WO2020136891A1 - 多関節ロボット - Google Patents

多関節ロボット Download PDF

Info

Publication number
WO2020136891A1
WO2020136891A1 PCT/JP2018/048548 JP2018048548W WO2020136891A1 WO 2020136891 A1 WO2020136891 A1 WO 2020136891A1 JP 2018048548 W JP2018048548 W JP 2018048548W WO 2020136891 A1 WO2020136891 A1 WO 2020136891A1
Authority
WO
WIPO (PCT)
Prior art keywords
joint member
arm portion
passage
joint
arm
Prior art date
Application number
PCT/JP2018/048548
Other languages
English (en)
French (fr)
Inventor
慶 早川
Original Assignee
ヤマハ発動機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ヤマハ発動機株式会社 filed Critical ヤマハ発動機株式会社
Priority to DE112018008229.6T priority Critical patent/DE112018008229T5/de
Priority to JP2020562286A priority patent/JP7140846B2/ja
Priority to PCT/JP2018/048548 priority patent/WO2020136891A1/ja
Priority to CN201880099491.6A priority patent/CN113015602B/zh
Publication of WO2020136891A1 publication Critical patent/WO2020136891A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/02Programme-controlled manipulators characterised by movement of the arms, e.g. cartesian coordinate type
    • B25J9/04Programme-controlled manipulators characterised by movement of the arms, e.g. cartesian coordinate type by rotating at least one arm, excluding the head movement itself, e.g. cylindrical coordinate type or polar coordinate type
    • B25J9/041Cylindrical coordinate type
    • B25J9/042Cylindrical coordinate type comprising an articulated arm
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J19/00Accessories fitted to manipulators, e.g. for monitoring, for viewing; Safety devices combined with or specially adapted for use in connection with manipulators
    • B25J19/0075Means for protecting the manipulator from its environment or vice versa
    • B25J19/0079Means for protecting the manipulator from its environment or vice versa using an internal pressure system

Definitions

  • the present invention relates to an articulated robot.
  • Patent Document 1 discloses a vertical articulated robot (hereinafter, abbreviated as a robot) as an example of the articulated robot.
  • the robot disclosed in Patent Document 1 includes a base portion (base portion), a first arm portion rotatably connected to the base portion about a horizontal axis, and a horizontal axis at the tip of the first arm portion.
  • a second arm portion that is rotatably connected to the circumference and a wrist portion that is rotatably connected to the tip of the second arm portion are provided.
  • the base portion of the robot, the first and second arm portions, and the wrist portion have a hollow structure, and air is sent from the base portion into the robot to make the inside of the robot a positive pressure. It is described to prevent the invasion of. That is, dust is prevented from entering the robot by positively ejecting air from inside the robot in a non-sealed portion where it is difficult to completely seal (enclose) the arms and the like. That is.
  • the present invention has been made in view of the above-mentioned problems, and relates to an articulated robot that prevents dust from entering from the outside by internal air pressure, and can suppress dust from entering from the outside to a higher degree.
  • the purpose is to provide the technology that can.
  • the present invention is a multi-joint robot including a hollow base portion and a hollow first arm portion connected to the base portion, the first member being fixed to the base portion. It has a hollow structure provided with the 2nd member fixed to the 1st arm part in the state which countered this 1st member at a predetermined interval, and makes the 1st rotation of the base part and the 1st arm part.
  • a first joint member that is rotatably connected about an axis, an air introduction portion provided in the base portion to introduce air into the base portion, and the base portion through the inside of the first joint member.
  • the first communication passage that communicates with the first arm portion, the inside of the base portion and the inside of the first joint member, or the inside of the first arm and the first joint member is connected to the first communication passage.
  • a first orifice passage having a portion where the passage area on the side of the first joint member is smaller than the passage area on the side of the opposite joint member.
  • FIG. 1 is a side view of an industrial robot to which the articulated robot according to the present invention is applied.
  • FIG. 2 is a sectional view of the industrial robot.
  • FIG. 3 is a perspective view of the industrial robot (a state viewed from diagonally below).
  • FIG. 4 is an enlarged cross-sectional view of the industrial robot.
  • FIG. 5 is an enlarged cross-sectional view of the industrial robot.
  • FIG. 6 is a sectional view of the industrial robot showing the flow of air in the SCARA robot.
  • FIG. 1 to 3 show an industrial robot to which an articulated robot according to the present invention is applied.
  • FIG. 1 is a side view
  • FIG. 2 is a sectional view
  • FIG. 3 is a perspective view. Is shown.
  • an XYZ rectangular coordinate system is shown for convenience of description.
  • the Z direction is the vertical direction.
  • the industrial robot 1 is a compound robot including a SCARA robot (horizontal articulated robot) 2 which is a kind of an articulated robot, and a single-axis robot 3 that linearly moves the SCARA robot 2. is there.
  • the single-axis robot 3 moves (elevates) the SCARA robot 2 in the Z direction.
  • the uniaxial robot 3 includes a hollow casing 10 including a structure extending in the Z direction, a slider 12 movably supported along the casing 10 in the Z direction, and a drive mechanism 14 for driving the slider 12. Including and
  • the slider 12 is movably supported by a pair of guide rails (not shown) extending in the Z direction fixed to the inner wall surface of the casing 10.
  • a slit-shaped opening 10a extending in the Z direction is formed on the side surface of the casing 10, and a part of the slider 12 is exposed to the outside through the opening 10a.
  • the drive mechanism 14 is a so-called feed screw mechanism, and includes a nut member 12a incorporated in the slider 12, a screw shaft 16 inserted into the nut member 12a and extending parallel to the guide rail, and the screw shaft 16 And an electric motor 18 connected to one end of the. That is, the drive mechanism 14 rotates the screw shaft 16 by the motor 18 and converts the rotational movement of the screw shaft 16 into the linear movement of the slider 12 in the Z direction via the nut member 12a and the guide rail. With this configuration, the slider 12 moves in the Z direction.
  • the SCARA robot 2 includes a base portion 20 and a robot arm 22 connected to the base portion 20.
  • the base unit 20 is fixed to the slider 12 of the single-axis robot 3, and thus the SCARA robot 2 moves in the Z direction together with the slider 12 as the slider 12 moves.
  • the robot arm 22 is rotatably connected to the base unit 20 about a first rotation axis Ax1 and a first arm section 23 is rotatable about the second rotation axis Ax2. It is provided with the connected second arm portion 24 and the tool mounting portion 25 rotatably connected to the second arm portion 24 about the third rotation axis Ax3.
  • the tool mounting portion 25 is a portion to which an end effector according to various uses such as a robot hand is detachably mounted.
  • the first rotation axis Ax1, the second rotation axis Ax2, and a third rotation axis Ax3 described later are virtual axes that extend in the Z direction and are parallel to each other.
  • the first arm portion 23 has a casing 231 formed of a hollow box-shaped structure having a rectangular rigidity in a side view and extending in the horizontal direction (direction orthogonal to the Z direction), and the second arm portion 24 also has , A casing 241 made of a rigid hollow box-shaped structure extending in the horizontal direction.
  • the first arm portion 23 is connected to the base portion 20 at one end portion (base end portion) in the longitudinal direction via a first speed reducer 40 described later, and the second arm portion 24 has one end portion (base end). Part) is connected to the tip end portion of the first arm portion 23 via a second speed reducer 50 described later.
  • the tool mounting portion 25 is connected to the tip end portion of the second arm portion 24 via a third speed reducer 70 described later.
  • the SCARA robot 2 includes a first motor 31 that is a drive source for the first arm portion 23, and a first power transmission mechanism PT1 that transmits the rotational force generated by the first motor 31 to the first arm portion 23. ing. Further, the SCARA robot 2 includes a second motor 32 that is a drive source of the second arm portion 24, and a second power transmission mechanism PT2 that transmits the rotational force generated by the second motor 32 to the second arm portion 23. Is equipped with. Further, the SCARA robot 2 includes a third motor 33 that is a drive source of the tool mounting portion 25, and a third power transmission mechanism PT3 that transmits the rotational force generated by the third motor 31 to the tool mounting portion 25. There is.
  • the base portion 20 is provided with a casing 201 formed of a hollow and box-shaped structure having rigidity that opens downward, and the motors 31 to 33 are arranged around the first rotation axis Ax1 as a center, and , Is fixed to the ceiling portion 202 of the casing 201 via the bracket.
  • the first motor 31 is arranged at a position adjacent to the first rotation axis Ax1 in the X direction.
  • the second motor 32 and the third motor 33 are arranged at positions aligned in the Y direction with the first rotation axis Ax1 interposed therebetween.
  • a cover 203 is detachably fixed to the lower surface of the casing 201.
  • FIG. 4 is an enlarged cross-sectional view of the industrial robot 1. As shown in this figure, the first power transmission mechanism PT1 rotates the output shaft 31a of the first motor 31 and the first speed reducer 40 interposed between the base portion 20 and the robot arm 22. The first transmission mechanism 46 for transmitting to the first reduction gear 40.
  • the first speed reducer 40 (corresponding to the first joint member of the present invention) includes a speed reducer main body 42 including a wave gear speed reducing mechanism, and a casing 44 including the reducer main body 42 and a rigid structure. And has a substantially annular structure penetrating along the first rotation axis Ax1.
  • the casing 44 includes a ceiling-shaped cylindrical upper casing 45a (corresponding to a first member of the present invention) having a peripheral wall portion and a bottomed cylindrical lower casing 45b (a second member of the present invention) having a peripheral wall portion. And a lower casing 45a, 45b are arranged to face each other so that a labyrinth-like gap 44a is formed between the peripheral wall portions.
  • the upper casing 45a is fixed to the lower surface 232 of the casing 231 of the first arm portion 23, and the lower casing 45b is fixed to the upper surface of the casing 201 of the base portion 20.
  • the speed reducer main body 42 includes a well-known wave gear speed reducing mechanism including a wave generator, a circular spline, a flex spline, and the like.
  • the speed reducer body 42 is incorporated inside a casing 44.
  • the wave generator is an input unit for the rotational force of the first motor 31, and the upper casing 45a is an output unit for the rotational force after deceleration. That is, the first speed reducer 40 reduces the rotational speed of the rotational force input to the input unit (wave generator) and outputs it from the output unit (upper casing 45a).
  • the first transmission mechanism 46 is a belt transmission mechanism. That is, the first transmission mechanism 46 spans the pulley 47a fixed to the output shaft 31a of the first motor 31, the pulley 47b fixed to the input part of the first speed reducer 36, and the pulleys 47a and 47b. And a transmission belt 48 that is mounted.
  • the rotation of the output shaft 31a of the first motor 31 is transmitted to the input portion of the first reduction gear 40, and the rotation speed is reduced by the first reduction gear 40 and transmitted to the first arm portion 23. ..
  • the first arm portion 23 rotates (turns) around the first rotation axis Ax1 at a predetermined rotation speed with respect to the base portion 20.
  • the second power transmission mechanism PT2 includes a second reduction gear 50 provided between the first arm portion 23 and the second arm portion 24, and the base portion 20 to the first arm portion.
  • the rotation of the first transmission shaft 56 extending through the inner side of the first reduction gear 40 over 23 and the rotation of the output shaft 32a (not shown) of the second motor 32 is performed by the first transmission shaft 56 in the base portion 20.
  • a second transmission mechanism 57 that transmits the rotation of the first transmission shaft 56 to the second speed reducer 50 in the first arm portion 23.
  • FIG. 5 is an enlarged cross-sectional view of the industrial robot 1.
  • the second speed reducer 50 (corresponding to the second joint member of the present invention) has a speed reducer main body 52 including a wave gear speed reducing mechanism, and a rigidity in which the speed reducer main body 52 is incorporated.
  • a casing 54 made of a structure having the same, the whole has a substantially annular structure penetrating along the second rotation axis Ax2.
  • the basic structure of the second speed reducer 50 is basically the same as the structure of the first speed reducer 40.
  • the casing 54 includes a ceiling-shaped cylindrical upper casing 55a (corresponding to a third member of the present invention) having a peripheral wall portion and a bottomed cylindrical lower casing 55b (a fourth member of the present invention) having a peripheral wall portion. And a lower casing 55a, 55b are arranged to face each other so that a labyrinth-like gap 54a is formed between the peripheral wall portions.
  • the upper casing 55a is fixed to the lower surface 232 of the casing 231 of the first arm portion 23, and the lower casing 55b is fixed to the upper surface 243 of the casing 241 of the second arm portion 24.
  • the speed reducer main body 52 includes a well-known wave gear speed reducing mechanism including a wave generator, a circular spline, a flex spline, and the like.
  • the speed reducer body 52 is incorporated inside the casing 54.
  • the wave generator is an input unit of the rotational force of the second motor 32
  • the upper casing 55a to which the flex spline is fixed is an output unit of the rotational force after deceleration. That is, the second speed reducer 50 reduces the rotational speed of the rotational force input to the input section (wave generator) and outputs it from the output section (upper casing 55a).
  • the second reduction gear 50 since the upper casing 45a is fixed to the first arm portion 23, the lower casing 45b to which the circular spline is fixed relatively rotates, so that the rotational force is generated by the second arm portion 24. Be transmitted to.
  • the second transmission mechanism 57 is a belt transmission mechanism. That is, the second transmission mechanism 57 is fixed to the output shaft 32a of the second motor 32 and the pulley 58a fixed to the lower end of the first transmission shaft 56 in the base 20, as shown in FIGS. A pulley 58b, and a transmission belt 59 wound around the pulleys 58a and 58b. Further, the second transmission mechanism 57 includes a pulley 61a fixed to the upper end of the first transmission shaft 56, a pulley 61b fixed to the input portion of the second reduction gear 50, and these pulleys in the first arm portion 23. 61a, 61b and a transmission belt 62 that is stretched around.
  • the first transmission shaft 56 is a hollow shaft and extends in the Z direction through the first speed reducer 40 of the first power transmission mechanism PT1 and the pulley 47b of the first transmission mechanism 46.
  • the first transmission shaft 56 is held by the upper casing 45a of the first reduction gear 40 and the pulley 47b of the first transmission mechanism 46 in a relatively rotatable state via bearings.
  • the third power transmission mechanism PT3 is disposed concentrically with the third reduction gear 70 interposed between the second arm portion 24 and the tool mounting portion 25, and the first transmission shaft 56, and the base portion 20 is provided.
  • the rotation of the third transmission shaft 77 that extends through the inside and the rotation of the output shaft 33a (not shown) of the third motor 33 is transmitted to the second transmission shaft 76 in the base portion 20, and the second transmission shaft 76 is transmitted.
  • a third transmission mechanism 78 that transmits the rotation of 76 to the third transmission shaft 77 in the first arm portion 23 and transmits the rotation of the third transmission shaft 77 to the third reduction gear 70 in the second arm portion; including.
  • a third speed reducer 70 (corresponding to a third joint member of the present invention) includes a speed reducer body 72 including a wave gear speed reducing mechanism, and the speed reducer body 72 incorporated therein. , And a casing 74 made of a rigid structure, and has a substantially annular structure that entirely penetrates along the third rotation axis Ax3.
  • the basic structure of the third speed reducer 70 is basically common to the structure of the first and second speed reducers 40 and 50.
  • the casing 74 includes a ceiling-shaped upper casing 75a (corresponding to a fifth member of the present invention) having a peripheral wall portion and a bottomed cylindrical lower casing 75b (a sixth member of the present invention) having a peripheral wall portion. And a lower casing 75a, 75b are arranged to face each other so that a labyrinth-like gap 74a is formed between the peripheral wall portions.
  • the upper casing 75a is fixed to the lower surface 242 of the casing 241 of the second arm portion 24, and the lower casing 75b is fixed to the upper portion of the tool mounting portion 25.
  • the speed reducer body 72 is composed of a well-known wave gear speed reduction mechanism including a wave generator, a circular spline, a flex spline, and the like.
  • the speed reducer body 72 is incorporated inside a casing 74.
  • the wave generator is an input unit of the rotational force of the third motor 33
  • the upper casing 75a to which the flex spline is fixed is an output unit of the rotational force after deceleration. That is, the third speed reducer 70 reduces the rotational speed of the rotational force input to the input unit (wave generator) and outputs it from the output unit (upper casing 75a).
  • the lower casing 75b to which the circular spline is fixed is relatively rotated, so that the rotational force is applied to the tool mounting portion 25. Transmitted.
  • the third transmission mechanism 78 is a belt transmission mechanism. That is, as shown in FIGS. 3 to 5, the third transmission mechanism 78 is fixed to the pulley 79 a fixed to the output shaft 33 a of the third motor 33 and the lower end portion of the second transmission shaft 76 in the base portion 20. In addition, a pulley 79b and a transmission belt 80 wound around the pulleys 79a and 79b are included.
  • the third transmission mechanism 78 includes a pulley 82a fixed to the upper end of the second transmission shaft 76 in the first arm portion 23, a pulley 82b fixed to the upper end of the third transmission shaft 77, and the pulleys 82a. , 82b, and a transmission belt 83 that is stretched around.
  • the third transmission mechanism 78 includes, in the second arm portion 24, a pulley 84a fixed to the lower end portion of the third transmission shaft 77, a pulley 84b fixed to the input portion of the third speed reducer 70, and these pulleys. 84a, 84b and a transmission belt 85 that is stretched around.
  • the second transmission shaft 76 is a hollow shaft having an outer diameter smaller than the inner diameter of the first transmission shaft 56, and penetrates the inside of the first transmission shaft 56 to extend in the Z direction.
  • the second transmission shaft 76 and the first transmission shaft 56 are arranged concentrically around the first rotation axis Ax1.
  • the second transmission shaft 76 is held by the first transmission shaft 56 via bearings so as to be relatively rotatable.
  • the third transmission shaft 77 is a hollow shaft and extends in the Z direction through the pulley 61b of the first transmission mechanism 46 of the second power transmission mechanism PT2 and the second reduction gear 50.
  • the third transmission shaft 77 is held by the pulley 61b of the first transmission mechanism 46 and the lower casing 55b of the second reduction gear 50 in a relatively rotatable state via bearings.
  • the rotation of the output shaft 33a of the third motor 33 is transmitted to the input section (wave generator) of the third reducer 70 through the first arm section 23 and the second arm section 24, and the third reducer 70
  • the rotational speed is reduced by and transmitted to the tool mounting portion 25.
  • the tool mounting portion 25 rotates about the third rotation axis Ax3 with respect to the second arm portion 24 at a predetermined rotation speed.
  • a first hollow shaft that penetrates the second transmission shaft 76 and extends from the base portion 20 to the first arm portion 23 is formed inside the second transmission shaft 76 of the third power transmission mechanism PT3, a first hollow shaft that penetrates the second transmission shaft 76 and extends from the base portion 20 to the first arm portion 23 is formed inside the second transmission shaft 76 of the third power transmission mechanism PT3, a first hollow shaft that penetrates the second transmission shaft 76 and extends from the base portion 20 to the first arm portion 23 is formed.
  • One wiring protection shaft 90 is arranged.
  • a second wiring protection shaft 94 which is a hollow shaft, extends through the third transmission shaft 77 and extends from the first arm portion 23 to the second arm portion 24.
  • the first wiring protection shaft 90, the second transmission shaft 76, and the first transmission shaft 56 are hollow shafts (cylindrical bodies) each having a circular cross section, and the first wiring protection shaft 90, the second transmission shaft 76, and the first transmission shaft.
  • the shafts 56 are arranged concentrically around the first rotation axis Ax1 in this order from the inside.
  • the second wiring protection shaft 94 and the third transmission shaft 77 are both hollow shafts (cylindrical bodies) having a circular cross section, and the second wiring protection shaft 94 and the third transmission shaft 77 have the second rotation axis Ax2. It is arranged from the inside in this order in a concentric circle with the center.
  • the first and second wiring protection shafts 90 and 94 are electric wires arranged in the SCARA robot 2, that is, electric wires for driving the tool mounted on the tool mounting portion 25 and/or pipes having flexibility. It protects the (tube).
  • the pipe is used for supplying and discharging compressed air, for example. Although illustration is omitted, inside the SCARA robot 2, these wires are routed from the base portion 20 to the tool mounting portion 25. In general, wires are routed from the base portion 20 so as to pass through the first wiring protection shaft 90, the first arm portion 23, the second wiring protection shaft 94, the second arm portion 24, and the third reduction gear 70. Has been done.
  • the first and second wiring protection shafts 90 and 94 also have a function of causing air (clean air) introduced into the base portion 20 to flow over the robot arm 22, as described later. That is, the first wiring protection shaft 90 forms the first communication passage 101 for introducing the air introduced into the base portion 20 into the first arm portion 23 through the inside of the first speed reducer 40, and the second wiring protection shaft 94. Forms a second communication passage 102 for introducing the air introduced into the first arm portion 23 into the second arm portion 24 through the inside of the second speed reducer 50.
  • the first wiring protection shaft 90 is rotatably supported by a connecting member 91 fixed to the pulley 79b of the third power transmission mechanism PT3 via a bearing 92.
  • the second wiring protection shaft 94 is rotatably supported by a connecting member 95 fixed to the pulley 84a of the third power transmission mechanism PT3 via a bearing 96.
  • the upper ends of the wiring protection shafts 90 and 94 are non-rotatably connected to the casing 231 of the first arm portion 23.
  • the base portion 20 is provided with an air introducing portion 110.
  • An end portion of an air supply hose 112 that is connected to a compressor or the like (not shown) via a cleaning filter or the like is connected to the air introducing unit 110.
  • a constant pressure of air clean air
  • the air introduced into the base portion 20 passes through the first communication passage 101 (see FIG. 4) including the first wiring protection shaft 90 as shown by the solid arrow (reference numeral FL1) in FIG. Is introduced into the second arm portion 24 from the first arm portion 23 through the second communication passage 102 (see FIG. 5) including the wiring protection shaft 94, and the space inside the third speed reducer 70 ( It is introduced into the tool mounting portion 25 through the third communication passage 103 (see FIG. 5).
  • the entire interior of the SCARA robot 2 has a positive pressure, air is ejected (leaked) to the outside from various gaps formed in the SCARA robot 2, and dust is prevented from entering the interior of the SCARA robot 2. Has become.
  • the inside of the base portion 20 and the first deceleration are controlled so that air is appropriately injected from the gaps 44a, 54a, 74a of the first to third speed reducers 40, 50, 70.
  • a third orifice passage 140 that communicates with the inside of the speed reducer 70 is provided.
  • the first orifice passage 120 is a passage provided in the vicinity of the peripheral wall portion of the casing 44 of the first reduction gear 40 and extending in the Z direction.
  • the first orifice passage 120 is a passage having a portion in which the passage area on the first reduction gear 40 side is smaller than the passage area on the side opposite to the first reduction gear 40 (base portion 20 side).
  • the first orifice passage 120 is formed in the casing 44 (lower casing 45b) of the first speed reducer 40 and the casing 231 of the base portion 20 so as to pass through them in the Z direction and has a constant diameter. It is configured by a portion 121 and an orifice joint 122 which is detachably screwed into the hole portion 121 inside the base portion 20.
  • the "orifice joint" is a cylindrical member having a passage therein and having a portion in which the diameter of the passage sharply narrows from one side to the other side.
  • the second orifice passage 130 is a passage extending in the Z direction provided at a position near the peripheral wall portion of the casing 54 of the second speed reducer 50.
  • the second orifice passage 130 is a passage having a portion where the passage area on the second reduction gear 50 side is smaller than the passage area on the second anti-second reduction gear 50 side (second arm portion 24 side).
  • the second orifice passage 130 has a constant diameter formed in the casing 54 (lower casing 55b) of the second speed reducer 50 and the casing 241 of the second arm portion 24 so as to penetrate therethrough in the Z direction.
  • Hole portion 131 and an orifice joint 132 that is detachably screwed to the hole portion 121 inside the base portion 20.
  • the third orifice passage 140 is a passage provided in the vicinity of the peripheral wall portion of the casing 74 of the third speed reducer 70 and extending in the Z direction.
  • the third orifice passage 140 is a passage having a portion where the passage area on the side of the third reduction gear 70 is smaller than the passage area on the side opposite to the third reduction gear 70 (on the tool mounting portion 25 side).
  • the third orifice passage 140 includes a casing 74 (lower casing 75b) of the third speed reducer 70, a hole 141 having a constant diameter formed so as to penetrate the casing 74 (lower casing 75b) in the Z direction, and a tool mounting portion. 25, an orifice joint 142 is detachably screwed to the hole 141.
  • first to third orifice passages 120, 130, 140 air is appropriately ejected from the gaps 44a, 54a, 74a of the first to third speed reducers 40, 50, 70.
  • the intrusion of dust from the gaps 44a, 54a, 74a is highly suppressed. That is, when the orifice passages 120, 130 and 140 are not provided, the flow of air in the SCARA robot 2 is not necessarily dominated by the flow indicated by the symbol FL1 in FIG.
  • the air introduced into the base portion 20 flows into the first arm portion 23 through the first communication passage 101, while flowing into the first speed reducer 40 through the gap of the mechanical portion and the gap between the members and the gap 44a.
  • the air introduced into the first arm portion 23 through the first communication passage 101 is introduced into the second arm portion 24 through the second communication passage 102. Further, in the second arm portion 24, air is also introduced into the inside of the second speed reducer 50 through the second orifice passage 130. Once the air is introduced into the second speed reducer 50 through the second orifice passage 130, the air flow path (see the broken line arrow with the reference sign FL3 in FIG. 6) through the second orifice passage 130 is generated. Once established, air is positively introduced into the second speed reducer 50. As a result, a large amount of air is suppressed from leaking randomly from other gaps formed around the second speed reducer 50 (a gap between the assembly parts of the members), and the tool mounting portion 25 and the second speed reducer. The introduction of air into the machine 50 is facilitated. At this time, since the flow passage area is narrowed in the second orifice passage 130, it is possible to prevent air from being introduced into the second speed reducer 50 more than necessary.
  • the air introduced from the second arm portion 24 into the tool mounting portion 25 through the third communication passage 103 is introduced into the inside of the third speed reducer 70 through the third orifice passage 140, and passes through the third orifice passage 140.
  • a flow path of air (see a broken line arrow with a reference sign FL4 in FIG. 6) is established, and air is positively introduced into the third reducer 70.
  • a large amount of air is suppressed from leaking randomly from other gaps formed around the third speed reducer 70 (a gap between the assembly parts of the members), and the air to the second speed reducer 50 is suppressed. Will be promoted.
  • the gaps 44a, 54a between all the first to third speed reducers 40, 50, 70 are provided. , 74a, the air can be ejected, and as a result, it is possible to highly suppress the intrusion of dust to all the speed reducers 40, 50, 70.
  • the orifice joints 122, 132, 142 are detachably screwed to the first to third orifice passages 120, 130, 140 in the holes 121, 131, 141 having a constant diameter.
  • the inner diameters of the holes 121, 131, 141 may be changed on the way without using the orifice joints 122, 132, 142.
  • foreign matter such as dust generated inside the SCARA robot 2 is clogged and the first to third orifice passages 120, 130, 140 are clogged (cannot be connected), maintenance is taken into consideration. Then, the configuration using the orifice joints 122, 132, 142 is desirable.
  • the first wiring passage 101 for introducing air from the base portion 20 to the first arm portion 23 is formed by the first wiring protection shaft 90, and the first wiring portion 94 is formed by the first wiring passage shaft 94.
  • a second communication passage 102 for introducing air from 23 to the second arm portion 24 is formed.
  • the SCARA robot 2 may have a configuration in which the first and second wiring protection shafts 90 and 94 are omitted.
  • the second transmission shaft 76 of the third power transmission mechanism PT3 forms the first communication passage 101 for introducing air from the base portion 20 to the first arm portion 23, and the third power transmission mechanism PT3 has the first communication passage 101.
  • the third transmission shaft 77 forms a second communication passage 102 for introducing air from the first arm portion 23 to the second arm portion 24.
  • the first orifice passage 120 communicates the inside of the base portion 20 and the inside of the first speed reducer 40, but the first orifice passage 120 is connected to the inside of the first arm portion 23 by the first It may communicate with the inside of the speed reducer 40.
  • the second orifice passage 130 communicates the inside of the second arm portion 24 with the inside of the second speed reducer 50, but the second orifice passage 130 does not communicate with the inside of the first arm portion 23. It may be in communication with the inside of the first reduction gear 40.
  • the third orifice passage 140 communicates the inside of the tool mounting portion 25 and the inside of the third reducer 70, but the third orifice passage 140 includes the second arm portion 24 and the third reducer. It may communicate with the inside of 70.
  • the electric wires 100 are arranged inside the SCARA robot 2, but the electric wires 100 may be provided outside the SCARA robot 2 if necessary.
  • the first and second wiring protection shafts 90 and 94 can be omitted.
  • the second transmission shaft 76 and the third transmission shaft 77 may be solid shafts.
  • the SCARA robot 2 is fixed to the slider 12 of the single-axis robot 3 so that the SCARA robot 2 moves in the Z direction.
  • the SCARA robot 2 may be used with the base portion 20 fixed to the ground surface.
  • the second arm portion 24 is located above the first arm portion 23, but the second arm portion 24 is located below the first arm portion 23. It may be located.
  • An articulated robot is an articulated robot including a hollow base portion and a hollow first arm portion connected to the base portion.
  • the articulated robot is fixed to the base portion.
  • a first member, and a second member fixed to the first arm portion in a state of facing the first member with a predetermined gap, and having a hollow structure, and the base portion and the first member.
  • a first joint member that connects the arm portion with each other so as to be relatively rotatable about a first rotation axis, an air introduction portion provided in the base portion to introduce air into the base portion, and the first joint member.
  • a first communication passage that connects the base portion and the first arm portion through the inside of the base portion, the inside of the base portion and the inside of the first joint member, or the inside of the first arm portion and the above first joint member.
  • a first orifice passage having a portion for communicating the inside of the vehicle at a position different from the first communication passage, the passage area of the first joint member side being smaller than the passage area of the non-joint member side. And are equipped with.
  • the air introduced from the air introduction part to the base part is introduced into the first arm part through the first communication passage. Further, once air is introduced into the first joint member through the first orifice passage, a flow path of air through the first orifice passage is established, and air is positively introduced inside the first joint member. be introduced. This suppresses air from leaking randomly from other gaps formed around the first joint member, and promotes introduction of air into the first joint member. Therefore, while properly securing the amount of air introduced from the base portion to the first arm portion by the first communication passage, the air is appropriately leaked (spouted) from the gap of the first joint member to the gap. Intrusion of dust can be suppressed.
  • the first orifice passage has a hole portion that connects the inside of the base portion and the inside of the first joint member, or the inside of the first arm portion and the inside of the first joint member, and this hole. It is preferable to be constituted by an orifice joint detachably attached to the section.
  • the first joint member includes a speed reducer having an annular structure, and the first communication passage is connected to the first rotation shaft so as to penetrate the inside of the speed reducer. It is preferably formed by a hollow shaft extending from the base portion to the first arm portion.
  • a hollow second arm portion connected to the first arm portion, a third member fixed to the first arm portion, and a predetermined third member. It has a hollow structure provided with the 4th member fixed to the 2nd arm part in the state where it opposes at intervals and has the 1st arm part and the 2nd arm part about the 2nd axis of rotation.
  • a second joint member that rotatably connects to each other; a second communication passage that introduces air introduced into the first arm portion into the second arm portion through the inside of the second joint member; and the first arm portion And a second joint member or a second arm portion and a second joint member at a position different from the second communication passage, the second joint. And a second orifice passage having a portion in which the passage area on the member side is smaller than the passage area on the anti-second joint member side.
  • the second orifice passage has a hole portion that communicates the inside of the first arm portion and the inside of the second joint member, or the inside of the second arm portion and the inside of the second joint member. It is preferable to be constituted by an orifice joint detachably attached to this hole.
  • the second joint member may be a speed reducer having an annular structure, and the second communication passage may extend from the first arm portion to the inside of the speed reducer. It is preferably formed by a hollow shaft extending over the second arm portion.
  • a tool mounting portion having a hollow structure connected to the second arm portion, a fifth member fixed to the second arm portion, and a predetermined gap provided to the fifth member.
  • a third joint member connected to the second arm portion, a third communication passage for introducing air introduced into the second arm portion into the tool mounting portion through the inside of the third joint member, the inside of the second arm portion and the above A passage area that connects the inside of the third joint member or the inside of the tool mounting portion and the inside of the third joint member at a position different from the third communication passage, and has a passage area on the side of the third joint member. May have a third orifice passage having a portion smaller than the passage area on the side opposite to the third joint member.
  • the third orifice passage has a hole portion that allows the inside of the second arm portion and the inside of the third joint member, or the inside of the tool mounting portion and the inside of the third joint member to communicate with each other, It is preferably configured with an orifice joint detachably attached to the hole.
  • a multi-joint robot is a multi-joint robot including a hollow base portion and a first arm portion connected to the base portion. It has a hollow structure including one member and a second member fixed to the first arm portion in a state of facing the first member with a predetermined gap therebetween, and the base portion and the first arm portion. And a joint member that connects the and so as to be rotatable relative to each other around a first rotation axis, an air introduction portion provided in the base portion to introduce air into the base portion, the inside of the base portion, and the joint member. And an orifice passage having a portion where the passage area on the joint member side is smaller than the passage area on the base portion side.
  • the orifice passage is configured by a hole portion that communicates the inside of the base portion and the inside of the joint member, and an orifice joint detachably attached to the hole portion.

Landscapes

  • Engineering & Computer Science (AREA)
  • Robotics (AREA)
  • Mechanical Engineering (AREA)
  • Manipulator (AREA)

Abstract

多関節ロボットは、ベース部と、ベース部に連結される第1アーム部とを備える。多関節ロボットは、ベース部に固定される第1部材とこの第1部材に対向した状態で第1アーム部に固定される第2部材とを備えた中空構造を有して前記ベース部と前記第1アーム部とを第1回転軸回りに相対回転可能に連結する第1関節部材と、ベース部に設けられた空気導入部と、第1関節部材の内部を通じてベース部と第1アーム部とを連通させる第1連絡通路と、ベース部の内部と第1関節部材の内部とを連通させる通路であって、第1関節部材側の通路面積が反関節部材側の通路面積よりも小さくなる部分を有した第1オリフィス通路と、を備えている。

Description

多関節ロボット
 本発明は、多関節ロボットに関するものである。
 産業用ロボットとして多関節ロボットが公知である。特許文献1には、多関節ロボットの一例として、垂直多関節ロボット(以下、ロボットと略す)が開示されている。
 特許文献1に開示されるロボットは、ベース部(基台部)と、このベース部に水平軸回りに回転可能に連結される第1アーム部と、この第1アーム部の先端に、水平軸回りに回転可能に連結される第2アーム部と、この第2アーム部の先端に回転可能に連結された手首部と、を備えている。
 特許文献1には、ロボットのベース部、第1、第2のアーム部及び手首部を中空構造とし、ベース部からロボット内に空気を送り込んで内部を正圧とすることで、外部からの粉塵の侵入を防止することが記載されている。つまり、アーム部同士の連結部分など、完全にシール(密閉)することが困難な非シール部分においては、ロボット内部から空気を積極的に噴出させることにより、ロボット内部への粉塵の侵入を防止するというものである。
 しかし、ベース部から空気を送り込むだけでは、所望の非シール部分から空気を適切に漏出させることは実際には難しい。すなわち、ベース部に形成される部材間の隙間などから無秩序に空気が漏出する結果、所望の非シール部からの空気の噴出量が減少し、意図するような防塵効果を得ることができない場合がある。また、アーム先端側への空気の流動が促進されないために、当該アーム先端側の非シール部分において意図するような防塵効果を得ることができない場合がある。
 なお、ロボット内に空気配管を設けて所望の非シール部まで確実に空気を導くことも考えられるが、狭いロボット内部に空気配管を設けることは実際には難しい。また、空気配管を設けたことで第1、第2アーム部の重量が増大し、当該アーム部の作動速度に影響するという弊害もある。
特開2000-141270号公報
 本発明は、上述した課題に鑑みて成されたものであって、内部の空気圧によって外部からの粉塵の侵入を防止する多関節ロボットに関し、より高度に外部からの粉塵の侵入を抑制することができる技術を提供することを目的としている。
 そして、本発明は、中空構造のベース部と、このベース部に連結される中空構造の第1アーム部とを備えた多関節ロボットであって、前記ベース部に固定される第1部材と、この第1部材に所定間隔を隔てて対向した状態で前記第1アーム部に固定される第2部材とを備えた中空構造を有し、前記ベース部と前記第1アーム部とを第1回転軸回りに相対回転可能に連結する第1関節部材と、前記ベース部の内部に空気を導入すべく当該ベース部に設けられた空気導入部と、前記第1関節部材の内部を通じて前記ベース部と前記第1アーム部とを連通させる第1連絡通路と、前記ベース部の内部と前記第1関節部材の内部、又は前記第1アームと前記第1関節部材の内部とを、前記第1連絡通路とは異なる位置で連通させる通路であって、第1関節部材側の通路面積が反関節部材側の通路面積よりも小さくなる部分を有した第1オリフィス通路と、を備えているものである。
図1は、本発明に係る多関節ロボットが適用された産業用ロボットの側面図である。 図2は、産業用ロボットの断面図である。 図3は、産業用ロボットの斜視図(斜め下から視た状態)である。 図4は、産業用ロボットの断面拡大図である。 図5は、産業用ロボットの断面拡大図である。 図6は、スカラロボット内の空気の流を示す産業用ロボットの断面図である。
 図1~図3は、本発明に係る多関節ロボットが適用された産業用ロボットを示しており、図1は側面図で、図2は断面図で、図3は斜視図で各々産業用ロボットを示している。なお、各図中には、説明の便宜上、XYZの直角座標系を示している。当例では、Z方向は上下方向である。
 産業用ロボット1は、多関節ロボットの一種であるスカラロボット(水平多関節ロボット)2と、このスカラロボット2を直動(直線的に移動)させる単軸ロボット3とを備えた複合型ロボットである。当例では、単軸ロボット3は、スカラロボット2をZ方向に移動(昇降)させる。
 [単軸ロボット3の構成]
 単軸ロボット3は、Z方向に延在する構造体を含む中空のケーシング10と、このケーシング10に沿ってZ方向に移動可能に支持されるスライダ12と、このスライダ12を駆動する駆動機構14とを含む。
 スライダ12は、ケーシング10の内壁面に固定されたZ方向に延在する一対のガイドレール(図示省略)に移動自在に支持されている。ケーシング10の側面には、Z方向に延在するスリット状の開口部10aが形成されており、スライダ12の一部は、当該開口部10aを介して外部に露出している。
 前記駆動機構14は、いわゆる送りねじ機構であり、スライダ12に組込まれたナット部材12aと、このナット部材12aに挿入されて前記ガイドレールと平行に延在するねじ軸16と、このねじ軸16の一端に連結された電動モータ18とを含む。つまり、駆動機構14は、モータ18によりねじ軸16を回転させ、このねじ軸16の回転運動を、ナット部材12a及びガイドレールを介してスライダ12のZ方向の直線運動に変換する。この構成によりスライダ12がZ方向に移動する。
 [スカラロボット2の構成]
 スカラロボット2は、ベース部20と、このベース部20に連結されたロボットアーム22とを含む。ベース部20は、単軸ロボット3の前記スライダ12に固定されており、これにより、スカラロボット2が、スライダ12の移動に伴い当該スライダ12と共にZ方向に移動する。
 ロボットアーム22は、ベース部20に対して第1回転軸Ax1回りに回転可能に連結された第1アーム部23と、この第1アーム部23に対して第2回転軸Ax2回りに回転可能に連結された第2アーム部24と、この第2アーム部24に対して第3回転軸Ax3回りに回転可能に連結されたツール装着部25とを備えている。ツール装着部25は、ロボットハンド等などの各種用途に応じたエンドエフェクタが着脱自在に装着される部分である。なお、第1回転軸Ax1、第2回転軸Ax2及び後述する第3回転軸Ax3は、Z方向に延びる互いに平行な仮想軸である。
 第1アーム部23は、水平方向(Z方向と直交する方向)に延在する側面視長方形の剛性を有した中空の箱型構造体からなるケーシング231を有し、第2アーム部24もまた、水平方向に延在する剛性を有した中空の箱型構造体からなるケーシング241を有している。第1アーム部23は、その長手方向の一端部(基端部)で後記第1減速機40を介してベース部20に連結されており、第2アーム部24は、その一端部(基端部)で後記第2減速機50を介して第1アーム部23の先端部に連結されている。ツール装着部25は、第2アーム部24の先端部に後記第3減速機70を介して連結されている。
 スカラロボット2は、第1アーム部23の駆動源である第1モータ31と、この第1モータ31が発生する回転力を前記第1アーム部23に伝達する第1動力伝達機構PT1とを備えている。また、スカラロボット2は、第2アーム部24の駆動源である第2モータ32と、この第2モータ32が発生する回転力を前記第2アーム部23に伝達する第2動力伝達機構PT2とを備えている。また、スカラロボット2は、ツール装着部25の駆動源である第3モータ33と、この第3モータ31が発生する回転力をツール装着部25に伝達する第3動力伝達機構PT3とを備えている。
 第1~第3のモータ31~33は全てベース部20に搭載されている。ベース部20は、下方に開口した中空かつ箱形の剛性を有した構造体からなるケーシング201を備えており、モータ31~33は、第1回転軸Ax1を中心としてその周囲に配置され、各々、ブラケットを介してケーシング201の天井部202に固定されている。具体的には、第1モータ31は、第1回転軸Ax1に対してX方向に隣接する位置に配置されている。第2モータ32及び第3モータ33は、第1回転軸Ax1を挟んでY方向に並ぶ位置に各々配置されている。ケーシング201の下面には、カバー203が着脱可能に固定されている。
 [第1動力伝達機構PT1の構成]
 図4は産業用ロボット1の断面拡大図である。この図に示すように、前記第1動力伝達機構PT1は、ベース部20とロボットアーム22との間に介設された第1減速機40と、第1モータ31の出力軸31aの回転を第1減速機40に伝達する第1伝動機構46とを含む。
 第1減速機40(本発明の第1関節部材に相当する)は、波動歯車減速機構からなる減速機本体42と、この減速機本体42が組み込まれた、剛性を有する構造体からなるケーシング44とを含み、第1回転軸Ax1に沿って貫通した概略円環状の構造を有している。
 ケーシング44は、周壁部を備えた有天円筒状の上部ケーシング45a(本発明の第1部材に相当する)と、周壁部を備えた有底円筒状の下部ケーシング45b(本発明の第2部材に相当する)とを含み、周壁部同士の間にラビリンス状の隙間44aが形成されるように、これら上、下のケーシング45a、45bが向かい合わせに配置された中空構造を有する。上部ケーシング45aは、第1アーム部23のケーシング231の下面232に固定されており、下部ケーシング45bは、ベース部20のケーシング201の上面に固定されている。
 減速機本体42は、ウェーブジェネレータ、サーキュラスプライン、フレクススプラインなどを備えた周知の波動歯車減速機構からなる。減速機本体42は、ケーシング44の内部に組み込まれている。ウェーブジェネレータは、第1モータ31の回転力の入力部であり、上部ケーシング45aは、減速後の回転力の出力部とされる。すなわち、第1減速機40は、入力部(ウェーブジェネレータ)に入力される回転力の回転速度を減速して出力部(上部ケーシング45a)から出力させる。
 前記第1伝動機構46はベルト伝動機構である。すなわち、第1伝動機構46は、第1モータ31の出力軸31aに固定されたプーリ47aと、第1減速機36の入力部に固定されたプーリ47bと、これらプーリ47a、47bとに掛け渡された伝動ベルト48とを含む。
 この構成により、第1モータ31の出力軸31aの回転が、第1減速機40の入力部に伝達され、この第1減速機40で回転速度が減速されながら第1アーム部23に伝達される。これにより、第1アーム部23が、ベース部20に対して所定の回転速度で第1回転軸Ax1回りに回転(旋回)する。
 [第2動力伝達機構PT2の構成]
 前記第2動力伝達機構PT2は、図2に示すように、第1アーム部23と第2アーム部24との間に介設された第2減速機50と、ベース部20から第1アーム部23に亘って第1減速機40の内側を貫通して延在する第1伝動軸56と、前記第2モータ32の出力軸32a(図示省略)の回転を、ベース部20において第1伝動軸56に伝動するとともに、当該第1伝動軸56の回転を、第1アーム部23において第2減速機50に伝動する第2伝動機構57と、を含む。
 図5は産業用ロボット1の断面拡大図である。この図に示すように、第2減速機50(本発明の第2関節部材に相当する)は、波動歯車減速機構からなる減速機本体52と、この減速機本体52が組み込まれた、剛性を有する構造体からなるケーシング54とを含み、全体が第2回転軸Ax2に沿って貫通した概略円環状の構造を有している。この第2減速機50の基本的な構造は、第1減速機40の構造と基本的に共通している。
 ケーシング54は、周壁部を備えた有天円筒状の上部ケーシング55a(本発明の第3部材に相当する)と、周壁部を備えた有底円筒状の下部ケーシング55b(本発明の第4部材に相当する)とを含み、周壁部同士の間にラビリンス状の隙間54aが形成されるように、これら上、下のケーシング55a、55bが向かい合わせに配置された中空構造を有する。上部ケーシング55aは、第1アーム部23のケーシング231の下面232に固定されており、下部ケーシング55bは、第2アーム部24のケーシング241の上面243に固定されている。
 減速機本体52は、ウェーブジェネレータ、サーキュラスプライン、フレクススプラインなどを備えた周知の波動歯車減速機構からなる。減速機本体52は、ケーシング54の内部に組み込まれている。ウェーブジェネレータは、第2モータ32の回転力の入力部であり、フレクススプラインが固定される上部ケーシング55aが、減速後の回転力の出力部とされる。すなわち、第2減速機50は、入力部(ウェーブジェネレータ)に入力される回転力の回転速度を減速して出力部(上部ケーシング55a)から出力させる。なお、第2減速機50では、上部ケーシング45aが第1アーム部23に固定されているため、サーキュラスプラインが固定される下部ケーシング45bが相対的に回転することで回転力が第2アーム部24に伝達される。
 前記第2伝動機構57はベルト伝動機構である。すなわち、第2伝動機構57は、図3~図5に示すように、第2モータ32の出力軸32aに固定されたプーリ58aと、ベース部20において第1伝動軸56の下端部に固定されたプーリ58bと、これらプーリ58a、58bとに掛け渡された伝動ベルト59とを含む。また、第2伝動機構57は、第1アーム部23において、第1伝動軸56の上端部に固定されたプーリ61aと、第2減速機50の入力部に固定されたプーリ61bと、これらプーリ61a、61bとに掛け渡された伝動ベルト62とを含む。
 前記第1伝動軸56は中空軸からなり、第1動力伝達機構PT1の第1減速機40及び第1伝動機構46のプーリ47bを貫通してZ方向に延在している。第1伝動軸56は、第1減速機40の上部ケーシング45a及び第1伝動機構46のプーリ47bにベアリングを介して相対回転が可能な状態で保持されている。
 この構成により、第2モータ32の出力軸32aの回転が、第1アーム部23を通じて第2減速機50の入力部(ウェーブジェネレータ)に伝達され、この第2減速機50で回転速度が減速されながら第2アーム部24に伝達される。これにより、第2アーム部24が第1アーム部23に対して所定の回転速度で第2回転軸Ax2回りに回転(旋回)する。
 [第3動力伝達機構PT3の構成]
 前記第3動力伝達機構PT3は、第2アーム部24とツール装着部25との間に介設された第3減速機70と、第1伝動軸56と同心上に配置されて、ベース部20から第1アーム部23に亘って第1減速機40の内側を貫通して延在する第2伝動軸76と、第1アーム部23から第2アーム部24に亘って第2減速機50の内側を貫通して延在する第3伝動軸77と、前記第3モータ33の出力軸33a(図示省略)の回転を、ベース部20において第2伝動軸76に伝動し、当該第2伝動軸76の回転を、第1アーム部23において第3伝動軸77に伝動し、当該第3伝動軸77の回転を、第2アーム部において第3減速機70に伝動する第3伝動機構78と、を含む。
 図5及び図6に示すように、第3減速機70(本発明の第3関節部材に相当する)は、波動歯車減速機構からなる減速機本体72と、この減速機本体72が組み込まれた、剛性を有する構造体からなるケーシング74とを含み、全体が第3回転軸Ax3に沿って貫通した概略円環状の構造を有している。この第3減速機70の基本的な構造は、第1、第2の減速機40、50の構造と基本的に共通している。
 ケーシング74は、周壁部を備えた有天円筒状の上部ケーシング75a(本発明の第5部材に相当する)と、周壁部を備えた有底円筒状の下部ケーシング75b(本発明の第6部材に相当する)とを含み、周壁部同士の間にラビリンス状の隙間74aが形成されるように、これら上、下のケーシング75a、75bが向かい合わせに配置された中空構造を有する。上部ケーシング75aは、第2アーム部24のケーシング241の下面242に固定されており、下部ケーシング75bは、ツール装着部25の上部に固定されている。
 減速機本体72は、ウェーブジェネレータ、サーキュラスプライン、フレクススプラインなどを備えた周知の波動歯車減速機構からなる。減速機本体72は、ケーシング74の内部に組み込まれている。ウェーブジェネレータは、第3モータ33の回転力の入力部であり、フレクススプラインが固定される上部ケーシング75aが、減速後の回転力の出力部とされる。すなわち、第3減速機70は、入力部(ウェーブジェネレータ)に入力される回転力の回転速度を減速して出力部(上部ケーシング75a)から出力させる。なお、第3減速機70では、上部ケーシング75aが第2アーム部24に固定されているため、サーキュラスプラインが固定される下部ケーシング75bが相対的に回転することで回転力がツール装着部25に伝達される。
 前記第3伝動機構78はベルト伝動機構である。すなわち、第3伝動機構78は、図3~図5に示すように、第3モータ33の出力軸33aに固定されたプーリ79aと、ベース部20において第2伝動軸76の下端部に固定されたプーリ79bと、これらプーリ79a、79bとに掛け渡された伝動ベルト80とを含む。また、第3伝動機構78は、第1アーム部23において第2伝動軸76の上端部に固定されたプーリ82aと、第3伝動軸77の上端部に固定されたプーリ82bと、これらプーリ82a、82bとに掛け渡された伝動ベルト83とを含む。さらに、第3伝動機構78は、第2アーム部24において、第3伝動軸77の下端部に固定されたプーリ84aと、第3減速機70の入力部に固定されたプーリ84bと、これらプーリ84a、84bとに掛け渡された伝動ベルト85とを含む。
 前記第2伝動軸76は、外径が前記第1伝動軸56の内径よりも小さい中空軸からなり、第1伝動軸56の内側を貫通してZ方向に延在している。第2伝動軸76と第1伝動軸56とは、第1回転軸Ax1を中心とする同心円状に配置されている。第2伝動軸76は、第1伝動軸56にベアリングを介して相対回転が可能な状態で保持されている。
 第3伝動軸77は中空軸からなり、第2動力伝達機構PT2の第1伝動機構46のプーリ61b及び第2減速機50を貫通してZ方向に延在している。第3伝動軸77は、第1伝動機構46のプーリ61b及び第2減速機50の下部ケーシング55bにベアリングを介して相対回転が可能な状態で保持されている。
 この構成により、第3モータ33の出力軸33aの回転が、第1アーム部23及び第2アーム部24を通じて第3減速機70の入力部(ウェーブジェネレータ)に伝達され、この第3減速機70で回転速度が減速されながらツール装着部25に伝達される。これにより、ツール装着部25が第2アーム部24に対して所定の回転速度で第3回転軸Ax3回りに回転する。
 なお、第3動力伝達機構PT3の第2伝動軸76の内側には、当該第2伝動軸76を貫通してベース部20から第1アーム部23に亘って延在する、中空軸からなる第1配線保護軸90が配置されている。また、第3伝動軸77の内側には、当該第3伝動軸77を貫通して第1アーム部23から第2アーム部24に亘って延在する、中空軸からなる第2配線保護軸94が配置されている。第1配線保護軸90、第2伝動軸76及び第1伝動軸56は、共に断面円形の中空軸(円筒体)であり、これら第1配線保護軸90、第2伝動軸76及び第1伝動軸56は、第1回転軸Ax1を中心とする同心円状にこの順番で内側から配置されている。また、第2配線保護軸94及び第3伝動軸77は、共に断面円形の中空軸(円筒体)であり、これら第2配線保護軸94及び第3伝動軸77は、第2回転軸Ax2を中心とする同心円状にこの順番で内側から配置されている。
 これら第1、第2の配線保護軸90、94は、スカラロボット2内に配索される電線類、すなわちツール装着部25に装着されるツール駆動用の電線及び/又は可撓性を有するパイプ(チューブ)を保護するものである。パイプは、例えば圧縮空気などの給排に用いられるものである。図示を省略するが、スカラロボット2の内部には、この電線類がベース部20からツール装着部25に亘って配索されている。概略的には、ベース部20から第1配線保護軸90、第1アーム部23、第2配線保護軸94、第2アーム部24及び第3減速機70を通過するように電線類が配索されている。
 第1、第2の配線保護軸90、94は、後述する通り、ベース部20内に導入される空気(クリーンエア)をロボットアーム22に亘って流動させる機能も備える。すなわち、第1配線保護軸90は、ベース部20に導入されるエアを第1減速機40の内部を通じて第1アーム部23に導入する第1連絡通路101を形成し、第2配線保護軸94は、第1アーム部23に導入されるエアを第2減速機50の内部を通じて第2アーム部24に導入する第2連絡通路102を形成する。
 第1配線保護軸90は、第3動力伝達機構PT3のプーリ79bに固定された連結部材91にベアリング92を介して相対回転可能に支持されている。また、第2配線保護軸94は、第3動力伝達機構PT3のプーリ84aに固定された連結部材95にベアリング96を介して相対回転可能に支持されている。両配線保護軸90、94の上端部は、第1アーム部23のケーシング231に対して回転不能に連結されている。
 [スカラロボット2の防塵構造]
 図2及び図4に示すように、ベース部20には空気導入部110が設けられている。この空気導入部110には、図外のコンプレッサ等に清浄フィルタ等を介して接続された空気供給ホース112の末端部分が接続されている。これにより、一定圧力の空気(クリーンエア)がベース部20の内部に導入されるようになっている。
 ベース部20内に導入された空気は、図6中に実線矢印(符号FL1)で示すように、第1配線保護軸90からなる第1連絡通路101(図4参照)を通じて第1アーム部23の内部に導入され、さらに配線保護軸94からなる第2連絡通路102(図5参照)を通じて第1アーム部23から第2アーム部24に導入され、さらに第3減速機70の内側の空間(第3連絡通路103という/図5参照)を通じてツール装着部25に導入されることとなる。これにより、スカラロボット2の内部全体が正圧となり、スカラロボット2に形成される各種隙間から外部に空気が噴出(漏出)し、スカラロボット2の内部への粉塵の侵入が防止されるようになっている。
 なお、このスカラロボット2には、第1~第3の減速機40、50、70の前記隙間44a、54a、74aから適切に空気が噴射されるように、ベース部20の内部と第1減速機40の内部とを連通させる第1オリフィス通路120と、第2アーム部24の内部と第2減速機50の内部とを連通させる第2オリフィス通路130と、ツール装着部25の内部と第3減速機70の内部とを連通させる第3オリフィス通路140とが設けられている。
 図4に示すように、第1オリフィス通路120は、第1減速機40のケーシング44の周壁部近傍の位置に設けられたZ方向に延在する通路である。この第1オリフィス通路120は、第1減速機40側の通路面積が反第1減速機40側(ベース部20側)の通路面積よりも小さくなる部分を備えた通路である。具体的には、第1オリフィス通路120は、第1減速機40のケーシング44(下部ケーシング45b)及びベース部20のケーシング231に、これらをZ方向に貫通するように形成された一定径の孔部121と、ベース部20の内部においてこの孔部121に着脱可能に螺着されたオリフィス継手122とで構成されている。なお、「オリフィス継手」とは、内部に通路を有しかつ当該通路の径が一方側から他方側に向かって急激に狭まる部分を有した円筒状の部材である。
 図5に示すように、第2オリフィス通路130は、第2減速機50のケーシング54の周壁部近傍の位置に設けられたZ方向に延在する通路である。この第2オリフィス通路130は、第2減速機50側の通路面積が反第2減速機50側(第2アーム部24側)の通路面積よりも小さくなる部分を備えた通路である。具体的には、第2オリフィス通路130は、第2減速機50のケーシング54(下部ケーシング55b)及び第2アーム部24のケーシング241に、これらをZ方向に貫通するように形成された一定径の孔部131と、ベース部20の内部においてこの孔部121に着脱可能に螺着されたオリフィス継手132とで構成されている。
 第3オリフィス通路140は、第3減速機70のケーシング74の周壁部近傍の位置に設けられたZ方向に延在する通路である。この第3オリフィス通路140は、第3減速機70側の通路面積が反第3減速機70側(ツール装着部25側)の通路面積よりも小さくなる部分を備えた通路である。具体的には、第3オリフィス通路140は、第3減速機70のケーシング74(下部ケーシング75b)に、これをZ方向に貫通するように形成された一定径の孔部141と、ツール装着部25の内部においてこの孔部141に着脱可能に螺着されたオリフィス継手142とで構成されている。
 このような第1~第3のオリフィス通路120、130、140が設けられることにより、第1~第3の減速機40、50、70の前記隙間44a、54a、74aから適切に空気が噴出され、当該隙間44a、54a、74aからの粉塵の侵入が高度に抑制される。すなわち、オリフィス通路120、130、140が設けられていない場合には、スカラロボット2内の空気の流れは、必ずしも、図6中の符号FL1で示す流れが支配的とはならない。例えばベース部20に導入された空気は、第1連絡通路101を通じて第1アーム部23に流動する一方で、機構部分の隙間や部材間の隙間を通じて第1減速機40に流動して前記隙間44aから漏出するとともに、スカラロボット2に形成されるその他の隙間(例えば部材同士の組付け部分の隙間)から無秩序に漏出する。そのため、ロボットアーム22の先端に向かう程、空気流量が少なくなり、第2、第3の減速機50、70(隙間54a、74a)において十分な防塵効果が得られない場合がある。
 これに対して、第1~第3のオリフィス通路120、130、140が設けた上記スカラロボット2の構成によれば、空気導入部110からベース部20に導入される空気の大部分は、第1連絡通路101を通じて第1アーム部23の内部に導入される。また、第1オリフィス通路120を通じて第1減速機40の内部にも空気が導入される。一旦第1オリフィス通路120を通じて第1減速機40に空気が導入されると、この第1オリフィス通路120を通じた空気の流路(図6中の符号FL2を付した破線矢印を参照)が確立され、第1減速機40の内部に積極的に空気が導入される。これにより、第1減速機40の周囲において形成されるその他の隙間(部材同士の組付け部分の隙間)などから大量の空気が無秩序に漏出することが抑制され、第1アーム部23及び第1減速機40への空気の導入が促進される。この際、第1オリフィス通路120内で流路面積が絞られていることにより、必要以上に第1減速機40に空気が導入されることが抑制される。
 また、第1連絡通路101を通じて第1アーム部23に導入された空気は、第2連絡通路102を通じて第2アーム部24の内部に導入される。また、第2アーム部24内において、第2オリフィス通路130を通じて第2減速機50の内部にも空気が導入される。一旦第2オリフィス通路130を通じて第2減速機50の内部に空気が導入されると、この第2オリフィス通路130を通じた空気の流路(図6中の符号FL3を付した破線矢印を参照)が確立され、第2減速機50の内部に積極的に空気が導入される。これにより、第2減速機50の周囲において形成されるその他の隙間(部材同士の組付け部分の隙間)などから大量の空気が無秩序に漏出することが抑制され、ツール装着部25及び第2減速機50への空気の導入が促進される。この際、第2オリフィス通路130内で流路面積が絞られていることにより、必要以上に第2減速機50に空気が導入されることが抑制される。
 また、第2アーム部24から第3連絡通路103を通じてツール装着部25に導入された空気は、第3オリフィス通路140を通じて第3減速機70の内部に導入され、この第3オリフィス通路140を通じた空気の流路(図6中の符号FL4を付した破線矢印を参照)が確立され、第3減速機70の内部に積極的に空気が導入される。これにより、第3減速機70の周囲において形成されるその他の隙間(部材同士の組付け部分の隙間)などから大量の空気が無秩序に漏出することが抑制され、第2減速機50への空気の導入が促進される。
 従って、上記スカラロボット2によれば、ベース部20からロボットアーム22に亘ってその内圧を適切に高めながら、第1~第3の全ての減速機40、50、70についてそれらの隙間44a、54a、74aから空気を噴出させることができ、その結果、全ての減速機40、50、70について粉塵の侵入を高度に抑制することが可能となる。
 なお、上記スカラロボット2では、第1~第3のオリフィス通路120、130、140は、何れも一定径の孔部121、131、141にオリフィス継手122、132、142が着脱可能に螺着された構成であるが、オリフィス継手122、132、142を用いることなく、孔部121、131、141の内径を途中で変化されることより構成されてもよい。但し、スカラロボット2の内部で発生した粉塵等の異物が詰まって第1~第3のオリフィス通路120、130、140が目詰まりを起こす(不通となる)ことも考えられるので、メンテナンス性を考慮すると、オリフィス継手122、132、142を用いた構成であるのが望ましい。すなわち、当該構成によれば、第1~第3のオリフィス通路120、130、140が目詰まりを起こした場合でも、オリフィス継手122、132、142を交換することで速やかにオリフィス通路120、130、140を開通させることが可能となる。
 また、上記スカラロボット2では、第1配線保護軸90によってベース部20から第1アーム部23に空気を導入する第1連絡通路101が形成され、第2配線保護軸94によって、第1アーム部23から第2アーム部24に空気を導入する第2連絡通路102が形成されている。しかし、スカラロボット2は、これら第1、第2の配線保護軸90、94が省略された構成であってもよい。この場合には、第3動力伝達機構PT3の第2伝動軸76によって、ベース部20から第1アーム部23に空気を導入する第1連絡通路101が形成され、第3動力伝達機構PT3の第3伝動軸77によって、第1アーム部23から第2アーム部24に空気を導入する第2連絡通路102が形成されている。
 [変形例]
 以上、本発明に係るスカラロボット2が適用された産業用ロボット1の実施形態について説明したが、上記スカラロボット2は本発明に係る多関節ロボットの好ましい実施形態の例示であって、スカラロボット2やこれを含む産業用ロボット1の具体的な構成は、本発明の要旨を逸脱しない範囲で適宜変更可能である。例えば、以下のような態様を採用することも可能である。例えば、以下のような態様を採用することも可能である。
 (1)実施形態では、第1オリフィス通路120は、ベース部20の内部と第1減速機40の内部とを連通するが、第1オリフィス通路120は、第1アーム部23の内部と第1減速機40の内部とを連通するものであってもよい。また、実施形態では、第2オリフィス通路130は、第2アーム部24の内部と第2減速機50の内部とを連通するが、第2オリフィス通路130は、第1アーム部23の内部と第1減速機40の内部とを連通するものであってもよい。また、実施形態では、第3オリフィス通路140は、ツール装着部25の内部と第3減速機70の内部とを連通するが、第3オリフィス通路140は、第2アーム部24と第3減速機70の内部とを連通するものであってもよい。
 (2)実施形態では、スカラロボット2の内部に電線類100が配索されているが、必要な場合には、スカラロボット2の外部に電線類100を設けるようにしてもよい。この場合には、第1、第2の配線保護軸90、94は省略可能である。第1、第2の配線保護軸90、94を省略する場合には、第2伝動軸76や第3伝動軸77を中実軸とすることもできる。
 (3)実施形態では、単軸ロボット3のスライダ12にスカラロボット2が固定され、これによりスカラロボット2がZ方向に移動する構成である。しかし、スカラロボット2は、ベース部20が接地面に固定されて使用されるものであってもよい。
 (4)実施形態のスカラロボット2は、第2アーム部24が第1アーム部23に対して上方に位置する構成であるが、第2アーム部24が第1アーム部23に対して下方に位置する構成であってもよい。
 (5)実施形態では、本発明をスカラロボット2(水平多関節ロボット)に適用した例について説明したが、本発明は、垂直多関節ロボットなど他の多関節ロボットについても適用可能である。
 [本発明のまとめ]
 以上説明した本発明をまとめると以下の通りである。
 本発明の一局面に係る多関節ロボットは、中空構造のベース部と、このベース部に連結される中空構造の第1アーム部とを備えた多関節ロボットであって、前記ベース部に固定される第1部材と、この第1部材に所定間隔を隔てて対向した状態で前記第1アーム部に固定される第2部材とを備えた中空構造を有し、かつ前記ベース部と前記第1アーム部とを第1回転軸回りに相対回転可能に連結する第1関節部材と、前記ベース部の内部に空気を導入すべく当該ベース部に設けられた空気導入部と、前記第1関節部材の内部を通じて前記ベース部と前記第1アーム部とを連通させる第1連絡通路と、前記ベース部の内部と前記第1関節部材の内部、又は前記第1アーム部の内部と前記第1関節部材の内部とを、前記第1連絡通路とは異なる位置で連通させる通路であって、第1関節部材側の通路面積が反関節部材側の通路面積よりも小さくなる部分を有した第1オリフィス通路と、を備えているものである。
 この多関節ロボットによれば、空気導入部からベース部に導入される空気の大部分は、第1連絡通路を通じて第1アーム部の内部に導入される。また、一旦、第1オリフィス通路を通じて第1関節部材の内部に空気が導入されると、この第1オリフィス通路を通じた空気の流路が確立され、第1関節部材の内部に積極的に空気が導入される。これにより、第1関節部材の周囲において形成される他の隙間から空気が無秩序に漏出することが抑制され、第1関節部材への空気の導入が促進される。従って、第1連絡通路によりベース部から第1アーム部への空気導入量を適切に確保しながら、第1関節部材の前記隙間からも適切に空気を漏出(噴出)させて、当該隙間への粉塵の侵入を抑制することができる。
 この場合、前記第1オリフィス通路は、前記ベース部の内部と前記第1関節部材の内部、又は前記第1アーム部の内部と前記第1関節部材の内部とを連通させる孔部と、この孔部に着脱可能に装着されたオリフィス継手とにより構成されるのが好適である。
 この構成によれば、異物が侵入するなどして第1オリフィス通路が不通になった場合でも、オリフィス継手を交換することで第1オリフィス通路を速やかに開通させることが可能となる。そのため、メンテナンス性が向上する。
 上記各態様の多関節ロボットにおいて、前記第1関節部材は、円環状の構造を有する減速機からなり、前記第1連絡通路は、前記減速機の内側を貫通するように前記第1回転軸に沿って前記ベース部から前記第1アーム部に亘って延在する中空軸により形成されているのが好適である。
 この構成によれば、減速機の内側(中心部分)の空間を利用して円滑にベース部から第1アーム部に空気を導入することができる。従って、合理的な構成でベース部から第1アーム部に空気を導入することが可能となる。
 上記各態様の多関節ロボットにおいては、さらに、前記第1アーム部に連結される中空構造の第2アーム部と、前記第1アーム部に固定される第3部材と、この第3部材に所定間隔を隔てて対向した状態で前記第2アーム部に固定される第4部材とを備えた中空構造を有し、かつ前記第1アーム部と前記第2アーム部とを第2回転軸回りに相対回転可能に連結する第2関節部材と、前記第1アーム部に導入される空気を前記第2関節部材の内部を通じて前記第2アーム部に導入する第2連絡通路と、前記第1アーム部の内部と前記第2関節部材の内部、又は前記第2アーム部の内部と前記第2関節部材の内部とを、前記第2連絡通路とは異なる位置で連通させる通路であって、第2関節部材側の通路面積が反第2関節部材側の通路面積よりも小さくなる部分を有した第2オリフィス通路と、を備えているものであってもよい。
 この構成によれば、ベース部から第1アーム部に導入される空気の大部分は、第2連絡通路を通じて第2アーム部の内部に導入される。また、一旦、第2オリフィス通路を通じて第2関節部材の内部に空気が導入されると、この第2オリフィス通路を通じた空気の流路が確立され、第2関節部材の内部に積極的に空気が導入される。これにより、第2関節部材の周囲において形成される他の隙間などから空気が無秩序に漏出することが抑制され、第2関節部材への空気の導入が促進される。従って、第2連絡通路により第1アーム部から第2アーム部への空気導入量を適切に確保しながら、第2関節部材の前記隙間からも適切に空気を漏出(噴出)させて、当該隙間への粉塵の侵入を抑制することができる。
 この場合、前記第2オリフィス通路は、前記第1アーム部の内部と前記第2関節部材の内部、又は前記第2アーム部の内部と前記第2関節部材の内部とを連通させる孔部と、この孔部に着脱可能に装着されたオリフィス継手とにより構成されるのが好適である。
 この構成によれば、異物が侵入するなどして第2オリフィス通路が不通になった場合でも、オリフィス継手を交換することにより第2オリフィス通路を速やかに開通させることが可能となる。そのため、メンテナンス性が向上する。
 また、上記の多関節ロボットにおいて、前記第2関節部材は、円環状の構造を有する減速機かなり、前記第2連絡通路は、前記減速機の内側を貫通するように前記第1アーム部から前記第2アーム部に亘って延在する中空軸により形成されているのが好適である。
 この構成によれば、減速機の内側(中心部分)の空間を利用して円滑に第1アーム部から第2アーム部に空気を導入することができる。従って、合理的な構成で第1アーム部から第2アーム部に空気を導入することが可能となる。
 上記各態様の多関節ロボットにおいては、さらに、前記第2アーム部に連結される中空構造のツール装着部と、前記第2アーム部に固定される第5部材と、この第5部材に所定間隔を隔てて対向した状態で前記ツール装着部に固定される第6部材とを備えた中空構造を有し、かつ前記第2アーム部と前記ツール装着部とを第3回転軸回りに相対回転可能に連結する第3関節部材と、前記第2アーム部に導入される空気を前記第3関節部材の内部を通じて前記ツール装着部に導入する第3連絡通路と、前記第2アーム部の内部と前記第3関節部材の内部、又は前記ツール装着部の内部と前記第3関節部材の内部とを、前記第3連絡通路とは異なる位置で連通させる通路であって、第3関節部材側の通路面積が反第3関節部材側の通路面積よりも小さくなる部分を有した第3オリフィス通路と、を備えているものであってもよい。
 この構成によれば、第1アーム部から第2アーム部に導入される空気の大部分は、第3連絡通路を通じてツール装着部の内部に導入される。また、一旦、第3オリフィス通路を通じて第3関節部材の内部に空気が導入されると、この第3オリフィス通路を通じた空気の流路が確立され、第3関節部材の内部に積極的に空気が導入される。これにより、第3関節部材の周囲において形成される他の隙間などから空気が無秩序に漏出することが抑制され、第3関節部材への空気の導入が促進される。従って、第3連絡通路により第2アーム部からツール装着部への空気導入量を適切に確保しながら、第3関節部材の前記隙間からも適切に空気を漏出(噴出)させて、当該隙間への粉塵の侵入を抑制することができる。
 この場合、前記第3オリフィス通路は、前記第2アーム部の内部と前記第3関節部材の内部、又は前記ツール装着部の内部と前記第3関節部材の内部とを連通させる孔部と、この孔部に着脱可能に装着されたオリフィス継手とにより構成されるのが好適である。
 この構成によれば、異物が侵入するなどして第3オリフィス通路が不通になった場合でも、オリフィス継手を交換することにより第3オリフィス通路を速やかに開通させることが可能となる。そのため、メンテナンス性が向上する。
 本発明の他の一局面に係る多関節ロボットは、中空構造のベース部と、このベース部に連結される第1アーム部とを備えた多関節ロボットであって、前記ベースに固定される第1部材と、この第1部材に所定間隔を隔てて対向した状態で前記第1アーム部に固定される第2部材とを備えた中空構造を有し、かつ前記ベース部と前記第1アーム部とを第1回転軸回りに相対回転可能に連結する関節部材と、前記ベース部の内部に空気を導入すべく当該ベース部に設けられた空気導入部と、前記ベース部の内部と前記関節部材の内部とを連通させる通路であって、関節部材側の通路面積がベース部側の通路面積よりも小さくなる部分を有したオリフィス通路と、を備えているものである。
 この多関節ロボットによれば、空気導入部からベース部に導入された空気が一旦、オリフィス通路を通じて関節部材の内部に空気が導入されると、このオリフィス通路を通じた空気の流路が確立され、関節部材の内部に積極的に空気が導入される。これにより、ベース部に形成される他の隙間などから空気が無秩序に漏出することが抑制され、関節部材への空気の導入が促進される。従って、関節部材の前記隙間から適切に空気を漏出(噴出)させて、当該隙間への粉塵の侵入を抑制することができる。
 この場合、前記オリフィス通路は、前記ベース部の内部と前記関節部材の内部とを連通させる孔部と、この孔部に着脱可能に装着されたオリフィス継手とにより構成されるのが好適である。
 この構成によれば、異物が侵入するなどしてオリフィス通路が不通になった場合でも、オリフィス継手を交換することによりオリフィス通路を速やかに開通させることが可能となる。そのため、メンテナンス性が向上する。

Claims (10)

  1.  中空構造のベース部と、このベース部に連結される中空構造の第1アーム部とを備えた多関節ロボットであって、
     前記ベース部に固定される第1部材と、この第1部材に所定間隔を隔てて対向した状態で前記第1アーム部に固定される第2部材とを備えた中空構造を有し、かつ前記ベース部と前記第1アーム部とを第1回転軸回りに相対回転可能に連結する第1関節部材と、
     前記ベース部の内部に空気を導入すべく当該ベース部に設けられた空気導入部と、
     前記第1関節部材の内部を通じて前記ベース部と前記第1アーム部とを連通させる第1連絡通路と、
     前記ベース部の内部と前記第1関節部材の内部、又は前記第1アーム部の内部と前記第1関節部材の内部とを、前記第1連絡通路とは異なる位置で連通させる通路であって、第1関節部材側の通路面積が反関節部材側の通路面積よりも小さくなる部分を有した第1オリフィス通路と、を備えている、ことを特徴とする多関節ロボット。
  2.  請求項1に記載の多関節ロボットにおいて、
     前記第1オリフィス通路は、前記ベース部の内部と前記第1関節部材の内部、又は前記第1アーム部の内部と前記第1関節部材の内部とを連通させる孔部と、この孔部に着脱可能に装着されたオリフィス継手とにより構成される、ことを特徴とする多関節ロボット。
  3.  請求項1又は2に記載の多関節ロボットにおいて、
     前記第1関節部材は、円環状の構造を有する減速機からなり、
     前記第1連絡通路は、前記減速機の内側を貫通するように前記第1回転軸に沿って前記ベース部から前記第1アーム部に亘って延在する中空軸により形成されている、ことを特徴とする多関節ロボット。
  4.  請求項1乃至3の何れか一項に記載の多関節ロボットにおいて、
     前記第1アーム部に連結される中空構造の第2アーム部と、
     前記第1アーム部に固定される第3部材と、この第3部材に所定間隔を隔てて対向した状態で前記第2アーム部に固定される第4部材とを備えた中空構造を有し、かつ前記第1アーム部と前記第2アーム部とを第2回転軸回りに相対回転可能に連結する第2関節部材と、
     前記第1アーム部に導入される空気を前記第2関節部材の内部を通じて前記第2アーム部に導入する第2連絡通路と、
     前記第1アーム部の内部と前記第2関節部材の内部、又は前記第2アーム部の内部と前記第2関節部材の内部とを、前記第2連絡通路とは異なる位置で連通させる通路であって、第2関節部材側の通路面積が反第2関節部材側の通路面積よりも小さくなる部分を有した第2オリフィス通路と、を備えている、ことを特徴とする多関節ロボット。
  5.  請求項4に記載の多関節ロボットにおいて、
     前記第2オリフィス通路は、前記第1アーム部の内部と前記第2関節部材の内部、又は前記第2アーム部の内部と前記第2関節部材の内部とを連通させる孔部と、この孔部に着脱可能に装着されたオリフィス継手とにより構成される、ことを特徴とする多関節ロボット。
  6.  請求項4又は5に記載の多関節ロボットにおいて、
     前記第2関節部材は、円環状の構造を有する減速機かなり、
     前記第2連絡通路は、前記減速機の内側を貫通するように前記第1アーム部から前記第2アーム部に亘って延在する中空軸により形成されている、ことを特徴とする多関節ロボット。
  7.  請求項1乃至6の何れか一項に記載の多関節ロボットにおいて、
     前記第2アーム部に連結される中空構造のツール装着部と、
     前記第2アーム部に固定される第5部材と、この第5部材に所定間隔を隔てて対向した状態で前記ツール装着部に固定される第6部材とを備えた中空構造を有し、かつ前記第2アーム部と前記ツール装着部とを第3回転軸回りに相対回転可能に連結する第3関節部材と、
     前記第2アーム部に導入される空気を前記第3関節部材の内部を通じて前記ツール装着部に導入する第3連絡通路と、
     前記第2アーム部の内部と前記第3関節部材の内部、又は前記ツール装着部の内部と前記第3関節部材の内部とを、前記第3連絡通路とは異なる位置で連通させる通路であって、第3関節部材側の通路面積が反第3関節部材側の通路面積よりも小さくなる部分を有した第3オリフィス通路と、を備えている、ことを特徴とする多関節ロボット。
  8.  請求項7に記載の多関節ロボットにおいて、
     前記第3オリフィス通路は、前記第2アーム部の内部と前記第3関節部材の内部、又は前記ツール装着部の内部と前記第3関節部材の内部とを連通させる孔部と、この孔部に着脱可能に装着されたオリフィス継手とにより構成される、ことを特徴とする多関節ロボット。
  9.  中空構造のベース部と、このベース部に連結される第1アーム部とを備えた多関節ロボットであって、
     前記ベースに固定される第1部材と、この第1部材に所定間隔を隔てて対向した状態で前記第1アーム部に固定される第2部材とを備えた中空構造を有し、かつ前記ベース部と前記第1アーム部とを第1回転軸回りに相対回転可能に連結する関節部材と、
     前記ベース部の内部に空気を導入すべく当該ベース部に設けられた空気導入部と、
     前記ベース部の内部と前記関節部材の内部とを連通させる通路であって、関節部材側の通路面積がベース部側の通路面積よりも小さくなる部分を有したオリフィス通路と、を備えている、ことを特徴とする多関節ロボット。
  10.  請求項9に記載の多関節ロボットにおいて、
     前記オリフィス通路は、前記ベース部の内部と前記関節部材の内部とを連通させる孔部と、この孔部に着脱可能に装着されたオリフィス継手とにより構成される、ことを特徴とする多関節ロボット。
PCT/JP2018/048548 2018-12-28 2018-12-28 多関節ロボット WO2020136891A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
DE112018008229.6T DE112018008229T5 (de) 2018-12-28 2018-12-28 Gelenkroboter
JP2020562286A JP7140846B2 (ja) 2018-12-28 2018-12-28 多関節ロボット
PCT/JP2018/048548 WO2020136891A1 (ja) 2018-12-28 2018-12-28 多関節ロボット
CN201880099491.6A CN113015602B (zh) 2018-12-28 2018-12-28 多关节机器人

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/048548 WO2020136891A1 (ja) 2018-12-28 2018-12-28 多関節ロボット

Publications (1)

Publication Number Publication Date
WO2020136891A1 true WO2020136891A1 (ja) 2020-07-02

Family

ID=71127857

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/048548 WO2020136891A1 (ja) 2018-12-28 2018-12-28 多関節ロボット

Country Status (4)

Country Link
JP (1) JP7140846B2 (ja)
CN (1) CN113015602B (ja)
DE (1) DE112018008229T5 (ja)
WO (1) WO2020136891A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112454326A (zh) * 2020-11-11 2021-03-09 深圳市越疆科技有限公司 桌面机械臂的底座、桌面机械臂及机器人

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61288990A (ja) * 1985-06-17 1986-12-19 新明和工業株式会社 産業用ロボツト
JPH02145284A (ja) * 1988-11-26 1990-06-04 Aisin Keikinzoku Kk 産業用ロボットのミスト侵入防止装置
JPH0775992A (ja) * 1993-09-10 1995-03-20 Hitachi Ltd ロボットの手首装置
JPH0994791A (ja) * 1995-10-02 1997-04-08 Zetetsuku Kk 腐食性雰囲気用ロボット
JP2000141270A (ja) * 1998-11-06 2000-05-23 Matsushita Electric Ind Co Ltd 多関節型ロボット
JP2002224989A (ja) * 2002-01-30 2002-08-13 Mitsubishi Electric Corp 耐環境型産業用ロボット
JP2005205576A (ja) * 2004-01-26 2005-08-04 Shibuya Kogyo Co Ltd アイソレータシステム
JP2008141095A (ja) * 2006-12-05 2008-06-19 Tatsumo Kk 半導体製造用搬送装置
JP2018034268A (ja) * 2016-08-31 2018-03-08 ファナック株式会社 関節構造およびロボット
US20180200014A1 (en) * 2015-07-23 2018-07-19 Think Surgical, Inc. Protective drape for robotic systems

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5792988B2 (ja) * 2011-04-25 2015-10-14 ヤマハ発動機株式会社 スカラ型ロボット
JP5817787B2 (ja) * 2013-06-25 2015-11-18 株式会社安川電機 ロボット
CN203634619U (zh) * 2013-12-03 2014-06-11 上海力申科学仪器有限公司 带缓冲结构的气流控制装置
JP2015123549A (ja) * 2013-12-26 2015-07-06 シンフォニアテクノロジー株式会社 多関節ロボット

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61288990A (ja) * 1985-06-17 1986-12-19 新明和工業株式会社 産業用ロボツト
JPH02145284A (ja) * 1988-11-26 1990-06-04 Aisin Keikinzoku Kk 産業用ロボットのミスト侵入防止装置
JPH0775992A (ja) * 1993-09-10 1995-03-20 Hitachi Ltd ロボットの手首装置
JPH0994791A (ja) * 1995-10-02 1997-04-08 Zetetsuku Kk 腐食性雰囲気用ロボット
JP2000141270A (ja) * 1998-11-06 2000-05-23 Matsushita Electric Ind Co Ltd 多関節型ロボット
JP2002224989A (ja) * 2002-01-30 2002-08-13 Mitsubishi Electric Corp 耐環境型産業用ロボット
JP2005205576A (ja) * 2004-01-26 2005-08-04 Shibuya Kogyo Co Ltd アイソレータシステム
JP2008141095A (ja) * 2006-12-05 2008-06-19 Tatsumo Kk 半導体製造用搬送装置
US20180200014A1 (en) * 2015-07-23 2018-07-19 Think Surgical, Inc. Protective drape for robotic systems
JP2018034268A (ja) * 2016-08-31 2018-03-08 ファナック株式会社 関節構造およびロボット

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112454326A (zh) * 2020-11-11 2021-03-09 深圳市越疆科技有限公司 桌面机械臂的底座、桌面机械臂及机器人
CN112454326B (zh) * 2020-11-11 2023-06-23 深圳市越疆科技有限公司 桌面机械臂的底座、桌面机械臂及机器人

Also Published As

Publication number Publication date
DE112018008229T5 (de) 2021-09-23
JPWO2020136891A1 (ja) 2021-09-27
CN113015602A (zh) 2021-06-22
JP7140846B2 (ja) 2022-09-21
CN113015602B (zh) 2024-04-12

Similar Documents

Publication Publication Date Title
JP4232795B2 (ja) 平行リンク機構及び産業用ロボット
JP5792988B2 (ja) スカラ型ロボット
US8863606B2 (en) Robot wrist structure and robot
JP5251880B2 (ja) 内圧防爆構造のロボット
JP4263189B2 (ja) 多関節マニピュレータ
US20020135334A1 (en) Wrist structure for a robot
US10882193B2 (en) Robot structure
US5549016A (en) Wrist mechanism for an industrial robot
JPH11347868A (ja) 一軸回転型ポジショニング装置
WO2020136891A1 (ja) 多関節ロボット
CN107848123A (zh) 具有能量管线束的机器人
JPH11254377A (ja) ロボット
WO2020136890A1 (ja) 多関節ロボット
EP1846196B1 (en) An industrial robot with several axes, with multistage transmission gears and prepared for working in an aggressive and limited working area
JP2018001277A (ja) 産業用ロボットの手首構造
JPH04105888A (ja) クリーンルーム用多関節形ロボット
JP2021035716A (ja) 回転モジュールおよびロボット
US11185997B2 (en) Robot
JP2004090152A (ja) ロボットの手首構造
JPH02152788A (ja) 工業用ロボット
JP2004338071A (ja) 産業用ロボットの中空手首および産業用ロボット
JPH075996Y2 (ja) 工業用ロボットの手首部シール装置
WO2022163789A1 (ja) アームロボット
JPH02218583A (ja) 工業用ロボット
WO2023275925A1 (ja) ポジショナ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18944977

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020562286

Country of ref document: JP

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 18944977

Country of ref document: EP

Kind code of ref document: A1