WO2020122125A1 - ロードロックチャンバ - Google Patents

ロードロックチャンバ Download PDF

Info

Publication number
WO2020122125A1
WO2020122125A1 PCT/JP2019/048501 JP2019048501W WO2020122125A1 WO 2020122125 A1 WO2020122125 A1 WO 2020122125A1 JP 2019048501 W JP2019048501 W JP 2019048501W WO 2020122125 A1 WO2020122125 A1 WO 2020122125A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
wafer
load lock
lock chamber
substrate mounting
Prior art date
Application number
PCT/JP2019/048501
Other languages
English (en)
French (fr)
Inventor
準一 開田
Original Assignee
平田機工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 平田機工株式会社 filed Critical 平田機工株式会社
Priority to CN201980081286.1A priority Critical patent/CN113169107B/zh
Publication of WO2020122125A1 publication Critical patent/WO2020122125A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/677Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations

Definitions

  • the present invention relates to a load lock chamber, and more particularly to a load lock chamber compatible with multiple wafers.
  • the present application claims priority to Japanese Patent Application No. 2018-231645 filed on Dec. 11, 2018, the contents of which are incorporated herein by reference.
  • a substrate transfer apparatus having a load lock chamber is provided with an atmospheric transfer robot that takes out a wafer from a container that stores a substrate (hereinafter referred to as a wafer), transfers the wafer, and transfers the wafer.
  • the atmospheric transfer robot is capable of traveling along a traveling guide and has an end effector at its tip.
  • the atmospheric transfer robot extends and bends its arm unit to take out or reload the wafer with the end effector.
  • the substrate transfer device the wafer taken out by the end effector is transferred to the substrate aligner, and the wafer is aligned by the substrate aligner. As a result, the orientation of the wafer is adjusted to a predetermined orientation and the wafer is centered.
  • the wafer for which alignment has been completed is loaded into the load lock chamber through the opening by the atmospheric transfer robot. After the wafer is loaded into the load lock chamber, the opening on the atmosphere side is closed, and then the opening on the vacuum side is released. After that, the wafer is taken out by the vacuum robot in the transfer module chamber (vacuum chamber), transferred to the process device, and subjected to desired processing. After the processing is completed, the wafer is unloaded from the process apparatus, and is transferred to the atmospheric transfer robot by following the route reverse to that of the loading (see Patent Document 1).
  • the substrate transfer apparatus of Patent Document 1 loads and unloads wafers one by one through the opening of the load lock chamber.
  • a vacuum break that is, opening to the atmosphere is performed.
  • nitrogen gas is supplied into the load lock chamber.
  • the inside of the load lock chamber is agitated by the nitrogen gas, so that dust is inevitably generated.
  • a gate valve that closes the opening is opened and closed. Dust is generated by the contact of.
  • Most of the dust generated in the load lock chamber is due to the opening and closing of the gate valve. Therefore, in order to reduce the dust generation amount, it is preferable to minimize the operation of the gate valve.
  • the present invention has been made in view of the above circumstances, and an object of the present invention is to provide a load lock chamber that requires a small number of gate valve actuations and produces a small amount of dust.
  • a load lock chamber is provided with a housing having an opening through which a substrate is loaded and unloaded, a gate valve mechanism capable of hermetically sealing the opening, and provided inside the housing to mount the substrate.
  • a load lock chamber comprising: a multi-stage substrate placing part to be placed; an elevating mechanism for raising and lowering the substrate placing part; and a rotating mechanism for rotating the multi-stage substrate placing part around a vertical axis. ..
  • the substrate may be a semiconductor wafer
  • the multi-stage substrate mounting portion may be capable of mounting 25 semiconductor wafers at a time.
  • the rotation center axis of the rotation mechanism may be provided at a position offset from the center position of the multi-stage substrate mounting part.
  • the rotation center axis of the rotation mechanism may be provided at the center position of the multi-stage substrate mounting part.
  • the housing may have a polygonal shape in a plan view, and the openings may be provided on adjacent surfaces of the housing.
  • a multi-stage substrate placing part is provided inside the housing, and the multi-stage substrate placing part is configured to be movable up and down and rotatable.
  • FIG. 6 is a perspective view illustrating an example in which the ID is read along with the alignment of the orientations of the wafers placed on the first and second substrate mounting tables of the substrate transfer apparatus.
  • FIG. 6 is a perspective view illustrating an example in which the wafers of the first and second buffers of the substrate transfer device are placed on the first and second substrate mounting tables and the ID is read while the orientation of the wafers is aligned. It is a perspective view explaining the example which the atmospheric
  • the substrate transfer apparatus 10 includes a substrate transfer module (EFEM) 12, an atmospheric transfer robot 14, and a substrate aligner 15.
  • a plurality of load ports 13 are connected to the front surface (lower surface in FIG. 1) of the shell outer wall 22 of the substrate transfer module 12.
  • a plurality of load lock chambers 16 and 17 are provided on the rear surface (the upper surface in FIG. 1) of the shell outer wall 22 of the substrate transfer module 12, and a vacuum transfer module 18 is provided between the load lock chambers 16 and 17. .
  • the board transfer module 12 is provided with a guide mechanism 24 and a drive mechanism 220 on the shell inner wall 21 of the board transfer module 12.
  • the guide mechanism 24 is provided on the bottom surface of the shell inner wall 21 of the substrate transfer module 12, and includes a pair of guide rails 24a and 24b, and a rack 24c provided along one guide rail 24a (or 24b).
  • the drive mechanism 220 provided on the robot base portion 25 of the atmosphere transfer robot 14 has a pair of engaged portions (slider) 124a and 124b which engage with the guide rails 24a and 24b, respectively, and a pinion gear 225 which meshes with the rack 24c.
  • a drive source 224 for driving the pinion gear 225.
  • the rack and pinion using the rack 24c and the pinion gear 225 has been described as the linear mechanism for moving the transport robot 14 in the present embodiment, the present invention is not limited to this.
  • all linear motion mechanisms conventionally used for robot traveling can be replaced therewith.
  • the load port 13 is a device for opening and closing the door 32a of the FOUP 32.
  • the FOUP 32 is, for example, a container having 25 stages of mounting shelves and is mounted on the load port 13.
  • a semiconductor wafer (substrate) 35 is stored in each of 25 mounting shelves.
  • 25 semiconductor wafers 35 are stored in the FOUP 32 will be described, but the number of semiconductor wafers 35 stored in the FOUP 32 can be appropriately selected.
  • an atmosphere transfer robot 14 is provided inside the substrate transfer module 12.
  • the atmosphere transfer robot 14 includes a robot base 25, a pair of arm units 26 and 27, end effectors 28 and 29 provided at the tips of the arm units 26 and 27, and a substrate aligner 15 described later.
  • the robot base 25 is supported by the guide mechanism 24 so as to be movable in the substrate transfer module 12.
  • the atmospheric transfer robot 14 can access any of the plurality of load ports 13 and the load lock chambers 16 and 17.
  • a pair of arm units 26, 27 are supported by the robot base 25 so as to be rotatable and movable up and down.
  • the robot base 25 is provided with an elevating mechanism and a rotating mechanism (not shown) therein. As a result, the pair of arm units 26, 27 can be raised and lowered and rotated with respect to the robot base 25.
  • the first arm unit 26 includes a first arm 41 and a second arm 42 that are connected so as to be extendable and bendable.
  • the base of the first arm 41 is rotatably connected to the robot base 25, and the base of the second arm 42 is rotatably connected to the tip of the first arm 41.
  • the first end effector 28 is connected to the tip of the second arm 42.
  • the second arm unit 27 includes a third arm 45 and a fourth arm 46 that are connected so as to extend and bend.
  • the base of the third arm 45 is connected to the robot base 25.
  • the base of the fourth arm 46 is rotatably connected to the tip of the third arm 45.
  • the second end effector 29 is connected to the tip of the fourth arm 46.
  • the first end effector 28 includes an upper hand member (placement portion) 51 and a lower hand member (placement portion) 52.
  • the upper hand member 51 and the lower hand member 52 are arranged vertically in two stages with their relative positions fixed in the vertical direction and the horizontal direction.
  • the wafer 35 is placed on the upper hand member 51 and the lower hand member 52.
  • the second end effector 29 includes an upper hand member (mounting portion) 53 and a lower hand member (mounting portion) 54.
  • the upper hand member 53 and the lower hand member 54 are arranged in upper and lower two stages.
  • the wafer 35 is similarly placed on the upper hand member 53 and the lower hand member 54.
  • the second end effector 29 is arranged below the first end effector 28 so as to overlap with each other.
  • a substrate aligner 15 is provided on the upper portion 25 a of the robot base 25.
  • the substrate aligner 15 is provided integrally with the robot base 25.
  • the substrate aligner 15 includes one base portion 56, two substrate mounting bases 57 and 58, two notch portion detecting means 61 and 62, and one ID reading means 63.
  • the substrate aligner 15 is a dual aligner provided with two substrate mounting bases 57 and 58, and can align two wafers 35 substantially at the same time as described later.
  • one of the two substrate mounting tables 57 and 58 will be described as the first substrate mounting table 57, and the other will be described as the second substrate mounting table 58.
  • the detection means 61 and the cutout portion detection means 62 will be described as the other.
  • a first substrate mounting table 57 and a second substrate mounting table 58 are rotatably supported on the upper portion 56a of the base portion 56 with a space therebetween.
  • the wafer 35 of the first end effector 28 is mounted on the second substrate mounting table 58.
  • the wafer 35 of the second end effector 29 is placed on the first substrate platform 57.
  • the first arm unit 26 mounts the wafer 35 on the second substrate mounting table 58
  • the second arm unit 27 mounts the wafer 35 on the first substrate mounting table 57.
  • the first substrate mounting table 57 and the second substrate mounting table 58 are formed so that the wafers 35 mounted on the substrate mounting tables 57 and 58 can be arranged side by side in a horizontal plane.
  • a first cutout detecting means 61 is provided at one end portion (lower right end portion in FIG. 4) 56b on the first substrate mounting table 57 side, and the second substrate mounting table is provided.
  • a second notch detecting means 62 is provided at the other end (upper left end in FIG. 4) 56c on the 58 side.
  • the first notch portion detecting means 61 and the second notch portion detecting means 62 are provided so as to face the edges of the respective wafers 35 placed on the first substrate placing table 57 and the second substrate placing table 58, respectively. The positions of the notches in the circumferential direction of 35 are respectively detected.
  • one ID reading means 63 is provided between the first substrate mounting table 57 and the second substrate mounting table 58.
  • the ID reading means 63 is provided so that the upper surface thereof faces the upper portion 56a of the base portion 56.
  • the ID reading unit 63 reads, for example, the ID on the back surface of the edge of the wafer 35 placed on the first substrate placing table 57 and the second substrate placing table 58 to detect, for example, processing information and history of the wafer 35.
  • each wafer is rotated by rotating the first substrate mounting table 57 and the second substrate mounting table 58 while the wafer 35 is mounted on the first substrate mounting table 57 and the second substrate mounting table 58. 35 is rotated. Then, the first notch portion detecting means 61 and the second notch portion detecting means 62 detect the position of the notch portion (notch) provided at the edge of each wafer 35. Then, based on the detected information, the rotations of the first substrate mounting table 57 and the second substrate mounting table 58 are controlled, and the orientation of the wafer 35 is adjusted so that the notch portion comes to a predetermined position.
  • the wafers 35 are aligned so that the crystal orientation of each wafer 35 is oriented in an arbitrary direction. Further, the ID reading unit 63 reads the ID of each wafer 35, and the processing information and history of the wafer 35 are detected.
  • the two substrate mounting bases 57 and 58 are provided on the one base portion 56 of the substrate aligner 15. Further, one ID reading means 63 is provided between the two substrate mounting bases 57 and 58 to read the IDs of the respective wafers 35 mounted on the two substrate mounting bases 57 and 58 alternately. That is, the device cost can be suppressed by sharing the ID reading unit 63, which is an expensive detection device, in common.
  • the atmosphere transfer robot 14 is run, the robot base 25 is positioned in front of the desired load port 13, and the arm units 26 and 27 are directly opposed to the load port 13. After that, the atmosphere transfer robot 14 shown in FIG. 2 is driven to extend the arm units 26 and 27 toward the FOUP 32. Then, the wafer 35 accommodated in the FOUP 32 is picked up by the upper hand member 51 and the lower hand member 52 of the first end effector 28 and the upper hand member 53 and the lower hand member 54 of the second end effector 29. , The wafer 35 is transferred from the FOUP 32 to each hand member. After that, each arm unit 26, 27 is retracted toward the robot base 25, and the wafer 35 is taken out.
  • each arm unit 26, 27 is rotated with respect to the robot base 25, and each arm unit 26, 27 is directly opposed to the substrate aligner 15.
  • the wafer 35 mounted on the lower hand member 52 of the first end effector 28 will be referred to as “wafer 35A”
  • the wafer 35 mounted on the upper hand member 51 of the first end effector 28 will be referred to as “wafer 35C”.
  • the wafer 35 mounted on the lower hand member 54 of the second end effector 29 is referred to as a “wafer 35B”
  • the wafer 35 mounted on the upper hand member 53 of the second end effector 29 is referred to as a “wafer 35D”. explain.
  • the atmospheric transfer robot 14 is driven to extend the arm units 26 and 27 toward the substrate aligner 15. As shown in FIGS. 3 and 6A, the wafer 35 mounted on the lower hand member 52 of the first end effector 28 in the arm unit 26 is transferred to the first substrate mounting table 57. Thereafter, the robot base 25 is rotated, and the wafer 35C of the upper hand member 51 of the first end effector 28 is transferred to the second substrate mounting table 58. After that, the alignment of the wafers 35A and 35C is performed on both the substrate mounting tables 57 and 58.
  • the upper hand member 51 of the first end effector 28 in the arm unit 26 picks up the wafer 35C of the second substrate mounting table 58, and the lower hand member of the second end effector 29 in the arm unit 27.
  • the wafer 35B mounted on the substrate 54 is transferred to the second substrate mounting table 58.
  • the robot base 25 is rotated in the opposite direction, and the lower hand member 52 of the first end effector 28 in the arm unit 26 scoops up the wafer 35A on the first substrate mounting table 57, and the second end effector in the arm unit 27 is picked up.
  • the wafer 35D mounted on the upper hand member 53 of the actuator 29 is transferred to the first substrate mounting table 57. After that, the alignment of the wafers 35B and 35D is performed on both the substrate mounting bases 57 and 58.
  • the upper hand member 53 of the second end effector 29 in the arm unit 27 picks up the wafer 35D on the first substrate mounting table 57. Then, the robot base 25 is rotated, and the lower hand member 54 of the second end effector 29 of the arm unit 27 picks up the wafer 35B of the second substrate mounting table 58.
  • 35C is rotated.
  • the first notch portion detecting means 61 and the second notch portion detecting means 62 detect the notch portions of the wafers 35A and 35C.
  • the rotations of the first substrate mounting table 57 and the second substrate mounting table 58 are controlled based on the detected information, and the wafers 35A and 35C are aligned so that the cutout portions are located at predetermined positions.
  • the ID reading means 63 reads the IDs of the wafers 35A and 35C, and the processing information and history of the wafers 35A and 35C are detected.
  • the atmospheric transfer robot 14 is driven again to extend the arm units 26 and 27 toward the substrate aligner 15.
  • the wafer 35C whose alignment has been performed and whose ID has been read is picked up by the upper hand member 51 of the first end effector 28 from the second substrate mounting table 58 and transferred.
  • the robot base 25 is rotated again to extend the arm units 26 and 27 toward the substrate aligner 15.
  • the wafer 35A whose alignment has been performed and whose ID has been read is picked up by the lower hand member 52 of the first end effector 28 from the first substrate mounting table 57 and transferred.
  • the wafer 35B mounted on the first substrate mounting table 57 and the wafer 35D mounted on the second substrate mounting table 58 are separated. Is rotated.
  • the first notch portion detecting means 61 and the second notch portion detecting means 62 detect the notch portions of the wafers 35B and 35D.
  • the rotations of the first substrate mounting table 57 and the second substrate mounting table 58 are controlled, and the wafers 35B and 35D are aligned so that the cutout portions are located at predetermined positions.
  • the ID reading means 63 reads the IDs of the wafers 35A and 35C, and the processing information and history of the wafers 35A and 35C are detected.
  • the arm unit 27 is extended again toward the substrate aligner 15.
  • the wafer 35 ⁇ /b>B whose alignment has been performed and whose ID has been read is picked up by the upper hand member 53 of the second end effector 29 from the first substrate mounting table 57 and transferred.
  • the robot base 25 is rotated again to extend the arm unit 27 toward the substrate aligner 15.
  • the wafer 35D whose alignment has been performed and whose ID has been read is picked up by the lower hand member 54 of the first end effector 28 from the second substrate mounting table 58 and transferred.
  • the wafers 35C and 35A whose alignment has been performed and whose ID has been read are placed on the upper hand member 51 and the lower hand member 52 of the first end effector 28, respectively. Further, the wafers 35B and 35D whose alignment has been performed and whose ID has been read are placed on the upper hand member 53 and the lower hand member 54 of the second end effector 29, respectively. That is, the alignment of all the wafers 35A to 35D placed on each hand member is completed. After that, the atmospheric transfer robot 14 is moved to position the robot base 25 in front of the desired load lock chamber 16 (or 17). After that, the atmospheric transfer robot 14 is driven so that the arm units 26 and 27 are directly opposed to the load lock chamber 16.
  • each arm unit 26, 27 is extended toward the load lock chamber 16.
  • Wafers 35C, 35A, 35B and 35D placed on the upper and lower hand members 51 and 52 of the first end effector 28 and the upper and lower hand members 53 and 54 of the second end effector 29 are collectively loaded into the first load. It is carried into the lock chamber 16 (or the second load lock chamber 17).
  • the second load lock chamber 17 is shown in FIG.
  • the alignment of the wafer 35 and the traveling of the atmospheric transfer robot 14 are performed in parallel, so that the cycle time is shortened and the throughput is improved.
  • the atmospheric transfer robot 14 since the atmospheric transfer robot 14 is provided so as to be freely movable, unlike a conventional fixed transfer type transfer robot in the conventional substrate transfer apparatus, one load robot 13 can handle all the load ports 13. And both load lock chambers 16 and 17 can be covered. Therefore, the operating rate per atmospheric transfer robot is increased, and the device cost can be suppressed.
  • the robot base 25 of the atmosphere transfer robot 14 is integrally provided with a substrate aligner 15 capable of aligning two wafers 35, and the substrate aligner 15 always follows the traveling of the atmosphere transfer robot 14. Therefore, the wafer 35 can be aligned while the atmospheric transfer robot 14 is running. Therefore, the cycle time of the substrate transfer apparatus 10 is shortened and the throughput is improved.
  • the operation of the atmospheric transfer robot 14 (see FIG. 2) is temporarily stopped (idle time occurs).
  • the substrate aligner 15 is provided with the two substrate mounting bases 57 and 58, and the two wafers 35 can be simultaneously aligned in parallel. Therefore, in the substrate transfer apparatus 10 of the present embodiment, the idle time of the atmospheric transfer robot 14 is halved as compared with the conventional substrate transfer apparatus in which the substrate mounting table has one substrate aligner. As a result, it is possible to shorten the cycle time of the substrate transfer apparatus during continuous processing of the wafer 35, and thus improve the throughput.
  • the substrate aligner 15 is provided with a first buffer 64a and a second buffer 64b above the first substrate mounting table 57 and the second substrate mounting table 58, and aligns four wafers 35 in a vertical arrangement. Can be done at once. Therefore, the throughput of the substrate transfer device can be further improved.
  • two load lock chambers 16 and 17 are connected to the other long wall 22b of the shell outer wall 22 of the substrate transfer module 12.
  • the first load lock chamber 16 is the first load lock chamber 16
  • the second load lock is the first load lock chamber 16
  • the first and second load lock chambers 16 and 17 are symmetrical with respect to the vacuum transfer module 18.
  • the second load-lock chamber 17 will be denoted by the same reference numerals as the constituent members of the first load-lock chamber 16, and detailed description of the second load-lock chamber 17 will be omitted.
  • the first load lock chamber 16 includes a housing 71, a first gate valve mechanism (gate valve mechanism) 72, a second gate valve mechanism (gate valve mechanism) 73, and a multistage.
  • the substrate mounting portion 74 and the lifting/lowering rotation unit 75 are provided.
  • the housing 71 has a quadrangular shape as a polygonal shape in a plan view, and has a first surface 71a, a second surface 71b, a third surface 71c, and a fourth surface 71d.
  • the case 71 has a quadrangular shape in plan view, but the case 71 may have another polygonal shape.
  • the first surface 71a is a surface that is connected to the other long wall 22b of the shell outer wall 22 of the substrate transfer module 12.
  • a first opening (opening) 77 is formed on the first surface 71a.
  • the second surface 71b is a surface adjacent to the first surface 71a.
  • a second opening (opening) 78 is formed on the second surface 71b. In this way, the first opening 77 and the second opening 78 are provided in the adjacent first surface 71a and second surface 71b, respectively.
  • the first opening 77 and the second opening 78 allow the upper and lower hand members 51, 52 of the first end effector 28 and the upper and lower hand members 53 of the second end effector 29 to cover the four wafers 35 at a time. It has a height high enough to be passed with 54.
  • the number of hand members in each of the first end effector 28 and the second end effector 29 is two will be described as an example, but the present invention is not limited to this. Absent.
  • the number of hand members may be three or more.
  • the substrate aligner 15 includes two buffers on each of the left and right sides, and the first opening 77 and the second opening 78 can transfer six wafers 35 at a time. It has sufficient height.
  • the wafer 35 is transferred from the substrate transfer module 12 side through the first opening 77 into the inside of the first load lock chamber 16 (multi-step substrate mounting part 74) by the atmospheric transfer robot 14 (direction of arrow A). ). Then, the wafer 35 inside the first load lock chamber 16 is taken out through the second opening 78 by the vacuum transfer robot (not shown) in the vacuum transfer module 18 (direction of arrow B). The vacuum transfer robot is rotatably supported inside the vacuum transfer module 18 about a rotary shaft 81. When the wafer 35 is transferred from the vacuum transfer module 18 to the substrate transfer module 12 via the first load lock chamber 16, the wafer 35 is transferred in the order of arrow C direction and arrow D direction.
  • an intersecting angle ⁇ 1 between the loading direction (arrow A direction) of the wafer 35 and the loading direction (arrow B direction) of the wafer 35 is 90° (right angle). That is, the path for loading and unloading the wafer 35 is L-shaped. Accordingly, when the vacuum transfer module 18 is connected to the first load lock chamber 16, the installation position of the vacuum transfer module 18 becomes as close as possible to the substrate transfer module 12 side. As a result, the gap (space) between the substrate transfer module 12 and the vacuum transfer module 18 becomes smaller, and the dead space becomes smaller. Therefore, the overall length and depth of the substrate transfer module 12 and the vacuum transfer module 18, that is, the footprints are reduced, and the volume of the shell (not shown) forming the clean space can be reduced accordingly.
  • the wafer 35 taken out by the vacuum transfer robot in the vacuum transfer module 18 is transferred to the transfer module chamber (vacuum chamber).
  • the transfer module chamber is connected to the surface of the vacuum transfer module 18 opposite to the substrate transfer module 12.
  • the vacuum transfer robot can be made to face the transfer module chamber only by rotating the vacuum transfer robot at the rotation angle ⁇ 2 of 90°.
  • the crossing angle ⁇ 1 is larger than 90°, for example, 120 to 150°.
  • the rotation angle ⁇ 2 of the vacuum transfer robot at this time is 120 to 150°. That is, in the substrate transfer apparatus 10 according to the present embodiment, the rotation angle ⁇ 2 of the vacuum transfer robot can be made smaller than in the conventional case.
  • the cycle time from the start of rotation to the end of rotation of the vacuum transfer robot can be shortened as the rotation angle becomes smaller.
  • the cycle time can be shortened in the process of taking out the wafer 35 from the second opening 78 by the vacuum transfer robot and loading it into the transfer module.
  • the four wafers 35 are put together by the first end effector 28 and the second end effector 29 of the atmospheric transfer robot 14, and the first opening 77 is formed. It is carried in and out via. That is, the four wafers 35 mounted on the upper hand member 51 and the lower hand member 52 of the first end effector 28 and the upper hand member 53 and the lower hand member 54 of the second end effector 29 shown in FIG. It is carried into the first load lock chamber 16 through the first opening 77. In addition, between the first load lock chamber 16 and the vacuum transfer module 18, the wafer 35 is loaded and unloaded through the second opening 78 by the vacuum transfer robot.
  • the respective second openings 78 of the first load lock chamber 16 and the second load lock chamber 17 are provided at opposite positions. Both second openings 78 are openings connected to the vacuum transfer module 18. Accordingly, the vacuum transfer module 18 can be arranged in the space between the first load lock chamber 16 and the second load lock chamber 17. This allows the vacuum transfer module 18 to be arranged at a position adjacent to the other long wall 22b of the shell outer wall 22 of the substrate transfer module 12.
  • the first opening 77 can be opened and closed by the first gate valve mechanism 72 and can be hermetically sealed.
  • the first gate valve mechanism 72 includes a first gate valve 84 and a first opening/closing mechanism (not shown).
  • the first gate valve 84 is supported so as to be vertically movable between a closed position that closes the first opening 77 and an open position that opens the first opening 77.
  • a first opening/closing mechanism is connected to the first gate valve 84. By operating the first opening/closing mechanism, the first gate valve 84 is moved up and down, and the first opening 77 is opened/closed. When the first opening 77 is closed by the first gate valve 84, the first opening 77 is hermetically sealed by the first gate valve 84.
  • the second opening 78 can be opened and closed by the second gate valve mechanism 73 and can be hermetically sealed.
  • the second gate valve mechanism 73 includes a second gate valve 85 and a second opening/closing mechanism 86.
  • the second gate valve 85 is movably supported between a closed position that closes the second opening 78 and an open position that opens the second opening 78.
  • a second opening/closing mechanism 86 is connected to the second gate valve 85. By operating the second opening/closing mechanism 86, the second gate valve 85 is moved up and down, and the second opening 78 is opened/closed. When the second opening 78 is closed by the second gate valve 85, the second opening 78 is hermetically sealed by the second gate valve 85.
  • a multi-stage substrate mounting portion 74 is provided inside the housing 71.
  • the multi-stage substrate mounting portion 74 includes, for example, a shelf that can store 25 wafers 35 at a time and that is arranged in at least 25 stages in the vertical direction.
  • the FOUP cassette 32 can accommodate 25 wafers 35. Therefore, the multi-stage substrate mounting portion 74 can store the wafers 35 of the FOUP cassette 32 at one time.
  • 25 semiconductor wafers 35 are stored in the multi-stage substrate placing section 74 will be described, but the number of semiconductor wafers 35 stored in the multi-stage substrate placing section 74 can be appropriately selected.
  • An elevating/rotating unit 75 is connected to the multi-layered substrate placement part 74.
  • the elevating and rotating unit 75 includes an elevating mechanism 75a and a rotating mechanism 75b.
  • the elevating mechanism 75a is a mechanism for elevating and lowering the multi-stage substrate placing section 74.
  • the elevating mechanism 75a is a mechanism for elevating and lowering the multi-stage substrate placing section 74.
  • the entire substrate mounting portion 74 is moved by the elevating mechanism 75a. Is raised by 4 steps.
  • four new wafers 35 are transferred to the substrate mounting portion 74, and this process is sequentially repeated, so that the wafers 35 are transferred and accommodated in all desired stages of the substrate mounting portion 74.
  • the reverse process to this step is performed. Done in steps.
  • the first gate valve The number of times of opening and closing of 84 is once.
  • the number of times of opening and closing the gate valve in the entire wafer processing process is naturally 25 times. As described above, most of the dust generation in the load lock chamber is due to the contact between the gate valve and the seal member provided in the opening.
  • the load lock chamber of the present embodiment In the load lock chamber of the present embodiment, the number of times of opening/closing the gate valve in the entire wafer processing process is 1/25 as compared with the conventional load lock chamber. Therefore, the load lock chamber of the present embodiment has a significantly smaller dust generation amount and a higher degree of cleanliness than the conventional load lock chamber. Further, the load lock chamber of the present embodiment can load four wafers 35 from the substrate transfer module 12 to the multi-stage substrate mounting portions 74 at once, so that the cycle time of wafer loading is short, Good throughput.
  • the rotating mechanism 75b rotates the multi-stage substrate platform 74 around a vertical axis (that is, a center axis of rotation) 88.
  • the multi-stage substrate placing part 74 is provided at a position where the center position 89 of the multi-stage substrate placing part 74 is offset from the rotation center axis 88 toward the substrate transport module 12 side by L2.
  • the center of the wafer 35 is located at the center position 89 of the multi-stage substrate placing portion 74. That is, the wafer 35 is in a position offset from the rotation center shaft 88 of the rotation mechanism 75b toward the first opening 77 side in a state of being placed on the multi-stage substrate placement portion 74.
  • the entire substrate mounting part 74 is rotated by 90° toward the vacuum transfer module 18 side by the rotating mechanism 75b. After that, the wafer 35 is taken out from the substrate platform 74 by the vacuum transfer robot in the vacuum transfer module 18.
  • upper and lower two-stage hand members may be provided in both arm units of the vacuum transfer robot, similarly to the atmosphere transfer robot 14. As a result, four wafers 35 from any four stages of the substrate mounting portion 74 are taken out at once by the vacuum transfer robot via the second opening 78. After that, the entire substrate platform 74 is lowered by four steps by the elevating mechanism 75a.
  • the substrate aligner 15 is provided on the base portion 56 with the two substrate mounting bases 57 and 58 collectively, and one ID reading means 63 is also used for reading the ID of each wafer 35.
  • the present invention is not limited to this.
  • two existing single aligners may be arranged side by side as the substrate aligner.
  • the substrate aligner of this modification is also a dual aligner having two substrate mounting tables, and it is possible to align two wafers 35 almost at the same time.
  • the existing aligner is provided with one substrate mounting table, one notch detecting means, and an ID reading means on one base.
  • a conventional or existing aligner can be applied to the substrate aligner as it is, so that the substrate aligner can be easily procured and the IDs of the two wafers 35 can be read independently. Therefore, the throughput is further increased as compared with the present embodiment.
  • the present invention is not limited to this.
  • the rotation center shaft 88 of the rotation mechanism 75b and the center position 89 of the multi-stage substrate mounting portion 74 can be provided coaxially.
  • the rotating mechanism 75b and the multi-stage substrate placing portion 74 have the same axial center, so that the multi-step substrate placing portion 74 rotates in a stable state by the rotating mechanism 75b.
  • the offset is not necessary, so that the plane area of the load lock chamber can be reduced, and the chamber internal volume can be reduced.
  • the load lock chamber of the present embodiment has a low apparatus cost and a short vacuuming time, that is, good throughput.
  • the substrate aligner 15 includes two temporary substrate placing portions 64.
  • the temporary substrate placing portion 64 is provided on the upper portion of the base portion 56.
  • the temporary substrate rest part 64 is arranged above the first substrate rest 57 and the second substrate rest 58.
  • the substrate temporary placing unit 64 includes a first buffer 64a arranged above the first substrate mounting table 57 and a second buffer 64b arranged above the second substrate mounting table 58.
  • the first buffer 64a is an annular frame member and is capable of dropping and picking up the wafer 35 of the upper hand member 51 (see FIG. 3) of the first end effector 28.
  • the annular frame member may be either a continuous frame member having only a part of the notch or an assembly of a plurality of discontinuous frame members.
  • the second buffer 64b has the same configuration as the first buffer 64a.
  • the wafer 35 mounted on the lower hand member 52 of the first end effector 28 will be referred to as “wafer 35A”, and the wafer 35 mounted on the upper hand member 51 of the first end effector 28 will be referred to as “wafer 35C”.
  • the wafer 35 mounted on the lower hand member 54 of the second end effector 29 is referred to as a “wafer 35B”
  • the wafer 35 mounted on the upper hand member 53 of the second end effector 29 is referred to as a “wafer 35D”.
  • the arm units 26 and 27 are rotated with respect to the robot base 25, and the arm units 26 and 27 are made to face the substrate aligner 15.
  • the atmospheric transfer robot 14 is driven to extend the arm units 26 and 27 toward the substrate aligner 15.
  • the wafer 35A mounted on the lower hand member 52 of the first end effector 28 in the arm unit 26 is transferred to the first substrate mounting table 57, and the first end effector 28 is transferred.
  • the wafer 35C of the upper hand member 51 is transferred to the first buffer 64a (see FIG. 5).
  • the second end effector 29 in the arm unit 27 is placed on the lower hand member 54 at the same timing as the transfer by the arm unit 26 (or almost the same with a slight time difference).
  • the wafer 35B is transferred to the second substrate mounting table 58, and the wafer 35D of the upper hand member 53 of the second end effector 29 is transferred to the second buffer 64b (see FIG. 5).
  • the wafer 35A mounted on the first substrate mounting table 57 and the wafer 35B mounted on the second substrate mounting table 58 rotate.
  • the first notch portion detecting means 61 and the second notch portion detecting means 62 detect the notch portions of the wafers 35A and 35B. Then, based on the detected information, the rotations of the first substrate mounting table 57 and the second substrate mounting table 58 are controlled, and the alignment of the wafers 35A and 35B is adjusted so that the cutout portion is located at a predetermined position.
  • the ID reading means 63 reads the IDs of the wafers 35A and 35B, and the processing information and history of the wafers 35A and 35B are detected.
  • the atmospheric transfer robot 14 is driven again to extend the arm units 26 and 27 toward the substrate aligner 15.
  • the wafer 35A whose alignment has been performed and whose ID has been read is transferred from the first substrate mounting table 57 to the lower hand member 52 of the first end effector 28, and the wafer 35C is transferred from the first buffer 64a to the first end effector. 28 is transferred to the upper hand member 51.
  • the wafer 35B whose alignment has been performed and whose ID has been read is transferred from the second substrate mounting table 58 to the lower hand member 54 of the second end effector 29, 35D is transferred from the second buffer 64b to the upper hand member 53 of the second end effector 29.
  • the elevating mechanism (not shown) of the atmospheric transfer robot 14 is driven to lower the pair of arm units 26 and 27, and at the same time, the arm units 26 and 27 are extended again toward the substrate aligner 15.
  • the wafer 35C is transferred from the upper hand member 51 of the first end effector 28 to the first substrate mounting table 57.
  • the wafer 35D is transferred from the upper hand member 53 of the second end effector 29 to the second substrate mounting table 58 at the same timing as the transfer of the wafer 35C.
  • the wafer 35C mounted on the first substrate mounting table 57 and the wafer 35D mounted on the second substrate mounting table 58 are separated. Is rotated.
  • the first notch portion detecting means 61 and the second notch portion detecting means 62 detect the notch portions of the wafers 35C and 35D.
  • the rotations of the first substrate mounting table 57 and the second substrate mounting table 58 are controlled, and the alignment of the wafers 35C and 35D is adjusted so that the cutout portion is located at a predetermined position.
  • the ID reading means 63 reads the IDs of the wafers 35C and 35D, and the processing information and history of the wafers 35C and 35D are detected.
  • each arm unit 26, 27 is extended again toward the substrate aligner 15.
  • the wafer 35C for which the alignment has been performed and the ID has been read is transferred from the first substrate mounting table 57 to the upper hand member 51 of the first end effector 28.
  • the alignment is performed and the ID-read wafer 35D is transferred from the second substrate mounting table 58 to the upper hand member 53 of the second end effector 29.
  • the wafers 35C and 35A whose alignment has been performed and whose ID has been read are placed on the upper hand member 51 and the lower hand member 52 of the first end effector 28, respectively.
  • the wafers 35D and 35B from which the IDs have been read are placed on the upper hand member 53 and the lower hand member 54 of the second end effector 29, respectively, in which the orientation is aligned. That is, the alignment of all the wafers 35A to 35D placed on each hand member is completed.
  • the wafers 35B, 35A, 35D and 35C mounted on the upper and lower hand members 51 and 52 of the first end effector 28 and the upper and lower hand members 53 and 54 of the second end effector 29. are collectively loaded into the first load lock chamber 16 (or the second load lock chamber 17).
  • the embodiment of the present invention has been described in detail above with reference to the drawings. However, the specific configuration is not limited to this embodiment, and any design change that does not depart from the gist of the present invention can be applied to the present invention. included.
  • the substrate transfer apparatus 10 of the present embodiment the example in which the substrate aligner 15 is provided with the two substrate mounting bases 57 and 58 has been described, but as another example, it is also possible to provide three or more substrate mounting bases. is there.
  • the first modification an example in which two existing aligners are arranged as the substrate aligner 15 has been described, but it is also possible to provide three or more existing aligners.

Abstract

ゲートバルブの作動回数が少なくて済み、発塵量の少ないロードロックチャンバを提供する。そのロードロックチャンバは、基板が搬入出される開口部を有する筐体と、前記開口部を気密に封止可能なゲートバルブ機構と、前記筐体の内部に設けられ、前記基板が載置される多段の基板載置部と、前記基板載置部を昇降させる昇降機構と、多段の前記基板載置部を、鉛直軸回りに回動させる回動機構とを備えている。

Description

ロードロックチャンバ
 本発明は、ロードロックチャンバに係り、マルチウエハ対応のロードロックチャンバに関する。
 本願は、2018年12月11日に出願された特願2018-231645号に対して優先権を主張し、その内容をここに援用する。
 ロードロックチャンバを備えた基板搬送装置は、その内部に、基板(以下、ウエハという)を収容する容器からウエハを取り出し、移載及び搬送を行う大気搬送ロボットを備える。大気搬送ロボットは、走行ガイドに沿って走行可能であり、その先端にエンドイフェクタを備える。大気搬送ロボットは、そのアームユニットを伸長・屈曲させることで、エンドイフェクタでウエハを取り出したり、載せ直したりする。基板搬送装置では、エンドイフェクタで取り出したウエハが基板アライナに受け渡され、基板アライナによりウエハのアライメントが行われる。これにより、ウエハの向きが所定の向きに調整されるとともに、ウエハの心出しが行われる。
 アライメントが終了したウエハは、大気搬送ロボットにより、ロードロックチャンバの内部に、開口部を通じて搬入される。ウエハがロードロックチャンバ内に搬入された後、大気側の開口部が閉じられ、その後、真空側の開口部が解放される。その後、搬送モジュールチャンバ(真空チャンバ)内の真空ロボットによりウエハが取り出され、プロセス装置に運ばれて所望の処理が施される。処理終了後のウエハは、プロセス装置から搬出され、搬入時と逆の経路をたどって大気搬送ロボットに受け渡される(特許文献1参照)。
特開2009-21504号公報
 特許文献1の基板搬送装置は、ウエハをロードロックチャンバの開口部を介して1枚ずつ搬入、搬出する。ここで、例えば、ロードロックチャンバにおける大気側の開口部からウエハを搬出する際に、真空ブレイク、すなわち大気開放が行われる。このとき、ロードロックチャンバ内に窒素ガスが供給される。この窒素ガスの供給により、窒素ガスでロードロックチャンバ内が攪拌されるため、どうしても発塵が生じる。
 また、例えば、ロードロックチャンバにおける大気側及び真空側の開口部から基板を搬入、搬出する際に、開口部を閉塞するゲートバルブが開閉されるが、ゲートバルブと開口部に設けたシール部材との接触により、発塵が生じる。ロードロックチャンバにおける発塵の大部分は、このゲートバルブ開閉時に起因するものであるため、発塵量を少なくするには、ゲートバルブの作動をできるだけ少なくすることが好ましい。
 本発明は上記の事情に鑑みてなされたもので、ゲートバルブの作動回数が少なくて済み、発塵量の少ないロードロックチャンバを提供することを目的としている。
 本発明に係るロードロックチャンバは、基板が搬入出される開口部を有する筐体と、前記開口部を気密に封止可能なゲートバルブ機構と、前記筐体の内部に設けられ、前記基板が載置される多段の基板載置部と、前記基板載置部を昇降させる昇降機構と、多段の前記基板載置部を、鉛直軸回りに回動させる回動機構とを備えるロードロックチャンバである。
 本発明に係るロードロックチャンバにおいて、前記基板は半導体ウエハであり、多段の前記基板載置部は25枚の半導体ウエハを一度に載置可能であるとしてもよい。
 本発明に係るロードロックチャンバにおいて、前記回動機構の回動中心軸を、多段の前記基板載置部の中心位置からオフセットした位置に設けてもよい。
 本発明に係るロードロックチャンバにおいて、前記回動機構の回動中心軸を、多段の前記基板載置部の中心位置に設けてもよい。
 本発明に係るロードロックチャンバにおいて、前記筐体は、平面視が多角形を呈しており、前記筐体における隣接する面に前記開口部がそれぞれ設けられてもよい。
 本発明によれば、筐体の内部に多段の基板載置部を設け、多段の基板載置部を昇降可能で回動可能に構成した。これにより、ゲートバルブの作動回数を少なくすることができ、発塵量の少ないロードロックチャンバを得ることができる。
本発明に係る基板搬送装置を示す平面図である。 図1のII部拡大図である。 図2のIII部拡大図である。 基板搬送装置の基板アライナを示す斜視図である。 基板搬送装置の基板アライナを示す正面図である。 基板搬送装置の第1基板載置台及び第1バッファにウエハを載せる例を説明する斜視図である。 基板搬送装置の第1、第2の基板載置台に載せたウエハの向きの位置合わせとともにIDの読み取りを行う例を説明する斜視図である。 基板搬送装置の第1、第2のバッファのウエハを第1、第2の基板載置台に載せてウエハの向きの位置合わせとともにIDの読み取りを行う例を説明する斜視図である。 基板搬送装置の第1の基板載置台におけるウエハを大気搬送ロボットが取り出した例を説明する斜視図である。 基板搬送装置の第1ロードロックチャンバを示す平面図である。 基板搬送装置の第1ロードロックチャンバ示す断面模式図である。
 本発明に係る基板搬送装置の実施形態について以下に説明する。
 図1に示すように、基板搬送装置10は、基板搬送モジュール(EFEM)12と、大気搬送ロボット14と、基板アライナ15とを備えている。基板搬送モジュール12における殻体外壁22の前面(図1中では下面)に複数のロードポート13が接続される。また、基板搬送モジュール12における殻体外壁22の後面(図1中では上面)に、複数のロードロックチャンバ16,17が設けられるとともに、ロードロックチャンバ16,17間に真空搬送モジュール18が設けられる。
 基板搬送モジュール12には、基板搬送モジュール12の殻体内壁21にガイド機構24及び駆動機構220が設けられている。ガイド機構24は、基板搬送モジュール12における殻体内壁21の底面に設けられ、一対のガイドレール24a,24bと、一方のガイドレール24a(又は24b)に沿って設けられるラック24cと、を備える。また、大気搬送ロボット14のロボット基部25に設けられる駆動機構220は、ガイドレール24a,24bとそれぞれ係合する一対の被係合部(スライダ)124a,124bと、ラック24cに噛合するピニオンギア225と、ピニオンギア225を駆動する駆動源224と、を備える。本実施の形態においては、搬送ロボット14を走行させる直動機構として、ラック24cとピニオンギア225を用いたラックアンドピニオンを挙げて説明を行ったが、これに限定するものではない。例えば、ロボット走行のために慣用的に用いられている全ての直動機構が、これに置換可能である。
 ロードポート13は、FOUP32のドア32aを開閉するための装置である。FOUP32は、例えば、25段の載置棚を有する容器であって、ロードポート13に載置される。25段の載置棚のそれぞれに半導体ウエハ(基板)35が格納される。なお、本実施形態では、FOUP32に25枚の半導体ウエハ35を格納する例について説明するが、FOUP32に格納する半導体ウエハ35の枚数は適宜選択可能である。
 FOUP32のドア32aをロードポート13にて開放することにより、FOUP32に格納された半導体ウエハ35が殻体内壁21に面するようになり、FOUP32と大気搬送ロボット14との間において半導体ウエハ35の受け渡しが可能になる。
 図2に示すように、基板搬送モジュール12の内部には、大気搬送ロボット14が設けられている。大気搬送ロボット14は、ロボット基部25と、一対のアームユニット26,27と、各アームユニット26,27の先端に設けられるエンドイフェクタ28,29と、後述する基板アライナ15とを備えている。
 ロボット基部25は、ガイド機構24により基板搬送モジュール12内において走行自在に支持されている。これにより、大気搬送ロボット14は、複数のロードポート13及びロードロックチャンバ16,17のいずれに対してもアクセス自在となる。ロボット基部25に対して一対のアームユニット26,27が回転自在に、かつ昇降自在に支持されている。また、ロボット基部25は、その内部に図示しない昇降機構及び回動機構を備えている。これらにより、ロボット基部25に対して、一対のアームユニット26,27が昇降及び旋回自在とされる。
 図3に示すように、一対のアームユニット26,27のうち、第1アームユニット26は、伸長・屈曲可能に連結された第1アーム41及び第2アーム42を備えている。具体的には、第1アーム41の基部がロボット基部25に回転自在に連結され、第1アーム41の先端に第2アーム42の基部が回動自在に連結されている。また、第2アーム42の先端に第1エンドイフェクタ28が連結されている。
 第2アームユニット27は、第1アームユニット26と同様に、伸長・屈曲可能に連結された第3アーム45及び第4アーム46を備えている。具体的には、第3アーム45の基部がロボット基部25に連結されている。第3アーム45の先端に第4アーム46の基部が回動自在に連結されている。また、第4アーム46の先端に第2エンドイフェクタ29が連結されている。
 第1エンドイフェクタ28は、上ハンド部材(載置部)51と、下ハンド部材(載置部)52とを備えている。上ハンド部材51及び下ハンド部材52は、上下方向及び水平方向における相対的位置が固定された状態で上下二段に配置されている。上ハンド部材51及び下ハンド部材52上にウエハ35が載置される。
 第2エンドイフェクタ29は、第1エンドイフェクタ28と同様に、上ハンド部材(載置部)53と、下ハンド部材(載置部)54とを備えている。上ハンド部材53及び下ハンド部材54は、第1エンドイフェクタ28の上ハンド部材51及び下ハンド部材52と同様に、上下二段に配置されている。また、上ハンド部材53及び下ハンド部材54上にも、同様にウエハ35が載置される。
 第1アームユニット26と第2アームユニット27とが屈曲された状態(図3の状態)において、第1エンドイフェクタ28の下方に第2エンドイフェクタ29が重なるように配置される。
 図2、図4及び図5に示すように、ロボット基部25の上部25aに基板アライナ15が備えられている。言い換えると、基板アライナ15はロボット基部25と一体に設けられている。基板アライナ15は、1つのベース部56と、2つの基板載置台57,58と、2つの切欠き部検出手段61,62と、1つのID読み取り手段63とを備えている。この基板アライナ15は、2つの基板載置台57,58を備えたデュアルアライナであり、後述するように2枚のウエハ35をほぼ同時にアライメントすることが可能である。以下、2つの基板載置台57,58の一方を第1基板載置台57、他方を第2基板載置台58として説明し、2つの切欠き部検出手段61,62の一方を第1切欠き部検出手段61、他方を切欠き部検出手段62として説明する。
 ベース部56の上部56aには、第1基板載置台57及び第2基板載置台58が間隔をおいて回転自在に支持されている。第2基板載置台58には第1エンドイフェクタ28のウエハ35が載置される。第1基板載置台57には第2エンドイフェクタ29のウエハ35が載置される。言い換えると、第1アームユニット26がウエハ35を第2基板載置台58に載置し、第2アームユニット27がウエハ35を第1基板載置台57に載置する。 第1基板載置台57及び第2基板載置台58は、各基板載置台57,58に載置されたウエハ35を水平面内に並べて配置可能に形成されている。
 また、ベース部56の上部56aにおいて、第1基板載置台57側の一端部(図4中では右下側端部)56bに第1切欠き部検出手段61が設けられ、第2基板載置台58側の他端部(図4中では左上側端部)56cに第2切欠き部検出手段62が設けられている。第1切欠き部検出手段61及び第2切欠き部検出手段62は、第1基板載置台57及び第2基板載置台58に載置された各ウエハ35のエッジに臨んでそれぞれ設けられ、ウエハ35の周方向における切欠き部の位置をそれぞれ検出する。
 さらに、ベース部56の上部56aにおいて、第1基板載置台57及び第2基板載置台58間に、1つのID読み取り手段63が設けられている。ID読み取り手段63は、その上面がベース部56の上部56aに臨んで設けられる。ID読み取り手段63は、第1基板載置台57及び第2基板載置台58に載置されたウエハ35のエッジ裏面のIDを読み取ることにより、例えばウエハ35の処理情報・履歴などを検出する。
 基板アライナ15によれば、第1基板載置台57及び第2基板載置台58にウエハ35を載置した状態において、第1基板載置台57及び第2基板載置台58を回転させることにより各ウエハ35が回転される。そして、第1切欠き部検出手段61及び第2切欠き部検出手段62により、各ウエハ35のエッジに設けられた切欠き部(ノッチ)の位置を検出する。そして、その検出情報を基に第1基板載置台57及び第2基板載置台58の回転を制御し、切欠き部が所定の位置にくるようにウエハ35の向きが調整される。これにより、各ウエハ35の結晶方位が任意の方向を向くように、ウエハ35がアライメントされる。また、ID読み取り手段63が各ウエハ35のIDを読み取り、ウエハ35の処理情報・履歴などが検出される。
 このように、基板アライナ15における1つのベース部56に、2つの基板載置台57,58が設けられている。また、2つの基板載置台57,58間に1つのID読み取り手段63を設け、2つの基板載置台57,58に載置された各ウエハ35のIDを交互に読み取らせている。すなわち、高額な検出機器であるID読み取り手段63を共用とし1つとすることで、装置コストを抑えることができる。
 次に、基板アライナ15によりウエハ35のアライメントを行い、ウエハ35のIDを読み取る例を図2、図3、図6A、図6B、図7A及び図7Bに基づいて説明する。
 大気搬送ロボット14を走行させ、ロボット基部25を所望のロードポート13の前に位置させるとともに、ロードポート13に各アームユニット26,27を正対させる。その後、図2に示す大気搬送ロボット14を駆動させ、各アームユニット26,27をFOUP32に向かって伸長させる。そして、FOUP32内に収容されるウエハ35を、第1エンドイフェクタ28の上ハンド部材51及び下ハンド部材52と、第2エンドイフェクタ29の上ハンド部材53及び下ハンド部材54とで掬い上げ、ウエハ35がFOUP32から各ハンド部材に移載される。その後、各アームユニット26,27をロボット基部25に向かって退縮させ、ウエハ35が取り出される。
 その後、ロボット基部25に対して各アームユニット26,27を回動させ、基板アライナ15に各アームユニット26,27を正対させる。
 以下、第1エンドイフェクタ28の下ハンド部材52に載置されるウエハ35を「ウエハ35A」、第1エンドイフェクタ28の上ハンド部材51に載置されるウエハ35を「ウエハ35C」とする。また、第2エンドイフェクタ29の下ハンド部材54に載置されるウエハ35を「ウエハ35B」、第2エンドイフェクタ29の上ハンド部材53に載置されるウエハ35を「ウエハ35D」として説明する。
 大気搬送ロボット14を駆動させ、各アームユニット26,27を基板アライナ15に向かって伸長させる。図3及び図6Aに示すように、アームユニット26における第1エンドイフェクタ28の下ハンド部材52に載置されるウエハ35が第1基板載置台57に移載される。その後、ロボット基部25を回動させ、第1エンドイフェクタ28の上ハンド部材51のウエハ35Cが第2基板載置台58に移載される。その後、両基板載置台57,58でウエハ35A,35Cのアライメントが行われる。
 1回目のアライメント終了後、アームユニット26における第1エンドイフェクタ28の上ハンド部材51で第2基板載置台58のウエハ35Cを掬い上げ、アームユニット27における第2エンドイフェクタ29の下ハンド部材54に載置されるウエハ35Bが第2基板載置台58に移載される。その後、ロボット基部25を反対向きに回動させ、アームユニット26における第1エンドイフェクタ28の下ハンド部材52で第1基板載置台57のウエハ35Aを掬い上げ、アームユニット27における第2エンドイフェクタ29の上ハンド部材53に載置されるウエハ35Dが第1基板載置台57に移載される。その後、両基板載置台57,58でウエハ35B,35Dのアライメントが行われる。
 2回目のアライメント終了後、アームユニット27における第2エンドイフェクタ29の上ハンド部材53で第1基板載置台57のウエハ35Dを掬い上げる。その後、ロボット基部25を回動させ、アームユニット27における第2エンドイフェクタ29の下ハンド部材54で第2基板載置台58のウエハ35Bを掬い上げる。
 ここで、基板アライナ15を駆動させ、第1基板載置台57及び第2基板載置台58を回転させることにより、第1基板載置台57に載るウエハ35Aと、第2基板載置台58に載るウエハ35Cが回転される。このウエハ35A及びウエハ35Cの回転により、第1切欠き部検出手段61及び第2切欠き部検出手段62が、各ウエハ35A,35Cの切欠き部を検出する。そして、その検出情報を基に第1基板載置台57及び第2基板載置台58の回転が制御され、切欠き部が所定の位置にくるようにウエハ35A,35Cがアライメントされる。また、このウエハ35A,35Cの回転の際、ID読み取り手段63が、各ウエハ35A,35CのIDを読み取り、各ウエハ35A,35Cの処理情報・履歴などが検出される。
 その後、大気搬送ロボット14を再び駆動させ、各アームユニット26,27を基板アライナ15に向かって伸長させる。アライメントが行われ、IDが読み取られたウエハ35Cが、第2基板載置台58から第1エンドイフェクタ28の上ハンド部材51で掬い上げられ、移載される。そして、ロボット基部25を再び回動させ、各アームユニット26,27を基板アライナ15に向かって伸長させる。アライメントが行われ、IDが読み取られたウエハ35Aが、第1基板載置台57から第1エンドイフェクタ28の下ハンド部材52で掬い上げられ、移載される。
 基板アライナ15を再び駆動させ、第1基板載置台57及び第2基板載置台58を回転させることにより、第1基板載置台57に載るウエハ35Bと、第2基板載置台58に載るウエハ35Dが回転される。このウエハ35B及びウエハ35Dの回転により、第1切欠き部検出手段61及び第2切欠き部検出手段62が、各ウエハ35B,35Dの切欠き部を検出する。そして、その検出情報を基に第1基板載置台57及び第2基板載置台58の回転が制御され、切欠き部が所定の位置にくるようにウエハ35B,35Dがアライメントされる。また、このウエハ35B,35Dの回転の際、ID読み取り手段63が、各ウエハ35A,35CのIDを読み取り、各ウエハ35A,35Cの処理情報・履歴などが検出される。
 その後、アームユニット27を基板アライナ15に向かって再び伸長させる。図3及び図7Bに示すように、アライメントが行われ、IDが読み取られたウエハ35Bが、第1基板載置台57から第2エンドイフェクタ29の上ハンド部材53で掬い上げられ、移載される。そして、ロボット基部25を再び回動させ、アームユニット27を基板アライナ15に向かって伸長させる。アライメントが行われ、IDが読み取られたウエハ35Dが、第2基板載置台58から第1エンドイフェクタ28の下ハンド部材54で掬い上げられ、移載される。
 これにより、第1エンドイフェクタ28の上ハンド部材51及び下ハンド部材52に、アライメントが行われ、IDが読み取られた各ウエハ35C,35Aがそれぞれ載せられる。また、第2エンドイフェクタ29の上ハンド部材53及び下ハンド部材54に、アライメントが行われ、IDが読み取られた各ウエハ35B,35Dがそれぞれ載せられる。すなわち、各ハンド部材に載置される全てのウエハ35A~35Dのアライメントが完了する。
 その後、大気搬送ロボット14を走行させ、ロボット基部25を所望のロードロックチャンバ16(又は17)の前に位置させる。その後、大気搬送ロボット14を駆動させ、ロードロックチャンバ16に各アームユニット26,27を正対させる。その後、各アームユニット26,27をロードロックチャンバ16に向かって伸長させる。第1エンドイフェクタ28の上下のハンド部材51,52、第2エンドイフェクタ29の上下のハンド部材53,54に載せられたウエハ35C,35A,35B,35Dは、4枚まとめて第1ロードロックチャンバ16(又は第2ロードロックチャンバ17)に搬入される。第2ロードロックチャンバ17は図1に示す。ここで、大気搬送ロボット14の走行、位置合わせは、ウエハ35のアライメント中に完了させておくことが好ましい。これによって、ウエハ35のアライメントと大気搬送ロボット14の走行とが並行してなされるため、サイクルタイムが短縮され、ひいてはスループットが向上する。
 本実施形態の基板搬送装置10においては、大気搬送ロボット14を走行自在に設けているため、従来の基板搬送装置における固定回動式の搬送ロボットと異なり、1台のロボットで全てのロードポート13及び両ロードロックチャンバ16,17をカバーすることができる。よって、大気搬送ロボット1台当たりの稼働率が高くなるとともに、装置コストを抑制することができる。そして、この大気搬送ロボット14におけるロボット基部25には、2枚のウエハ35をアライメント可能な基板アライナ15が一体に設けられており、基板アライナ15は大気搬送ロボット14の走行に常に追従する。このため、大気搬送ロボット14の走行中に、ウエハ35のアライメントを行うことができる。よって、基板搬送装置10のサイクルタイムが短縮され、スループットが向上する。
 また、基板アライナ15によるウエハ35のアライメントの間、大気搬送ロボット14(図2参照)の動作が一時停止する(アイドルタイムが生じる)。しかしながら、基板アライナ15は、図4及び図5に示すように、2つの基板載置台57,58を備えており、2枚のウエハ35のアライメントを同時並行に行うことができる。よって、本実施形態の基板搬送装置10は、基板載置台が1つの基板アライナを備えた従来の基板搬送装置と比較して、大気搬送ロボット14のアイドルタイムが半減する。これにより、ウエハ35の連続処理の際における基板搬送装置のサイクルタイムの短縮、ひいてはスループットの向上を図ることができる。さらに、この基板アライナ15は、第1基板載置台57及び第2基板載置台58の上方に、第1バッファ64a及び第2バッファ64bを備えており、上下段合わせて4枚のウエハ35のアライメントを一度に行うことができる。よって、基板搬送装置のスループットを更に向上させることできる。
 図1及び図2に戻って、基板搬送モジュール12の殻体外壁22のうち、他方の長壁22bに2つのロードロックチャンバ16,17が接続されている。以下、2つのロードロックチャンバ16,17のうち、真空搬送モジュール18の一方側に接続されるものを第1ロードロックチャンバ16、真空搬送モジュール18の他方側に接続されるものを第2ロードロックチャンバ17として説明する。
 また、第1、第2のロードロックチャンバ16,17は、真空搬送モジュール18に対して対称の構成である。以下、第2ロードロックチャンバ17に第1ロードロックチャンバ16の構成部材と同じ符号を付して、第2ロードロックチャンバ17の詳しい説明を省略する。
 図8及び図9に示すように、第1ロードロックチャンバ16は、筐体71と、第1ゲートバルブ機構(ゲートバルブ機構)72と、第2ゲートバルブ機構(ゲートバルブ機構)73と、多段の基板載置部74と、昇降回動ユニット75とを備える。
 筐体71は、平面視多角形状として四角形状を呈しており、第1面71aと、第2面71bと、第3面71cと、第4面71dと、を有する。本実施形態においては、筐体71として平面視四角形を例示するが、筐体71を他の多角形状とすることも可能である。
 第1面71aは、基板搬送モジュール12の殻体外壁22のうち、他方の長壁22bに接続される面である。第1面71aに第1開口部(開口部)77が形成されている。第2面71bは、第1面71aに隣接する面である。第2面71bに第2開口部(開口部)78が形成されている。このように、隣接する第1面71a及び第2面71bに第1開口部77及び第2開口部78がそれぞれ設けられている。第1開口部77及び第2開口部78は、4枚のウエハ35を一度に、第1エンドイフェクタ28の上下のハンド部材51,52及び第2エンドイフェクタ29の上下のハンド部材53,54と受け渡しできるだけの十分な高さを有する。
 ここで、本実施形態においては、第1エンドイフェクタ28及び第2エンドイフェクタ29におけるハンド部材の数が、それぞれ2本の場合を例に挙げて説明を行うが、これに限定するものではない。例えば、ハンド部材の数は3本又はそれ以上であってもよい。ハンド部材の数がそれぞれ3本の場合、基板アライナ15はバッファを左右それぞれ2個ずつ備え、また、第1開口部77及び第2開口部78は、6枚のウエハ35を一度に受け渡しできるだけの十分な高さを有する。
 大気搬送ロボット14により、ウエハ35が、基板搬送モジュール12側から第1開口部77を介して第1ロードロックチャンバ16の内部(多段の基板載置部74)に移載される(矢印A方向)。そして、第1ロードロックチャンバ16の内部のウエハ35は、真空搬送モジュール18における真空搬送ロボット(図示せず)により、第2開口部78を介して取り出される(矢印B方向)。真空搬送ロボットは、真空搬送モジュール18の内部に回転軸81を軸にして旋回自在に支持されている。ウエハ35を真空搬送モジュール18から第1ロードロックチャンバ16を介して基板搬送モジュール12に受け渡す際は、矢印C方向、矢印D方向の順にウエハ35が搬送される。
 ここで、ウエハ35の搬入方向(矢印A方向)とウエハ35の搬出方向(矢印B方向)の交差角θ1が90°(直角)である。すなわち、ウエハ35の搬入、搬出の経路はL字状となる。これによって、真空搬送モジュール18を第1ロードロックチャンバ16に対して接続する際、真空搬送モジュール18の設置位置が限りなく基板搬送モジュール12側に近くなる。その結果、基板搬送モジュール12と真空搬送モジュール18との間の隙間(空間)が小さくなり、デッドスペースが小さくなる。したがって、基板搬送モジュール12及び真空搬送モジュール18の全長、奥行き、すなわちフットプリントが小さくなり、その分だけ、クリーン空間を構成する殻体(図示せず)の容積を小さくすることができる。
 真空搬送モジュール18における真空搬送ロボットにより取り出されたウエハ35は、搬送モジュールチャンバ(真空チャンバ)に受け渡される。搬送モジュールチャンバは、真空搬送モジュール18における基板搬送モジュール12と反対側の面に接続される。このとき、真空搬送ロボットを90°の回動角θ2で回動させるだけで真空搬送ロボットを搬送モジュールチャンバに正対させることができる。ここで、従来の真空搬送ロボットにおいては、交差角θ1は90°よりも大きく、例えば、120~150°であった。このときの真空搬送ロボットの回動角θ2は120~150°となる。すなわち、本実施形態における基板搬送装置10においては、従来と比較して、真空搬送ロボットの回動角θ2を小さくすることができる。そのため、この回動角度が小さくなる分だけ、真空搬送ロボットの回動開始から回動終了までのサイクルタイムを短縮することができる。これにより、ウエハ35を真空搬送ロボットにより第2開口部78から取り出し、搬送モジュールに搬入する工程において、サイクルタイムを短縮することができる。
 一方、第1ロードロックチャンバ16及び基板搬送モジュール12間においては、大気搬送ロボット14の第1エンドイフェクタ28及び第2エンドイフェクタ29により4枚のウエハ35がまとめて、第1開口部77を介して搬入、搬出される。すなわち、図3に示す第1エンドイフェクタ28の上ハンド部材51及び下ハンド部材52、第2エンドイフェクタ29の上ハンド部材53及び下ハンド部材54に載る4枚のウエハ35が、まとめて第1開口部77から第1ロードロックチャンバ16に搬入される。
 また、第1ロードロックチャンバ16及び真空搬送モジュール18間においては、真空搬送ロボットによりウエハ35が第2開口部78を介して搬入、搬出される。
 図1に示すように、第1ロードロックチャンバ16及び第2ロードロックチャンバ17のそれぞれの第2開口部78は、対向する位置に設けられている。両第2開口部78は真空搬送モジュール18に接続される開口である。これにより、第1ロードロックチャンバ16と第2ロードロックチャンバ17との間の空間に真空搬送モジュール18を配置することができる。これにより、真空搬送モジュール18を基板搬送モジュール12の殻体外壁22のうち他方の長壁22bに隣接する位置に配置することが可能になる。
 第1開口部77は、第1ゲートバルブ機構72により、開閉自在であり、かつ、気密に封止可能である。第1ゲートバルブ機構72は、第1ゲートバルブ84と、第1開閉機構(図示せず)とを備えている。第1ゲートバルブ84は、第1開口部77を閉じる閉位置と、第1開口部77を開放する開位置との間で昇降自在に支持されている。第1ゲートバルブ84に第1開閉機構が連結されている。第1開閉機構を作動させることにより、第1ゲートバルブ84が昇降され、第1開口部77が開閉される。第1開口部77を第1ゲートバルブ84により閉じた状態において、第1開口部77は第1ゲートバルブ84により気密状態に封止される。
 第2開口部78は、第2ゲートバルブ機構73により、開閉自在であり、かつ、気密に封止可能である。第2ゲートバルブ機構73は、第1ゲートバルブ機構72と同様に、第2ゲートバルブ85と、第2開閉機構86とを備えている。第2ゲートバルブ85は、第2開口部78を閉じる閉位置と、第2開口部78を開放する開位置との間で移動自在に支持されている。第2ゲートバルブ85に第2開閉機構86が連結されている。第2開閉機構86を作動させることにより、第2ゲートバルブ85が昇降され、第2開口部78が開閉される。第2開口部78を第2ゲートバルブ85により閉じた状態において、第2開口部78は第2ゲートバルブ85により気密状態に封止される。
 筐体71の内部に多段の基板載置部74が設けられている。多段の基板載置部74は、例えば、25枚のウエハ35を一度に収納可能な上下方向に少なくとも25段並ぶ棚を備える。
 ここで、一般に、FOUPカセット32には25枚のウエハ35を収納可能である。よって、多段の基板載置部74はFOUPカセット32のウエハ35を一度に収納することができる。
 本実施形態では、多段の基板載置部74に25枚の半導体ウエハ35を格納する例について説明するが、多段の基板載置部74に格納する半導体ウエハ35の枚数は適宜選択可能である。
 多段の基板載置部74に昇降回動ユニット75が連結されている。昇降回動ユニット75は、昇降機構75aと、回動機構75bとを備えている。昇降機構75aは、多段の基板載置部74を昇降させる機構である。例えば、大気搬送ロボット14により、4枚のウエハ35を、第1開口部77を介して基板載置部74の任意の4段に移載させた後、昇降機構75aにより基板載置部74全体を4段分上昇させる。その後、新たな4枚のウエハ35を基板載置部74に移載し、順次、この工程を繰り返すことで、基板載置部74の所望の段全てにウエハ35が移載、収容される。なお、真空プロセス完了後のウエハ35が、後述する真空搬送ロボットにより第1ロードロックチャンバ16に収容された後、大気搬送ロボット14により第1ロードロックチャンバ16から取り出す際は、この工程と逆の手順で行われる。
 このとき、本実施形態のロードロックチャンバによれば、1つのFOUP32内の全てのウエハ35(例えば25枚)に対して処理を行うプロセス(以下、全ウエハ処理プロセスという)において、第1ゲートバルブ84の開閉回数は1回である。これに対して、従来のロードロックチャンバは、基板載置部には1枚のウエハ35しか載置できないため、全ウエハ処理プロセスにおけるゲートバルブの開閉回数は当然25回となる。前述したように、ロードロックチャンバにおける発塵の大部分は、開口部に設けたシール部材とゲートバルブとの接触に起因するものである。本実施形態のロードロックチャンバは、従来のロードロックチャンバと比較して、全ウエハ処理プロセスにおけるゲートバルブの開閉回数が1/25となる。このため、本実施形態のロードロックチャンバは、従来のロードロックチャンバと比較して、発塵量が大幅に少なく、クリーン度が高いものとなる。
 また、本実施形態のロードロックチャンバは、多段の基板載置部74に対して、基板搬送モジュール12から4枚のウエハ35を一度に搬入することができるため、ウエハ搬入のサイクルタイムが早く、スループットが良好である。
 回動機構75bは、多段の基板載置部74を鉛直軸(すなわち、回動中心軸)88の回りに回動させる。多段の基板載置部74は、多段の基板載置部74の中心位置89が回動中心軸88から基板搬送モジュール12側へL2だけオフセットした位置に設けられている。ここで、第1開口部77を通して多段の基板載置部74に載置されたウエハ35は、ウエハ35の中心が多段の基板載置部74の中心位置89に位置する。すなわち、ウエハ35は、多段の基板載置部74に載置された状態において、回動機構75bの回動中心軸88よりも第1開口部77側にオフセットした位置にある。
 これにより、大気搬送ロボット14が基板搬送モジュール12から多段の基板載置部74にウエハ35を搬入する際に、大気搬送ロボット14の搬入出ストローク(伸退ストローク)を短くすることができる。その結果、本実施形態のロードロックチャンバは、搬入出ストロークが短くなる分だけ、基板搬送モジュール12から多段の基板載置部74にウエハ35を搬入する際のサイクルタイムが早くなり、スループットが良好である。
 その後、基板載置部74の所望の段全てにウエハ35が移載、収容された後、回動機構75bにより基板載置部74全体を真空搬送モジュール18側に向けて90°回動させる。その後、真空搬送モジュール18における真空搬送ロボットにより、ウエハ35が基板載置部74から取り出される。このとき、真空搬送ロボットの両アームユニットに、大気搬送ロボット14と同様に上下2段のハンド部材を設けておいてもよい。これによって、基板載置部74の任意の4段から4枚のウエハ35が、第2開口部78を介して真空搬送ロボットにより一度に取り出される。その後、昇降機構75aにより基板載置部74全体を4段分下降させる。その後、新たな4枚のウエハ35を真空搬送ロボットにより取り出し、順次、この工程を繰り返すことで、基板載置部74の全てのウエハ35が取り出される。なお、真空プロセス完了後のウエハ35を真空搬送ロボットにより、第1ロードロックチャンバ16に収容する際は、この工程と逆の手順で行われる。
 次に、本実施形態の第1変形例~第3変形例について説明する。
(第1変形例)
 本実施形態の基板搬送装置10においては、基板アライナ15をベース部56に2つの基板載置台57,58をまとめて設け、各ウエハ35のIDの読み取りに1つのID読み取り手段63を兼用する例について説明したが、これに限らない。
 例えば、本変形例のように、基板アライナとして、既存の単独アライナが左右に2台並べて配置してもよい。本変形例の基板アライナもまた、2つの基板載置台を備えたデュアルアライナであり、2枚のウエハ35をほぼ同時にアライメントすることが可能である。既存のアライナは、1つのベース部に、1つの基板載置台、1つの切欠き部検出手段、及びID読み取り手段をそれぞれ設けてなるものである。
 本変形例の基板搬送装置10によれば、基板アライナに、慣用、既存のアライナをそのまま適用することができるため調達が容易であり、また、2つのウエハ35のID読み取りを独立して行うことができるため、本実施形態と比較して更にスループットが高まる。
(第2変形例)
 本変形例の基板搬送装置10においては、多段の基板載置部74の中心位置89を、回動機構75bの回動中心軸88から基板搬送モジュール12側へL2だけオフセットした位置に配置する例について説明したが、これに限らない。
 例えば、第2変形例のように、回動機構75bの回動中心軸88と、多段の基板載置部74の中心位置89とを同軸に設けることも可能である。これにより、回動機構75bと多段の基板載置部74との軸心が一致するため、多段の基板載置部74が回動機構75bにより安定した状態で回転する。また、本実施形態のロードロックチャンバと比較して、オフセットが不要となる分、ロードロックチャンバの平面積を小さくすることができ、ひいてはチャンバ内容積を小さくすることができる。その結果、本実施例のロードロックチャンバは、装置コストが安価であり、かつ、真空引きに要する時間が短い、すなわちスループットが良好である。
(第3変形例)
 本変形例の基板搬送装置10においては、図4~図6Bに示すように、基板アライナ15が2つの基板仮置き部64を備えている。
 本変形例の基板アライナ15は、ベース部56の上部に基板仮置き部64が設けられている。基板仮置き部64は、第1基板載置台57及び第2基板載置台58の上方に配置されている。具体的には、基板仮置き部64は、第1基板載置台57の上方に配置された第1バッファ64aと、第2基板載置台58の上方に配置された第2バッファ64bとを備えている。
 第1バッファ64aは、円環状のフレーム部材であり、第1エンドイフェクタ28のうち上ハンド部材51(図3参照)のウエハ35を落とし込み、掬い上げ可能である。円環状のフレーム部材は、一部のみに切り込みがある連続フレーム部材、又は複数の不連続なフレーム部材の集合体のいずれであってもよい。第2バッファ64bは、第1バッファ64aと同様に構成される。
 以下、第1エンドイフェクタ28の下ハンド部材52に載置されるウエハ35を「ウエハ35A」、第1エンドイフェクタ28の上ハンド部材51に載置されるウエハ35を「ウエハ35C」とする。また、第2エンドイフェクタ29の下ハンド部材54に載置されるウエハ35を「ウエハ35B」、第2エンドイフェクタ29の上ハンド部材53に載置されるウエハ35を「ウエハ35D」として説明する。
 ロボット基部25に対して各アームユニット26,27を回動させ、基板アライナ15に各アームユニット26,27を正対させる。その後、大気搬送ロボット14を駆動させ、各アームユニット26,27を基板アライナ15に向かって伸長させる。図3及び図6Aに示すように、アームユニット26における第1エンドイフェクタ28の下ハンド部材52に載置されるウエハ35Aが第1基板載置台57に移載され、第1エンドイフェクタ28の上ハンド部材51のウエハ35Cが第1バッファ64a(図5参照)に移載される。アームユニット26による移載と同じ(又はわずかに時間差のあるほぼ同じ)タイミングで、図3及び図6Bに示すように、アームユニット27における第2エンドイフェクタ29の下ハンド部材54に載置されるウエハ35Bが第2基板載置台58に移載され、第2エンドイフェクタ29の上ハンド部材53のウエハ35Dが第2バッファ64b(図5参照)に移載される。
 基板アライナ15を駆動させ、第1基板載置台57及び第2基板載置台58を回転させることにより、第1基板載置台57に載るウエハ35Aと、第2基板載置台58に載るウエハ35Bが回転される。このウエハ35A及びウエハ3Bの回転により、第1切欠き部検出手段61及び第2切欠き部検出手段62が、各ウエハ35A,35Bの切欠き部を検出する。そして、その検出情報を基に第1基板載置台57及び第2基板載置台58の回転が制御され、切欠き部が所定の位置にくるようにウエハ35A,35Bのアライメントが調整される。また、このウエハ35A,35Bの回転の際、ID読み取り手段63が、各ウエハ35A,35BのIDを読み取り、各ウエハ35A,35Bの処理情報・履歴などが検出される。
 その後、大気搬送ロボット14を再び駆動させ、各アームユニット26,27を基板アライナ15に向かって伸長させる。アライメントが行われ、IDが読み取られたウエハ35Aが、第1基板載置台57から第1エンドイフェクタ28の下ハンド部材52に移載され、ウエハ35Cが第1バッファ64aから第1エンドイフェクタ28の上ハンド部材51に移載される。ウエハ35A,35Cの移載と同じタイミングで、アライメントが行われ、IDが読み取られたウエハ35Bが、第2基板載置台58から第2エンドイフェクタ29の下ハンド部材54に移載され、ウエハ35Dが第2バッファ64bから第2エンドイフェクタ29の上ハンド部材53に移載される。
 その後、大気搬送ロボット14の昇降機構(図示せず)を駆動させ、一対のアームユニット26,27を下降させるとともに、各アームユニット26,27を基板アライナ15に向かって再び伸長させる。図3及び図7Aに示すように、ウエハ35Cが第1エンドイフェクタ28の上ハンド部材51から第1基板載置台57に移載される。ウエハ35Cの移載と同じタイミングで、ウエハ35Dが第2エンドイフェクタ29の上ハンド部材53から第2基板載置台58に移載される。
 基板アライナ15を再び駆動させ、第1基板載置台57及び第2基板載置台58を回転させることにより、第1基板載置台57に載るウエハ35Cと、第2基板載置台58に載るウエハ35Dが回転される。このウエハ35C及びウエハ35Dの回転により、第1切欠き部検出手段61及び第2切欠き部検出手段62が、各ウエハ35C,35Dの切欠き部を検出する。そして、その検出情報を基に第1基板載置台57及び第2基板載置台58の回転が制御され、切欠き部が所定の位置にくるようにウエハ35C,35Dのアライメントが調整される。また、このウエハ35C,35Dの回転の際、ID読み取り手段63が、各ウエハ35C,35DのIDを読み取り、各ウエハ35C,35Dの処理情報・履歴などが検出される。
 その後、各アームユニット26,27を基板アライナ15に向かって再び伸長させる。図3及び図7Bに示すように、アライメントが行われ、IDが読み取られたウエハ35Cが、第1基板載置台57から第1エンドイフェクタ28の上ハンド部材51に移載される。ウエハ35Cの移載と同じタイミングで、アライメントが行われ、IDが読み取られたウエハ35Dが、第2基板載置台58から第2エンドイフェクタ29の上ハンド部材53に移載される。
 これにより、第1エンドイフェクタ28の上ハンド部材51及び下ハンド部材52に、アライメントが行われ、IDが読み取られた各ウエハ35C,35Aがそれぞれ載せられる。また、第2エンドイフェクタ29の上ハンド部材53及び下ハンド部材54に、向きの位置合わせが行われ、IDが読み取られた各ウエハ35D,35Bがそれぞれ載せられる。すなわち、各ハンド部材に載置される全てのウエハ35A~35Dのアライメントが完了する。
 その後は本実施形態と同様に、第1エンドイフェクタ28の上下のハンド部材51,52、第2エンドイフェクタ29の上下のハンド部材53,54に載せられたウエハ35B,35A,35D,35Cは、4枚まとめて第1ロードロックチャンバ16(又は第2ロードロックチャンバ17)に搬入される。
 以上、図面を参照して、本発明の実施形態を詳述してきたが、具体的な構成は、この実施形態に限らず、本発明の要旨を逸脱しない程度の設計的変更は、本発明に含まれる。
 例えば、本実施形態の基板搬送装置10では、基板アライナ15に2つの基板載置台57,58を備えた例について説明したが、その他の例として、基板載置台を3つ以上備えることも可能である。
 また、第1変形例では、基板アライナ15として、既存のアライナを2台並べて構成する例について説明したが、既存のアライナを3つ以上備えることも可能である。

Claims (5)

  1.  基板が搬入出される開口部を有する筐体と、
     前記開口部を気密に封止可能なゲートバルブ機構と、
     前記筐体の内部に設けられ、前記基板が載置される多段の基板載置部と、
     前記基板載置部を昇降させる昇降機構と、
     多段の前記基板載置部を、鉛直軸回りに回動させる回動機構と
    を備えることを特徴とするロードロックチャンバ。
  2.  前記基板は半導体ウエハであり、多段の前記基板載置部は25枚の半導体ウエハを一度に載置可能であることを特徴とする、請求項1に記載のロードロックチャンバ。
  3.  前記回動機構の回動中心軸を、多段の前記基板載置部の中心位置からオフセットした位置に設けたことを特徴とする、請求項1又は請求項2に記載のロードロックチャンバ。
  4.  前記回動機構の回動中心軸を、多段の前記基板載置部の中心位置に設けたことを特徴とする、請求項1又は請求項2に記載のロードロックチャンバ。
  5.  前記筐体は、平面視が多角形を呈しており、
     前記筐体における隣接する面に前記開口部がそれぞれ設けられることを特徴とする、請求項1に記載のロードロックチャンバ。
PCT/JP2019/048501 2018-12-11 2019-12-11 ロードロックチャンバ WO2020122125A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201980081286.1A CN113169107B (zh) 2018-12-11 2019-12-11 装载锁定腔室

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-231645 2018-12-11
JP2018231645A JP7085467B2 (ja) 2018-12-11 2018-12-11 ロードロックチャンバ

Publications (1)

Publication Number Publication Date
WO2020122125A1 true WO2020122125A1 (ja) 2020-06-18

Family

ID=71077394

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/048501 WO2020122125A1 (ja) 2018-12-11 2019-12-11 ロードロックチャンバ

Country Status (4)

Country Link
JP (1) JP7085467B2 (ja)
CN (1) CN113169107B (ja)
TW (1) TWI740301B (ja)
WO (1) WO2020122125A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11328947B1 (en) * 2021-01-26 2022-05-10 Kawasaki Jukogyo Kabushiki Kaisha Aligner apparatus and alignment method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0650345U (ja) * 1992-12-01 1994-07-08 光洋リンドバーグ株式会社 多室式半導体処理装置
JPH08203978A (ja) * 1995-01-31 1996-08-09 Sumitomo Metal Ind Ltd 半導体製造装置
JP2014067939A (ja) * 2012-09-27 2014-04-17 Hitachi Kokusai Electric Inc 基板処理装置及び不活性ガス供給ユニット及び半導体装置の製造方法

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0927536A (ja) * 1995-07-10 1997-01-28 Nissin Electric Co Ltd ロ−ドロック室内に基板位置合わせ機構を有するイオン注入装置
TW331550B (en) 1996-08-14 1998-05-11 Tokyo Electron Co Ltd The cassette receiving room
US6719516B2 (en) * 1998-09-28 2004-04-13 Applied Materials, Inc. Single wafer load lock with internal wafer transport
JP4294172B2 (ja) * 1999-07-19 2009-07-08 シンフォニアテクノロジー株式会社 ロードロック装置およびウェハ搬送システム
WO2006123402A1 (ja) * 2005-05-17 2006-11-23 Hirata Corporation 基板搬出入装置及び基板搬出入方法
JP4961894B2 (ja) * 2006-08-25 2012-06-27 東京エレクトロン株式会社 基板処理装置、基板処理方法及び記憶媒体
JP2011049507A (ja) * 2009-08-29 2011-03-10 Tokyo Electron Ltd ロードロック装置及び処理システム
JP2014093489A (ja) * 2012-11-06 2014-05-19 Tokyo Electron Ltd 基板処理装置
JP2015115517A (ja) * 2013-12-13 2015-06-22 シンフォニアテクノロジー株式会社 基板搬送装置及びefem
TWI678751B (zh) * 2013-12-13 2019-12-01 日商昕芙旎雅股份有限公司 設備前端模組(efem)
JP6882656B2 (ja) * 2016-07-08 2021-06-02 シンフォニアテクノロジー株式会社 ロードポート及びロードポートを備える基板搬送システム

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0650345U (ja) * 1992-12-01 1994-07-08 光洋リンドバーグ株式会社 多室式半導体処理装置
JPH08203978A (ja) * 1995-01-31 1996-08-09 Sumitomo Metal Ind Ltd 半導体製造装置
JP2014067939A (ja) * 2012-09-27 2014-04-17 Hitachi Kokusai Electric Inc 基板処理装置及び不活性ガス供給ユニット及び半導体装置の製造方法

Also Published As

Publication number Publication date
TWI740301B (zh) 2021-09-21
CN113169107A (zh) 2021-07-23
JP2020096034A (ja) 2020-06-18
CN113169107B (zh) 2023-09-12
JP7085467B2 (ja) 2022-06-16
TW202036766A (zh) 2020-10-01

Similar Documents

Publication Publication Date Title
US6641350B2 (en) Dual loading port semiconductor processing equipment
JP5503006B2 (ja) 基板処理システム、搬送モジュール、基板処理方法及び半導体素子の製造方法
KR102470589B1 (ko) 웨이퍼 정렬 장치
US7857569B2 (en) Semiconductor processing system
JP2001203252A (ja) 半導体加工装置のためのローディング及びアンローディング用ステーション
US10403528B2 (en) Substrate-processing apparatus and method of manufacturing semiconductor device
US20070065581A1 (en) Substrate processing system and method
KR102244352B1 (ko) 기판 반송 기구, 기판 처리 장치 및 기판 반송 방법
US10229847B2 (en) Substrate transfer chamber and container connecting mechanism with lid opening mechanisms
WO2018016257A1 (ja) 基板処理装置
JP3350234B2 (ja) 被処理体のバッファ装置、これを用いた処理装置及びその搬送方法
JP5926694B2 (ja) 基板中継装置,基板中継方法,基板処理装置
WO2020122125A1 (ja) ロードロックチャンバ
US5857848A (en) Transfer apparatus and vertical heat-processing system using the same
JP2006216982A (ja) 半導体処理装置
TWI719751B (zh) 基板搬送裝置及基板搬送系統
WO2020122133A1 (ja) 基板搬送装置
US10403529B2 (en) Carrier transport device and carrier transport method
KR20060121008A (ko) 수직형 다중 기판 처리 시스템 및 그 처리 방법
JP2004221610A (ja) 半導体処理装置
JP2001291765A (ja) 基板収容ボックス及び処理システム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19896318

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19896318

Country of ref document: EP

Kind code of ref document: A1