積400μm2あたりの数に換算した。
高分解能型高周波誘導結合プラズマ-質量分析(HR-ICP-MS、商品名:AttoM、SIIナノテクノロジー社製)を用いて測定した。
ポリエステルフィルムに、120℃100%RH環境下で80時間放置する湿熱処理を施した。湿熱処理前後でのフィルムの破断伸度を、上記の破断伸度の測定方法と同様の方法で測定し、破断伸度保持率が50%未満をB、50%以上60%未満をA、60%以上70%未満をS、70%以上80%未満をSS、80%以上のものをSSSで表した。
破断伸度保持率(%)=[湿熱試験後の破断伸度]/[湿熱試験前の破断伸度]
ポリエステルフィルムの部分放電電圧を、23℃、65%RHの室内で一晩放置したものを用いて試料として、部分放電試験器(商品名:KPD2050、菊水電子工業(株)製)を用い、部分放電電圧を測定した。
試料としたフィルムの一方の面を(i)上部電極側にした場合と(ii)下部電極側にした場合のそれぞれについて、フィルム面内において任意の10カ所で測定を実施し、得られた当該10カ所の測定値の平均値を求めた。(i)について得られた平均値と(ii)について得られた平均値とのうち、高い方の値をもって、部分放電電圧V0とした。試験条件は下記の通りである。
<試験条件>
・出力シートにおける出力電圧印加パターンは、1段階目が0Vから所定の試験電圧までの単純に電圧を上昇させるパターン、2段階目が所定の試験電圧を維持するパターン、3段階目が所定の試験電圧から0Vまでの単純に電圧を降下させるパターンの3段階からなるパターンのものを選択する。
・周波数は50Hzとする。
・試験電圧は1kVとする。
・1段階目の時間T1は10sec、2段階目の時間T2は2sec、3段階目の時間T3は10secとする。
・パルスカウントシートにおけるカウント方法は「+」(プラス)、検出レベルは50%とする。
・レンジシートにおける電荷量はレンジ1000pCとする。
・プロテクションシートでは、電圧のチェックボックスにチェックを入れた上で2kVを入力する。また、パルスカウントは100000とする。
・計測モードにおける開始電圧は1.0pC、消滅電圧は1.0pCとする。
上記条件によって測定した部分放電電圧V0を、以下の基準で判定して表記した。
A:1kV以上
B:1kV未満
未延伸シートの二軸延伸において、24時間破断することなく延伸できたものをA、破断が1度でも生じたものをB、で表した。
総合評価は、太陽電池バックシート用ポリエステルフィルムとしての適性を下記の4段階で表示するものである。
SS ;特に優れており、バックシート用途に好適に使用できる
S ;非常に優れており、バックシート用途に好適に使用できる
A ;バックシート用途に好適に使用できる
B ;性能および/または生産性に劣り、バックシート用途に好ましくない
以下のようにして、実施例及び比較例の各ポリエステルフィルムを作製した。
(実施例1のポリエテルフィルムの作製)
<原料ポリエステル樹脂1の合成>
以下に示すように、テレフタル酸及びエチレングリコールを直接反応させて水を留去し、エステル化した後、減圧下で重縮合を行なう直接エステル化法を用いて、連続重合装置によりポリエステル樹脂(Ti触媒系PET)を得た。
第一エステル化反応槽に、高純度テレフタル酸4.7トンとエチレングリコール1.8トンを90分かけて混合してスラリー形成させ、3800kg/hの流量で連続的に第一エステル化反応槽に供給した。更にクエン酸がTi金属に配位したクエン酸キレートチタン錯体(VERTEC(登録商標)AC-420、ジョンソン・マッセイ社製)のエチレングリコール溶液を連続的に供給し、反応槽内温度250℃、攪拌下で平均滞留時間約4.3時間で反応を行なった。このとき、クエン酸キレートチタン錯体は、Ti添加量が元素換算値で9ppmとなるように連続的に添加した。このとき、得られたオリゴマーの酸価は600当量/トンであった。
上記で得られたエステル化反応生成物を連続的に第一重縮合反応槽に供給し、攪拌下、反応温度270℃、反応槽内圧力20torr(2.67×10-3MPa)で、平均滞留時間約1.8時間で重縮合させた。
得られたポリマーは、固有粘度(IV)=0.58、末端COOH量(AV)=20当量/トン、であった。
上記で重合したPETサンプルをペレット化(直径3mm、長さ7mm)し、得られた樹脂ペレットを、バッチ法で固相重合を実施した。
固相重合は、樹脂ペレットを容器に投入した後、真空にして撹拌しながら、以下の条件で行った。
150℃で予備結晶化処理した後、190℃で30時間の固相重合反応を行った。
得られた固相重合後のポリエステル樹脂(PET-1)は、固有粘度(IV)=0.78dl/g、末端COOH量(AV)=15当量/トン、であった。
上記のように固相重合を終えた原料ポリエステル-1を、含水率20ppm以下に乾燥させた後、下記に記載の二軸押出機を用いて、ポリエステルを押し出した。
スクリュ径D:65mm
長さL[mm]/スクリュ径D[mm]:31.5(1ゾーンの幅:3.5D)
スクリュ形状:第1ベント直前に可塑化混練部、第2ベント直前に脱気促進混練部
ギアポンプ:2ギアタイプ
フィルタ:金属繊維焼結フィルタ(孔径20μm)
ダイ:リップ間隔4mm
二軸押出機の各ゾーン(C1~C9)は以下のように温度設定して溶融押出を行った。
C1:70℃、C2:270℃、C3~C6:280℃、C7:270℃、C8:260℃、C9:260℃
スクリュの回転数を120rpmに設定し、供給口12から原料樹脂を供給して加熱溶融し、押出量を250kg/hに設定し、溶融押出を行った。この時の押出機における可塑化の最高樹脂温度は、290℃であった。
冷却ロールに対面して設置された冷風発生装置から、25℃の冷風を風速60m/secで吹き出し、溶融樹脂に当てたところ、ポリエステルの表面温度は、450℃/minの冷却速度で低下した。
ダイ出口から冷却ロールまでの搬送域(エアギャップ)は、この搬送域を囲い、この中に調湿空気を導入することにより、湿度を30%RHに調節してある。
剥ぎ取りロールは、冷却キャストドラムのロール径をD1とし、剥ぎ取りロールのロール径をD2としたとき、D1/D2が6.3となる寸法のロールを用いた。
未延伸フィルムの厚みは、剥ぎ取りロールの後方に設置した自動厚み計(WEBFREX(登録商標)、横河電機(株)製)により測定した。
以上のようにして、厚さ4mmのポリエステルシートを得た。このポリエステルシートの降温度結晶化温度は185℃、密度法から算出した結晶化度は1.2%であった。
未延伸フィルムを、以下の方法で二軸延伸して、PETフィルムを得た。
予熱ロール周辺の雰囲気温度を、セラミックヒーターを利用した温風発生器により温度制御を行い、42℃の温風を供給することで30℃に調整した。次いで、直径:180mm~200mm、設置間隔(ローラーの面間距離):10mm、表面温度:75~85℃の範囲とした予熱ロール15本にて、上記にて得られた未延伸フィルムを搬送した。この
とき、前記の測定方法により測定したフィルムの表面温度と中心温度との差は3.5℃であった。
その後、未延伸フィルムの上下に設置した近赤外ヒーターにより予熱し90℃に加熱せしめた。この未延伸フィルムを、近赤外ヒーターの前後に設置した周速の異なる2本の延伸ロールにより、フィルムの搬送方向(縦方向)に3.5倍に延伸した。
この縦延伸フィルムは、直径:350mm、表面温度20℃の千鳥状に配置した冷却ロール5本に接触搬送し、40℃まで冷却した。
二軸押出機の可塑化時の最高温度と冷却ロールの温度を表1に示すように変更し、且つ未延伸フィルムの形成において、押出し機の吐出量、ダイのスリット高さを表1に示すように変更した以外は、実施例1と同様の方法で二軸延伸フィルムを得た。
テレフタル酸の量を4.6トン、イソフタル酸を0.1トンとし、エチレングリコール1.8トンに加え、シクロヘキサンジメタノールを0.6トンを混合、スラリー化した原料を用いてポリエステルを合成し、固相重合せしめた以外は、実施例1と同様の方法で二軸延伸フィルムを得た。
リン酸トリメチルのエチレングリコールにポリエステルのテレフタル酸成分の0.5モル%になるように、トリメリット酸を混合して添加し、ポリエステルを得、このポリエステルを固相重合せしめた以外は、実施例1と同様の方法で二軸延伸フィルムを作製した。
重合触媒として、クエン酸がTi金属に配位したクエン酸キレートチタン錯体(VERTEC(登録商標) AC-420、ジョンソン・マッセイ社製)のエチレングリコール溶液に代えて、二酸化ゲルマニウム(MERCK社製)のエチレングリコール溶液、またはアルミニウムアセチナート(MERCH社製)のエチレングリコール溶液を、各々Geとして50ppm、Alとして30ppmとなる量を添加してポリエステルを作製し、次いで、固相重合せしめた以外は、実施例1と同様の方法で二軸延伸フィルムを作製した。
溶融押し出しを行う際、二軸押出機にポリエステル樹脂と共に、スタバクゾール(登録商標)P100(Rhein Chemie社製;表1中に、「CI」と記載)をポリエステル樹脂の質量に対して0.1重量%の割合で添加した以外は、実施例1と同様に二軸延伸フィルムを作製した。
表1に示すように、スタバクゾール(登録商標)P100の添加量を変更するか、またはスタバクゾール(登録商標)P100に代えて以下に記す化合物を用いた以外は、実施例8と同様に二軸延伸フィルムを作製した。
(a)カルボジイミド系化合物
ラインケミー社製 スタバクゾール(登録商標)P100 (表1中に「CI」と記載)
(b)エポキシ系化合物
Hexion Speciality Chemicals社製 商品名:カラージュE10P(表1中に「EP」と記載)
(c)オキサゾリン系化合物
日本触媒社製 エポクロス(登録商標)RPS-1005 (表1中に「OX」と記載)
1,4-シクロヘキサンジメタノール成分を80モル%以上含有するポリエステルは、以下に示すようなエステル交換法により、バッチ重合装置を用いて作製した。
ジカルボン酸成分としてテレフタル酸ジメチルを用いた。ジオール成分として、ジカルボン酸の2.5倍モル量となるように、1、4-シクロヘキサンジメタノール、及び必要に応じてエチレングリコールを用いた。触媒として、クエン酸がTi金属に配位したクエン酸キレートチタン錯体(VERTEC(登録商標) AC-420、ジョンソン・マッセイ社製)のエチレングリコール溶液を、出来上がりポリエステルに対しTi元素量として重量基準で9ppmとなる量、および、酢酸マグネシウム4水和物を、Mg元素量として75ppmとなる量を用いた。これらをエステル交換反応層に所定量仕込み、槽内を窒素雰囲気とし、反応槽内温度を室温から230℃まで3時間かけて昇温し、攪拌下でエステル交換反応せしめながら、反応により生成するメタノールをエステル交換反応槽に接続された精留塔から抜き出した。2時間かけて、250℃まで昇温し、メタノールの留出が停止するまで反応せしめた。
エステル交換反応終了後、エステル交換反応槽の内容物に、トリメチルリン酸のエチレングリコール溶液を、ポリエステルの質量に対してリン元素の濃度(含有量)が60ppmとなるように添加し、5分間、攪拌を継続した。
エステル交換反応槽の内容物を、当該槽に直列接続された重縮合反応槽内に移し、重合反応を行った。重縮合反応は、最終到達温度285℃、真空度0.1Torrで行い、ポリエステルを得、次に、窒素で重縮合槽内を大気圧に戻し、さらに0.1MPa加圧して実施した。得られた反応物をストランド状に吐出し水冷し、直ちにカッティングしてCHDM系ポリエステル樹脂のペレット<(断面:長径約4mm、短径約2mm、長さ:約3mm>)を作製した。
上記で得られたポリエステルペレットを、160℃で6時間乾燥、結晶化した。
上記方法において、ジオール成分として1、4-シクロヘキサンジメタノールのみを用いて、ポリシクロヘキサンジメタノールテレフタレートからなるポリエステルを作製した。このポリエステルの極限粘度は0.80、融点は281℃であった。このポリエステルペレットを、実施例1におけるポリエステルペレットに代えて使用したこと以外は実施例1と同様の方法で、実施例16の二軸延伸フィルムを作製した。作製に使用された条件と、作製された二軸延伸フィルムの特性を、表1、表2に記した。
上記方法において、ジオール成分として1、4-シクロヘキサンジメタノール80モル%とエチレンテレフタレート20モル%とをそれぞれ用いて、ポリエステルを作製した。このポリエステルの極限粘度は0.81、融点は276℃であった。このポリエステルペレットを、実施例1におけるポリエステルペレットに代えて使用したこと以外は実施例1と同様の方法で、実施例17の二軸延伸フィルムを作製した。作製に使用された条件と、作製された二軸延伸フィルムの特性を、表1、表2に記した。
(環状カルボジイミド化合物を添加してなる二軸延伸ポリエステルフィルムの作製)
溶融押し出しを行う際、二軸押出機にポリエステル樹脂と共に、以下の環状カルボジイミド化合物(1)または(2)を添加したこと以外は実施例1と同様の方法で、二軸延伸フィルムを作製した。ただし、環状カルボジイミド化合物の添加量は、ポリエステル樹脂に対し1質量%とした。
・環状カルボジイミド(1)
特開2011-256337号公報の実施例に記載の分子量516の化合物であり、特開2011-256337号公報の参考例2に記載の合成方法を参考に合成した環状カルボジイミド(1)を、実施例18において使用した。
・環状カルボジイミド(2)
特開2011-256337号公報の実施例に記載の分子量252の化合物であり、特開2011-256337号公報の参考例1に記載の合成方法を参考に合成した環状カルボジイミド(2)を、実施例19において使用した。
重合触媒として、クエン酸がTi金属に配位したクエン酸キレートチタン錯体(VERTEC(登録商標) AC-420、ジョンソン・マッセイ社製)のエチレングリコール溶液に代えて、三酸化アンチモン(日本精鉱社製)のエチレングリコール溶液を、Sb量としてポリエステルに対し250ppmの量を添加し、Sb含有量が210ppmであるポリエステルを得、このポリエステルを固相重合せしめた以外は、実施例2と同様の方法で二軸延伸フィルムを作製した。
溶融押し出し時の押出機温度と冷却ロール上での冷却速度を表1に示すように変えた以外は、実施例1と同様に二軸延伸フィルムを作製した。
<太陽電池モジュールの作製>
実施例1~実施例19の各ポリエステルフィルムを太陽電池用バックシートとして用い、次のようにして、実施例20~実施例38の太陽電池モジュールを作製した。
厚さ3.2mmの強化ガラスと、第一のEVAシート〔商品名:SC50B、三井化学ファブロ社製〕と、結晶系太陽電池セルと、第二のEVAシート〔商品名:SC50B、三井化学ファブロ社製〕と、実施例1~実施例19のポリエステルフィルムのいずれか1枚とを、この順に重ね合わせ、真空ラミネータ〔日清紡社製〕を用いてホットプレスすることにより、第一のEVAシートと、結晶系太陽電池セルと、第二のEVAシートと、バックシートとを接着させた。具体的には、真空ラミネータを用いて、128℃で3分間の真空引き後、2分間加圧して仮接着し、その後、ドライオーブンにて150℃で30分間、接着処理を施した。
本明細書に記載された全ての文献、特許、特許出願、および技術規格は、個々の文献、特許、特許出願、および技術規格が参照により取り込まれることが具体的かつ個々に記された場合と同程度に、本明細書中に参照により取り込まれる。
Claims (9)
- 厚みが200μm以上800μm以下であり、縦延伸方向及び横延伸方向の破断強度がいずれも180MPa以上300MPa以下であり、内部ヘイズ(Hin)が0.3%以上20%以下であり、外部ヘイズ(Hsur)と内部ヘイズ(Hin)との差(ΔH=Hsur-Hin)が2%以下であり、かつ、極限粘度が0.68以上0.90以下である二軸延伸ポリエステルフィルム。
- 最大長さが1μm以上の空隙の含有量が、二軸延伸ポリエステルフィルム400μm2あたり1個以下である、請求項1に記載の二軸延伸ポリエステルフィルム。
- 構成単位の80モル%以上がエチレンテレフタレート単位または1,4-シクロヘキサンジメチレンテレフタレート単位であり且つ末端カルボキシル基濃度が25eq/ton以下であるポリエステルからなる請求項1又は請求項2に記載の二軸延伸ポリエステルフィルム。
- グリコール可溶性のチタン化合物、アルミニウム化合物、及びゲルマニウム化合物からなる群より選択される少なくとも1つを重合触媒として用いて合成されたポリエステルを含み、かつ、リン元素の含有量と金属元素の含有量の総和が10ppm以上300ppm以下である請求項1~請求項3のいずれか一項に記載の二軸延伸ポリエステルフィルム。
- 構成単位の0.1モル%~20モル%または80モル%~100モル%が1,4-シクロヘキサンジメチレンテレフタレート単位である請求項1~請求項4のいずれか一項に記載の二軸延伸ポリエステルフィルム。
- 請求項1~請求項5のいずれか一項に記載の二軸延伸ポリエステルフィルムを製造する方法であって、
グリコール可溶性のチタン化合物、アルミニウム化合物、及びゲルマニウム化合物から選ばれる少なくとも1つを重合触媒として用いて合成され、かつ、リン元素の含有量と金属元素の含有量との総和が300ppm以下である原料ポリエステル樹脂を準備すること、
前記原料ポリエステル樹脂を、当該原料ポリエステルの融点より10℃高い温度以上であり且つ融点より35℃高い温度以下の範囲にある温度で可塑化させ、溶融押出して冷却することにより、厚みが2.5mm~7.0mmの未延伸ポリエステルフィルムを形成すること、及び
前記未延伸ポリエステルフィルムを縦延伸及び横延伸して厚みが200μm以上800μm以下である二軸延伸ポリエステルフィルムを形成すること、
を含む方法。 - 前記原料ポリエステル樹脂の極限粘度IVが0.68~0.95である請求項6に記載の方法。
- カルボジイミド基の第一窒素と第二窒素とが結合基により結合されている環状構造を含む化合物が、前記冷却以前に、前記原料ポリエステル樹脂の質量に対して0.1質量%~5質量%の量で前記原料ポリエステル樹脂に添加される、請求項6又は請求項7に記載の方法。
- 請求項1~請求項5のいずれか一項に記載の二軸延伸ポリエステルフィルムを含む太陽電池発電モジュール。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201280041179.4A CN103764373B (zh) | 2011-08-25 | 2012-08-17 | 双轴拉伸聚酯膜及其制造方法以及太阳能电池模块 |
EP12825642.7A EP2749399B1 (en) | 2011-08-25 | 2012-08-17 | Biaxially stretched polyester film, method of producing same, and solar cell module |
KR1020147004101A KR101627116B1 (ko) | 2011-08-25 | 2012-08-17 | 2 축 연신 폴리에스테르 필름 및 그 제조 방법 그리고 태양 전지 모듈 |
US14/178,839 US20140158195A1 (en) | 2011-08-25 | 2014-02-12 | Biaxially stretched polyester film, method of producing same, and solar cell module |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011-184151 | 2011-08-25 | ||
JP2011184151 | 2011-08-25 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US14/178,839 Continuation US20140158195A1 (en) | 2011-08-25 | 2014-02-12 | Biaxially stretched polyester film, method of producing same, and solar cell module |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2013027678A1 true WO2013027678A1 (ja) | 2013-02-28 |
Family
ID=47746421
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2012/070929 WO2013027678A1 (ja) | 2011-08-25 | 2012-08-17 | 二軸延伸ポリエステルフィルム及びその製造方法並びに太陽電池モジュール |
Country Status (6)
Country | Link |
---|---|
US (1) | US20140158195A1 (ja) |
EP (1) | EP2749399B1 (ja) |
JP (1) | JP5676533B2 (ja) |
KR (1) | KR101627116B1 (ja) |
CN (1) | CN103764373B (ja) |
WO (1) | WO2013027678A1 (ja) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2013153978A1 (ja) * | 2012-04-13 | 2013-10-17 | 富士フイルム株式会社 | ポリエステルフィルム、太陽電池モジュール用バックシートおよび太陽電池モジュール |
CN103724607A (zh) * | 2013-12-26 | 2014-04-16 | 东莞市广海大橡塑科技有限公司 | 一种聚酯树脂薄膜 |
CN103722725A (zh) * | 2013-12-26 | 2014-04-16 | 东莞市广海大橡塑科技有限公司 | 一种双轴挤出树脂膜制造工艺 |
CN103724608A (zh) * | 2013-12-26 | 2014-04-16 | 东莞市广海大橡塑科技有限公司 | 一种聚酯树脂薄膜预混料 |
CN103772687A (zh) * | 2013-12-26 | 2014-05-07 | 东莞市广海大橡塑科技有限公司 | 一种聚酯树脂薄膜的制造方法 |
US20160194466A1 (en) * | 2013-10-28 | 2016-07-07 | Teijin Dupont Films Japan Limited | Flame-retardant biaxially oriented polyester film, and flame-retardant polyester film laminate comprising the same and flexible circuit board |
JP2021042292A (ja) * | 2019-09-10 | 2021-03-18 | 東レ株式会社 | 吸湿性に優れたポリエステル組成物の製造方法 |
Families Citing this family (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6147100B2 (ja) * | 2013-06-04 | 2017-06-14 | 三菱ケミカル株式会社 | 電池外装用積層フィルム |
JP6049648B2 (ja) * | 2013-07-02 | 2016-12-21 | 富士フイルム株式会社 | 二軸押出装置及びフィルム製造方法 |
CN104260361A (zh) * | 2014-07-28 | 2015-01-07 | 浙江绍兴华东包装有限公司 | 一种全双螺杆挤出机及其进行bopet薄膜挤出工艺 |
FR3027906B1 (fr) * | 2014-10-29 | 2017-01-06 | Roquette Freres | Procede de fabrication d'un polyester contenant au moins un motif 1,4 : 3,6-dianhydrohexitol a coloration amelioree |
GB201504291D0 (en) * | 2015-03-13 | 2015-04-29 | Dupont Teijin Films Us Ltd | PV cells |
US9809768B2 (en) * | 2015-12-04 | 2017-11-07 | Lubor JANCOK | Device for the production of fuel gas from materials of organic and/or inorganic origin |
WO2018001447A1 (en) * | 2016-06-27 | 2018-01-04 | Colines Air Bubble S.R.L. | Plant comprising a twin-screw extruder for the continuous production of rolls of plastic stretch film |
PL3391969T3 (pl) * | 2017-04-18 | 2019-11-29 | Bachofen Willy A Ag | Element pierścieniowy o stabilnym kształcie dla płaszcza wymiennika ciepła |
JP7563374B2 (ja) * | 2019-02-18 | 2024-10-08 | 東洋紡株式会社 | 二軸延伸ポリエステルフィルムロール |
JP7290041B2 (ja) * | 2019-02-26 | 2023-06-13 | 三菱ケミカル株式会社 | 二軸延伸フィルム |
CN113459324A (zh) * | 2020-03-30 | 2021-10-01 | 中石油吉林化工工程有限公司 | 脱挥螺杆挤出机设备及利用该设备生产pmma的方法 |
TWI799723B (zh) * | 2020-07-15 | 2023-04-21 | 南亞塑膠工業股份有限公司 | 紫外線吸收聚酯膜及其製造方法 |
CN112654658B (zh) * | 2020-11-24 | 2021-11-09 | 擎天材料科技有限公司 | 一种水性聚酯共聚物及其制备方法与应用 |
DE102022113375A1 (de) * | 2022-05-26 | 2023-11-30 | Neveon Germany Gmbh | Umsetzung von Polyurethan in einem Extruder |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002046172A (ja) * | 2000-08-04 | 2002-02-12 | Fuji Photo Film Co Ltd | 熱可塑性支持体の製膜方法 |
JP2004182975A (ja) * | 2002-11-18 | 2004-07-02 | Toray Ind Inc | ポリエステル組成物およびポリエステルフィルム |
JP2006117819A (ja) * | 2004-10-22 | 2006-05-11 | Mitsui Chemicals Inc | ポリエチレンテレフタレートの処理方法 |
WO2007072893A1 (ja) * | 2005-12-23 | 2007-06-28 | Toray Industries, Inc. | ポリエステルを製造するための触媒およびポリエステルの製造方法 |
JP2008045082A (ja) * | 2006-08-21 | 2008-02-28 | Teijin Dupont Films Japan Ltd | 自動車駆動モーター用二軸配向ポリエステルフィルム |
JP2009149066A (ja) * | 2007-11-29 | 2009-07-09 | Toyobo Co Ltd | ポリエチレンテレフタレート系樹脂フィルム、およびその製造方法 |
JP2011124428A (ja) * | 2009-12-11 | 2011-06-23 | Lintec Corp | 太陽電池モジュール用保護シート及び太陽電池モジュール |
JP2011153209A (ja) * | 2010-01-27 | 2011-08-11 | Teijin Ltd | フィルム |
JP2011162777A (ja) * | 2010-01-18 | 2011-08-25 | Fujifilm Corp | ポリエステル樹脂の重合方法、並びにポリエステル樹脂組成物及びポリエステルフィルム |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB911245A (en) * | 1960-02-11 | 1962-11-21 | Ici Ltd | Manufacture of filament and film-forming polyesters |
US5783283A (en) * | 1996-03-08 | 1998-07-21 | Minnesota Mining And Manufacturing Company | Multilayer polyester film with a low coefficient of friction |
US6500506B1 (en) * | 1998-06-26 | 2002-12-31 | Teijin Limited | Aromatic polyester composition and articles therefrom |
JP4352348B2 (ja) * | 2007-12-07 | 2009-10-28 | 東洋紡績株式会社 | 表面光拡散性ポリエステルフィルム |
JP2010260903A (ja) * | 2009-04-30 | 2010-11-18 | Toyobo Co Ltd | ポリエステルフィルム |
WO2011034024A1 (ja) * | 2009-09-17 | 2011-03-24 | 三菱樹脂株式会社 | 二軸配向ポリエステルフィルム |
CA2786665A1 (en) * | 2010-01-27 | 2011-08-04 | Taro Oya | Film |
-
2012
- 2012-08-17 CN CN201280041179.4A patent/CN103764373B/zh active Active
- 2012-08-17 EP EP12825642.7A patent/EP2749399B1/en not_active Not-in-force
- 2012-08-17 WO PCT/JP2012/070929 patent/WO2013027678A1/ja active Application Filing
- 2012-08-17 KR KR1020147004101A patent/KR101627116B1/ko active IP Right Grant
- 2012-08-17 JP JP2012181076A patent/JP5676533B2/ja active Active
-
2014
- 2014-02-12 US US14/178,839 patent/US20140158195A1/en not_active Abandoned
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002046172A (ja) * | 2000-08-04 | 2002-02-12 | Fuji Photo Film Co Ltd | 熱可塑性支持体の製膜方法 |
JP2004182975A (ja) * | 2002-11-18 | 2004-07-02 | Toray Ind Inc | ポリエステル組成物およびポリエステルフィルム |
JP2006117819A (ja) * | 2004-10-22 | 2006-05-11 | Mitsui Chemicals Inc | ポリエチレンテレフタレートの処理方法 |
WO2007072893A1 (ja) * | 2005-12-23 | 2007-06-28 | Toray Industries, Inc. | ポリエステルを製造するための触媒およびポリエステルの製造方法 |
JP2008045082A (ja) * | 2006-08-21 | 2008-02-28 | Teijin Dupont Films Japan Ltd | 自動車駆動モーター用二軸配向ポリエステルフィルム |
JP2009149066A (ja) * | 2007-11-29 | 2009-07-09 | Toyobo Co Ltd | ポリエチレンテレフタレート系樹脂フィルム、およびその製造方法 |
JP2011124428A (ja) * | 2009-12-11 | 2011-06-23 | Lintec Corp | 太陽電池モジュール用保護シート及び太陽電池モジュール |
JP2011162777A (ja) * | 2010-01-18 | 2011-08-25 | Fujifilm Corp | ポリエステル樹脂の重合方法、並びにポリエステル樹脂組成物及びポリエステルフィルム |
JP2011153209A (ja) * | 2010-01-27 | 2011-08-11 | Teijin Ltd | フィルム |
Non-Patent Citations (1)
Title |
---|
See also references of EP2749399A4 * |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2013153978A1 (ja) * | 2012-04-13 | 2013-10-17 | 富士フイルム株式会社 | ポリエステルフィルム、太陽電池モジュール用バックシートおよび太陽電池モジュール |
US20160194466A1 (en) * | 2013-10-28 | 2016-07-07 | Teijin Dupont Films Japan Limited | Flame-retardant biaxially oriented polyester film, and flame-retardant polyester film laminate comprising the same and flexible circuit board |
US10208175B2 (en) * | 2013-10-28 | 2019-02-19 | Teijin Dupont Films Japan Limited | Flame-retardant biaxially oriented polyester film, and flame-retardant polyester film laminate comprising the same and flexible circuit board |
CN103724607A (zh) * | 2013-12-26 | 2014-04-16 | 东莞市广海大橡塑科技有限公司 | 一种聚酯树脂薄膜 |
CN103722725A (zh) * | 2013-12-26 | 2014-04-16 | 东莞市广海大橡塑科技有限公司 | 一种双轴挤出树脂膜制造工艺 |
CN103724608A (zh) * | 2013-12-26 | 2014-04-16 | 东莞市广海大橡塑科技有限公司 | 一种聚酯树脂薄膜预混料 |
CN103772687A (zh) * | 2013-12-26 | 2014-05-07 | 东莞市广海大橡塑科技有限公司 | 一种聚酯树脂薄膜的制造方法 |
JP2021042292A (ja) * | 2019-09-10 | 2021-03-18 | 東レ株式会社 | 吸湿性に優れたポリエステル組成物の製造方法 |
JP7363232B2 (ja) | 2019-09-10 | 2023-10-18 | 東レ株式会社 | 吸湿性に優れたポリエステル組成物の製造方法 |
Also Published As
Publication number | Publication date |
---|---|
EP2749399B1 (en) | 2016-11-30 |
EP2749399A4 (en) | 2015-04-15 |
CN103764373B (zh) | 2016-06-22 |
JP5676533B2 (ja) | 2015-02-25 |
KR20140054080A (ko) | 2014-05-08 |
KR101627116B1 (ko) | 2016-06-03 |
CN103764373A (zh) | 2014-04-30 |
US20140158195A1 (en) | 2014-06-12 |
JP2013060584A (ja) | 2013-04-04 |
EP2749399A1 (en) | 2014-07-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5676533B2 (ja) | 二軸延伸ポリエステルフィルム及びその製造方法並びに太陽電池モジュール | |
JP5752617B2 (ja) | 2軸延伸ポリエステルフィルム及びその製造方法、太陽電池用バックシート、並びに太陽電池モジュール | |
JP5905353B2 (ja) | ポリエステルフィルム及びその製造方法、太陽電池用バックシート、並びに太陽電池モジュール | |
KR101945054B1 (ko) | 2 축 연신 열가소성 수지 필름 및 그 제조 방법, 태양 전지용 백시트, 그리고 태양 전지 모듈 | |
JP5661386B2 (ja) | ポリエステルフィルム及びその製造方法、太陽電池用バックシート、並びに太陽電池モジュール | |
JP2011178866A (ja) | ポリエステルフィルム及びその製造方法、並びに太陽電池裏面封止用ポリエステルフィルム、太陽電池裏面保護膜及び太陽電池モジュール | |
JP5797535B2 (ja) | ポリエステル樹脂の製造方法及びポリエステルフィルムの製造方法 | |
JP5710140B2 (ja) | ポリエステルフィルム及びその製造方法、太陽電池用バックシート、並びに太陽電池モジュール | |
JP5847629B2 (ja) | ポリエステルフィルムの製造方法 | |
JP2012122000A (ja) | ポリエステルフィルム及びその製造方法、太陽電池用バックシート並びに太陽電池モジュール | |
JP2012046734A (ja) | ポリエステルシートの製造方法、並びに、ポリエステルフィルム及びポリエステルフィルムの製造方法 | |
JP5295161B2 (ja) | 熱可塑性樹脂フィルムの製造方法 | |
KR101871615B1 (ko) | 적층 필름, 태양 전지 모듈용 백 시트, 및 태양 전지 모듈 | |
WO2012081500A1 (ja) | ポリエステルフィルムおよびポリエステルフィルムの製造方法、太陽電池用バックシート、ならびに太陽電池モジュール | |
JP6348867B2 (ja) | 延伸白色ポリエステルフィルム及びその製造方法、太陽電池用バックシート、並びに、太陽電池モジュール | |
JP6317523B2 (ja) | 白色ポリエステルフィルム及びその製造方法、太陽電池用バックシート並びに太陽電池モジュール | |
JP5738539B2 (ja) | ポリエステル樹脂の製造方法 | |
JP5770693B2 (ja) | ポリエステルフィルムの製造方法、ポリエステルフィルム、太陽電池用保護シート、及び太陽電池モジュール |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 12825642 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 20147004101 Country of ref document: KR Kind code of ref document: A |
|
REEP | Request for entry into the european phase |
Ref document number: 2012825642 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2012825642 Country of ref document: EP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |