WO2020090346A1 - 紫外線硬化性オルガノポリシロキサン組成物およびその用途 - Google Patents

紫外線硬化性オルガノポリシロキサン組成物およびその用途 Download PDF

Info

Publication number
WO2020090346A1
WO2020090346A1 PCT/JP2019/039135 JP2019039135W WO2020090346A1 WO 2020090346 A1 WO2020090346 A1 WO 2020090346A1 JP 2019039135 W JP2019039135 W JP 2019039135W WO 2020090346 A1 WO2020090346 A1 WO 2020090346A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
composition
formula
component
curable
Prior art date
Application number
PCT/JP2019/039135
Other languages
English (en)
French (fr)
Inventor
琢哉 小川
大川 直
▲ユン▼珍 朴
ペンフェイ フー
Original Assignee
ダウ・東レ株式会社
ダウ シリコーンズ コーポレーション
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ダウ・東レ株式会社, ダウ シリコーンズ コーポレーション filed Critical ダウ・東レ株式会社
Priority to JP2020553707A priority Critical patent/JPWO2020090346A1/ja
Priority to CN201980076788.5A priority patent/CN113166540A/zh
Priority to KR1020217015517A priority patent/KR20210084531A/ko
Publication of WO2020090346A1 publication Critical patent/WO2020090346A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L83/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers
    • C08L83/04Polysiloxanes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F290/00Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups
    • C08F290/02Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups on to polymers modified by introduction of unsaturated end groups
    • C08F290/06Polymers provided for in subclass C08G
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F299/00Macromolecular compounds obtained by interreacting polymers involving only carbon-to-carbon unsaturated bond reactions, in the absence of non-macromolecular monomers
    • C08F299/02Macromolecular compounds obtained by interreacting polymers involving only carbon-to-carbon unsaturated bond reactions, in the absence of non-macromolecular monomers from unsaturated polycondensates
    • C08F299/08Macromolecular compounds obtained by interreacting polymers involving only carbon-to-carbon unsaturated bond reactions, in the absence of non-macromolecular monomers from unsaturated polycondensates from polysiloxanes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/20Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the epoxy compounds used
    • C08G59/22Di-epoxy compounds
    • C08G59/30Di-epoxy compounds containing atoms other than carbon, hydrogen, oxygen and nitrogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/14Polysiloxanes containing silicon bound to oxygen-containing groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/20Polysiloxanes containing silicon bound to unsaturated aliphatic groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/22Polysiloxanes containing silicon bound to organic groups containing atoms other than carbon, hydrogen and oxygen
    • C08G77/24Polysiloxanes containing silicon bound to organic groups containing atoms other than carbon, hydrogen and oxygen halogen-containing groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/22Polysiloxanes containing silicon bound to organic groups containing atoms other than carbon, hydrogen and oxygen
    • C08G77/26Polysiloxanes containing silicon bound to organic groups containing atoms other than carbon, hydrogen and oxygen nitrogen-containing groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/54Silicon-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/54Silicon-containing compounds
    • C08K5/541Silicon-containing compounds containing oxygen
    • C08K5/5415Silicon-containing compounds containing oxygen containing at least one Si—O bond
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D183/00Coating compositions based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon, with or without sulfur, nitrogen, oxygen, or carbon only; Coating compositions based on derivatives of such polymers
    • C09D183/04Polysiloxanes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/18Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances
    • H01B3/30Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes
    • H01B3/46Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes silicones

Definitions

  • the present invention relates to a polysilsesquioxane having a cage-like molecular structure, and an organocurable organopolysiloxane composition containing an organosiloxane and / or an organopolysiloxane curable by actinic rays such as ultraviolet rays or electron rays.
  • the present invention relates to a UV-curable organopolysiloxane composition having a low relative dielectric constant, in particular, a cured product obtained therefrom.
  • the curable silicone composition of the present invention has a low relative dielectric constant of 3.0 or less and is suitable as an insulating material for electronic devices and electric devices, particularly as a material for use as a coating agent.
  • silicone resins Due to its high heat resistance and excellent chemical stability, silicone resins have been used as coating agents, potting agents, insulating materials and the like for electronic devices and electric devices.
  • silicone resins a curable silicone composition containing, as one component, a silsesquioxane composed of a T unit (RSiO 3/2 , R generally represents an alkyl group, an aryl group, etc.) has been reported so far. There is.
  • Japanese Patent Publication No. 2017-534693 discloses a polyhedral cage silsesquioxane component having one or more UV-curable reactive groups, a free radical curable acrylate and a cation that can be cured using UV irradiation.
  • the publication also states that the silsesquioxane described above may be a polyhedral cage silsesquioxane.
  • WO 2015/064310 includes a silsesquioxane compound having two or more polymerizable groups and a silicone compound having two or more polymerizable groups at the ends in specific proportions, respectively, and a photopolymerization initiator. And a solvent, and the use of the composition as an imprint material for forming a film having a predetermined pattern transferred thereon.
  • Japanese Patent Publication No. 2014-529631 discloses a polyaliphatic aromatic silsesquioxane containing an ethylenically unsaturated group and fluorine, a reactive monomer containing one or more unsaturated groups, a so-called silane coupling agent, and It describes a photocurable composition containing a photoinitiator and the use of this composition as an encapsulant used in packaging processes for semiconductors and LEDs.
  • the compound having one or more unsaturated groups is any one of an unsaturated carboxylic acid having one or more ethylenically unsaturated groups in the molecule, an unsaturated carboxylic acid anhydride, and an acrylic unsaturated compound. It is described that it is the above. Therefore, a reactive monomer containing one or more unsaturated groups is not a silicone.
  • UV-curable organopolysiloxane compositions for combining a compound having a curable functional group with silsesquioxane for use in applications such as materials for electronic devices.
  • a UV-curable organopolysiloxane composition whose cured product has a low relative dielectric constant and which has excellent workability for coating a substrate, particularly low viscosity.
  • the present invention is intended to provide an ultraviolet-curable organopolysiloxane composition in which a product obtained by curing has a low relative dielectric constant and also has excellent workability when applied to a substrate. ..
  • the present invention has a cage-like molecular structure in a matrix obtained by curing an organosiloxane and / or an organopolysiloxane having a functional group curable by irradiation with energy rays capable of causing a chemical reaction such as ultraviolet rays or electron beams.
  • energy rays capable of causing a chemical reaction
  • the resulting cured product can have a low relative dielectric constant, and the curable composition has a low viscosity and excellent workability when applied to a substrate.
  • the present invention relates to a UV-curable organopolysiloxane composition, which is cured by the formation of a bond by a UV-curable functional group, but the curing method is not limited to UV irradiation, and Any method that allows the curable functional group to undergo a curing reaction may be used, for example electron beam irradiation may be used to cure the composition of the present invention.
  • the ultraviolet curable organopolysiloxane composition of the present invention is (A) at least one organosiloxane and / or organopolysiloxane having an average of two or more UV-curable functional groups in one molecule; (B) Polysilsesquioxane having a cage-like molecular structure, the amount of component (A) is 40% or more of the total mass of the composition, and the amount of organic solvent contained in the composition. Is less than 10% of the total mass of the composition.
  • the above composition may contain a photoinitiator for causing a curing reaction of the ultraviolet curable functional group depending on the curing method.
  • the organosiloxane or organopolysiloxane of component (A) has the following average composition formula: R a R ′ b SiO (4-a ⁇ b) / 2 (1)
  • R is an ultraviolet curable functional group
  • R' is a group other than the above-mentioned UV-curable functional group selected from a monovalent hydrocarbon group, a hydroxyl group, and an alkoxy group
  • a and b are numbers satisfying the following conditions: 1 ⁇ a + b ⁇ 3 and 0.001 ⁇ a / (a + b) ⁇ 0.33.
  • a linear, branched, or cyclic organopolysiloxane represented by the formula (but excluding those corresponding to the following component (B)) is preferable.
  • the polysilsesquioxane having a cage-like molecular structure of the component (B) has the following average unit formula (2): (R 9 SiO 3/2 ) p (R 10 SiO 3/2 ) q (O 1/2 R b ) r (2) (In the formula, R 9 is independently an unsubstituted or fluorine-substituted monovalent hydrocarbon group; R 10 is an ultraviolet-curable functional group; R b is independently a hydrogen atom or a carbon number.
  • the organosiloxane or organopolysiloxane of component (A) has the following formula (3): (In the formula, two or more of all R 1 to R 8 groups are UV-curable functional groups on average per molecule; the other R 1 to R 8 are each independently unsubstituted or substituted with fluorine.
  • N is a numerical value at which the viscosity of the (poly) organosiloxane represented by the formula (1) is 1 to 1000 mPa ⁇ s at 25 ° C., and n is 0 Good)
  • each R is independently a group selected from a UV-curable functional group and an unsubstituted or fluorine-substituted monovalent hydrocarbon group, and at least two of all R are UV-curable.
  • R 9 of the formula (2) of the above component (B) is independently selected from the group consisting of an alkyl group having 2 to 20 carbon atoms, which is unsubstituted or substituted with fluorine, and an alkenyl group having 2 to 20 carbon atoms. Group is preferred.
  • composition of the present invention preferably has an amount of the organic solvent of less than 1.0% of the total mass of the composition or does not contain the organic solvent.
  • the number of UV-curable functional groups in the component (A) is preferably 2 to 4 on average per molecule.
  • the UV-curable functional group of the component (A) is preferably a group selected from an epoxy group-containing group and a maleimide group-containing group.
  • the polysilsesquioxane of the component (B) does not have a UV-curable functional group bonded to a silicon atom.
  • the viscosity of the above composition is 5 to 1,000 mPa.s at 25 ° C. It is preferable that it is in the range of s and the relative permittivity of the cured product obtained by curing the composition is 3.0 or less.
  • the present invention also provides a method of using a cured product formed from the above ultraviolet-curable organopolysiloxane composition as an insulating coating layer.
  • the present invention also provides a display device including a layer formed of a cured product formed from the above ultraviolet curable organopolysiloxane composition.
  • the ultraviolet-curable organopolysiloxane composition of the present invention has a low dielectric constant because it has an appropriate viscosity that brings about good workability when applied to a substrate and the cured product obtained therefrom has a low relative dielectric constant.
  • it is useful as an article comprising a low-k layer, especially as a low-k material for electronic devices, especially for insulating layers, especially as a coating material.
  • the UV-curable organopolysiloxane composition of the present invention comprises the following components (A) and (B) as essential components, and if desired, the addition of a photoreaction initiator or the like which is generally known as a photopolymerization initiator. Agents can be included.
  • an organic solvent may be optionally added to the composition of the present invention in order to reduce the viscosity of the composition, but the amount of the organic solvent is preferably less than 10% by mass of the entire composition, The composition of the present invention is substantially solvent-free.
  • One of the characteristics of the ultraviolet-curable organopolysiloxane composition of the present invention is that the cured product obtained from the composition has a low dielectric constant.
  • the reason why the relative permittivity of the cured product obtained from the composition of the present invention is low is not always clear, in the matrix formed by curing the organosiloxane and / or organopolysiloxane having a UV-curable functional group. Since polysilsesquioxane having a dispersed cage-like molecular structure has nanoscale pores, it is presumed that nanoscale pores are introduced into the cured product, which lowers the relative dielectric constant. There is.
  • the ultraviolet-curable organopolysiloxane composition of the present invention makes use of the low relative permittivity and good workability of the cured product thereof to produce an insulating coating agent, particularly for electronic devices and electric devices such as touch panels and displays. It is useful as a coating agent for forming an insulating layer in a display device and its member or a semiconductor device.
  • the viscosity of a compound is a value measured by a rotational viscometer at 25 ° C. (unit is mPa ⁇ s).
  • the number average molecular weight and the weight average molecular weight of the compound are values measured by gel permeation chromatography (GPC).
  • the relative permittivity is a value measured at 23 ° C. by the capacitance method (capacitor method). These measuring methods are known to those skilled in the art.
  • the organosiloxane or organopolysiloxane having a UV-curable functional group used as the component (A) is one having an average of two or more UV-curable functional groups per molecule in the organosiloxane or organopolysiloxane skeleton.
  • the molecular structure can be arbitrary as long as this purpose can be achieved.
  • the organosiloxane or organopolysiloxane of component (A) is The following average composition formula; R a R ′ b SiO (4-a ⁇ b) / 2 (1)
  • R is an ultraviolet curable functional group
  • R' is a group selected from a monovalent hydrocarbon group, a hydroxyl group, and an alkoxy group, excluding the above-mentioned UV-curable functional group
  • a and b are numbers satisfying the following conditions: 1 ⁇ a + b ⁇ 3 and 0.001 ⁇ a / (a + b) ⁇ 0.33.
  • radically polymerizable groups such as acryloxypropyl, methacryloxypropyl, acrylamidopropyl, methacrylamideamidopropyl, and 3- (N-maleimido) propyl.
  • Examples include groups such as glycidyloxy- (CH 2 ) n- (n is an integer of 3 to 20) and 3,4-epoxycyclohexyl- (CH 2 ) n- (n is an integer of 2 to 20).
  • the UV-curable functional group is particularly preferably one or more groups selected from an epoxy group-containing group and a maleimide group-containing group.
  • an epoxycyclohexylethyl group particularly a 3,4-epoxycyclohexylethyl group, a 3- (N-maleimido) propyl group can be mentioned.
  • the linear, branched, or cyclic organopolysiloxane represented by the above average composition formula preferably has at least two UV-curable functional groups (R) on average per molecule.
  • the number of UV-curable groups per molecule is preferably 2 to 6, more preferably 2 to 5, and particularly preferably 2 to 4.
  • the monovalent hydrocarbon group represented by R' is a monovalent hydrocarbon group, which includes an unsubstituted monovalent hydrocarbon group and a monovalent hydrocarbon group substituted with fluorine.
  • the unsubstituted or fluorine-substituted monovalent hydrocarbon group is preferably a group selected from unsubstituted or fluorine-substituted alkyl, cycloalkyl, arylalkyl, and aryl groups having 1 to 20 carbon atoms. is there.
  • alkyl group examples include groups such as methyl, ethyl, n-propyl, isopropyl, n-butyl, tert-butyl, sec-butyl, pentyl and octyl, and a methyl group is particularly preferable.
  • examples of the cycloalkyl group include cyclopentyl and cyclohexyl.
  • Examples of the arylalkyl group include benzyl and phenylethyl groups. Examples of the aryl group include a phenyl group and a naphthyl group.
  • Examples of the monovalent hydrocarbon group substituted with fluorine include 3,3,3-trifluoropropyl and 3,3,4,4,5,5,6,6,6-nonafluorohexyl group. ..
  • a 3,3,3-trifluoropropyl group is preferable.
  • the organosiloxane or organopolysiloxane represented by the above formula (1) has a viscosity at 25 ° C. of preferably 1 to 10000 mPa ⁇ s, more preferably 1 to 2000 mPa ⁇ s. A value of 5 to 1000 mPa ⁇ s is particularly preferable.
  • the viscosity of the organosiloxane or organopolysiloxane can be adjusted by changing the ratio of a and b in formula (1) and the molecular weight.
  • the organosiloxane or organopolysiloxane of component (A) is Formula (3) below: Is a compound represented by.
  • the organosiloxane or organopolysiloxane represented by the formula (3) preferably has an average of two or more UV-curable functional groups per molecule. ..
  • UV curable functional groups are organic groups capable of forming bonds between each other by irradiation with UV light in the presence or absence of a photoinitiator. Examples of the UV-curable functional group include radically polymerizable groups and cationically polymerizable groups.
  • the radically polymerizable group is not particularly limited as long as it is a functional group capable of forming a new bond by a radical reaction mechanism, particularly a bond between radically polymerizable groups, and examples thereof include an acryl group, a methacryl group, a maleimide group, and these. Mention may be made of organic groups containing either group. Specific examples include radically polymerizable groups such as acryloxypropyl, methacryloxypropyl, acrylamidopropyl, methacrylamideamidopropyl, and 3- (N-maleimido) propyl.
  • a group such as a vinyl ether group, an epoxy group-containing group, an oxetane group-containing group, for example, CH 2 CH-O- (CH 2 ) n- (n is an integer of 3 to 20), Examples include groups such as glycidyloxy- (CH 2 ) n- (n is an integer of 3 to 20) and 3,4-epoxycyclohexyl- (CH 2 ) n- (n is an integer of 2 to 20). Be done.
  • the UV-curable functional group is particularly preferably one or more groups selected from an epoxy group-containing group and a maleimide group-containing group.
  • an epoxycyclohexylethyl group, particularly a 3,4-epoxycyclohexylethyl group, a 3- (N-maleimido) propyl group can be mentioned.
  • R 1 to R 8 other than the UV-curable functional group are each independently an unsubstituted or fluorine-substituted monovalent hydrocarbon group, preferably an unsubstituted or substituted group having 1 to 20 carbon atoms or A group selected from fluorine-substituted alkyl, cycloalkyl, arylalkyl, and aryl groups.
  • alkyl group include groups such as methyl, ethyl, n-propyl, isopropyl, n-butyl, tert-butyl, sec-butyl, pentyl and octyl, and a methyl group is particularly preferable.
  • Examples of the cycloalkyl group include cyclopentyl and cyclohexyl.
  • Examples of the arylalkyl group include benzyl and phenylethyl groups.
  • Examples of the aryl group include a phenyl group and a naphthyl group.
  • Examples of the monovalent hydrocarbon group substituted with fluorine include 3,3,3-trifluoropropyl and 3,3,4,4,5,5,6,6,6-nonafluorohexyl group. ..
  • As the monovalent hydrocarbon group substituted with fluorine a 3,3,3-trifluoropropyl group is preferable.
  • the number of UV-curable functional groups contained in the component (A) organosiloxane and / or organopolysiloxane of the formula (3) is not particularly limited, but as a whole, it is 2 to 6, preferably 2 per molecule on average. -5, particularly preferably 2-4.
  • one of R 1 to R 3 and one of R 6 to R 8 in the formula (3) are UV-curable functional groups. Further, it is particularly preferable that only one of R 1 to R 3 and one of R 6 to R 8 in the formula (3) are UV-curable functional groups.
  • the organosiloxane or the organopolysiloxane of the formula (3) can be used alone or as a mixture of two or more kinds.
  • the viscosity of the mixture at 25 ° C. is preferably 1 to 10000 mPa ⁇ s, more preferably 1 to 2000 mPa ⁇ s. It is preferably 5 to 1000 mPa ⁇ s, particularly preferably.
  • the compound of the above formula (1) may be an organopolysiloxane represented by the following average unit formula (4).
  • each R is independently a group selected from a UV-curable functional group and an unsubstituted or fluorine-substituted monovalent hydrocarbon group, and at least two of all R are UV-rays. It is a curable functional group, (c + d) is a positive number, a is 0 or a positive number, and b is a number in the range of 0 to 100.
  • the UV curable functional group and the monovalent hydrocarbon group are as defined for formula (1) above. Further, the preferable viscosity of the organopolysiloxane represented by the formula (4) is also as defined for the organopolysiloxane represented by the formula (1) above.
  • the organosiloxane or organopolysiloxane represented by the above formula (3) and the organopolysiloxane represented by the above formula (4) may be used alone or in combination of two or more. You can That is, the organosiloxane or organopolysiloxane represented by the formula (3), the organopolysiloxane represented by the formula (4), and a mixture of two or more kinds arbitrarily selected from them are used in the composition of the present invention. It can be used as the component (A).
  • the polysilsesquioxane having a cage-like molecular structure used as the component (B) has the following average unit formula (2): (R 9 SiO 3/2 ) p (R 10 SiO 3/2 ) q (O 1/2 R b ) r (2) Among the polysilsesquioxanes composed of only the T unit represented by, those having a cage-like molecular structure are particularly preferable.
  • Polysilsesquioxane having a cage-like molecular structure has a so-called polyhedral cluster structure or a structure close thereto, and is also called a polyhedral oligomeric silsesquioxane.
  • the component (B) has a symmetrical molecular structure or a molecular structure close thereto, and is a component that lowers the dielectric constant of the cured product of the present invention.
  • R 9's each independently represent an unsubstituted or fluorine-substituted monovalent hydrocarbon group, preferably unsubstituted or fluorine-substituted alkyl having 1 to 20 carbon atoms, A group selected from alkenyl having 2 to 20 carbon atoms, cycloalkyl having 3 to 20 carbon atoms, arylalkyl having 7 to 20 carbon atoms, and aryl group having 6 to 20 carbon atoms.
  • alkyl group examples include groups such as methyl, ethyl, n-propyl, isopropyl, n-butyl, tert-butyl, sec-butyl, pentyl, octyl, decyl, dodecyl and tetradecyl.
  • cycloalkyl group examples include cyclopentyl and cyclohexyl.
  • arylalkyl group examples include benzyl and phenylethyl groups.
  • the aryl group examples include a phenyl group and a naphthyl group.
  • Particularly preferred monovalent hydrocarbon groups are unsubstituted or fluorine-substituted alkyl groups having 2 to 20 carbon atoms or alkenyl groups having 2 to 20 carbon atoms, and particularly alkyl groups having 2 to 20 carbon atoms. Or an alkenyl group is preferable. Particularly, a group selected from hexyl, octyl, and decyl groups is preferable. Examples of fluorinated monovalent hydrocarbon groups include 3,3,3-trifluoropropyl.
  • the polysilsesquioxane used in the present invention preferably has a high molecular symmetry.
  • the polysilsesquioxane of the formula (2) may be symmetric or highly symmetric by appropriately selecting the type of organic group or functional group, or by arranging those groups in the molecule. It is advantageous to lower the polarizability in the molecule by designing the molecule in order to reduce the relative permittivity of the cured product containing the molecule.
  • R 10 is an ultraviolet curable functional group.
  • UV curable functional groups are organic groups capable of forming bonds between each other by irradiation with UV light in the presence or absence of a photoinitiator.
  • examples of the UV-curable functional group include radically polymerizable groups and cationically polymerizable groups.
  • the radical polymerizable group is not particularly limited as long as it is a functional group capable of forming a bond by a radical reaction mechanism, and examples thereof include an acrylic group, a methacrylic group, a maleimide group, and an organic group containing any of these groups. it can.
  • Specific examples include groups such as acryloxypropyl, methacryloxypropyl, acrylamidopropyl, methacrylamidopropyl, and 3- (N-maleimido) propyl.
  • Examples include groups such as 3,4-epoxycyclohexyl- (CH 2 ) n- (n is an integer of 2 to 20) and glycidyloxy- (CH 2 ) n- (n is an integer of 3 to 20). Be done.
  • the UV-curable functional group is particularly preferably one or more groups selected from an epoxy group-containing group and a maleimide group-containing group.
  • an epoxycyclohexylethyl group particularly a 3,4-epoxycyclohexylethyl group, a 3- (N-maleimido) propyl group can be mentioned.
  • the UV-curable functional group contained in the organosiloxane and / or the organopolysiloxane represented by the formula (1), (3), or (4) is a radically polymerizable group, it is represented by the formula (2).
  • the UV-curable functional group contained in the polysilsesquioxane is also preferably a radically polymerizable group.
  • the UV-curable functional group of the organosiloxane or organopolysiloxane represented by formula (1), (3), or (4) is a cationically polymerizable functional group, it is represented by formula (2).
  • the UV-curable functional group contained in the polysesquioxane is also preferably a cationically polymerizable functional group, for example, a group selected from an epoxy group, a glycidyloxy group, a vinyl ether group and the like.
  • the polysilsesquioxane represented by the formula (2) does not have a UV-curable functional group. Therefore, in the composition of the present invention, only the organosiloxane and / or the organopolysiloxane represented by the formula (1), or the organosiloxane and / or the organopolysiloxane of the formula (3) and / or the formula (4) are UV-curable. It has a functional group.
  • each R b independently represents a hydrogen atom or an alkyl group having 1 to 20 carbon atoms, preferably 1 to 6 carbon atoms, more preferably 1 to 3 carbon atoms, particularly preferably a methyl group, an ethyl group, or isopropyl. Or a cycloalkyl group having 5 to 20 carbon atoms, for example, cyclopentyl or cyclohexyl group.
  • the cage-like molecular structure of polysilsesquioxane is known to have a complete cage-like structure and a partially cleaved structure, and any one of the polysilsesquioxanes of the formula (2) of the present invention is used. It can also be used.
  • p and q may be any numbers as long as the polysilsesquioxane of the formula (2) can have a cage-like molecular structure, and are not limited to specific values.
  • the sum of the values of p and q in formula (2) is generally 6 to 20, preferably 8 to 20, more preferably 8 to 14, and particularly preferably 8, 10 or 12.
  • the polysilsesquioxane of formula (2) can be a mixture of any combination of two or more polysilsesquioxanes with different sums of p and q.
  • the polysilsesquioxane of the present invention may be a mixture of polysilsesquioxanes having a cage-like molecular structure in which the sum of p and q is 8, 10, or 12.
  • q may be 0 (zero).
  • the polysilsesquioxane as the component (B) does not have a UV-curable functional group bonded to a silicon atom. Therefore, when a composition using such a component (B) is cured, it is treated with an organosiloxane or an organopolysiloxane represented by the formula (1), (3), or (4) under UV curing conditions. No bond is formed between the polysilsesquioxanes represented by the formula (2) by the UV-curable functional groups.
  • the organosiloxane and / or the organopolysiloxane represented by the formula (1), (3), or (4) and the polysilsesquioxy compound represented by the formula (2) are used. Due to the good compatibility of the sun, the matrix formed from the organosiloxane and / or the organopolysiloxane represented by the formula (1), (3), or (4) is represented by the formula (2). It is possible to obtain a highly uniform cured product in which the represented polysilsesquioxane is uniformly dispersed without separation.
  • the aspect in which q in the formula (2) is 0 (zero) is one preferable aspect of the composition of the present invention.
  • R 9 is as defined for formula (2) above, p is generally 6-20, preferably 8-20, more preferably 8-14, particularly preferably.
  • R b in formula (2a) is as defined for formula (2).
  • r is 0 or a value of preferably 20% or less of p + r, more preferably 10% or less of p + r, and particularly preferably 5% or less of p + r.
  • the cage structure portion of the polysilsesquioxane of the formula (2a) can have clear void portions, which means that the curability of the present invention can be improved. It is considered to be effective for lowering the relative dielectric constant of the cured product obtained from the composition.
  • the polysilsesquioxane of the formula (2) is a mixture of polysilsesquioxanes having different degrees of polymerization in which the total value of p and q, or the value of p when q is 0 is different. May be.
  • the sum of p and q in the formula (2) that is, the number of silicon atoms is 8 to 20 on average, and the number average molecular weight of the polysilsesquioxane is in the range of 500 to 3,000.
  • the degree (M w / M n , where M w is the weight average molecular weight and M n is the number average molecular weight) is preferably 1.0 to 1.5, and 1.0 to 1.4. Is more preferable.
  • a value of M w / M n closer to 1 is advantageous for lowering the relative dielectric constant of the cured product obtained by curing the curable composition of the present invention.
  • the weight average molecular weight and the number average molecular weight of the polysilsesquioxane here are values in terms of polystyrene measured by the gel permeation chromatography (GPC) method.
  • a photopolymerization initiator can be optionally added to the UV-curable organopolysiloxane composition of the present invention.
  • a photocationic polymerization is used as the UV polymerization initiator. It is preferable to use an initiator.
  • the photocationic polymerization initiator is a compound capable of generating a Bronsted acid or a Lewis acid by irradiation with ultraviolet rays or electron beams, a so-called photoacid generator, and an acid is generated by irradiation with ultraviolet rays or the like, and the acid is a cation. It is known to cause a reaction between polymerizable functional groups.
  • the UV-curable functional group is a radical-polymerizable functional group
  • a photo-radical polymerization initiator can be used as the UV-polymerization initiator.
  • the photoradical polymerization initiator can generate a free radical upon irradiation with ultraviolet rays or electron beams, which causes a radical polymerization reaction to cure the composition of the present invention.
  • a polymerization initiator is usually unnecessary.
  • the photocationic polymerization initiator used in the composition of the present invention can be arbitrarily selected from those known in the art, and is not particularly limited.
  • As the cationic photopolymerization initiator strong acid generating compounds such as diazonium salts, sulfonium salts, iodonium salts and phosphonium salts are known, and these can be used.
  • Examples of the cationic photopolymerization initiator include bis (4-tert-butylphenyl) iodonium hexafluorophosphate, cyclopropyldiphenylsulfonium tetrafluoroborate, dimethylphenacylsulfonium tetrafluoroborate, diphenyliodonium hexafluorophosphate, diphenyliodonium hexafluoroarcenes.
  • Omnicat 250 above IGM Resins BV
  • Omniat 270 above IGM Resins BV
  • CPI-310B above San Apro Co., Ltd.
  • IK-1 above San Apro Co., Ltd.
  • DTS-200 Midori Chemical Co., Ltd.
  • commercially available photoinitiators such as Irgacure 290 (BASF).
  • the amount of the photocationic polymerization initiator added to the composition of the present invention is not particularly limited as long as the desired photocuring reaction occurs, but generally, the amount of the component (A) and the component (B) of the present invention is It is preferable to use the photocationic polymerization initiator in an amount of 0.1 to 5% by mass, particularly 0.2 to 3% by mass, based on the total amount.
  • photo-radical polymerization initiator The photo-radical polymerization initiator is roughly classified into photo-cleavage type and hydrogen abstraction type.
  • the photo-radical polymerization initiator used in the composition of the present invention is known in the art. It can be arbitrarily selected and used from those known in the field, and is not particularly limited to a particular one.
  • Examples of the photo radical polymerization initiator include acetophenone, p-anisyl, benzyl, benzoin, benzophenone, 2-benzoylbenzoic acid, 4,4'-bis (diethylamino) benzophenone, 4,4'-bis (dimethylamino) benzophenone.
  • Benzoin methyl ether benzoin isopropyl ether, benzoin isobutyl ether, benzoin ethyl ether, 4-benzoylbenzoic acid, 2,2'-bis (2-chlorophenyl) -4,4 ', 5,5'-tetraphenyl-1, 2'-biimidazole, methyl 2-benzoylbenzoate, 2- (1,3-benzodioxol-5-yl) -4,6-bis (trichloromethyl) -1,3,5-triazine, 2-benzyl -2- (Dimethylamino) -4'-morpholinobutyrophenone, ( ⁇ ) -camphorquinone, 2-chlorothioxanthone, 4,4'-dichlorobenzophenone, 2,2-diethoxyacetophenone, 2,2-dimetho Ci-2-phenylacetophenone, 2,4-diethylthioxanthen-9-one,
  • Omnirad 651, 184, 1173, 2959, 127, 907, 369, 369E, and 379EG alkylphenone photopolymerization initiator, IGM Resins BV
  • Omnirad TPO H, TPO-L, and 819 acylphosphine oxide photoinitiator, IGM RESINS BV
  • Omnirad MBF and 754 intramolecular hydrogen abstraction photoinitiator, IGM Resins BV
  • Irgacure OXE01 and OXE02 Oxime ester-based non-neopolymerization initiator, BASF.
  • the amount of the photo-radical polymerization initiator added to the composition of the present invention is not particularly limited as long as the desired photo-polymerization reaction or photo-curing reaction occurs, but in general, the total mass of the composition of the present invention is It is used in an amount of 0.01 to 5% by mass, preferably 0.05 to 1% by mass.
  • a photosensitizer can be used in combination with the above-mentioned photocationic polymerization initiator or photoradical polymerization initiator.
  • the use of the sensitizer can increase the photon efficiency of the polymerization reaction and makes it possible to utilize longer wavelength light for the polymerization reaction as compared with the case where only the photoinitiator is used. It is known to be particularly effective when the coating thickness is relatively thick, or when an LED light source having a relatively long wavelength is used.
  • anthracene compounds, phenothiazine compounds, perylene compounds, cyanine compounds, merocyanine compounds, coumarin compounds, benzylidene ketone compounds, (thio) xanthene or (thio) xanthone compounds, for example, isopropyl Thioxanthone, 2,4-diethylthioxanthone, squarylium compounds, (thia) pyrylium compounds, porphyrin compounds, etc. are known, and not limited to these, any photosensitizer is used in the curable composition of the present invention. be able to.
  • the amount of the component (B) is not particularly limited as long as the composition of the present invention exhibits desired properties, but is generally 60% by mass or less, preferably 50% by mass or less, and particularly preferably 30% by mass or less based on the entire composition. In particular, it is 25% by mass or less, and 7% or more, preferably 10% by mass or more, more preferably 15% by mass or more of the whole composition.
  • the cured product obtained from the curable composition of the present invention has a desired hardness, tear strength, tensile strength, and breaking property depending on the selection of the siloxane chain length, the crosslinking density, the crosslinking reaction site and the structure of the component (A). It can be designed so as to have viscoelasticity including time elongation, adhesive strength, curing reaction rate, etc., for example, selection of polymer with reactive chain end, selection of polymer with side chain reactive chain, resinous Alternatively, it is possible to carry out a molecular design so as to have a physical property according to the intended use of the cured product by selecting a branched polymer or the like, and the cured product is included in the scope of the present invention.
  • the shape of the cured product obtained from the composition of the present invention is not particularly limited, and may be a thin film coating layer, a sheet-shaped molded product or the like, and a specific site in an uncured state.
  • the mixture may be poured into and cured to form a filling, and may be used as a sealing material or an intermediate layer of a laminate or a display device.
  • the cured product obtained from the composition of the present invention is substantially transparent and can be used for adhesion or fixation between members, an optically transparent adhesive (OCA) or an optical transparent resin. It can be used as (OCR).
  • OCA optically transparent adhesive
  • the cured product obtained from the composition of the present invention can form not only a resin-like cured product having high hardness, but also a flexible elastomer-like cured product or a gel-like cured product, so that its low dielectric constant It may be used for an optical member, an electronic member, a protective material for electronic materials, a functional elastomer, a functional gel, etc. for which a rate is required. Further, an additional function may be imparted by using an additive described later.
  • the cured product obtained from the composition of the present invention is characterized by having a low relative dielectric constant, and therefore the composition of the present invention is used for coating agents or potting agents, particularly for electronic devices and electric devices. It is suitable for use as an insulating coating agent or potting agent.
  • the viscosity of the entire composition is preferably 1 at 25 ° C. in order to have suitable fluidity and workability for applying the composition to a substrate. ⁇ 5000 mPa ⁇ s, more preferably 5 to 1000 mPa ⁇ s, and particularly preferably 5 to 500 mPa ⁇ s.
  • the formula (1) or the formula (3) and / or the formula (4) having a viscosity such that the viscosity of the whole composition becomes a desired viscosity is obtained.
  • organosiloxane and / or organopolysiloxane as component (A).
  • the molecular weight of the organosiloxane and / or the organopolysiloxane represented by the formula (1), or n of the formula (3) and the values of a, b, c, and d of the formula (4) are appropriately adjusted.
  • the viscosity of the organosiloxane and / or the organopolysiloxane of the component (A) can be appropriately adjusted.
  • the siloxane polymerization degree of the component (A) is preferably about 2 to 100 and particularly preferably about 2 to 20 because a desired low viscosity can be obtained.
  • An organic solvent can be used as a diluent to adjust the viscosity of the composition of the present invention.
  • the organic solvent is not limited to a specific organic solvent as long as it can dissolve the components (A) and (B) to form a uniform solution.
  • Examples of the organic solvent that can be used include an ester solvent, an ether solvent, a ketone solvent, and a hydrocarbon solvent having a boiling point of 200 ° C. or less at normal pressure, and a boiling point of 60 ° C. or more, It is preferably 200 ° C. or lower.
  • organic solvents include ethyl acetate, propyl acetate, butyl acetate, methyl propionate, ethyl propionate, propyl propionate, methyl butyrate, ethyl butyrate, 2-methoxyethyl acetate, 2-ethoxyethyl acetate, 2-acetate.
  • the UV-curable organopolysiloxane composition of the present invention contains no organic solvent at all, or even if it contains an organic solvent, the amount thereof is 10% or less, more preferably 5% or less of the total composition, particularly It is preferably 1% or less. It is particularly preferable that the composition of the present invention contains 1% or less of the total composition, even if it contains an organic solvent, or does not contain an organic solvent at all.
  • the composition of the present invention realizes a viscosity which can be easily applied to a substrate as a coating agent without using an organic solvent as a whole by adjusting the viscosity of the component (A). it can.
  • a non-volatile or low-volatile low molecular weight compound may be added, and is preferably added in order to adjust the viscosity of the composition and improve the coating property.
  • a low molecular weight compound has a molecular weight of 500 or less, is non-volatile or low volatile, has a boiling point of more than 200 ° C. under normal pressure, and preferably has a symmetrical molecular structure so as to maintain low dielectric properties.
  • it is not limited to this. Further, it may be a compound having an ultraviolet curable functional group.
  • low molecular weight compounds include dodecane, tetradecane, hexadecane, dodecene, tetradecene, hexadecene, 1,2-epoxy-4-vinylcyclohexane, 3 ′, 4′-epoxycyclohexylmethyl-3,4- Examples thereof include epoxycyclohexanecarboxylate, and 2- (3,4-epoxycyclohexyl) ethyltrimethoxysilane.
  • a compound selected from tetradecane, tetradecene, and 1,2-epoxy-4-vinylcyclohexane or a combination thereof is preferable. ..
  • the blending amount is an amount necessary for adjusting the viscosity, and may be 10% or less, and further 5% or less of the entire composition.
  • the low molecular weight compound having an epoxy group can also be referred to as a reactive diluent when the ultraviolet curable group contained in the curable composition of the present invention is a cationically polymerizable group. Therefore, the use of reactive diluents as additives is also an aspect of the invention.
  • additives may optionally be added to the compositions of the present invention.
  • examples of the additive include the followings, but are not limited thereto.
  • An adhesion promoter may be added to the composition of the present invention in order to improve the adhesiveness or the adhesion to the substrate that is in contact with the composition.
  • an adhesiveness-imparting agent should be added to the curable composition of the present invention. Is preferred.
  • any known adhesion promoter can be used as long as it does not inhibit the curing reaction of the composition of the present invention.
  • adhesion promoters examples include trialkoxysiloxy groups (eg, trimethoxysiloxy group, triethoxysiloxy group) or trialkoxysilylalkyl groups (eg, trimethoxysilylethyl group, triethoxysilylethyl group).
  • trialkoxysiloxy groups eg, trimethoxysiloxy group, triethoxysiloxy group
  • trialkoxysilylalkyl groups eg, trimethoxysilylethyl group, triethoxysilylethyl group.
  • organosilane having a hydrosilyl group or an alkenyl group for example, a vinyl group or an allyl group
  • organosiloxane oligomer having a linear, branched or cyclic structure having about 4 to 20 silicon atoms; trialkoxy.
  • An organosilane having a siloxy group or a trialkoxysilylalkyl group and a methacryloxyalkyl group (for example, a 3-methacryloxypropyl group), or an organosilane having a linear structure, a branched structure or a cyclic structure having about 4 to 20 silicon atoms.
  • Shiroki Oligomer trialkoxysiloxy group or trialkoxysilylalkyl group and epoxy group-bonded alkyl group (eg, 3-glycidoxypropyl group, 4-glycidoxybutyl group, 2- (3,4-epoxycyclohexyl) ethyl group , 3- (3,4-epoxycyclohexyl) propyl group) or an organosiloxane oligomer having a linear structure, a branched structure or a cyclic structure having about 4 to 20 silicon atoms; a trialkoxysilyl group (eg, An organic compound having two or more trimethoxylyl groups, triethoxysilyl groups); a reaction product of an aminoalkyltrialkoxysilane and an epoxy group-bonded alkyltrialkoxysilane, an epoxy group-containing ethyl polysilicate, and specifically, Vinyltrimethoxysilane, allyltrimetho Sisilane,
  • the amount of the adhesion promoter added to the curable composition of the present invention is not particularly limited, but it does not accelerate the curing characteristics of the curable composition or the discoloration of the cured product, and thus the total amount of the components (A) and (B) is 100. It is preferably within the range of 0.01 to 10 parts by mass, or within the range of 0.01 to 5 parts by mass with respect to the parts by mass.
  • additives may be added to the composition of the present invention, if desired, in addition to the above-mentioned adhesiveness imparting agent or in place of the adhesiveness imparting agent.
  • a leveling agent e.g., a silane coupling agent not included in the above-mentioned adhesiveness-imparting agents, an ultraviolet absorber, an antioxidant, a polymerization inhibitor, a filler (reinforcing filler, insulation Functional fillers, and functional fillers such as heat conductive fillers).
  • suitable additives can be added to the composition of the present invention.
  • a thixotropic agent may be added to the composition of the present invention, if necessary, particularly when it is used as a potting agent or a sealing material.
  • the cured product obtained from the ultraviolet-curable organopolysiloxane composition of the present invention can have a low dielectric constant, and its relative dielectric constant can be 3.0 or less, preferably 2.9 or less.
  • the ultraviolet-curable organopolysiloxane composition of the present invention can be cured not only by ultraviolet rays but also by using an electron beam, which is also one aspect of the present invention.
  • the composition of the present invention can be used as an insulating material by utilizing the characteristic that the cured product obtained therefrom has a low relative dielectric constant.
  • the compositions of the present invention are particularly useful as materials for forming insulating layers that make up various articles, especially electronic and electrical devices.
  • the composition of the present invention is coated on a substrate or sandwiched between two substrates at least one of which is transparent to an ultraviolet ray or an electron beam, and the composition is irradiated with an ultraviolet ray or an electron beam.
  • the material can be cured to form an insulating layer.
  • composition of the present invention it is also possible to form a pattern when the composition of the present invention is applied to a substrate and then cure the composition, or to apply an ultraviolet ray or an electron beam when the composition is applied to the substrate and cured. It is also possible to form an insulating layer having a desired pattern by leaving the hardened portion and the uncured portion by irradiation with and then removing the uncured portion with a solvent.
  • the curable composition of the present invention is particularly suitable as a material for forming an insulating layer of a display device such as a touch panel and a display.
  • the insulating layer may optionally form any desired pattern as described above. Therefore, a display device such as a touch panel and a display including an insulating layer obtained by curing the ultraviolet curable organopolysiloxane composition of the present invention is also an aspect of the present invention.
  • an article may be coated and then cured to form an insulating coating layer (insulating film). Therefore, the composition of the present invention can be used as an insulating coating agent. Further, a cured product formed by curing the curable composition of the present invention can also be used as the insulating coating layer.
  • the insulating film formed from the curable composition of the present invention can be used for various purposes. In particular, it can be used as a constituent member of an electronic device or as a material used in a process of manufacturing an electronic device.
  • Electronic devices include electronic devices such as semiconductor devices and magnetic recording heads.
  • the curable composition of the present invention is used as an insulating film for semiconductor devices such as LSIs, system LSIs, DRAMs, SDRAMs, RDRAMs, D-RDRAMs, and multichip module multilayer wiring boards, interlayer insulating films for semiconductors, and etching stopper films. , Surface protection film, buffer coat film, passivation film in LSI, cover coat of flexible copper clad plate, solder resist film, surface protection film for optical device.
  • the UV-curable organopolysiloxane composition of the present invention is suitable not only as a coating agent but also as a potting agent, particularly as an insulating potting agent for electronic devices and electric devices.
  • UV-curable organopolysiloxane composition of the present invention and the cured product thereof will be described in detail with reference to Examples.
  • Me, Vi, Ep, and Mal represent a methyl group, a vinyl group, a 2- (3,4-epoxycyclohexyl) ethyl group, and a 3- (N-maleimido) propyl group, respectively.
  • the measurement and evaluation in Examples and Comparative Examples were performed as follows.
  • the isolation yield was 98%.
  • Mw in terms of polystyrene of this polysilsesquioxane was 2340
  • Mn was 2250
  • M w / M n was 1.04.
  • 29 Si-NMR silicon 29 nuclear magnetic resonance
  • the isolation yield was 98%.
  • M w in terms of polystyrene of this polysilsesquioxane was 1400, M n was 1160, and M w / M n was 1.20. Met.
  • 13 C-NMR carbon 13 nuclear magnetic resonance
  • 29 silicon 29 nuclear magnetic resonance
  • Preparation of polysilsesquioxane having a cage-like molecular structure Production Example B3] Preparation Example B1 except that 75.1 g of decyltrimethoxysilane used in Preparation Example B1 was replaced with 75.1 g of hexenyltrimethoxysilane, the amount of potassium hydroxide was 0.20 g, and the amount of water was 10.1 g. The reaction was performed in the same manner as in 1. to prepare a hexenyl-substituted polysilsesquioxane having a cage-like molecular structure. The isolation yield was 98%.
  • Hexyl having a cage-like molecular structure and 3,4-epoxycyclohexylethyl-substituted polysil were reacted in the same manner as in Production Example B1 except that 0.90 g of an aqueous cesium oxide solution was used and the amount of water was changed to 10.3 g. A sesquioxane was prepared. The isolation yield was 100%. Similarly, as a result of analysis by the GPC method, M w in terms of polystyrene of this polysilsesquioxane was 1430, M n was 1310, and M w / M n was 1.09.
  • An ultraviolet-curable organopolysiloxane composition having the composition (parts by mass) shown in Table 1 was prepared using the following components.
  • (A1) EpMe 2 Si) 2 O
  • (A2) Me 2 MalSiO 1/2 ) 2 (Me 2 SiO 2/2 ) 10 represented by maleimide functional polysiloxane
  • (A3) EpMe 2 SiO) 4 Si having a viscosity of 74 mPa ⁇ s.
  • the UV-curable organopolysiloxane composition of the present invention (Examples 1 to 7) has a viscosity at 25 ° C suitable for being applied to a substrate as a coating agent. Furthermore, the ultraviolet-curable organopolysiloxane composition of the present invention has the effect of lowering the relative dielectric constant of a cured product obtained by irradiation with ultraviolet rays by using polysilsesquioxane. On the other hand, in the composition containing no cage-like decyl-substituted polysilsesquioxane (Comparative Example), the relative permittivity of the cured product was higher than that in Examples 1 to 7, and a low dielectric coating layer was obtained. I can't.
  • the ultraviolet-curable organopolysiloxane composition of the present invention is particularly suitable as a material for the above-mentioned applications, particularly for forming an insulating layer of a display device such as a touch panel and a display.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Paints Or Removers (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

本発明は、硬化して得られる生成物が低い比誘電率を有するとともに、基材に塗布するときの作業性が優れている紫外線硬化性オルガノポリシロキサン組成物を提供しようとするものである。 本発明の紫外線硬化性オルガノポリシロキサン組成物は、(A)一分子中に平均して2個以上の紫外線硬化性官能基を有する1種以上のオルガノシロキサン及び/又はオルガノポリシロキサン、及び(B)かご状分子構造を有するポリシルセスキオキサンを含有し、成分(A)の量が、組成物全体の質量の40%以上であり、かつ組成物中に含まれる有機溶剤の量が組成物全体の質量の10%未満であることを特徴とするものである。

Description

紫外線硬化性オルガノポリシロキサン組成物およびその用途
 本発明は、かご状分子構造を有するポリシルセスキオキサン、及び化学線(actinic rays)、例えば紫外線又は電子線によって硬化可能なオルガノシロキサン及び/又はオルガノポリシロキサンを含む紫外線硬化性オルガノポリシロキサン組成物、特に、それから得られる硬化物が低い比誘電率を有する紫外線硬化性オルガノポリシロキサン組成物に関する。本発明の硬化性シリコーン組成物は、比誘電率が低く3.0以下であり、電子デバイス及び電気デバイスのための絶縁材料として、特にコーティング剤として用いるための材料として適している。
 シリコーン樹脂はその高い耐熱性及び優れた化学安定性により、これまでにも電子デバイス及び電気デバイスのためのコーティング剤、ポッティング剤、及び絶縁材料等として用いられてきている。シリコーン樹脂のなかで、T単位(RSiO3/2、Rは一般にアルキル基、アリール基等を表す)からなるシルセスキオキサンを一成分として含む硬化性シリコーン組成物についてもこれまでに報告されている。
 例えば、特表2017-534693号公報には、紫外線硬化性反応基を1つ以上有する多面体かご型シルセスキオキサン成分と、紫外線照射を使用して硬化させることができるフリーラジカル硬化性アクリレート、カチオン硬化性エポキシ及びカチオン硬化性ビニルエーテルから選択される1つ以上の反応基を有する反応性の非シルセスキオキサンかつ非シリコーンモノマー及び/又はオリゴマーを含む硬化性シリコーン組成物と、それを光ファイバー等の光学物品のためのコーティング組成物として用いることが記載されている。また同公報には、前述のシルセスキオキサンが、多面体かご型シルセスキオキサンであってよいことが記載されている。
 国際公開第2015/064310号には、重合性基を2つ以上有するシルセスキオキサン化合物、及び末端に重合性基を2つ以上有するシリコーン化合物をそれぞれ特定の割合で含み、かつ光重合開始剤及び溶剤を含有する、光硬化性シリコーン組成物と、この組成物を所定のパターンが転写された膜を形成するためのインプリント材料として用いることが記載されている。
 韓国特許出願公開第1020160033915号明細書には、エポキシ基含有シルセスキオキサン、エポキシ基含有非シリコーン化合物、及び光カチオン重合開始剤を含む光硬化性組成物が記載されており、それから得られる硬化物は機械強度及び耐熱性に優れていること、及びこの組成物を、三次元物品を製造するために用いることが記載されている。この発明においてシルセスキオキサンと組み合わせられるエポキシ基含有化合物はシリコーン化合物ではない。
 特表2014-529631号公報には、エチレン性不飽和基とフッ素を含むポリ脂肪族芳香族シルセスキオキサンと、1つ以上の不飽和基を含む反応性モノマー、いわゆるシランカップリング剤、及び光開始剤を含む光硬化性組成物、及びこの組成物を半導体及びLEDなどのパッケージング工程に使用される封止材として用いることが記載されている。この1つ以上の不飽和基を有する化合物は、分子内に1つ以上のエチレン性不飽和基を有する不飽和カルボン酸、不飽和カルボン酸無水物、及びアクリル系不飽和化合物のいずれか1つ以上であることが記載されている。したがって、1つ以上の不飽和基を含む反応性モノマーはシリコーンではない。
特表2017-534693号公報 国際公開第2015/064310号 韓国特許出願公開第1020160033915号明細書 特表2014-529631号公報
 上述したように、硬化性官能基を有する化合物をシルセスキオキサンと組み合わせて、電子デバイスのための材料等の用途に用いるための紫外線硬化性オルガノポリシロキサン組成物はいくつか知られているが、その硬化物が低い比誘電率を有するとともに、基材に塗布するための優れた作業性、特に低粘度を備えた紫外線硬化性オルガノポリシロキサン組成物が今なお求められている。本発明は、硬化して得られる生成物が低い比誘電率を有するとともに、基材に塗布するときに優れた作業性を併せもつ紫外線硬化性オルガノポリシロキサン組成物を提供しようとするものである。
 本発明は、紫外線又は電子線などの化学反応を起こしうるエネルギー線の照射によって硬化可能な官能基を有するオルガノシロキサン及び/又はオルガノポリシロキサンが硬化して得られるマトリクス中にかご状分子構造を有するポリシルセスキオキサンを組み込むことによって、得られる硬化物が低い比誘電率を有することができ、さらにこの硬化性組成物は粘度が低く、基材へ塗布する場合の作業性に優れていることを発見して完成したものである。
 本発明は紫外線硬化性オルガノポリシロキサン組成物に関するものであり、本組成物は紫外線硬化性官能基による結合の形成によって硬化するものであるが、その硬化方法は紫外線照射に限定されず、この紫外線硬化性官能基が硬化反応を起こすことができる任意の方法を用いることができ、たとえば電子線照射を用いて本発明の組成物を硬化させてもよい。
 本発明の紫外線硬化性オルガノポリシロキサン組成物は、
 (A)一分子中に平均して2個以上の紫外線硬化性官能基を有する1種以上のオルガノシロキサン及び/又はオルガノポリシロキサンと、
 (B)かご状分子構造を有するポリシルセスキオキサン
とを含有し、成分(A)の量が、組成物全体の質量の40%以上であり、かつ組成物中に含まれる有機溶剤の量が組成物全体の質量の10%未満であることを特徴とする。
 さらに上記組成物は、硬化方法に応じて、紫外線硬化性官能基の硬化反応を起こさせるための光開始剤を含有していてもよい。
 上記組成物において、成分(A)のオルガノシロキサン又はオルガノポリシロキサンは、下記平均組成式:
 RR’SiO(4-a―b)/2 (1)
(式中、Rは、紫外線硬化性官能基であり、
 R’は、一価炭化水素基、水酸基、及びアルコキシ基から選ばれる、上記紫外線硬化性官能基以外の基であり、
 a及びbは次の条件:1≦a+b≦3及び0.001≦a/(a+b)≦0.33を満たす数である。)
で表される直鎖状、分岐状、又は環状のオルガノポリシロキサン(ただし、以下の成分(B)に該当するものを除く)であることが好ましい。
 また、成分(B)のかご状分子構造を有するポリシルセスキオキサンが、下記平均単位式(2):
 (RSiO3/2(R10SiO3/2(O1/2    (2)
(式中、Rはそれぞれ独立に、非置換又はフッ素で置換された一価炭化水素基であり;R10は紫外線硬化性官能基であり;Rはそれぞれ独立に、水素原子、炭素数1~20のアルキル基、又は炭素数5~20のシクロアルキル基であり;p、q、及びrはそれぞれの単位の数を表し、q及びrはいずれか又は両方が0であってもよい)
で表されることが好ましい。
 あるいは、上記組成物において、成分(A)のオルガノシロキサン又はオルガノポリシロキサンは、下記式(3):
Figure JPOXMLDOC01-appb-C000002
(式中、全てのR~R基のうち1分子当たり平均して2つ以上は紫外線硬化性官能基であり;その他のRからRはそれぞれ独立に、非置換又はフッ素で置換された一価炭化水素基であり;nは、式(1)で表される(ポリ)オルガノシロキサンの粘度が25℃において1~1000mPa・sとなる数値であり、nは0であってもよい)
で表されるオルガノシロキサン又はオルガノポリシロキサン、
 平均単位式:
(RSiO1/2)(RSiO2/2)(RSiO3/2)(SiO4/2)  (4)
 (式中、Rは、それぞれ独立に、紫外線硬化性官能基及び非置換又はフッ素で置換された一価炭化水素基から選ばれる基であり、全てのRのうち、少なくとも2個は紫外線硬化性官能基であり、(c+d)は正数であり、aは0又は正数であり、bは0~100の範囲内の数である。)
で表されるオルガノポリシロキサン、及びそれらから任意に選択される2種以上のオルガノシロキサン及び/又はオルガノポリシロキサンの混合物からなる群から選択される、紫外線硬化性官能基を有する1種類以上のオルガノシロキサン及び/又はオルガノポリシロキサンであることが好ましい。
 上記成分(B)の式(2)のRは、それぞれ独立に、炭素数2~20の非置換又はフッ素で置換されたアルキル基及び炭素数2~20のアルケニル基からなる群から選択される基であることが好ましい。
 本発明の組成物は、有機溶剤の量が組成物全体の質量の1.0%未満であるか又は有機溶剤を含まないことが好ましい。
 上記成分(A)において、成分(A)の紫外線硬化性官能基の数は、一分子当たり平均して2~4個であることが好ましい。
 上記成分(A)において、成分(A)の紫外線硬化性官能基は、エポキシ基含有基及びマレイミド基含有基から選択される基であることが好ましい。
 上記成分(B)について、成分(B)のポリシルセスキオキサンは、ケイ素原子に結合した紫外線硬化性官能基を有しないことが好ましい。
 上記成分(B)のポリシルセスキオキサンは、1分子当たり平均してケイ素原子の数が8~20であり、ゲルパーミエーションクロマトグラフィー(GPC)法で測定したポリスチレン換算による数平均分子量が500~3,000の範囲であり、分子量分散度(M/M)が1.0~1.5であることが好ましい。
 上記組成物において、(A)成分と(B)成分の質量比が(50~99):(1~50)((A)成分:(B)成分)であることが好ましい。
 上記組成物の粘度は、25℃において5~1,000mPa.sの範囲であり、かつ組成物が硬化して得られる硬化物の比誘電率が3.0以下であることが好ましい。
 本発明は、さらに、上記紫外線硬化性オルガノポリシロキサン組成物を含む絶縁性コーティング剤を提供する。
 本発明はまた、上記紫外線硬化性オルガノポリシロキサン組成物から形成される硬化物を、絶縁性コーティング層として使用する方法も提供する。
 本発明はまた、上記紫外線硬化性オルガノポリシロキサン組成物から形成される硬化物からなる層を含む表示装置も提供する。
 本発明の紫外線硬化性オルガノポリシロキサン組成物は、基材に塗布する際に良好な作業性をもたらす適度な粘度と、それから得られる硬化物が低い比誘電率を有することから、低い誘電率を有する材料を用いる任意の分野において、低誘電率層を含む物品、特に電子デバイスのための低誘電率材料、特に絶縁層のための材料、特にコーティング材料として有用である。
 以下、本発明の構成についてさらに詳細に説明する。
 本発明の紫外線硬化性オルガノポリシロキサン組成物は以下の成分(A)及び成分(B)を必須成分とし、所望により、一般には光重合開始剤としても知られている光反応開始剤等の添加剤を含むことができる。また、本発明の組成物には、組成物の粘度を低下させるために、所望により有機溶剤を添加してもよいが、有機溶剤の量は組成物全体の質量の10%未満であり、好ましくは、本発明の組成物は実質的に溶剤を含まない。本発明の紫外線硬化性オルガノポリシロキサン組成物の特徴の一つは、その組成物から得られる硬化物が低い比誘電率を有することである。本発明の組成物から得られる硬化物の比誘電率が低くなる理由は必ずしも明確ではないが、紫外線硬化性官能基を有するオルガノシロキサン及び/又はオルガノポリシロキサンが硬化して形成されるマトリクス中に分散したかご状分子構造を有するポリシルセスキオキサンがナノスケールの空孔を有することによって、硬化物中にナノスケールの空孔が導入され、これによって比誘電率が低くなるものと推定している。本発明の紫外線硬化性オルガノポリシロキサン組成物は、その硬化物の低い比誘電率及び良好な作業性を生かして、絶縁性コーティング剤、特に、電子デバイス及び電気デバイス、例えば、タッチパネル、ディスプレイなどの表示装置及びその部材、あるいは半導体装置中の絶縁層を形成するためのコーティング剤として有用である。
 以下の記載において、化合物の粘度は25℃において回転粘度計によって測定した値(単位はmPa・s)である。また、化合物の数平均分子量及び重量平均分子量は、ゲルパーミエーションクロマトグラフィー(GPC)によって測定した値である。また、比誘電率は容量法(コンデンサ法)によって23℃にて測定した値である。これらの測定方法は当業者に周知の方法である。
〔成分(A):一分子中に平均して2個以上の紫外線硬化性官能基を有するオルガノシロキサン及び/又はオルガノポリシロキサン〕
 成分(A)として用いる紫外線硬化性官能基を有するオルガノシロキサン又はオルガノポリシロキサンは、オルガノシロキサン又はオルガノポリシロキサン骨格に、一分子あたり平均して2個以上の紫外線硬化性官能基を有するものであり、この目的を達成できる限りその分子構造は任意のものであることができる。一般には、(A)成分のオルガノシロキサン又はオルガノポリシロキサンは、
下記平均組成式;
  RR’SiO(4-a―b)/2 (1)
(式中、Rは、紫外線硬化性官能基であり、
 R’は、上記の紫外線硬化性官能基を除く、一価炭化水素基、水酸基、及びアルコキシ基から選ばれる基であり、
 a及びbは次の条件:1≦a+b≦3及び0.001≦a/(a+b)≦0.33を満たす数である。)
で表される直鎖状、分岐状、又は環状のオルガノポリシロキサンである。
 式(1)のRが表す紫外線硬化性官能基は、光開始剤の存在下又は不存在下で、紫外線の照射によって互いの間に結合を生じることができる有機基である。紫外線硬化性官能基の例として、ラジカル重合性基及びカチオン重合性基を挙げることができる。ラジカル重合性基はラジカル反応機構によって新たな結合、特にラジカル重合性基どうしの間の結合を形成しうる官能基であれば特に限定されないが、例えば、アクリル基、メタクリル基、マレイミド基、及びこれらいずれかの基を含有する有機基を挙げることができる。具体例としては、アクリルオキシプロピル、メタクリルオキシプロピル、アクリルアミドプロピル、メタクリルアミドプロピル、及び3-(N-マレイミド)プロピルなどの基がラジカル重合性基として挙げられる。カチオン重合性基としては、ビニルエーテル基、エポキシ基含有基、オキセタン基含有基などの基、例えば、CH2=CH-O-(CH2)n-(nは3~20の整数である)、グリシジルオキシ-(CH2)n-(nは3~20の整数である)、3,4-エポキシシクロヘキシル-(CH2)n-(nは2~20の整数である)などの基が挙げられる。
 紫外線硬化性官能基としては、エポキシ基含有基及びマレイミド基含有基から選択される1種以上の基であることが特に好ましい。特に好ましい基として、エポキシシクロヘキシルエチル基、特に3,4-エポキシシクロヘキシルエチル基、3-(N-マレイミド)プロピル基を挙げることができる。上記平均組成式で表される直鎖状、分岐状、又は環状のオルガノポリシロキサンは、一分子当たり平均して少なくとも2つの紫外線硬化性官能基(R)を有することが好ましい。紫外線硬化性基の数は、一分子当たり平均して、好ましくは2~6、さらに好ましくは2~5、特に好ましくは2~4個である。
 R’が表す一価炭化水素基は、一価の炭化水素基であり、これには非置換の一価炭化水素基とフッ素で置換された一価炭化水素基が含まれる。非置換又はフッ素で置換された一価炭化水素基は、好ましくは炭素原子数が1~20の非置換又はフッ素で置換されたアルキル、シクロアルキル、アリールアルキル、及びアリール基から選択される基である。前記のアルキル基としては、メチル、エチル、n-プロピル、イソプロピル、n-ブチル、tert-ブチル、sec-ブチル、ペンチル、オクチルなどの基が挙げられるが、メチル基が特に好ましい。前記シクロアルキル基としては、シクロペンチル、シクロヘキシルなどが挙げられる。前記アリールアルキル基としては、ベンジル、フェニルエチル基などが挙げられる。前記アリール基としてはフェニル基、ナフチル基などが挙げられる。フッ素で置換された一価炭化水素基の例としては、3,3,3-トリフルオロプロピル、3,3,4,4,5,5,6,6,6-ノナフルオロヘキシル基が挙げられる。フッ素で置換された一価炭化水素基としては3,3,3-トリフルオロプロピル基が好ましい。式(1)のオルガノポリシロキサンにフッ素原子を導入することによって、本発明の組成物から得られる硬化物の比誘電率をさらに低下させることができる場合がある。
 上記式(1)で表されるオルガノシロキサン又はオルガノポリシロキサンは、その25℃における粘度が1~10000mPa・sとなる値であることが好ましく、1~2000mPa・sとなる値であることがさらに好ましく、5~1000mPa・sとなる値であることが特に好ましい。式(1)のa及びbの割合並びに分子量を変えることによって、オルガノシロキサン又はオルガノポリシロキサンの粘度を調節することができる。
 一つの好ましい態様では、成分(A)のオルガノシロキサン又はオルガノポリシロキサンは、
下記式(3):
Figure JPOXMLDOC01-appb-C000003
で表される化合物である。
 上記式(1)で表される化合物と同様に、式(3)で表されるオルガノシロキサン又はオルガノポリシロキサンは、一分子当たり平均して2つ以上の紫外線硬化性官能基を有することが好ましい。式(3)中、全てのR~R基のうち、一分子当たり平均して2つ以上は紫外線硬化性官能基であることが好ましい。紫外線硬化性官能基は、光開始剤の存在下又は不存在下で、紫外線の照射によって互いの間に結合を生じることができる有機基である。紫外線硬化性官能基の例として、ラジカル重合性基及びカチオン重合性基を挙げることができる。ラジカル重合性基はラジカル反応機構によって新たな結合、特にラジカル重合性基どうしの間の結合を形成しうる官能基であれば特に限定されないが、例えば、アクリル基、メタクリル基、マレイミド基、及びこれらいずれかの基を含有する有機基を挙げることができる。具体例としては、アクリルオキシプロピル、メタクリルオキシプロピル、アクリルアミドプロピル、メタクリルアミドプロピル、及び3-(N-マレイミド)プロピルなどの基がラジカル重合性基として挙げられる。カチオン重合性基としては、ビニルエーテル基、エポキシ基含有基、オキセタン基含有基などの基、例えば、CH2=CH-O-(CH2)n-(nは3~20の整数である)、グリシジルオキシ-(CH2)n-(nは3~20の整数である)、3,4-エポキシシクロヘキシル-(CH2)n-(nは2~20の整数である)などの基が挙げられる。
 紫外線硬化性官能基としては、エポキシ基含有基及びマレイミド基含有基から選択される1種以上の基であることが特に好ましい。特に好ましい基として、エポキシシクロヘキシルエチル基、特に3,4-エポキシシクロヘキシルエチル基、3-(N-マレイミド)プロピル基を挙げることができる。
 式(3)中、紫外線硬化性官能基以外のRからRはそれぞれ独立に、非置換又はフッ素で置換された一価炭化水素基、好ましくは炭素原子数が1~20の非置換又はフッ素で置換されたアルキル、シクロアルキル、アリールアルキル、及びアリール基から選択される基である。前記のアルキル基としては、メチル、エチル、n-プロピル、イソプロピル、n-ブチル、tert-ブチル、sec-ブチル、ペンチル、オクチルなどの基が挙げられるが、メチル基が特に好ましい。前記シクロアルキル基としては、シクロペンチル、シクロヘキシルなどが挙げられる。前記アリールアルキル基としては、ベンジル、フェニルエチル基などが挙げられる。前記アリール基としてはフェニル基、ナフチル基などが挙げられる。フッ素で置換された一価炭化水素基の例としては、3,3,3-トリフルオロプロピル、3,3,4,4,5,5,6,6,6-ノナフルオロヘキシル基が挙げられる。フッ素で置換された一価炭化水素基としては3,3,3-トリフルオロプロピル基が好ましい。式(1)のオルガノポリシロキサンにフッ素原子を導入することによって、本発明の組成物から得られる硬化物の比誘電率をさらに低下させることができる場合がある。
 成分(A)である式(3)のオルガノシロキサン及び/又はオルガノポリシロキサンが有する紫外線硬化性官能基の数は、特に限定されないが、全体として一分子当たり平均して2~6、好ましくは2~5、特に好ましくは2~4である。
 特に、式(3)中のR~Rのうち1つと、R~Rのうち1つが紫外線硬化性官能基であることが好ましい。さらに、式(3)中のR~Rのうち一つと、R~Rのうち一つのみが紫外線硬化性官能基であることが特に好ましい。
 式(3)のnは、式(1)で表されるオルガノシロキサン又はオルガノポリシロキサンの25℃における粘度が1~10000mPa・sとなる値であることが好ましく、1~2000mPa・sとなる値であることがさらに好ましく、5~1000mPa・sとなる値であることが特に好ましい。当業者であれば、式(3)のオルガノシロキサン又はオルガノポリシロキサンの粘度が前述の粘度範囲となるように、nの値を過度の試行錯誤を必要とすることなく容易に決定することができる。しかし、一般には、式(3)の化合物が所望の粘度となるように、nの数は0~500であることが好ましく、0~100の範囲がより好ましい。
 式(3)のオルガノシロキサン又はオルガノポリシロキサンは、1種で、又は2種以上の混合物として用いることができる。2種以上のオルガノシロキサン及び/又はオルガノポリシロキサンを混合物として用いる場合、その混合物の25℃における粘度が1~10000mPa・sとなる値であることが好ましく、1~2000mPa・sであることがさらに好ましく、5~1000mPa・sであることが特に好ましい。
 また、上記式(1)の化合物は、下記平均単位式(4)で表されるオルガノポリシロキサンであってもよい。
 平均単位式:
 (RSiO1/2)(RSiO2/2)(RSiO3/2)(SiO4/2) (4)
 式(4)中、Rは、それぞれ独立に、紫外線硬化性官能基及び非置換又はフッ素で置換された一価炭化水素基から選ばれる基であり、全てのRのうち、少なくとも2個は紫外線硬化性官能基であり、(c+d)は正数であり、aは0又は正数であり、bは0~100の範囲内の数である。
 紫外線硬化性官能基及び一価炭化水素基は、上で式(1)について定義したとおりである。また、式(4)で表されるオルガノポリシロキサンの好ましい粘度も上において式(1)で表されるオルガノポリシロキサンについて規定したとおりである。
 上述した式(3)で表されるオルガノシロキサン又はオルガノポリシロキサン、及び上記式(4)で表されるオルガノポリシロキサンは、それぞれ1種を単独で、又は任意に2種以上を組み合わせて用いることができる。すなわち、式(3)で表されるオルガノシロキサン又はオルガノポリシロキサン、式(4)で表されるオルガノポリシロキサン、及びそれらから任意に選択される2種以上の混合物を、本発明の組成物の成分(A)として用いることができる。
〔(B)成分:かご状分子構造を有するポリシルセスキオキサン〕
 (B)成分として用いるかご状分子構造を有するポリシルセスキオキサンは、下記平均単位式(2):
 (RSiO3/2(R10SiO3/2 (O1/2  (2)
で表されるT単位のみからなるポリシルセスキオキサンのうち、特にかご状分子構造を有するものである。かご状分子構造を有するポリシルセスキオキサンは、いわゆる多面体クラスター構造又はそれに近い構造を有し、多面体オリゴマーシルセスキオキサン(polyhedral oligomeric silsesquioxane)ともよばれる。成分(B)は対称分子構造あるいはそれに近い分子構造を有し、本発明の硬化物の誘電率を低下させる成分である。
 式(2)中、Rはそれぞれ独立に、非置換又はフッ素で置換された一価炭化水素基であり、好ましくは非置換又はフッ素で置換された、炭素原子数が1~20のアルキル、炭素数2~20のアルケニル、炭素数3~20のシクロアルキル、炭素数7~20のアリールアルキル、及び炭素数6~20のアリール基から選択される基である。前記のアルキル基としては、メチル、エチル、n-プロピル、イソプロピル、n-ブチル、tert-ブチル、sec-ブチル、ペンチル、オクチル、デシル、ドデシル、及びテトラデシルなどの基が挙げられる。前記シクロアルキル基としては、シクロペンチル、シクロヘキシルなどが挙げられる。前記アリールアルキル基としては、ベンジル、フェニルエチル基などが挙げられる。前記アリール基としてはフェニル基、ナフチル基などが挙げられる。特に好ましい一価炭化水素基は、非置換又はフッ素で置換された、炭素数が2~20のアルキル基、又は炭素数2~20のアルケニル基であり、特に、炭素数2~20のアルキル基又はアルケニル基が好ましい。特に、ヘキシル、オクチル、及びデシル基から選択される基が好ましい。フッ素化された一価炭化水素基の例としては、3,3,3-トリフルオロプロピルが挙げられる。本発明の紫外線硬化性オルガノポリシロキサン組成物から得られる硬化物の比誘電率を低くするためには、本発明に用いるポリシルセスキオキサンは分子の対称性が高いものが好ましい。式(2)のポリシルセスキオキサンが有する有機基あるいは官能基の種類を適切に選択すること、またはそれらの基の分子内の配置により、対称性であるかまたは対称性が高くなるように分子設計を行うことによって分子内の分極率を低くすることが、それを含む硬化物の比誘電率を低減するために有利である。
 式(2)中、R10は紫外線硬化性官能基である。紫外線硬化性官能基は、光開始剤の存在下又は不存在下で、紫外線の照射によって互いの間に結合を生じることができる有機基である。紫外線硬化性官能基の例として、ラジカル重合性基及びカチオン重合性基を挙げることができる。ラジカル重合性基はラジカル反応機構によって結合を形成しうる官能基であれば特に限定されないが、例えば、アクリル基、メタクリル基、マレイミド基、及びこれらいずれかの基を含有する有機基を挙げることができる。具体例としては、アクリルオキシプロピル、メタクリルオキシプロピル、アクリルアミドプロピル、メタクリルアミドプロピル、及び3-(N-マレイミド)プロピルなどの基が挙げられる。カチオン重合性基としては、ビニルエーテル基、オキセタン基含有基、エポキシ基含有基などの基、例えば、CH2=CH-O-(CH2)n-(nは3~20の整数である)、3,4-エポキシシクロヘキシル-(CH2)n-(nは2~20の整数である)、グリシジルオキシ-(CH2)n-(nは3~20の整数である)などの基が挙げられる。
 紫外線硬化性官能基としては、エポキシ基含有基及びマレイミド基含有基から選択される1種以上の基であることが特に好ましい。特に好ましい基として、エポキシシクロヘキシルエチル基、特に3,4-エポキシシクロヘキシルエチル基、3-(N-マレイミド)プロピル基を挙げることができる。
 式(1)、(3)、又は(4)で表されるオルガノシロキサン及び/又はオルガノポリシロキサンが有する紫外線硬化性官能基がラジカル重合性基である場合には、式(2)で表されるポリシルセスキオキサンが有する紫外線硬化性官能基もラジカル重合性基であることが好ましい。また、式(1)、(3)、又は(4)で表されるオルガノシロキサン又はオルガノポリシロキサンが有する紫外線硬化性官能基がカチオン重合性官能基である場合には、式(2)で表されるポリセスキオキサンが有する紫外線硬化性官能基もカチオン重合性官能基、例えば、エポキシ基、グリシジルオキシ基、及びビニルエーテル基などから選択される基であることが好ましい。
 本発明の一つの好ましい態様では、式(2)で表されるポリシルセスキオキサンは、紫外線硬化性官能基を有しない。したがって、本発明の組成物は式(1)で表されるオルガノシロキサン及び/又はオルガノポリシロキサン、あるいは式(3)及び/又は式(4)のオルガノシロキサン及び/又はオルガノポリシロキサンのみが紫外線硬化性官能基を有する。
 式(2)において、(O1/2は、RSiO3/2単位及びR10SiO3/2単位からなるかご状分子構造を有するポリシルセスキオキサンを形成したときの、一部の縮合反応が完結せずに残存するSi-OH、Si-O-アルキル基、及び/又はSi-Oシクロアルキル基を表す。すなわち、Rはそれぞれ独立に、水素原子、又は炭素数1~20、好ましくは炭素数1~6、さらに好ましくは炭素数1~3のアルキル基、特に好ましくはメチル基、エチル基、又はイソプロピル基、あるいは炭素数5~20のシクロアルキル基、例えば、シクロペンチル又はシクロヘキシル基を表す。
 式(2)のポリシルセスキオキサン中の全ての縮合性反応基が互いに結合してSi-O-Si結合を形成している場合には、式(2)においてrは0(ゼロ)である。このような場合を完全かご状構造という。また、rが0でない場合には、式(2)のポリシルセスキオキサンにおいて全ての縮合性反応基が互いに結合してSi-O-Si結合を形成してはおらず、一部はSiORとなっている。このような場合を部分開裂構造という。このようにポリシルセスキオキサンのかご状分子構造には、完全かご状構造と、部分開裂構造のものが知られており、本発明の式(2)のポリシルセスキオキサンとしてはいずれを用いることもできる。しかし、本発明の式(2)のポリシルセスキオキサンは、完全かご状構造(すなわち式(2)においてr=0)又はそれに近い構造のもの(例えば、p+qに対してrが20%以下、好ましくは10%以下)であることが好ましく、完全かご状構造を有するものであることが特に好ましい。ポリシルセスキオキサンの完全かご状構造及び部分開裂構造については、例えば特表2010-515778号公報の段落[0047]~[0049]に具体例が示されており、本発明のかご状ポリシルセスキオキサンも同様の化学構造を有するものであってよい。
 式(2)においてp及びqは、式(2)のポリシルセスキオキサンがかご状分子構造をとることができる限り、任意の数であってよく、特定の値に限定されない。しかし、式(2)のp及びqの値はその合計が、一般には6~20であり、好ましくは8~20であり、さらに好ましくは8~14、特に好ましくは、8、10、又は12である。あるいは式(2)のポリシルセスキオキサンは、p及びqの合計が異なる2種以上のポリシルセスキオキサンを任意に組み合わせた混合物であることができる。例えば、本発明のポリシルセスキオキサンは、p及びqの合計が8、10、又は12のかご状分子構造のポリシルセスキオキサンの混合物であってもよい。
 さらに、上記式(2)中、qは0(ゼロ)であってもよい。その場合は、(B)成分のポリシルセスキオキサンは、ケイ素原子に結合した紫外線硬化性官能基を有しない。したがって、そのような(B)成分を用いた組成物を硬化させた場合、紫外線硬化条件下において、式(1)、(3)、又は(4)で表されるオルガノシロキサン又はオルガノポリシロキサンと式(2)で表されるポリシルセスキオキサンとの間の紫外線硬化性官能基同士による結合は形成されない。しかし、そのような結合が形成されないとしても、式(1)、(3)、又は(4)で表されるオルガノシロキサン及び/又はオルガノポリシロキサンと式(2)で表されるポリシルセスキオキサンの相容性が良好であることにより、式(1)、(3)、又は(4)で表されるオルガノシロキサン及び/又はオルガノポリシロキサンから形成されるマトリクス中に、式(2)で表されるポリシルセスキオキサンが分離することなく均一に分散した形態の、均一性の高い硬化物が得られる。式(2)中のqが0(ゼロ)である態様は、本発明の組成物の好ましい一つの態様である。
 したがって、本発明の一つの好ましい態様では、式(2)のポリシルセスキオキサンは、上記式(2)においてq=0の場合に該当する下記式(2a):
 (RSiO3/2(O1/2   (2a)
で表される。式(2a)中、Rは、上記式(2)に対して定義したとおりであり、pは一般に6~20であり、好ましくは8~20であり、さらに好ましくは8~14、特に好ましくは、8、10、又は12であり、あるいは式(2a)の化合物はそれらを任意に組み合わせた混合物であることができる。式(2a)中のRは、式(2)に対して定義した通りである。式(2a)において、rは0であるか又は好ましくはp+rの20%以下、さら好ましくはp+rの10%以下、特に好ましくはp+rの5%以下の値である。rの値がpに対して十分小さい場合には、式(2a)のポリシルセスキオキサンのかご状構造部分が明確な空孔部分を有することができ、そのことが、本発明の硬化性組成物から得られる硬化物の比誘電率を低くするために有効であると考えられる。
 上記式(2)のポリシルセスキオキサンは、上述したとおり、p及びqの合計値、又はqが0の場合はpの値が異なる、重合度の違うポリシルセスキオキサンの混合物であってもよい。その場合、式(2)のp及びqの合計、すなわちケイ素原子の数は平均で8~20であり、ポリシルセスキオキサンの数平均分子量が500~3,000の範囲であり、分子量分散度(M/M、ここでMは重量平均分子量を、Mは数平均分子量を表す)が1.0~1.5であることが好ましく、1.0~1.4であることがさらに好ましい。M/Mの値が1に近いほど、本発明の硬化性組成物を硬化して得られる硬化物の比誘電率を低くするために有利である。ここでのポリシルセスキオキサンの重量平均分子量及び数平均分子量は、ゲルパーミエーションクロマトグラフィー(GPC)法で測定したポリスチレン換算における値である。
〔紫外線重合開始剤〕
 本発明の紫外線硬化性オルガノポリシロキサン組成物には、上記成分(A)及び成分(B)に加えて、所望により光重合開始剤を添加することができる。その場合、成分(A)又は成分(A)及び(B)が有する紫外線硬化性官能基がエポキシ又はビニルエーテルなどを含むカチオン重合性官能基である場合には、紫外線重合開始剤として、光カチオン重合開始剤を用いることが好ましい。光カチオン重合開始剤は、紫外線又は電子線の照射によってブレンステッド酸又はルイス酸を生成することができる化合物、いわゆる光酸発生剤であり、紫外線などの照射によって酸が発生し、その酸がカチオン重合性官能基どうしの反応を引き起こすことが知られている。また、紫外線硬化性官能基がラジカル重合性官能基である場合は、紫外線重合開始剤として光ラジカル重合開始剤を用いることができる。光ラジカル重合開始剤は、紫外線又は電子線の照射によってフリーラジカルが発生し、それがラジカル重合反応を引き起こして本発明の組成物を硬化させることができる。電子線照射によって本発明の組成物を硬化させる場合には、重合開始剤は通常不要である。
(1)光カチオン重合開始剤
 本発明の組成物に用いる光カチオン重合開始剤は、当技術分野で公知のものから任意に選択して用いることができ、特に特定のものに限定されない。光カチオン重合開始剤には、ジアゾニウム塩、スルホニウム塩、ヨードニウム塩、ホスホニウム塩などの強酸発生化合物が知られており、これらを用いることができる。光カチオン重合開始剤の例として、ビス(4-tert-ブチルフェニル)ヨードニウム ヘキサフルオロホスフェート、シクロプロピルジフェニルスルホニウム テトラフルオロボレート、ジメチルフェナシルスルホニウム テトラフルオロボレート、ジフェニルヨードニウム ヘキサフルオロホスフェート、ジフェニルヨードニウム ヘキサフルオロアルセナート、ジフェニルヨードニウム テトラフルオロメタンスルホネート、2-(3,4-ジメトキシスチリル)-4,6-ビス(トリクロロメチル)-1,3,5-トリアジン、2-[2-(フラン-2-イル)ビニル]-4,6-ビス(トリクロロメチル)-1,3,5-トリアジン、4-イソプロピル-4’-メチルジフェニルヨードニウム テトラキス(ペンタフルオロフェニル)ボレート、2-[2-(5-メチルフラン-2-イル)ビニル]-4,6-ビス(トリクロロメチル)-1,3,5-トリアジン、2-(4-メトキシフェニル)-4,6-ビス(トリクロロメチル)-1,3,5-トリアジン、2-(4-メトキシスチリル)-4,6-ビス(トリクロロメチル)-1,3,5-トリアジン、4-ニトロベンゼンジアゾニウム テトラフルオロボレート、トリフェニルスルホニウム テトラフルオロボレート、トリフェニルスルホニウムブロマイド、トリ-p-トリルスルホニウム ヘキサフルオロホスフェート、トリ-p-トリルスルホニウム トリフルオロメタンスルホネート、ジフェニルヨードニウム トリフラート、トリフェニルスルホニウム トリフラート、ジフェニルヨードニウム ナイトレート、ビス(4-tert-ブチルフェニル)ヨードニウム パーフルオロ-1-ブタンスルホネート、ビス(4-tert-ブチルフェニル)ヨードニウム トリフラート、トリフェニルスルホニウムパーフルオロ-1-ブタンスルホナート、N-ヒドロキシナフタルイミド トリフラート、p-トルエンスルホネート、ジフェニルヨードニウム p-トルエンスルホネート、(4-tert-ブチルフェニル)ジフェニルスルホニウム トリフラート、トリス(4-tert-ブチルフェニル)スルホニウム トリフラート、N-ヒドロキシ-5-ノルボルネン-2,3-ジカルボキシミド ペルフルオロ-1-ブタンスルホナート、(4-フェニルチオフェニル)ジフェニルスルホニウム トリフラート、及び4-(フェニルチオ)フェニルジフェニルスルホニウム トリエチルトリフルオロホスフェートなどが挙げられるがこれらに限定されない。光カチオン重合開始剤として、上記化合物のほかにも、Omnicat 250、Omnicat 270(以上、IGM Resins B.V.社)、CPI-310B, IK-1(以上、サンアプロ株式会社)、DTS-200 (みどり化学株式会社)、及びIrgacure 290(BASF社)などの市販されている光開始剤を挙げることができる。
 本発明の組成物に添加する光カチオン重合開始剤の量は、目的とする光硬化反応が起こる限り、特に限定されないが、一般的には、本発明の(A)成分及び(B)成分の合計量に対して0.1~5質量%、特に0.2~3質量%の量で、光カチオン重合開始剤を用いることが好ましい。
(2)光ラジカル重合開始剤
 光ラジカル重合開始剤は、大きく分けて光開裂型と水素引き抜き型のものが知られているが、本発明の組成物に用いる光ラジカル重合開始剤は、当技術分野で公知のものから任意に選択して用いることができ、特に特定のものに限定されない。光ラジカル重合開始剤の例としては、アセトフェノン、p-アニシル、ベンジル、ベンゾイン、ベンゾフェノン、2-ベンゾイル安息香酸、4,4’-ビス(ジエチルアミノ)ベンゾフェノン、4,4’-ビス(ジメチルアミノ)ベンゾフェノン、ベンゾインメチルエーテル、ベンゾインイソプロピルエーテル、ベンゾインイソブチルエーテル、ベンゾインエチルエーテル、4-ベンゾイル安息香酸、2,2’-ビス(2-クロロフェニル)-4,4’,5,5’-テトラフェニル-1,2’-ビイミダゾール、メチル2-ベンゾイルベンゾエート、2-(1,3-ベンゾジオキソール-5-イル)-4,6-ビス(トリクロロメチル)-1,3,5-トリアジン、2-ベンジル-2-(ジメチルアミノ)-4’-モルホリノブチロフェノン、(±)-カンファーキノン、2-クロロチオキサントン、4,4’-ジクロロベンゾフェノン、2,2-ジエトキシアセトフェノン、2,2-ジメトキシ-2-フェニルアセトフェノン、2,4-ジエチルチオキサンテン-9-オン、ジフェニル(2,4,6-トリメチルベンゾイル)ホスフィンオキシド、エチル(2,4,6-トリメチルベンゾイル)フェニルホスフィネート、1,4-ジベンゾイルベンゼン、2-エチルアントラキノン、1-ヒドロキシシクロヘキシルフェニルケトン、2-ヒドロキシ-2-メチルプロピオフェノン、2-ヒドロキシ-4’-(2-ヒドロキシエトキシ)-2-メチルプロピオフェノン、2-イソプロピルチオキサントン、リチウム フェニル(2,4,6-トリメチルベンゾイル)ホスフィナート、2-メチル-4’-(メチルチオ)-2-モルホリノプロピオフェノン、2-イソニトロソプロピオフェノン、2-フェニル-2-(p-トルエンスルホニルオキシ)アセトフェノン、及びフェニルビス(2,4,6-トリメチルベンゾイル)ホスフィンオキシドなどが挙げられるがこれらに限定されない。また、光ラジカル重合開始剤として上記化合物の他に、Omnirad 651, 184, 1173, 2959, 127, 907, 369, 369E, 及び379EG(アルキルフェノン系光重合開始剤、IGM Resins B.V.社)、Omnirad TPO H, TPO-L,及び819(アシルフォスフィンオキサイド系光重合開始剤、IGM RESINS B.V.社)、Omnirad MBF及び754(分子内水素引き抜き型光重合開始剤、IGM Resins B.V.社)、Irgacure OXE01及びOXE02(オキシムエステル系非会重合開始剤、BASF社)などの開始剤を挙げることができる。
 本発明の組成物に添加する光ラジカル重合開始剤の量は、目的とする光重合反応あるいは光硬化反応が起こる限り、特に限定されないが、一般的には、本発明の組成物の総質量に対して0.01~5質量%、好ましくは0.05~1質量%の量で用いられる。
 また、上記光カチオン重合開始剤又は光ラジカル重合開始剤と組み合わせて光増感剤を用いることもできる。増感剤の使用は、重合反応の光量子効率を高めることができ、光開始剤のみを用いた場合と比べて、より長波長の光を重合反応に利用できるようになるために、組成物のコーティング厚さが比較的厚い場合、又は比較的長波長のLED光源を使用する場合に特に有効であることが知られている。増感剤としては、アントラセン系化合物、フェノチアジン系化合物、ペリレン系化合物、シアニン系化合物、メロシアニン系化合物、クマリン系化合物、ベンジリデンケトン系化合物、(チオ)キサンテンあるいは(チオ)キサントン系化合物、例えば、イソプロピルチオキサントン、2,4-ジエチルチオキサントン、スクアリウム系化合物、(チア)ピリリウム系化合物、ポルフィリン系化合物などが知られており、これらに限らず任意の光増感剤を本発明の硬化性組成物に用いることができる。
〔成分(A)及び成分(B)の割合、及び組成物の粘度〕
 本発明の組成物に含まれる成分(A)の量は、組成物全体の40質量%以上であり、特に好ましくは50質量%以上である。また、組成物中の成分(A)と成分(B)の比は、質量比で、成分(A):成分(B)が(50~99):(1~50)であることが好ましい。すなわち、本発明の組成物中の成分(A)及び成分(B)の合計に占める成分(A)の割合は、50質量%以上であることが好ましく、70質量%以上、特に75質量%以上であることが好ましい。成分(B)の量は、本発明の組成物が所望の特性を示す限り特に限定されないが、一般に、組成物全体の60質量%以下、好ましくは50質量%以下、特に好ましくは30質量%以下、特に25質量%以下であり、かつ組成物全体の7%以上、好ましくは10質量%以上、さらに好ましくは15質量%以上である。
 本発明の硬化性組成物から得られる硬化物は、成分(A)のシロキサン鎖長、架橋密度、架橋反応部位及び構造の選択により、所望する硬化物の硬度、引き裂き強さ、引っ張り強度、切断時伸び等を含む粘弾性、粘着力、硬化反応速度等を有するように設計可能であり、たとえば、分子鎖末端反応性のポリマーの選択や、分子鎖側鎖反応性のポリマーの選択、樹脂状又は分岐鎖状のポリマーの選択等により、当該硬化物の用途に応じた物理的性質を有するように分子設計することが可能であり、当該硬化物は、本願発明の範囲に包含される。さらに、本発明の組成物から得られる硬化物の形状は特に制限されず、薄膜状のコーティング層であってもよく、シート状等の成型物であってもよく、未硬化状態で特定の部位に注入して硬化させ、充填物を形成させてもよく、積層体又は表示装置等のシール材、中間層として使用してもよい。
また、本発明の組成物から得られる硬化物は、実質的に透明であり、部材間の接着又は固定に用いることが可能であるので、光学的に透明な接着剤(OCA)又は光学透明樹脂(OCR)として用いることができる。さらに、本発明の組成物から得られる硬化物は、硬度の高い樹脂状硬化物だけでなく、柔軟なエラストマー状硬化物又はゲル状硬化物を形成することも可能であるので、その低い比誘電率が求められる光学部材、電子部材、電子材料の保護材、機能性エラストマー、機能性ゲル等に使用してもよい。また、後述する添加剤等の使用により、さらなる機能を付与してもよい。
 特に、本発明の組成物から得られる硬化物は、比誘電率が低いという特徴を備えており、したがって本発明の組成物は、コーティング剤又はポッティング剤、特に、電子デバイス及び電気デバイスのための絶縁性コーティング剤又はポッティング剤として用いるのに適している。
 本発明の組成物をコーティング剤として用いる場合に、組成物を基材に適用するために適した流動性及び作業性を備えているためには、組成物全体の粘度が25℃において好ましくは1~5000mPa・s、さらに好ましくは5~1000mPa・s、特に好ましくは5~500mPa・sである。組成物全体の粘度を所望の粘度に調整するためには、組成物全体の粘度が所望する粘度になるような粘度を有する式(1)、あるいは式(3)及び/又は式(4)のオルガノシロキサン及び/又はオルガノポリシロキサンを成分(A)として用いることが好ましい。そのためには、式(1)で表されるオルガノシロキサン及び/又はオルガノポリシロキサンの分子量を、あるいは式(3)のn、式(4)のa、b、c、及びdの値を適宜調整して、成分(A)のオルガノシロキサン及び/又はオルガノポリシロキサンの粘度を適切に調節することができる。具体的には、式(3)においてはnの値が小さければ小さいほど、成分(A)のオルガノポリシロキサンの粘度を低くすることができる。特に、所望の低粘度が得られることから、成分(A)のシロキサン重合度が2~100程度であることが好ましく、2~20程度であることが特に好ましい。
 本発明の組成物の粘度を調節するために、希釈剤として有機溶剤を用いることもできる。有機溶剤としては、上記成分(A)及び(B)を溶解して均一な溶液を形成できる有機溶剤であればよく、特定の有機溶剤に限定されない。用いることができる有機溶剤としては、特に常圧での沸点が200℃以下の、エステル系溶剤、エーテル系溶剤、ケトン系溶剤、及び炭化水素系溶剤を挙げることができ、沸点が60℃以上、200℃以下のものが好ましい。具体的な有機溶剤としては、酢酸エチル、酢酸プロピル、酢酸ブチル、プロピオン酸メチル、プロピオン酸エチル、プロピオン酸プロピル、酪酸メチル、酪酸エチル、酢酸2-メトキシエチル、酢酸2-エトキシエチル、酢酸2-プロポキシエチル、酢酸2-ブトキシエチル、プロピレングリコール-1-モノメチルエーテル-2-アセテート、1,2-ジメトキシエタン、2-メトキシエタノール、1,2-ジエトキシエタン、2-エトキシエタノール、ジエチレングリコールジメチルエーテル、ジエチレングリコールジエチルエーテル、ジエチレングリコールエチルメチルエーテル、ジエチレングリコールモノメチルエーテル、ジブチルエーテル、テトラヒドロフラン、1,4-ジオキサン、アニソール、フェネトール、2-ブタノン、2-ペンタノン、3-ペンタノン、メチルイソブチルケトン、イソアミルメチルケトン、ヘキサン、ヘプタン、n-オクタン、2,2,4-トリメチルペンタン、シクロヘキサン、メチルシクロヘキサン、エチルシクロヘキサン、トルエン、キシレン、メシチレン、エチルベンゼン、及びこれらから選択される2種以上の混合溶剤を挙げることできる。しかし、本発明の紫外線硬化性オルガノポリシロキサン組成物は、有機溶剤を全く含まないか、たとえ有機溶剤を含んでいたとしてもその量が組成物全体の10%以下、さらには5%以下、特に1%以下であることが好ましい。本発明の組成物は、有機溶剤を含んでいてもその量が組成物全体の1%以下であるか、あるいは有機溶剤を全く含まないことが特に好ましい。本発明の組成物は、上述したとおり、成分(A)の粘度を調節することによって、組成物全体が有機溶剤を用いなくてもコーティング剤として基材に容易に適用することができる粘度を実現できる。
 組成物の粘度の調整及び塗布性を向上させるために、不揮発性あるいは低揮発性の低分子化合物を添加してもよく、添加することが好ましい。このような低分子化合物は分子量が500以下かつ不揮発性あるいは低揮発性であり、常圧での沸点が200℃を超え、低誘電性を維持できるように対称性の分子構造を有することが好ましいが、これに限定されるものではない。また、紫外線硬化性官能基を有する化合物であってもよい。そのような低分子化合物として、具体的には、ドデカン、テトラデカン、ヘキサデカン、ドデセン、テトラデセン、ヘキサデセン、1,2-エポキシ-4-ビニルシクロヘキサン、3’,4’-エポキシシクロヘキシルメチル-3,4-エポキシシクロヘキサンカルボキシレート、及び2-(3,4-エポキシシクロヘキシル)エチルトリメトキシシランなどが挙げられ、テトラデカン、テトラデセン、及び1,2-エポキシ-4-ビニルシクロヘキサンから選択される化合物又はその組み合わせが好ましい。その配合量は、粘度の調整に必要な量であり、組成物全体の10%以下、さらには5%以下であってよい。エポキシ基を有する低分子化合物は、本発明の硬化性組成物に含まれる紫外線硬化性基がカチオン性重合性基である場合には反応性希釈剤ということもできる。したがって、反応性希釈剤を添加剤として用いることも本発明の一つの態様である。
その他の添加剤
 上記成分に加えて、所望によりさらなる添加剤を本発明の組成物に添加してもよい。添加剤としては、以下に挙げるものを例示できるが、これらに限定されない。
〔接着性付与剤〕
 本発明の組成物には、組成物に接触している基材に対する接着性や密着性を向上させるために接着促進剤を添加することができる。本発明の硬化性組成物をコーティング剤、シーリング材などの、基材に対する接着性又は密着性が必要な用途に用いる場合には、本発明の硬化性組成物に接着性付与剤を添加することが好ましい。この接着促進剤としては、本発明の組成物の硬化反応を阻害しない限り、任意の公知の接着促進剤を用いることができる。
 本発明において用いることができる接着促進剤の例として、トリアルコキシシロキシ基(例えば、トリメトキシシロキシ基、トリエトキシシロキシ基)もしくはトリアルコキシシリルアルキル基(例えば、トリメトキシシリルエチル基、トリエトキシシリルエチル基)と、ヒドロシリル基もしくはアルケニル基(例えば、ビニル基、アリル基)を有するオルガノシラン、またはケイ素原子数4~20程度の直鎖状構造、分岐状構造又は環状構造のオルガノシロキサンオリゴマー;トリアルコキシシロキシ基もしくはトリアルコキシシリルアルキル基とメタクリロキシアルキル基(例えば、3-メタクリロキシプロピル基)を有するオルガノシラン、またはケイ素原子数4~20程度の直鎖状構造、分岐状構造又は環状構造のオルガノシロキサンオリゴマー;トリアルコキシシロキシ基もしくはトリアルコキシシリルアルキル基とエポキシ基結合アルキル基(例えば、3-グリシドキシプロピル基、4-グリシドキシブチル基、2-(3,4-エポキシシクロヘキシル)エチル基、3-(3,4-エポキシシクロヘキシル)プロピル基)を有するオルガノシランまたはケイ素原子数4~20程度の直鎖状構造、分岐状構造又は環状構造のオルガノシロキサンオリゴマー;トリアルコキシシリル基(例えば、トリメトキシリル基、トリエトキシシリル基)を二個以上有する有機化合物;アミノアルキルトリアルコキシシランとエポキシ基結合アルキルトリアルコキシシランの反応物、エポキシ基含有エチルポリシリケートが挙げられ、具体的には、ビニルトリメトキシシラン、アリルトリメトキシシラン、アリルトリエトキシシラン、ハイドロジェントリエトキシシラン、3-グリシドキシプロピルトリメトキシシラン、3-グリシドキシプロピルトリエトキシシラン、2-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン、3-メタクリロキシプロピルトリメトキシシラン、3-メタクリロキシプロピルトリエトキシシラン、1,6-ビス(トリメトキシシリル)ヘキサン、1,6-ビス(トリエトキシシリル)ヘキサン、1,3-ビス[2-(トリメトキシシリル)エチル]-1,1,3,3-テトラメチルジシロキサン、3-グリシドキシプロピルトリエトキシシランと3-アミノプロピルトリエトキシシランの反応物、シラノール基封鎖メチルビニルシロキサンオリゴマーと3-グリシドキシプロピルトリメトキシシランの縮合反応物、シラノール基封鎖メチルビニルシロキサンオリゴマーと3-メタクリロキシプロピルトリエトキシシランの縮合反応物、トリス(3-トリメトキシシリルプロピル)イソシアヌレートが挙げられる。
 本発明の硬化性組成物に添加する接着促進剤の量は特に限定されないが、硬化性組成物の硬化特性や硬化物の変色を促進しないことから、成分(A)及び(B)の合計100質量部に対して、0.01~10質量部の範囲内、あるいは、0.01~5質量部の範囲内であることが好ましい。
〔その他の添加剤〕
 本発明の組成物には、上述した接着性付与剤に加えて、あるいは接着性付与剤に代えて、所望によりその他の添加剤を添加してもよい。用いることができる添加剤としては、レベリング剤、上述した接着性付与剤として挙げたものに含まれないシランカップリング剤、紫外線吸収剤、酸化防止剤、重合禁止剤、フィラー(補強性フィラー、絶縁性フィラー、および熱伝導性フィラー等の機能性フィラー)などが挙げられる。必要に応じて、適切な添加剤を本発明の組成物に添加することができる。また、本発明の組成物には必要に応じて、特にポッティング剤又はシール材として用いる場合には、チキソ性付与剤を添加してもよい。
〔本発明の組成物の硬化物の誘電率〕
 本発明の紫外線硬化性オルガノポリシロキサン組成物から得られる硬化物は低い誘電率を有することができ、その比誘電率は3.0以下、好ましくは2.9以下であることができる。
〔用途〕
 本発明の紫外線硬化性オルガノポリシロキサン組成物は、紫外線による硬化だけでなく、電子線を用いて硬化させることもでき、それも本発明の一つの態様である。
 本発明の組成物は、それから得られる硬化物の比誘電率が低いという特性を利用して、絶縁材料として用いることができる。具体的には、本発明の組成物は、様々な物品、特に電子デバイス及び電気デバイスを構成する絶縁層を形成するための材料として特に有用である。本発明の組成物は、基材上に塗布して、あるいは少なくとも一方が紫外線又は電子線を通す材料からなる2つの基材で挟持して、組成物に紫外線又は電子線を照射することによって組成物を硬化させて絶縁層を形成することができる。その場合、本発明の組成物を基材に塗布するときにパターン形成を行い、その後組成物を硬化させることも、また、組成物を基材に塗布して、硬化させるときに紫外線又は電子線の照射によって硬化した部分と未硬化の部分を残し、その後で未硬化の部分を溶媒で除去することによって所望するパターンの絶縁層を形成することもできる。
 本発明の硬化性組成物は、タッチパネル、及びディスプレイなどの表示装置の絶縁層を形成するための材料として特に適している。この場合、絶縁層は、必要に応じて上述したように所望する任意のパターンを形成してもよい。したがって、本発明の紫外線硬化性オルガノポリシロキサン組成物を硬化させて得られる絶縁層を含むタッチパネル及びディスプレイなどの表示装置も本発明の一つの態様である。
 また、本発明の硬化性組成物を用いて、物品をコーティングした後に硬化させて、絶縁性のコーティング層(絶縁膜)を形成することができる。したがって、本発明の組成物は絶縁性コーティング剤として用いることができる。また、本発明の硬化性組成物を硬化させて形成した硬化物を絶縁性コーティング層として使用することもできる。
 本発明の硬化性組成物から形成される絶縁膜は様々な用途に用いることができる。特に電子デバイスの構成部材として、あるいは電子デバイスを製造する工程で用いる材料として用いることができる。電子デバイスには、半導体装置、磁気記録ヘッドなどの電子機器が含まれる。例えば、本発明の硬化性組成物は、半導体装置、例えばLSI、システムLSI、DRAM、SDRAM、RDRAM、D-RDRAM、及びマルチチップモジュール多層配線板の絶縁皮膜、半導体用層間絶縁膜、エッチングストッパー膜、表面保護膜、バッファーコート膜、LSIにおけるパッシベーション膜、フレキシブル銅張板のカバーコート、ソルダーレジスト膜、光学装置用の表面保護膜として用いることができる。
 また、本発明の紫外線硬化性オルガノポリシロキサン組成物はコーティング剤として用いるほかに、ポッティング剤、特に、電子デバイス及び電気デバイスのための絶縁性ポッティング剤として用いるのに適している。
 以下で実施例に基づいて本発明をさらに説明するが、本発明は以下の実施例に限定されない。
 本発明の紫外線硬化性オルガノポリシロキサン組成物、及びその硬化物を実施例により詳細に説明する。なお、式中、Me、Vi、Ep、Malは、それぞれメチル基、ビニル基、2-(3,4-エポキシシクロヘキシル)エチル基、及び3-(N-マレイミド)プロピル基を表す。また、実施例、比較例中の測定及び評価は次のようにして行った。
[オルガノポリシロキサン及び硬化性オルガノポリシロキサン組成物の粘度]
 回転粘度計(トキメック株式会社製のE型粘度計VISCONIC EMD)を使用して、25℃における粘度(mPa・s)を測定した。
[硬化性オルガノポリシロキサン組成物の調製]
 下記表1に記載した量の各材料を褐色プラスチック製容器に入れ、プラネタリーミキサーを使用して良く混合した。触媒マスターバッチC1を含有する組成物では、減圧下でトルエンを留去して、硬化性オルガノポリシロキサン組成物を調製した。
[硬化性オルガノポリシロキサン組成物の硬化]
 表面がITO(インジウムスズオキシド)で被覆されたガラス基板(50×50mm;厚さ0.75mm)の一部をポリイミドテープでマスクした。この基板上に、約0.5mLの硬化性オルガノポリシロキサン組成物を滴下し、スピンコーター(ミカサ株式会社製;1H-360S)にてコーティング層を形成した。その際、硬化性組成物の硬化後のコーティング層の厚さが10~20μmになるように、スピンコーターの回転速度を調節した。得られたコーティングに、365nmのLED光を1J/cmのエネルギー量で照射することにより、組成物を硬化させて、オルガノポリシロキサン硬化物薄膜を作製した。
[オルガノポリシロキサン硬化物薄膜の比誘電率]
 作製した硬化物薄膜上にアルミニウム電極を真空蒸着法で作製した。マスクしたポリイミドテープを剥がし、キーサイトテクノロジー製4294Aプレシジョンインピーダンス・アナライザにて室温、100KHzにおける静電容量を測定した。測定した静電容量の値と、別途測定した硬化物薄膜の厚さ、及び電極面積の値を用いて、比誘電率を算出した。
〔かご状分子構造を有するポリシルセスキオキサンの調製:製造例B1〕
 内容積500mLの三つ口フラスコにデシルトリメトキシシラン75.0g、テトラヒドロフラン350mLを投入し、均一溶液とし、この溶液に水酸化カリウム0.29g及び水7.6gからなる水溶液をゆっくり添加した。反応混合物を、攪拌下75℃にて6時間加熱還流した。冷却後、混合物を中和し、揮発成分を減圧下除去することにより、かご状分子構造を有するデシル置換ポリシルセスキオキサンを調製した。単離収率は98%であった。ゲルパーミエーションクロマトグラフィー(GPC)法で分析した結果、このポリシルセスキオキサンの、ポリスチレン換算におけるMwは、2340であり、Mnは、2250であり、M/Mは1.04であった。また、ケイ素29核磁気共鳴(29Si-NMR)法で分析した結果、このポリシルセスキオキサンの全シロキサン構造単位における部分開裂構造単位の割合は7モル%であった。
〔かご状分子構造を有するポリシルセスキオキサンの調製:製造例B2〕
 製造例B1において用いたデシルトリメトキシシラン75.0gに代えてビニルトリメトキシシラン55.0gとヘキセニルトリメトキシシラン25.3gの混合物を用い、テトラヒドロフランの量を375mL、水酸化カリウムの量を0.19g、水の量を13.6gとした以外は製造例B1と同様に反応を行い、かご状分子構造を有するヘキセニル及びビニル置換ポリシルセスキオキサンを調製した。単離収率は98%であった。ゲルパーミエーションクロマトグラフィー(GPC)法で分析した結果、このポリシルセスキオキサンの、ポリスチレン換算におけるMは、1400であり、Mは、1160であり、M/Mは1.20であった。また、炭素13核磁気共鳴(13C-NMR)法で分析した結果、このポリシルセスキオキサンのビニル基とヘキセニル基のモル比は6/2であり、また、ケイ素29核磁気共鳴(29Si-NMR)法で分析した結果、全シロキサン構造単位における部分開裂構造単位の割合は7モル%であった。
〔かご状分子構造を有するポリシルセスキオキサンの調製:製造例B3〕
 製造例B1において用いたデシルトリメトキシシラン75.0gに代えてヘキセニルトリメトキシシラン75.1gを用い、水酸化カリウムの量を0.20g、水の量を10.1gとした以外は製造例B1と同様に反応を行い、かご状分子構造を有するヘキセニル置換ポリシルセスキオキサンを調製した。単離収率は98%であった。ゲルパーミエーションクロマトグラフィー(GPC)法で分析した結果、このポリシルセスキオキサンの、ポリスチレン換算におけるMは、1790であり、Mは、1720であり、M/Mは1.04であった。また、ケイ素29核磁気共鳴(29Si-NMR)法で分析した結果、このポリシルセスキオキサンの全シロキサン構造単位における部分開裂構造単位の割合は7モル%であった。
〔かご状分子構造を有するポリシルセスキオキサンの調製:製造例B4〕
 デシルトリメトキシシラン75.0gの代わりに、ヘキシルトリメトキシシラン67.71g、3,4-エポキシシクロヘキシルエチルトリメトキシシラン11.55gの混合物を用い、水酸化カリウム0.29gの代わりに50質量%水酸化セシウム水溶液0.90gを用い、さらに、水の量を10.3gにした以外は製造例B1と同様に反応を行い、かご状分子構造を有するヘキシルおよび3,4-エポキシシクロヘキシルエチル置換ポリシルセスキオキサンを調製した。単離収率は100%であった。同様にGPC法で分析した結果、このポリシルセスキオキサンの、ポリスチレン換算におけるMは、1430であり、Mは、1310であり、M/Mは1.09であった。また、炭素13核磁気共鳴(13C-NMR)法で分析した結果、このポリシルセスキオキサンのヘキシル基と3,4-エポキシシクロヘキシルエチル基のモル比は7/1であり、また、29Si-NMR法で分析した結果、全シロキサン構造単位における部分開裂構造単位の割合は7モル%であった。
[実施例及び比較例]
 下記の各成分を用いて、表1に示す組成(質量部)の紫外線硬化性オルガノポリシロキサン組成物を調製した。
(A1)(EpMeSi)
(A2)(MeMalSiO1/2)(MeSiO2/2)10で表され、粘度が74mPa・sであるマレイミド官能性ポリシロキサン
(A3)(EpMeSiO)Si
(B1~B4)上記製造例で調製したポリシルセスキオキサン
(C1)下記の成分から構成される触媒マスターバッチ-1:(C1a)/(C1b)/(C1c)=49/2/49(質量比)
 (C1a)4-イソプロピル-4’-メチルジフェニルヨードニウム テトラキス(ペンタフルオロフェニル)ボレート
 (C1b)2-イソプロピルチオキサントン
 (C1c)トルエン
(C2)下記の成分から構成される触媒マスターバッチ-2:(C2a)/(C2b)/(C2c)=43.7/27.4/28.9(質量比)
 (C2a)エチル(2,4,6-トリメチルベンゾイル)フェニルホスフィネート
 (C2b)2,6-ジターシャリーブチル-p-クレゾール
 (C2c)1,3,5,7-テトラメチル-1,3,5,7-テトラビニル-シクロテトラシロキサン
(D)1,2-エポキシ-4-ビニルシクロヘキサン
Figure JPOXMLDOC01-appb-T000004
 上の表に示したとおり、本発明の紫外線硬化性オルガノポリシロキサン組成物(実施例 1~7)は、25℃における粘度がコーティング剤として基材に塗布するために適した粘度を有する。さらに、本発明の紫外線硬化性オルガノポリシロキサン組成物は、ポリシルセスキオキサンを用いることによって、紫外線照射によって得られる硬化物の比誘電率を低くすることができるという効果を有する。一方、かご状のデシル置換ポリシルセスキオキサンを含まない組成物(比較例)においては、硬化物の比誘電率が実施例1~7に比べて高く、低誘電性のコーティング層を得ることが出来ない。
 本発明の紫外線硬化性オルガノポリシロキサン組成物は、上述した用途、特に、タッチパネル、及びディスプレイなどの表示装置の絶縁層を形成するための材料として特に適している。

Claims (14)

  1.  (A)一分子中に平均して2個以上の紫外線硬化性官能基を有する1種以上のオルガノシロキサン及び/又はオルガノポリシロキサン、及び
     (B)かご状分子構造を有するポリシルセスキオキサン
    を含有し、(A)成分の量が、組成物全体の質量の40%以上であり、かつ組成物中に含まれる有機溶剤の量が組成物全体の質量の10%未満である、紫外線硬化性オルガノポリシロキサン組成物。
  2.  成分(A)が、平均組成式;
    R’SiO(4-a―b)/2 (1)
    (式中、Rは、紫外線硬化性官能基であり、
     R’は、前記紫外線硬化性官能基を除く一価炭化水素基、水酸基、及びアルコキシ基から選ばれる基であり、
     a及びbは次の条件:1≦a+b≦3及び0.001≦a/(a+b)≦0.33を満たす数である。)
    で表される直鎖状、分岐状、又は環状のオルガノポリシロキサン(ただし、(B)成分に該当するものを除く)であり、
     (B)のかご状分子構造を有するポリシルセスキオキサンが下記平均単位式(2):
    (RSiO3/2(R10SiO3/2(O1/2    (2)
    (式中、Rはそれぞれ独立に、非置換又はフッ素で置換された一価炭化水素基であり;R10は紫外線硬化性官能基であり;Rはそれぞれ独立に、水素原子、炭素数1~20のアルキル基、又は炭素数5~20のシクロアルキル基であり;p、q、及びrはそれぞれの単位の数を表し、q及びrはいずれか又は両方が0であってもよい)
    で表される請求項1に記載の組成物。
  3.  成分(A)のオルガノシロキサン又はオルガノポリシロキサンが、下記式(3):
    Figure JPOXMLDOC01-appb-C000001
    (式中、全てのR~R基のうち1分子当たり平均して2つ以上は紫外線硬化性官能基であり;その他のRからRはそれぞれ独立に、非置換又はフッ素で置換された一価炭化水素基であり;nは、式(1)で表される(ポリ)オルガノシロキサンの粘度が25℃において1~1000mPa・sとなる数値であり、nは0であってもよい)で表されるオルガノシロキサン又はオルガノポリシロキサン、
     平均単位式:
    (RSiO1/2)(RSiO2/2)(RSiO3/2)(SiO4/2)  (4)
     (式中、Rは、それぞれ独立に、紫外線硬化性官能基及び非置換又はフッ素で置換された一価炭化水素基から選ばれる基であり、全てのRのうち、少なくとも2個は紫外線硬化性官能基であり、(c+d)は正数であり、aは0又は正数であり、bは0~100の範囲内の数である。)
    で表されるオルガノポリシロキサン、及びそれらから任意に選択される2種以上のオルガノシロキサン及び/又はオルガノポリシロキサンの混合物からなる群から選択される、紫外線硬化性官能基を有する1種類以上のオルガノポリシロキサンである、請求項1又は2に記載の組成物。
  4.  成分(B)の式(2)のRがそれぞれ独立に、炭素数2~20の非置換又はフッ素で置換されたアルキル基及び炭素数2~20のアルケニル基からなる群から選択される、請求項2又は3に記載の組成物。
  5.  有機溶剤の量が組成物全体の質量の1.0%未満であるか又は有機溶剤を含まない、請求項1~4のいずれか一項に記載の組成物。
  6.  成分(A)の紫外線硬化性官能基の数が、一分子当たり平均して2~4個である、請求項1~5のいずれか一項に記載の組成物。
  7.  成分(A)の紫外線硬化性官能基が、エポキシ基含有基及びマレイミド基含有基から選択される基である、請求項1~6のいずれか一項に記載の組成物。
  8.  成分(B)のポリシルセスキオキサンが、ケイ素原子に結合した紫外線硬化性官能基を有しない、請求項1~7のいずれか一項に記載の組成物。
  9.  成分(B)のポリシルセスキオキサンが、1分子当たり平均してケイ素原子の数が8~20であり、ゲルパーミエーションクロマトグラフィー(GPC)法で測定したポリスチレン換算における数平均分子量が500~3,000の範囲であり、分子量分散度(M/M)が1.0~1.5である、請求項1~8のいずれか一項に記載の組成物。
  10.  成分(A)と成分(B)の質量比が(50~99):(1~50)(成分(A):成分(B))である、請求項1~9のいずれか一項に記載の組成物。
  11.  組成物の粘度が25℃において5~1,000mPa.sの範囲であり、硬化後の硬化物の比誘電率が3.0以下である、請求項1~10のいずれか一項に記載の組成物。
  12.  請求項1~11のいずれか一項に記載の組成物を含む、絶縁性コーティング剤。
  13.  請求項1~11のいずれか一項に記載の組成物の硬化物を絶縁性コーティング層として使用する方法。
  14.  請求項1~11のいずれか一項に記載の組成物の硬化物からなる層を含む表示装置。
PCT/JP2019/039135 2018-10-30 2019-10-03 紫外線硬化性オルガノポリシロキサン組成物およびその用途 WO2020090346A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2020553707A JPWO2020090346A1 (ja) 2018-10-30 2019-10-03 紫外線硬化性オルガノポリシロキサン組成物およびその用途
CN201980076788.5A CN113166540A (zh) 2018-10-30 2019-10-03 紫外线固化性聚有机硅氧烷组合物及其用途
KR1020217015517A KR20210084531A (ko) 2018-10-30 2019-10-03 자외선 경화성 오가노폴리실록산 조성물 및 그 용도

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018203773 2018-10-30
JP2018-203773 2018-10-30

Publications (1)

Publication Number Publication Date
WO2020090346A1 true WO2020090346A1 (ja) 2020-05-07

Family

ID=70464431

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/039135 WO2020090346A1 (ja) 2018-10-30 2019-10-03 紫外線硬化性オルガノポリシロキサン組成物およびその用途

Country Status (4)

Country Link
JP (1) JPWO2020090346A1 (ja)
KR (1) KR20210084531A (ja)
CN (1) CN113166540A (ja)
WO (1) WO2020090346A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021143220A (ja) * 2020-03-10 2021-09-24 信越化学工業株式会社 オルガノポリシロキサン、コーティング組成物および被覆物品
WO2022203042A1 (ja) * 2021-03-26 2022-09-29 ダウ・東レ株式会社 紫外線硬化性組成物及びその用途
US20230119298A1 (en) * 2020-06-23 2023-04-20 Koninklijke Philips N.V. Imprinted method and patterned layer

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115109464B (zh) * 2022-07-06 2023-07-14 杭州福斯特应用材料股份有限公司 墨水组合物、封装结构和半导体器件
CN116063925A (zh) * 2022-12-29 2023-05-05 武汉尚赛光电科技有限公司 光固化性组合物及其硬涂层和应用
CN116285863B (zh) * 2023-02-17 2024-01-23 深圳市聚芯源新材料技术有限公司 一种低介电常数的复合工程塑料及其制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009209358A (ja) * 2008-02-06 2009-09-17 Toagosei Co Ltd カチオン硬化性組成物
JP2009227863A (ja) * 2008-03-24 2009-10-08 Nippon Steel Chem Co Ltd 籠構造含有硬化性シリコーン共重合体及びその製造方法並びに籠構造含有硬化性シリコーン共重合体を用いた硬化性樹脂組成物及びその硬化物
WO2019187988A1 (ja) * 2018-03-28 2019-10-03 日本板硝子株式会社 樹脂組成物の硬化物、積層体、及び樹脂組成物

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5234909B2 (ja) * 2007-12-27 2013-07-10 新日鉄住金化学株式会社 アルコキシル基含有籠型シロキサン化合物及びシラノール基含有籠型シロキサン化合物並びにこれらの製造方法
CN101970539B (zh) * 2008-01-15 2013-03-27 东亚合成株式会社 具有氧杂环丁烷基的有机硅化合物及其制造方法和固化性组合物
KR101937140B1 (ko) 2011-08-03 2019-04-09 주식회사 동진쎄미켐 광경화형 유-무기 하이브리드 수지 조성물
WO2013099460A1 (ja) * 2011-12-26 2013-07-04 東亞合成株式会社 有機半導体絶縁膜用組成物及び有機半導体絶縁膜
JP2015064310A (ja) 2013-09-26 2015-04-09 国立大学法人名古屋大学 金属元素の封じ込め方法
KR20150102860A (ko) * 2014-02-28 2015-09-08 주식회사 동진쎄미켐 실세스퀴옥산 복합 고분자 및 이의 제조방법
WO2016018918A1 (en) 2014-07-29 2016-02-04 Ofs Fitel, Llc Uv-curable silsesquioxane-containing write-through optical fiber coatings for fabrication of optical fiber bragg gratings, and fibers made therefrom
KR20160033915A (ko) 2014-09-19 2016-03-29 동우 화인켐 주식회사 입체 조형용 광경화성 수지 조성물
CN105331115B (zh) * 2015-08-26 2018-04-27 杭州师范大学 一种3d打印紫外光固化透明硅树脂复合材料的制备方法与应用
TWI570187B (zh) * 2015-12-17 2017-02-11 財團法人工業技術研究院 光學固態預聚物與模塑組成物
KR101751904B1 (ko) * 2015-12-31 2017-07-12 엘티씨 (주) 유연기판용 폴리실세스퀴옥산 수지 조성물

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009209358A (ja) * 2008-02-06 2009-09-17 Toagosei Co Ltd カチオン硬化性組成物
JP2009227863A (ja) * 2008-03-24 2009-10-08 Nippon Steel Chem Co Ltd 籠構造含有硬化性シリコーン共重合体及びその製造方法並びに籠構造含有硬化性シリコーン共重合体を用いた硬化性樹脂組成物及びその硬化物
WO2019187988A1 (ja) * 2018-03-28 2019-10-03 日本板硝子株式会社 樹脂組成物の硬化物、積層体、及び樹脂組成物

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021143220A (ja) * 2020-03-10 2021-09-24 信越化学工業株式会社 オルガノポリシロキサン、コーティング組成物および被覆物品
US20230119298A1 (en) * 2020-06-23 2023-04-20 Koninklijke Philips N.V. Imprinted method and patterned layer
US11874599B2 (en) * 2020-06-23 2024-01-16 Koninklijke Philips N.V. Imprinted method and patterned layer
WO2022203042A1 (ja) * 2021-03-26 2022-09-29 ダウ・東レ株式会社 紫外線硬化性組成物及びその用途

Also Published As

Publication number Publication date
JPWO2020090346A1 (ja) 2021-09-24
CN113166540A (zh) 2021-07-23
KR20210084531A (ko) 2021-07-07

Similar Documents

Publication Publication Date Title
WO2020090346A1 (ja) 紫外線硬化性オルガノポリシロキサン組成物およびその用途
US11634610B2 (en) Siloxane polymer compositions and their use
JP2011186069A (ja) 感光性樹脂組成物
CN114616299B (zh) 紫外线固化性聚有机硅氧烷组合物及其用途
WO2009041711A1 (en) Curable resin composition for molded bodies, molded body, and production method thereof
US20230107203A1 (en) Solventless photocurable liquid composition, cured product thereof, optical filler containing same, and display device including layer comprising said cured product
JPWO2012086370A1 (ja) 感光性樹脂組成物
WO2022202498A1 (ja) 紫外線硬化性組成物およびその用途
CN116323748A (zh) 紫外线固化性组合物及其用途
WO2022203042A1 (ja) 紫外線硬化性組成物及びその用途
WO2022202499A1 (ja) 紫外線硬化性組成物およびその用途
WO2023224118A1 (ja) 紫外線硬化性組成物およびその用途
JP7485496B2 (ja) 硬化性シリコーン組成物およびその用途
WO2023074804A1 (ja) アルカリ可溶性の紫外線硬化性オルガノポリシロキサン、それを含む紫外線硬化性組成物およびその用途
JP2020070432A (ja) 硬化性シリコーン組成物およびその用途
WO2024071133A1 (ja) 紫外線硬化性組成物およびその用途
WO2024063067A1 (ja) 硬化性分岐状オルガノポリシロキサン、それを含む高エネルギー線硬化性組成物およびその用途
WO2024034384A1 (ja) 共変性分岐状オルガノポリシロキサン、それを含む高エネルギー線硬化性組成物およびその用途
WO2024063066A1 (ja) 硬化性分岐状オルガノポリシロキサン、それを含む高エネルギー線硬化性組成物およびその用途
WO2024101193A1 (ja) アルカリ可溶性の紫外線硬化性ケイ素含有直鎖状重合体、それを含む紫外線硬化性組成物およびその用途
WO2024034383A1 (ja) フェノール性水酸基含有分岐状オルガノポリシロキサン、それを含む高エネルギー線硬化性組成物およびその用途
WO2024063069A1 (ja) 紫外線硬化性組成物およびその用途
TW202413493A (zh) 硬化性分支狀有機聚矽氧烷、含有其之高能量線硬化性組成物及其用途
WO2023037941A1 (ja) 高エネルギー線硬化性組成物およびその用途
KR20240052977A (ko) 고에너지선 경화성 조성물 및 그의 용도

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19879480

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020553707

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20217015517

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 19879480

Country of ref document: EP

Kind code of ref document: A1