CN107799256B - 一种永磁复合材料及制备方法 - Google Patents

一种永磁复合材料及制备方法 Download PDF

Info

Publication number
CN107799256B
CN107799256B CN201711137163.4A CN201711137163A CN107799256B CN 107799256 B CN107799256 B CN 107799256B CN 201711137163 A CN201711137163 A CN 201711137163A CN 107799256 B CN107799256 B CN 107799256B
Authority
CN
China
Prior art keywords
alloy
composite materials
dehydrogenation
ingredient
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201711137163.4A
Other languages
English (en)
Other versions
CN107799256A (zh
Inventor
蒋晓龙
董英华
陶昭灵
赵浩峰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Baotou INST Magnetic New Material Co Ltd
Original Assignee
Nanjing University of Information Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing University of Information Science and Technology filed Critical Nanjing University of Information Science and Technology
Priority to CN201711137163.4A priority Critical patent/CN107799256B/zh
Publication of CN107799256A publication Critical patent/CN107799256A/zh
Application granted granted Critical
Publication of CN107799256B publication Critical patent/CN107799256B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/09Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials mixtures of metallic and non-metallic particles; metallic particles having oxide skin
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/005Ferrous alloys, e.g. steel alloys containing rare earths, i.e. Sc, Y, Lanthanides
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/14Ferrous alloys, e.g. steel alloys containing titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/60Ferrous alloys, e.g. steel alloys containing lead, selenium, tellurium, or antimony, or more than 0.04% by weight of sulfur
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/10Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials non-metallic substances, e.g. ferrites, e.g. [(Ba,Sr)O(Fe2O3)6] ferrites with hexagonal structure
    • H01F1/11Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials non-metallic substances, e.g. ferrites, e.g. [(Ba,Sr)O(Fe2O3)6] ferrites with hexagonal structure in the form of particles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • H01F1/14766Fe-Si based alloys
    • H01F1/14791Fe-Si-Al based alloys, e.g. Sendust

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Power Engineering (AREA)
  • Electromagnetism (AREA)
  • Dispersion Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Hard Magnetic Materials (AREA)

Abstract

本发明公开了一种永磁复合材料。由三种合金材料A、B、C与一种无机复合材料D组成;A、B、C与D的重量比为1.2:1:0.1‑0.6:0.01‑0.05。通过混料、压制成型,毛坯在氩气保护下放入烧结炉进行烧结,先升温至500‑750℃,保温3‑4h,然后升温至1050‑1090℃烧结3‑4h,冷却至室温后,进行二次回火处理,即分别在880‑900℃和530‑560℃热处理回火1‑2h。最后经180‑220℃时效处理得到永磁复合材料。

Description

一种永磁复合材料及制备方法
技术领域
本发明属于功能材料领域,具体涉及一种永磁复合材料及制备方法。
背景技术
永磁材料又称“硬磁材料”,一经磁化即能保持恒定磁性的材料。具有宽磁滞回线、高矫顽力和高剩磁。实用中,永磁材料工作于深度磁饱和及充磁后磁滞回线的第二象限退磁部分。硬磁材料指材料在外部磁场中磁化到饱和,而在去掉外磁场后,仍然能够保持高剩磁,并提供稳定的磁场的磁性材料,也叫永磁材料。利用此特性,永磁材料大规模应用于能源、信息通讯、交通、计算机、医疗器械等诸多行业。在空气污染日趋严峻的今天,尤其是在雾霾天气成为常态的趋势下,发展低碳经济已成为人类的共识。近年来,永磁材料在节能家电、混合动力汽车/纯电动汽车和风力与水力发电等领域所体现出优越性能,引起人们越来越多的关注。
专利(CN201610579015.7)公开了一种高热稳定性的纳米晶稀土永磁材料及其制备方法,属于磁性材料技术领域。所述永磁材料的基本表达式为:RxFe100-x-y-zByMz,其中,R为轻稀土元素钕、镨、铈中的一种或多种,Fe为铁元素,B为硼元素,M为锆、铪两种元素中的一种或多种;x、y和z表示原子百分数,12≤x≤14.9,5≤y≤10,0.1≤z≤4。但是,这种材料的高温剩磁并不高。
发明内容
本发明的目的就是针对上述技术缺陷,提供一种永磁复合材料,该材料具有良好的综合性能。
本发明的另一目的是提供一种永磁复合材料制备方法,该制备方法工艺简单,生产成本低,适于工业化生产。
本发明的目的是通过以下技术方案实现的。
本发明提供一种永磁复合材料,由三种合金材料A、B、C与一种无机复合材料D组成。
A、B、C与D的重量比为1.2:1:0.1-0.6:0.01-0.05。
所述合金材料A中各成分的重量百分含量为:Al0.6~0.9%,Si3~5%,Ti0.01~0.06%,Sc 0.01~0.05%,Hf 0.05~0.09%,B1~1.5%,Nd25~29%,其余Fe。
所述合金材料B中各成分的重量百分含量为:La15~20%,Sb0.02%~0.05%,Re0.04%~0.07%,Be 0.01%~0.05%,B1.5~2.5%,其余Fe。
所述合金材料C中各成分的重量百分含量为:La 0.1~0.5%,B1~2.5%,Al 3~6%,Si8~11%,其余Fe。
所述无机复合材料D中各成分的重量百分含量为:SrO1~4%,Ce2O3 0.1-0.4%,Co3O4 0.1-0.4%,SiO2 0.1-0.4%,Al2O3 0.1-0.4%,Eu2O3 0.1-0.4%,其余Fe2O3
进一步地,所述合金材料A的制备包括以下步骤:
1)按照合金A中各成分的重量百分含量为:Al0.6~0.9%,Si3~5%,Ti0.01~0.06%,Sc 0.01~0.05%,Hf 0.05~0.09%,B1~1.5%,Nd25~29%,其余Fe进行配料;先将原料放入电弧炉铜坩埚内,熔炼过程中不断用电弧搅动合金液,使其充分熔化均匀,然后浇注得到母合金铸锭;再将母合金铸锭放入普通感应炉中熔炼,熔炼温度为1510~1540℃,得到母合金液体;
2)将母合金液体与冷却辊接触形成薄带材料,冷却辊和喷嘴间距为0.2~0.5mm,冷却辊轮缘的旋转线速度为25~27m/s;薄带材料的厚度为20~25微米,宽度为8~13mm;
3)将上述薄带材料置于氢破炉中抽真空至真空度为1Pa以下,在室温下通入氢气,保持压力在2-3×105Pa,时间在2-3h,冷却至室温,然后抽出残余氢气,开始升温脱氢,脱氢工艺采用500-550℃保温4-6h;脱氢气压低于10Pa时,脱氢结束,停止加温,冷却至室温并且控制脱氢气压,使得脱氢后氢破粉含氢量在2000-2500ppm之间,氢破后进行气流磨制合金粉体,制成平均粒度均为3~4μm的合金粉体。
进一步地,所述合金材料B的制备包括以下步骤:
1)按照La15~20%,Sb0.02%~0.05%,Re0.04%~0.07%,Be 0.01%~0.05%,B1.5~2.5%,其余Fe进行配料;先将原料放入电弧炉铜坩埚内,熔炼过程中不断用电弧搅动合金液,使其充分熔化均匀,然后浇注得到母合金铸锭;再将母合金铸锭放入普通感应炉中熔炼,熔炼温度为1560~1590℃,得到母合金液体;
2)采用真空速凝甩片的方法制备合金铸片:铸片厚度为1~3毫米,长宽度为5~12mm。
3)将上述合金铸片置于氢破炉中抽真空至真空度为1Pa以下,在室温下通入氢气,保持压力在2-3×105Pa,时间在3-5h,冷却至室温,然后抽出残余氢气,开始升温脱氢,脱氢工艺采用520-590℃保温5-7h,脱氢气压低于10Pa时,脱氢结束,停止加温,冷却至室温并且控制脱氢气压,使得脱氢后氢破粉含氢量在2000-2500ppm之间,氢破后进行气流磨制磁粉,制成平均粒度均为1-8μm的合金粉体,进一步置于球磨机中进行湿式球磨细化粒度均为0.6-0.9μm的合金粉体。
进一步地,所述合金材料C的制备包括以下步骤:
1)按照La 0.1~0.5%,B1~2.5%,Al 3~6%,Si8~11%,其余Fe进行配料;先将原料放入感应坩埚内,熔炼温度为1460~1490℃,得到母合金液体;
2)采用真空速凝甩带的方法制备合金铸片;铸片厚度为2~4毫米,长宽度为5~12mm;
3)然后将上述合金铸片粗破碎后放入球磨罐中进行机械球磨,制成平均粒度均为5-10μm的合金粉体。
进一步地,所述无机复合材料D的制备包括以下步骤:
按照重量百分比为SrO 1~4%,Ce2O3 0.1-0.4%,Co3O4 0.1-0.4%,SiO2 0.1-0.4%,Al2O3 0.1-0.4%,Eu2O3 0.1-0.4%,其余Fe2O3进行配料;将各原料在砂磨机中进行混合和破碎,而后将粉料在110-120℃下烘干,烘干后再过筛,然后放入微波实验炉进行烧结。微波烧结温度为1000~1150℃,最后将烧结产物在研磨机中研磨,制成平均粒度均为15-20μm的无机复合材料粉。
本发明还提供上述永磁复合材料的制备方法,包括以下步骤:
1)按合金材料A、B、C与无机复合材料D的重量比为1.2:1:0.1-0.6:0.01-0.05配料后,加入到三维混合机中混合均匀,得混合粉料;然后将混合粉料在磁场压机中取向,应用等静压方式成型;
2)将成型毛坯在氩气保护下放入烧结炉进行烧结,先升温至500-750℃,保温3-4h,然后升温至1050-1090℃烧结3-4h,冷却至室温后,进行二次回火处理,即分别在880-900℃和530-560℃热处理回火1-2h。最后经180-220℃时效处理得到永磁复合材料。
进一步地,所述合金材料A中各成分的重量百分含量为:Al0.6~0.9%,Si3~5%,Ti0.01~0.06%,Sc 0.01~0.05%,Hf 0.05~0.09%,B1~1.5%,Nd25~29%,其余Fe。
所述合金材料B中各成分的重量百分含量为:La15~20%,Sb0.02%~0.05%,Re0.04%~0.07%,Be 0.01%~0.05%,B1.5~2.5%,其余Fe。
所述合金材料C中各成分的重量百分含量为:La 0.1~0.5%,B1~2.5%,Al3~6%,Si8~11%,其余Fe。
所述无机复合材料D中各成分的重量百分含量为:SrO 1~4%,Ce2O3 0.1-0.4%,Co3O4 0.1-0.4%,SiO2 0.1-0.4%,Al2O3 0.1-0.4%,Eu2O3 0.1-0.4%,其余Fe2O3
本发明与现有技术相比意想不到的有益效果是:
研究表明,晶界模糊,晶粒没有被晶界分隔,会发生较强的硬磁性相的交换耦,其结果降低Hcj。形成主主相Nd2Fe14B和次主相Pr2Fe14B、La2Fe14B明显相界面,强化了去磁耦合作用,使磁体既有高的矫顽力又避免了剩磁大幅下降,从而获得较高的综合磁性能。Be和Sb可以减少富Nd相与主相的湿润角,抑制主相的长大,使主相界面缺陷密度减少,反磁化畴在界面形核困难。因此提高了材料的剩磁。在烧结过程中,添加少量高熔点合金元素如第三过渡系Re、Hf,可使磁体组织中析出新相,消除了主相晶粒之间直接接触的现象,有效抑制主相晶粒的长大,利于获得较细小均匀的晶粒组织。此外,第一过渡系的Sc、Ti改善内禀矫顽力的原因是形成的晶粒间副相,抑制了晶粒交汇处颗粒的长大,细化了主相晶粒,因此就抑制了它们周围杂散场的增强,进而提高了内禀矫顽力。
本发明所得产品具有优异磁性能。制备中不用重稀土元素,所用稀有元素微量,其它原料成本较低;另外制备过种中合金经过快速冷却,保证了合金成分、组织和性能的均匀性,保证了合金的质量。该合金制备工艺简便,过程简单,生产的合金具有良好的性能,非常便于工业化生产。本发明制备的永磁材料适用于电器行业。
附图说明
图1为本发明制备的永磁复合材料的组织图(对应实施例3的图)。可以看到组织均匀致密。
具体实施方式
下面结合附图进一步阐述本发明的内容。
本发明提供一种高矫顽力永磁复合材料,由三种合金材料A、B、C与一种无机复合材料D组成,A、B、C与D的重量比为1.2:1:0.1-0.6:0.01-0.05。
所述合金材料A中各成分的重量百分含量为:Al0.6~0.9%,Si3~5%,Ti0.01~0.06%,Sc 0.01~0.05%,Hf 0.05~0.09%,B1~1.5%,Nd25~29%,其余Fe。
所述合金材料B中各成分的重量百分含量为:La15~20%,Sb0.02%~0.05%,Re0.04%~0.07%,Be 0.01%~0.05%,B1.5~2.5%,其余Fe。
所述合金材料C中各成分的重量百分含量为:La 0.1~0.5%,B1~2.5%,Al3~6%,Si8~11%,其余Fe。
所述无机复合材料D中各成分的重量百分含量为:SrO 1~4%,Ce2O3 0.1-0.4%,Co3O4 0.1-0.4%,SiO2 0.1-0.4%,Al2O3 0.1-0.4%,Eu2O3 0.1-0.4%,其余Fe2O3
本发明提供一种永磁复合材料的制备方法,具体步骤如下:
(1)合金材料A的制备:
1)按照合金A中各成分的重量百分含量为:Al0.6~0.9%,Si3~5%,Ti0.01~0.06%,Sc 0.01~0.05%,Hf 0.05~0.09%,B1~1.5%,Nd25~29%,其余Fe进行配料。Al、Si、Ti、Sc、Hf、Nd、Fe为纯物质(元素含量大于99.9%)。B以硼铁中间合金的形式加入,硼铁中间合金的含B量为24-26%。先将原料放入电弧炉铜坩埚(水冷)内,熔炼过程中不断用电弧搅动合金液,使其充分熔化均匀,然后浇注得到母合金铸锭;再将母合金铸锭放入普通感应炉中熔炼,熔炼温度为1510~1540℃,得到母合金液体;
2)将母合金液体与冷却辊接触形成带材,冷却辊和喷嘴间距为0.2~0.5mm,冷却辊轮缘的旋转线速度为25~27m/s;薄带材料的厚度为20~25微米,宽度为8~13mm。
3)将上述薄带材料置于氢破炉中抽真空至真空度为1Pa以下,在室温下通入氢气,保持压力在2-3×105Pa,时间在2-3h,冷却至室温,然后抽出残余氢气,开始升温脱氢,脱氢工艺采用500-550℃保温4-6h;脱氢气压低于10Pa时,脱氢结束,停止加温,冷却至室温并且控制脱氢气压,使得脱氢后氢破粉含氢量在2000-2500ppm之间,氢破后进行气流磨制合金粉体,制成平均粒度均为3~4μm的合金粉体。
(2)合金材料B的制备:
1)按照La15~20%,Sb0.02%~0.05%,Re0.04%~0.07%,Be 0.01%~0.05%,B1.5~2.5%,其余Fe进行配料。La、Sb、Re、Be、Fe为纯物质(元素含量大于99.9%)。B以硼铁中间合金的形式加入,硼铁中间合金的含B量为24-26%。先将原料放入电弧炉铜坩埚(水冷)内,熔炼过程中不断用电弧搅动合金液,使其充分熔化均匀,然后浇注得到母合金铸锭;再将母合金铸锭放入普通感应炉中熔炼,熔炼温度为1560~1590℃,得到母合金液体;
2)采用真空速凝甩片的方法制备合金铸片;铸片厚度为1~3毫米,长宽度为5~12mm。将上述合金铸片置于氢破炉中抽真空至真空度为1Pa以下,在室温下通入氢气,保持压力在2-3×105Pa,时间在3-5h,冷却至室温,然后抽出残余氢气,开始升温脱氢,脱氢工艺采用520-590℃保温5-7h,脱氢气压低于10Pa时,脱氢结束,停止加温,冷却至室温并且控制脱氢气压,使得脱氢后氢破粉含氢量在2000-2500ppm之间,氢破后进行气流磨制磁粉,制成平均粒度均为1-8μm的合金粉体。
3)将上述合金粉体置于球磨机中进行湿式球磨,在球磨的过程中向球磨机内等量匀速加入有机溶剂,使合金粉体粒径进一步细化至0.6-0.9μm;有机溶剂为无水乙醇、丙酮、甲醇中的一种,加入量占物料重量的8-14%。
(3)合金材料C的制备:
1)按照La 0.1~0.5%,B1~2.5%,Al 3~6%,Si8~11%,其余Fe进行配料。La、Al、Si、Fe为纯物质(元素含量大于99.9%)。B以硼铁中间合金的形式加入,硼铁中间合金的含B量为24-26%。先将原料放入感应坩埚内,熔炼温度为1460~1490℃,得到母合金液体;
2)采用真空速凝甩带的方法制备合金铸片;铸片厚度为2~4毫米,长宽度为5~12mm。然后将母合金铸片粗破碎后放入球磨罐中进行机械球磨,制成平均粒度均为5-10μm的合金粉体。
(4)无机复合材料D的制备:
按照重量百分比为SrO 1~4%,Ce2O3 0.1-0.4%,Co3O4 0.1-0.4%,SiO2 0.1-0.4%,Al2O3 0.1-0.4%,Eu2O3 0.1-0.4%,其余Fe2O3进行配料,各原料纯度均大于99.9%;将各原料在砂磨机中进行混合和破碎,而后将粉料在110-120℃下烘干,烘干后再过筛,筛网为180-220目,然后放入微波实验炉进行烧结。微波频率为2.45GHz±25MHz。微波烧结温度为1000~1150℃,最后将烧结产物在研磨机中研磨,制成平均粒度均为15-20μm的无机复合材料粉。
(5)按A、B、C与D的重量比为1.2:1:0.1-0.6:0.01-0.05配料后,加入到三维混合机中混合均匀,得混合粉料;然后将混合粉料在磁场压机中取向,应用等静压方式成型。将成型毛坯在氩气保护下放入烧结炉进行烧结,先升温至500-750℃,保温3-4h,然后升温至1050-1090℃烧结3-4h,冷却至室温后,进行二次回火处理,即分别在880-900℃和530-560℃热处理回火1-2h。最后经180-220℃时效处理得到永磁复合材料。
本发明实施例1~5制备的永磁材料性能与现有技术对比见表1,使用温度为300摄氏度。
涉及实施例1~5的制备方法同上述步骤所述。
表1

Claims (6)

1.一种永磁复合材料,其特征在于,由三种合金材料A、B、C与一种无机复合材料D组成;A、B、C与D的重量比为1.2:1:0.1-0.6:0.01-0.05;
所述合金材料A中各成分的重量百分含量为:Al0.6~0.9%,Si3~5%,Ti0.01~0.06%,Sc 0.01~0.05%,Hf0.05~0.09%,B1~1.5%,Nd25~29%,其余Fe;
所述合金材料B中各成分的重量百分含量为:La15~20%,Sb0.02%~0.05%,Re0.04%~0.07%,Be 0.01%~0.05%,B1.5~2.5%,其余Fe;
所述合金材料C中各成分的重量百分含量为:La 0.1~0.5%,B1~2.5%,Al 3~6%,Si8~11%,其余Fe;
所述无机复合材料D中各成分的重量百分含量为:SrO 1~4%,Ce2O30.1-0.4%,Co3O40.1-0.4%,SiO20.1-0.4%,Al2O30.1-0.4%,Eu2O30.1-0.4%,其余Fe2O3
2.根据权利要求1所述的永磁复合材料,其特征在于,所述合金材料A的制备包括以下步骤:
1)按照合金A中各成分的重量百分含量为:Al0.6~0.9%,Si3~5%,Ti0.01~0.06%,Sc 0.01~0.05%,Hf0.05~0.09%,B1~1.5%,Nd25~29%,其余Fe进行配料;先将原料放入电弧炉铜坩埚内,熔炼过程中不断用电弧搅动合金液,使其充分熔化均匀,然后浇注得到母合金铸锭;再将母合金铸锭放入普通感应炉中熔炼,熔炼温度为1510~1540℃,得到母合金液体;
2)将母合金液体与冷却辊接触形成薄带材料,冷却辊和喷嘴间距为0.2~0.5mm,冷却辊轮缘的旋转线速度为25~27m/s;薄带材料的厚度为20~25微米,宽度为8~13mm;
3)将上述薄带材料置于氢破炉中抽真空至真空度为1Pa以下,在室温下通入氢气,保持压力在2-3×105Pa,时间在2-3h,冷却至室温,然后抽出残余氢气,开始升温脱氢,脱氢工艺采用500-550℃保温4-6h;脱氢气压低于10Pa时,脱氢结束,停止加温,冷却至室温并且控制脱氢气压,使得脱氢后氢破粉含氢量在2000-2500ppm之间,氢破后进行气流磨制合金粉体,制成平均粒度均为3~4μm的合金粉体。
3.根据权利要求1所述的永磁复合材料,其特征在于,所述合金材料B的制备包括以下步骤:
1)按照La15~20%,Sb0.02%~0.05%,Re0.04%~0.07%,Be 0.01%~0.05%,B1.5~2.5%,其余Fe进行配料;先将原料放入电弧炉铜坩埚内,熔炼过程中不断用电弧搅动合金液,使其充分熔化均匀,然后浇注得到母合金铸锭;再将母合金铸锭放入普通感应炉中熔炼,熔炼温度为1560~1590℃,得到母合金液体;
2)采用真空速凝甩片的方法制备合金铸片:铸片厚度为1~3毫米,长宽度为5~12mm;
3)将上述合金铸片置于氢破炉中抽真空至真空度为1Pa以下,在室温下通入氢气,保持压力在2-3×105Pa,时间在3-5h,冷却至室温,然后抽出残余氢气,开始升温脱氢,脱氢工艺采用520-590℃保温5-7h,脱氢气压低于10Pa时,脱氢结束,停止加温,冷却至室温并且控制脱氢气压,使得脱氢后氢破粉含氢量在2000-2500ppm之间,氢破后进行气流磨制磁粉,制成平均粒度均为1-8μm的合金粉体,进一步置于球磨机中进行湿式球磨细化粒度均为0.6-0.9μm的合金粉体。
4.根据权利要求1所述的永磁复合材料,其特征在于,所述合金材料C的制备包括以下步骤:
1)按照La 0.1~0.5%,B1~2.5%,Al 3~6%,Si8~11%,其余Fe进行配料;先将原料放入感应坩埚内,熔炼温度为1460~1490℃,得到母合金液体;
2)采用真空速凝甩带的方法制备合金铸片;铸片厚度为2~4毫米,长宽度为5~12mm;
3)然后将上述合金铸片粗破碎后放入球磨罐中进行机械球磨,制成平均粒度均为5-10μm的合金粉体。
5.根据权利要求1所述的永磁复合材料,其特征在于,所述无机复合材料D的制备包括以下步骤:
按照重量百分比为SrO 1~4%,Ce2O3 0.1-0.4%,Co3O4 0.1-0.4%,SiO2 0.1-0.4%,Al2O3 0.1-0.4%,Eu2O3 0.1-0.4%,其余Fe2O3进行配料;将各原料在砂磨机中进行混合和破碎,而后将粉料在110-120℃下烘干,烘干后再过筛,然后放入微波实验炉进行烧结, 微波烧结温度为1000~1150℃,最后将烧结产物在研磨机中研磨,制成平均粒度均为15-20μm的无机复合材料粉。
6.权利要求1所述的永磁复合材料的制备方法,其特征在于,包括以下步骤:
1)按合金材料A、B、C与无机复合材料D的重量比为1.2:1:0.1-0.6:0.01-0.05配料后,加入到三维混合机中混合均匀,得混合粉料;然后将混合粉料在磁场压机中取向,应用等静压方式成型;
2)将成型毛坯在氩气保护下放入烧结炉进行烧结,先升温至500-750℃,保温3-4h,然后升温至1050-1090℃烧结3-4h,冷却至室温后,进行二次回火处理,即分别在880-900℃和530-560℃热处理回火1-2h,最后经180-220℃时效处理得到永磁复合材料。
CN201711137163.4A 2017-11-16 2017-11-16 一种永磁复合材料及制备方法 Active CN107799256B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201711137163.4A CN107799256B (zh) 2017-11-16 2017-11-16 一种永磁复合材料及制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201711137163.4A CN107799256B (zh) 2017-11-16 2017-11-16 一种永磁复合材料及制备方法

Publications (2)

Publication Number Publication Date
CN107799256A CN107799256A (zh) 2018-03-13
CN107799256B true CN107799256B (zh) 2019-08-13

Family

ID=61536196

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201711137163.4A Active CN107799256B (zh) 2017-11-16 2017-11-16 一种永磁复合材料及制备方法

Country Status (1)

Country Link
CN (1) CN107799256B (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108389675A (zh) * 2018-03-29 2018-08-10 江苏南方永磁科技有限公司 一种永磁复合材料及其制备方法
CN109161783A (zh) * 2018-08-16 2019-01-08 安徽信息工程学院 金属陶瓷复合材料的制备方法
CN108922711A (zh) * 2018-08-16 2018-11-30 安徽信息工程学院 稀土改性材料及其制备方法
CN112735802A (zh) * 2020-12-25 2021-04-30 中钢集团南京新材料研究院有限公司 一种铁硅铝磁粉心微波绝缘包覆方法及绝缘包覆磁粉心

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54132422A (en) * 1978-04-06 1979-10-15 Seiko Instr & Electronics Ltd Permanent magnet
CN101358324A (zh) * 2007-07-30 2009-02-04 比亚迪股份有限公司 一种稀土基非晶合金及其制备方法
JP2009120442A (ja) * 2007-11-14 2009-06-04 Hitachi Metals Ltd 酸化物磁性材料及びその製造方法並びに焼結磁石
CN103917678A (zh) * 2011-11-02 2014-07-09 宝马股份公司 对氢诱导的脆化具有高抗性的用于氢技术的成本降低的钢
JP2017183334A (ja) * 2016-03-28 2017-10-05 日立金属株式会社 巻磁心の磁場中熱処理方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54132422A (en) * 1978-04-06 1979-10-15 Seiko Instr & Electronics Ltd Permanent magnet
CN101358324A (zh) * 2007-07-30 2009-02-04 比亚迪股份有限公司 一种稀土基非晶合金及其制备方法
JP2009120442A (ja) * 2007-11-14 2009-06-04 Hitachi Metals Ltd 酸化物磁性材料及びその製造方法並びに焼結磁石
CN103917678A (zh) * 2011-11-02 2014-07-09 宝马股份公司 对氢诱导的脆化具有高抗性的用于氢技术的成本降低的钢
JP2017183334A (ja) * 2016-03-28 2017-10-05 日立金属株式会社 巻磁心の磁場中熱処理方法

Also Published As

Publication number Publication date
CN107799256A (zh) 2018-03-13

Similar Documents

Publication Publication Date Title
CN107799256B (zh) 一种永磁复合材料及制备方法
CN101521069B (zh) 重稀土氢化物纳米颗粒掺杂烧结钕铁硼永磁的制备方法
CN107564651B (zh) 一种高剩磁材料及其制备方法
WO2016201944A1 (zh) 晶界为低熔点轻稀土-铜合金的钕铁硼磁体的制备方法
CN104700973B (zh) 一种由白云鄂博共伴生原矿混合稀土制成的稀土永磁体及其制备方法
CN106548844A (zh) 一种热变形稀土永磁材料及其制备方法
CN104681268B (zh) 一种提高烧结钕铁硼磁体矫顽力的处理方法
CN104575920B (zh) 稀土永磁体及其制备方法
CN108335819A (zh) 一种烧结磁性复合材料及其制备方法
CN108389676A (zh) 一种耐温性永磁材料及其制备方法
CN103187133A (zh) 一种稀土永磁合金及其磁性相复合制备方法
CN110931197B (zh) 一种用于高丰度稀土永磁体的扩散源
CN105489334A (zh) 一种晶界扩散获得高磁性烧结钕铁硼的方法
CN111640549B (zh) 一种高温度稳定性烧结稀土永磁材料及其制备方法
WO2021169893A1 (zh) 一种钕铁硼磁体材料、原料组合物及制备方法和应用
CN103545079A (zh) 双主相含钇永磁磁体及其制备方法
CN108517455B (zh) 一种具有双主相结构的纳米晶稀土永磁材料及其制备方法
CN101786163B (zh) 高性能室温磁致冷纳米块体材料的制备方法
CN106782978A (zh) 一种高矫顽力烧结钕铁硼稀土永磁材料的制备方法
CN106920615B (zh) 一种烧结钕铁硼材料及制备方法
CN104959618B (zh) 一种高电阻率高磁性能核壳结构NdFeB磁粉及用途
CN108666064B (zh) 一种添加vc的烧结稀土永磁材料及其制备方法
CN108597707B (zh) 一种含Ce烧结磁体及制备方法
CN108389675A (zh) 一种永磁复合材料及其制备方法
CN108766700A (zh) 一种高工作温度低磁性变化稀土钴永磁材料及制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20211117

Address after: 014000 No.19 alatanhan street, Baotou rare earth high tech Zone, Inner Mongolia Autonomous Region (a1-b1, science and Technology Industrial Park of rare earth high tech Zone)

Patentee after: BAOTOU INST MAGNETIC NEW MATERIAL CO.,LTD.

Address before: 210044, No. 219, Ning six road, Pukou District, Jiangsu, Nanjing

Patentee before: Nanjing University of Information Science and Technology

PE01 Entry into force of the registration of the contract for pledge of patent right
PE01 Entry into force of the registration of the contract for pledge of patent right

Denomination of invention: Permanent magnet composite material and preparation method thereof

Effective date of registration: 20220906

Granted publication date: 20190813

Pledgee: Baotou Rare Earth High-tech Sub-branch of Agricultural Bank of China Co.,Ltd.

Pledgor: BAOTOU INST MAGNETIC NEW MATERIAL CO.,LTD.

Registration number: Y2022150000094