CN106384637B - 一种改善边界结构制备高性能钕铁硼磁体的方法 - Google Patents

一种改善边界结构制备高性能钕铁硼磁体的方法 Download PDF

Info

Publication number
CN106384637B
CN106384637B CN201610964128.9A CN201610964128A CN106384637B CN 106384637 B CN106384637 B CN 106384637B CN 201610964128 A CN201610964128 A CN 201610964128A CN 106384637 B CN106384637 B CN 106384637B
Authority
CN
China
Prior art keywords
alloy
sintered
sintering
powder
magnet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201610964128.9A
Other languages
English (en)
Other versions
CN106384637A (zh
Inventor
高学绪
包小倩
李纪恒
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Science and Technology Beijing USTB
Original Assignee
University of Science and Technology Beijing USTB
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Science and Technology Beijing USTB filed Critical University of Science and Technology Beijing USTB
Priority to CN201610964128.9A priority Critical patent/CN106384637B/zh
Publication of CN106384637A publication Critical patent/CN106384637A/zh
Application granted granted Critical
Publication of CN106384637B publication Critical patent/CN106384637B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
    • H01F1/0572Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes with a protective layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/17Metallic particles coated with metal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/02Compacting only
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/10Sintering only
    • B22F3/1035Liquid phase sintering
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/24After-treatment of workpieces or articles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
    • H01F1/0575Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together
    • H01F1/0577Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together sintered
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0253Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets
    • H01F41/0266Moulding; Pressing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/24After-treatment of workpieces or articles
    • B22F2003/248Thermal after-treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2998/00Supplementary information concerning processes or compositions relating to powder metallurgy
    • B22F2998/10Processes characterised by the sequence of their steps

Abstract

一种改善边界结构制备高性能钕铁硼磁体的方法,属于稀土永磁材料领域。本发明在钕铁硼粉取向压型之前,采用磁控溅射或真空蒸镀的方法在钕铁硼粉末颗粒的表面沉积一层厚度为10‑100nm的R‑M或M‑M低熔点合金,R为La,Ce,Pr,Nd,Gd,Tb,Dy,Ho,M为Fe,Co,Ni,Cu,Zn,Ga,Al,Sn,Ag,取向压型后,只进行液相烧结而无固相烧结,以避免产生烧结颈,最后进行回火热处理,使2:14:1主相晶粒被低熔点相均匀包覆,实现充分的隔绝,且获得晶粒尺寸接近颗粒尺寸的细晶组织,最终得到高性能烧结钕铁硼磁体。

Description

一种改善边界结构制备高性能钕铁硼磁体的方法
技术领域
本发明属于稀土永磁材料领域,特别涉及一种改善边界结构制备高性能钕铁硼磁体的方法。
背景技术
烧结钕铁硼磁体是一种重要的功能材料,广泛应用于电力、电讯、汽车、计算机、生物医学及家用电器等诸多领域。烧结钕铁硼的矫顽力是一个十分重要的磁参量,且是组织结构敏感参量。烧结钕铁硼的显微结构包含晶粒内部和边界结构两部分,其中晶粒内部有两个参数,第一个是2:14:1相晶粒尺寸,它对Hcb,Hcj,(BH)m,Hk/Hcj均有重大影响;另一个是2:14:1相晶粒c轴的取向程度。边界结构也包括两部分,一是富Nd晶界相层,起磁隔绝作用;二是2:14:1相晶粒的表面层,即过渡区,或称低(k1+k2)区,反磁化场的作用下最容易形成反磁化畴核的区域。要制备高性能烧结Nd-Fe-B永磁体,关键是要控制好两个显微结构参数,即:第一是边界结构的调控,包括调控晶界富Nd相和调控2:14:1晶粒的低(k1+k2)区;第二是控制2:14:1相的平均晶粒尺寸。
通过边界强化和晶界改性技术可以强化反磁化畴的形核中心和强化晶粒之间的去磁性耦合作用,可以显著提高磁体矫顽力。晶界扩散技术(GBDP)和双合金法都可以利用含有Dy/Tb重稀土元素的扩散源和辅合金取代晶粒表层外延层的Nd原子形成(Nd,Dy,Tb)2Fe14B硬磁化层,从而提高磁体的矫顽力。近年来兴起的低熔点稀土合金边界强化是又一种晶界改性新技术,即晶界扩散Pr/Nd-Cu/Al等轻稀土合金,主要是利用轻稀土合金熔点低,在高于其熔点的某一温度热处理,发生液态扩散,在2:14:1主相晶粒周围呈薄层网格状分布,实现2:14:1主相晶粒的良好隔离和去磁耦合作用,从而提高磁体矫顽力。然而晶界扩散技术和传统的双合金技术(主辅合金粉混合后取向压型)存在组织和性能不均匀性问题,即晶界相不能理想的分隔2:14:1主相晶粒。
晶粒尺寸是影响烧结钕铁硼磁体性能特别是矫顽力的重要因素,而烧结工艺对晶粒尺寸有重要的影响。烧结钕铁硼磁体的制备工艺主要包括鳞片铸锭、氢爆+气流磨制粉、取向压型、烧结致密化、回火热处理。钕铁硼粉末压坯的相对密度一般为50%-65%,孔隙度一般为35%-50%,颗粒间的结合全部都是机械结合,结合的强度极低。如果成型压力非常大时,已经相互接触的颗粒有的已经产生弹性或者塑性变形,这时样品较为容易裂开。为了进一步提高磁体的性能和使用性,烧结工艺是制备高性能钕铁硼磁体的必经环节。在生坯的烧结过程中,将发生一系列的物理化学变化。首先,粉末颗粒表面吸附的气体(包括水蒸气)排除,有机物(如等静压中可能沾上的油或者添加的抗氧化剂和润滑剂等)的蒸发与挥发,应力的消除,粉末颗粒表面的氧化物的还原,变形粉末颗粒的回复和再结晶。其次,原子扩散,物质迁移,颗粒之间的接触由机械接触改为物理化学接触,形成金属键和共价键的结合。最后,粉末间的接触面扩大,出现烧结颈,接下来是烧结颈长大,密度提高,晶粒长大等。
烧结温度一般在主相熔点以下(主相的熔点约为1185℃),由于实际生产中钕铁硼合金中加入各种合金元素,需要适当调整烧结温度,一般约为1050-1120℃。根据Nd-Fe-B三元亚稳相图可知,在这个烧结过程中始终存在液态的富Nd相(富Nd相的熔点约为655℃)。烧结过程大体可分为三个阶段:第一阶段迅速致密化过程,粉末颗粒之间存在大量的液相富Nd相,并且流动、渗透到粉末颗粒之间的间隙,此时液相烧结占主要因素。第二阶段,粉末颗粒的溶解与析出过程,当液相出现后,细小的颗粒和大颗粒的突起和棱角部分就会溶解于液相中,当固相在液相中的溶解度超过其饱和度时,就要在大颗粒表面析出,此时收缩率减缓;第三阶段,固相烧结,当液相量不足或者液相润湿性较差不能完全润湿固体颗粒时,固体颗粒之间不可避免会出现直接接触,形成烧结颈,烧结颈受到一个张力的作用逐渐扩大,主要靠固相的扩散或者物质迁移来致密化,收缩率进一步减缓。随着粉末颗粒之间以烧结颈形式直接接触、粘结并形成连续的骨架,会阻碍液相流动过程,并发生晶粒长大,此时致密化过程缓慢进行。由此可见,传统的钕铁硼磁体烧结过程中实现致密化的同时,不可避免带来晶粒的长大和晶粒形状的不规则,同时烧结钕铁硼材料还存在晶界相分布不均匀问题,部分2:14:1晶粒直接接触,部分富Nd相呈薄片状沿晶界分布,还有部分富Nd相呈多边形块状分布在晶界交隅处,而这些都对矫顽力不利。
发明内容
本发明目的是为了解决晶界扩散技术和传统的双合金技术都无法使烧结钕铁硼磁体中2:14:1主相晶粒被晶界相完全、均匀地分隔,以及烧结致密化技术中存在的固相烧结,即部分粉末颗粒之间以烧结颈形式直接接触、粘结并形成连续的骨架,会阻碍液相流动过程,从而导致晶界相隔离不完全、并发生晶粒长大等问题。
一种改善边界结构制备高性能钕铁硼磁体的方法,其特征在于:在钕铁硼粉取向压型之前,先对钕铁硼粉进行表面处理,即采用气相沉积的方式在钕铁硼粉末颗粒的表面形成一种合金包覆体,取向压型后,只进行液相烧结而无固相烧结,以避免产生烧结颈,最后进行回火热处理,获得“类粘结磁体组织”的显微组织,即钕铁硼晶粒被低熔点、高润湿相均匀包覆,实现充分的隔绝,且获得晶粒尺寸接近颗粒尺寸的细晶组织,最终得到高性能烧结钕铁硼磁体;合金包覆体成分由R-M或M-M合金组成,R-M合金中R为La,Ce,Pr,Nd,Gd,Tb,Dy,Ho中的至少一种,M为Fe,Co,Ni,Cu,Zn,Ga,Al,Sn,Ag中的至少一种;M-M合金则由Fe,Co,Ni中的至少一种和Cu,Zn,Ga,Al,Sn,Ag中的至少一种组成,或者是不包含Fe,Co,Ni、单纯由Cu,Zn,Ga,Al,Sn,Ag中的二种以上元素组成;R-M或M-M合金熔点低于700℃;
具体工艺步骤为:
1)用气相沉积的方法在钕铁硼粉末颗粒表面包覆低熔点、高润湿的R-M或M-M合金薄层;
2)对经过表面包覆的钕铁硼粉取向压型;
3)低温烧结致密化;
4)回火热处理,得到高性能烧结钕铁硼磁体。
其中工艺步骤1)中,原钕铁硼粉末是2:14:1正分的,或者是相对于2:14:1富Nd的。
工艺步骤1)中气相沉积采用磁控溅射或真空蒸镀的方法。
工艺步骤1)中,在气相沉积过程中,使钕铁硼粉末颗粒处于悬浮运动状态,从而保证R-M或M-M合金均匀包覆在钕铁硼粉末颗粒的表面,包覆层的厚度为10-100nm。
工艺步骤3)中采取低温烧结致密化,烧结温度800-950℃,时间1-4h,即只进行液相烧结而抑制固相烧结,以避免烧结颈的出现。
工艺步骤4)中回火热处理时,只需进行一级低温回火热处理,温度400-600℃,时间2-4h,简化了工艺。
所制备的磁体组织特点为2:14:1主相晶粒被一薄层低熔点R-M或M-M合金均匀分隔,起到良好的去磁交换耦合作用,同时大大细化了晶粒尺寸,使晶粒尺寸接近粉末颗粒的尺寸,最终得到高性能烧结钕铁硼磁体。一定成份范围的R-M或M-M合金不仅熔点低,具有晶界富Nd相一样的效果:一是实现液相烧结使磁体致密化,是磁体获得高磁通密度的基础;二是分布在2:14:1主相晶粒的周围,起着对主相晶粒的去磁耦合作用,实现高矫顽力。
本发明利用磁控溅射或真空蒸镀的方法,将具有低熔点、高润湿的R-M或M-M合金气相沉积到钕铁硼粉表面,随后通过取向压型、低温烧结致密化及回火热处理,得到产品。由于钕铁硼粉末颗粒的表面被一薄层低熔点、高润湿的R-M或M-M合金均匀包覆,因此可以通过低温烧结致密化,即只发生液相烧结而不发生固相烧结以避免产生烧结颈,从而得到具有R-M或M-M相完全均匀分隔的、晶粒尺寸接近磁粉颗粒大小的细晶钕铁硼烧结组织,最终实现高性能烧结钕铁硼磁体。
本发明提出了一种改善边界结构制备高性能钕铁硼磁体的方法,其优点在于:其一,通过在钕铁硼粉末颗粒表面气相沉积低熔点R-M或M-M相,可以保证钕铁硼颗粒表面均被一薄层低熔点R-M或M-M相包覆,起到良好的去磁耦合作用;其二,进行低温烧结,只发生液相烧结而无固相烧结,避免了烧结颈的出现,细化了晶粒尺寸,晶粒尺寸接近粉末颗粒的尺寸,最终实现高性能烧结钕铁硼磁体。
具体实施方式
实施例一:
通过速凝薄片铸锭、氢破加气流磨制粉,得到平均粒度约3μm的(Nd75Pr25)12.8Fe81.2B6(原子分数)合金粉,制备Nd70Cu30(原子分数)合金锭作为磁控溅射的靶材,先抽真空至5×10-3Pa以上,后通入氩气压力0.1Pa,维持单位靶面积的溅射功率为8w/cm2,溅射时间45min,得到厚度约20nm的包覆层,磁控溅射时维持钕铁硼粉的悬浮运动,保证包覆均匀,将经过Nd70Cu30沉积处理的(Nd75Pr25)12.8Fe81.2B6粉末在1.8T的磁场中取向压型并经冷等静压,得到的压坯置入真空烧结炉内,在900℃烧结2h,之后在480℃回火热处理3h,该新型烧结钕铁硼磁体具有良好的显微组织,不仅晶粒细小均匀,且晶界相分布均匀,磁性能优异,内禀矫顽力超过20kOe。
实施例二:
通过速凝薄片铸锭、氢破加气流磨制粉,得到平均粒度约3μm的(Nd75Pr25)12.8Fe81.2B6(原子分数)合金粉,制备Zn88Al 12(原子分数)合金锭作为蒸发源,抽真空至4×10-3Pa以上,电流/电压为75A/0.6V,蒸镀时间12min,得到厚度约15nm的包覆层,蒸镀时维持钕铁硼粉的悬浮运动,保证包覆均匀,将经过Zn88Al 12沉积处理的(Nd75Pr25)12.8Fe81.2B6粉末在1.8T的磁场中取向压型并经冷等静压,得到的压坯置入真空烧结炉内,在880℃烧结2h,之后在480℃回火热处理3h,该新型烧结钕铁硼磁体具有良好的显微组织,不仅晶粒细小均匀,且晶界相分布均匀,磁性能优异,内禀矫顽力超过19kOe。
实施例三:
通过速凝薄片铸锭、氢破加气流磨制粉,得到平均粒度约3μm的(Nd75Pr25)11.8Fe82.3B5.9(原子分数)合金粉,制备(Nd75Dy25)80Al20(原子分数)合金锭作为磁控溅射的靶材,先抽真空至5×10-3Pa以上,后通入氩气压力0.1Pa,维持单位靶面积的溅射功率为6w/cm2,溅射时间80min,得到厚度约30nm的包覆层,沉积实验时维持钕铁硼粉的悬浮运动,保证包覆均匀,将经过(Nd75Dy25)80Al20沉积处理的(Nd75Pr25)11.8Fe82.3B5.9粉末在1.8T的磁场中取向压型并经冷等静压,得到的压坯置入真空烧结炉内,在920℃烧结2h,之后在500℃回火热处理3h,该新型烧结钕铁硼磁体具有良好的显微组织,晶界相分布均匀,且晶粒细小均匀,磁性能优异,内禀矫顽力超过25kOe。
实施例四:
通过速凝薄片铸锭、氢破加气流磨制粉,得到平均粒度约3μm的(Nd75Pr25)11.8Fe82.3B5.9(原子分数)合金粉,制备Cu20Al20Zn60(原子分数)合金锭作为磁控溅射的靶材,先抽真空至5×10-3Pa以上,后通入氩气压力0.1Pa,维持单位靶面积的溅射功率为8w/cm2,溅射时间60min,得到厚度约25nm的包覆层,沉积实验时维持钕铁硼粉的悬浮运动,保证包覆均匀,将经过Cu20Al20Zn60沉积处理的(Nd75Pr25)11.8Fe82.3B5.9粉末在1.8T的磁场中取向压型并经冷等静压,得到的压坯置入真空烧结炉内,在900℃烧结2h,之后在500℃回火热处理3h,该新型烧结钕铁硼磁体具有良好的显微组织,晶界相分布均匀,且晶粒细小均匀,磁性能优异,内禀矫顽力超过20kOe。

Claims (1)

1.一种改善边界结构制备高性能钕铁硼磁体的方法,其特征在于:在钕铁硼粉取向压型之前,先对钕铁硼粉进行表面处理,即采用气相沉积的方式在钕铁硼粉末颗粒的表面形成一种合金包覆体,取向压型后,只进行液相烧结而无固相烧结,以避免产生烧结颈,最后进行回火热处理,获得“类粘结磁体组织”的显微组织,即2:14:1主相晶粒被低熔点相均匀包覆,实现充分的隔绝,且获得晶粒尺寸接近颗粒尺寸的细晶组织,最终得到高性能烧结钕铁硼磁体;合金包覆体成分由R-M或M-M合金组成,R-M合金中R为La,Ce,Pr,Nd,Gd,Tb,Dy,Ho中的至少一种,M为Fe,Co,Ni,Cu,Zn,Ga,Al,Sn,Ag中的至少一种;M-M合金则由Fe,Co,Ni中的至少一种和Cu,Zn,Ga,Al,Sn,Ag中的至少一种组成,或者是不包含Fe,Co,Ni、单纯由Cu,Zn,Ga,Al,Sn,Ag中的二种以上元素组成;R-M或M-M合金熔点低于700℃;
具体工艺步骤为:
1)用气相沉积的方法在钕铁硼粉末颗粒表面包覆低熔点R‐M或M‐M合金薄层;
2)对经过表面包覆的钕铁硼粉取向压型;
3)低温烧结致密化;
4)回火热处理,得到高性能烧结钕铁硼磁体;
工艺步骤1)中,原钕铁硼粉末是2:14:1正分的,或者是相对于2:14:1富Nd的;
工艺步骤1)中气相沉积采用磁控溅射或真空蒸镀的方法;
工艺步骤1)中,在气相沉积过程中,使钕铁硼粉末颗粒处于悬浮运动状态,从而保证R‐M或M‐M合金均匀包覆在钕铁硼粉末颗粒的表面,包覆层的厚度为10-100nm;
工艺步骤3)中采取低温烧结致密化,烧结温度800-950℃,时间1-4h,即只进行液相烧结而抑制固相烧结,以避免烧结颈的出现;
工艺步骤4)中回火热处理时,只需进行一级低温回火热处理,温度400-600℃,时间2-4h,简化了工艺;
所制备的磁体组织特点为2:14:1主相晶粒被一薄层低熔点、高润湿的R‐M或M‐M合金均匀分隔,起到良好的去磁交换耦合作用,同时大大细化了晶粒尺寸,使晶粒尺寸接近粉末颗粒的尺寸,最终得到高性能烧结钕铁硼磁体。
CN201610964128.9A 2016-10-28 2016-10-28 一种改善边界结构制备高性能钕铁硼磁体的方法 Active CN106384637B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610964128.9A CN106384637B (zh) 2016-10-28 2016-10-28 一种改善边界结构制备高性能钕铁硼磁体的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610964128.9A CN106384637B (zh) 2016-10-28 2016-10-28 一种改善边界结构制备高性能钕铁硼磁体的方法

Publications (2)

Publication Number Publication Date
CN106384637A CN106384637A (zh) 2017-02-08
CN106384637B true CN106384637B (zh) 2019-06-14

Family

ID=57956731

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610964128.9A Active CN106384637B (zh) 2016-10-28 2016-10-28 一种改善边界结构制备高性能钕铁硼磁体的方法

Country Status (1)

Country Link
CN (1) CN106384637B (zh)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107093516A (zh) * 2017-04-14 2017-08-25 华南理工大学 一种提高钕铁硼磁体矫顽力和热稳定性的晶界扩散方法
CN108389711A (zh) * 2018-01-05 2018-08-10 宁波招宝磁业有限公司 一种具有高矫顽力的烧结钕铁硼磁体的制备方法
CN108735494A (zh) * 2018-05-24 2018-11-02 北京京磁电工科技有限公司 高矫顽力钕铁硼磁体的制备方法
CN111180191A (zh) * 2020-01-15 2020-05-19 太原科技大学 一种制备高性能烧结钕铁硼磁体的方法
CN111292912B (zh) * 2020-02-25 2021-07-27 江西理工大学 一种高性能稀土双合金磁体及其制备方法
CN111613402B (zh) * 2020-05-18 2021-07-20 安徽吉华新材料有限公司 一种利用钕铁硼废旧磁钢再制造高性能永磁体的工艺
CN113270241B (zh) * 2020-09-16 2023-06-02 江西理工大学 一种钕铁硼磁体及其制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63278208A (ja) * 1987-01-30 1988-11-15 Tokin Corp 希土類永久磁石の製造方法
CN104952607A (zh) * 2015-06-16 2015-09-30 北京科技大学 晶界为低熔点轻稀土-铜合金的钕铁硼磁体的制备方法
CN105390224A (zh) * 2014-08-28 2016-03-09 通用汽车环球科技运作有限责任公司 制备具有减少的重稀土金属的Nd-Fe-B磁性材料的方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8728390B2 (en) * 2012-04-04 2014-05-20 GM Global Technology Operations LLC Vibration machines for powder coating

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63278208A (ja) * 1987-01-30 1988-11-15 Tokin Corp 希土類永久磁石の製造方法
CN105390224A (zh) * 2014-08-28 2016-03-09 通用汽车环球科技运作有限责任公司 制备具有减少的重稀土金属的Nd-Fe-B磁性材料的方法
CN104952607A (zh) * 2015-06-16 2015-09-30 北京科技大学 晶界为低熔点轻稀土-铜合金的钕铁硼磁体的制备方法

Also Published As

Publication number Publication date
CN106384637A (zh) 2017-02-08

Similar Documents

Publication Publication Date Title
CN106384637B (zh) 一种改善边界结构制备高性能钕铁硼磁体的方法
CN101375352B (zh) R-Fe-B类稀土烧结磁铁及其制造方法
CN105355353B (zh) 一种钕铁硼磁体及其制备方法
CN111524670B (zh) 稀土扩散磁体的制备方法及稀土扩散磁体
CN104795228B (zh) 一种晶界扩散Dy‑Cu合金制备高性能钕铁硼磁体的方法
CN103456452B (zh) 低镝耐腐蚀烧结钕铁硼制备方法
WO2019169875A1 (zh) 一种高矫顽力钕铁硼磁体及其制备方法
EP3955268A1 (en) Ndfeb alloy powder for forming high-coercivity sintered ndfeb magnets and use thereof
CN101944430A (zh) 稀土磁体及其制备
CN109360728B (zh) 一种蒸发晶界扩散增强钕铁硼磁体矫顽力的方法
WO2016201944A1 (zh) 晶界为低熔点轻稀土-铜合金的钕铁硼磁体的制备方法
CN106252009A (zh) 一种基于稀土氢化物添加的高性能富La/Ce/Y稀土永磁体及其制备方法
CN103280290A (zh) 含铈低熔点稀土永磁液相合金及其永磁体制备方法
KR102287740B1 (ko) 희토류 영구 자석 재료 및 이의 제조 방법
CN104882266A (zh) 晶界扩渗轻稀土-铜合金制备高矫顽力钕铁硼磁体的方法
CN104183349A (zh) 一种钐钴基永磁体、其制备方法以及磁性能调控方法
CN108766753A (zh) 高磁能积高矫顽力烧结钕铁硼磁体的制备方法
CN104575903A (zh) 一种添加Dy粉末的钕铁硼磁体及其制备方法
CN104575901A (zh) 一种添加铽粉的钕铁硼磁体及其制备方法
CN105321645A (zh) 高矫顽力纳米晶热变形稀土永磁材料及其制备方法
CN110534280A (zh) 一种基于晶界添加的高性能烧结钕铁硼磁体的制备方法
CN102568729B (zh) 一种制备块体纳米晶复合稀土永磁材料的方法
JP6783935B2 (ja) ネオジム−鉄−ボロン永久磁石材料の製造方法
CN108133796B (zh) 一种烧结磁体用钕铁硼磁粉的制备方法
CN107799256B (zh) 一种永磁复合材料及制备方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant