WO2020155113A1 - 稀土扩散磁体的制备方法及稀土扩散磁体 - Google Patents

稀土扩散磁体的制备方法及稀土扩散磁体 Download PDF

Info

Publication number
WO2020155113A1
WO2020155113A1 PCT/CN2019/074467 CN2019074467W WO2020155113A1 WO 2020155113 A1 WO2020155113 A1 WO 2020155113A1 CN 2019074467 W CN2019074467 W CN 2019074467W WO 2020155113 A1 WO2020155113 A1 WO 2020155113A1
Authority
WO
WIPO (PCT)
Prior art keywords
rare earth
magnet
substrate
sputtering
diffusion
Prior art date
Application number
PCT/CN2019/074467
Other languages
English (en)
French (fr)
Inventor
李志学
董广乐
李绍芳
Original Assignee
天津三环乐喜新材料有限公司
北京中科三环高技术股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 天津三环乐喜新材料有限公司, 北京中科三环高技术股份有限公司 filed Critical 天津三环乐喜新材料有限公司
Priority to JP2021545306A priority Critical patent/JP7371108B2/ja
Priority to PCT/CN2019/074467 priority patent/WO2020155113A1/zh
Priority to CN202010077660.5A priority patent/CN111524670B/zh
Publication of WO2020155113A1 publication Critical patent/WO2020155113A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0253Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets
    • H01F41/0293Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets diffusion of rare earth elements, e.g. Tb, Dy or Ho, into permanent magnets
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C28/00Alloys based on a metal not provided for in groups C22C5/00 - C22C27/00
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3407Cathode assembly for sputtering apparatus, e.g. Target
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3407Cathode assembly for sputtering apparatus, e.g. Target
    • C23C14/3414Metallurgical or chemical aspects of target preparation, e.g. casting, powder metallurgy
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/58After-treatment
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/58After-treatment
    • C23C14/5806Thermal treatment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
    • H01F1/0575Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together
    • H01F1/0577Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together sintered
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets

Definitions

  • the invention belongs to the field of rare earth magnet preparation, and in particular relates to a preparation method of a rare earth diffusion magnet and a rare earth diffusion magnet.
  • Sintered NdFeB magnets have excellent magnetic properties and are widely used in many fields such as electronic information, automobile industry, medical equipment, energy and transportation. In recent years, there have been new applications in the fields of energy conservation and environmental protection such as wind power generation, energy-saving home appliances and new energy vehicles.
  • the grain boundary diffusion method is used to diffuse the heavy rare earth elements into the grain boundary of the magnet and the edge area of the main phase grain, which can not only achieve the purpose of increasing the magnet anisotropy field, but also not significantly reduce the remanence and magnetic energy product.
  • An existing method for preparing rare earth magnets uses continuous-pass magnetron sputtering equipment to sputter heavy rare earth metals such as Dy and Tb on the surface of the magnet, effectively controlling the thickness and uniformity of the sputtering layer, and realizing grain boundary diffusion Technology for rapid and continuous production of magnets.
  • this method consumes the Dy/Tb target quickly during sputtering, and the heavy rare earth is expensive, which increases the production cost of the magnet.
  • the composite target material vapor deposition is used to prepare the grain boundary diffusion rare earth permanent magnet material.
  • the composite target material deposition medium and high temperature treatment and low temperature aging treatment, the coercivity of the magnet is obviously improved, and the remanence and magnetic energy product are basically not reduce.
  • the composite target can improve the performance of the magnet, but the inventor found that the light rare earth element originally present in the magnet during the diffusion process diffuses to the surface due to the concentration difference, forming a rare earth-rich layer on the surface of the magnet. Such a rare earth-rich layer is easy to oxidize, deteriorating the corrosion resistance of the magnet.
  • the present invention provides a method for preparing rare earth diffusion magnets and rare earth diffusion magnets, which control the content of RL in the sputtering coating, and the obtained rare earth diffusion magnets have high comprehensive magnetic properties and good corrosion resistance.
  • the embodiment of the present invention provides a method for preparing a rare earth diffusion magnet, including the steps:
  • the composition of the first target material is RH x -RL y -M z by mass percentage, wherein RH is one or more of Dy, Tb or Ho, RH contains at least one of Dy or Tb, RL is one or more of Nd, Pr, Ce, La, and Y, and RL contains at least Nd Or one of Pr, M is at least one element of Co, Cu, Ga, Ag, Sn or Al, y is 22-28wt%, z is 0-20wt%, x is (100-yz)wt% ,
  • the substrate is a rare earth magnet;
  • y is 25 to 28 wt%
  • z is 0 to 12 wt%.
  • the thickness of the first plating layer is 2-20 ⁇ m.
  • the second target is sputtered to form a second plating layer on the first plating layer, and the second target
  • the composition of the material is at least one of Cr, Ti, W, Mo, Si, Al 2 O 3 or ZrO 2 .
  • the thickness of the second plating layer is 0.1-6 ⁇ m.
  • the preparation method of the rare earth diffusion magnet before the step A, it further includes the preparation of the matrix, and the preparation of the matrix includes: smelting and rapid solidification of raw materials into alloy flakes; And jet milling to obtain alloy powder; compress the alloy powder in a magnetic field to obtain a compact; send the compact into a sintering furnace for sintering to obtain a sintered magnet; slice the sintered magnet to obtain The matrix.
  • the thickness of the alloy sheet is 0.15-0.5 mm.
  • the thickness of the substrate is 1-10 mm.
  • the diffusion treatment includes: primary heat treatment: heat preservation at 800-1000°C for 2-18 hours; secondary heat treatment: heat preservation at 450-600°C for 3-8 hours.
  • the present invention also provides a rare earth diffusion magnet, which is prepared by using the above-mentioned method for preparing the rare earth diffusion magnet.
  • the content of the RL element in the coating is close to the content of the RL element in the matrix.
  • the heavy rare earth element enters the matrix, and the RL element in the matrix does not enrich on the surface. Therefore, the rare earth-rich layer will not be formed on the surface of the rare earth diffusion magnet; the corrosion resistance of the rare earth diffusion magnet is improved.
  • FIG. 1 is a schematic diagram of the structure of a substrate after sputtering in an embodiment of the present invention.
  • connection mentioned in the present invention, unless otherwise clearly stipulated or limited, should be understood in a broad sense, and it may be directly connected or connected through an intermediary.
  • the directions or positions indicated by “up”, “down”, “front”, “rear”, “left”, “right”, “top”, “bottom”, etc. The relationship is based on the orientation or position relationship shown in the drawings, which is only for the convenience of describing the present invention and simplifying the description, and does not indicate or imply that the device or element referred to must have a specific orientation, be constructed and operated in a specific orientation, therefore It cannot be understood as a limitation of the present invention.
  • the rare earth diffusion magnet of the embodiment of the present invention is obtained by sputtering on a substrate 1 to form a plating layer, and then subjecting the sputtered substrate to diffusion treatment.
  • the above-mentioned substrate is a rare earth magnet.
  • the substrate passes under the first target material to form the first plating layer 21 on the surface of the substrate.
  • a second target may be provided after the first target. After the substrate passes through the first target, the second target may be sputtered to form a second plating layer 22 on the first plating layer 21.
  • the second plating layer 22 can further improve the performance of the rare earth diffusion magnet.
  • the substrate can also be turned over as needed, and the thermal diffusion treatment can be performed after sputtering on the other surface.
  • the two surfaces of the substrate for sputtering are opposite, and the surface to be sputtered is the surface perpendicular to the magnetization direction of the substrate.
  • the method for preparing the above-mentioned rare earth diffusion magnet in the embodiment of the present invention may include the preparation process of the substrate.
  • the preparation of the matrix may include the steps:
  • the raw materials are configured according to the composition of the matrix, and alloy flakes are made by smelting and rapid solidification of the raw materials.
  • the thickness of the alloy sheet is controlled to be 0.15-0.5 mm to facilitate subsequent processing.
  • the thickness of the substrate is preferably 1 to 10 mm.
  • the sputtering conditions are: the temperature is 100-200°C, the deposition pressure is 1-30 Pa under argon conditions, and the speed of the substrate passing through the sputtering zone is 0.01-1.0 m/s.
  • the vertical distance between the sputtering target and the upper surface of the substrate is 10-200 mm.
  • the substrate passes under the first target material, sputtering of the first target material is performed, and the first plating layer is formed on the surface of the substrate.
  • the composition of the first target material is in mass percentile: RH x -RL y -M z , where RH is one or more of Dy, Tb or Ho, and RH contains at least one of Dy or Tb RL is one or more of Nd, Pr, Ce, La, Y, RL contains at least one of Nd or Pr, and M is at least one element of Co, Cu, Ga, Ag, Sn or Al , Y is 22-28wt%, z is 0-20wt%, x is (100-yz)wt%, and the matrix is a rare earth magnet.
  • z can be 0, that is, the first target does not contain M.
  • the diffusion treatment includes: primary heat treatment: heat preservation at 800-1000°C for 2-18 hours; secondary heat treatment: heat preservation at 450-600°C for 3-8 hours.
  • the heavy rare earth coating as the diffusion source is diffused at high temperature, and the rare earth in the diffusion source diffuses into the grain boundary phase and the main phase of the substrate.
  • the RH element in the coating diffuses along the grain boundary to replace the RL element in the main phase, forming a core-shell structure around the main phase grains.
  • the RL element in the main phase is replaced, it diffuses to the main phase grain boundary. If it forms a concentration gradient with the surface layer of the substrate, the RL element in the grain boundary phase will diffuse to the surface of the substrate.
  • the content of the RL element in the diffusion source is relatively close to the RL element in the matrix.
  • the heavy rare earth in the diffusion source will continue to diffuse into the matrix due to the difference in concentration with the matrix, while the RL in the diffusion source
  • the difference between the element concentration and the internal concentration of the matrix is small, which suppresses the driving force of the light rare earth elements in the matrix to diffuse to the surface to form a rare earth-rich layer, and does not form a rare earth-rich layer on the surface of the substrate. This improves the corrosion resistance of the rare earth diffusion magnet.
  • the target material contains too high RL element content, it will reduce the concentration of heavy rare earths, which will make the final magnet’s intrinsic coercivity Hcj increase insufficient; too low RL element content is not enough to suppress the RL element in the matrix Surface enrichment.
  • the target material can contain a small amount of Cu, Al or Co to further accelerate the diffusion of the metal atoms of the RH element, thereby increasing the coercivity of the magnet.
  • the composition of the coating can be adjusted appropriately, and the content of the RL element in the coating should be lower than the content of the RL element in the matrix.
  • y of the first target material is 25-28 wt%, and z is 0-12 wt%.
  • the thickness of the first plating layer is 2-20 ⁇ m. If the thickness of the first plating layer is too small, it will affect the increase of the intrinsic coercivity Hcj. If the thickness of the first plating layer is too large, the target material will be wasted.
  • the second target is sputtered on the substrate to form a second coating on the first coating.
  • the composition of the second target is Cr, Ti, W, At least one of Mo, Si, Al 2 O 3 or ZrO 2 .
  • the second plating layer can further increase the corrosion resistance of the rare earth diffusion magnet, and due to the coverage of the second plating layer, the rare earth elements in the first plating layer will lose less volatilization during diffusion treatment, thereby further improving the performance of the rare earth diffusion magnet.
  • the thickness of the second plating layer is 0.1-6 ⁇ m.
  • the preparation process of rare earth diffusion magnet includes:
  • the raw materials are configured according to the composition mass ratio of the matrix C1 and the first target material,
  • composition of the matrix C1 is: Nd 22.5 Pr 6.9 Dy 2.6 Co 1.0 Cu 0.1 Ga 0.12 Al 0.3 B 0.98 Fe bal ,
  • the first target component is: Tb 68 Nd 23 Pr 4 Al 5 .
  • the raw material of the substrate C1 is smelted and quickly solidified into a thin strip of alloy flakes, the pouring temperature is 1380°C, and the thickness of the alloy flakes is controlled to be 0.2-0.5mm.
  • the raw material of the first target into a vacuum melting furnace for vacuum melting.
  • the melting temperature is 1050°C
  • the melting time is 15 minutes, and then it is poured into an alloy ingot; then the first target is formed by forging, hot rolling, cold rolling and mechanical processing. Target.
  • the alloy flakes of the matrix C1 are crushed with hydrogen, and the hydrogen content is 1200ppm at 540°C for 6h to obtain medium crushed powder.
  • the alloy powder is compacted in a magnetic field with an optional magnetic field intensity of 1.8T to obtain a compact with a density of 4.3g/cm 3 .
  • the surface of the sintered magnet is pickled to remove oil, and then sliced to obtain a matrix C1 of 30 ⁇ 17 ⁇ 5 mm.
  • the target is the first target
  • the substrate C1 passes under the first target to form a first plating layer on the surface of the substrate.
  • the thickness of the first plating layer is 8 ⁇ m.
  • Diffusion treatment is performed on the substrate C1 after the sputtering.
  • the process is to keep the temperature at 800°C for 18h, and then carry out tempering and aging treatment at 500°C for 4h to prepare the rare earth diffusion magnet.
  • the magnetic performance test and the corrosion resistance test of the rare earth diffusion magnet were carried out.
  • the performance of the rare earth diffusion magnet of this embodiment is listed in Table 1.
  • the substrate sample 1 in Table 1 is a sample of substrate C1 that has not undergone sputtering coating and diffusion treatment, and is prepared after secondary tempering and aging heat treatment.
  • the tempering process is: the primary tempering process is 920°C for 2h , The secondary tempering process is 500°C for 4h.
  • Corrosion resistance test conditions Place the sample in a PCT aging test box, set the conditions to 2atm, 120°C, 100%RH for 96h, and conduct corrosion resistance test.
  • Weight loss rate (initial weight of sample-weight of sample after PCT experiment)/surface area of sample.
  • the sputtering target is Tb 70 Nd 25 Al 5 , and the thickness of the coating is 8 ⁇ m.
  • Example 2 It is basically the same as Example 1, except that the sputtering target is different.
  • the composition of the sputtering target is Tb 70 Nd 25 Ga 5 , and the sputtering thickness on the surface of the substrate C1 is 8 ⁇ m.
  • Example 2 It is basically the same as Example 1, except that the sputtering target is different.
  • the composition of the sputtering target is Tb 70 Nd 25 Cu 5 , and the sputtering thickness on the surface of the substrate C1 is 8 ⁇ m.
  • Example 2 It is basically the same as Example 1, except that the sputtering target is different.
  • the composition of the sputtering target is Tb 70 Nd 25 Ag 5 , and the sputtering thickness on the surface of the substrate C1 is 8 ⁇ m.
  • Example 2 It is basically the same as Example 1, except that the sputtering target is different.
  • the composition of the sputtering target is Tb 70 Nd 22 Ce 3 Al 5 , and the sputtering thickness on the surface of the substrate C1 is 8 ⁇ m.
  • Example 2 It is basically the same as Example 1, except that the sputtering target is different.
  • the composition of the sputtering target is Tb 70 Nd 22 La 3 Al 5 , and the sputtering thickness on the surface of the substrate C1 is 8 ⁇ m.
  • the sputtering target is a pure metal Tb target, and the thickness of the Tb coating is 8 ⁇ m.
  • Example 2 It is basically the same as Example 1, except that the sputtering target is different.
  • the composition of the sputtering target is Tb 80 Nd 15 Al 5 , and the sputtering thickness on the surface of the substrate C1 is 8 ⁇ m.
  • Example 2 It is basically the same as Example 1, except that the sputtering target is different.
  • the composition of the sputtering target is Tb 55 Nd 40 Al 5 , and the sputtering thickness on the surface of the substrate C1 is 8 ⁇ m.
  • Example 1-1 to Example 1-7 Comparative Example 1, Comparative Example 2, and Comparative Example 3 are greatly improved compared to the base sample 1, while Br is slightly reduced.
  • the corrosion resistance of the rare earth diffusion magnets in Examples 1-1 to 1-7 is higher than that of the rare earth diffusion magnets prepared in Comparative Example 1, Comparative Example 2 and Comparative Example 3.
  • Example 1-1 The corrosion resistance of Examples 1-7 is similar to that of the substrate sample 1. It is explained that although the rare earth diffusion magnets of Examples 1-1 to 1-7 are subjected to sputtering and diffusion treatment, the corrosion resistance is not reduced, while the corrosion resistance of the rare earth diffusion magnets in Comparative Examples 1, 2, and 3 is greatly reduced. .
  • composition of the matrix C2 in this embodiment is: Nd 31 Dy 0.5 Co 1.2 Cu 0.16 Al 0.4 B 0.98 Fe bal ,
  • composition of the first target material is: Tb 65 Pr 25 Al 10 .
  • the thickness of the first plating layer after sputtering was 6 ⁇ m.
  • the diffusion treatment after sputtering includes: primary heat treatment: heat preservation at 1000°C for 2h; secondary heat treatment: heat preservation at 600°C for 3h.
  • the substrate sample 2 in Table 2 is a sample of substrate C2 that has not undergone sputtering coating and diffusion treatment, and is prepared after secondary tempering and aging heat treatment.
  • the tempering process is: the primary tempering process is 1000°C for 2h , The secondary tempering process is 600°C for 3h.
  • Example 2 It is basically the same as Example 2 except that the sputtering target is different.
  • the composition of the sputtering target is Dy 65 Pr 25 Sn 10 , and the sputtering thickness on the surface of the substrate C2 is 6 ⁇ m.
  • Example 2 It is basically the same as Example 2, except that the sputtering target is different.
  • the composition of the sputtering target is Dy 35 Tb 25 Pr 25 Cu 15 , and the sputtering thickness on the surface of the substrate C2 is 6 ⁇ m.
  • Example 2 It is basically the same as Example 2, except that the sputtering target is different.
  • the composition of the sputtering target is Tb 60 Ho 8 Pr 22 Al 10 , and the sputtering thickness on the surface of the substrate C2 is 6 ⁇ m.
  • the sputtering target composition is Tb 66 Pr 20 Y 2 Co 12 , and the sputtering thickness on the surface of the substrate C2 is 6 ⁇ m.
  • Example 2 It is basically the same as Example 2, except that the sputtering target is different.
  • the composition of the sputtering target is Tb 63 Pr 27 Al 10 , and the sputtering thickness on the surface of the substrate C2 is 6 ⁇ m.
  • the rare earth diffusion magnet of the present invention has little change in corrosion resistance. After sputtering with the target material of the present invention, the corrosion resistance of the prepared rare earth diffusion magnet is significantly improved. According to actual needs, the thickness of the first plating layer can be reduced to 2 ⁇ m.
  • the composition is: Nd 31 Dy 0.5 Co 1.2 Cu 0.16 Al 0.4 B 0.98 Fe bal .
  • the preparation process of the substrate C2 is the same as in Example 1.
  • the preparation process of the first target material and the second target material is the same as the preparation process of the first target material in Example 1.
  • first sputtering of the first target material is performed to form the first plating layer on the surface of the substrate C2
  • sputtering the second target material is performed to form the second plating layer on the surface of the first plating layer. See Table 3 for the thickness of the first plating layer and the second plating layer.
  • the sputtered substrate C2 is subjected to diffusion treatment.
  • the diffusion treatment includes: primary heat treatment: heat preservation at 920°C for 6 hours; secondary heat treatment: heat preservation at 450°C for 8 hours.
  • the substrate sample 3 in Table 3 is a sample of substrate C2 that has not undergone sputtering coating and diffusion treatment, and is prepared after secondary tempering and aging heat treatment.
  • the tempering process is: the primary tempering process is 920°C for 4 hours , The secondary tempering process is 450°C for 8h.
  • Salt spray test Put the test sample into a salt spray test box for corrosion in a continuous spray environment.
  • High temperature and high pressure experiment Put the test sample into the high temperature and high pressure experiment box, the experiment temperature is 120 ⁇ 3°C, the vapor pressure is 0.20MPa, the sample is taken out after 288 hours of experiment, the corrosion products are removed by ultrasonic cleaning, and the weight difference before and after corrosion is recorded. Finally, the weight loss is divided by the surface area of the sample to calculate the weight loss per unit surface area as the matrix weight loss parameter.
  • the salt spray resistance test hours of the rare earth diffusion magnet are increased, the weight loss rate of the weight loss test is reduced, and its corrosion resistance is further improved.
  • the Hcj of the magnet sputtered with the second coating is slightly improved compared to the magnet with only the first coating sputtered.

Abstract

本发明公开一种稀土扩散磁体的制备方法及稀土扩散磁体。稀土扩散磁体的制备方法包括步骤:对基体进行溅射,溅射第一靶材,在基体的表面形成第一镀层,第一靶材的组成成分按质量百分比为:RHx-RLy-Mz,其中,RH为Dy、Tb或Ho中的一种或多种,RH至少包含Dy或Tb中的一种,RL为Nd、Pr、Ce、La、Y中的一种或多种,RL至少包含Nd或Pr中的一种,M为Co、Cu、Ga、Ag、Sn或Al中的至少一种元素,y为22~28wt%,z为0~20wt%,x为(100-y-z)wt%,基体为稀土磁体;对溅射后的基体进行扩散处理,获得稀土扩散磁体。本发明制备的稀土扩散磁体耐腐蚀性明显提高。

Description

稀土扩散磁体的制备方法及稀土扩散磁体 技术领域
本发明属于稀土磁体制备领域,尤其涉及一种稀土扩散磁体的制备方法及稀土扩散磁体。
背景技术
烧结钕铁硼磁体有着优异的磁性能,广泛的应用于电子信息、汽车工业、医疗设备、能源交通等许多领域。近年来,在风力发电、节能家电及新能源汽车等节能环保领域有了新的应用。采用晶界扩散方式将重稀土元素扩散进入磁体晶界及主相晶粒边缘区域,既能达到提高磁体各向异性场的目的,又不明显的降低剩磁和磁能积。
现有的一种稀土磁体的制备方法,采用连续通过式的磁控溅射设备溅射Dy、Tb等重稀土金属在磁体表面,有效控制溅射层的厚度以及均匀性,可实现晶界扩散技术制备磁体快速连续生产。但此方法在溅射时对于Dy/Tb靶的消耗较快,重稀土价格昂贵,增加了磁体生产成本。
另一种方案中,利用复合靶材气相沉积制备晶界扩散稀土永磁材料,通过复合靶材的沉积、中高温处理以及低温时效处理,磁体矫顽力明显提高,剩磁和磁能积基本不降低。复合靶材可以提高磁体性能,但发明人发现复合靶在扩散过程中原本在磁体内部存在的轻稀土元素由于浓度差扩散到表面,在磁体表面形成富稀土层。这样的富稀土层容易氧化,使磁体的耐蚀性劣化。
发明内容
为了解决上述问题,本发明提出一种稀土扩散磁体的制备方法及稀土扩散磁体,对溅射镀层中RL的含量进行控制,得到的稀土扩散磁体综合磁性能高且耐腐蚀性好。
本发明的实施例提供一种稀土扩散磁体的制备方法,包括步骤:
A、对基体进行溅射,溅射第一靶材,在所述基体的表面形成第一镀层,所述第一靶材的组成成分按质量百分比为:RH x-RL y-M z,其中,RH为Dy、Tb或Ho中的一种或多种,RH至少包含Dy或Tb中的一种,RL为Nd、Pr、Ce、La、Y中的一种或多种,RL至少包含Nd或Pr中的一种,M为Co、Cu、Ga、Ag、Sn或Al中的至少一种元素,y为22~28wt%,z为0~20wt%,x为(100-y-z)wt%,所述基体为稀土磁体;
B、对溅射后的基体进行扩散处理,获得稀土扩散磁体。
优选地,上稀土扩散磁体的制备方法中所述y为25~28wt%,z为0~12wt%。
上述稀土扩散磁体的制备方法中,所述第一镀层的厚度为2~20μm。
上述稀土扩散磁体的制备方法的所述步骤A中,完成第一靶材的溅射后,进行第二靶材的溅射,在所述第一镀层上形成第二镀层,所述第二靶材的组成成分为Cr、Ti、W、Mo、Si、Al 2O 3或ZrO 2中的至少一种。
作为本发明可选的方案,所述第二镀层的厚度为0.1~6μm。
上述稀土扩散磁体的制备方法中,所述步骤A之前,还包括所述基体的制备,所述基体的制备包括:通过原料的熔炼、速凝制成合金片;对所述合金片进氢破碎和气流磨处理,获得合金粉;在磁场中对所述合金粉进行压制,获得压坯;将所述压坯送入烧结炉进行烧结,获得烧结磁体;对所述烧结磁体进行切片加工,获得所述基体。
上述稀土扩散磁体的制备方法中,所述合金片的厚度为0.15~0.5mm。
上述稀土扩散磁体的制备方法中,所述基体的厚度为1~10mm。
上述稀土扩散磁体的制备方法中,所述扩散处理包括:一级热处理:在800~1000℃保温2~18h;二级热处理:在450~600℃保温3~8h。
本发明还提供一种稀土扩散磁体,其利用上述稀土扩散磁体的制备方法制备。
本发明的稀土扩散磁体的制备方法及稀土扩散磁体,镀层中RL元素的含量与基体中RL元素的含量接近,在扩散时重稀土元素进入基体内,而基体内的RL元素不会向表面富集,稀土扩散磁体的表面不会形成富稀土层;提高了稀土扩散磁体的耐腐蚀性能。
附图说明
图1是本发明实施例溅射后基体的结构示意图。
具体实施方式
以下结合附图和实施例,对本发明的具体实施方式进行更加详细的说明,以便能够更好地理解本发明的方案及其各个方面的优点。然而,以下描述的具体实施方式和实施例仅是说明的目的,而不是对本发明的限制。
本发明中所述的“连接”,除非另有明确的规定或限定,应作广义理解,可以是直接相连,也可以是通过中间媒介相连。在本发明的描述中,需要理解的是,“上”、“下”、“前”、“后”、“左”、“右”、“顶端”、“底端”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。
如图1所示,本发明实施例的稀土扩散磁体通过在基体1上溅射,形成镀层,之后将完成溅射的基体进行扩散处理获得,上述的基体为稀土磁体。进行溅射时,基体通过第一靶材的下方,在基体的表面形成第一镀层21。根据需要还可在第一靶材之后设置第二靶材,基体通过第一靶材后进行第二靶材的溅射,在第一镀层21上形成第二镀层22。第 二镀层22可进一步提高稀土扩散磁体的性能。完成基体一个表面的溅射之后,可以进行后续的热扩散处理;也可以根据需要对基体翻面,进行另一表面的溅射后再进入热扩散处理。通常基体进行溅射的两个表面是相对的,被溅射的表面是与基体磁化方向垂直的面。
本发明的实施例中制备上述稀土扩散磁体的方法可包括基体的制备过程。基体的制备可包括步骤:
S1、按照基体的成分配置原料,通过原料的熔炼、速凝制成合金片。优选地,控制合金片的的厚度在0.15~0.5mm,便于进行后续的处理。
S2、对合金片进氢破碎,可选的在540℃脱氢6h,其氢含量为1200ppm,获得中碎粉。将中碎粉投入到气流磨中进行细粉制备,得到D50=4.0μm的合金粉。
S3、在磁场中对合金粉进行压制,可选的磁场强度为1.8T,获得压坯。
S4、将压坯送入烧结炉进行烧结,可选的烧结温度1000℃,保温时间6h,获得烧结磁体。
S5、对烧结磁体表面进行酸洗除油,之后进行切片加工,获得基体。基体的厚度优选为1~10mm。
获得基体后,对基体进行后续的处理,得到稀土扩散磁体,具体步骤为:
A、对基体进行溅射,可选的,溅射的条件为:温度100~200℃,沉积压强为氩气条件下1~30Pa,基体通过溅射区的速度为0.01~1.0m/s,溅射的靶材与基体上表面的垂直距离为10~200mm。
基体由第一靶材的下方通过,进行第一靶材的溅射,在基体的表面形成第一镀层。第一靶材的组成成分按质量百分位为:RH x-RL y-M z,其中,RH为Dy、Tb或Ho中的一种或多种,RH至少包含Dy或Tb中的一种,RL为Nd、Pr、Ce、La、Y中的一种或多种,RL至少包含Nd或Pr中的一种,M为Co、Cu、Ga、Ag、Sn或Al中的至少一种元素, y为22~28wt%,z为0~20wt%,x为(100-y-z)wt%,基体为稀土磁体。实施例中z可以为0,即第一靶材不含有M。
B、对溅射后的基体进行扩散处理,获得稀土扩散磁体。可选的,扩散处理包括:一级热处理:在800~1000℃保温2~18h;二级热处理:在450~600℃保温3~8h。
在基体的表面溅射重稀土稀土镀层后,作为扩散源的重稀土镀层在高温进行扩散处理,扩散源内的稀土向基体的晶界相和主相中扩散。在扩散过程中,镀层中的RH元素沿晶界扩散取代主相中的RL元素,在主相晶粒周围形成核壳结构,主相中RL元素被取代后,扩散到主相晶界处,如果与基体表层稀土形成浓度梯度,会导致晶界相中RL元素向基体表面扩散。本实施例中扩散源的RL元素的含量与基体内部RL元素比较接近,在扩散时,扩散源中重稀土由于依然存在与基体内部的浓度差,会持续扩散到基体内部,而扩散源中RL元素浓度与基体内部浓度差较小,抑制了基体中轻稀土元素扩散到表面形成富稀土层的动力,不会在基体表面形成富稀土层。使得稀土扩散磁体耐腐蚀性能提高。靶材中如果含有过高的RL元素含量,则会降低重稀土的浓度,从而使得最终磁体内禀矫顽力Hcj提高的幅度不足;过低的RL元素含量,不足以抑制基体中RL元素的表面富集。靶材中可含有少量的Cu或者Al或者Co,进一步加快RH元素的金属原子扩散,从而提高磁体矫顽力。根据基体成分不同,可对镀层的成分进行适当的调整,以镀层中RL元素的含量低于基体中RL元素的含量为宜。
优选的,上述稀土扩散磁体的制备方法中第一靶材的y为25~28wt%,z为0~12wt%。
可选的,上述第一镀层的厚度为2~20μm。第一镀层的厚度过小,会影响内禀矫顽力Hcj的提高,第一镀层的厚度过大,造成靶材的浪费。
上述步骤A中,完成第一靶材的溅射后,对基体进行第二靶材的溅射,在第一镀层上形成第二镀层,第二靶材的组成成分为Cr、Ti、W、Mo、Si、Al 2O 3或ZrO 2中的至少一种。
第二镀层可以进一步增加稀土扩散磁体的耐腐蚀性能,且由于有第二镀层的覆盖,第一镀层中的稀土元素在扩散处理时,挥发的损失较小,从而进一步提高稀土扩散磁体的性能。作为可选的方案,第二镀层的厚度为0.1~6μm。
实施例1-1
稀土扩散磁体的制备过程包括:
1、配料
按照基体C1和第一靶材的成分质量比分别配置原料,
基体C1成分为:Nd 22.5Pr 6.9Dy 2.6Co 1.0Cu 0.1Ga 0.12Al 0.3B 0.98Fe bal
第一靶材成分为:Tb 68Nd 23Pr 4Al 5
2、熔炼
将基体C1的原料熔炼、速凝为薄带的合金片,其浇注温度1380℃,控制合金片厚度为0.2~0.5mm。
将第一靶材的原料放入真空熔炼炉中进行真空熔炼,熔炼温度为1050℃,熔炼时间15分钟,之后浇注成合金锭;随后经锻压、热轧、冷轧及机械加工后形成第一靶材。
3、基体的制备具体为:
31、对基体C1的合金片进氢破碎,在540℃脱氢6h,其氢含量为1200ppm,获得中碎粉。将中碎粉投入到气流磨中进行细粉制备,得到D50=4.0μm的合金粉。
32、在磁场中对合金粉进行压制,可选的磁场强度为1.8T,获得压坯,压坯的密度为4.3g/cm 3
33、将压坯送入烧结炉进行烧结,烧结温度1000℃,保温时间6h,获得烧结磁体,烧结磁体密度为7.56g/cm 3
34、对烧结磁体表面进行酸洗除油,之后进行切片加工,获得30×17×5mm的基体C1。
4、对基体进行溅射
在镀膜室内进行溅射,靶材为第一靶材,基体C1通过第一靶材的下方,在基体的表面形成第一镀层,第一镀层的厚度为8μm。
5、对完成溅射的基体C1进行扩散处理,工艺为在800℃保温18h,随后在500℃进行回火时效处理4h,制得稀土扩散磁体。
对稀土扩散磁体进行磁性能测试和耐腐蚀性测试,本实施例的稀土扩散磁体性能列于表1。
表1中的基体试样1为未经过溅射镀层和扩散处理的基体C1样品,经过二级回火时效热处理后制备而成,其中回火工艺为:一级回火工艺为920℃保温2h,二级回火工艺为500℃保温4h。
耐蚀性实验条件:将样品放置在PCT老化试验箱中,设置条件为2atm,120℃,100%RH 96h,进行耐腐蚀性测试。
失重率=(样品初始重量-PCT实验后样品重量)/样品表面积。
实施例1-2
与实施例1基本相同,只是溅射的靶材不同,溅射靶材为Tb 70Nd 25Al 5,镀层的厚度为8μm。
实施例1-3
与实施例1基本相同,只是溅射的靶材不同,溅射靶材成分为Tb 70Nd 25Ga 5,其在基体C1表面溅射厚度为8μm。
实施例1-4
与实施例1基本相同,只是溅射的靶材不同,溅射靶材成分为Tb 70Nd 25Cu 5,其在基体C1表面溅射厚度为8μm。
实施例1-5
与实施例1基本相同,只是溅射的靶材不同,溅射靶材成分为Tb 70Nd 25Ag 5,其在基体C1表面溅射厚度为8μm。
实施例1-6
与实施例1基本相同,只是溅射的靶材不同,溅射靶材成分为Tb 70Nd 22Ce 3Al 5,其在基体C1表面溅射厚度为8μm。
实施例1-7
与实施例1基本相同,只是溅射的靶材不同,溅射靶材成分为Tb 70Nd 22La 3Al 5,其在基体C1表面溅射厚度为8μm。
对比例1
与实施例1基本相同,只是溅射的靶材不同,溅射靶材为纯金属Tb靶,Tb镀层的厚度为8μm。
对比例2
与实施例1基本相同,只是溅射的靶材不同,溅射靶材成分为Tb 80Nd 15Al 5,其在基体C1表面溅射厚度为8μm。
对比例3
与实施例1基本相同,只是溅射的靶材不同,溅射靶材成分为Tb 55Nd 40Al 5,其在基体C1表面溅射厚度为8μm。
表1
Figure PCTCN2019074467-appb-000001
Figure PCTCN2019074467-appb-000002
表中,Br为剩磁,Hcj为内禀矫顽力,(BH)max为最大磁能积,Hk/Hcj为方形度。
对比可知,实施例1-1至实施例1-7、对比例1、对比例2和对比例3制备的稀土扩散磁体相对于基体试样1,其Hcj得到大幅提升,同时Br略有降低。根据耐腐蚀性能测试结果,实施例1-1至实施例1-7稀土扩散磁体耐腐蚀性能要高于比对比例1、对比例2和对比例3制备的稀土扩散磁体,实施例1-1至实施例1-7与基体试样1的耐腐蚀性能相近。说明实施例1-1至实施例1-7的稀土扩散磁体虽然经过溅射和扩散处理后,耐腐蚀性没有降低,而对比例1、2、3中的稀土扩散磁体耐腐蚀性能降低了很多。
实施例2
与实施例1的过程基本相同,不同之处在于:
本实施例的基体C2成分为:Nd 31Dy 0.5Co 1.2Cu 0.16Al 0.4B 0.98Fe bal
第一靶材的成分为:Tb 65Pr 25Al 10
溅射后第一镀层的厚度为6μm。
溅射后的扩散处理包括:一级热处理:在1000℃保温2h;二级热处理:在600℃保温3h。
实施例2的稀土扩散磁体性能和耐腐蚀性测试结果列于表2。
表2中的基体试样2为未经过溅射镀层和扩散处理的基体C2样品,经过二级回火时效热处理后制备而成,其中回火工艺为:一级回火工艺为1000℃保温2h,二级回火工艺为600℃保温3h。
实施例3
与实施例2基本相同,只是溅射的靶材不同,溅射靶材成分为Dy 65Pr 25Sn 10,其在基体C2表面溅射厚度为6μm。
实施例4
与实施例2基本相同,只是溅射的靶材不同,溅射靶材成分为Dy 35Tb 25Pr 25Cu 15,其在基体C2表面溅射厚度为6μm。
实施例5
与实施例2基本相同,只是溅射的靶材不同,溅射靶材成分为Tb 60Ho 8Pr 22Al 10,其在基体C2表面溅射厚度为6μm。
实施例6
与实施例2基本相同,只是溅射的靶材不同,溅射靶材成分为Tb 66Pr 20Y 2Co 12,其在基体C2表面溅射厚度为6μm。
实施例7
与实施例2基本相同,只是溅射的靶材不同,溅射靶材成分为Tb 63Pr 27Al 10,其在基体C2表面溅射厚度为6μm。
表2
Figure PCTCN2019074467-appb-000003
Figure PCTCN2019074467-appb-000004
通过表2可知,本发明的稀土扩散磁体与基体相比,耐腐蚀性能变化很小,利用本发明的靶材溅射后,制备的稀土扩散磁体耐腐蚀性能显著提高。根据实际需要,第一镀层的厚度可以降至2μm。
实施例8~15
采用基体C2,成分为:Nd 31Dy 0.5Co 1.2Cu 0.16Al 0.4B 0.98Fe bal
基体C2的制备工艺与实施例1相同。第一靶材和第二靶材的制备工艺与实施例1中第一靶材的制备工艺相同。
对基体C2进行溅射时,首先进行第一靶材的溅射,在基体C2的表面形成第一镀层,之后进行第二靶材的溅射,在第一镀层的表面形成第二镀层。第一镀层和第二镀层的厚度见表3。
完成溅射的基体C2进行扩散处理,扩散处理包括:一级热处理:在920℃保温6h;二级热处理:在450℃保温8h。
实施例8~15的镀层成分、磁性能、耐腐蚀性能的测试结果见表3。
表3中的基体试样3为未经过溅射镀层和扩散处理的基体C2样品,经过二级回火时效热处理后制备而成,其中回火工艺为:一级回火工艺为920℃保温4h,二级回火工艺为450℃保温8h。
表3
Figure PCTCN2019074467-appb-000005
Figure PCTCN2019074467-appb-000006
盐雾试验:将测试样品放入盐雾试验箱内进行连续喷雾环境下的腐蚀,喷雾溶液液体为5%NaCl溶液,PH=7.1,温度25℃,每隔24小时进行观测样品有无锈点出现。
高温高压实验:将测试样品放入高温高压实验箱,实验温度为120±3℃,蒸汽压为0.20MPa,实验进行288小时后取出样品,用超声波清洗去除腐蚀产物,记录腐蚀前后重量差异。最后将失去重量除以样品表面积计算出在单位表面积失重量,作为基体失重参数。
对比仅溅射第一镀层的稀土扩散磁体,溅射第二镀层后,稀土扩散磁体的耐盐雾试验小时数提高,失重实验的失重率减小,其耐腐蚀性能得到进一步提高。同时,溅射了第二镀层的磁体,相比于仅溅射第一镀层的磁体,Hcj略有提升。
需要说明的是,以上参照附图所描述的各个实施例仅用以说明本发明而非限制本发明的范围,本领域的普通技术人员应当理解,在不脱离本发明的精神和范围的前提下对本发明进行的修改或者等同替换,均应涵盖在本发明的范围之内。此外,除上下文另有所指外,以单数形式出现的词包括复数形式,反之亦然。另外,除非特别说明,那么任何实施例的全部或一部分可结合任何其它实施例的全部或一部分来使用。

Claims (10)

  1. 一种稀土扩散磁体的制备方法,其特征在于,包括步骤:
    A、对基体进行溅射,溅射第一靶材,在所述基体的表面形成第一镀层,所述第一靶材的组成成分按质量百分比为:RH x-RL y-M z,其中,RH为Dy、Tb或Ho中的一种或多种,RH至少包含Dy或Tb中的一种,RL为Nd、Pr、Ce、La、Y中的一种或多种,RL至少包含Nd或Pr中的一种,M为Co、Cu、Ga、Ag、Sn或Al中的至少一种元素,y为22~28wt%,z为0~20wt%,x为(100-y-z)wt%,所述基体为稀土磁体;
    B、对溅射后的基体进行扩散处理,获得稀土扩散磁体。
  2. 根据权利要求1所述稀土扩散磁体的制备方法,其特征在于,所述y为25~28wt%,z为0~12wt%。
  3. 根据权利要求1所述稀土扩散磁体的制备方法,其特征在于,所述第一镀层的厚度为2~20μm。
  4. 根据权利要求1所述稀土扩散磁体的制备方法,其特征在于,所述步骤A中,完成第一靶材的溅射后,进行第二靶材的溅射,在所述第一镀层上形成第二镀层,所述第二靶材的组成成分为Cr、Ti、W、Mo、Si、Al 2O 3或ZrO 2中的至少一种。
  5. 根据权利要求4所述稀土扩散磁体的制备方法,其特征在于,所述第二镀层的厚度为0.1~6μm。
  6. 根据权利要求1所述稀土扩散磁体的制备方法,其特征在于,所述步骤A之前,还包括所述基体的制备,所述基体的制备包括:
    通过原料的熔炼、速凝制成合金片;
    对所述合金片进氢破碎和气流磨处理,获得合金粉;
    在磁场中对所述合金粉进行压制,获得压坯;
    将所述压坯送入烧结炉进行烧结,获得烧结磁体;
    对所述烧结磁体进行切片加工,获得所述基体。
  7. 根据权利要求6所述稀土扩散磁体的制备方法,其特征在于,所述合金片的厚度为0.15~0.5mm。
  8. 根据权利要求6所述稀土扩散磁体的制备方法,其特征在于,所述基体的厚度为1~10mm。
  9. 根据权利要求1所述稀土扩散磁体的制备方法,其特征在于,所述扩散处理包括:
    一级热处理:在800~1000℃保温2-18h;
    二级热处理:在450~600℃保温3~8h。
  10. 一种稀土扩散磁体,其特征在于,利用权利要求1~9任一所述稀土扩散磁体的制备方法制备。
PCT/CN2019/074467 2019-02-01 2019-02-01 稀土扩散磁体的制备方法及稀土扩散磁体 WO2020155113A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2021545306A JP7371108B2 (ja) 2019-02-01 2019-02-01 希土類拡散磁石の製造方法と希土類拡散磁石
PCT/CN2019/074467 WO2020155113A1 (zh) 2019-02-01 2019-02-01 稀土扩散磁体的制备方法及稀土扩散磁体
CN202010077660.5A CN111524670B (zh) 2019-02-01 2020-01-31 稀土扩散磁体的制备方法及稀土扩散磁体

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/074467 WO2020155113A1 (zh) 2019-02-01 2019-02-01 稀土扩散磁体的制备方法及稀土扩散磁体

Publications (1)

Publication Number Publication Date
WO2020155113A1 true WO2020155113A1 (zh) 2020-08-06

Family

ID=71840777

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/074467 WO2020155113A1 (zh) 2019-02-01 2019-02-01 稀土扩散磁体的制备方法及稀土扩散磁体

Country Status (3)

Country Link
JP (1) JP7371108B2 (zh)
CN (1) CN111524670B (zh)
WO (1) WO2020155113A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2023047306A (ja) * 2021-09-24 2023-04-05 煙台東星磁性材料株式有限公司 耐熱磁性体及びその製造方法

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112430800B (zh) * 2020-10-23 2023-04-28 杭州永磁集团振泽磁业有限公司 一种含有复合镀膜的钕铁硼材料的制备方法
CN112992521B (zh) * 2021-03-09 2023-03-17 合肥工业大学 一种低失重烧结NdFeB磁体的制备方法
CN113871123A (zh) * 2021-09-24 2021-12-31 烟台东星磁性材料股份有限公司 低成本稀土磁体及制造方法
CN113957405A (zh) * 2021-11-25 2022-01-21 中国科学院宁波材料技术与工程研究所 一种用于磁控溅射晶界扩散的稀土合金靶材及其制备方法
CN114783751A (zh) * 2022-03-31 2022-07-22 山西师范大学 一种高性能烧结钕铁硼磁体的晶界扩散工艺
TWI832207B (zh) * 2022-04-13 2024-02-11 李秀銀 磁石、磁石用漿料及其製造方法
CN115116734B (zh) * 2022-07-21 2024-02-02 宁波松科磁材有限公司 一种改善晶界扩散制备高性能钕铁硼永磁材料的方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7087145B1 (en) * 2005-03-10 2006-08-08 Robert Choquette Sputtering cathode assembly
CN102610355A (zh) * 2011-01-24 2012-07-25 北京中科三环高技术股份有限公司 一种稀土永磁体及其制备方法
CN103451663A (zh) * 2013-08-19 2013-12-18 南通保来利轴承有限公司 一种稀土永磁材料表面处理的方法
CN106282948A (zh) * 2016-07-28 2017-01-04 北京中科三环高技术股份有限公司 一种镀膜方法和镀膜系统及稀土磁体的制备方法
CN109192495A (zh) * 2018-11-07 2019-01-11 安徽大地熊新材料股份有限公司 一种再生烧结钕铁硼永磁体的制备方法

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3897724B2 (ja) * 2003-03-31 2007-03-28 独立行政法人科学技術振興機構 超小型製品用の微小、高性能焼結希土類磁石の製造方法
JP4577486B2 (ja) * 2004-03-31 2010-11-10 Tdk株式会社 希土類磁石及び希土類磁石の製造方法
RU2401881C2 (ru) * 2005-03-18 2010-10-20 Улвак, Инк. Способ и устройство нанесения покрытия, постоянный магнит и способ его изготовления
MY142024A (en) * 2005-03-23 2010-08-16 Shinetsu Chemical Co Rare earth permanent magnet
MY181243A (en) * 2006-03-03 2020-12-21 Hitachi Metals Ltd R-fe-b rare earth sintered magnet
WO2008032667A1 (en) * 2006-09-14 2008-03-20 Ulvac, Inc. Permanent magnet and process for producing the same
JP5057111B2 (ja) * 2009-07-01 2012-10-24 信越化学工業株式会社 希土類磁石の製造方法
JP5510457B2 (ja) * 2009-07-15 2014-06-04 日立金属株式会社 R−t−b系焼結磁石の製造方法
JP5870522B2 (ja) * 2010-07-14 2016-03-01 トヨタ自動車株式会社 永久磁石の製造方法
JP5850052B2 (ja) * 2011-06-27 2016-02-03 日立金属株式会社 Rh拡散源およびそれを用いたr−t−b系焼結磁石の製造方法
EP3790029A1 (en) * 2013-06-17 2021-03-10 Urban Mining Technology Company, LLC Magnet recycling to create nd-fe-b magnets with improved or restored magnetic performance
CN105755441B (zh) * 2016-04-20 2019-01-11 中国科学院宁波材料技术与工程研究所 一种磁控溅射法扩渗重稀土提高烧结钕铁硼矫顽力的方法
CN108417380A (zh) * 2018-05-21 2018-08-17 钢铁研究总院 一种低成本扩散源合金和晶界扩散磁体及其制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7087145B1 (en) * 2005-03-10 2006-08-08 Robert Choquette Sputtering cathode assembly
CN102610355A (zh) * 2011-01-24 2012-07-25 北京中科三环高技术股份有限公司 一种稀土永磁体及其制备方法
CN103451663A (zh) * 2013-08-19 2013-12-18 南通保来利轴承有限公司 一种稀土永磁材料表面处理的方法
CN106282948A (zh) * 2016-07-28 2017-01-04 北京中科三环高技术股份有限公司 一种镀膜方法和镀膜系统及稀土磁体的制备方法
CN109192495A (zh) * 2018-11-07 2019-01-11 安徽大地熊新材料股份有限公司 一种再生烧结钕铁硼永磁体的制备方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2023047306A (ja) * 2021-09-24 2023-04-05 煙台東星磁性材料株式有限公司 耐熱磁性体及びその製造方法
JP7450321B2 (ja) 2021-09-24 2024-03-15 煙台東星磁性材料株式有限公司 耐熱磁性体の製造方法

Also Published As

Publication number Publication date
CN111524670B (zh) 2022-04-12
CN111524670A (zh) 2020-08-11
JP7371108B2 (ja) 2023-10-30
JP2022516380A (ja) 2022-02-25

Similar Documents

Publication Publication Date Title
WO2020155113A1 (zh) 稀土扩散磁体的制备方法及稀土扩散磁体
TWI751789B (zh) 釹鐵硼磁體材料、原料組合物及製備方法和應用
TWI464757B (zh) Manufacture of rare earth magnets
TW202121450A (zh) R-t-b系永磁材料及其製備方法和應用
WO2017024927A1 (zh) 稀土永磁体及稀土永磁体的制备方法
CN105355353B (zh) 一种钕铁硼磁体及其制备方法
WO2016176974A1 (zh) 复合靶气相沉淀制备晶界扩散稀土永磁材料的方法
CN110571007B (zh) 一种稀土永磁材料、原料组合物、制备方法、应用、电机
WO2021249159A1 (zh) 重稀土合金、钕铁硼永磁材料、原料和制备方法
JP7253070B2 (ja) R-t-b系永久磁石材料、製造方法、並びに応用
TWI751788B (zh) 釹鐵硼磁體材料、原料組合物及製備方法和應用
CN107093516A (zh) 一种提高钕铁硼磁体矫顽力和热稳定性的晶界扩散方法
CN106384637B (zh) 一种改善边界结构制备高性能钕铁硼磁体的方法
WO2020133343A1 (zh) 一种镀膜设备及镀膜方法
WO2020133341A1 (zh) 稀土磁体、稀土溅射磁体、稀土扩散磁体及制备方法
EP3955268A1 (en) Ndfeb alloy powder for forming high-coercivity sintered ndfeb magnets and use thereof
TW202121453A (zh) 釹鐵硼磁體材料、原料組合物及製備方法和應用
CN104376944A (zh) 一种稀土铁硼磁粉、磁体及磁粉的制备方法
CN111180191A (zh) 一种制备高性能烧结钕铁硼磁体的方法
WO2016086777A1 (zh) 一种制备性能改善的稀土永磁材料的方法及稀土永磁材料
TW202125544A (zh) R-t-b系永磁材料及其製備方法和應用
CN110957092A (zh) R-t-b系磁体材料、原料组合物及制备方法和应用
CN108735494A (zh) 高矫顽力钕铁硼磁体的制备方法
CN109411173B (zh) 一种可调控内禀矫顽力梯度的NdFeB稀土永磁体制造方法
CN111613405A (zh) 钕铁硼磁体材料、原料组合物及其制备方法和应用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19912454

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021545306

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19912454

Country of ref document: EP

Kind code of ref document: A1