WO2020098103A1 - 一种介孔FeCu-ZSM-5分子筛的制备方法及应用 - Google Patents

一种介孔FeCu-ZSM-5分子筛的制备方法及应用 Download PDF

Info

Publication number
WO2020098103A1
WO2020098103A1 PCT/CN2018/124493 CN2018124493W WO2020098103A1 WO 2020098103 A1 WO2020098103 A1 WO 2020098103A1 CN 2018124493 W CN2018124493 W CN 2018124493W WO 2020098103 A1 WO2020098103 A1 WO 2020098103A1
Authority
WO
WIPO (PCT)
Prior art keywords
molecular sieve
zsm
source
fecu
acid
Prior art date
Application number
PCT/CN2018/124493
Other languages
English (en)
French (fr)
Inventor
岳源源
刘奔
吕南癸
鲍晓军
刘杰
王廷海
袁珮
朱海波
白正帅
崔勍焱
Original Assignee
福州大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 福州大学 filed Critical 福州大学
Priority to US16/613,193 priority Critical patent/US20210331932A1/en
Publication of WO2020098103A1 publication Critical patent/WO2020098103A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/40Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11, as exemplified by patent documents US3702886, GB1334243 and US3709979, respectively
    • B01J29/42Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11, as exemplified by patent documents US3702886, GB1334243 and US3709979, respectively containing iron group metals, noble metals or copper
    • B01J29/46Iron group metals or copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/86Catalytic processes
    • B01D53/8621Removing nitrogen compounds
    • B01D53/8625Nitrogen oxides
    • B01D53/8628Processes characterised by a specific catalyst
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/86Catalytic processes
    • B01D53/90Injecting reactants
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/06Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising oxides or hydroxides of metals not provided for in group B01J20/04
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/10Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising silica or silicate
    • B01J20/16Alumino-silicates
    • B01J20/18Synthetic zeolitic molecular sieves
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/041Mesoporous materials having base exchange properties, e.g. Si/Al-MCM-41
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/041Mesoporous materials having base exchange properties, e.g. Si/Al-MCM-41
    • B01J29/042Mesoporous materials having base exchange properties, e.g. Si/Al-MCM-41 containing iron group metals, noble metals or copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/041Mesoporous materials having base exchange properties, e.g. Si/Al-MCM-41
    • B01J29/042Mesoporous materials having base exchange properties, e.g. Si/Al-MCM-41 containing iron group metals, noble metals or copper
    • B01J29/044Iron group metals or copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/88Ferrosilicates; Ferroaluminosilicates
    • B01J35/60
    • B01J35/647
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/04Mixing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/06Washing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • B01J37/10Heat treatment in the presence of water, e.g. steam
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J6/00Heat treatments such as Calcining; Fusing ; Pyrolysis
    • B01J6/001Calcining
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B39/00Compounds having molecular sieve and base-exchange properties, e.g. crystalline zeolites; Their preparation; After-treatment, e.g. ion-exchange or dealumination
    • C01B39/02Crystalline aluminosilicate zeolites; Isomorphous compounds thereof; Direct preparation thereof; Preparation thereof starting from a reaction mixture containing a crystalline zeolite of another type, or from preformed reactants; After-treatment thereof
    • C01B39/36Pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11
    • C01B39/38Type ZSM-5
    • C01B39/40Type ZSM-5 using at least one organic template directing agent
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/0807Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents
    • F01N3/0828Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents characterised by the absorbed or adsorbed substances
    • F01N3/0842Nitrogen oxides
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/18Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
    • F01N3/20Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control specially adapted for catalytic conversion ; Methods of operation or control of catalytic converters
    • F01N3/2066Selective catalytic reduction [SCR]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/207Transition metals
    • B01D2255/20738Iron
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/207Transition metals
    • B01D2255/20761Copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/50Zeolites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/50Zeolites
    • B01D2255/504ZSM 5 zeolites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/40Nitrogen compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/40Nitrogen compounds
    • B01D2257/402Dinitrogen oxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/40Nitrogen compounds
    • B01D2257/404Nitrogen oxides other than dinitrogen oxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2258/00Sources of waste gases
    • B01D2258/01Engine exhaust gases
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2258/00Sources of waste gases
    • B01D2258/01Engine exhaust gases
    • B01D2258/012Diesel engines and lean burn gasoline engines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2220/00Aspects relating to sorbent materials
    • B01J2220/40Aspects relating to the composition of sorbent or filter aid materials
    • B01J2220/42Materials comprising a mixture of inorganic materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2220/00Aspects relating to sorbent materials
    • B01J2220/40Aspects relating to the composition of sorbent or filter aid materials
    • B01J2220/48Sorbents characterised by the starting material used for their preparation
    • B01J2220/4806Sorbents characterised by the starting material used for their preparation the starting material being of inorganic character
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2229/00Aspects of molecular sieve catalysts not covered by B01J29/00
    • B01J2229/10After treatment, characterised by the effect to be obtained
    • B01J2229/18After treatment, characterised by the effect to be obtained to introduce other elements into or onto the molecular sieve itself
    • B01J2229/183After treatment, characterised by the effect to be obtained to introduce other elements into or onto the molecular sieve itself in framework positions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2229/00Aspects of molecular sieve catalysts not covered by B01J29/00
    • B01J2229/10After treatment, characterised by the effect to be obtained
    • B01J2229/18After treatment, characterised by the effect to be obtained to introduce other elements into or onto the molecular sieve itself
    • B01J2229/186After treatment, characterised by the effect to be obtained to introduce other elements into or onto the molecular sieve itself not in framework positions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2229/00Aspects of molecular sieve catalysts not covered by B01J29/00
    • B01J2229/30After treatment, characterised by the means used
    • B01J2229/37Acid treatment
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2370/00Selection of materials for exhaust purification
    • F01N2370/02Selection of materials for exhaust purification used in catalytic reactors
    • F01N2370/04Zeolitic material
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2570/00Exhaust treating apparatus eliminating, absorbing or adsorbing specific elements or compounds
    • F01N2570/14Nitrogen oxides
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2570/00Exhaust treating apparatus eliminating, absorbing or adsorbing specific elements or compounds
    • F01N2570/14Nitrogen oxides
    • F01N2570/145Dinitrogen oxide
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/10Capture or disposal of greenhouse gases of nitrous oxide (N2O)

Definitions

  • the present invention belongs to the field of environmental catalysts, particularly relates to a method for preparing mesoporous FeCu-ZSM-5 zeolite and its Application to the selective catalytic reduction of the NO x.
  • nitrogen oxide has become an important air pollutant after respirable particulate matter and sulfur dioxide, mainly from catalytic cracking (FCC) flue gas, automobile exhaust gas and thermal power plant exhaust emissions.
  • FCC catalytic cracking
  • NH 3 -SCR denitration technology has gradually become the focus of research, and is considered by most experts and scholars as the most potential denitration technology.
  • the molecular sieve has the characteristics of regular order structure, adjustable framework composition, high specific surface area, adsorption capacity and cation exchangeability, good channel shape selection, excellent thermal stability and chemical stability, etc. It is widely used in petrochemical industry, fine chemical industry and green chemical industry.
  • the ZSM-5 molecular sieve modified with heteroatoms has become one of the research hotspots in the field of environmental protection.
  • the ZSM-5 molecular sieve modified with Fe or Cu has broad application prospects in the field of denitration.
  • CN201610320403.3 discloses a preparation method and application of a Fe-ZSM-5 doped Rh and Er composite catalyst.
  • Sodium-type high-silicon-aluminum ratio Na-ZSM-5 molecular sieve was prepared by hydrothermal method, and it was exchanged with NH 4 Cl solution to prepare NH 4 -ZSM-5 molecular sieve, and then NH 4 -ZSM-5 molecular sieve was added to ferric nitrate Solution, Fe-ZSM-5 molecular sieve was prepared by ion exchange method, and then a small amount of Rh and Er was doped by impregnation method to prepare composite Rh / Er / Fe / ZSM with high specific surface area (350 ⁇ 420 m 2 / g) -5 catalyst.
  • CN201711364463.6 discloses a method for preparing Cu-ZSM-5 by ion exchange: a method combining liquid phase ion exchange method and solid phase dispersion method, specifically: weighing copper nitrate solid and HZSM-5 molecular sieve according to mass ratio Powder, fully ground and mixed in a mortar; transferred into absolute ethanol / distilled water, stirred to quickly mix to prepare a suspension; heated by ultrasonic waves for ion exchange; reduced pressure distillation at least the amount of liquid, moved to the crucible, Put into the oven to dry to a solid state; weigh Tian Jing powder and the above solids into a container after grinding, add a mixture of anhydrous ethanol / distilled water to knead, and press it into a sheet-like solid with a uniform thickness, place in the oven Medium drying; the dried flake solid is crushed, sieved, placed in a microwave muffle furnace, heated and roasted, and naturally cooled.
  • This invention has the characteristics of good copper ion dispersibility and high NO decomposition rate, but its complicated preparation method will inevitably face a series of obstacles on the road to industrialization. At the same time, it has low atom utilization rate, and its solid phase liquid phase separation method is still used. Facing the challenge of industrialization.
  • CN201310371632.4 discloses a preparation method of a Cu-Fe-ZSM-5-concave composite flue gas denitration catalyst.
  • the calcified clay is subjected to calcination, hot acid treatment, suction filtration, and water washing to obtain an acidified concave clay.
  • ZSM-5's adsorption characteristics of NO is used to introduce cheap iron salts to reduce costs, but its temperature window is narrow, and it only shows denitrification activity in the range of 250 ⁇ 330 o C. The window is obviously not in line with the future development trend in the field of denitrification.
  • the preparation of FeCu-ZSM-5 molecular sieve is made by ion exchange method of the synthesized molecular sieve with Fe salt and Cu salt. Poor), while impregnating heteroatoms is easy to produce agglomeration on the surface of molecular sieve, obstruct pores, block active sites and other shortcomings that cannot be ignored. Therefore, if we can develop a high-performance mesoporous FeCu-ZSM-5 type molecular sieve based on the use of cheap template agents, one-pot low-cost in-situ synthesis new technology, it is expected that the active site distribution is more suitable, while reducing the production cost of molecular sieve And improve its denitrification performance, has important scientific research value and broad industrial application prospects.
  • the present invention provides a method for preparing mesoporous FeCu-ZSM-5 molecular sieve.
  • the pH of the synthetic system is adjusted in stages
  • One-pot method of in-situ synthesis of mesoporous FeCu-ZSM-5 molecular sieve which can directly perform ion exchange without removing the microporous template agent, and has a wide temperature window and adjustable Fe and Cu content, and the molecular sieve framework
  • the Fe content is much higher than the pores and surface, and copper mainly exists in divalent form, and there is no agglomerated copper oxide, that is, most of the iron and copper in the molecular sieve exist in the form of denitration active sites.
  • a mesoporous FeCu-ZSM-5 molecular sieve includes the following raw materials: deionized water, aluminum source, silicon source, iron source, copper source, acid source and template agent.
  • a preparation method of mesoporous FeCu-ZSM-5 molecular sieve is one of chemical reagent synthesis method or mineral synthesis method.
  • the chemical synthesis method specifically includes the following steps:
  • step (2) Transfer the aged gel obtained in step (1) to a polytetrafluoroethylene-lined reaction kettle to seal and crystallize. After the crystallization is completed, the crystallized product is cooled, filtered to remove the mother liquor, and filtered The cake was washed with deionized water until neutral, dried to obtain a solid, and then the solid was ion-exchanged, filtered, washed, and dried to obtain a powder; the drying condition was 80-150 ° C, and dried overnight;
  • step (3) Place the powder obtained in step (2) in a muffle furnace to obtain FeCu-ZSM-5 molecular sieve.
  • the iron source is one or more of iron nitrate, iron chloride and iron sulfate
  • the copper source is one of copper nitrate, copper nitrate trihydrate, copper nitrate nonahydrate, and copper chloride dihydrate Or a mixture of several
  • the acid source is one or a mixture of 2-hydroxy-glycerol tricarboxylic acid, sulfurous acid, nitrous acid, sulfuric acid, hydrochloric acid, nitric acid, oxalic acid, acetic acid
  • the silicon source is one or more of water glass, silica sol, ethyl orthosilicate, solid silica gel
  • the aluminum source is one or a mixture of two of sodium aluminate or aluminum sulfate, as described in
  • the template agents are tetraoctylammonium bromide, tetrabutylammonium bromide, cetyltrimethylammonium bromide, tetrapropylammonium hydrox
  • the mineral synthesis method specifically includes the following steps:
  • step (3) Transfer the aged gel obtained in step (2) to a polytetrafluoroethylene-lined reaction kettle to seal and crystallize. After the crystallization is completed, the crystallized product is cooled, filtered to remove the mother liquor, and filtered The cake was washed with deionized water until neutral, dried to obtain a solid, and then the solid was ion-exchanged, filtered, washed, and dried to obtain a powder; the drying condition was 80-150 ° C, and dried overnight;
  • step (3) Place the powder obtained in step (3) in a muffle furnace to obtain FeCu-ZSM-5 molecular sieve.
  • the iron source is one or more of bauxite, diatomaceous earth, rectorite, pyrite, mica hematite, and red mud.
  • the copper source is magnetite, malachite, One or a mixture of copper blue and chalcopyrite.
  • the acid source is 2-hydroxy-triglycerin, sulfite, and nitrous acid, sulfuric acid, hydrochloric acid, nitric acid, oxalic acid, and acetic acid.
  • the silicon source is one or two of bauxite, diatomaceous earth, rectorite, natural zeolite or opal
  • the aluminum source is mica, alum, aluminum
  • the template agent is tetraoctylammonium bromide, tetrabutylammonium bromide, cetyl trimethyl
  • ammonium bromide tetrapropylammonium hydroxide, tetrapropylammonium bromide, hexanediol, n-butylamine, and ethylamine.
  • the aging is performed under the condition of 60 ⁇ 90 o C, and the aging time is 2 ⁇ 12 h; the crystallization is performed under the condition of 100 ⁇ 190 o C, and the crystallization time is 12 ⁇ 96 h.
  • the specific method of the ion exchange is: mixing the dried solid with 0.1 ⁇ 2 M NH 4 Cl solution according to a mass ratio of 1: 10 ⁇ 1: 30 for ion exchange, at 10 ⁇ 80 o C Heat and stir for 3 ⁇ 8 h.
  • the firing time is 4-10 h, and the firing temperature is 500-600 o C.
  • the prepared FeCu-ZSM-5 catalyst was used in the selective catalytic reduction of nitrogen oxides.
  • the present invention provides a FeCu-ZSM-5 molecular sieve and its synthesis method.
  • the FeCu-ZSM-5 molecular sieve of the present invention has the following advantages:
  • the mesopore FeCu-ZSM-5 molecular sieve is synthesized in situ using the one-pot method of adjusting the pH of the synthesis system in stages without removing micropore
  • the template agent can be used for ion exchange, economical, environmentally friendly and efficient synthesis of mesoporous FeCu-ZSM-5 molecular sieve with excellent SCR denitration performance. Its NO conversion rate is higher than 90% in a wide temperature window (150-700 o C). High N 2 selectivity (> 99%).
  • FeCu-ZSM-5 prepared by the method of the present invention is a stepped pore catalytic material, and its molar silicon-aluminum ratio is 10 ⁇ ⁇ , which has the advantages of large specific surface area, large adsorption capacity, and rich acidic sites, which is beneficial to reactive substances and activities
  • the full contact of the bits also solves the problems that plague the traditional microporous molecular sieve such as internal mass transfer and diffusion.
  • the synthetic process route provided by the present invention can not only greatly reduce the production cost of molecular sieve synthesis, but also greatly improve the greenness of the synthesis process.
  • the resulting molecular sieve has better physical and chemical properties, and its synthesis cost is lower .
  • the mesopore distribution of the products obtained by short cycle preparation is concentrated at 5-50 nm, the specific surface area is 380-700 m 2 / g, the external specific surface area is 120-400 m 2 / g, and the content of Fe 2 O 3 in the molecular sieve is the molecular sieve 0.1 ⁇ 10% of the total weight, in which the Fe content of the framework accounts for more than 95% of the total iron content, and is evenly distributed in the framework; the CuO content in the molecular sieve is 0.1 ⁇ 10% of the total weight of the molecular sieve, of which the Cu 2+ content accounts for The total copper content is more than 90%, and its distribution on the surface of the molecular sieve is relatively uniform.
  • FIG. 1 is an X-ray diffraction (XRD) spectrum of the FeCu-ZSM-5 molecular sieve prepared in Example 1 of the present invention.
  • Figure 2 is the N 2 adsorption-desorption isotherm of the FeCu-ZSM-5 molecular sieve prepared in Example 1 of the present invention.
  • the N 2 adsorption-desorption isotherm can be It can be seen that the sample contains obvious mesopores, of which the mesopore diameter is mainly concentrated at 10 nm, the specific surface area is 441 m 2 / g, the external specific surface area is 151 m 2 / g, and the Fe 2 O 3 content is the total weight of the molecular sieve 3.1%, of which the content of framework iron accounts for 96% of the total iron content.
  • the CuO content is 1.8% of the total weight of the molecular sieve, and the divalent copper ion accounts for 91% of the total copper content.
  • This example provides a FeCu-ZSM-5 catalyst.
  • the preparation steps are the same as in Example 1. Only some parameters are adjusted, as follows:
  • the hydrogen-type FeCu-ZSM-5 molecular sieve was prepared and referred to as Catalyst B.
  • the mesoporous pore diameter of the obtained sample is mainly concentrated at 15 nm, the specific surface area is 470 m 2 / g, the external specific surface area is 160 m 2 / g, and the Fe 2 O 3 content is 5.4% of the total weight of the molecular sieve, of which the framework iron content accounts for 95.5% of the total iron content.
  • the CuO content is 0.7% of the total weight of the molecular sieve, and the divalent copper ion accounts for 90% of the total copper content.
  • This example provides a FeCu-ZSM-5 catalyst.
  • the preparation steps are the same as in Example 1. Only some parameters are adjusted, as follows:
  • the hydrogen-type FeCu-ZSM-5 molecular sieve was prepared and referred to as catalyst C.
  • the mesoporous pore diameter of the obtained sample is mainly concentrated at 30 nm, the specific surface area is 550 m 2 / g, the external specific surface area is 300 m 2 / g, and the Fe 2 O 3 content is 9.4% of the total weight of the molecular sieve, of which the framework iron content accounts for 97% of the total iron content.
  • the CuO content is 0.6% of the total weight of the molecular sieve, and the divalent copper ion accounts for 90% of the total copper content.
  • This embodiment provides a FeCu-ZSM-5 catalyst.
  • the preparation method is as follows:
  • Activation of minerals The commercially available diatomaceous earth was dried and crushed into powder, and 50.00 g of diatomaceous earth powder was weighed and calcined at 800 o C for 4 h. Weigh 60.00 g of rectorite, 72 g of sodium hydroxide, and 300 g of water, mechanically stir at room temperature for 1 h, then activate in a 255 o C oven for 12 h, and then crush for use.
  • Molecular sieve preparation Add 0.79 g sodium hydroxide, 52.2 g deionized water, mix well, add 0.30 g Cu (NO 3 ) 2 ⁇ H 2 O, 4.7 g heat activated diatomaceous earth, add 0.24 g activated Support soil and 0.52 g of n-butylamine, add 2 g of hydrochloric acid to adjust the pH to 13, transfer to a 60 o C water bath and stir for 30 min., Add 0.5 g of hydrochloric acid to adjust the pH to 12, stir and age in a 70 o C water bath for 4 h, transfer to High-pressure reaction vessel lined with polytetrafluoroethylene, rotating oven at 170 o C for 72 h, after the crystallization is completed, the crystallized product is cooled, filtered and washed to neutral, then placed in an oven at 110 o C overnight Dry to obtain a sodium molecular sieve.
  • the hydrogen-type FeCu-ZSM-5 molecular sieve was prepared and referred to as Catalyst D.
  • the mesoporous pore diameter of the obtained sample is mainly concentrated at 35 nm, the specific surface area is 470 m 2 / g, the external specific surface area is 215 m 2 / g, and the Fe 2 O 3 content is 1% of the total weight of the molecular sieve, of which the framework iron content accounts for the total 98% of iron content.
  • the CuO content is 0.87% of the total weight of the molecular sieve, and the divalent copper ion accounts for 93% of the total copper content.
  • Example 1 the catalyst prepared in Example 1 was used to test the activity of a fixed-bed reaction, including the following steps:
  • the catalyst activity evaluation device is an atmospheric pressure micro-fixed bed reaction device, which consists of a gas mixing preheating furnace and a reaction furnace, and the reactor is a quartz tube with an inner diameter of 7 mm.
  • the reaction was carried out by means of programmed temperature rise, and the temperature of the heating furnace was controlled by a temperature controller. When arriving at the data collection point, stay for 30 minutes for data processing and record the data.
  • the reaction conditions are: 500 ppm NO, 500 ppm NH 3 , 5 v% O 2 , and N 2 are the balance gas, the total gas flow is 600 mL / min, the catalyst dosage is 200 mg, and the reaction volume space velocity is 180,000 h -1 .
  • the concentrations of NO, NH 3 and NO 2 are all qualitatively and quantitatively analyzed by a flue gas analyzer (Testo 340 of German Testo instrument), and the concentration of N 2 O is determined by Fourier transform infrared with a 2 m optical path gas cell Measured by spectrometer (Nicolet iS50).
  • the catalyst was used to test the activity in a fixed-bed reaction.
  • the steps were the same as in Example 5.
  • the difference was that the catalyst was replaced with Catalyst B prepared in Example 2.
  • the catalyst was used to test the activity in a fixed-bed reaction.
  • the steps were the same as in Example 5.
  • the difference was that the catalyst was replaced by the catalyst C prepared in Example 3.
  • the catalyst was used to test the activity in a fixed-bed reaction.
  • the steps were the same as in Example 5.
  • the difference was that the catalyst was replaced with Catalyst D prepared in Example 4.
  • the catalyst was used to test the activity in a fixed-bed reaction.
  • the steps were the same as in Example 5.
  • the difference was that the catalyst was replaced by the catalyst prepared in Example 4 after hydrothermal treatment at 700 o C for 4 h, and it was designated as Catalyst E.
  • the present invention also provides a comparative example.
  • the molecular sieve used in this comparative example is a commercial HZSM-5 purchased by Nankai Catalyst Factory.
  • the catalyst activity evaluation device is an atmospheric pressure micro-fixed bed reaction device, which consists of a gas mixing preheating furnace and a reaction furnace, and the reactor is a quartz tube with an inner diameter of 7 mm.
  • the reaction was carried out by means of programmed temperature rise, and the temperature of the heating furnace was controlled by a temperature controller. When arriving at the data collection point, stay for 30 minutes for data processing and record the data.
  • the reaction conditions are: 500 ppm NO, 500 ppm NH 3 , 5 v% O 2 , and N 2 are the balance gas, the total gas flow is 600 mL / min, the catalyst dosage is 200 mg, and the reaction volume space velocity is 180,000 h -1 .
  • the concentrations of NO, NH 3 and NO 2 are all qualitatively and quantitatively analyzed by a flue gas analyzer (Testo 340 of German Testo instrument), and the concentration of N 2 O is determined by Fourier transform infrared with a gas path of 2 m Measured by spectrometer (Nicolet iS50).
  • the present invention also sets up a comparative example.
  • the molecular sieve used in this comparative example is the catalyst prepared in Comparative Example 1 after hydrothermal aging at 700 o C for 4 h, which is recorded as Catalyst G.
  • the catalyst activity evaluation device is an atmospheric pressure micro-fixed bed reaction device, which consists of a gas mixing preheating furnace and a reaction furnace, and the reactor is a quartz tube with an inner diameter of 7 mm.
  • the reaction was carried out by means of programmed temperature rise, and the temperature of the heating furnace was controlled by a temperature controller. When arriving at the data collection point, stay for 30 minutes for data processing and record the data.
  • the reaction conditions are: 500 ppm NO, 500 ppm NH 3 , 5 v% O 2 , and N 2 are equilibrium gases, the total gas flow is 600 mL / min, the catalyst dosage is 200 mg, and the reaction volume space velocity is 180,000 h -1 .
  • the concentrations of NO, NH 3 and NO 2 are all qualitatively and quantitatively analyzed by a flue gas analyzer (Testo 340 of German Testo instrument), and the concentration of N 2 O is determined by Fourier transform infrared with a gas path of 2 m Measured by spectrometer (Nicolet iS50).
  • the temperature window is the corresponding temperature range when the conversion rate of NO> 90%
  • the mesoporous FeCu-ZSM-5 provided by the present invention has the characteristics of ultra-wide temperature window (especially low-temperature activity), excellent N 2 selectivity, and good hydrothermal stability.
  • the method not only has low cost, simple process and easy operation, but also has good economic and environmental benefits.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Environmental & Geological Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Combustion & Propulsion (AREA)
  • General Engineering & Computer Science (AREA)
  • Thermal Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • General Chemical & Material Sciences (AREA)
  • Biomedical Technology (AREA)
  • Toxicology (AREA)
  • Catalysts (AREA)
  • Silicates, Zeolites, And Molecular Sieves (AREA)

Abstract

一种介孔FeCu‑ZSM‑5分子筛的制备方法及应用,特别涉及一种以一锅法合成介孔FeCu‑ZSM‑5分子筛的方法及其在选择性催化还原(SCR)脱硝反应中的应用。将脱模与离子交换后的两次焙烧合二为一,即将合成的原粉进行交换后经一次焙烧即可直接制备具有温窗宽、成本低、水热稳定性好及SCR脱硝活性高等特点的FeCu‑ZSM‑5分子筛,克服了传统浸渍或离子交换法步骤繁琐、成本高、污染排放大的缺点,且合成过程不使用介(大)孔模板剂,也不采用后处理的方法来构造介孔。工艺简单、操作简便、具有良好的经济和环境效益。

Description

一种介孔FeCu-ZSM-5分子筛的制备方法及应用 技术领域
本发明属于环保催化剂领域,具体涉及一种介孔FeCu-ZSM-5分子筛的制备方法及其在NO x选择性催化还原反应中的应用。
背景技术
目前氮氧化物已成为仅次于可吸入颗粒物和二氧化硫的重要大气污染物,主要来自于催化裂化(FCC)烟气、汽车尾气和火电厂废气排放。近些年来NH 3-SCR脱硝技术逐渐成为研究的焦点,并被大量专家学者认为是最具有潜力的脱硝技术。分子筛由于具有规则有序的结构、可调变的骨架组成、较高的比表面积、吸附容量和阳离子可交换性、良好的孔道择形性、优异的热稳定性和化学稳定性等特点,已被广泛应用于石油化工、精细化工和绿色化工等领域。近些年来,杂原子修饰的ZSM-5分子筛成为环保领域研究的热点之一,尤其以Fe或Cu修饰的ZSM-5分子筛在脱硝领域具有广阔的应用前景。
CN201610320403.3公开了一种Fe-ZSM-5掺杂Rh和Er复合型催化剂的制备方法和应用。通过水热法制备出钠型高硅铝比Na-ZSM-5分子筛,将其与NH 4Cl溶液交换,制备出NH 4-ZSM-5分子筛,随后将NH 4-ZSM-5分子筛加入硝酸铁溶液,通过离子交换法制备出Fe-ZSM-5分子筛,再通过浸渍法掺杂少量Rh和Er,制备出高比表面积(350~420 m 2/g)的复合型Rh/Er/Fe/ZSM-5催化剂。其催化剂虽然在一定的温度范围下具有较高的NO初始转化率,但其制备过程较为复杂,并且其通过钠型分子筛转变为氨型分子筛的焙烧,不仅存在高能耗,同时面临环保问题,随着我国环保要求的不断提高,氨的排放面临着巨大挑战,同时稀有金属的使用依然面临成本和资源匮乏的一系列问题。
CN201711364463.6公开了一种离子交换制备Cu-ZSM-5的方法:采用液相离子交换法和固相分散法相结合的方法,具体是:按质量比称取硝酸铜固体和HZSM-5分子筛原粉,在研钵中充分研磨混合;移入无水乙醇/蒸馏水中,搅拌使其快速混合,制得悬浊液;于超声波中加热进行离子交换;减压蒸馏至少量液体,移至坩埚中,放进烘箱干燥至固态;称取田菁粉和上述固体研磨后置于容器中,滴加无水乙醇/蒸馏水混合液揉至团状,将其压成厚度均匀的片状固体,置于烘箱中干燥;将干燥后的片状固体破碎、过筛,放入微波马弗炉中升温焙烧,自然冷却。此发明具有铜离子分散性好、NO分解率高的特点,但其复杂制备方法在工业化的道路上必然面对一系列阻碍,同时存在原子利用率低,其采用固相液相分离的方法依然面临着工业化的挑战。
CN201310371632.4公开了Cu-Fe-ZSM-5-凹土复合烟气脱硝催化剂的制备方法,首先,凹土经煅烧、热酸液处理,抽滤、水洗得到酸化凹土,随后添加碱液、有机模板剂,陈化、水热晶化、抽滤、水洗、烘干、煅烧制备ZSM-5分子筛;然后,将ZSM-5分子筛、凹土、铜盐和铁盐的混合液混合搅拌,加热回流处理,烘干、挤条、煅烧成型制备Cu-Fe-ZSM-5-凹土复合烟气脱硝催化剂。虽然利用凹土载体和粘性特性,引用ZSM-5对NO的吸附特性,引入廉价铁盐,降低成本,但其温窗较窄,仅在250~330 oC区间内表现出脱硝活性,其温窗显然不符合未来脱硝领域的发展趋势。
技术问题
目前FeCu-ZSM-5分子筛的制备均是通过将合成的分子筛与Fe盐和Cu盐进行离子交换方法制得,不仅步骤繁琐、能耗物耗高,且脱硝温窗较窄(主要是低温脱硝活性较差),同时浸渍杂原子容易在分子筛表面产生团聚、阻碍孔道、遮挡活性位等不可忽视的缺点。因此,若能在使用廉价模板剂基础上,发展高性能介孔FeCu-ZSM-5型分子筛的一锅法低成本原位合成新技术,有望得到活性位分布较为适宜,同时降低分子筛的生产成本,并提高其脱硝性能,具有重要的科学研究价值和广阔的工业应用前景。
技术解决方案
为解决上述问题,本发明提供了一种介孔FeCu-ZSM-5分子筛的制备方法,在不使用介(大)孔模板剂、不采用后处理的条件下,采用分段调控合成体系pH值的一锅法原位合成介孔FeCu-ZSM-5分子筛,无需脱除微孔模板剂即可直接进行离子交换,且具有较宽的温窗和可调的Fe和Cu含量,并且分子筛骨架内Fe含量远高于孔道及表面,且铜主要以二价形式存在,不存在团聚的氧化铜,即分子筛中的铁与铜绝大部分均以脱硝活性位的形式存在。
一种介孔FeCu-ZSM-5分子筛,包括以下原料:去离子水、铝源、硅源、铁源、铜源、酸源和模板剂。
一种介孔FeCu-ZSM-5分子筛的制备方法,制备方法为化学试剂合成法或矿物合成法中的一种。
所述化学合成法具体包括如下步骤:
(1)在20~90 oC下,将去离子水、铝源、硅源、铁源、铜源和模板剂在搅拌条件下混合均匀,控制各种原料的投料量使得合成体系中各物质的摩尔比为SiO 2/Al 2O 3=10~∞,SiO 2/Fe 2O 3=10~350,SiO 2/CuO=10~150,Na 2O/SiO 2=0.1~0.5,H 2O/SiO 2=10~50,模板剂/SiO 2=0.01~0.5;混合后加入酸源,进行第一次老化,再加入酸源,调节体系pH为7~8.5,进行第二次老化,即获得老化后的凝胶;
(2)将步骤(1)中获得的老化后的凝胶转移至含聚四氟乙烯内衬的反应釜中密封晶化,待晶化结束后,将晶化产物冷却、过滤除去母液,滤饼用去离子水洗涤至中性,干燥得到固体,之后将固体进行离子交换,并过滤、洗涤、干燥得到粉末;所述干燥条件为80-150℃,干燥过夜;
(3)将步骤(2)中获得粉末置于马弗炉中焙烧得到FeCu-ZSM-5分子筛。
所述铁源为硝酸铁、氯化铁和硫酸铁中的一种或几种,所述的铜源为硝酸铜、三水硝酸铜、九水硝酸铜、二水氯化铜中的一种或者几种的混合物,所述的酸源为2-羟基-均丙三羧酸、亚硫酸、亚硝酸、硫酸、盐酸、硝酸、草酸、醋酸中的一种或几种的混合物;所述的硅源为水玻璃、硅溶胶、正硅酸乙酯、固体硅胶中的一种或几种;所述的铝源为铝酸钠或者硫酸铝中的一种或者两种的混合物,中所述的模板剂为四辛基溴化铵、四丁基溴化铵、十六烷基三甲基溴化铵、四丙基氢氧化铵、四丙基溴化铵、己二醇、正丁胺、乙胺中的一种或几种的混合物。
所述矿物合成法具体包括如下步骤:
(1)矿物的活化:将铝源、硅源、铁源、铜源分别进行活化;
(2)将步骤(1)活化后的后的矿物与氢氧化钠、去离子水和晶种混合均匀后,控制各种原料的投料量使得合成体系中各物质的摩尔比为SiO 2/Al 2O 3=10~∞,SiO 2/Fe 2O 3=10~350,SiO 2/CuO=10~150,Na 2O/SiO 2=0.1~0.5,H 2O/SiO 2=10~50,模板剂/SiO 2=0.01~0.5;混合后加入酸源,调节体系pH为5~13,进行老化,即获得老化后的凝胶;
(3)将步骤(2)中获得的老化后的凝胶转移至含聚四氟乙烯内衬的反应釜中密封晶化,待晶化结束后,将晶化产物冷却、过滤除去母液,滤饼用去离子水洗涤至中性,干燥得到固体,之后将固体进行离子交换,并过滤、洗涤、干燥得到粉末;所述干燥条件为80-150℃,干燥过夜;
(4)将步骤(3)中获得粉末置于马弗炉中焙烧得到FeCu-ZSM-5分子筛。
所述的铁源为铝土矿、硅藻土、累托土、黄铁矿、云母赤铁矿、赤泥中的一种或几种,所述的铜源为磁铁矿、孔雀石、铜蓝、黄铜矿中的一种或者几种的混合,所述的酸源为2-羟基-均丙三羧酸、亚硫、和亚硝酸、硫酸、盐酸、硝酸、草酸、醋酸中的一种或几种的混合物,所述的硅源为铝土矿、硅藻土、累托土、天然沸石或蛋白石中的一种或两种,所述的铝源为云母、明矾石、铝土矿、硅藻土、累托土、天然沸石中的一种或几种的混合物,所述的模板剂为四辛基溴化铵、四丁基溴化铵、十六烷基三甲基溴化铵、四丙基氢氧化铵、四丙基溴化铵、己二醇、正丁胺、乙胺中的一种或几种的混合物。
所述老化是在60~90 oC条件下进行,老化时间为2~12 h;所述晶化是在100~190 oC条件下进行,晶化时间为12~96 h。
所述离子交换具体的具体方法为:将所述干燥得到的固体与0.1~2 M的NH 4Cl溶液按照质量比1:10~1:30的比例混合进行离子交换,于10~80 oC加热搅拌处理3~8 h。
所述焙烧时间为4~10 h,焙烧温度为500~600 oC。
将制备得到的FeCu-ZSM-5催化剂应用于氮氧化物选择性催化还原反应中。
综上所述,本发明提供了一种FeCu-ZSM-5分子筛及其合成方法。
有益效果
本发明的FeCu-ZSM-5分子筛具有如下优点:
(1)克服了传统浸渍或离子交换制备方法步骤繁琐和成本高的缺点,采用分段调控合成体系pH值的一锅法原位合成介孔FeCu-ZSM-5分子筛,且无需脱除微孔模板剂即可进行离子交换,经济环保高效地合成SCR脱硝性能优良的介孔FeCu-ZSM-5分子筛,其在较宽的温度窗口(150-700 oC)NO转化率高于90%,具备较高的N 2选择性(>99%)。
(2)解决了传统浸渍法所面临的工艺复杂、流程长、Fe或Cu容易团聚合成周期长等难题,同时避免了介(大)孔模板剂的使用,有效缓解了在脱模时大量氨气等污染气体的释放以及脱除模板剂对分子筛自身孔道造成坍塌等损害,短周期经济环保高效地合成SCR脱硝性能优良的介孔FeCu-ZSM-5分子筛。
(3)本发明方法制备的FeCu-ZSM-5属于梯级孔催化材料,其摩尔硅铝比为10~∞,具有比表面积大、吸附容量大、酸性位丰富的优势,有利于反应物质与活性位的充分接触,同时也解决了内部传质扩散等困扰传统微孔分子筛的问题。
(4)本发明所提供的合成工艺路线不仅可大幅降低分子筛合成的生产成本,而且可极大地提高合成过程的绿色性,所得到的分子筛具有更优的物理化学性质,且其合成成本更低。
(5)短周期制备所得产品介孔分布集中在5~50 nm,比表面积为380~700 m 2/g,外比表面积为120~400 m 2/g,分子筛中Fe 2O 3含量为分子筛总重量的0.1~10%,其中骨架Fe的含量占总铁含量的95%以上,且在骨架内分布均匀;分子筛中CuO含量为分子筛总重量的0.1~10%,其中Cu 2+的含量占总铜含量的90%以上,且其在分子筛内表面分布较为均匀。
附图说明
图1是本发明实施例1制备得到的FeCu-ZSM-5分子筛的X射线衍射(XRD)谱图。
图2是本发明实施例1制备得到的FeCu-ZSM-5分子筛的N 2吸附-脱附等温线。
本发明的实施方式
以下通过具体实施例详细说明本发明的实施过程和产生的有益效果,旨在有助于更好地理解本发明的实质和特点,不作为对本案可实施范围的限定。
实施例 1
将1.32 g Fe(NO 3) 3·9H 2O、0.26 g Cu(NO 3) 2·3H 2O、36.55 g H 2O、1.473 g TPABr,14.18 g水玻璃(27.6 wt% SiO 2)、2.2 g 2-羟基-均丙三羧酸加入烧杯中调pH至12,30 oC下老化4 h,再加入1.2 g 2-羟基-均丙三羧酸调pH至9,70 oC老化4 h,然后转移至带有聚四氟乙烯内衬的不锈钢高压釜中于170 oC晶化48 h,待晶化结束后,将晶化产物冷却、过滤和洗涤至中性后,放入烘箱于120 oC过夜干燥,得到钠型分子筛。
将钠型分子筛与1 M的NH 4Cl溶液按照质量比1:20的比例进行离子交换,于70 oC的恒温水浴锅中搅拌4 h,经抽滤、洗涤、烘干,520 oC焙烧5 h后,即制得氢型FeCu-ZSM-5分子筛,记为催化剂A。图1和图2分别为催化剂A的XRD谱图和N 2吸附-脱附等温线,由XRD谱图可知所得产品为高结晶度的ZSM-5分子筛,由N 2吸附-脱附等温线可以看出所的样品含有明显的介孔,其中介孔孔径主要集中在10 nm处,比表面积为441 m 2/g,外比表面积为151 m 2/g,Fe 2O 3含量为分子筛总重量的3.1%,其中骨架铁的含量占总铁含量的96%。CuO含量为分子筛总重量的1.8%,其中二价铜离子占总铜含量的91%。
实施例 2
本实施例提供一种FeCu-ZSM-5催化剂,制备步骤同实施例1,仅调变部分参数,具体如下:
分子筛制备:将2.18 g Fe(NO 3) 3·9H 2O、0.13 g Cu(NO 3) 2·3H 2O、10 g H 2O、5.20 g十六烷基三甲基溴化铵、1.069 g铝酸钠、14.18 g水玻璃(27.6 wt% SiO 2)、2.2 g H 2SO 4加入烧杯中调pH至11,40 oC下老化2 h,再加入1.2 g硫酸调pH至8,80 oC老化4 h,然后转移至带有聚四氟乙烯内衬的不锈钢高压釜中于160 oC晶化24 h,待晶化结束后,将晶化产物冷却、过滤和洗涤至中性后,放入烘箱于120 oC过夜干燥,得到钠型分子筛。
将钠型分子筛与1 M的NH 4Cl溶液按照质量比1:20的比例进行离子交换,于70 oC的恒温水浴锅中搅拌4 h,经抽滤、洗涤、烘干,530 oC焙烧6 h后,即制得氢型FeCu-ZSM-5分子筛,记为催化剂B。所得样品介孔孔径主要集中在15 nm处,比表面积为470 m 2/g,外比表面积为160 m 2/g,Fe 2O 3含量为分子筛总重量的5.4%,其中骨架铁的含量占总铁含量的95.5%。CuO含量为分子筛总重量的0.7%,其中二价铜离子占总铜含量的90%。
实施例 3
本实施例提供一种FeCu-ZSM-5催化剂,制备步骤同实施例1,仅调变部分参数,具体如下:
分子筛制备:将5.2 g Fe(NO 3) 3·9H 2O、0.11 g Cu(NO 3) 2·3H 2O、18.3 g H 2O、8.67 g TPABr,2.27 g硫酸铝、14.18 g水玻璃(27.6 wt% SiO 2)、2.2 g H 2SO 4加入烧杯中调pH至13,50 oC下老化5 h,再加入3.2 g硫酸调pH至7,60 oC老化6 h,然后转移至带有聚四氟乙烯内衬的不锈钢高压釜中于170 oC晶化48 h,待晶化结束后,将晶化产物冷却、过滤和洗涤至中性后,放入烘箱于90 oC过夜干燥,得到钠型分子筛。
将钠型分子筛与1 M的NH 4Cl溶液按照质量比1:15的比例进行离子交换,于70 oC的恒温水浴锅中搅拌3 h,经抽滤、洗涤、烘干,550 oC焙烧7 h后,即制得氢型FeCu-ZSM-5分子筛,记为催化剂C。所得样品介孔孔径主要集中在30 nm处,比表面积为550 m 2/g,外比表面积为300 m 2/g,Fe 2O 3含量为分子筛总重量的9.4%,其中骨架铁的含量占总铁含量的97%。CuO含量为分子筛总重量的0.6%,其中二价铜离子占总铜含量的90%。
实施例 4
本实施例提供一种FeCu-ZSM-5催化剂,制备方法具体如下:
矿物的活化:将市售的硅藻土烘干、粉碎成粉末,称取50.00 g硅藻土粉末在800 oC焙烧4 h,备用。称取60.00 g累托土、72 g氢氧化钠、300 g水,常温下机械搅拌1 h,之后在255 oC烘箱中活化12 h,之后粉碎备用。
分子筛制备:将0.79 g氢氧化钠,加入52.2 g去离子水,混合均匀,加入0.30 g Cu(NO 3) 2·H 2O、4.7 g热活化的硅藻土,加入0.24 g活化后的累托土和0.52 g正丁胺,加入盐酸2 g调节pH至13,转移至60 oC水浴搅拌30 min,,加入盐酸0.5 g调节pH至12,在70 oC水浴搅拌老化4 h,转移至带聚四氟乙烯内衬的高压反应釜,旋转烘箱170 oC晶化72 h,待晶化结束后,将晶化产物冷却、过滤和洗涤至中性后,放入烘箱于110 oC过夜干燥,得到钠型分子筛。
将钠型分子筛与1 M的NH 4Cl溶液按照质量比1:30的比例进行离子交换,于80 oC的恒温水浴锅中搅拌4 h,经抽滤、洗涤、烘干,560 oC焙烧8 h后,即制得氢型FeCu-ZSM-5分子筛,记为催化剂D。所得样品介孔孔径主要集中在35 nm处,比表面积为470 m 2/g,外比表面积为215m 2/g,Fe 2O 3含量为分子筛总重量的1%,其中骨架铁的含量占总铁含量的98%。CuO含量为分子筛总重量的0.87%,其中二价铜离子占总铜含量的93%。
实施例 5
本实施例,将实施案例1制备的催化剂用于固定床反应测试活性,包括以下步骤:
上述实施案例1得到的催化剂A经压片、过筛后,取20~40目的催化剂颗粒进行活性评价。催化剂的活性评价装置为常压式微型固定床反应装置,由气体混合预热炉和反应炉组成反应系统,反应器为内径7 mm的石英管。在实验过程中采用程序升温的方式进行反应,用温度控制仪控制加热炉的温度。到达数据采集点时停留30 min进行数据处理并记录数据。反应条件为:500 ppm NO、500 ppm NH 3、5 v% O 2、N 2为平衡气、气体总流量为600 mL/min、催化剂用量为200 mg,反应体积空速为180000 h -1。NO、NH 3和NO 2的浓度均由烟气分析仪(德国德图仪器testo340)进行在线定性,定量分析,N 2O的浓度则由配有2 m光程气体池的傅里叶变换红外光谱仪(Nicolet iS50)测得。
实施例 6
本实施例,将催化剂用于固定床反应测试活性,步骤同实施例5,参数不同之处在于:催化剂更替为实施案例2制备的催化剂B。
实施例 7
本实施例,将催化剂用于固定床反应测试活性,步骤同实施例5,参数不同之处在于:催化剂更替为实施案例3制备的催化剂C。
实施例 8
本实施例,将催化剂用于固定床反应测试活性,步骤同实施例5,参数不同之处在于:催化剂更替为实施案例4制备的催化剂D。
实施例 9
本实施例,将催化剂用于固定床反应测试活性,步骤同实施例5,参数不同之处在于:催化剂更替为实施案例4制备的催化剂经过700 oC下水热处理4 h,记为催化剂E。
对比例 1
(1)为了证明本发明所述技术方案的技术效果,本发明还设置了对比例,本对比例中采用的分子筛为南开催化剂厂购买的商业HZSM-5。
(2)称取0.62 g Cu(NO 3) 2·3H 2O和3.22 g Fe(NO 3) 3·9H 2O、5 g去离子水,将其混合均匀后,缓慢滴加到10 g步骤(1)中的分子筛,超声2 h,室温晾干,再将其放置于烘箱中120 oC下干燥8 h,最后于马弗炉中520 oC下焙烧5 h,冷却至室温。记为催化剂F。
上述对比例1得到的催化剂F经压片、过筛后,取20~40目的催化剂颗粒进行活性评价。催化剂的活性评价装置为常压式微型固定床反应装置,由气体混合预热炉和反应炉组成反应系统,反应器为内径7 mm的石英管。在实验过程中采用程序升温的方式进行反应,用温度控制仪控制加热炉的温度。到达数据采集点时停留30 min进行数据处理并记录数据。反应条件为:500 ppm NO、500 ppm NH 3、5 v% O 2、N 2为平衡气、气体总流量为600 mL/min、催化剂用量为200 mg,反应体积空速为180000 h -1。NO、NH 3和NO 2的浓度均由烟气分析仪(德国德图仪器testo340)进行在线定性,定量分析,N 2O的浓度则由配有2 m光程气体池的傅里叶变换红外光谱仪(Nicolet iS50)测得。
对比例 2
(1)为了证明本发明所述技术方案的技术效果,本发明还设置了对比例,本对比例中采用的分子筛为对比案例1制备的催化剂经过700 oC下水热老化处理4 h,记为催化剂G。
上述实对比例2得到的催化剂G经压片、过筛后,取20~40目的催化剂颗粒进行活性评价。催化剂的活性评价装置为常压式微型固定床反应装置,由气体混合预热炉和反应炉组成反应系统,反应器为内径7 mm的石英管。在实验过程中采用程序升温的方式进行反应,用温度控制仪控制加热炉的温度。到达数据采集点时停留30 min进行数据处理并记录数据。反应条件为:500 ppm NO、500 ppm NH 3、5 v% O 2、N 2为平衡气、气体总流量为600 mL/min、催化剂用量为200 mg,反应体积空速为180000 h -1。NO、NH 3和NO 2的浓度均由烟气分析仪(德国德图仪器testo340)进行在线定性,定量分析,N 2O的浓度则由配有2 m光程气体池的傅里叶变换红外光谱仪(Nicolet iS50)测得。
表1 各实施例和固定床反应测试活性的测定结果
Figure 577903dest_path_image001
注:温窗为NO的转化率>90%时对应的温度区间
由表1可以看出,本发明提供的介孔FeCu-ZSM-5具有超宽的温度窗口(特别是低温活性)、优异的N 2选择性和较好的水热稳定性等特点,本发明方法不仅具有成本低、工艺简单、操作简便,而且具有良好的经济效益和环境效益。
尽管以上结合附图对本发明进行了描述,但是本发明并不局限于上述的具体实施方式,上述的具体实施方式仅仅是示意性的,而不是限制性的,本领域的普通技术人员在本发明的启示下,在不脱离本发明宗旨的情况下,还可以做出很多变形,这些均属于本发明的保护之内。

Claims (10)

  1. 一种介孔FeCu-ZSM-5分子筛,其特征在于,包括以下原料:去离子水、铝源、硅源、铁源、铜源、酸源和模板剂;所述分子筛中Fe 2O 3含量为分子筛总重量的0.1~10%,其中骨架Fe的含量占总铁含量的95%以上,且在骨架内分布均匀;分子筛中CuO含量为分子筛总重量的0.1~10%,其中Cu 2+的含量占总铜含量的90%以上,且其在分子筛内表面分布均匀。
  2. 如权利要求1所述一种介孔FeCu-ZSM-5分子筛的制备方法,其特征在于,制备方法为化学试剂合成法或矿物合成法中的一种。
  3. 根据权利要求2所述一种介孔FeCu-ZSM-5分子筛的制备方法,其特征在于,所述化学合成法具体包括如下步骤:
    (1)在20~90 oC下,将去离子水、铝源、硅源、铁源、铜源和模板剂在搅拌条件下混合均匀,控制各种原料的投料量使得合成体系中各物质的摩尔比为SiO 2/Al 2O 3=10~∞,SiO 2/Fe 2O 3=10~350,SiO 2/CuO=10~150,Na 2O/SiO 2=0.1~0.5,H 2O/SiO 2=10~50,模板剂/SiO 2=0.01~0.5;混合后加入酸源,调节体系pH为5~13,进行第一次老化,再加入酸源,调节体系pH为5~13,进行第二次老化,即获得老化后的凝胶;
    (2)将步骤(1)中获得的老化后的凝胶转移至含聚四氟乙烯内衬的反应釜中密封晶化,待晶化结束后,将晶化产物冷却、过滤除去母液,滤饼用去离子水洗涤至中性,干燥得到固体,之后将固体进行离子交换,并过滤、洗涤、干燥得到粉末;所述干燥条件为80-150℃,干燥过夜;
    (3)将步骤(2)中获得粉末置于马弗炉中焙烧得到FeCu-ZSM-5分子筛。
  4. 根据权利要求3所述一种介孔FeCu-ZSM-5分子筛的制备方法,其特征在于,所述铁源为硝酸铁、氯化铁和硫酸铁中的一种或几种,所述的铜源为硝酸铜、三水硝酸铜、九水硝酸铜、二水氯化铜中的一种或者几种的混合物,所述的酸源为2-羟基-均丙三羧酸、亚硫酸、亚硝酸、硫酸、盐酸、硝酸、草酸、醋酸中的一种或几种的混合物;所述的硅源为水玻璃、硅溶胶、正硅酸乙酯、固体硅胶中的一种或几种;所述的铝源为铝酸钠或者硫酸铝中的一种或者两种的混合物,中所述的模板剂为四辛基溴化铵、四丁基溴化铵、十六烷基三甲基溴化铵、四丙基氢氧化铵、四丙基溴化铵、己二醇、正丁胺、乙胺中的一种或几种的混合物。
  5. 根据权利要求2所述一种介孔FeCu-ZSM-5分子筛的制备方法,其特征在于,所述矿物合成法具体包括如下步骤:
    (1)矿物的活化:将铝源、硅源、铁源、铜源分别进行活化;
    (2)将步骤(1)活化后的后的矿物与氢氧化钠、去离子水和晶种混合均匀后,控制各种原料的投料量使得合成体系中各物质的摩尔比为SiO 2/Al 2O 3=10~∞,SiO 2/Fe 2O 3=10~350,SiO 2/CuO=10~150,Na 2O/SiO 2=0.1~0.5,H 2O/SiO 2=10~50,模板剂/SiO 2=0.01~0.5;混合后加入酸源,调节体系pH为5~13,进行老化,即获得老化后的凝胶;
    (3)将步骤(2)中获得的老化后的凝胶转移至含聚四氟乙烯内衬的反应釜中密封晶化,待晶化结束后,将晶化产物冷却、过滤除去母液,滤饼用去离子水洗涤至中性,干燥得到固体,之后将固体进行离子交换,并过滤、洗涤、干燥得到粉末;所述干燥条件为80-150℃,干燥过夜;
    (4)将步骤(3)中获得粉末置于马弗炉中焙烧得到FeCu-ZSM-5分子筛。
  6. 根据权利要求4所述一种介孔FeCu-ZSM-5分子筛的制备方法,其特征在于,所述的铁源为铝土矿、硅藻土、累托土、黄铁矿、云母赤铁矿、赤泥中的一种或几种,所述的铜源为磁铁矿、孔雀石、铜蓝、黄铜矿中的一种或者几种的混合,所述的酸源为2-羟基-均丙三羧酸、亚硫、和亚硝酸、硫酸、盐酸、硝酸、草酸、醋酸中的一种或几种的混合物,所述的硅源为铝土矿、硅藻土、累托土、天然沸石或蛋白石中的一种或两种,所述的铝源为云母、明矾石、铝土矿、硅藻土、累托土、天然沸石中的一种或几种的混合物,所述的模板剂为四辛基溴化铵、四丁基溴化铵、十六烷基三甲基溴化铵、四丙基氢氧化铵、四丙基溴化铵、己二醇、正丁胺、乙胺中的一种或几种的混合物。
  7. 根据权利要求3或5任一所述的一种介孔FeCu-ZSM-5分子筛的制备方法,其特征在于所述老化是在60~90 oC条件下进行,老化时间为2~12 h;所述晶化是在100~190 oC条件下进行,晶化时间为12~96 h。
  8. 根据权利要求3或5任一所述的一种介孔FeCu-ZSM-5分子筛的制备方法,其特征在于所述离子交换具体的具体方法为:将所述干燥得到的固体与0.1~2 M的NH 4Cl溶液按照质量比1:10~1:30的比例混合进行离子交换,于10~80 oC加热搅拌处理3~8 h。
  9. 根据权利要求3或5任一所述的一种介孔FeCu-ZSM-5分子筛的制备方法,其特征在于所述焙烧时间为4~10 h,焙烧温度为500~600 oC。
  10. 如权利要求1-9所述的FeCu-ZSM-5催化剂在氮氧化物选择性催化还原反应中的应用。
PCT/CN2018/124493 2018-11-14 2018-12-27 一种介孔FeCu-ZSM-5分子筛的制备方法及应用 WO2020098103A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/613,193 US20210331932A1 (en) 2018-11-14 2018-12-27 Preparation and application of 4-methyl-5-vinylthiazolyl polymeric ionic liquid

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811355699.8 2018-11-14
CN201811355699.8A CN109317188A (zh) 2018-11-14 2018-11-14 一种介孔FeCu-ZSM-5分子筛的制备方法及应用

Publications (1)

Publication Number Publication Date
WO2020098103A1 true WO2020098103A1 (zh) 2020-05-22

Family

ID=65257170

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/124493 WO2020098103A1 (zh) 2018-11-14 2018-12-27 一种介孔FeCu-ZSM-5分子筛的制备方法及应用

Country Status (3)

Country Link
US (1) US20210331932A1 (zh)
CN (1) CN109317188A (zh)
WO (1) WO2020098103A1 (zh)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112275138A (zh) * 2020-10-15 2021-01-29 清华大学 一种循环流化床锅炉脱硝增效添加剂制备方法
CN112774723B (zh) * 2020-12-21 2023-01-17 中海油天津化工研究设计院有限公司 一种酸处理方式提高催化剂用于scr脱硝稳定性的方法
CN112811993B (zh) * 2020-12-29 2023-08-25 安徽省福泰精细化工有限责任公司 一种甲缩醛提纯方法
CN112517050B (zh) * 2021-01-06 2021-11-30 南京大学 一种包覆活性双金属氧化物的中空囊泡型介孔分子筛催化剂及其制备方法和应用
CN112495429B (zh) * 2021-01-14 2021-11-02 福州大学 一种无模板剂合成高SCR活性Cu-CHA分子筛的方法
CN115140745B (zh) * 2021-03-30 2023-11-10 中国石油化工股份有限公司 一种金属改性的多级孔zsm-5分子筛及其制备方法
CN115196650B (zh) * 2021-04-09 2023-11-10 中国石油化工股份有限公司 一种金属改性的介孔zsm-5分子筛及其制备方法
CN113368892B (zh) * 2021-05-31 2022-09-06 东风商用车有限公司 一种FAU型铜铁复合基cc-SCR分子筛催化剂及其制备方法
CN113457731B (zh) * 2021-07-06 2022-08-19 中国科学院过程工程研究所 一种分子筛催化无机纤维及其制备方法和除尘脱硝一体化应用
CN115403053B (zh) * 2022-09-13 2023-12-12 中国海洋石油集团有限公司 一种伴有正交孪晶的单分散纳米zsm-5分子筛及其制备方法
CN115970693B (zh) * 2022-11-30 2024-02-13 重庆化工职业学院 一种微藻改性氧化铁光芬顿催化剂及其制备方法和应用
CN116618070B (zh) * 2023-05-22 2024-01-05 福建省福能龙安热电有限公司 一种环境友好型脱硝催化剂及其制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20090040080A (ko) * 2007-10-19 2009-04-23 한국화학연구원 아산화질소 및 질소산화물 분해용 제올라이트 촉매 및 이의 제조방법
CN102240570A (zh) * 2010-05-11 2011-11-16 北京化工大学 一种具有介孔特征催化剂及其应用
CN104492471A (zh) * 2014-12-24 2015-04-08 中南大学 一种中低温scr脱硝介孔分子筛催化剂及其制备和应用方法
CN107126973A (zh) * 2017-05-31 2017-09-05 江南大学 一种CuFe‑SAPO‑34催化剂的原位合成方法及其应用
CN108435235A (zh) * 2018-03-26 2018-08-24 福州大学 一种介孔Zn-ZSM-5分子筛及低成本制备方法
CN108579800A (zh) * 2018-05-18 2018-09-28 西南林业大学 一种汽车尾气净化催化剂及其制备方法

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102010027883A1 (de) * 2009-04-17 2011-03-31 Johnson Matthey Public Ltd., Co. Verfahren zur Verwendung eines Katalysators mit Kupfer und einem kleinporigen molekularen Sieb in einem chemischen Prozess
CN103183359B (zh) * 2013-03-20 2014-12-31 中国科学院青岛生物能源与过程研究所 一种纳米级FeZSM-5分子筛及其制备方法和应用
CN103447079B (zh) * 2013-08-23 2014-12-24 淮阴工学院 Cu-Fe-ZSM-5-凹土复合烟气脱硝催化剂的制备方法
CN105413652B (zh) * 2015-11-06 2019-04-02 中国第一汽车股份有限公司 含有硅藻泥的颗粒过滤器载体材料混合物的制备方法
CN105523566A (zh) * 2015-12-13 2016-04-27 定州市荣鼎水环境生化技术有限公司 以氨为还原剂的选择性催化还原氮氧化物的沸石分子筛及其制备方法和应用
CN105731492A (zh) * 2016-01-28 2016-07-06 中国石油大学(华东) 一种低成本绿色合成Fe-ZSM-5分子筛的方法
CN106111183A (zh) * 2016-06-24 2016-11-16 碗海鹰 一种选择性催化还原氮氧化物的催化剂及其制备方法
CN106881148B (zh) * 2017-03-31 2019-04-30 国家电投集团远达环保催化剂有限公司 一种蜂窝式宽温度脱硝催化剂及其制备方法
CN107597177A (zh) * 2017-09-18 2018-01-19 中节能万润股份有限公司 一种铁‑铜氧化物和分子筛复合蜂窝式脱硝催化剂及其制备方法
CN108273544A (zh) * 2017-12-28 2018-07-13 凯龙蓝烽新材料科技有限公司 挤出式铜铁混合基分子筛脱硝催化剂及其制备方法
CN108295891B (zh) * 2018-01-10 2021-04-06 绍兴文理学院 柴油车尾气净化用Cu基分子筛脱硝催化剂的原位再生系统与方法
CN108217681B (zh) * 2018-01-19 2021-07-06 山东齐鲁华信高科有限公司 一种高铁含量的Fe-ZSM-5分子筛的制备方法
CN108452841A (zh) * 2018-02-07 2018-08-28 浙江大学 一种Cu和Fe共改性的SSZ-13分子筛催化剂的制备方法
CN108722409A (zh) * 2018-04-27 2018-11-02 石河子大学 介孔铜基氧化铝催化剂、制备方法及应用

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20090040080A (ko) * 2007-10-19 2009-04-23 한국화학연구원 아산화질소 및 질소산화물 분해용 제올라이트 촉매 및 이의 제조방법
CN102240570A (zh) * 2010-05-11 2011-11-16 北京化工大学 一种具有介孔特征催化剂及其应用
CN104492471A (zh) * 2014-12-24 2015-04-08 中南大学 一种中低温scr脱硝介孔分子筛催化剂及其制备和应用方法
CN107126973A (zh) * 2017-05-31 2017-09-05 江南大学 一种CuFe‑SAPO‑34催化剂的原位合成方法及其应用
CN108435235A (zh) * 2018-03-26 2018-08-24 福州大学 一种介孔Zn-ZSM-5分子筛及低成本制备方法
CN108579800A (zh) * 2018-05-18 2018-09-28 西南林业大学 一种汽车尾气净化催化剂及其制备方法

Also Published As

Publication number Publication date
CN109317188A (zh) 2019-02-12
US20210331932A1 (en) 2021-10-28

Similar Documents

Publication Publication Date Title
WO2020098103A1 (zh) 一种介孔FeCu-ZSM-5分子筛的制备方法及应用
WO2020098104A1 (zh) 一种介孔Fe-Cu-SSZ-13分子筛的制备方法及应用
CN107777700B (zh) 一种梯级孔hzsm-5分子筛及其制备方法
CN111960434A (zh) 一种cha型菱沸石分子筛及其合成方法与应用
CN111871455A (zh) 一种cha型铝硅分子筛及scr催化剂的制备方法与应用
CN111960433A (zh) 用含双环状基团季铵鎓模板剂合成的cha型分子筛及催化剂制备与应用
CN111333082B (zh) 一种全硅H-Beta分子筛及其制备方法和应用
CN103508463B (zh) 一种无粘结剂球形八面沸石颗粒的制备方法
JP2017518250A (ja) モレキュラーシーブssz−99
CN111871450A (zh) 一种cha结构分子筛及其尾气脱硝催化剂的制备方法与应用
CN111871452A (zh) 一种用于柴油车尾气净化cha型分子筛、催化剂及制备方法与应用
Liu et al. In situ synthesis of NaY zeolite with coal-based kaolin
CN111871454A (zh) 一种氮氧化物净化cha沸石分子筛及其催化剂制备方法与应用
CN110496595A (zh) 一种晶粒尺寸可控的类固相VOCs降解高硅ZSM-5分子筛的制备方法
EP3318533A1 (en) Copper-supported zeolite and exhaust-gas purification treatment catalyst containing said zeolite
KR102413855B1 (ko) 분자체 ssz-41의 합성
CN111115651A (zh) 纳米分子筛、合成方法及其用途
CN106669599B (zh) 一种沸石分子筛-导热骨架复合吸附剂及制备方法
CN103073019B (zh) 一种多级孔沸石分子筛的制备方法
CN116265108A (zh) 一种多产汽油催化裂化催化剂的制备方法
CN111302358B (zh) 一种无粘结剂fau型分子筛颗粒以及制备方法以及应用
CN112758954A (zh) 一种具有核壳结构的复合分子筛及其合成方法
JP6759596B2 (ja) Afx型ゼオライト及びその製造方法
CN111871453A (zh) 一种cha结构分子筛及合成方法与氮氧化物选择还原催化剂及应用
JP6371417B2 (ja) モレキュラーシーブssz−99を製造する方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18939804

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18939804

Country of ref document: EP

Kind code of ref document: A1