WO2020135595A1 - 洗衣机 - Google Patents

洗衣机 Download PDF

Info

Publication number
WO2020135595A1
WO2020135595A1 PCT/CN2019/128723 CN2019128723W WO2020135595A1 WO 2020135595 A1 WO2020135595 A1 WO 2020135595A1 CN 2019128723 W CN2019128723 W CN 2019128723W WO 2020135595 A1 WO2020135595 A1 WO 2020135595A1
Authority
WO
WIPO (PCT)
Prior art keywords
washing
tub
detection
outer tub
dewatering
Prior art date
Application number
PCT/CN2019/128723
Other languages
English (en)
French (fr)
Inventor
谷越修
Original Assignee
青岛海尔洗衣机有限公司
Aqua株式会社
海尔智家股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 青岛海尔洗衣机有限公司, Aqua株式会社, 海尔智家股份有限公司 filed Critical 青岛海尔洗衣机有限公司
Priority to CN201980081162.3A priority Critical patent/CN113167004B/zh
Publication of WO2020135595A1 publication Critical patent/WO2020135595A1/zh

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06FLAUNDERING, DRYING, IRONING, PRESSING OR FOLDING TEXTILE ARTICLES
    • D06F33/00Control of operations performed in washing machines or washer-dryers 
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06FLAUNDERING, DRYING, IRONING, PRESSING OR FOLDING TEXTILE ARTICLES
    • D06F33/00Control of operations performed in washing machines or washer-dryers 
    • D06F33/30Control of washing machines characterised by the purpose or target of the control 
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06FLAUNDERING, DRYING, IRONING, PRESSING OR FOLDING TEXTILE ARTICLES
    • D06F37/00Details specific to washing machines covered by groups D06F21/00 - D06F25/00
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B40/00Technologies aiming at improving the efficiency of home appliances, e.g. induction cooking or efficient technologies for refrigerators, freezers or dish washers

Definitions

  • the invention relates to a washing machine.
  • Patent Document 1 describes an example of such a washing machine.
  • the above-mentioned washing machine has a problem that, in the case where the laundry needs to be untied, the amount of water used for washing increases in accordance with the amount of water stored in the outer tub in order to understand the laundry. In addition, there is also a problem that the corresponding water supply and discharge takes time, resulting in a long washing time.
  • Patent Document 1 Japanese Patent Laid-Open No. 6-190183
  • the present invention has been made in view of this problem, and its object is to provide a washing machine that does not easily increase the amount of water used even if the laundry is untied, and does not easily cause an extension of the washing time.
  • the washing machine of the main aspect of the present invention includes: an outer tub, which is elastically supported in the cabinet; a washing and dewatering tub, which is rotatably arranged in the outer tub; a pulsator, which is rotatably disposed in the washing and dewatering tub; A drive unit for driving the washing and dewatering tub and the pulsator; a control unit for controlling the driving unit; and a first detection unit for detecting when the washing and dewatering tub rotates in the outer tub in which water is stored The sloshing size of the outer barrel.
  • control unit rotates the washing and dewatering tub by the driving unit in a state where water is stored in the outer tub before draining from the outer tub to start dehydration, according to the first
  • the pulsator is rotated by the driving unit.
  • the eccentricity of the laundry in the washing and dewatering tub is estimated with the water remaining in the outer tub.
  • the pulsator rotates in the remaining water to perform forward rotation and reverse rotation, for example.
  • the control unit causes the washing unit to perform the washing by the driving unit in a state where water is stored in the outer tub before draining from the outer tub to start dehydration.
  • the dewatering drum rotates at a predetermined rotation speed, and the eccentricity is determined based on the detection result of the first detection part in the first period and the detection result of the first detection part in the second period, wherein the first The period includes an acceleration period in which the washing and dewatering tub is accelerated to the specified rotation speed, and the second period includes a constant-speed period in which the washing and dewatering barrel rotates at the specified rotation speed immediately after the first period.
  • the predetermined rotation speed may be set to a rotation speed at which the outer tub easily shakes in the horizontal direction due to resonance.
  • the shaking of the outer tub is not so large during constant speed, the shaking of the outer tub becomes large during acceleration, or vice versa , During the acceleration, the sway of the outer barrel is not so large, and during the constant speed, the sway of the outer barrel becomes larger.
  • the amount of eccentricity is determined based on the detection result of the first detection section in the first period including the acceleration period and the detection result of the first detection section in the second period including the fixed speed period at a predetermined rotation speed, so that the eccentricity can be accurately determined Determine the amount of eccentricity.
  • the first detection unit outputs a detection signal when the outer tub shakes by a predetermined amount or more in the direction of the first detection unit.
  • the control unit obtains an integrated value of the time at which the detection signal is output, and determines the eccentricity based on the integrated value.
  • the washing machine of this aspect it is possible to adopt a configuration further including a second detection unit that detects the shaking of the outer tub when the washing and dewatering tub rotates for dehydration.
  • the first detection unit is configured to be able to detect shaking smaller than that of the outer tub that the second detection unit can detect.
  • the first detection unit is able to detect a small sway of the outer tub more than the second detection unit, and therefore can well detect the sway of the outer tub when the washing and dewatering tub rotates in a state where water is stored.
  • the present invention it is possible to provide a washing machine which does not easily increase the amount of water used even when the laundry is unwound, and does not easily cause an extension of the washing time.
  • Fig. 1 is a side sectional view of a fully automatic washing machine of an embodiment.
  • FIG. 2 is a top cross-sectional view of the fully automatic washing machine of the embodiment.
  • FIG. 3 is a block diagram showing the structure of a fully automatic washing machine in an embodiment.
  • FIG. 4 is a flowchart showing an eccentricity detection process before dehydration according to an embodiment.
  • washing machine full-automatic washing machine (washing machine); 10: cabinet; 20: outer tub; 22: washing and dehydrating tub; 24: pulsator; 30: drive unit (drive unit); 80: second detection unit (second detection unit) ); 101: Control Department.
  • FIG. 1 is a side sectional view of the fully-automatic washing machine 1.
  • FIG. 2 is a top cross-sectional view of the fully automatic washing machine 1. In FIG. 2, the illustration of the four hanging bars 21 is omitted.
  • the fully automatic washing machine 1 includes a cabinet 10 that constitutes an appearance.
  • the cabinet 10 includes a rectangular cylindrical body portion 11 whose upper and lower surfaces are open, an upper panel 12 that covers the upper surface of the body portion 11, and a foot 13 that supports the body portion 11.
  • the upper panel 12 is formed with a laundry inlet 14.
  • the inlet 14 is covered by an upper cover 15 that can be opened and closed freely.
  • the outer tub 20 whose upper surface is open is elastically suspended and supported by four suspension bars 21 having vibration isolation devices.
  • a washing and dewatering tub 22 having an upper surface opened is disposed.
  • the washing and dewatering tub 22 rotates around a rotation axis extending in the vertical direction.
  • a large number of dehydration holes 22a are formed on the inner circumferential surface of the washing dehydration tub 22 over the entire circumference.
  • a balance ring 23 is provided above the washing and dewatering tub 22.
  • a pulsator 24 is arranged at the bottom of the washing and dewatering tub 22.
  • a plurality of blades 24a are radially arranged on the surface of the pulsator 24.
  • the drive unit 30 includes a drive motor 31 and a transmission mechanism 32.
  • the transmission mechanism section 32 has a clutch mechanism 32a, and by the switching operation of the clutch mechanism 32a, the torque of the drive motor 31 is transmitted to the pulsator 24 and only the pulsator 24 is rotated during the washing process and the rinsing process. In the process, the torque of the drive motor 31 is transmitted to the pulsator 24 and the washing and dewatering tub 22 to rotate the pulsator 24 and the washing and dewatering tub 22 integrally.
  • the drive unit 30 corresponds to the drive unit of the present invention.
  • a drain port 20a is formed on the outer bottom of the outer tub 20.
  • a drain valve 40 is provided in the drain port 20a.
  • the drain valve 40 is connected to the drain hose 41. When the drain valve 40 is opened, the water stored in the washing and dehydrating tub 22 and the outer tub 20 is discharged outside the machine through the drain hose 41.
  • a water supply unit 50 for supplying tap water into the washing and dewatering tub 22 is arranged at the rear of the upper panel 12.
  • the water supply unit 50 has a water supply valve 51.
  • the water inlet 51a of the water supply valve 51 is connected to a faucet. When the water supply valve 51 is opened, tap water from the faucet is supplied into the washing and dewatering tub 22 through the water supply path 52.
  • a detection member 60 is attached to the outer bottom surface of the outer tub 20 at a substantially center in the left-right direction of the front.
  • the detection member 60 extends downward from the outer bottom surface of the outer tub 20, and has a shielding portion 61 protruding forward at its tip end.
  • a first detection unit 70 is provided in front of the detection member 60.
  • the first detection unit 70 is a non-contact detection sensor, and includes a light emitting element 71, a light receiving element 72, and an assembling member 73.
  • the assembling member 73 is attached to the front surface of the case 10, and has an upper holding portion 74 and a lower holding portion 75 protruding forward at its upper and lower ends, respectively.
  • the upper holding portion 74 and the lower holding portion 75 hold the light emitting element 71 and the light receiving element 72 so as to face each other. When light is emitted from the light emitting element 71, the light is received by the light receiving element 72.
  • the shielding portion 61 of the detection member 60 is located between the light emitting element 71 and the light receiving element 72 in the vertical direction.
  • the interval between the upper holding portion 74 and the lower holding portion 75 in the vertical direction is set so that even if the outer tub 20 moves downward due to the water stored in the outer tub 20, the shielding portion 61 will not be separated from the light emitting element 71 and the light receiving element The position between 72 is disengaged.
  • the light-emitting element 71 and the light-receiving element 72 are shielded by the shielding portion 61.
  • a predetermined detection signal is output from the light receiving element 72, that is, the first detection unit 70.
  • a second detection unit 80 is provided at a predetermined corner, for example, the left rear corner of the upper end of the cabinet 10.
  • the second detection unit 80 includes a detection lever 81, a micro switch 82, and a holding portion 83.
  • the holding portion 83 is fixed to the case 10.
  • the detection lever 81 is swingably held by the holding portion 83 by a shaft 81 a provided at the upper end portion thereof, and extends downward so as to face the outer surface of the upper portion of the outer tub 20.
  • the micro switch 82 is held by the holding portion 83 so as to approach the detection lever 81.
  • the detection lever 81 When the outer tub 20 moves in the direction of the detection lever 81 by the second amount of movement due to the shaking, the detection lever 81 is pushed by the outer tub 20 to come into contact with the actuator portion 82 a of the micro switch 82. As a result, the micro switch 82 is turned on, and a predetermined detection signal is output from the micro switch 82, that is, the second detection unit 80.
  • the first movement amount is smaller than the second movement amount. That is, the first detection unit 70 is configured to be able to detect a smaller shake than the shake of the outer tub 20 that the second detection unit 80 can detect.
  • the first detection unit 70 corresponds to the first detection unit of the present invention
  • the second detection unit 80 corresponds to the second detection unit of the present invention.
  • FIG. 3 is a block diagram showing the structure of the fully automatic washing machine 1.
  • the fully automatic washing machine 1 includes an operation unit 91 and a water level sensor 92 in addition to the above-mentioned structure.
  • the fully automatic washing machine 1 includes a control unit 100.
  • the control unit 100 includes a control unit 101, a storage unit 102, a motor drive unit 103, a clutch drive unit 104, a water supply drive unit 105, and a drain drive unit 106.
  • the operation section 91 includes various operation buttons such as a power button, a start/pause button, and a mode selection button.
  • the power button is used to turn on and off the power of the fully automatic washing machine 1
  • the start/pause button is used to start, pause, and mode
  • the selection button is used to select an arbitrary operation mode from a plurality of operation modes of the washing operation.
  • the operation unit 91 outputs an input signal corresponding to the operation button operated by the user to the control unit 101.
  • the water level sensor 92 detects the water level in the washing and dehydrating tub 22 and outputs a water level signal corresponding to the detected water level to the control unit 101.
  • the detection signals output from the first detection unit 70 and the second detection unit 80 are input to the control section 101.
  • the motor drive unit 103 drives the drive motor 31 based on the control signal output from the control unit 101.
  • the clutch driving unit 104 drives the clutch mechanism 32 a of the transmission mechanism unit 32 according to the control signal output from the control unit 101.
  • the water supply driving unit 105 drives the water supply valve 51 according to the control signal from the control unit 101.
  • the drain driving unit 106 drives the drain valve 40 according to the control signal from the control unit 101.
  • the storage unit 102 includes EEPROM, RAM, and the like.
  • the storage unit 102 stores programs for executing washing operations in various operation modes.
  • the storage unit 102 stores various operating conditions for the washing operation.
  • the control unit 101 includes a CPU and the like, and controls the motor drive unit 103, the clutch drive unit 104, the water supply drive unit 105, the drain drive unit 106, and the like based on the program stored in the storage unit 102.
  • the fully automatic washing machine 1 performs washing operations in various operation modes under the control of the control unit 101. During the washing operation, the cleaning process, the intermediate dehydration process, the rinsing process and the final dehydration process are executed in order.
  • the pulsator 24 rotates forward and reverse in a state where water is stored in the washing and dehydrating tub 22.
  • the rotation of the pulsator 24 generates water flow in the washing and dewatering tub 22.
  • the laundry is washed by the generated water stream and the detergent contained in the water.
  • the rinsing process the laundry is rinsed by the generated water flow.
  • water storage rinsing or water injection rinsing is performed according to the washing mode. In addition, depending on the washing mode, sometimes two rinsing processes are performed. In this case, an intermediate dehydration process is also performed between the first rinsing process and the second rinsing process.
  • the washing dehydration tub 22 and the pulsator 24 integrally rotate at a high speed at a prescribed dehydration speed.
  • the laundry is dehydrated by washing the centrifugal force generated in the dehydration tub 22.
  • a dehydration process without distinguishing between the intermediate dehydration process and the final dehydration process, it is simply referred to as a dehydration process.
  • the outer tub 20 shakes vigorously in the horizontal direction in the middle of the washing and dewatering tub 22 increasing toward the spin speed, that is, the so-called lateral resonance region.
  • the shaking is detected by the second detection unit 80.
  • the so-called longitudinal resonance region the outer tub 20 sways violently in the vertical direction, and the sway is detected by a large increase in the current value flowing to the drive motor 31.
  • the washing and dewatering tub 22 is stopped, and the unwinding operation is added. That is, by re-supplying water to store water in the tub 20, the pulsator 24 performs forward rotation and reverse rotation. As a result, the laundry in the washing and dewatering tub 22 is unwound.
  • the amount of eccentricity is determined in a state where water is stored in the outer tub 20 before dehydration is started by draining from the outer tub 20, and the eccentricity detection process before dehydration is executed when the eccentricity is large in order to utilize
  • the water stored in the outer tub 20 performs an unwinding operation.
  • the eccentricity detection before dehydration is performed deal with.
  • water is stored in the outer tub 20. It should be noted that, before the eccentricity detection process before dehydration, a part of the water in the outer tub 20 may be discharged.
  • the control unit 101 activates the drive motor 31 to rotate the washing and dewatering tub 22 at the detection rotational speed (S1).
  • the rotation speed for detection may be a rotation speed at which the outer tub 20 is easily shaken in the horizontal direction due to resonance, for example, 40 rpm.
  • the control unit 101 monitors the detection signal from the first detection unit 70 (S2).
  • the control unit 101 measures the output time (S3).
  • the control unit 101 repeats the processes of S2 and S3 during the period from when the washing and dehydrating tub 22 is started until the first detection time has not elapsed (S4: No).
  • the output time is measured every time the detection signal is output. These output times are temporarily stored in the buffer of the control unit 101.
  • the first detection time can be set to the time required for the washing and dewatering tub 22 to rise to the detection rotation speed, for example, when the detection rotation speed is 40 rpm, it can be set to 15 seconds. Therefore, when the first detection time has elapsed, the washing and dewatering tub 22 substantially rises to the detection rotational speed.
  • the first detection time includes the speed-up period of the washing and dehydrating tub 22, that is, the acceleration period of the washing and dehydrating tub 22, which corresponds to the first period of the present invention.
  • the control unit 101 When the first detection time has elapsed (S4: YES), the control unit 101 accumulates all output times measured within the first detection time, and stores the accumulated output time as the first integrated value in the storage unit 102 (S5). Since the greater the shaking of the outer tub 20, the longer the time for the first detection unit 70 to detect the shaking, so the output time of the detection signal becomes longer and the first accumulated value becomes larger. This first accumulated value becomes a value indicating the magnitude of the shaking of the outer and outer tubs 20 during the acceleration of the washing and dewatering tub 22.
  • control unit 101 monitors the detection signal from the first detection unit 70 again (S6).
  • detection signal is output from the first detection unit 70 (S6: YES)
  • the control unit 101 measures the output time (S7).
  • the control unit 101 repeats the processes of S6 and S7 after the first detection time has elapsed and the second detection time has not elapsed (S8: No).
  • the output time is measured every time the detection signal is output. These output times are temporarily stored in the buffer of the control unit 101.
  • the second detection time may be a time required to determine the size of the shaking of the outer tub 20 after the washing and dehydrating tub 22 is raised to the detection rotational speed, for example, it may be set to 10 seconds.
  • the second detection time follows the first detection time and includes a constant speed period during which the washing and dewatering tub 22 rotates at the detection rotational speed, which corresponds to the second period of the present invention.
  • the control unit 101 When the second detection time has elapsed (S8: YES), the control unit 101 accumulates all the output time measured in the second detection time, and stores the accumulated output time as the second integrated value in the storage unit 102 (S9).
  • This second accumulated value becomes a value indicating the magnitude of the shaking of the outer and outer tubs 20 during the constant speed period when the washing and dewatering tub 22 rotates at the detection rotational speed.
  • control unit 101 stops the drive motor 31 and stops the washing and dewatering tub 22 (S10).
  • control unit 101 determines whether the first accumulated value is greater than the first threshold (S11). Furthermore, the control unit 101 determines whether the second accumulated value is greater than the second threshold (S12).
  • the outer tub 20 is likely to shake significantly during the acceleration of the rotational speed-up of the washing and dewatering tub 22, especially immediately after starting, and the washing and dewatering tub 22 During the constant speed rotation at the rotation speed for detection, resonance tends to occur at this rotation speed, so the outer tub 20 is likely to shake significantly.
  • the shaking of the outer tub 20 is not so great during constant speed, and the outer tub is during acceleration
  • the shaking of 20 becomes larger, or conversely, the shaking of the outer tub 20 is not so large during acceleration, and the shaking of the outer tub 20 becomes larger during constant speed. Therefore, in this embodiment, the amount of eccentricity is determined by comparing the first accumulated value with the first threshold and the second accumulated value with the second threshold.
  • the first threshold value and the second threshold value are preset according to experiments and the like, and are respectively the following values: while maintaining the eccentricity amount, there is a size in which the washing and dewatering tub 22 cannot be properly raised to the spin speed during the dehydration process In the case of the eccentricity, the value exceeded by the first accumulated value and the second accumulated value at this time. It should be noted that the failure to properly increase the speed to the spin speed means that, for example, during the spin process, the outer tub 20 shakes violently, and such shake is detected by the detection of the second detection unit 80 and the current of the drive motor 31. .
  • the control unit 101 ends the pre-dehydration eccentricity detection process.
  • the water is drained from the outer tub 20 and then moved to the dehydration process, that is, the intermediate dehydration process or the final dehydration process.
  • the control unit 101 rotates the pulsator 24 forward and It reverses and performs the unlocking operation for a predetermined time (S13). At this time, since water is stored in the outer tub 20, no water is supplied into the outer tub 20. It should be noted that auxiliary water supply may be provided to the outer tub 20.
  • the laundry in the washing and dewatering tub 22 is unlocked, and the eccentricity is reduced.
  • the control unit 101 returns the process to S1 after completing the unlocking operation of S13.
  • the eccentricity of the laundry in the dewatering tub 22 is presumed to be large
  • the pulsator 24 performs forward rotation and reverse rotation in the remaining water, and the laundry is unwound. Therefore, it is not easy to supply water into the tub 20 to uncover the laundry, so the amount of water used is not easy to increase. In addition, there is no time for releasing the water supply and drainage of the laundry.
  • the detection result of the first detection unit 70 in the first detection time including the acceleration period and the second detection time including the fixed speed period at the detection rotational speed The detection result of the first detection unit 70 in the middle, that is, the first accumulated value and the second accumulated value, determines the eccentricity, so the eccentricity can be accurately determined.
  • an integrated value of the time at which the detection signal from the first detection unit 70 is output is obtained, and the eccentricity is determined based on the integrated value. Therefore, in a case where the outer tub 20 shakes greatly for some reason regardless of whether the eccentricity is large or not, and the shaking is detected by the first detection unit 70, it is not easy to erroneously determine that the eccentricity is large. Therefore, the amount of eccentricity can be accurately determined.
  • the outer tub 20 is heavier than during dehydration, so the outer tub 20 is less likely to shake .
  • the first detection unit 70 can detect the small sway of the outer tub 20 more than the second detection unit 80, the outer tub 20 can be well detected when the washing and dewatering tub 22 rotates in the state of storing water Shaking.
  • the rotation speed of the drive motor 31 has reached the rotation speed corresponding to the detection rotation speed of the washing and dewatering tub 22.
  • the period from the start of the drive motor 31 until it reaches the rotation speed corresponding to the detection rotation speed is the acceleration period, which corresponds to the first period of the present invention.
  • the shaking of the tub 20 in the water storage state is detected by the first detection unit 70 that is a non-contact detection sensor.
  • the shaking of the tub 20 in the water storage state may be detected by a contact detection sensor such as the second detection unit 80.
  • the eccentricity amount is determined based on both the first accumulated value and the second accumulated value.
  • the eccentricity may be determined based on either of the first accumulated value and the second accumulated value.
  • it may be obtained by adding the first accumulated value and the second accumulated value, which are the accumulated value of the output time of the detection signal from the start of the drive motor 31 until the time when the first detection time and the second detection time are added Value to determine the amount of eccentricity.

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Control Of Washing Machine And Dryer (AREA)

Abstract

一种洗衣机,即使进行洗涤物的解开也不容易增加用水量,不容易引发洗涤时间的延长。全自动洗衣机(1)具备:外桶(20),弹性地支承于箱体(10)内;洗涤脱水桶(22),可旋转地配置于外桶(20)内;波轮(24),可旋转地配置于洗涤脱水桶(22)内;驱动单元(30),驱动洗涤脱水桶(22)和波轮(24);控制部,控制驱动单元(30);以及第一检测单元(70),用于检测当洗涤脱水桶(22)在蓄有水的外桶(20)内旋转时外桶(20)的晃动的大小。控制部在从外桶(20)内进行排水而开始脱水之前的外桶(20)内蓄有水的状态下,通过驱动单元(30)使洗涤脱水桶(22)旋转,在根据第一检测单元(70)的检测结果而判定洗涤脱水桶(22)内的洗涤物的偏心量大的情况下,通过驱动单元(30)使波轮(24)旋转。

Description

洗衣机 技术领域
本发明涉及一种洗衣机。
背景技术
以往,已知一种洗衣机,在弹性地支承于箱体内的外桶内,在自由旋转地配置洗涤脱水桶的洗衣机中,检测脱水时的外桶的晃动,在晃动大的情况下,为了降低洗涤脱水桶内的洗涤物的偏心量,向外桶内供水而进行蓄水,在蓄积的水中搅拌洗涤物而将洗涤物解开。例如,专利文献1中记载了这样的洗衣机的一个例子。
上述的洗衣机存在如下问题:在需要解开洗涤物的情况下,与为了解开洗涤物而蓄在外桶内的水量相应地,洗涤时的用水量会增加。此外,还存在相应的水的给排需要时间而导致洗涤时间变长的问题。
现有技术文献
专利文献
专利文献1:日本特开平6-190183号公报
发明内容
发明所要解决的问题
本发明是鉴于该问题而完成的,其目的在于提供一种洗衣机,即使进行洗涤物的解开也不容易增加用水量,不容易引发洗涤时间延长。
用于解决问题的方案
本发明的主要方案的洗衣机具备:外桶,弹性地支承于箱体内;洗涤脱水桶,可旋转地配置于所述外桶内;波轮,可旋转地配置于所述洗涤脱水桶内; 驱动部,驱动所述洗涤脱水桶和所述波轮;控制部,控制所述驱动部;以及第一检测部,用于检测当所述洗涤脱水桶在蓄有水的所述外桶内旋转时所述外桶的晃动的大小。其中,所述控制部在从所述外桶内进行排水而开始脱水之前的所述外桶内蓄有水的状态下,通过所述驱动部使所述洗涤脱水桶旋转,在根据所述第一检测部的检测结果而判定所述洗涤脱水桶内的洗涤物的偏心量大的情况下,通过所述驱动部使所述波轮旋转。
根据上述结构,在外桶内残留有水的状态下推测洗涤脱水桶内的洗涤物的偏心量,在偏心量大的情况下,波轮在残留的水中旋转,进行例如正转和反转,洗涤物被解开。因此,不容易为了解开洗涤物而向外桶内进行供水,因而用水量不容易增加。此外,无需为了解开而进行供水和排水,因而不容易引发因解开而导致的洗涤时间的延长。
本方案的洗衣机中,能采用如下结构:所述控制部在从所述外桶内进行排水而开始脱水之前的所述外桶内蓄有水的状态下,通过所述驱动部使所述洗涤脱水桶以规定转速旋转,根据第一期间中的所述第一检测部的检测结果和第二期间中的所述第一检测部的检测结果来判定所述偏心量,其中,所述第一期间包括所述洗涤脱水桶升速至所述规定转速的加速期间,所述第二期间包括所述洗涤脱水桶在所述第一期间之后紧接着以所述规定转速进行旋转的定速期间。
例如,规定转速可以设置为外桶容易因共振而在水平方向上晃动的转速。
根据洗涤脱水桶内的洗涤物的偏心状态,即使偏心量的程度相同,也能实现如下的情况:在定速期间外桶的晃动不那么大,在加速期间外桶的晃动变大,或者反之,在加速期间使外桶的晃动不那么大,在定速期间外桶的晃动变大。
根据上述结构,根据包括加速期间的第一期间中第一检测部的检测结果和包括规定转速下的定速期间的第二期间中第一检测部的检测结果来判定偏心量,因此能精确地判定偏心量。
本方案的洗衣机中,能采用如下结构:所述第一检测部在所述外桶于所述第一检测部的方向上晃动规定量以上时输出检测信号。该情况下,所述控制部求出输出所述检测信号的时间的累计值,并根据所述累计值来判定所述偏心量。
根据上述结构,在无论偏心量大不大外桶都因某种原因而一时大幅晃动且 该晃动被第一检测部检测到的情况下,不容易错误地判定为偏心量大。因此,能精确地判定偏心量。
本方案的洗衣机中,能采用还具备第二检测部的结构,所述第二检测部检测当所述洗涤脱水桶为了脱水而进行旋转时所述外桶的晃动。这种情况下,所述第一检测部配置为能检测出比所述第二检测部所能检测出的所述外桶的晃动小的晃动。
在洗涤脱水桶内的洗涤物的偏心量的程度相同的情况下,在脱水前外桶内蓄有水的情况下,外桶比脱水时重,因此外桶不容易晃动。
根据上述结构,第一检测部比第二检测部更能检测出外桶的小幅晃动,因此能很好地检测出在蓄有水的状态下洗涤脱水桶旋转时外桶的晃动。
发明效果
根据本发明,能提供一种洗衣机,即使进行洗涤物的解开也不容易增加用水量,不容易引发洗涤时间的延长。
通过以下所示的实施方式的说明,本发明的效果和意义将变得更清楚。但是,以下的实施方式终究只是实施本发明时的一个例示,本发明不受以下的实施方式所记载的内容的任何限制。
附图说明
图1是实施方式的全自动洗衣机的侧剖图。
图2是实施方式的全自动洗衣机的俯视剖视图。
图3是表示实施方式的全自动洗衣机的结构的框图。
图4是表示实施方式的脱水前偏心检测处理的流程图。
附图标记说明
1:全自动洗衣机(洗衣机);10:箱体;20:外桶;22:洗涤脱水桶;24:波轮;30:驱动单元(驱动部);80:第二检测单元(第二检测部);101:控制部。
具体实施方式
以下,参照附图,对本发明的洗衣机的一实施方式进行说明。
图1是全自动洗衣机1的侧剖图。图2是全自动洗衣机1的俯视剖视图。图2中省略了四根吊棒21的图示。
全自动洗衣机1具备构成外观的箱体10。箱体10包括:上下表面敞开的矩形筒状的机身部11、覆盖机身部11的上表面的上面板12以及支承机身部11的脚台13。在上面板12形成有洗涤物的投入口14。投入口14由自由开闭的上盖15覆盖。
在箱体10内,上表面开口的外桶20通过具有防振装置的四根吊棒21被弹性地悬吊支承。在外桶20内配置有上表面开口的洗涤脱水桶22。洗涤脱水桶22以沿垂直方向延伸的旋转轴为中心进行旋转。在洗涤脱水桶22的内周面遍及整周地形成有许多脱水孔22a。在洗涤脱水桶22的上部设置有平衡环23。在洗涤脱水桶22的底部配置有波轮24。在波轮24的表面辐射状地设置有多个叶片24a。
在外桶20的外底部配置有产生驱动洗涤脱水桶22和波轮24的转矩的驱动单元30。驱动单元30包括驱动马达31和传递机构部32。传递机构部32具有离合器机构32a,通过该离合器机构32a的切换操作,在清洗过程和漂洗过程中,将驱动马达31的转矩仅传递给波轮24而仅使波轮24旋转,在脱水过程中,将驱动马达31的转矩传递给波轮24和洗涤脱水桶22而使波轮24和洗涤脱水桶22一体地旋转。需要说明的是,驱动单元30相当于本发明的驱动部。
在外桶20的外底部形成有排水口部20a。在排水口部20a设置有排水阀40。排水阀40与排水软管41连接。当排水阀40打开时,蓄于洗涤脱水桶22和外桶20的水经过排水软管41被排出到机外。
在上面板12的后部配置有用于将自来水供给至洗涤脱水桶22内的供水单元50。供水单元50具有供水阀51。供水阀51的入水口51a与水龙头连接。当供水阀51打开时,来自水龙头的自来水通过供水路52供给至洗涤脱水桶22内。
在外桶20的外底面,在前部的左右方向上的大致中央处,装配有检测构件 60。检测构件60从外桶20的外底面向下方延伸,在其顶端部具有向前方突出的遮蔽部61。
在箱体10的前表面,在检测构件60的前方位置设置有第一检测单元70。第一检测单元70为非接触式检测传感器,包括发光元件71、受光元件72以及装配构件73。装配构件73装配于箱体10的前表面,在其上端部和下端部分别具有向前方突出的上保持部74和下保持部75。上保持部74和下保持部75以彼此相对的方式保持发光元件71和受光元件72。当从发光元件71发光时,该光被受光元件72接收。
检测构件60的遮蔽部61位于上下方向上的发光元件71与受光元件72之间的位置。设定上保持部74和下保持部75在上下方向上的间隔,使得即使由于外桶20内蓄有水而导致外桶20向下方移动,遮蔽部61也不会从发光元件71与受光元件72之间的位置脱离。
当外桶20由于晃动而向第一检测单元70的方向移动第一移动量以上,例如10mm以上时,发光元件71与受光元件72之间被遮蔽部61遮蔽。由此,当受光元件72接收不到光时,从受光元件72即第一检测单元70输出规定的检测信号。
如图2所示,在箱体10的上端部,在规定的角部例如左后角部,设置有第二检测单元80。第二检测单元80包括检测杆81、微动开关82以及保持部83。保持部83固定于箱体10。检测杆81通过设置于其上端部的轴81a而可摆动地保持于保持部83,并以与外桶20的上部的外表面对置的方式向下方延伸。微动开关82以靠近检测杆81的方式保持于保持部83。
当外桶20由于晃动而向检测杆81的方向移动第二移动量以上时,检测杆81被外桶20推动而与微动开关82的致动器部82a抵接。由此,微动开关82接通,从微动开关82即第二检测单元80输出规定的检测信号。
需要说明的是,第一移动量比第二移动量小。即,第一检测单元70配置为能检测比第二检测单元80所能检测出的外桶20的晃动小的晃动。第一检测单元70相当于本发明的第一检测部,第二检测单元80相当于本发明的第二检测部。
图3是表示全自动洗衣机1的结构的框图。
全自动洗衣机1除了上述结构之外还具备操作部91和水位传感器92。此外,全自动洗衣机1具备控制单元100。控制单元100包括:控制部101、存储部102、马达驱动部103、离合器驱动部104、供水驱动部105以及排水驱动部106。
操作部91包括电源按钮、开始/暂停按钮以及模式选择按钮等各种操作按钮,电源按钮用于接通和断开全自动洗衣机1的电源,开始/暂停按钮用于使运转开始、暂停,模式选择按钮用于从洗涤运转的多个运转模式中选择任意的运转模式。操作部91将与用户操作的操作按钮对应的输入信号输出至控制部101。
水位传感器92检测洗涤脱水桶22内的水位,并将与检测出的水位对应的水位信号输出至控制部101。
从第一检测单元70和第二检测单元80输出的检测信号被输入控制部101。
马达驱动部103根据从控制部101输出的控制信号,对驱动马达31进行驱动。离合器驱动部104根据从控制部101输出的控制信号来驱动传递机构部32的离合器机构32a。供水驱动部105根据来自控制部101的控制信号来驱动供水阀51。排水驱动部106根据来自控制部101的控制信号来驱动排水阀40。
存储部102包括EEPROM、RAM等。存储部102存储有用于执行各种运转模式的洗涤运转的程序。此外,存储部102存储有用于洗涤运转的各种运转条件。
控制部101包括CPU等,根据存储部102中存储的程序,对马达驱动部103、离合器驱动部104、供水驱动部105、排水驱动部106等进行控制。
全自动洗衣机1在控制部101的控制下进行各种运转模式的洗涤运转。洗涤运转中,按顺序执行清洗过程、中间脱水过程、漂洗过程以及最终脱水过程。
在清洗过程和漂洗过程中,在洗涤脱水桶22内蓄有水的状态下,波轮24正转和反转。因波轮24的旋转而在洗涤脱水桶22内产生水流。在清洗过程中,洗涤物通过产生的水流和水中含有的洗涤剂而被清洗。在漂洗过程中,洗涤物通过产生的水流而被漂洗。需要说明的是,在漂洗过程中,根据洗涤模式进行蓄水漂洗或注水漂洗。此外,根据洗涤模式,有时会进行两次漂洗过程,这种情况下,在第一次漂洗过程与第二次漂洗过程之间也进行中间脱水过程。
在中间脱水过程和最终脱水过程中,洗涤脱水桶22和波轮24一体地以规定的脱水转速高速旋转。洗涤物通过洗涤脱水桶22中产生的离心力的作用而被脱水。以下,在不区分中间脱水过程和最终脱水过程的情况下简称为脱水过程。
在洗涤脱水桶22内的洗涤物的偏心量大的情况下,在脱水过程中,在洗涤脱水桶22向脱水转速升速的中途即所谓的横向共振区域,外桶20在水平方向上剧烈晃动,该晃动被第二检测单元80检测到。此外,在位于转速比横向共振区域高的区域即所谓的纵向共振区域,外桶20在垂直方向上剧烈晃动,该晃动通过流向驱动马达31的电流值的大幅上升而被检测到。这种情况下,停止洗涤脱水桶22,追加解开动作。即,通过再次供水而向外桶20内蓄水,波轮24进行正转和反转。由此,洗涤脱水桶22内的洗涤物被解开。
但是,在脱水过程中,在追加了上述那样的解开动作的情况下,与再次供水相应地,用水量会增加,并且由于增加了供水时间和排水时间,洗涤时间会延长。
因此,本实施方式中,在从外桶20内进行排水而开始脱水前的外桶20内蓄有水的状态下判定偏心量,在偏心量大的情况下执行脱水前偏心检测处理,以便利用蓄于外桶20的水进行解开动作。由此,在脱水过程中,能使需要再次供水的解开动作不容易进行,不容易增加用水量,此外,能不容易引发洗涤时间的延长。
当清洗过程中通过波轮24的正转和反转而进行的清洗动作结束时,或者当漂洗过程中通过波轮24的正转和反转而进行的漂洗动作结束时,执行脱水前偏心检测处理。在执行脱水前偏心检测处理时,外桶20内蓄有水。需要说明的是,在脱水前偏心检测处理之前,可以将外桶20内的一部分水排出。
图4是表示脱水前偏心检测处理的流程图。
控制部101起动驱动马达31以使洗涤脱水桶22以检测用转速进行旋转(S1)。检测用转速可以设为外桶20容易因共振而在水平方向上晃动的转速,例如,可以设为40rpm。
接着,控制部101监视来自第一检测单元70的检测信号(S2)。当外桶20因晃动移动第一移动量以上而从第一检测单元70输出检测信号时(S2:是), 控制部101测定该输出时间(S3)。控制部101在从起动洗涤脱水桶22开始到未经过第一检测时间为止的期间(S4:否),反复进行S2和S3的处理。
由此,每次输出检测信号都测定输出时间。这些输出时间被暂时存储在控制部101的缓存中。需要说明的是,第一检测时间可以设为洗涤脱水桶22升速至检测用转速所需的时间,例如,在检测用转速为40rpm的情况下,可以设为15秒。因此,在经过了第一检测时间时,洗涤脱水桶22大致升速到了检测用转速。第一检测时间包括洗涤脱水桶22的升速期间即洗涤脱水桶22的加速期间,相当于本发明的第一期间。
当经过第一检测时间时(S4:是),控制部101将第一检测时间内测定的所有的输出时间累计,并将累计的输出时间作为第一累计值存储在存储部102(S5)。由于外桶20的晃动越大,则第一检测单元70检测晃动的时间越长,因此,检测信号的输出时间变长,第一累计值变大。该第一累计值成为表示洗涤脱水桶22的加速期间中外桶20的晃动的大小的值。
接着,控制部101再次监视来自第一检测单元70的检测信号(S6)。当从第一检测单元70输出检测信号时(S6:是),控制部101测定该输出时间(S7)。控制部101在经过第一检测时间之后到未经过第二检测时间的期间(S8:否),反复进行S6和S7的处理。
由此,每次输出检测信号都测定输出时间。这些输出时间被暂时存储在控制部101的缓存中。需要说明的是,第二检测时间可以设为判断洗涤脱水桶22升速至检测用转速后外桶20的晃动的大小所需的时间,例如,可以设为10秒。第二检测时间接着第一检测时间,包括洗涤脱水桶22以检测用转速进行旋转的定速期间,相当于本发明的第二期间。
当经过第二检测时间时(S8:是),控制部101将第二检测时间内测定的所有的输出时间累计,并将累计的输出时间作为第二累计值存储在存储部102(S9)。该第二累计值成为表示洗涤脱水桶22以检测用转速进行旋转的定速期间中外桶20的晃动的大小的值。
之后,控制部101使驱动马达31停止而使洗涤脱水桶22停止(S10)。
接着,控制部101判定第一累计值是否大于第一阈值(S11)。进而,控制 部101判定第二累计值是否大于第二阈值(S12)。
在洗涤脱水桶22内的洗涤物的偏心量大的情况下,在洗涤脱水桶22的旋转升速的加速期间尤其是刚起动的期间,外桶20容易大幅晃动,此外,在洗涤脱水桶22以检测用转速进行旋转的定速期间,在该转速下容易发生共振,因此,外桶20容易大幅晃动。但是,根据洗涤脱水桶22内的洗涤物的偏心状态,即使在偏心量同样大的情况下,也能实现如下的情况:在定速期间外桶20的晃动不那么大,在加速期间外桶20的晃动变大,或者反之,在加速期间外桶20的晃动不那么大,在定速期间外桶20的晃动变大。因此,本实施方式中,通过第一累计值与第一阈值的比较和第二累计值与第二阈值的比较来判定偏心量。
第一阈值和第二阈值根据实验等预先设定,分别为如下的值:在维持该偏心量的状态下,在脱水过程中存在无法将洗涤脱水桶22适当地升速到脱水转速那样大小的偏心量的情况下,此时的第一累计值和第二累计值所超过的值。需要说明的是,无法适当地升速到脱水转速是指,例如在脱水过程中,外桶20剧烈晃动,通过第二检测单元80的检测、驱动马达31的电流的检测而检测出这样的晃动。
在第一累计值为第一阈值以下且第二累计值为第二阈值以下的情况下(S11:否→S12:否),控制部101结束脱水前偏心检测处理。从外桶20内进行排水,之后移至脱水过程即中间脱水过程或最终脱水过程。
另一方面,在第一累计值大于第一阈值的情况下(S11:是),或者第二累计值大于第二阈值的情况下(S12:是),控制部101使波轮24正转和反转,进行规定时间的解开动作(S13)。这时,由于外桶20内蓄有水,因此不向外桶20内进行供水。需要说明的是,也可以向外桶20内进行辅助供水。
通过解开动作,洗涤脱水桶22内的洗涤物被解开,偏心量降低。控制部101在结束S13的解开动作后将处理返回至S1。
需要说明的是,虽然图4中没有示出,但是也可以是:在即使进行了规定的上限次数的S13的解开动作,第一累计值也大于第一阈值的情况下,或者第二累计值大于第二阈值的情况下,中断洗涤运转,由未图示的显示部、蜂鸣器进行错误报知。此外,也可以不中断洗涤运转,而是进行排水并移至脱水过程。
<实施方式的效果>
以上,根据本实施方式,通过执行脱水前偏心检测处理,在移至脱水过程之前的外桶20内残留有水的状态下,推测洗涤脱水桶22内的洗涤物的偏心量,在偏心量大的情况下,波轮24在残留的水中进行正转和反转,洗涤物被解开。因此,不容易为了解开洗涤物而向外桶20内进行供水,因而用水量不容易增加。此外,也不产生用于解开洗涤物的供水和排水的时间。
此外,根据本实施方式,如图4的S11、S12所示,根据包括加速期间的第一检测时间中第一检测单元70的检测结果和包括检测用转速下的定速期间的第二检测时间中第一检测单元70的检测结果即第一累计值和第二累计值来判定偏心量,因此能精确地判定偏心量。
进而,根据本实施方式,求出输出来自第一检测单元70的检测信号的时间的累计值,并根据累计值判定偏心量。因此,在无论偏心量大不大外桶20都因某种原因而一时大幅晃动且该晃动被第一检测单元70检测到的情况下,不容易错误地判定为偏心量大。因此,能精确地判定偏心量。
进而,在洗涤脱水桶22内的洗涤物的偏心量的程度相同的情况下,在脱水前外桶20内蓄有水的情况下,外桶20比脱水时重,因此外桶20不容易晃动。根据本实施方式,由于第一检测单元70比第二检测单元80更能检测出外桶20的小幅晃动,因此能很好地检测出在蓄有水的状态下洗涤脱水桶22旋转时外桶20的晃动。
以上,对本发明的实施方式进行了说明,但本发明不受上述实施方式等的任何限制,此外,本发明的实施方式也可以进行上述以外的各种变更。
例如,上述实施方式中,在图4所示的脱水前偏心检测处理的S4中,判定是否经过了第一检测时间。但是,也可以在S4中判定驱动马达31的转速是否达到了与洗涤脱水桶22的检测用转速对应的转速。这种情况下,从驱动马达31起动开始直到达到与检测用转速对应的转速为止的期间为加速期间,相当于本发明的第一期间。
此外,上述实施方式中,蓄水状态的外桶20的晃动由作为非接触式检测传感器的第一检测单元70来检测。但是,蓄水状态的外桶20的晃动也可以由第 二检测单元80那样的接触式检测传感器来检测。
进而,上述实施方式中,在图4所示的脱水前偏心检测处理中,根据第一累计值和第二累计值双方来判定偏心量。但是,也可以根据第一累计值和第二累计值当中的任意一方来判定偏心量。此外,也可以根据从驱动马达31起动开始直到经过第一检测时间和第二检测时间相加的时间为止的检测信号的输出时间累计值即第一累计值和第二累计值相加而得的值来判定偏心量。
进而,上述实施方式中,示出了将本发明应用于全自动洗衣机1的例子。但是,本发明也能应用于搭载有衣物的烘干功能的全自动洗干一体机。
除此之外,本发明的实施方式可以在技术方案所示的技术思想的范围内适当地进行各种变更。

Claims (4)

  1. 一种洗衣机,其特征在于,具备:
    外桶,弹性地支承于箱体内;
    洗涤脱水桶,可旋转地配置于所述外桶内;
    波轮,可旋转地配置于所述洗涤脱水桶内;
    驱动部,驱动所述洗涤脱水桶和所述波轮;
    控制部,控制所述驱动部;以及
    第一检测部,用于检测当所述洗涤脱水桶在蓄有水的所述外桶内旋转时所述外桶的晃动的大小,
    所述控制部在从所述外桶内进行排水而开始脱水之前的所述外桶内蓄有水的状态下,通过所述驱动部使所述洗涤脱水桶旋转,在根据所述第一检测部的检测结果而判定所述洗涤脱水桶内的洗涤物的偏心量大的情况下,通过所述驱动部使所述波轮旋转。
  2. 根据权利要求1所述的洗衣机,其特征在于,
    所述控制部在从所述外桶内进行排水而开始脱水之前的所述外桶内蓄有水的状态下,通过所述驱动部使所述洗涤脱水桶以规定转速旋转,
    所述控制部根据第一期间中的所述第一检测部的检测结果和第二期间中的所述第一检测部的检测结果来判定所述偏心量,其中,所述第一期间包括所述洗涤脱水桶升速至所述规定转速的加速期间,所述第二期间包括所述洗涤脱水桶在所述第一期间之后紧接着以所述规定转速进行旋转的定速期间。
  3. 根据权利要求1或2所述的洗衣机,其特征在于,
    所述第一检测部在所述外桶于所述第一检测部的方向上晃动规定量以上时输出检测信号,
    所述控制部求出输出所述检测信号的时间的累计值,并根据所述累计值来判定所述偏心量。
  4. 根据权利要求1至3中的任意一项所述的洗衣机,其特征在于,还具备:
    第二检测部,检测当所述洗涤脱水桶为了脱水而进行旋转时所述外桶的晃动,
    所述第一检测部配置为能检测出比所述第二检测部所能检测出的所述外桶的晃动小的晃动。
PCT/CN2019/128723 2018-12-27 2019-12-26 洗衣机 WO2020135595A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201980081162.3A CN113167004B (zh) 2018-12-27 2019-12-26 洗衣机

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018244378A JP7274139B2 (ja) 2018-12-27 2018-12-27 洗濯機
JP2018-244378 2018-12-27

Publications (1)

Publication Number Publication Date
WO2020135595A1 true WO2020135595A1 (zh) 2020-07-02

Family

ID=71125740

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/128723 WO2020135595A1 (zh) 2018-12-27 2019-12-26 洗衣机

Country Status (3)

Country Link
JP (1) JP7274139B2 (zh)
CN (1) CN113167004B (zh)
WO (1) WO2020135595A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022233260A1 (zh) * 2021-05-06 2022-11-10 青岛海尔洗衣机有限公司 洗鞋机

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102425052A (zh) * 2011-10-20 2012-04-25 无锡市福曼科技有限公司 一种洗衣机不平衡控制装置
EP2594675A1 (en) * 2011-11-11 2013-05-22 Samsung Electronics Co., Ltd Washing machine having vibration reducing apparatus and vibration reducing method using the same
CN104532514A (zh) * 2014-12-15 2015-04-22 南京创维电器研究院有限公司 一种波轮洗衣机的不平衡检测方法及系统
CN104911863A (zh) * 2014-03-10 2015-09-16 Lg电子株式会社 洗衣机及洗衣机的控制方法
CN205874757U (zh) * 2015-11-24 2017-01-11 无锡飞翎电子有限公司 洗衣机的控制系统和洗衣机

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3117270B2 (ja) * 1992-03-12 2000-12-11 株式会社東芝 洗濯機
JP3332769B2 (ja) * 1996-02-27 2002-10-07 三洋電機株式会社 遠心脱液装置
JPH11128584A (ja) * 1997-10-30 1999-05-18 Matsushita Electric Ind Co Ltd 脱水兼用洗濯機
JP3249474B2 (ja) * 1998-08-06 2002-01-21 三洋電機株式会社 ドラム式遠心脱水装置
EP1293598B1 (en) * 2000-04-19 2008-05-28 Sanyo Electric Co., Ltd. Drum type washing machine and its control method
JP2002028393A (ja) 2000-07-13 2002-01-29 Sanyo Electric Co Ltd 全自動洗濯機
KR101019475B1 (ko) * 2003-10-16 2011-03-07 엘지전자 주식회사 드럼세탁기의 탈수제어방법
JP4307335B2 (ja) * 2004-06-09 2009-08-05 三洋電機株式会社 ドラム式洗濯機
JP5650927B2 (ja) * 2010-05-20 2015-01-07 ハイアール グループ コーポレーション 洗濯機
CN109056292A (zh) * 2018-10-26 2018-12-21 安徽金帅洗衣机有限公司 一种波轮半自动洗衣机的衣物防缠绕装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102425052A (zh) * 2011-10-20 2012-04-25 无锡市福曼科技有限公司 一种洗衣机不平衡控制装置
EP2594675A1 (en) * 2011-11-11 2013-05-22 Samsung Electronics Co., Ltd Washing machine having vibration reducing apparatus and vibration reducing method using the same
CN104911863A (zh) * 2014-03-10 2015-09-16 Lg电子株式会社 洗衣机及洗衣机的控制方法
CN104532514A (zh) * 2014-12-15 2015-04-22 南京创维电器研究院有限公司 一种波轮洗衣机的不平衡检测方法及系统
CN205874757U (zh) * 2015-11-24 2017-01-11 无锡飞翎电子有限公司 洗衣机的控制系统和洗衣机

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022233260A1 (zh) * 2021-05-06 2022-11-10 青岛海尔洗衣机有限公司 洗鞋机

Also Published As

Publication number Publication date
CN113167004A (zh) 2021-07-23
JP2020103517A (ja) 2020-07-09
JP7274139B2 (ja) 2023-05-16
CN113167004B (zh) 2023-02-03

Similar Documents

Publication Publication Date Title
JP6444645B2 (ja) ドラム式洗濯機
WO2012114716A1 (ja) ドラム式洗濯機
JP4822974B2 (ja) 洗濯機
WO2012114715A1 (ja) ドラム式洗濯機
WO2017101774A1 (zh) 洗衣机
JP6139161B2 (ja) 洗濯機
WO2020135595A1 (zh) 洗衣机
JP2008055016A (ja) ドラム式洗濯機
JP2007054368A (ja) 洗濯機
JP2011245211A (ja) ドラム式洗濯機
JP2012170677A (ja) ドラム式洗濯機
JP6998645B2 (ja) 洗濯機
JP2013220255A (ja) 洗濯機
JP2009142612A (ja) 洗濯機
WO2023103998A1 (zh) 洗衣机
JP2008307414A (ja) 洗濯機
JP4806436B2 (ja) 洗濯機
EP2228483B1 (en) Drum-type washer
JP4859900B2 (ja) 洗濯機
JP2016158745A (ja) 洗濯機
JP6999342B2 (ja) 洗濯機
WO2022127190A1 (zh) 洗衣机
JP7085377B2 (ja) 洗濯機
WO2015185008A1 (zh) 滚筒式洗衣机
JP3443376B2 (ja) 洗濯機

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19903438

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19903438

Country of ref document: EP

Kind code of ref document: A1