WO2020122121A1 - 基板搬送装置及び基板搬送システム - Google Patents
基板搬送装置及び基板搬送システム Download PDFInfo
- Publication number
- WO2020122121A1 WO2020122121A1 PCT/JP2019/048494 JP2019048494W WO2020122121A1 WO 2020122121 A1 WO2020122121 A1 WO 2020122121A1 JP 2019048494 W JP2019048494 W JP 2019048494W WO 2020122121 A1 WO2020122121 A1 WO 2020122121A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- transfer
- substrate
- vacuum
- chamber
- robot
- Prior art date
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B25—HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
- B25J—MANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
- B25J5/00—Manipulators mounted on wheels or on carriages
- B25J5/02—Manipulators mounted on wheels or on carriages travelling along a guideway
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/67—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
- H01L21/677—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations
Definitions
- the present invention relates to a substrate transfer device and a substrate transfer system that transfer a semiconductor wafer in a vacuum environment.
- the present application claims priority to Japanese Patent Application No. 2018-231644 filed on Dec. 11, 2018, the contents of which are incorporated herein by reference.
- a substrate transfer system including an atmospheric transfer module that transfers a substrate in an atmospheric environment, a substrate transfer device (a vacuum transfer module) that transfers a substrate in a vacuum environment, and a load lock chamber that connects the substrate transfer device and the atmospheric transfer device is provided.
- a vacuum transfer chamber is provided with a plurality of vacuum transfer robots corresponding to a plurality of process modules for performing various processes, and a substrate mounting table is provided between adjacent vacuum transfer robots.
- the substrate is loaded from the atmospheric transfer module into the load lock chamber, and the substrate loaded into the load lock chamber is loaded into the vacuum transfer chamber by the vacuum transfer robot.
- the substrate carried into the vacuum transfer chamber is carried into the process module by the vacuum transfer robot.
- a film-formed substrate is temporarily placed on a substrate placing table by a vacuum transfer robot and cooled (see Patent Document 1).
- a plurality of vacuum transfer robots and a plurality of substrate mounting tables are provided in the vacuum transfer chamber.
- a vacuum provided at a position apart from the atmospheric transfer module. The operating rate will be lower for a transfer robot.
- a load lock chamber is provided between the vacuum transfer chamber and the atmospheric transfer module. Therefore, in the substrate transfer system, the depth of the vacuum transfer robot in the traveling direction becomes long, and the footprint of the entire system becomes large (the total length becomes long).
- the present invention has been made in view of the above circumstances, and an object of the present invention is to provide a substrate transfer device having a high operation rate of a vacuum transfer robot and a substrate transfer system having a small footprint.
- a substrate transfer apparatus comprises a vacuum transfer chamber, a vacuum transfer robot provided inside the vacuum transfer chamber, and a transfer unit for moving the vacuum transfer robot with respect to the vacuum transfer chamber.
- the transfer robot is a substrate transfer device that has a robot base supported by the transfer unit, and further includes at least two substrate mounting tables that are provided above the robot base and on which substrates are temporarily placed.
- the transfer unit is provided on a shell inner wall of the vacuum transfer chamber and includes a guide mechanism for movably supporting the robot base, and a robot base supported by the guide mechanism. And a transfer mechanism connected thereto.
- the guide mechanism has a partition member that divides the inside of the vacuum transfer chamber into two spaces, an upper space, the vacuum transfer robot, and a lower space.
- the transfer mechanism may be disposed inside.
- the transfer mechanism may be a horizontal articulated arm arranged in the space below.
- the transfer mechanism may be a linear motion mechanism arranged in the space below.
- the substrate transfer system comprises an atmospheric transfer module, a vacuum transfer module, and a load lock chamber provided between the atmospheric transfer module and the vacuum transfer module, the vacuum transfer module according to claim 1.
- the substrate transfer device and the atmosphere transfer module are arranged in a T-shape in a plan view, and each of the intersections between the atmosphere transfer module and the substrate transfer device arranged in the T-shape.
- a load lock chamber is provided, and the load lock chamber has openings for loading and unloading the substrate on a surface connected to the atmosphere transfer module and a surface connected to the substrate transfer device, respectively, and The substrate transfer system in which the connected surfaces are adjacent.
- the substrate transfer device and the substrate transfer system of the present invention it is possible to reduce the number of vacuum transfer robots, increase the operation rate of the vacuum transfer robots, reduce the cost of the substrate transfer device, and further provide a substrate transfer system having a small footprint. Obtainable.
- the substrate transfer system 10 includes an atmospheric transfer module 12, a vacuum transfer module (substrate transfer device) 15, a plurality of load lock chambers 17 and 18, and a plurality of process modules 21 to 26. It has and.
- the atmospheric transfer module 12 includes an atmospheric transfer chamber 31, an atmospheric transfer robot 32, and a guide transfer mechanism 33.
- the atmosphere transfer chamber 31 is formed, for example, in a shell having a rectangular shape in a plan view, and includes a first long wall 31a, a second long wall 31b, a first short wall 31c, and a second short wall 31d. The inside of the atmosphere transfer chamber 31 is kept in a clean atmosphere.
- an atmosphere transfer robot 32 is movably supported by a guide transfer mechanism 33.
- a plurality of (three in FIG. 1) load ports 13 are connected to the first long wall 31 a of the atmosphere transfer module 12.
- the number of load ports may be two or four or more.
- the atmosphere transfer robot 32 includes a robot base 35, a pair of arm units 36 and 37, and a pair of end effectors 38 and 39.
- the robot base 35 is movably supported by the guide transfer mechanism 33. As a result, the atmosphere transfer robot 32 can travel in the direction of arrow A along the plurality of load ports 13 inside the atmosphere transfer chamber 31.
- a robot arm (a pair of arm units 36 and 37) is supported by the robot base 35 so as to be rotatable and movable up and down.
- the first arm unit 36 of the pair of arm units 36 and 37 is connected so as to be extendable and bendable, and the first end effector 38 is connected to the tip thereof.
- the second arm unit 37 is extendably and flexibly connected, and the second end effector 39 is connected to the tip thereof.
- Each of the first end effector 38 and the second end effector 39 has a semiconductor wafer (substrate) 40 mounted on its tip.
- the semiconductor wafer 40 is abbreviated as “wafer 40”.
- the second end effector 39 is arranged below the first end effector 38 so as to vertically overlap. ..
- the guide transfer mechanism 33 is provided inside the atmosphere transfer chamber 31.
- a robot base 35 of the atmosphere transfer robot 32 is movably supported by the guide transfer mechanism 33.
- the robot base 35 is moved in the direction of arrow A along the guide portion of the guide transfer mechanism 33 by the operation of the transfer mechanism of the guide transfer mechanism 33.
- As the guide transfer mechanism 33 a generally known linear motion mechanism is used.
- a plurality of load ports 13 are connected to the first long wall 31 a of the shell of the atmosphere transfer chamber 31.
- the load port 13 is a device that opens and closes the lid of the FOUP 41.
- the FOUP 41 is, for example, a container having 25 stages of wafer mounting shelves and is mounted on the load port 13.
- the wafers 40 are stored in any of the 25 stages of wafer mounting shelves. In the present embodiment, an example in which 25 semiconductor wafers 40 are stored in the FOUP 41 will be described, but the number of semiconductor wafers 40 stored in the FOUP 41 can be appropriately selected.
- a vacuum transfer module (substrate transfer device) 15 is provided on the second long wall 31b side of the atmospheric transfer chamber 31.
- the vacuum transfer module 15 includes a vacuum transfer chamber 44, a vacuum transfer robot 45, a plurality of substrate mounting tables 46 and 47, and a transfer unit 48.
- the substrate platforms 46 and 47 are provided integrally with the vacuum transfer robot 45, and are provided above the robot base 51, which will be described later, for example.
- the transfer unit 48 By driving the transfer unit 48, the substrate platforms 46 and 47 travel integrally with the vacuum transfer robot 45.
- the case where the number of substrate mounting tables 46 and 47 is two will be described as an example, but the number of substrate mounting tables may be three or more.
- the vacuum transfer chamber 44 is formed, for example, in a rectangular shell in a plan view, and includes a first long wall 44a, a second long wall 44b, a first short wall 44c, and a second short wall 44d.
- the atmosphere transfer chamber 31 can switch the internal atmosphere to a vacuum state/atmosphere state, but is usually kept in a vacuum state.
- the first short wall 44c of the vacuum transfer chamber 44 is connected to the center of the second long wall 31b of the atmosphere transfer chamber 31 in the longitudinal direction (direction of arrow A in FIG. 1).
- the atmosphere transfer chamber 31 and the vacuum transfer chamber 44 are arranged in a T-shape in plan view.
- the vacuum transfer robot 45 includes a robot base 51, a pair of arm units 52 and 53, and a pair of end effectors 54 and 55.
- the robot base 51 is movably supported by a guide mechanism 57 (described later) of the transfer unit 48 inside the vacuum transfer chamber 44.
- a pair of arm units 52 and 53 are rotatably and vertically movable above the robot base 51.
- the pair of arm units 52 and 53 are configured by a first arm unit 52 and a second arm unit 53, respectively.
- the first arm unit 52 is extendably and flexibly connected, and a first end effector (wafer mounting hand) 54 is connected to a tip end thereof.
- the wafer 40 is placed on the tip portion (horizontal hand) 54 a of the first end effector 54.
- the tip end portion 54a of the first end effector 54 can be connected to the load lock chambers 17 and 18 (see FIG. 1) and the process modules 21 to 26 (see FIG. 1). Move inward.
- the tip end portion 54 a of the first end effector 54 retracts toward the rotation center axis of the vacuum transfer robot 45.
- the second arm unit 53 is connected so as to be extendable and bendable, and the second end effector 55 is connected to the tip thereof.
- the second end effector 55 is arranged below the first end effector 54 so as to be overlapped therewith.
- the second end effector 55 includes a tip portion (horizontal hand) 55a, like the first end effector 54.
- the tip portion 55a is formed so that the wafer 40 can be placed thereon.
- first substrate mounting table 46 One of the two substrate mounting tables 46 and 47 provided on the upper portion 51a of the robot base 51 will be described as the first substrate mounting table 46 and the other will be described as the second substrate mounting table 47.
- the first substrate mounting table 46 and the second substrate mounting table 47 are each formed in a single stage or in multiple stages, and each of the wafers 40 on the tip end portion 54 a of the first end effector 54 and the tip end portion 55 a of the second end effector 55 is temporarily placed. It is formed so that it can be placed.
- the transfer unit 48 is connected (connected) to the robot base 51 of the vacuum transfer robot 45.
- the transfer unit 48 includes a guide mechanism 57 and a transfer mechanism 58.
- the guide mechanism 57 includes a pair of guide rails 61 and a partition member 62.
- the pair of guide rails 61 are provided on the inner wall of the shell of the vacuum transfer chamber 44 (specifically, the inner wall surfaces of the first long wall 44a and the second long wall 44b), and support the robot base 51 movably.
- the vacuum transfer robot 45 is moved in the direction of arrow B (see FIG. 1) along the pair of guide rails 61, and the plurality of load lock chambers 17, 18 (see FIG. 1) and The plurality of process modules 21 to 26 can be accessed.
- a partition member 62 is provided above the pair of guide rails 61.
- the partition member 62 is formed so as to partition the interior of the vacuum transfer chamber 44 into two spaces, an upper space 64 and a lower space 65.
- the vacuum transfer robot 45 is arranged in the upper space 64, and the transfer mechanism 58 is arranged in the lower space 65.
- the transfer mechanism 58 is connected (connected) to the robot base 51 supported by the pair of guide rails 61 of the guide mechanism 57.
- the transfer mechanism 58 includes a horizontal articulated arm 67 and a drive source 68.
- the horizontal articulated arm 67 includes a first transfer arm 71 and a second transfer arm 72.
- the base 71a of the first transfer arm 71 is connected to the rotary shaft 68a of the drive source 68.
- the base 72a of the second transfer arm 72 is connected to the tip 71b of the first transfer arm 71.
- the robot base 51 is connected to the tip 72 b of the second transfer arm 72. That is, the horizontal articulated arm 67 is configured to be extendable and bendable by the first transfer arm 71 and the second transfer arm 72.
- the vacuum transfer robot 45 By rotating the rotary shaft 68a of the drive source 68 to extend and bend the horizontal articulated arm 67, the vacuum transfer robot 45 is guided by the pair of guide rails 61 and travels to the vacuum transfer chamber 44.
- the robot base 51 is movably provided on the guide mechanism 57 of the vacuum transfer chamber 44, and the transfer mechanism 58 is connected (connected) to the robot base 51. Accordingly, inside the vacuum transfer chamber 44, the robot base 51 can be moved in the arrow B direction (see FIG. 1) by the transfer mechanism 58 along the pair of guide rails 61 of the guide mechanism 57.
- the vacuum transfer chamber 44 is partitioned by a partition member 62 into an upper space 64 and a lower space 65, a vacuum transfer robot 45 is arranged in the upper space 64, and a transfer mechanism 58 is arranged in the lower space 65. ..
- the sliding portion between the robot base 51 and the pair of guide rails 61 is preferably provided in the lower space 65.
- the lower space 65 may be vacuumed at a vacuum degree lower than that of the upper space 64. As a result, dust generated by sliding is extremely reduced from being diffused into the upper space 64.
- the transfer mechanism 58 is configured by the horizontal articulated arm 67
- the transfer mechanism is conventionally used in a clean environment, preferably a vacuum environment.
- You may comprise by a linear motion mechanism.
- the linear motion mechanism is arranged in the space 65 below, like the horizontal articulated arm 67. As a result, it is possible to suppress dust generation in the upper space 64, keep the upper space 64 clean, and ensure the quality of the wafer 40.
- the plurality of load lock chambers 17 and 18 are arranged not in a space between the atmosphere transfer chamber 31 and the vacuum transfer chamber 44 but in the T-shaped arranged atmosphere transfer chamber 31 and vacuum. It is provided at each intersection in the transfer chamber 44.
- one side of the vacuum transfer chamber 44 will be described as a first load lock chamber 17, and the other side of the vacuum transfer chamber 44 will be described as a second load lock chamber 18.
- the first load lock chamber 17 is connected to the second long wall 31b of the atmosphere transfer chamber 31 and is connected to the first long wall 44a of the vacuum transfer chamber 44. That is, the first load lock chamber 17 is provided at a first intersection (intersection) 75 between the atmosphere transfer chamber 31 and the vacuum transfer chamber 44, which are arranged in a T shape.
- the second load lock chamber 18 is connected to the second long wall 31b of the atmosphere transfer chamber 31 and is connected to the second long wall 44b of the vacuum transfer chamber 44. That is, the second load lock chamber 18 is provided at the second intersection (intersection) 76 between the atmosphere transfer chamber 31 and the vacuum transfer chamber 44, which are arranged in a T shape.
- the atmosphere transfer chamber 31 and the vacuum transfer chamber 44 are arranged in a T shape
- the first load lock chamber 17 is provided at the first intersection 75 of each chamber 31, 44
- the second intersection 76 is provided.
- a second load lock chamber 18 is provided. That is, the first and second load lock chambers 17 and 18 are not provided in series between the atmosphere transfer chamber 31 and the vacuum transfer chamber 44.
- a load lock chamber is provided between the atmospheric transfer chamber and the vacuum transfer chamber. That is, since the atmosphere transfer chamber, the load lock chamber and the vacuum transfer chamber are arranged in series, the depth of the apparatus in the traveling direction of the vacuum transfer robot in the substrate transfer system becomes long.
- the atmospheric transfer chamber 31 and the vacuum transfer chamber 44 are arranged in a T shape, the first load lock chamber 17 is provided at the first intersection 75, and the second load is provided at the second intersection 76.
- a lock chamber 18 is provided. Therefore, the atmospheric transfer chamber 31 and the vacuum transfer chamber 44 can be arranged close to each other. Therefore, the depth L1 of the device in the substrate transfer system 10 can be shortened, and the footprint (that is, the installation area) can be reduced.
- the first and second load lock chambers 17 and 18 are arranged mirror-symmetrically with respect to a vertical plane passing through the center line of the vacuum transfer chamber 44 in the short width direction (direction orthogonal to the B direction in FIG. 1). ..
- the second load lock chamber 18 will be denoted by the same reference numerals as the constituent members of the first load lock chamber 17, and detailed description of the second load lock chamber 18 will be omitted.
- the first load lock chamber 17 includes a housing 81 having a quadrangular shape as a polygonal shape in plan view. Inside the housing 81, a single-stage or multi-stage substrate mounting portion is provided. The wafer 40 is placed on the substrate platform.
- the housing 81 has a first surface 81a, a second surface 81b, a third surface 81c, and a fourth surface 81d.
- the case 81 has a quadrangular shape in a plan view, but the case 81 may have another polygonal shape.
- the first surface 81a is a surface connected to the second long wall 31b of the atmosphere transfer chamber 31.
- a first opening (opening) 83 is formed on the first surface 81a.
- the first opening 83 is an opening through which the wafer 40 in the atmosphere transfer module 12 and the wafer 40 in the first load lock chamber 17 are loaded and unloaded by the atmosphere transfer robot 32.
- the second surface 81b is a surface connected to the first long wall 44a of the vacuum transfer chamber 44.
- a second opening (opening) 84 is formed on the second surface 81b.
- the second opening 84 is an opening through which the wafer 40 in the vacuum transfer module 15 and the wafer 40 in the first load lock chamber 17 are loaded and unloaded by the vacuum transfer robot 45.
- the first surface 81a and the second surface 81b are arranged adjacent to each other.
- the first opening 81 is provided in the first surface 81a
- the second opening 84 is provided in the second surface 81b.
- the reason why the first surface 81a and the second surface 81b are provided adjacent to each other, the first opening 83 is provided in the first surface 81a, and the second opening 84 is provided in the second surface 81b will be described in detail later.
- a plurality of process modules 21 to 26 are provided on the first long wall 44a and the second long wall 44b of the vacuum transfer chamber 44.
- the plurality of process modules 21 to 26 for example, the first to sixth process modules 21 to 26 will be described as an example. In the present embodiment, the case where the plurality of process modules 21 to 26 is six will be described as an example, but the number of process modules is not limited to six, and other examples include four and eight. Good.
- the first to sixth process modules 21 to 26 are devices for forming a film on the surface of the wafer 40.
- the first, second, and third process modules 21 to 23 are closer to the first load lock chamber 17 in the first long wall 44a of the vacuum transfer chamber 44. It is provided in order from.
- the fourth, fifth, and sixth process modules 24 to 26 are connected to the second load lock chamber 18 at the second long wall 44b of the vacuum transfer chamber 44. They are provided in order from the closest one.
- the first, second and third process modules 21 to 23 and the fourth, fifth and sixth process modules 24 to 26 are similar to the first load lock chamber 17 and the second load lock chamber 18. , Which are placed on the mirror surface.
- the atmospheric transfer robot 32 takes out the wafer 40 stored in the FOUP 41 from the FOUP 41.
- the substrate aligner (not shown) of the atmospheric transfer chamber 31
- the crystal orientation of the wafer 40 is aligned in a predetermined direction, and the processing information of the wafer 40 is detected.
- the wafer 40 for which alignment and processing information has been detected, is loaded into the first load lock chamber 17 via the first opening 83 by the atmospheric transfer robot 32.
- the wafer 40 loaded into the first load lock chamber 17 is loaded into the vacuum transport chamber 44 through the second opening 84 by the vacuum transport robot 45.
- the first surface 81a and the second surface 81b adjacent to each other are provided with a first opening 83 and a second opening 84, respectively. Therefore, when the wafer 40 is loaded into the first load lock chamber 17 from the first opening 83 on the atmosphere transfer chamber 31 side and the loaded wafer 40 is unloaded from the second opening 84 on the vacuum transfer chamber 44 side, 40 is conveyed in an L shape. That is, the crossing angle between the loading direction of the wafer 40 from the atmospheric transfer chamber 31 to the first load lock chamber 17 and the loading direction of the wafer 40 from the first load lock chamber 17 to the vacuum transfer chamber 44 is 90° (right angle). is there.
- the installation position of the vacuum transfer chamber 44 becomes as close as possible to the atmosphere transfer chamber 31 side.
- the gap (space) between the atmosphere transfer chamber 31 and the vacuum transfer chamber 44 becomes smaller, and the dead space becomes smaller. Therefore, the total length and depth of the atmosphere transfer chamber 31 and the vacuum transfer chamber 44, that is, the footprints are reduced, and the volume of the shell (not shown) forming the clean space can be reduced accordingly.
- the vacuum transfer robot 45 takes out the wafer 40 from the first load lock chamber 17, the vacuum transfer robot 45 is moved to the first load lock chamber 17 only by rotating the vacuum transfer robot 45 at a rotation angle of 90°. You can face it.
- the above-mentioned intersection angle is larger than 90°, for example, 120 to 150°.
- the rotation angle of the vacuum transfer robot 45 at this time is 120 to 150°. That is, in the present embodiment, the rotation angle of the vacuum transfer robot 45 can be made smaller than in the conventional case. Therefore, the cycle time from the start of the rotation of the vacuum transfer robot 45 to the end of the rotation can be shortened as the rotation angle becomes smaller. As a result, the cycle time can be shortened in the process of taking out the wafer 40 from the second opening portion 84 by the vacuum transfer robot 45 and loading it into the vacuum transfer chamber 44.
- the wafer 40 held by the vacuum transfer robot 45 and loaded into the vacuum transfer chamber 44 is moved by the transfer unit 48 together with the vacuum transfer robot 45 and the first and second substrate mounting tables 46, 47, and the first process module 21. It is placed at a position where it can be carried in. Then, the wafer 40 is supplied to the first process module 21 by the vacuum transfer robot 45. In the first process module 21, for example, a film forming process is performed on the surface of the wafer 40. Before the wafer 40 is loaded into the first process module 21, the wafer 40, which has been previously supplied and on which the previous film forming process has been performed, is taken out by the vacuum transfer robot 45, and the first substrate mounting table 46 (or the second substrate). Temporarily place it on the placing table 47).
- the vacuum transfer robot 45 is moved again by the transfer unit 48 so as to be in front of the other process modules 22 to 26, the first load lock chamber 17, or the second load lock chamber 18. Position it. After that, the wafer 40 of the first substrate mounting table 46 (or the second substrate mounting table 47) may be supplied to another process module or the second load lock chamber 18, or a new one may be supplied from the first load lock chamber 17. The wafer 40 may be taken out. The wafer 40 supplied to another process module is subjected to a new film forming process. The film forming process on the wafer 40 may be appropriately repeated as necessary to form two or three or more layers.
- the first substrate mounting table 46 (or the second substrate mounting table 47) may be provided in two or more stages so that the plurality of wafers 40 can be temporarily mounted.
- the wafer 40 that has undergone all the film formation processing is carried into the second load lock chamber 18 by the vacuum transfer robot 45, for example.
- the wafer 40 carried into the second load lock chamber 18 is taken out from the second load lock chamber 18 into the atmosphere transfer chamber 31 by the atmospheric transfer robot 32 and stored in the FOUP 41.
- a general substrate transfer apparatus is provided in a vacuum transfer chamber so as to correspond to the first, second, third and fourth process modules, and the fifth and sixth process modules.
- a plurality (for example, 3) of vacuum transfer robots and a plurality (for example, 2) of substrate mounting tables are provided. Then, each vacuum transfer robot transfers the wafer through the substrate mounting table. At this time, the vacuum transfer robot has a higher operating rate as it is located closer to the load lock chamber, and has a lower operating rate as it is located farther from the load lock chamber. That is, the cost performance of the vacuum transfer robot arranged at a position far from the load lock chamber was not good.
- the substrate transfer apparatus 15 in the present embodiment is provided with a transfer unit 48 inside the vacuum transfer chamber 44, and the vacuum transfer robot 45 and the first and second substrate mounting tables 46 and 47 are freely movable.
- the substrate transfer device 15 uses the one vacuum transfer robot 45 and the first and second substrate mounting tables 46 and 47 to reduce the number of the vacuum transfer robots 45 from the first to sixth levels.
- the process modules 21 to 26 can be used, and the operation rate of the vacuum transfer robot 45 can be increased. Further, since the number of the vacuum transfer robots 45 can be reduced to 1/3 of the conventional one, the device cost of the substrate transfer device 15 can be suppressed even if the cost increase of the transfer unit 48 is subtracted.
- a substrate mounting table is arranged between the vacuum transfer robots.
- the entire length and depth of the vacuum transfer chamber in the substrate transfer apparatus become longer, and the volume of the vacuum transfer chamber, which is the vacuum space, becomes larger accordingly. This leads to an increase in the time required to evacuate the vacuum transfer chamber, which causes a decrease in throughput.
- the substrate transfer apparatus 15 in the present embodiment is provided with the vacuum transfer robot 45 and the first and second substrate mounting tables 46 and 47 so as to be freely movable, it can be vacuum transferred like a general substrate transfer apparatus. It is not necessary to dispose the substrate mounting table between the robot and the vacuum transfer robot. As a result, the length and depth of the vacuum transfer chamber in the substrate transfer apparatus are shortened, and the volume of the vacuum transfer chamber, which is the vacuum space, is reduced accordingly. This shortens the time required to evacuate the vacuum transfer chamber 44 and improves the throughput.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Manufacturing & Machinery (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Robotics (AREA)
- Mechanical Engineering (AREA)
- Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)
- Manipulator (AREA)
Abstract
個々の真空搬送ロボットの稼働率を高めることにより真空搬送ロボットの数が少なくても従来と同等の作業効率を実現することができる基板搬送装置及び基板搬送システムを提供する。その基板搬送装置は、真空搬送チャンバと、前記真空搬送チャンバの内部に設けられる真空搬送ロボットと、前記真空搬送ロボットを前記真空搬送チャンバに対して走行させる移送ユニットとを備え、前記真空搬送ロボットは、前記移送ユニットに支持されるロボット基部を有している。前記基板搬送装置は、前記ロボット基部の上部に設けられ、基板が仮置きされる少なくとも2つの基板載置台を更に備えている。
Description
本発明は、半導体ウエハを真空環境下で搬送する基板搬送装置及び基板搬送システムに関する。
本願は、2018年12月11日に出願された特願2018-231644号に対して優先権を主張し、その内容をここに援用する。
本願は、2018年12月11日に出願された特願2018-231644号に対して優先権を主張し、その内容をここに援用する。
大気環境下で基板搬送を行う大気搬送モジュール、真空環境下で基板搬送を行う基板搬送装置(真空搬送モジュール)、および該基板搬送装置と大気搬送装置を接続するロードロックチャンバを備える基板搬送システムがある。この基板搬送装置として、真空搬送チャンバに、各種処理を行う複数のプロセスモジュールに対応させて複数の真空搬送ロボットを設け、また、隣接する真空搬送ロボット同士の間にそれぞれ基板載置台を設けたものがある。その基板搬送システムによれば、大気搬送モジュールからロードロックチャンバに基板が搬入され、ロードロックチャンバに搬入された基板が真空搬送ロボットで真空搬送チャンバに搬入される。真空搬送チャンバに搬入された基板は、真空搬送ロボットでプロセスモジュールに搬入される。プロセスモジュールにおいて、例えば、成膜処理された基板が真空搬送ロボットで基板載置台に仮置きされて冷却される(特許文献1参照)。
特許文献1の基板搬送システムは、真空搬送チャンバに複数の真空搬送ロボットおよび複数の基板載置台を設けているが、複数の真空搬送ロボットの内、大気搬送モジュールから離れた位置に設けられた真空搬送ロボットほど稼働率が低くなってしまう。
また、特許文献1の基板搬送システムは、真空搬送チャンバと大気搬送モジュールとの間にロードロックチャンバが設けられる。このため、基板搬送システムにおいて真空搬送ロボットの走行方向の奥行が長くなり、システム全体のフットプリントが大きくなってしまう(全長が長くなってしまう)。
また、特許文献1の基板搬送システムは、真空搬送チャンバと大気搬送モジュールとの間にロードロックチャンバが設けられる。このため、基板搬送システムにおいて真空搬送ロボットの走行方向の奥行が長くなり、システム全体のフットプリントが大きくなってしまう(全長が長くなってしまう)。
本発明は上記の事情に鑑みてなされたもので、真空搬送ロボットの稼働率が高い基板搬送装置及びフットプリントの小さい基板搬送システムを提供することを目的としている。
本発明に係る基板搬送装置は、真空搬送チャンバと、該真空搬送チャンバの内部に設けられる真空搬送ロボットと、該真空搬送ロボットを前記真空搬送チャンバに対して走行させる移送ユニットとを備え、前記真空搬送ロボットは、前記移送ユニットに支持されるロボット基部を有し、該ロボット基部の上部に設けられ、基板が仮置きされる少なくとも2つの基板載置台を更に備える基板搬送装置である。
本発明に係る基板搬送装置において、前記移送ユニットは、前記真空搬送チャンバの殻体内壁に設けられ、前記ロボット基部を走行自在に支持するガイド機構と、該ガイド機構に支持された前記ロボット基部に接続される移送機構と、を有していてもよい。
本発明に係る基板搬送装置において、前記ガイド機構は、前記真空搬送チャンバ内を上下二つの空間に仕切る仕切り部材を有し、上方の前記空間内に前記真空搬送ロボットが配置され、下方の前記空間内に前記移送機構が配置されていてもよい。
本発明に係る基板搬送装置において、前記移送機構は、下方の前記空間内に配置された水平多関節アームであってもよい。
本発明に係る基板搬送装置において、前記移送機構は、下方の前記空間内に配置された直動機構であってもよい。
本発明に係る基板搬送システムは、大気搬送モジュールと、真空搬送モジュールと、前記大気搬送モジュール及び前記真空搬送モジュールの間に設けられるロードロックチャンバとを備え、前記真空搬送モジュールは請求項1に記載の基板搬送装置で構成され、該基板搬送装置及び前記大気搬送モジュールは平面視T字型に配置され、そのT字型に配置された前記大気搬送モジュールと前記基板搬送装置との交差部それぞれにロードロックチャンバが設けられ、該ロードロックチャンバは、前記大気搬送モジュールに接続される面及び前記基板搬送装置に接続される面に、前記基板が搬入出される開口部をそれぞれ有し、かつ、それぞれの前記接続される面は隣接している基板搬送システム。
本発明の基板搬送装置及び基板搬送システムによれば、真空搬送ロボットの数を減らしつつ、真空搬送ロボットの稼働率を高めて基板搬送装置のコストを抑え、さらに、フットプリントの小さい基板搬送システムを得ることができる。
本発明に係る基板搬送システム及び基板搬送装置の実施形態について以下に説明する。 図1及び図2に示すように、基板搬送システム10は、大気搬送モジュール12と、真空搬送モジュール(基板搬送装置)15と、複数のロードロックチャンバ17,18と、複数のプロセスモジュール21~26とを備えている。
大気搬送モジュール12は、大気搬送チャンバ31と、大気搬送ロボット32と、ガイド移送機構33とを備えている。
大気搬送チャンバ31は、例えば、平面視矩形状の殻体に形成され、第1長壁31aと、第2長壁31bと、第1短壁31cと、第2短壁31dとを備えている。大気搬送チャンバ31の内部はクリーンな大気状態に保たれている。大気搬送チャンバ31の内部において、大気搬送ロボット32がガイド移送機構33に走行自在に支持されている。大気搬送モジュール12の第1長壁31aには、複数(図1中では3つを図示)のロードポート13が接続される。ロードポートの数は、2つまたは4つ以上であってもよい。
大気搬送モジュール12は、大気搬送チャンバ31と、大気搬送ロボット32と、ガイド移送機構33とを備えている。
大気搬送チャンバ31は、例えば、平面視矩形状の殻体に形成され、第1長壁31aと、第2長壁31bと、第1短壁31cと、第2短壁31dとを備えている。大気搬送チャンバ31の内部はクリーンな大気状態に保たれている。大気搬送チャンバ31の内部において、大気搬送ロボット32がガイド移送機構33に走行自在に支持されている。大気搬送モジュール12の第1長壁31aには、複数(図1中では3つを図示)のロードポート13が接続される。ロードポートの数は、2つまたは4つ以上であってもよい。
大気搬送ロボット32は、ロボット基部35と、一対のアームユニット36,37と、一対のエンドイフェクタ38,39とを備えている。
ロボット基部35は、ガイド移送機構33に走行自在に支持されている。これにより、大気搬送チャンバ31の内部において、大気搬送ロボット32が複数のロードポート13に沿って矢印A方向へ走行自在となる。ロボット基部35に対してロボットアーム(一対のアームユニット36,37)が回転自在に、かつ昇降自在に支持されている。
ロボット基部35は、ガイド移送機構33に走行自在に支持されている。これにより、大気搬送チャンバ31の内部において、大気搬送ロボット32が複数のロードポート13に沿って矢印A方向へ走行自在となる。ロボット基部35に対してロボットアーム(一対のアームユニット36,37)が回転自在に、かつ昇降自在に支持されている。
一対のアームユニット36,37のうち、第1アームユニット36は、伸長・屈曲可能に連結され、先端に第1エンドイフェクタ38が連結されている。第2アームユニット37は、第1アームユニット36と同様に、伸長・屈曲可能に連結され、先端に第2エンドイフェクタ39が連結されている。
第1エンドイフェクタ38および第2エンドイフェクタ39は、それぞれ先端に半導体ウエハ(基板)40が載置される。以下、半導体ウエハ40を「ウエハ40」と略記する。
第1アームユニット36と第2アームユニット37とが屈曲された状態(図1の状態)において、第1エンドイフェクタ38の下方に第2エンドイフェクタ39が上下方向に重なるように配置される。
第1アームユニット36と第2アームユニット37とが屈曲された状態(図1の状態)において、第1エンドイフェクタ38の下方に第2エンドイフェクタ39が上下方向に重なるように配置される。
ガイド移送機構33は、大気搬送チャンバ31の内部に設けられている。ガイド移送機構33に大気搬送ロボット32のロボット基部35が走行自在に支持されている。ロボット基部35は、ガイド移送機構33の移送機構の作動によりガイド移送機構33のガイド部に沿って矢印A方向へ走行される。ガイド移送機構33としては、一般に知られている直動機構が使用される。
大気搬送チャンバ31の殻体のうち第1長壁31aに複数のロードポート13が接続されている。
大気搬送チャンバ31の殻体のうち第1長壁31aに複数のロードポート13が接続されている。
ロードポート13は、FOUP41の蓋を開閉する装置である。FOUP41は、例えば、25段のウエハ載置棚を有する容器であって、ロードポート13に載置される。25段のウエハ載置棚の任意の段にウエハ40が格納される。なお、本実施形態では、FOUP41に25枚の半導体ウエハ40を格納する例について説明するが、FOUP41に格納する半導体ウエハ40の枚数は適宜選択可能である。
FOUP41の蓋をロードポート13において開放することにより、FOUP41に格納されたウエハ40に対して、大気搬送ロボット32がアクセス可能になる。
FOUP41の蓋をロードポート13において開放することにより、FOUP41に格納されたウエハ40に対して、大気搬送ロボット32がアクセス可能になる。
図1及び図3に示すように、大気搬送チャンバ31の第2長壁31b側に真空搬送モジュール(基板搬送装置)15が備えられている。真空搬送モジュール15は、真空搬送チャンバ44と、真空搬送ロボット45と、複数の基板載置台46,47と、移送ユニット48とを備える。基板載置台46,47は、真空搬送ロボット45と一体に設けられており、例えば、後述するロボット基部51の上部に設けられる。移送ユニット48を駆動させることで、真空搬送ロボット45と一体に基板載置台46,47が走行する。本実施形態では、基板載置台46,47が2個の場合を例に挙げて説明を行うが、3個以上であってもよい。
真空搬送チャンバ44は、例えば、平面視矩形状の殻体に形成され、第1長壁44aと、第2長壁44bと、第1短壁44cと、第2短壁44dとを備えている。大気搬送チャンバ31は、内部雰囲気を真空状態/大気状態に切り替え可能であるが、通常、真空状態に保たれている。
真空搬送チャンバ44は、その第1短壁44cが、大気搬送チャンバ31の第2長壁31bにおいて長手方向(図1中では矢印A方向)の中央に接続される。大気搬送チャンバ31及び真空搬送チャンバ44は、平面視T字型に配置される。
真空搬送チャンバ44は、例えば、平面視矩形状の殻体に形成され、第1長壁44aと、第2長壁44bと、第1短壁44cと、第2短壁44dとを備えている。大気搬送チャンバ31は、内部雰囲気を真空状態/大気状態に切り替え可能であるが、通常、真空状態に保たれている。
真空搬送チャンバ44は、その第1短壁44cが、大気搬送チャンバ31の第2長壁31bにおいて長手方向(図1中では矢印A方向)の中央に接続される。大気搬送チャンバ31及び真空搬送チャンバ44は、平面視T字型に配置される。
図3及び図4に示すように、真空搬送ロボット45は、ロボット基部51と、一対のアームユニット52,53と、一対のエンドイフェクタ54,55とを備えている。
ロボット基部51は、真空搬送チャンバ44の内部において、移送ユニット48のガイド機構57(後述)に走行自在に支持されている。ロボット基部51の上部に一対のアームユニット52,53が回動自在に、かつ、昇降自在に設けられる。
ロボット基部51は、真空搬送チャンバ44の内部において、移送ユニット48のガイド機構57(後述)に走行自在に支持されている。ロボット基部51の上部に一対のアームユニット52,53が回動自在に、かつ、昇降自在に設けられる。
一対のアームユニット52,53は、第1アームユニット52と、第2アームユニット53とでそれぞれ構成されている。
第1アームユニット52は、伸長・屈曲可能に連結され、先端に第1エンドイフェクタ(ウエハ載置ハンド)54が連結されている。第1エンドイフェクタ54の先端部(水平ハンド)54aにウエハ40が載置される。
第1アームユニット52を伸長させることにより、第1エンドイフェクタ54の先端部54aが複数のロードロックチャンバ17,18(図1参照)や、複数のプロセスモジュール21~26(図1参照)の内部に向かって前進する。
一方、第1アームユニット52を屈曲させることにより、第1エンドイフェクタ54の先端部54aが真空搬送ロボット45の回動中心軸に向かって後退する。
第1アームユニット52は、伸長・屈曲可能に連結され、先端に第1エンドイフェクタ(ウエハ載置ハンド)54が連結されている。第1エンドイフェクタ54の先端部(水平ハンド)54aにウエハ40が載置される。
第1アームユニット52を伸長させることにより、第1エンドイフェクタ54の先端部54aが複数のロードロックチャンバ17,18(図1参照)や、複数のプロセスモジュール21~26(図1参照)の内部に向かって前進する。
一方、第1アームユニット52を屈曲させることにより、第1エンドイフェクタ54の先端部54aが真空搬送ロボット45の回動中心軸に向かって後退する。
第2アームユニット53は、第1アームユニット52と同様に、伸長・屈曲可能に連結され、先端に第2エンドイフェクタ55が連結されている。第2エンドイフェクタ55は、第1エンドイフェクタ54の下方に重ねられるように配置されている。第2エンドイフェクタ55は、第1エンドイフェクタ54と同様に、先端部(水平ハンド)55aを備えている。先端部55aは、ウエハ40を載置可能に形成されている。
第2アームユニット53を屈曲させることにより、第2エンドイフェクタ55の先端部55aが真空搬送ロボット45の回動中心軸に向かって後退する。
一方、第2アームユニット53を伸長させることにより、第2エンドイフェクタ55の先端部55aが複数のロードロックチャンバ17,18(図1参照)や、複数のプロセスモジュール21~26(図1参照)の内部に向かって前進する。
第2アームユニット53を屈曲させることにより、第2エンドイフェクタ55の先端部55aが真空搬送ロボット45の回動中心軸に向かって後退する。
一方、第2アームユニット53を伸長させることにより、第2エンドイフェクタ55の先端部55aが複数のロードロックチャンバ17,18(図1参照)や、複数のプロセスモジュール21~26(図1参照)の内部に向かって前進する。
ロボット基部51の上部51aに設けられる2つの基板載置台46,47の一方を第1基板載置台46、他方を第2基板載置台47として説明する。
第1基板載置台46および第2基板載置台47は、それぞれ一段あるいは多段に形成され、第1エンドイフェクタ54の先端部54a及び第2エンドイフェクタ55の先端部55aの各ウエハ40を仮置き可能に形成されている。
第1基板載置台46および第2基板載置台47は、それぞれ一段あるいは多段に形成され、第1エンドイフェクタ54の先端部54a及び第2エンドイフェクタ55の先端部55aの各ウエハ40を仮置き可能に形成されている。
図2及び図3に示すように、真空搬送ロボット45のロボット基部51に移送ユニット48が接続(連結)されている。移送ユニット48は、ガイド機構57と、移送機構58とを備えている。
ガイド機構57は、一対のガイドレール61と、仕切り部材62とを備えている。一対のガイドレール61は、真空搬送チャンバ44の殻体内壁(具体的には、第1長壁44a及び第2長壁44bの各内壁面)に設けられ、ロボット基部51を走行自在に支持する。これにより、真空搬送チャンバ44の内部において、真空搬送ロボット45が一対のガイドレール61に沿った矢印B方向(図1参照)へ走行され、複数のロードロックチャンバ17,18(図1参照)及び複数のプロセスモジュール21~26にアクセス可能となる。
ガイド機構57は、一対のガイドレール61と、仕切り部材62とを備えている。一対のガイドレール61は、真空搬送チャンバ44の殻体内壁(具体的には、第1長壁44a及び第2長壁44bの各内壁面)に設けられ、ロボット基部51を走行自在に支持する。これにより、真空搬送チャンバ44の内部において、真空搬送ロボット45が一対のガイドレール61に沿った矢印B方向(図1参照)へ走行され、複数のロードロックチャンバ17,18(図1参照)及び複数のプロセスモジュール21~26にアクセス可能となる。
一対のガイドレール61の上方に仕切り部材62が設けられている。仕切り部材62は、真空搬送チャンバ44の内部を上方の空間64と下方の空間65との上下二つに仕切るように形成されている。上方の空間64に真空搬送ロボット45が配置され、下方の空間65に移送機構58が配置される。
ガイド機構57の一対のガイドレール61に支持されたロボット基部51に移送機構58が接続(連結)されている。移送機構58は、水平多関節アーム67と、駆動源68とを備えている。水平多関節アーム67は、第1移送アーム71と、第2移送アーム72とを備えている。
ガイド機構57の一対のガイドレール61に支持されたロボット基部51に移送機構58が接続(連結)されている。移送機構58は、水平多関節アーム67と、駆動源68とを備えている。水平多関節アーム67は、第1移送アーム71と、第2移送アーム72とを備えている。
第1移送アーム71は、基部71aが駆動源68の回転軸68aに連結されている。第1移送アーム71の先端71bに第2移送アーム72の基部72aが連結されている。第2移送アーム72の先端72bにロボット基部51が連結されている。すなわち、水平多関節アーム67は、第1移送アーム71及び第2移送アーム72により伸長・屈曲可能に構成されている。
駆動源68の回転軸68aを回転させて水平多関節アーム67を伸長・屈曲させることにより、真空搬送ロボット45が一対のガイドレール61で案内されて真空搬送チャンバ44に対して走行する。
このように、真空搬送チャンバ44のガイド機構57にロボット基部51を走行自在に設け、ロボット基部51に移送機構58を接続(連結)している。これにより、真空搬送チャンバ44の内部において、ロボット基部51を、移送機構58によりガイド機構57の一対のガイドレール61に沿って矢印B方向(図1参照)へ走行させることができる。
このように、真空搬送チャンバ44のガイド機構57にロボット基部51を走行自在に設け、ロボット基部51に移送機構58を接続(連結)している。これにより、真空搬送チャンバ44の内部において、ロボット基部51を、移送機構58によりガイド機構57の一対のガイドレール61に沿って矢印B方向(図1参照)へ走行させることができる。
ここで、移送機構58の動作や、ロボット基部51の走行を規制するガイド機構57により発塵が生じることが考えられる。そこで、真空搬送チャンバ44を仕切り部材62によって上方の空間64と下方の空間65とに仕切り、上方の空間64に真空搬送ロボット45を配置し、下方の空間65に移送機構58を配置している。これにより、上方の空間64において発塵及びその拡散を抑制して上方の空間64をクリーンに保つことができ、ウエハ40の品質を確保できる。ここで、ロボット基部51と一対のガイドレール61との摺動部は、下方の空間65に設けることが好ましい。また、下方の空間65は、上方の空間64よりは低い真空度でバキュームしてもよい。これらにより、摺動に伴う発塵が、上方の空間64に拡散されることが極めて少なくなる。
本実施形態においては、移送機構58を水平多関節アーム67により構成する例について説明したが、その他の例として、移送機構を、クリーン環境下、好ましくは真空環境下で慣用的に使用されている直動機構で構成してもよい。直動機構は、水平多関節アーム67と同様に、下方の空間65内に配置される。これにより、上方の空間64において発塵を抑制して上方の空間64をクリーンに保つことができ、ウエハ40の品質を確保できる。
図1に戻って、本実施形態においては、複数のロードロックチャンバ17,18は、大気搬送チャンバ31と真空搬送チャンバ44との間ではなく、T字型に配置された大気搬送チャンバ31および真空搬送チャンバ44における各交差部に設けられる。以下、複数のロードロックチャンバ17,18のうち、真空搬送チャンバ44の一方側を第1ロードロックチャンバ17、真空搬送チャンバ44の他方側を第2ロードロックチャンバ18として説明する。
第1ロードロックチャンバ17は、大気搬送チャンバ31の第2長壁31bに接続され、真空搬送チャンバ44の第1長壁44aに接続されている。すなわち、第1ロードロックチャンバ17は、T字型に配置された大気搬送チャンバ31と真空搬送チャンバ44との第1交差部(交差部)75に設けられている。
第2ロードロックチャンバ18は、大気搬送チャンバ31の第2長壁31bに接続され、真空搬送チャンバ44の第2長壁44bに接続されている。すなわち、第2ロードロックチャンバ18は、T字型に配置された大気搬送チャンバ31と真空搬送チャンバ44との第2交差部(交差部)76に設けられている。
第2ロードロックチャンバ18は、大気搬送チャンバ31の第2長壁31bに接続され、真空搬送チャンバ44の第2長壁44bに接続されている。すなわち、第2ロードロックチャンバ18は、T字型に配置された大気搬送チャンバ31と真空搬送チャンバ44との第2交差部(交差部)76に設けられている。
このように、大気搬送チャンバ31と真空搬送チャンバ44とがT字型に配置され、各チャンバ31,44の第1交差部75に第1ロードロックチャンバ17が設けられ、第2交差部76に第2ロードロックチャンバ18が設けられている。すなわち、第1、第2のロードロックチャンバ17,18は、大気搬送チャンバ31と真空搬送チャンバ44との間に直列的に設けられるものではない。
ここで、一般的な基板搬送システムは、例えば、大気搬送チャンバと真空搬送チャンバとの間にロードロックチャンバが備えられる。すなわち、大気搬送チャンバ、ロードロックチャンバおよび真空搬送チャンバが直列的に配置されることから、基板搬送システムにおいて真空搬送ロボットの走行方向における装置奥行きが長くなる。
一方、本実施形態においては、大気搬送チャンバ31と真空搬送チャンバ44とをT字型に配置し、第1交差部75に第1ロードロックチャンバ17を設け、第2交差部76に第2ロードロックチャンバ18を設けている。したがって、大気搬送チャンバ31と真空搬送チャンバ44とを近接させて配置することができる。このため、基板搬送システム10における装置の奥行L1を短くすることができ、フットプリント(すなわち、設置面積)を小さくすることができる。
一方、本実施形態においては、大気搬送チャンバ31と真空搬送チャンバ44とをT字型に配置し、第1交差部75に第1ロードロックチャンバ17を設け、第2交差部76に第2ロードロックチャンバ18を設けている。したがって、大気搬送チャンバ31と真空搬送チャンバ44とを近接させて配置することができる。このため、基板搬送システム10における装置の奥行L1を短くすることができ、フットプリント(すなわち、設置面積)を小さくすることができる。
第1、第2のロードロックチャンバ17,18は、真空搬送チャンバ44の短幅方向(図1中ではB方向と直交する方向)における中心線を通る鉛直面に対して鏡面対称に配置される。以下、第2ロードロックチャンバ18に第1ロードロックチャンバ17の構成部材と同じ符号を付して、第2ロードロックチャンバ18の詳しい説明を省略する。
第1ロードロックチャンバ17は、平面視多角形状として四角形状を呈する筐体81を備えている。筐体81の内部に一段、あるいは多段の基板載置部が設けられている。基板載置部にウエハ40が載置される。筐体81は、第1面81aと、第2面81bと、第3面81cと、第4面81dと、を有する。本実施形態においては、筐体81として平面視四角形を例示するが、筐体81を他の多角形状とすることも可能である。
第1ロードロックチャンバ17は、平面視多角形状として四角形状を呈する筐体81を備えている。筐体81の内部に一段、あるいは多段の基板載置部が設けられている。基板載置部にウエハ40が載置される。筐体81は、第1面81aと、第2面81bと、第3面81cと、第4面81dと、を有する。本実施形態においては、筐体81として平面視四角形を例示するが、筐体81を他の多角形状とすることも可能である。
第1面81aは、大気搬送チャンバ31の第2長壁31bに接続される面である。第1面81aに第1開口部(開口部)83が形成されている。第1開口部83は、大気搬送モジュール12内のウエハ40、第1ロードロックチャンバ17内のウエハ40が大気搬送ロボット32により搬入、搬出される開口である。
第2面81bは、真空搬送チャンバ44の第1長壁44aに接続される面である。第2面81bに第2開口部(開口部)84が形成されている。第2開口部84は、真空搬送モジュール15内のウエハ40、第1ロードロックチャンバ17のウエハ40が真空搬送ロボット45により搬入、搬出される開口である。
第2面81bは、真空搬送チャンバ44の第1長壁44aに接続される面である。第2面81bに第2開口部(開口部)84が形成されている。第2開口部84は、真空搬送モジュール15内のウエハ40、第1ロードロックチャンバ17のウエハ40が真空搬送ロボット45により搬入、搬出される開口である。
第1面81a及び第2面81bは隣接して配置されている。隣接する第1面81a及び第2面81bにおいて、第1面81aに第1開口部83が設けられ、第2面81bに第2開口部84が設けられている。
第1面81a及び第2面81bを隣接させて備え、第1面81aに第1開口部83を設け、第2面81bに第2開口部84を設けた理由については後で詳しく説明する。
第1面81a及び第2面81bを隣接させて備え、第1面81aに第1開口部83を設け、第2面81bに第2開口部84を設けた理由については後で詳しく説明する。
また、真空搬送チャンバ44の第1長壁44a及び第2長壁44bに複数のプロセスモジュール21~26が設けられている。以下、複数のプロセスモジュール21~26として、例えば、第1~第6のプロセスモジュール21~26を例に説明する。複数のプロセスモジュール21~26として、本実施の形態においては6つの場合を例に挙げて説明を行うが、6つに限定するものではなく、その他の例として、4つ、8つであってもよい。
第1~第6のプロセスモジュール21~26は、ウエハ40の表面に成膜処理する装置である。第1~第6のプロセスモジュール21~26のうち、第1、第2、第3のプロセスモジュール21~23は、真空搬送チャンバ44の第1長壁44aにおいて、第1ロードロックチャンバ17に近い方から順に設けられている。また、第1~第6のプロセスモジュール21~26のうち、第4、第5、第6のプロセスモジュール24~26は、真空搬送チャンバ44の第2長壁44bにおいて、第2ロードロックチャンバ18に近い方から順に設けられている。
第1、第2、第3のプロセスモジュール21~23と第4、第5、第6のプロセスモジュール24~26とは、第1のロードロックチャンバ17と第2のロードロックチャンバ18と同様に、鏡面対象に配置される。
第1、第2、第3のプロセスモジュール21~23と第4、第5、第6のプロセスモジュール24~26とは、第1のロードロックチャンバ17と第2のロードロックチャンバ18と同様に、鏡面対象に配置される。
基板搬送システム10によれば、大気搬送ロボット32が、FOUP41に格納されたウエハ40を、FOUP41から取り出す。大気搬送チャンバ31の基板アライナ(図示せず)において、ウエハ40の結晶方位が所定の向きに位置合わせされ、ウエハ40の処理情報などが検出される。
位置合わせや処理情報などが検出されたウエハ40は、大気搬送ロボット32によって第1開口部83を介して第1ロードロックチャンバ17に搬入される。第1ロードロックチャンバ17に搬入されたウエハ40は真空搬送ロボット45によって第2開口部84を介して真空搬送チャンバ44に搬入される。
位置合わせや処理情報などが検出されたウエハ40は、大気搬送ロボット32によって第1開口部83を介して第1ロードロックチャンバ17に搬入される。第1ロードロックチャンバ17に搬入されたウエハ40は真空搬送ロボット45によって第2開口部84を介して真空搬送チャンバ44に搬入される。
ここで、隣接する第1面81a及び第2面81bには、それぞれ第1開口部83および第2開口部84が設けられている。したがって、大気搬送チャンバ31側の最1開口部83から第1ロードロックチャンバ17にウエハ40を搬入し、搬入したウエハ40を真空搬送チャンバ44側の第2開口部84から搬出する際に、ウエハ40はL字状に搬送される。
すなわち、大気搬送チャンバ31から第1ロードロックチャンバ17へのウエハ40の搬入方向と、第1ロードロックチャンバ17から真空搬送チャンバ44へのウエハ40の搬出方向の交差角が90°(直角)である。これによって、真空搬送チャンバ44を第1ロードロックチャンバ17に対して接続する際、真空搬送チャンバ44の設置位置が限りなく大気搬送チャンバ31側に近くなる。その結果、大気搬送チャンバ31と真空搬送チャンバ44との間の隙間(空間)が小さくなり、デッドスペースが小さくなる。したがって、大気搬送チャンバ31および真空搬送チャンバ44の全長、奥行き、すなわちフットプリントが小さくなり、その分だけ、クリーン空間を構成する殻体(図示せず)の容積を小さくすることができる。
また、真空搬送ロボット45が第1ロードロックチャンバ17からウエハ40を取り出す際、真空搬送ロボット45を90°の回動角度で回動させるだけで、真空搬送ロボット45を第1ロードロックチャンバ17に正対させることができる。ここで、従来のロードロックチャンバにおいては、前述した交差角は90°よりも大きく、例えば、120~150°であった。このときの真空搬送ロボット45の回動角は120~150°となる。すなわち、本実施形態においては、従来と比較して、真空搬送ロボット45の回動角を小さくすることができる。そのため、この回動角度が小さくなる分だけ、真空搬送ロボット45の回動開始から回動終了までのサイクルタイムを短縮することができる。これにより、ウエハ40を真空搬送ロボット45により第2開口部84から取り出し、真空搬送チャンバ44に搬入する工程において、サイクルタイムを短縮することができる。
すなわち、大気搬送チャンバ31から第1ロードロックチャンバ17へのウエハ40の搬入方向と、第1ロードロックチャンバ17から真空搬送チャンバ44へのウエハ40の搬出方向の交差角が90°(直角)である。これによって、真空搬送チャンバ44を第1ロードロックチャンバ17に対して接続する際、真空搬送チャンバ44の設置位置が限りなく大気搬送チャンバ31側に近くなる。その結果、大気搬送チャンバ31と真空搬送チャンバ44との間の隙間(空間)が小さくなり、デッドスペースが小さくなる。したがって、大気搬送チャンバ31および真空搬送チャンバ44の全長、奥行き、すなわちフットプリントが小さくなり、その分だけ、クリーン空間を構成する殻体(図示せず)の容積を小さくすることができる。
また、真空搬送ロボット45が第1ロードロックチャンバ17からウエハ40を取り出す際、真空搬送ロボット45を90°の回動角度で回動させるだけで、真空搬送ロボット45を第1ロードロックチャンバ17に正対させることができる。ここで、従来のロードロックチャンバにおいては、前述した交差角は90°よりも大きく、例えば、120~150°であった。このときの真空搬送ロボット45の回動角は120~150°となる。すなわち、本実施形態においては、従来と比較して、真空搬送ロボット45の回動角を小さくすることができる。そのため、この回動角度が小さくなる分だけ、真空搬送ロボット45の回動開始から回動終了までのサイクルタイムを短縮することができる。これにより、ウエハ40を真空搬送ロボット45により第2開口部84から取り出し、真空搬送チャンバ44に搬入する工程において、サイクルタイムを短縮することができる。
真空搬送ロボット45により保持され、真空搬送チャンバ44に搬入されたウエハ40は、移送ユニット48により真空搬送ロボット45及び第1、第2の基板載置台46,47ごと走行され、第1プロセスモジュール21に搬入可能な位置に配置される。その後、ウエハ40が真空搬送ロボット45によって第1プロセスモジュール21に供給される。第1プロセスモジュール21において、例えば、ウエハ40の表面に成膜処理が施される。この第1プロセスモジュール21へのウエハ40の搬入の前に、予め供給され、前回の成膜処理が施されたウエハ40を真空搬送ロボット45で取り出し、第1基板載置台46(または第2基板載置台47)に仮置きする。そして、今回の成膜処理を行っている間、移送ユニット48により真空搬送ロボット45を再び走行させ、他のプロセスモジュール22~26、第1ロードロックチャンバ17または第2ロードロックチャンバ18の前に位置させる。その後、他のプロセスモジュールまたは第2ロードロックチャンバ18に、第1基板載置台46(または第2基板載置台47)のウエハ40を供給してもよいし、第1ロードロックチャンバ17から新たなウエハ40を取り出すようにしてもよい。他のプロセスモジュールに供給されたウエハ40は、新たな成膜処理が施される。ウエハ40に対する成膜処理は、必要に応じて適宜繰り返し行い、2層又は3層以上の成膜を施すようにしてもよい。
ここで、第1基板載置台46(または第2基板載置台47)にウエハ40を仮置きすることにより、例えば、成膜処理における加熱により高温となったウエハ40が冷却される。このため、第1基板載置台46(または第2基板載置台47)は、複数のウエハ40を仮置きできるよう、2段以上に設けてもよい。
ここで、第1基板載置台46(または第2基板載置台47)にウエハ40を仮置きすることにより、例えば、成膜処理における加熱により高温となったウエハ40が冷却される。このため、第1基板載置台46(または第2基板載置台47)は、複数のウエハ40を仮置きできるよう、2段以上に設けてもよい。
全ての成膜処理が施されたウエハ40は、例えば、真空搬送ロボット45によって第2ロードロックチャンバ18に搬入される。第2ロードロックチャンバ18に搬入されたウエハ40は、大気搬送ロボット32によって第2ロードロックチャンバ18から大気搬送チャンバ31内に取り出され、FOUP41に格納される。
ここで、例えば、一般的な基板搬送装置は、真空搬送チャンバの内部に第1、第2のプロセスモジュール、第3、第4のプロセスモジュールおよび第5、第6のプロセスモジュールに対応させて、複数(例えば3台)の真空搬送ロボットと複数(例えば2台)の基板載置台が備えられる。そして、各真空搬送ロボットは、基板載置台を介してウエハの受け渡しを行う。このとき、真空搬送ロボットはロードロックチャンバに近い位置に配置されるものほど稼働率が高く、ロードロックチャンバから遠い位置に配置されるものほど稼働率が低くなる。すなわち、ロードロックチャンバから遠い位置に配置される真空搬送ロボットのコストパフォーマンスが良好でなかった。
本実施形態における基板搬送装置15は、真空搬送チャンバ44の内部に移送ユニット48を設け、真空搬送ロボット45および第1、第2の基板載置台46,47を走行自在としている。これによって、基板搬送装置15は、1台の真空搬送ロボット45と第1、第2の基板載置台46,47とにより、真空搬送ロボット45の台数を従前よりも減らしつつ、第1~第6のプロセスモジュール21~26に対応させることができ、真空搬送ロボット45の稼働率を高めることができる。また、真空搬送ロボット45の台数を従前比1/3に減らすことができるため、移送ユニット48のコスト上昇分を差し引いても、基板搬送装置15の装置コストを抑えることができる。
また、一般的な基板搬送装置において、真空搬送ロボットと真空搬送ロボットとの間に基板載置台が配置される。その結果、基板搬送装置における真空搬送チャンバの全長、奥行きが長くなり、その分だけ、真空空間である真空搬送チャンバの容積が大きくなる。これは、真空搬送チャンバの真空引きに要する時間の増大を招き、スループットが低下する要因となる。
一方、本実施形態における基板搬送装置15は、真空搬送ロボット45および第1、第2の基板載置台46,47を走行自在に設けているため、一般的な基板搬送装置のように、真空搬送ロボットと真空搬送ロボットとの間に基板載置台を配置する必要がない。その結果、基板搬送装置における真空搬送チャンバの全長、奥行きが短くなり、その分だけ、真空空間である真空搬送チャンバの容積が小さくなる。これにより、真空搬送チャンバ44の真空引きに要する時間が短くなり、スループットが良好となる。
以上、図面を参照して、本発明の実施形態を詳述してきたが、具体的な構成は、この実施形態に限らず、本発明の要旨を逸脱しない程度の設計的変更は、本発明に含まれる。
Claims (6)
- 真空搬送チャンバと、
該真空搬送チャンバの内部に設けられる真空搬送ロボットと、
該真空搬送ロボットを前記真空搬送チャンバに対して走行させる移送ユニットと、
を備え、
前記真空搬送ロボットは、前記移送ユニットに支持されるロボット基部を有し、
該ロボット基部の上部に設けられ、基板が仮置きされる少なくとも2つの基板載置台を更に備える、
ことを特徴とする基板搬送装置。 - 前記移送ユニットは、
前記真空搬送チャンバの殻体内壁に設けられ、前記ロボット基部を走行自在に支持するガイド機構と、
該ガイド機構に支持された前記ロボット基部に接続される移送機構と、を有する、
ことを特徴とする請求項1に記載の基板搬送装置。 - 前記ガイド機構は、前記真空搬送チャンバ内を上下二つの空間に仕切る仕切り部材を有し、
上方の前記空間内に前記真空搬送ロボットが配置され、下方の前記空間内に前記移送機構が配置される、
ことを特徴とする請求項2に記載の基板搬送装置。 - 前記移送機構が、下方の前記空間内に配置された水平多関節アームである、
ことを特徴とする請求項3に記載の基板搬送装置。 - 前記移送機構が、下方の前記空間内に配置された直動機構である、
ことを特徴とする請求項3に記載の基板搬送装置。 - 大気搬送モジュールと、真空搬送モジュールと、前記大気搬送モジュール及び前記真空搬送モジュールの間に設けられるロードロックチャンバとを備え、
前記真空搬送モジュールは請求項1に記載の基板搬送装置で構成され、該基板搬送装置及び前記大気搬送モジュールは平面視T字型に配置され、
そのT字型に配置された前記大気搬送モジュールと前記基板搬送装置との交差部それぞれにロードロックチャンバが設けられ、該ロードロックチャンバは、前記大気搬送モジュールに接続される面及び前記基板搬送装置に接続される面に、前記基板が搬入出される開口部をそれぞれ有し、かつ、それぞれの前記接続される面は隣接している、
ことを特徴とする基板搬送システム。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201980081248.6A CN113195170B (zh) | 2018-12-11 | 2019-12-11 | 基板传送装置及基板传送系统 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018231644A JP7154986B2 (ja) | 2018-12-11 | 2018-12-11 | 基板搬送装置及び基板搬送システム |
JP2018-231644 | 2018-12-11 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2020122121A1 true WO2020122121A1 (ja) | 2020-06-18 |
Family
ID=71076427
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2019/048494 WO2020122121A1 (ja) | 2018-12-11 | 2019-12-11 | 基板搬送装置及び基板搬送システム |
Country Status (4)
Country | Link |
---|---|
JP (1) | JP7154986B2 (ja) |
CN (1) | CN113195170B (ja) |
TW (1) | TWI719751B (ja) |
WO (1) | WO2020122121A1 (ja) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR102348259B1 (ko) * | 2021-05-31 | 2022-01-10 | (주) 티로보틱스 | 기판 이송 로봇을 진공 챔버 내에서 주행하기 위한 주행 로봇 |
KR102307687B1 (ko) * | 2021-06-25 | 2021-10-05 | (주) 티로보틱스 | 기판 이송 로봇을 진공 챔버 내에서 주행하기 위한 주행 로봇 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2001075965A1 (fr) * | 2000-04-05 | 2001-10-11 | Tokyo Electron Limited | Dispositif de traitement |
JP2004265947A (ja) * | 2003-02-24 | 2004-09-24 | Tokyo Electron Ltd | 搬送装置及び真空処理装置並びに常圧搬送装置 |
JP2007251090A (ja) * | 2006-03-20 | 2007-09-27 | Tokyo Electron Ltd | 真空処理装置の搬送位置合わせ方法、真空処理装置及びコンピュータ記憶媒体 |
JP2010147207A (ja) * | 2008-12-18 | 2010-07-01 | Tokyo Electron Ltd | 真空処理装置及び真空搬送装置 |
JP2012216614A (ja) * | 2011-03-31 | 2012-11-08 | Tokyo Electron Ltd | 基板処理装置 |
Family Cites Families (21)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3953751B2 (ja) * | 2001-05-28 | 2007-08-08 | Tdk株式会社 | ウェーハマッピング装置 |
CN1205652C (zh) * | 2001-06-01 | 2005-06-08 | S.E.S.株式会社 | 基板清洗系统 |
JP4850372B2 (ja) * | 2001-09-28 | 2012-01-11 | キヤノンアネルバ株式会社 | 基板処理装置 |
JP4354675B2 (ja) * | 2002-06-04 | 2009-10-28 | ローツェ株式会社 | 薄板状電子部品クリーン移載装置および薄板状電子製品製造システム |
JP2004263206A (ja) * | 2003-02-10 | 2004-09-24 | Fuyuutec Furness:Kk | 熱処理装置 |
JP4493955B2 (ja) * | 2003-09-01 | 2010-06-30 | 東京エレクトロン株式会社 | 基板処理装置及び搬送ケース |
JP2006052063A (ja) * | 2004-08-12 | 2006-02-23 | Murata Mach Ltd | 搬送台車システム |
JP4695406B2 (ja) * | 2005-02-10 | 2011-06-08 | パナソニック株式会社 | 部品実装装置及び部品実装方法 |
JP4606388B2 (ja) * | 2006-06-12 | 2011-01-05 | 川崎重工業株式会社 | 基板移載装置の搬送系ユニット |
JP4472005B2 (ja) * | 2008-04-24 | 2010-06-02 | キヤノンアネルバ株式会社 | 真空処理装置及び真空処理方法 |
EP2433299B1 (en) * | 2009-05-18 | 2022-10-26 | Brooks Automation US, LLC | Substrate container storage system |
KR101755047B1 (ko) * | 2009-05-18 | 2017-07-06 | 크로씽 오토메이션, 인코포레이티드 | 기판 컨테이너 보관 시스템과 연결하기 위한 일체형 시스템 |
JP2011134898A (ja) * | 2009-12-24 | 2011-07-07 | Tokyo Electron Ltd | 基板処理装置、基板処理方法及び記憶媒体 |
CN102064095A (zh) * | 2010-12-03 | 2011-05-18 | 孙丽杰 | 半导体基板加工设备 |
JP5609856B2 (ja) * | 2011-12-20 | 2014-10-22 | 株式会社安川電機 | 搬送ロボット |
JP6454201B2 (ja) * | 2015-03-26 | 2019-01-16 | 東京エレクトロン株式会社 | 基板搬送方法及び基板処理装置 |
JP2016219464A (ja) * | 2015-05-14 | 2016-12-22 | 株式会社日立ハイテクノロジーズ | 真空処理装置および搬送ロボット |
JP6270952B1 (ja) * | 2016-09-28 | 2018-01-31 | 株式会社日立国際電気 | 基板処理装置、半導体装置の製造方法および記録媒体。 |
JP6812264B2 (ja) * | 2017-02-16 | 2021-01-13 | 東京エレクトロン株式会社 | 真空処理装置、及びメンテナンス装置 |
JP2018174186A (ja) * | 2017-03-31 | 2018-11-08 | 東京エレクトロン株式会社 | 基板処理装置 |
KR102484165B1 (ko) * | 2017-03-31 | 2023-01-03 | 스미또모 가가꾸 가부시키가이샤 | 반송 시스템 및 반송 방법 |
-
2018
- 2018-12-11 JP JP2018231644A patent/JP7154986B2/ja active Active
-
2019
- 2019-12-11 TW TW108145341A patent/TWI719751B/zh active
- 2019-12-11 WO PCT/JP2019/048494 patent/WO2020122121A1/ja active Application Filing
- 2019-12-11 CN CN201980081248.6A patent/CN113195170B/zh active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2001075965A1 (fr) * | 2000-04-05 | 2001-10-11 | Tokyo Electron Limited | Dispositif de traitement |
JP2004265947A (ja) * | 2003-02-24 | 2004-09-24 | Tokyo Electron Ltd | 搬送装置及び真空処理装置並びに常圧搬送装置 |
JP2007251090A (ja) * | 2006-03-20 | 2007-09-27 | Tokyo Electron Ltd | 真空処理装置の搬送位置合わせ方法、真空処理装置及びコンピュータ記憶媒体 |
JP2010147207A (ja) * | 2008-12-18 | 2010-07-01 | Tokyo Electron Ltd | 真空処理装置及び真空搬送装置 |
JP2012216614A (ja) * | 2011-03-31 | 2012-11-08 | Tokyo Electron Ltd | 基板処理装置 |
Also Published As
Publication number | Publication date |
---|---|
JP2020096033A (ja) | 2020-06-18 |
TWI719751B (zh) | 2021-02-21 |
CN113195170B (zh) | 2023-12-22 |
JP7154986B2 (ja) | 2022-10-18 |
TW202029396A (zh) | 2020-08-01 |
CN113195170A (zh) | 2021-07-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR100927302B1 (ko) | 기판처리장치 | |
JP5068738B2 (ja) | 基板処理装置およびその方法 | |
US10086511B2 (en) | Semiconductor manufacturing systems | |
JP4980978B2 (ja) | 基板処理装置 | |
US20060182529A1 (en) | Transfer device and semiconductor processing system | |
JP6747136B2 (ja) | 基板処理装置 | |
JP2008258188A (ja) | 基板処理装置、基板処理方法及び記憶媒体 | |
US10872798B2 (en) | Substrate transfer mechanism, substrate processing apparatus, and substrate transfer method | |
JP2004349503A (ja) | 被処理体の処理システム及び処理方法 | |
US20140286733A1 (en) | Load port and efem | |
WO2020122121A1 (ja) | 基板搬送装置及び基板搬送システム | |
KR20080018205A (ko) | 기판 반송 로보트 및 처리 장치 | |
JP7210960B2 (ja) | 真空処理装置及び基板搬送方法 | |
US10229847B2 (en) | Substrate transfer chamber and container connecting mechanism with lid opening mechanisms | |
JPH09104982A (ja) | 基板処理装置 | |
JP2010034505A (ja) | 積層ロードロックチャンバおよびそれを備えた基板処理装置 | |
CN102332391A (zh) | 真空处理装置 | |
KR20180111545A (ko) | 처리 시스템 | |
KR20210054992A (ko) | 기판 처리 장치 및 기판 수납 용기 보관 방법 | |
WO2020122125A1 (ja) | ロードロックチャンバ | |
KR20060121008A (ko) | 수직형 다중 기판 처리 시스템 및 그 처리 방법 | |
JP2013197164A (ja) | 板状部材移動装置 | |
KR20220093801A (ko) | 스토커 장치 | |
WO2020122133A1 (ja) | 基板搬送装置 | |
JP7488442B2 (ja) | 搬送システム |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19896826 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 19896826 Country of ref document: EP Kind code of ref document: A1 |