WO2020078328A1 - 高纯半绝缘碳化硅晶体生长装置及其方法 - Google Patents

高纯半绝缘碳化硅晶体生长装置及其方法 Download PDF

Info

Publication number
WO2020078328A1
WO2020078328A1 PCT/CN2019/111083 CN2019111083W WO2020078328A1 WO 2020078328 A1 WO2020078328 A1 WO 2020078328A1 CN 2019111083 W CN2019111083 W CN 2019111083W WO 2020078328 A1 WO2020078328 A1 WO 2020078328A1
Authority
WO
WIPO (PCT)
Prior art keywords
crucible
growth
silicon carbide
raw material
gas
Prior art date
Application number
PCT/CN2019/111083
Other languages
English (en)
French (fr)
Inventor
陈华荣
张洁
廖弘基
陈泽斌
Original Assignee
福建北电新材料科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 福建北电新材料科技有限公司 filed Critical 福建北电新材料科技有限公司
Priority to US17/286,358 priority Critical patent/US11851784B2/en
Publication of WO2020078328A1 publication Critical patent/WO2020078328A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B23/00Single-crystal growth by condensing evaporated or sublimed materials
    • C30B23/002Controlling or regulating
    • C30B23/005Controlling or regulating flux or flow of depositing species or vapour
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B23/00Single-crystal growth by condensing evaporated or sublimed materials
    • C30B23/002Controlling or regulating
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B23/00Single-crystal growth by condensing evaporated or sublimed materials
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B23/00Single-crystal growth by condensing evaporated or sublimed materials
    • C30B23/02Epitaxial-layer growth
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B23/00Single-crystal growth by condensing evaporated or sublimed materials
    • C30B23/02Epitaxial-layer growth
    • C30B23/06Heating of the deposition chamber, the substrate or the materials to be evaporated
    • C30B23/066Heating of the material to be evaporated
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/36Carbides

Definitions

  • the present application relates to the technical field of semiconductor manufacturing devices, and in particular to a high-purity semi-insulating silicon carbide crystal growth device and method.
  • the growth of silicon carbide single crystals is based on physical vapor deposition (PVT), which has proved to be the most mature method for growing SiC crystals.
  • PVT physical vapor deposition
  • This process not only needs to establish a suitable temperature field, to form a stable gas-phase SiC transport flow from high temperature to low temperature, but also allow the gas-phase SiC to form a good growth interface growth on the seed crystal.
  • the impurity concentration is controlled at 5 ⁇ 10 17 cm 3 , and intrinsic point defects are added through the annealing process to compensate for the difference between the shallow acceptor and shallow donor energy levels.
  • the inert gas is used to clean the thermal field, and the chlorine is used to clean the thermal field.
  • the crucible is made of graphite, and graphite has strong chemical affinity with impurities such as N and B. Therefore, the high-purity semi-insulating crystals currently produced can only reach 10E5-9 ⁇ resistance.
  • Chinese patent CN104775149A discloses a method for growing high-purity semi-insulating silicon carbide single crystal, which is realized by a device for growing high-purity semi-insulating silicon carbide: the device includes a growth chamber, an atmosphere isolation chamber is connected to the lower part of the growth chamber, and the atmosphere isolation chamber An operation window is provided on the upper side, and a transition chamber is connected to one side of the atmospheric isolation chamber, and a heating device for removing impurities is provided in the transition chamber.
  • the device provided by the invention pretreats the growth of SiC single crystal with a crucible and thermal insulation material, and introduces a specific gas during the growth of the single crystal, effectively reducing the donor impurity N, acceptor impurity B and metal ion impurity in the SiC single crystal To increase the resistivity.
  • the crucible used in this patent cannot be reused.
  • the present application provides a high-purity semi-insulating silicon carbide crystal growth device and method.
  • a high-purity semi-insulating silicon carbide crystal growth device including a growth crucible 6; a gas tube 7 is inserted at the bottom of the growth crucible 6; a growth crucible cover 5 is provided at the top of the growth crucible 6; growth Inside the crucible 6, a bowl-shaped raw material crucible 2 is placed; the raw material crucible 2 is provided with a baffle 1 at the top; the raw material crucible 2 is provided with a ring-shaped raw material crucible foot 3; the diameter of the raw material crucible foot 3 is the raw material crucible 2 1/8 of the diameter; the base 3 of the raw material crucible is provided with 8 to 36 air holes 4 evenly distributed.
  • the diameter of the baffle is larger than the diameter of the raw material crucible by 2mm to 8mm, which can prevent the silicon carbide powder from adhering to the crystal growth surface with the sublimated gas, causing defects in the wrap or microtube; the air holes provided on the bottom of the raw material crucible make the The incoming gas is blown along the inner wall of the growth crucible from bottom to top.
  • the blowing groove and the blowing function can isolate the growth crucible wall and the reaction gas, avoid the impurities in the growth crucible from being introduced into the raw material gas, and greatly reduce the N and B in the crystal
  • the background concentration of other impurities can also prevent the raw material gas from adhering to the crucible wall and reacting with the crucible wall;
  • the outer diameter of the raw crucible is 2mm-10mm smaller than the inner diameter of the growth crucible;
  • the growth crucible is graphite material with a wall thickness of 5mm-20mm.
  • the material of the raw material crucible 2 is high-purity high-density graphite.
  • Nb plating layer or the Ta plating layer is provided on the surface of the raw material crucible 2.
  • the material of the baffle 1 is selected from one of porous graphite and porous graphite fibers. Among them, choosing the baffle of this material makes the baffle have good permeation and filtering effect.
  • the baffle 1 is provided with either Nb plating layer or Ta plating layer on the surface.
  • the size of the air hole 4 is: a height of 1 mm to 5 mm and a width of 5 mm to 10 mm.
  • Another object of the present application is to provide a silicon carbide crystal growth method for the above-mentioned high-purity semi-insulating silicon carbide crystal growth device, including the following steps:
  • step S10 silicon carbide powder 8 with a purity of 5N to 6N is loaded into the raw material crucible 2, covered with a baffle 1, and loaded into the groove at the bottom of the growth crucible 6, the growth crucible with the seed crystal 9 Put the cover 5 into the growth crucible 6, and wrap the insulation layer around the bottom of the growth crucible cover 5 and the growth crucible 6;
  • Step S20 the inside of the growth crucible 6 is evacuated to a pressure of less than 5 ⁇ 10 -2 mbar, filled with argon gas and controlled at a pressure of 600 mbar to 800 mbar, the water-cooled induction coil is turned on, and the raw material crucible 2 is energized and heated through the gas pipe 7 200sccm ⁇ 800sccm gas is sprayed, heated to 1950 °C ⁇ 2050 °C, and kept for 1 hour ⁇ 5 hours;
  • step S30 the gas flow rate of the trachea is adjusted to be 5sccm ⁇ 30sccm, and the trachea 7 is continuously ventilated, and the gas flow rate in the cavity is adjusted so that the pressure is controlled at 5mbar ⁇ 100mbar, and the temperature is continuously heated to 2050 °C ⁇ 2250 At °C, deposit crystals for 5 days to 10 days to obtain high-purity semi-insulating silicon carbide crystals.
  • the thermal insulation layer is 1 to 4 layers of graphite soft felt with a thickness of 5 mm to 10 mm.
  • the gas is selected from any one or a mixture of two of inert gas and hydrogen.
  • the gas is a mixed gas of inert gas argon and hydrogen.
  • the high-purity semi-insulating silicon carbide crystal growth device of this application uses a raw material crucible of special materials to avoid direct contact between the silicon carbide raw material and graphite, so that the silicon carbide raw material is isolated from the growth crucible, and the growth crucible and insulation layer contain N and Impurities such as B enter the raw materials, avoiding the introduction of impurities during the growth process;
  • the high-purity semi-insulating silicon carbide crystal growth device of the present application is provided with a vent tube at the bottom, and the gas is blown along the inner wall of the growth crucible from bottom to top.
  • the blowing groove and blowing function can isolate the growth crucible wall and the reaction gas. Avoid introducing impurities in the growth crucible into the raw material gas, greatly reducing the background concentration of impurities such as N and B in the crystal, and preventing the raw material gas from attaching to the crucible wall and reacting with the crucible wall;
  • the raw crucible of this application is provided with a specially treated porous graphite baffle to prevent the raw material particles from attaching to the crystal growth surface with the sublimated gas, causing defects in the wrap or microtube;
  • Fig. 1 is a schematic diagram of a raw material crucible device.
  • FIG. 2 is a cross-sectional view of the growth device.
  • the marks in the picture are: 1. baffle; 2. raw crucible; 3. raw crucible foot; 4. gas hole; 5. growth crucible cover; 6. growth crucible; 7. trachea; 8. silicon carbide powder; 9. seed crystal.
  • the high-purity semi-insulating silicon carbide crystal growth device includes a growth crucible, a gas tube is inserted at the bottom of the growth crucible; a growth crucible cover is provided at the top of the growth crucible; a raw material crucible with a bowl-shaped structure is placed inside the growth crucible, and the outer diameter of the raw crucible is larger than the inner diameter of the growth crucible Small 6mm; raw material crucible is provided with baffle; raw material crucible bottom is provided with ring-supported raw material crucible foot; raw material crucible foot diameter is 1/8 of raw material crucible diameter; raw material crucible foot is provided with evenly distributed 24 stomata.
  • the material of the raw material crucible is high-purity high-density graphite, and is coated with tantalum carbide coating;
  • the material of the baffle is porous graphite fiber, and the surface is provided with tantalum carbide coating, the diameter is 3mm larger than the diameter of the raw material crucible; the size of the pore is : 3mm high and 8mm wide;
  • the growth crucible is made of graphite with a wall thickness of 10mm.
  • the silicon carbide crystal growth method used in the above-mentioned high-purity semi-insulating silicon carbide crystal growth device includes the following steps:
  • step S10 1 kg of silicon carbide powder with a purity of 5N to 6N is loaded into the raw material crucible, covered with a baffle, and loaded into the groove at the bottom of the growth crucible, and a growth crucible with a 4 inch 4H seed crystal is placed Put the cover into the growth crucible, wrap the insulation layer around the growth crucible cover and the bottom of the growth crucible; the insulation layer is 3 layers of graphite soft felt with a thickness of 6mm;
  • Step S20 evacuate the inside of the growth crucible to a pressure of less than 5 ⁇ 10 -2 mbar, fill it with argon and control the pressure at 700 mbar, turn on the water-cooled induction coil to energize the raw material crucible, and pass 600 sccm of argon through the gas pipe Blowing, heating to 1970 °C, holding for 2 hours;
  • Step S30 the gas flow rate of the trachea is adjusted to be 5sccm, and the trachea is continuously ventilated.
  • the flow rate of the argon gas in the cavity is adjusted so that the pressure is controlled at 5mbar ⁇ 50mbar, the temperature is continuously heated to 2150 °C, and the crystal is deposited 6 Today, high-purity semi-insulating silicon carbide crystals are obtained.
  • the 4H high-purity semi-insulating silicon carbide crystals and wafers grown in this example are transparent, with carbon inclusions under strong light and polarizers, no polycrystals on the edges, and the resistance value at each position by E + H test is greater than 8 ⁇ 10 11 ⁇ .
  • the high-purity semi-insulating silicon carbide crystal growth device includes a growth crucible, a gas tube is inserted at the bottom of the growth crucible; a growth crucible cover is provided at the top of the growth crucible; a raw material crucible with a bowl-shaped structure is placed inside the growth crucible, and the outer diameter of the raw crucible is larger than the inner diameter of the growth crucible Small 2mm; the upper part of the raw material crucible is provided with a baffle; the bottom of the raw material crucible is provided with a ring-supported raw material crucible foot; the diameter of the raw material crucible foot is 1/8 of the raw material crucible diameter; the raw material crucible foot is provided with a uniform distribution 10 stomata.
  • the material of the raw material crucible is high-purity high-density graphite, and is coated with Nb coating;
  • the material of the baffle is porous graphite, and the surface is provided with Nb coating, the diameter is 6mm larger than the diameter of the raw material crucible;
  • the size of the air hole is: 5mm high , 10mm wide;
  • the growth crucible is made of graphite with a wall thickness of 15mm.
  • the silicon carbide crystal growth method used in the above-mentioned high-purity semi-insulating silicon carbide crystal growth device includes the following steps:
  • Step S10 Load 1.5 kg of silicon carbide powder with a purity of 5N into the raw material crucible, cover it with a baffle, and put it into the groove at the bottom of the growth crucible, cover the growth crucible with 4 inch 4H seed crystals Put into the growth crucible, wrap the insulation layer around the growth crucible cover and the growth crucible bottom; the insulation layer is 2 layers of graphite soft felt with a thickness of 8mm;
  • Step S20 evacuate the inside of the growth crucible to a pressure of less than 5 ⁇ 10 -2 mbar, fill it with argon and control the pressure at 600 mbar, turn on the water-cooled induction coil to energize the raw material crucible, and blow 700 sccm of hydrogen through the gas pipe for blowing Drench, heat to 2050 °C, keep warm for 3 hours;
  • Step S30 the gas flow rate of the trachea is adjusted to be 10sccm, and the gas flow is continuously ventilated to adjust the flow rate of the hydrogen filled in the cavity so that the pressure is controlled at 10mbar ⁇ 50mbar, the temperature is continuously heated to 2100 °C, and the crystallization is deposited for 10 days To obtain high-purity semi-insulating silicon carbide crystals.
  • the 4H high-purity semi-insulating silicon carbide crystals and wafers grown in this example are transparent, with carbon inclusions under strong light and polarizers, no polycrystals on the edges, and the resistance value at each position by E + H test is greater than 8 ⁇ 10 11 ⁇ .
  • the high-purity semi-insulating silicon carbide crystal growth device includes a growth crucible, a gas tube is inserted at the bottom of the growth crucible; a growth crucible cover is provided at the top of the growth crucible; a raw material crucible with a bowl-shaped structure is placed inside the growth crucible, and the outer diameter of the raw crucible is larger than the inner diameter of the growth crucible Small 8mm; the upper part of the raw material crucible is provided with a baffle; the bottom of the raw material crucible is provided with a raw material crucible foot supported by a ring; the diameter of the raw material crucible foot is 1/8 of the diameter of the raw material crucible; the raw material crucible foot is provided with a uniform distribution 8 stomata.
  • the material of the raw material crucible is high-purity high-density graphite, and is plated with Ta coating;
  • the material of the baffle is porous graphite fiber, and the surface is provided with Nb coating, the diameter is 4mm larger than the diameter of the raw material crucible;
  • the size of the air hole is: high 1mm, width 9mm;
  • the growth crucible is made of graphite with a wall thickness of 5mm.
  • the silicon carbide crystal growth method used in the above-mentioned high-purity semi-insulating silicon carbide crystal growth device includes the following steps:
  • Step S10 2kg of silicon carbide powder with a purity of 6N is loaded into the raw material crucible, covered with a baffle, and installed into the groove at the bottom of the growth crucible, and the growth crucible with a 4 inch 4H seed crystal is mounted Into the growth crucible, wrap the insulation layer around the growth crucible cover and the bottom of the growth crucible; the insulation layer is 4 layers of graphite soft felt with a thickness of 5mm;
  • Step S20 evacuate the inside of the growth crucible to a pressure of less than 5 ⁇ 10 -2 mbar, fill it with argon and control the pressure at 750 mbar, turn on the water-cooled induction coil to energize the raw material crucible, and pass 800 sccm of hydrogen and argon through the gas pipe The mixed gas is blown, heated to 2000 ° C, and kept for 1 hour;
  • step S30 the gas flow rate of the trachea is adjusted to be controlled at 20 sccm, the vent tube is continuously ventilated, the gas flow rate in the cavity is adjusted so that the pressure is controlled at 50 mbar to 100 mbar, the temperature is continuously heated to 2050 ° C, and the crystal is deposited for 8 days To obtain high-purity semi-insulating silicon carbide crystals.
  • the 4H high-purity semi-insulating silicon carbide crystals and wafers grown in this example are transparent, with carbon inclusions under strong light and polarizers, no polycrystals on the edges, and the resistance value at each position by E + H test is greater than 8 ⁇ 10 11 ⁇ .
  • the high-purity semi-insulating silicon carbide crystal growth device includes a growth crucible, a gas tube is inserted at the bottom of the growth crucible; a growth crucible cover is provided at the top of the growth crucible; a raw material crucible with a bowl-shaped structure is placed inside the growth crucible, and the outer diameter of the raw crucible is larger than the inner diameter of the growth crucible Small 4mm; the upper part of the raw material crucible is provided with a baffle; the bottom of the raw material crucible is provided with a ring-supported raw material crucible foot; the diameter of the raw material crucible foot is 1/8 of the raw material crucible diameter; the raw material crucible foot is provided with a uniform distribution 36 stomata.
  • the material of the raw material crucible is high-purity high-density graphite, and is plated with Nb coating;
  • the material of the baffle is porous graphite, and the surface is provided with Ta plating, the diameter is 2mm larger than the diameter of the raw material crucible;
  • the size of the air hole is: 4mm high , 6mm wide;
  • the growth crucible is made of graphite with a wall thickness of 20mm.
  • the silicon carbide crystal growth method used in the above-mentioned high-purity semi-insulating silicon carbide crystal growth device includes the following steps:
  • step S10 1 kg of silicon carbide powder with a purity of 5N to 6N is loaded into the raw material crucible, covered with a baffle, and loaded into the groove at the bottom of the growth crucible, and a growth crucible with a 4 inch 4H seed crystal is placed Put the cover into the growth crucible, wrap the insulation layer around the growth crucible cover and the bottom of the growth crucible; the insulation layer is a graphite soft felt with a thickness of 10mm;
  • step S20 the inside of the growth crucible is evacuated to a pressure of less than 5 ⁇ 10 -2 mbar, filled with argon gas and controlled at 650 mbar, the water-cooled induction coil is turned on, and the raw material crucible is heated by induction, and 200 sccm of argon gas is introduced through the gas pipe. Blow, heat to 1950 ° C and keep warm for 5 hours;
  • step S30 the flow rate of the gas introduced into the trachea is adjusted to be controlled at 30 sccm, and the ventilation tube is continuously ventilated.
  • the flow rate of the argon gas filled in the cavity is adjusted to control the pressure between 5 mbar and 50 mbar.
  • Today, high-purity semi-insulating silicon carbide crystals are obtained.
  • the 4H high-purity semi-insulating silicon carbide crystals and wafers grown in this example are transparent, with carbon inclusions under strong light and polarizers, no polycrystals on the edges, and the resistance value at each position by E + H test is greater than 8 ⁇ 10 11 ⁇ .
  • the high-purity semi-insulating silicon carbide crystal growth device includes a growth crucible, a gas tube is inserted at the bottom of the growth crucible; a growth crucible cover is provided at the top of the growth crucible; a raw material crucible with a bowl-shaped structure is placed inside the growth crucible, and the outer diameter of the raw crucible is larger than the inner diameter of the growth crucible Small 10mm; the upper part of the raw material crucible is provided with a baffle; the bottom of the raw material crucible is provided with a ring-supported raw material crucible foot; the diameter of the raw material crucible foot is 1/8 of the raw material crucible diameter; the raw material crucible foot is provided with a uniform distribution 30 stomata.
  • the material of the raw material crucible is high-purity high-density graphite, and is plated with Ta plating;
  • the material of the baffle is porous graphite, and the surface is provided with Nb coating, the diameter is 8mm larger than the diameter of the raw material crucible;
  • the size of the air hole is: 2mm high , Width 5mm;
  • growth crucible is graphite material with a wall thickness of 15mm.
  • the silicon carbide crystal growth method used in the above-mentioned high-purity semi-insulating silicon carbide crystal growth device includes the following steps:
  • Step S10 Load 1.5 kg of silicon carbide powder with a purity of 6N into the raw material crucible, cover it with a baffle, and install it into the groove at the bottom of the growth crucible, cover the growth crucible with 4 inch 4H seed crystals Load into the growth crucible, wrap the insulation layer around the growth crucible cover and the bottom of the growth crucible; the insulation layer is 2 layers of graphite soft felt with a thickness of 6mm;
  • Step S20 evacuate the inside of the growth crucible to a pressure of less than 5 ⁇ 10-2 mbar, fill it with argon and control the pressure at 800 mbar, turn on the water-cooled induction coil to energize the raw material crucible, and blow 400 sccm of argon through the gas pipe for blowing Drench, heat to 2050 °C, keep warm for 4 hours;
  • step S30 the flow rate of the gas introduced into the trachea is adjusted to be 25 sccm, and the ventilation tube is continuously ventilated.
  • the flow rate of the argon gas filled in the cavity is adjusted so that the pressure is controlled between 5 mbar and 10 mbar.
  • Today, high-purity semi-insulating silicon carbide crystals are obtained.
  • the 4H high-purity semi-insulating silicon carbide crystals and wafers grown in this example are transparent, with carbon inclusions under strong light and polarizers, no polycrystals on the edges, and the resistance value at each position by E + H test is greater than 8 ⁇ 10 11 ⁇ .

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

高纯半绝缘碳化硅晶体生长装置及其方法,该装置包括生长坩埚,生长坩埚底部插有气管,生长坩埚顶部设置有生长坩埚盖,生长坩埚内部放置有碗状结构的原料坩埚,原料坩埚上部设置有挡板,原料坩埚底部设置有环状支撑的原料坩埚底脚,原料坩埚底脚的直径为原料坩埚直径的1/8,原料坩埚底脚上设置有均匀分布的8个~36个气孔。该装置采用特殊材质的原料坩埚,避免了碳化硅原料与石墨直接接触,使得碳化硅原料与生长坩埚隔离,避免生长坩埚及保温层中含N和B等的杂质进入原料,避免了生长过程引入杂质,且原料坩埚和生长坩埚可以重复回收利用,大大降低了生产成本。

Description

一种高纯半绝缘碳化硅晶体生长装置及其方法
相关申请的交叉引用
本申请要求于2018年10月17日提交中国专利局的申请号为CN201811209654.X、名称为“一种高纯半绝缘碳化硅晶体生长装置及其方法”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及半导体制造装置技术领域,具体涉及一种高纯半绝缘碳化硅晶体生长装置及方法。
背景技术
目前碳化硅单晶生长以物理气相沉积法(PVT)为主要生长方式,已经被证明是生长SiC晶体最成熟的方法。其应用在生长高纯半绝缘的碳化硅晶体时是将高纯的SiC粉料加热到2200~2500℃,在惰性气氛的保护下,使其升华到冷端籽晶上,结晶成为块状晶体。该过程不仅需要建立一个合适的温场,形成稳定的气相SiC从高温到低温的输运流,又使得气相SiC可以在籽晶上形成良好的生长界面生长,同时要避免杂质掺入,将背景杂质浓度控制在5×10 17cm 3,并通过退火工艺增加本征点缺陷来补偿浅受主和浅施主能级差。现主流采用惰性气体清洗热场,用氯气清洗热场,但坩埚为石墨材质,石墨与N和B等杂质具有较强的化学亲和性,因此目前生产的高纯半绝缘晶体仍只能达到10E5-9Ω电阻。
中国专利CN104775149A公开了一种生长高纯半绝缘碳化硅单晶的方法,通过如下生长高纯半绝缘碳化硅的装置实现:装置包括生长室,生长室的下部连接有大气隔离室,大气隔离室上设置有操作窗口,大气隔离室的一侧连接有过渡室,过渡室内设有去除杂质的加热装置等。该发明设置的装置将生长SiC单晶用坩埚及保温材料进行预处理,并在单晶生长过程中引入特定的气体,有效减少SiC单晶中的施主杂质N、受主杂质B及金属离子杂质,提高电阻率。但该专利所使用的坩埚不可重复使用。
发明内容
本申请针对上述问题,提供一种高纯半绝缘碳化硅晶体生长装置及其方法。
本申请解决上述问题所采用的技术方案是:一种高纯半绝缘碳化硅晶体生长装置,包括生长坩埚6;生长坩埚6底部插有气管7;生长坩埚6顶部设置有生长坩埚盖5;生长坩埚6内部放置有碗状结构的原料坩埚2;原料坩埚2上部设置有挡板1;原料坩埚2底部设置有环状支撑的原料坩埚底脚3;原料坩埚底脚3的直径为原料坩埚2直径的1/8;原料坩埚底脚3上设置有均匀分布的8个~36个气孔4。其中,挡板的直径比原料坩埚的直径大2mm~8mm,可以防止碳化硅粉末随着升华的气体附着到晶体生长表面,造成包裹物或微管 缺陷;原料坩埚底脚上设置的气孔使通入的气体由下向上沿着生长坩埚内壁吹淋,吹淋沟槽及吹淋功能可以隔离生长坩埚壁与反应气体,避免生长坩埚中的杂质引入原料气体中,大大降低了晶体中N和B等杂质的背景浓度,也可以避免原料气体附着在坩埚壁上,并与坩埚壁反应;原料坩埚外径比生长坩埚的内径小2mm~10mm;生长坩埚为壁厚在5mm~20mm的石墨材质。
进一步的,原料坩埚2的材质为高纯高密度石墨。
进一步的,原料坩埚2表面设有Nb镀层和Ta镀层中的任一种。
进一步的,挡板1的材质选自多孔石墨和多孔石墨纤维中的一种。其中,选取该材质的挡板使挡板具有良好的渗透过滤作用。
进一步的,挡板1表面设有Nb镀层和Ta镀层中的任一种。
进一步的,气孔4的尺寸为:高1mm~5mm,宽5mm~10mm。
本申请的另一目的是提供一种用于上述的高纯半绝缘碳化硅晶体生长装置的碳化硅晶体生长方法,包括如下步骤:
步骤S10,将纯度为5N~6N的碳化硅粉末8装入原料坩埚2中,盖上挡板1,并将其装入生长坩埚6底部的凹槽内,将带有籽晶9的生长坩埚盖5装入生长坩埚6,在生长坩埚盖5及生长坩埚6底部周围包裹保温层;
步骤S20,将生长坩埚6内部抽真空到压力小于5×10 -2mbar,充入氩气并控制压力在600mbar~800mbar,打开水冷式感应线圈通电感应加热原料坩埚2,并通过气管7通入200sccm~800sccm的气体进行吹淋,加热到1950℃~2050℃,保温1小时~5小时;
步骤S30,调小气管通入气体的流量,使流量控制在5sccm~30sccm,持续向气管7通气,调节充入腔内气体的流量使压力控制在5mbar~100mbar,温度继续加热到2050℃~2250℃,沉积结晶5天~10天,得到高纯半绝缘碳化硅晶体。
进一步的,步骤S10中,保温层为1~4层厚度为5mm~10mm的石墨软毡。
进一步的,步骤S20中,气体选自惰性气体和氢气中的任一种或两种的混合气。
更进一步的,气体为惰性气体氩气和氢气的混合气体。
本申请的优点是:
(1)本申请的高纯半绝缘碳化硅晶体生长装置采用特殊材质的原料坩埚,避免碳化硅原料与石墨直接接触,使得碳化硅原料与生长坩埚隔离,避免生长坩埚及保温层中含N和B等的杂质进入原料,避免了生长过程引入杂质;
(2)本申请的高纯半绝缘碳化硅晶体生长装置底部设有通气气管,气体由下向上沿着生长坩埚内壁吹淋,吹淋沟槽及吹淋功能可以隔离生长坩埚壁和反应气体,避免生长坩埚中的杂质引入原料气体中,大大降低了晶体中N和B等杂质的背景浓度,也可以避免原料 气体附着在坩埚壁上,并与坩埚壁反应;
(3)本申请原料坩埚上设有经过特殊处理的多孔石墨挡板,防止原料颗粒随着升华的气体附着到晶体生长表面,造成包裹物或微管缺陷;
(4)本申请高纯半绝缘碳化硅晶体生长装置的原料坩埚和生长坩埚可以重复回收利用,大大降低了生产成本。
除了上面所描述的目的、特征和优点之外,本申请还有其它的目的、特征和优点。下面将参照图,对本申请作进一步详细的说明。
附图说明
为了更清楚地说明本申请实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。在附图中:
图1是原料坩埚装置的示意图。
图2是生长装置的剖面图。
图中标记为:1、挡板;2、原料坩埚;3、原料坩埚底脚;4、气孔;5、生长坩埚盖;6、生长坩埚;7、气管;8、碳化硅粉末;9、籽晶。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
实施例1
一种高纯半绝缘碳化硅晶体生长装置及其方法
高纯半绝缘碳化硅晶体生长装置包括生长坩埚,生长坩埚底部插有气管;生长坩埚顶部设置有生长坩埚盖;生长坩埚内部放置有碗状结构的原料坩埚,原料坩埚外径比生长坩埚的内径小6mm;原料坩埚上部设置有挡板;原料坩埚底部设置有环状支撑的原料坩埚底脚;原料坩埚底脚的直径为原料坩埚直径的1/8;原料坩埚底脚上设置有均匀分布的24个气孔。其中,原料坩埚的材质为高纯高密度石墨,并镀有碳化钽镀层;挡板的材质为多孔石墨纤维,且表面设有碳化钽镀层,直径比原料坩埚的直径大3mm;气孔的尺寸为:高3mm,宽8mm;生长坩埚为壁厚在10mm的石墨材质。
用于上述的高纯半绝缘碳化硅晶体生长装置的碳化硅晶体生长方法,包括如下步骤:
步骤S10,将1kg纯度为5N~6N的碳化硅粉末装入原料坩埚中,盖上挡板,并将其装 入生长坩埚底部的凹槽内,将带有4寸的4H籽晶的生长坩埚盖装入生长坩埚,在生长坩埚盖及生长坩埚底部周围包裹保温层;其中保温层为3层厚度为6mm的石墨软毡;
步骤S20,将生长坩埚内部抽真空到压力小于5×10 -2mbar,充入氩气并控制压力在700mbar,打开水冷式感应线圈通电感应加热原料坩埚,并通过气管通入600sccm的氩气进行吹淋,加热到1970℃,保温2小时;
步骤S30,调小气管通入气体的流量,使流量控制在5sccm,持续向气管通气,调节充入腔内氩气的流量使压力控制在5mbar~50mbar,温度继续加热到2150℃,沉积结晶6天,得到高纯半绝缘碳化硅晶体。
本实施例生长得到的4H高纯半绝缘碳化硅晶体及晶片呈现透明状,在强光及偏光仪下均碳包裹物,边缘无多晶,通过E+H测试电阻值各个位置的电阻大于8×10 11Ω。
实施例2
一种高纯半绝缘碳化硅晶体生长装置及其方法
高纯半绝缘碳化硅晶体生长装置包括生长坩埚,生长坩埚底部插有气管;生长坩埚顶部设置有生长坩埚盖;生长坩埚内部放置有碗状结构的原料坩埚,原料坩埚外径比生长坩埚的内径小2mm;原料坩埚上部设置有挡板;原料坩埚底部设置有环状支撑的原料坩埚底脚;原料坩埚底脚的直径为原料坩埚直径的1/8;原料坩埚底脚上设置有均匀分布的10个气孔。其中,原料坩埚的材质为高纯高密度石墨,并镀有Nb镀层;挡板的材质为多孔石墨,且表面设有Nb镀层,直径比原料坩埚的直径大6mm;气孔的尺寸为:高5mm,宽10mm;生长坩埚为壁厚在15mm的石墨材质。
用于上述的高纯半绝缘碳化硅晶体生长装置的碳化硅晶体生长方法,包括如下步骤:
步骤S10,将1.5kg纯度为5N的碳化硅粉末装入原料坩埚中,盖上挡板,并将其装入生长坩埚底部的凹槽内,将带有4寸的4H籽晶的生长坩埚盖装入生长坩埚,在生长坩埚盖及生长坩埚底部周围包裹保温层;其中保温层为2层厚度为8mm的石墨软毡;
步骤S20,将生长坩埚内部抽真空到压力小于5×10 -2mbar,充入氩气并控制压力在600mbar,打开水冷式感应线圈通电感应加热原料坩埚,并通过气管通入700sccm的氢气进行吹淋,加热到2050℃,保温3小时;
步骤S30,调小气管通入气体的流量,使流量控制在10sccm,持续向气管通气,调节充入腔内氢气的流量使压力控制在10mbar~50mbar,温度继续加热到2100℃,沉积结晶10天,得到高纯半绝缘碳化硅晶体。
本实施例生长得到的4H高纯半绝缘碳化硅晶体及晶片呈现透明状,在强光及偏光仪下均碳包裹物,边缘无多晶,通过E+H测试电阻值各个位置的电阻大于8×10 11Ω。
实施例3
一种高纯半绝缘碳化硅晶体生长装置及其方法
高纯半绝缘碳化硅晶体生长装置包括生长坩埚,生长坩埚底部插有气管;生长坩埚顶部设置有生长坩埚盖;生长坩埚内部放置有碗状结构的原料坩埚,原料坩埚外径比生长坩埚的内径小8mm;原料坩埚上部设置有挡板;原料坩埚底部设置有环状支撑的原料坩埚底脚;原料坩埚底脚的直径为原料坩埚直径的1/8;原料坩埚底脚上设置有均匀分布的8个气孔。其中,原料坩埚的材质为高纯高密度石墨,并镀有Ta镀层;挡板的材质为多孔石墨纤维,且表面设有Nb镀层,直径比原料坩埚的直径大4mm;气孔的尺寸为:高1mm,宽9mm;生长坩埚为壁厚在5mm的石墨材质。
用于上述的高纯半绝缘碳化硅晶体生长装置的碳化硅晶体生长方法,包括如下步骤:
步骤S10,将2kg纯度为6N的碳化硅粉末装入原料坩埚中,盖上挡板,并将其装入生长坩埚底部的凹槽内,将带有4寸的4H籽晶的生长坩埚盖装入生长坩埚,在生长坩埚盖及生长坩埚底部周围包裹保温层;其中保温层为4层厚度为5mm的石墨软毡;
步骤S20,将生长坩埚内部抽真空到压力小于5×10 -2mbar,充入氩气并控制压力在750mbar,打开水冷式感应线圈通电感应加热原料坩埚,并通过气管通入800sccm的氢气和氩气混合气进行吹淋,加热到2000℃,保温1小时;
步骤S30,调小气管通入气体的流量,使流量控制在20sccm,持续向气管通气,调节充入腔内气体的流量使压力控制在50mbar~100mbar,温度继续加热到2050℃,沉积结晶8天,得到高纯半绝缘碳化硅晶体。
本实施例生长得到的4H高纯半绝缘碳化硅晶体及晶片呈现透明状,在强光及偏光仪下均碳包裹物,边缘无多晶,通过E+H测试电阻值各个位置的电阻大于8×10 11Ω。
实施例4
一种高纯半绝缘碳化硅晶体生长装置及其方法
高纯半绝缘碳化硅晶体生长装置包括生长坩埚,生长坩埚底部插有气管;生长坩埚顶部设置有生长坩埚盖;生长坩埚内部放置有碗状结构的原料坩埚,原料坩埚外径比生长坩埚的内径小4mm;原料坩埚上部设置有挡板;原料坩埚底部设置有环状支撑的原料坩埚底脚;原料坩埚底脚的直径为原料坩埚直径的1/8;原料坩埚底脚上设置有均匀分布的36个气孔。其中,原料坩埚的材质为高纯高密度石墨,并镀有Nb镀层;挡板的材质为多孔石墨,且表面设有Ta镀层,直径比原料坩埚的直径大2mm;气孔的尺寸为:高4mm,宽6mm;生长坩埚为壁厚在20mm的石墨材质。
用于上述的高纯半绝缘碳化硅晶体生长装置的碳化硅晶体生长方法,包括如下步骤:
步骤S10,将1kg纯度为5N~6N的碳化硅粉末装入原料坩埚中,盖上挡板,并将其装入生长坩埚底部的凹槽内,将带有4寸的4H籽晶的生长坩埚盖装入生长坩埚,在生长坩 埚盖及生长坩埚底部周围包裹保温层;其中保温层为1层厚度为10mm的石墨软毡;
步骤S20,将生长坩埚内部抽真空到压力小于5×10 -2mbar,充入氩气并控制压力在650mbar,打开水冷式感应线圈通电感应加热原料坩埚,并通过气管通入200sccm的氩气进行吹淋,加热到1950℃,保温5小时;
步骤S30,调小气管通入气体的流量,使流量控制在30sccm,持续向气管通气,调节充入腔内氩气的流量使压力控制在5mbar~50mbar,温度继续加热到2250℃,沉积结晶5天,得到高纯半绝缘碳化硅晶体。
本实施例生长得到的4H高纯半绝缘碳化硅晶体及晶片呈现透明状,在强光及偏光仪下均碳包裹物,边缘无多晶,通过E+H测试电阻值各个位置的电阻大于8×10 11Ω。
实施例5
一种高纯半绝缘碳化硅晶体生长装置及其方法
高纯半绝缘碳化硅晶体生长装置包括生长坩埚,生长坩埚底部插有气管;生长坩埚顶部设置有生长坩埚盖;生长坩埚内部放置有碗状结构的原料坩埚,原料坩埚外径比生长坩埚的内径小10mm;原料坩埚上部设置有挡板;原料坩埚底部设置有环状支撑的原料坩埚底脚;原料坩埚底脚的直径为原料坩埚直径的1/8;原料坩埚底脚上设置有均匀分布的30个气孔。其中,原料坩埚的材质为高纯高密度石墨,并镀有Ta镀层;挡板的材质为多孔石墨,且表面设有Nb镀层,直径比原料坩埚的直径大8mm;气孔的尺寸为:高2mm,宽5mm;生长坩埚为壁厚在15mm的石墨材质。
用于上述的高纯半绝缘碳化硅晶体生长装置的碳化硅晶体生长方法,包括如下步骤:
步骤S10,将1.5kg纯度为6N的碳化硅粉末装入原料坩埚中,盖上挡板,并将其装入生长坩埚底部的凹槽内,将带有4寸的4H籽晶的生长坩埚盖装入生长坩埚,在生长坩埚盖及生长坩埚底部周围包裹保温层;其中保温层为2层厚度为6mm的石墨软毡;
步骤S20,将生长坩埚内部抽真空到压力小于5×10-2mbar,充入氩气并控制压力在800mbar,打开水冷式感应线圈通电感应加热原料坩埚,并通过气管通入400sccm的氩气进行吹淋,加热到2050℃,保温4小时;
步骤S30,调小气管通入气体的流量,使流量控制在25sccm,持续向气管通气,调节充入腔内氩气的流量使压力控制在5mbar~10mbar,温度继续加热到2150℃,沉积结晶7天,得到高纯半绝缘碳化硅晶体。
本实施例生长得到的4H高纯半绝缘碳化硅晶体及晶片呈现透明状,在强光及偏光仪下均碳包裹物,边缘无多晶,通过E+H测试电阻值各个位置的电阻大于8×10 11Ω。
以上仅为本申请的优选实施例而已,并不用于限制本申请,对于本领域的技术人员来说,本申请可以有各种更改和变化。凡在本申请的精神和原则之内,所作的任何修改、等 同替换和改进等,均应包含在本申请的保护范围之内。

Claims (10)

  1. 一种高纯半绝缘碳化硅晶体生长装置,其特征在于,包括生长坩埚(6);所述生长坩埚(6)底部插有气管(7);所述生长坩埚(6)顶部设置有生长坩埚盖(5);所述生长坩埚(6)内部放置有碗状结构的原料坩埚(2);所述原料坩埚(2)上部设置有挡板(1);所述原料坩埚(2)底部设置有环状支撑的原料坩埚底脚(3);所述原料坩埚底脚(3)的直径为原料坩埚(2)直径的1/8;所述原料坩埚底脚(3)上设置有均匀分布的8个~36个气孔(4)。
  2. 根据权利要求1所述的高纯半绝缘碳化硅晶体生长装置,其特征在于,所述原料坩埚(2)的材质为高纯高密度石墨。
  3. 根据权利要求1所述的高纯半绝缘碳化硅晶体生长装置,其特征在于,所述原料坩埚(2)表面设有Nb镀层和Ta镀层中的任一种。
  4. 根据权利要求1所述的高纯半绝缘碳化硅晶体生长装置,其特征在于,所述挡板(1)的材质选自多孔石墨和多孔石墨纤维中的一种。
  5. 根据权利要求1所述的高纯半绝缘碳化硅晶体生长装置,其特征在于,所述挡板(1)表面设有Nb镀层和Ta镀层中的任一种。
  6. 根据权利要求1所述的高纯半绝缘碳化硅晶体生长装置,其特征在于,所述气孔(4)的尺寸为:高1mm~5mm,宽5mm~10mm。
  7. 一种用于权利要求1~6中任一项所述的高纯半绝缘碳化硅晶体生长装置的碳化硅晶体生长方法,其特征在于,包括如下步骤:
    步骤S10,将纯度为5N~6N的碳化硅粉末(8)装入原料坩埚(2)中,盖上挡板(1),并将其装入生长坩埚(6)底部的凹槽内,将带有籽晶(9)的生长坩埚盖(5)装入生长坩埚(6),在生长坩埚盖(5)及生长坩埚(6)底部周围包裹保温层;
    步骤S20,将生长坩埚(6)内部抽真空到压力小于5×10 -2mbar,充入氩气并控制压力在600mbar~800mbar,打开水冷式感应线圈通电感应加热原料坩埚(2),并通过气管(7)通入200sccm~800sccm的气体进行吹淋,加热到1950℃~2050℃,保温1小时~5小时;
    步骤S30,调小气管通入气体的流量,使流量控制在5sccm~30sccm,持续向气管(7)通气,调节充入腔内气体的流量使压力控制在5mbar~100mbar,温度继续加热到2050℃~2250℃,沉积结晶5天~10天,得到高纯半绝缘碳化硅晶体。
  8. 根据权利要求7所述的碳化硅晶体生长方法,其特征在于,步骤S10中,所述保温 层为1~4层厚度为5mm~10mm的石墨软毡。
  9. 根据权利要求7所述的碳化硅晶体生长方法,其特征在于,步骤S20中,所述气体选自惰性气体和氢气中的任一种或两种的混合气体。
  10. 根据权利要求9所述的碳化硅晶体生长方法,其特征在于,所述气体为惰性气体氩气和氢气的混合气体。
PCT/CN2019/111083 2018-10-17 2019-10-14 高纯半绝缘碳化硅晶体生长装置及其方法 WO2020078328A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/286,358 US11851784B2 (en) 2018-10-17 2019-10-14 Apparatus and method for growing high-purity semi-insulating silicon carbide crystal

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811209654.XA CN109402731B (zh) 2018-10-17 2018-10-17 一种高纯半绝缘碳化硅晶体生长装置及其方法
CN201811209654.X 2018-10-17

Publications (1)

Publication Number Publication Date
WO2020078328A1 true WO2020078328A1 (zh) 2020-04-23

Family

ID=65467389

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/111083 WO2020078328A1 (zh) 2018-10-17 2019-10-14 高纯半绝缘碳化硅晶体生长装置及其方法

Country Status (3)

Country Link
US (1) US11851784B2 (zh)
CN (1) CN109402731B (zh)
WO (1) WO2020078328A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022123078A1 (en) * 2020-12-11 2022-06-16 Zadient Technologies SAS Method and device for producing a sic solid material
CN115819088A (zh) * 2023-02-21 2023-03-21 宁波合盛新材料有限公司 碳化硅晶体生长装置、其过滤材料以及过滤材料的制备方法

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109402731B (zh) * 2018-10-17 2021-01-15 福建北电新材料科技有限公司 一种高纯半绝缘碳化硅晶体生长装置及其方法
CN109911899B (zh) * 2019-03-07 2023-01-03 江苏超芯星半导体有限公司 一种无色莫桑石的制备方法
CN111424320B (zh) * 2020-05-27 2021-02-12 中电化合物半导体有限公司 一种碳化硅单晶生长用坩埚、生长方法和生长装置
CN112144110B (zh) * 2020-09-23 2021-07-23 中电化合物半导体有限公司 Pvt法生长碳化硅晶体的生长方法
EP4001475A1 (en) * 2020-11-19 2022-05-25 Zadient Technologies SAS Improved furnace apparatus for crystal production
CN113122915B (zh) * 2021-04-19 2022-05-10 福建北电新材料科技有限公司 镀层方格、坩埚装置和晶体生长方法
CN113522393B (zh) * 2021-07-01 2022-07-15 北京科技大学 一种嵌套式平衡坩埚及控制方法
CN115125613B (zh) * 2022-06-17 2024-05-10 江苏集芯先进材料有限公司 一种制备单晶碳化硅的生长装置
CN115386957A (zh) * 2022-07-08 2022-11-25 安徽微芯长江半导体材料有限公司 一种高质量碳化硅晶体生长坩埚
CN115852491A (zh) * 2023-03-03 2023-03-28 西北电子装备技术研究所(中国电子科技集团公司第二研究所) 减少碳化硅晶体缺陷的坩埚结构及碳化硅单晶制备方法
CN116516467A (zh) * 2023-04-13 2023-08-01 通威微电子有限公司 碳化硅晶体生长热场装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050257734A1 (en) * 2002-05-15 2005-11-24 Roland Madar Formation of single-crystal silicon carbide
KR20130035137A (ko) * 2011-09-29 2013-04-08 엘지이노텍 주식회사 잉곳 제조 장치
CN107059130A (zh) * 2017-04-20 2017-08-18 山东大学 一种减少碳化硅单晶中包裹体的新型坩埚及利用坩埚生长单晶的方法
CN107723798A (zh) * 2017-10-30 2018-02-23 中国电子科技集团公司第四十六研究所 一种高效率制备高纯半绝缘碳化硅单晶生长装置及方法
CN109402731A (zh) * 2018-10-17 2019-03-01 福建北电新材料科技有限公司 一种高纯半绝缘碳化硅晶体生长装置及其方法

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3898278B2 (ja) * 1997-04-21 2007-03-28 昭和電工株式会社 炭化ケイ素単結晶の製造方法及びその製造装置
DE60332542D1 (de) * 2002-09-19 2010-06-24 Showa Denko Kk Siliciumcarbid-einkristall und verfahren und vorrichtung zu seiner herstellung
CN1282770C (zh) * 2003-12-24 2006-11-01 山东大学 一种生长具有半导体特性的大直径6H-SiC单晶的装置和方法
CN102534763A (zh) * 2012-01-17 2012-07-04 山东天岳先进材料科技有限公司 一种物理气相沉积法生长大尺寸碳化硅单晶的石墨坩埚及其应用
WO2013159083A1 (en) * 2012-04-20 2013-10-24 Ii-Vi Incorporated LARGE DIAMETER, HIGH QUALITY SiC SINGLE CRYSTALS, METHOD AND APPARATUS
US9322110B2 (en) * 2013-02-21 2016-04-26 Ii-Vi Incorporated Vanadium doped SiC single crystals and method thereof
CN105518187B (zh) * 2013-09-06 2019-11-08 Gtat公司 生产大块硅碳化物的方法
US10753010B2 (en) * 2014-09-25 2020-08-25 Pallidus, Inc. Vapor deposition apparatus and techniques using high puritiy polymer derived silicon carbide
CN105734671B (zh) * 2014-12-10 2018-11-30 北京天科合达半导体股份有限公司 一种高质量碳化硅晶体生长的方法
CN104775149B (zh) 2015-05-05 2017-09-22 山东天岳先进材料科技有限公司 一种生长高纯半绝缘碳化硅单晶的方法及装置
CN104805504B (zh) * 2015-05-19 2017-12-05 山东大学 一种快速生长大尺寸碳化硅单晶的方法
CN205474111U (zh) * 2016-02-02 2016-08-17 北京华进创威电子有限公司 消除碳化硅单晶生长过程中硅对石墨体腐蚀的装置
CN206624942U (zh) * 2016-12-19 2017-11-10 山东天岳先进材料科技有限公司 一种物理气相输运法生长碳化硅晶体的装置
CN207193434U (zh) * 2017-05-22 2018-04-06 山东大学 一种提高碳化硅单晶质量的生长坩埚
CN108624963A (zh) * 2018-05-16 2018-10-09 福建北电新材料科技有限公司 一种用于pvt法生长的碳化硅晶体的原料烧结工艺

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050257734A1 (en) * 2002-05-15 2005-11-24 Roland Madar Formation of single-crystal silicon carbide
KR20130035137A (ko) * 2011-09-29 2013-04-08 엘지이노텍 주식회사 잉곳 제조 장치
CN107059130A (zh) * 2017-04-20 2017-08-18 山东大学 一种减少碳化硅单晶中包裹体的新型坩埚及利用坩埚生长单晶的方法
CN107723798A (zh) * 2017-10-30 2018-02-23 中国电子科技集团公司第四十六研究所 一种高效率制备高纯半绝缘碳化硅单晶生长装置及方法
CN109402731A (zh) * 2018-10-17 2019-03-01 福建北电新材料科技有限公司 一种高纯半绝缘碳化硅晶体生长装置及其方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022123078A1 (en) * 2020-12-11 2022-06-16 Zadient Technologies SAS Method and device for producing a sic solid material
CN115819088A (zh) * 2023-02-21 2023-03-21 宁波合盛新材料有限公司 碳化硅晶体生长装置、其过滤材料以及过滤材料的制备方法

Also Published As

Publication number Publication date
CN109402731B (zh) 2021-01-15
US20210332497A1 (en) 2021-10-28
CN109402731A (zh) 2019-03-01
US11851784B2 (en) 2023-12-26

Similar Documents

Publication Publication Date Title
WO2020078328A1 (zh) 高纯半绝缘碳化硅晶体生长装置及其方法
US5158750A (en) Boron nitride crucible
JP6272360B2 (ja) バナジウムドープ単結晶およびその成長方法
US5911824A (en) Method for growing crystal
KR20120082873A (ko) SiC 단결정의 승화 성장
CN109518276B (zh) 一种高品质碳化硅晶体的制备方法及其装置
JPH02186622A (ja) サセプタ
KR101458183B1 (ko) 탄화규소 단결정 성장 장치 및 방법
JP2006117512A (ja) 炭化珪素単結晶の製造方法とその方法によって成長した炭化珪素単結晶、単結晶インゴットおよび炭化珪素単結晶ウエーハ
US11555255B2 (en) Tantalum carbide coated carbon material, manufacturing method thereof, and member for apparatus for manufacturing semiconductor single crystal
WO1999014405A1 (fr) Procede et appareil permettant de produire un cristal unique de carbure de silicium
JP2008110907A (ja) 炭化珪素単結晶インゴットの製造方法及び炭化珪素単結晶インゴット
WO2019095634A1 (zh) 一种高纯碳化硅原料的合成方法及其应用
US11846040B2 (en) Silicon carbide single crystal
JP2018140903A (ja) 炭化珪素単結晶インゴットの製造方法
JP4505202B2 (ja) 炭化珪素単結晶の製造方法および製造装置
KR20110059399A (ko) 단결정 성장 방법
KR20220089732A (ko) 반절연 탄화규소 단결정 성장 방법
JP4309509B2 (ja) 熱分解黒鉛からなる単結晶成長用のルツボの製造方法
JP2003137694A (ja) 炭化珪素単結晶育成用種結晶と炭化珪素単結晶インゴット及びその製造方法
WO2020087724A1 (zh) 一种高品质碳化硅晶体的制备方法及其装置
JP6300990B1 (ja) 窒化アルミニウム単結晶製造装置
CN220812699U (zh) 碳化硅晶体生长装置
JPH05117074A (ja) 半導体単結晶製造方法および製造装置
CN116791191A (zh) 单晶生长装置、单晶生长炉及单晶生长方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19872334

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19872334

Country of ref document: EP

Kind code of ref document: A1