WO2020069656A1 - 鱼病原体检测方法 - Google Patents

鱼病原体检测方法

Info

Publication number
WO2020069656A1
WO2020069656A1 PCT/CN2019/108518 CN2019108518W WO2020069656A1 WO 2020069656 A1 WO2020069656 A1 WO 2020069656A1 CN 2019108518 W CN2019108518 W CN 2019108518W WO 2020069656 A1 WO2020069656 A1 WO 2020069656A1
Authority
WO
WIPO (PCT)
Prior art keywords
seq
primer
sequence
pathogen
oligonucleotide probe
Prior art date
Application number
PCT/CN2019/108518
Other languages
English (en)
French (fr)
Inventor
郭村勇
谢旺儒
陈台安
陈子翔
谢凯如
萧志奇
Original Assignee
福又达生物科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 福又达生物科技股份有限公司 filed Critical 福又达生物科技股份有限公司
Priority to EP19868650.3A priority Critical patent/EP3862443A4/en
Publication of WO2020069656A1 publication Critical patent/WO2020069656A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/70Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving virus or bacteriophage
    • C12Q1/701Specific hybridization probes
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/005Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from viruses
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/10Protozoa; Culture media therefor
    • C12N1/105Protozoal isolates
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/20Bacteria; Culture media therefor
    • C12N1/205Bacterial isolates
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6876Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes
    • C12Q1/6888Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for detection or identification of organisms
    • C12Q1/689Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for detection or identification of organisms for bacteria
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6876Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes
    • C12Q1/6888Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for detection or identification of organisms
    • C12Q1/6893Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for detection or identification of organisms for protozoa
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2710/00MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA dsDNA viruses
    • C12N2710/00011Details
    • C12N2710/00022New viral proteins or individual genes, new structural or functional aspects of known viral proteins or genes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2710/00MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA dsDNA viruses
    • C12N2710/00011Details
    • C12N2710/16011Herpesviridae
    • C12N2710/16022New viral proteins or individual genes, new structural or functional aspects of known viral proteins or genes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2760/00MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA ssRNA viruses negative-sense
    • C12N2760/00011Details
    • C12N2760/00022New viral proteins or individual genes, new structural or functional aspects of known viral proteins or genes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2770/00MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA ssRNA viruses positive-sense
    • C12N2770/00011Details
    • C12N2770/30011Nodaviridae
    • C12N2770/30022New viral proteins or individual genes, new structural or functional aspects of known viral proteins or genes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2600/00Oligonucleotides characterized by their use
    • C12Q2600/156Polymorphic or mutational markers
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12RINDEXING SCHEME ASSOCIATED WITH SUBCLASSES C12C - C12Q, RELATING TO MICROORGANISMS
    • C12R2001/00Microorganisms ; Processes using microorganisms
    • C12R2001/01Bacteria or Actinomycetales ; using bacteria or Actinomycetales
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12RINDEXING SCHEME ASSOCIATED WITH SUBCLASSES C12C - C12Q, RELATING TO MICROORGANISMS
    • C12R2001/00Microorganisms ; Processes using microorganisms
    • C12R2001/01Bacteria or Actinomycetales ; using bacteria or Actinomycetales
    • C12R2001/63Vibrio
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12RINDEXING SCHEME ASSOCIATED WITH SUBCLASSES C12C - C12Q, RELATING TO MICROORGANISMS
    • C12R2001/00Microorganisms ; Processes using microorganisms
    • C12R2001/645Fungi ; Processes using fungi
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12RINDEXING SCHEME ASSOCIATED WITH SUBCLASSES C12C - C12Q, RELATING TO MICROORGANISMS
    • C12R2001/00Microorganisms ; Processes using microorganisms
    • C12R2001/90Protozoa ; Processes using protozoa
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/30Against vector-borne diseases, e.g. mosquito-borne, fly-borne, tick-borne or waterborne diseases whose impact is exacerbated by climate change

Definitions

  • the invention relates to a method for detecting fish pathogens, in particular to a method for detecting fish pathogens using oligonucleotide pairs.
  • Aquatic animals are one of the important sources of human energy, protein and essential nutrients.
  • the suspicion that a large number of wild aquatic animals are depleted of marine resources has made the aquaculture industry increasingly valued.
  • aquaculture's contribution to global fishing and total aquaculture production has gradually increased from 25.7% in 2000 to 46.8% in 2016.
  • intensive farming coupled with poor management may cause aquatic animals to be susceptible to disease and death, and cause losses to fishermen.
  • the diseases of aquatic animals are mostly caused by bacteria or viruses.
  • the treatment methods for bacterial diseases and viral diseases are far from each other. Once misdiagnosed and improperly handled, it will cause huge losses. This shows that intensive monitoring of diseases in fish farms and shrimp farms is an indispensable part of management.
  • the invention provides a quick and convenient method for detecting fish pathogens for industrial use.
  • the present invention relates to a fish pathogen detection method, comprising providing a sample that may contain one or more nucleotide sequences of a fish pathogen; providing an oligonucleotide primer pair, the oligonucleotide primer pair Containing a first primer and a second primer, the oligonucleotide primer pair defines the 5 'end of two complementary strands of a double-stranded target sequence on one or more nucleotide sequences of the pathogen; provides a polymerization Enzyme; mix the sample, the oligonucleotide primer pair, the polymerase, deoxyadenosine triphosphates (dATPs), deoxycytidine triphosphates (dCTPs) in a container, Deoxyguanosine triphosphates (dGTPs) and deoxythymidine triphosphates (dTTPs) to form a polymerase chain reaction (PCR) mixture; by heating at a fixed temperature At the
  • the polymerase chain reaction (PCR) mixture further comprises an oligonucleotide probe comprising a segment complementary to a segment of the double-stranded target sequence Sequence of an oligonucleotide probe, a fluorescent molecule attached to a first position on the oligonucleotide probe, and a fluorescence attached to a second position on the oligonucleotide probe
  • an inhibitory molecule when the oligonucleotide probe is not hybridized to the segment of the double-stranded target sequence, the fluorescence inhibitory molecule substantially inhibits the fluorescent molecule, and when the oligonucleotide When the probe is hybridized to the segment of the double-stranded target sequence, the fluorescent molecule is not substantially inhibited.
  • the invention in another aspect, relates to an oligonucleotide pair for detecting fish pathogens, comprising a first primer and a second primer.
  • the oligonucleotide pair further comprises an oligonucleotide probe having an oligonucleotide probe sequence, an appendage to the oligonucleotide A fluorescent molecule at a first position on the acid probe, and a fluorescent inhibitor molecule at a second position attached to the oligonucleotide probe.
  • the pathogen is fish respiratory tract and enterovirus (Piscinereovirus, PRV), and the sequence combination of the first primer and the second primer is selected from the group consisting of: SEQ ID NO: 1 and SEQ ID NO: 2, SEQ ID NO: 4 and SEQ ID NO: 2, SEQ ID NO: 4 and SEQ ID NO: 5, SEQ ID NO: 6 and SEQ ID NO: 7, SEQ ID NO: 9 and SEQ ID NO: 10, and SEQ ID NO: 11 and SEQ ID NO: 12.
  • the pathogen is fish respiratory tract and enterovirus (PRV)
  • the sequence combination of the first primer and the second primer is SEQ ID NO: 1 and SEQ ID NO: 2
  • the oligonucleotide probe sequence is between the 71st and 95th nucleotides of the L1 segment gene (GenBank accession No. KY429943) of the pathogen fish respiratory tract and enterovirus (PRV) 13 to 25 base pair oligonucleotides; in certain preferred embodiments, the oligonucleotide probe sequence is shown in SEQ ID NO: 3.
  • the pathogen is fish respiratory tract and enterovirus (PRV)
  • the sequence combination of the first primer and the second primer is SEQ ID NO: 4 and SEQ ID NO: 2
  • the oligonucleotide probe sequence is between the 52nd and 95th nucleotides of the L1 segment gene (GenBank accession No. KY429943) of the pathogen fish respiratory tract and enterovirus (PRV) 13 to 35 base pair oligonucleotides; in certain preferred embodiments, the oligonucleotide probe sequence is shown in SEQ ID NO: 3.
  • the pathogen is fish respiratory tract and enterovirus (PRV)
  • the sequence combination of the first primer and the second primer is SEQ ID NO: 4 and SEQ ID NO: 5
  • the oligonucleotide probe sequence is between the 52nd and 100th nucleotides of the L1 segment gene (GenBank accession No. KY429943) of the pathogen fish respiratory tract and enterovirus (PRV) 13 to 35 base pair oligonucleotides; in certain preferred embodiments, the oligonucleotide probe sequence is shown in SEQ ID NO: 3.
  • the pathogen is fish respiratory tract and enterovirus (PRV)
  • the sequence combination of the first primer and the second primer is SEQ ID NO: 6 and SEQ ID NO: 7
  • the oligonucleotide probe sequence is between the 343th and 385th nucleotides of the Sigma 3 protein gene (GenBank accession No. KX844958) of the pathogen fish respiratory tract and enterovirus (PRV) 13 to 35 base pair oligonucleotides; in certain preferred embodiments, the oligonucleotide probe sequence is shown in SEQ ID NO: 8.
  • the pathogen is fish respiratory tract and enterovirus (PRV)
  • the sequence combination of the first primer and the second primer is SEQ ID NO: 9 and SEQ ID NO: 10
  • the oligonucleotide probe sequence is between the 350th and 380th nucleotides of the Sigma 3 protein gene (GenBank accession No. KX844958) of the pathogen fish respiratory tract and enterovirus (PRV) 13 to 35 base pair oligonucleotides; in certain preferred embodiments, the oligonucleotide probe sequence is shown in SEQ ID NO: 8.
  • the pathogen is fish respiratory tract and enterovirus (PRV)
  • PRV fish respiratory tract and enterovirus
  • the oligonucleotide probe sequence is between the 280th and 315th nucleotides of the L1 segment gene (GenBank accession No. KY429943) of the pathogen fish respiratory tract and enterovirus (PRV) 13 to 35 base pair oligonucleotides; in certain preferred embodiments, the oligonucleotide probe sequence is shown in SEQ ID NO: 13.
  • the pathogen is an infectious pancreatic necrosis virus (IPNV)
  • IPNV infectious pancreatic necrosis virus
  • sequence combination of the first primer and the second primer is selected from the group consisting of: SEQ ID NO: 14 and SEQ ID NO: 15, SEQ ID NO: 17 and SEQ ID NO: 18, SEQ ID NO: 20 and SEQ ID NO: 21, and SEQ ID NO: 23 and SEQ ID NO: 24.
  • the pathogen is infectious pancreatic necrosis virus (IPNV), and when the sequence combination of the first primer and the second primer is SEQ ID NO: 14 and SEQ ID NO: 15 ,
  • the oligonucleotide probe sequence is between 2010 and 2057 of the VP5 and polyprotein genes (GenBank accession No. KY548514) of the pathogen infectious pancreatic necrosis virus (IPNV) 13 to 35 base pair oligonucleotides between nucleotides; in certain preferred embodiments, the oligonucleotide probe sequence is shown in SEQ ID NO: 16.
  • the pathogen is infectious pancreatic necrosis virus (IPNV), and when the sequence combination of the first primer and the second primer is SEQ ID NO: 17 and SEQ ID NO: 18
  • the oligonucleotide probe sequence is between the 2345th and 2408th nucleus of the pathogen infectious pancreatic necrosis virus (IPNV) VP5 and the polyprotein (GenBank accession No. KY548514) 13 to 35 base pair oligonucleotides between nucleotides; in certain preferred embodiments, the oligonucleotide probe sequence is shown in SEQ ID NO: 19.
  • the pathogen is infectious pancreatic necrosis virus (IPNV), and when the sequence combination of the first primer and the second primer is SEQ ID NO: 20 and SEQ ID NO: 21
  • the oligonucleotide probe sequence is between the 2533th and 2580th nucleus of the pathogen infectious pancreatic necrosis virus (IPNV) VP5 and the polyprotein gene (GenBank accession No. KY548514) 13 to 35 base pair oligonucleotides between nucleotides; in certain preferred embodiments, the oligonucleotide probe sequence is shown in SEQ ID NO: 22.
  • the pathogen is infectious pancreatic necrosis virus (IPNV), and when the sequence combination of the first primer and the second primer is SEQ ID NO: 23 and SEQ ID NO: 24
  • the oligonucleotide probe sequence is between the 2775th to the 2818th nucleus of the pathogen infectious pancreatic necrosis virus (IPNV) VP5 and the polyprotein gene (GenBank accession No. KY548514) 13 to 35 base pair oligonucleotides between nucleotides; in certain preferred embodiments, the oligonucleotide probe sequence is shown in SEQ ID NO: 25.
  • the pathogen is an infectious salmon anemia virus (ISAV)
  • the sequence combination of the first primer and the second primer is selected from the group consisting of: SEQ ID: NO: 26 and SEQ ID: NO: 27, SEQ ID: NO: 29 and SEQ ID: NO: 30, SEQ ID: NO: 32 and SEQ ID: NO: 33, SEQ ID: NO: 35 and SEQ ID: NO: 36, and SEQ ID NO: 37 and SEQ ID NO: 38.
  • the pathogen is an infectious salmon anemia virus (ISAV)
  • the sequence combination of the first primer and the second primer is SEQ ID NO: 26 and SEQ ID NO: 27
  • the oligonucleotide probe sequence is between the 282th to the ORF2 of the Open Reading Frame (ORF) 1 and ORF2 genes (GenBank accession No. KX424589) of the pathogen infectious salmon anemia virus (ISAV) 13 to 35 base pair oligonucleotides between the 328th nucleotide; in certain preferred embodiments, the oligonucleotide probe sequence is shown in SEQ ID NO: 28.
  • the pathogen is an infectious salmon anemia virus (ISAV)
  • the sequence combination of the first primer and the second primer is SEQ ID NO: 29 and SEQ ID NO: 30
  • the oligonucleotide probe sequence is a 13 to 13 nucleotide between the 79th and 121st nucleotides of the ORF1 and ORF2 genes (GenBank accession No. KX424589) of the pathogen infectious salmon anemia virus (ISAV)
  • the pathogen is an infectious salmon anemia virus (ISAV)
  • the sequence combination of the first primer and the second primer is SEQ ID NO: 32 and SEQ ID NO: 33
  • the oligonucleotide probe sequence is a 13 to nucleotide number 244 to 273 between the ORF1 and ORF2 genes (GenBank accession No. KX424589) of the pathogen infectious salmon anemia virus (ISAV)
  • the pathogen is an infectious salmon anemia virus (ISAV)
  • the sequence combination of the first primer and the second primer is SEQ ID NO: 35 and SEQ ID NO: 36
  • the oligonucleotide probe sequence is a 13 to nucleotide number between 237 and 272 nucleotides between the ORF1 and ORF2 genes (GenBank accession No. KX424589) of the pathogen infectious salmon anemia virus (ISAV)
  • the pathogen is an infectious salmon anemia virus (ISAV)
  • the sequence combination of the first primer and the second primer is SEQ ID NO: 37 and SEQ ID NO: 38
  • the oligonucleotide probe sequence is a 13 to 286 nucleotide between the ORF1 and ORF2 genes (GenBank accession No. KX424589) of the pathogen infectious salmon anemia virus (ISAV)
  • the pathogen is Piscine myocarditis virus (PMCV)
  • the sequence combination of the first primer and the second primer is selected from the group consisting of: SEQ ID NO: 39 and SEQ ID NO: 40, SEQ ID NO: 42 and SEQ ID NO: 43, SEQ ID NO: 45 and SEQ ID NO: 46, SEQ ID NO: 48 and SEQ ID NO: 49, SEQ ID NO: 51 and SEQ ID NO: 49, and SEQ ID NO: 52 and SEQ ID NO: 49.
  • the pathogen is fish myocarditis virus (PMCV)
  • the sequence combination of the first primer and the second primer is SEQ ID NO: 39 and SEQ ID NO: 40
  • the The oligonucleotide probe sequence is an oligo between 13 to 35 base pairs between the 6266th to 6306th nucleotides of the genome of the pathogen fish myocarditis virus (PMCV) (GenBank accession No. HQ339954) Nucleotides; in certain preferred embodiments, the oligonucleotide probe sequence is shown in SEQ ID NO: 41.
  • the pathogen is fish myocarditis virus (PMCV)
  • the sequence combination of the first primer and the second primer is SEQ ID NO: 42 and SEQ ID NO: 43
  • the The oligonucleotide probe sequence is an oligo between 13 to 35 base pairs between the 5632th to 5672nd nucleotides of the genome (GenBank accession No. HQ339954) of the pathogenic fish myocarditis virus (PMCV) Nucleotides; in certain preferred embodiments, the oligonucleotide probe sequence is shown in SEQ ID NO: 44.
  • the pathogen is fish myocarditis virus (PMCV)
  • the sequence combination of the first primer and the second primer is SEQ ID NO: 45 and SEQ ID NO: 46
  • the The oligonucleotide probe sequence is a 13 to 35 base pair oligo between the 5693th to 5747th nucleotides of the genome (GenBank accession No. HQ339954) of the pathogen fish myocarditis virus (PMCV) Nucleotides; in certain preferred embodiments, the oligonucleotide probe sequence is shown in SEQ ID NO: 47.
  • the pathogen is fish myocarditis virus (PMCV)
  • the sequence combination of the first primer and the second primer is SEQ ID NO: 48 and SEQ ID NO: 49
  • the The oligonucleotide probe sequence is an oligo with 13 to 35 base pairs between the 6294 to 6331 nucleotides of the genome of the pathogen fish myocarditis virus (PMCV) (GenBank accession No. HQ339954) Nucleotides; in certain preferred embodiments, the oligonucleotide probe sequence is shown in SEQ ID NO: 50.
  • the pathogen is fish myocarditis virus (PMCV)
  • the sequence combination of the first primer and the second primer is SEQ ID NO: 51 and SEQ ID NO: 49
  • the The oligonucleotide probe sequence is an oligo between 13 to 35 base pairs between the 6271th to 6331st nucleotides of the genome of the pathogen fish myocarditis virus (PMCV) (GenBank accession No. HQ339954) Nucleotides; in certain preferred embodiments, the oligonucleotide probe sequence is shown in SEQ ID NO: 50.
  • the pathogen is fish myocarditis virus (PMCV)
  • the sequence combination of the first primer and the second primer is SEQ ID NO: 52 and SEQ ID NO: 49
  • the The oligonucleotide probe sequence is an oligo between 13 and 35 base pairs between the 6290th and 6331st nucleotides of the genome of the pathogen fish myocarditis virus (PMCV) (GenBank accession No. HQ339954) Nucleotides; in certain preferred embodiments, the oligonucleotide probe sequence is shown in SEQ ID NO: 50.
  • the pathogen is Salmonid alphavirus (SAV)
  • the sequence combination of the first primer and the second primer is selected from the group consisting of: SEQ ID NO: 53 And SEQ ID NO: 54, SEQ ID NO: 56 and SEQ ID NO: 57, SEQ ID NO: 59 and SEQ ID NO: 60, SEQ ID NO: 62 and SEQ ID NO: 63, and SEQ ID NO: 65 and SEQ ID NO: 66.
  • the pathogen is salmonella virus (SAV)
  • the sequence combination of the first primer and the second primer is SEQ ID NO: 53 and SEQ ID NO: 54
  • the The oligonucleotide probe sequence is an oligo with 13 to 35 base pairs between the 611th to 653rd nucleotides of the genome of the pathogen Salmon Alpha Virus (SAV) (GenBank accession No. KC122926) Nucleotides; in certain preferred embodiments, the oligonucleotide probe sequence is shown in SEQ ID NO: 55.
  • the pathogen is salmonella virus (SAV)
  • the sequence combination of the first primer and the second primer is SEQ ID NO: 56 and SEQ ID NO: 57
  • the The oligonucleotide probe sequence is an oligo between 13 and 35 base pairs between the 145th and 181st nucleotides of the genome (GenBank accession No. KC122926) of the pathogen Salmon Alpha Virus (SAV) Nucleotides; in certain preferred embodiments, the oligonucleotide probe sequence is shown in SEQ ID NO: 58.
  • the pathogen is salmonella virus (SAV), and when the sequence combination of the first primer and the second primer is SEQ ID NO: 59 and SEQ ID NO: 60, the The oligonucleotide probe sequence is an oligo between 13 and 35 base pairs between the 2691th to the 2761st nucleotides in the genome (GenBank accession No. KC122926) of the pathogen Salmon Alpha Virus (SAV) Nucleotides; in certain preferred embodiments, the oligonucleotide probe sequence is shown in SEQ ID NO: 61.
  • the pathogen is salmonella virus (SAV)
  • the sequence combination of the first primer and the second primer is SEQ ID NO: 62 and SEQ ID NO: 63
  • the The oligonucleotide probe sequence is an oligo with 13 to 35 base pairs between the 1032th to 1075th nucleotides of the genome (GenBank accession No. KC122926) of the pathogen Salmon Alpha Virus (SAV) Nucleotides; in certain preferred embodiments, the oligonucleotide probe sequence is shown in SEQ ID NO: 64.
  • the pathogen is salmonella virus (SAV)
  • the sequence combination of the first primer and the second primer is SEQ ID NO: 65 and SEQ ID NO: 66
  • the The oligonucleotide probe sequence is an oligo with 13 to 35 base pairs between the 969th to 1011th nucleotides of the genome (GenBank accession No. KC122926) of the pathogen Salmon Alpha Virus (SAV) Nucleotides; in certain preferred embodiments, the oligonucleotide probe sequence is shown in SEQ ID NO: 67.
  • the pathogen is Neoparamoeba perurans
  • the sequence combination of the first primer and the second primer is selected from the group consisting of: SEQ ID NO : 68 and SEQ ID NO: 69, SEQ ID NO: 71 and SEQ ID NO: 72, SEQ ID NO: 74 and SEQ ID NO: 75, and SEQ ID NO: 77 and SEQ ID NO: 78.
  • the pathogen is N. perurans
  • the sequence combination of the first primer and the second primer is SEQ ID NO: 68 and SEQ ID NO :
  • the oligonucleotide probe sequence is an 18S ribosomal ribonucleic acid (ribosomal RNA, rRNA) gene (GenBank accession No. KU985058) between the pathogen N. perurans ) From 462 to 520th nucleotides between 13 and 35 base pairs of oligonucleotides; in certain preferred embodiments, the oligonucleotide probe sequence such as SEQ ID NO: 70 shown.
  • the pathogen is N. perurans
  • the sequence combination of the first primer and the second primer is SEQ ID NO: 71 and SEQ ID NO :
  • the oligonucleotide probe sequence is between the 355th and 405th nuclei of the 18S rRNA gene (GenBank accession No. KU985058) of the pathogen N. perurans 13 to 35 base pair oligonucleotides between nucleotides; in certain preferred embodiments, the oligonucleotide probe sequence is shown in SEQ ID NO: 73.
  • the pathogen is N. perurans
  • the sequence combination of the first primer and the second primer is SEQ ID NO: 74 and SEQ ID NO :
  • the oligonucleotide probe sequence is between the 234th and 281st nuclei of the 18S rRNA gene (GenBank accession No. KU985058) of the pathogen N. perurans
  • Oligonucleotides of 13 to 35 base pairs between nucleotides in certain preferred embodiments, the oligonucleotide probe sequence is shown in SEQ ID NO: 76.
  • the pathogen is N. perurans
  • the sequence combination of the first primer and the second primer is SEQ ID NO: 77 and SEQ ID NO : 78
  • the oligonucleotide probe sequence is between the 357th and 380th nuclei of the 18S rRNA gene (GenBank accession No. KU985058) of the pathogen N. perurans 13 to 24 base pair oligonucleotides between nucleotides; in certain preferred embodiments, the oligonucleotide probe sequence is shown in SEQ ID NO: 79.
  • the pathogen is Candidatus Branchiomonas cysticola (CBc) and the sequence combination of the first primer and the second primer is selected from the group consisting of SEQ ID NO: 80 and SEQ ID NO : 81, and SEQ ID NO: 83 and SEQ ID NO: 84.
  • CBDc Candidatus Branchiomonas cysticola
  • the pathogen is Ca.B. cysticola (CBc), and when the sequence combination of the first primer and the second primer is SEQ ID NO: 80 and SEQ ID NO: 81,
  • the oligonucleotide probe sequence is a nucleotide number 1068 to 1125 between the 16S ribosomal RNA (rRNA) gene (GenBank accession No. JQ723599) of the pathogen Ca.B. cysticola Oligonucleotides between 13 and 35 base pairs; in certain preferred embodiments, the oligonucleotide probe sequence is shown in SEQ ID NO: 82.
  • the pathogen is Ca.B. cysticola (CBc)
  • the sequence combination of the first primer and the second primer is SEQ ID NO: 83 and SEQ ID NO: 84
  • the oligonucleotide probe sequence is a 13 to 30 bases between the 1212th to 1241st nucleotides of the 16S rRNA gene (GenBank accession No. JQ723599) of the pathogen Ca.B. cysticola Pair of oligonucleotides; in certain preferred embodiments, the oligonucleotide probe sequence is shown in SEQ ID NO: 85.
  • the pathogen is Desmozoon lepeophtherii (Des) and the sequence combination of the first primer and the second primer is selected from the group consisting of: SEQ ID NO: 86 and SEQ ID NO: 87, SEQ ID NO: 89 and SEQ ID NO: 90, SEQ ID NO: 92 and SEQ ID NO: 93, SEQ ID NO: 95 and SEQ ID NO: 97, and SEQ ID NO: 96 and SEQ ID NO: 97.
  • Des Desmozoon lepeophtherii
  • the pathogen is Desmozoon lepeophthieri (Des), and when the sequence combination of the first primer and the second primer is SEQ ID NO: 86 and SEQ ID NO: 87,
  • the oligonucleotide probe sequence is a 967th to 1010th nucleoside between the 16S ribosomal RNA (rRNA) gene (GenBank accession No. JQ723599) of the pathogen Microsporidium D. lepeophtherii 13 to 35 base pair oligonucleotides between acids; in certain preferred embodiments, the oligonucleotide probe sequence is shown in SEQ ID NO: 88.
  • the pathogen is Desmozoon lepeophthieri (Des), and when the sequence combination of the first primer and the second primer is SEQ ID NO: 89 and SEQ ID NO: 90,
  • the oligonucleotide probe sequence is a 13 to 35 base between the 1246th to 1285th nucleotides of the 16S rRNA gene (GenBank accession No. JQ723599) of the pathogen Microsporidium D. lepeophtherii Oligonucleotides in base pairs; in certain preferred embodiments, the oligonucleotide probe sequence is shown in SEQ ID NO: 91.
  • the pathogen is Desmozoon lepeophthieri (Des), and when the sequence combination of the first primer and the second primer is SEQ ID NO: 92 and SEQ ID NO: 93,
  • the oligonucleotide probe sequence is a 13 to 35 base between 1366 to 1414 nucleotides of the 16S rRNA gene (GenBank accession No. JQ723599) of the pathogen Microsporidium D. lepeophtherii Oligonucleotides in base pairs; in certain preferred embodiments, the oligonucleotide probe sequence is shown in SEQ ID NO: 94.
  • the pathogen is Desmozoon lepeophthieri (Des), and when the sequence combination of the first primer and the second primer is SEQ ID NO: 95 and SEQ ID NO: 97,
  • the oligonucleotide probe sequence is a 13 to 35 base between the 815th to 859th nucleotides of the 16S rRNA gene (GenBank accession No. JQ723599) of the pathogen Microsporidium D. lepeophtherii Oligonucleotides in base pairs; in certain preferred embodiments, the oligonucleotide probe sequence is shown in SEQ ID NO: 98.
  • the pathogen is Desmozoon lepeophthieri (Des), and when the sequence combination of the first primer and the second primer is SEQ ID NO: 96 and SEQ ID NO: 97,
  • the oligonucleotide probe sequence is a 13 to 35 base between the 817th to 859th nucleotides of the 16S rRNA gene (GenBank accession No. JQ723599) of the pathogen Microsporidium D. lepeophtherii Oligonucleotides in base pairs; in certain preferred embodiments, the oligonucleotide probe sequence is shown in SEQ ID NO: 98.
  • the pathogen is Salmon poxvirus (SGPV) and the sequence combination of the first primer and the second primer is selected from the group consisting of: SEQ ID NO: 99 and SEQ ID NO: 100, SEQ ID NO: 102 and SEQ ID NO: 103, SEQ ID NO: 105 and SEQ ID NO: 106, and SEQ ID NO: 108 and SEQ ID NO: 109.
  • SGPV Salmon poxvirus
  • the pathogen is salmon parrot virus (SGPV)
  • SGPV salmon parrot virus
  • the sequence combination of the first primer and the second primer is SEQ ID NO: 99 and SEQ ID NO: 100
  • the The oligonucleotide probe sequence is a 13 to 35 base pair between the 99272th to 99318th nucleotides of the genome of the pathogen salmon parrot virus (SGPV) (GenBank accession No. KT159937) Oligonucleotide; in certain preferred embodiments, the oligonucleotide probe sequence is shown in SEQ ID NO: 101.
  • the pathogen is salmon parrot virus (SGPV)
  • SGPV salmon parrot virus
  • the sequence combination of the first primer and the second primer is SEQ ID NO: 102 and SEQ ID NO: 103
  • the The oligonucleotide probe sequence is a 13 to 27 base pair between the 123213th to 123239th nucleotides of the genome (GenBank accession No. KT159937) of the pathogen salmon parrot virus (SGPV) Oligonucleotide; in certain preferred embodiments, the oligonucleotide probe sequence is shown in SEQ ID NO: 104.
  • the pathogen is salmon parrot virus (SGPV)
  • SGPV salmon parrot virus
  • the sequence combination of the first primer and the second primer is SEQ ID NO: 105 and SEQ ID NO: 106
  • the The oligonucleotide probe sequence is a 13 to 30 base pair between the 123202th to 123232th nucleotides of the genome of the pathogen salmon parrot virus (SGPV) (GenBank accession No. KT159937) Oligonucleotide; in certain preferred embodiments, the oligonucleotide probe sequence is shown in SEQ ID NO: 107.
  • the pathogen is salmon parrot virus (SGPV)
  • SGPV salmon parrot virus
  • the sequence combination of the first primer and the second primer is SEQ ID NO: 108 and SEQ ID NO: 109
  • the The oligonucleotide probe sequence is a 13 to 35 base pair between the 123556th to 123610th nucleotides of the genome (GenBank accession No. KT159937) of the pathogen salmon parrot virus (SGPV) Oligonucleotide; in certain preferred embodiments, the oligonucleotide probe sequence is shown in SEQ ID NO: 110.
  • the pathogen is Piscirickettsia (salmonis) and the sequence combination of the first primer and the second primer is selected from the group consisting of: SEQ ID NO: 111 and SEQ ID NO: 113, SEQ ID NO: 114 and SEQ ID NO: 115, SEQ ID NO: 116 and SEQ ID NO: 117, SEQ ID NO: 119 and SEQ ID NO: 120, and SEQ ID NO: 122 and SEQ ID NO: 123.
  • the pathogen is P. salmonis
  • the sequence combination of the first primer and the second primer is SEQ ID NO: 111 and SEQ ID NO: 112
  • the oligonucleotide probe sequence is a 952th part of the 16S ribosomal ribonucleic acid (ribosomal RNA, rRNA) gene (GenBank accession No. AY498634) of the pathogen P. salmonis 13 to 35 base pair oligonucleotides up to the 1065th nucleotide; in certain preferred embodiments, the oligonucleotide probe sequence is shown in SEQ ID NO: 113.
  • the pathogen is P. salmonis
  • the sequence combination of the first primer and the second primer is SEQ ID NO: 114 and SEQ ID NO: 115
  • the oligonucleotide probe sequence is between the 1014th and 1050th nucleotides of the 16S rRNA gene (GenBank accession No. AY498634) of the pathogen P. salmonis 13 to 35 base pairs of oligonucleotides; in certain preferred embodiments, the oligonucleotide probe sequence is shown in SEQ ID NO: 113.
  • the pathogen is P. salmonis
  • the sequence combination of the first primer and the second primer is SEQ ID NO: 116 and SEQ ID NO: 117
  • the oligonucleotide probe sequence is between the 315th and 331rd nucleotides of the 16S rRNA gene (GenBank accession No. AY498634) of the pathogen P. salmonis 13 to 17 base pairs of oligonucleotides; in certain preferred embodiments, the oligonucleotide probe sequence is shown in SEQ ID NO: 118.
  • the pathogen is P. salmonis
  • the sequence combination of the first primer and the second primer is SEQ ID NO: 119 and SEQ ID NO: 120
  • the oligonucleotide probe sequence is between the 529th and 545th nucleotides of the 16S rRNA gene (GenBank accession No. AY498634) of the pathogen P. salmonis 13 to 17 base pairs of oligonucleotides; in certain preferred embodiments, the oligonucleotide probe sequence is shown in SEQ ID NO: 121.
  • the pathogen is P. salmonis
  • the sequence combination of the first primer and the second primer is SEQ ID NO: 122 and SEQ ID NO: 123
  • the oligonucleotide probe sequence is between 1181 and 1200 nucleotides of the 16S rRNA gene (GenBank accession No. AY498634) of the pathogen P. salmonis (P. salmonis) 13 to 20 base pairs of oligonucleotides; in certain preferred embodiments, the oligonucleotide probe sequence is shown in SEQ ID NO: 124.
  • the pathogen is Renibacterium salmoninarum and the sequence combination of the first primer and the second primer is selected from the group consisting of: SEQ ID NO: 126 and SEQ ID NO: 128, SEQ ID NO: 127 and SEQ ID NO: 128, SEQ ID NO: 130 and SEQ ID NO: 131, SEQ ID NO: 133 and SEQ ID NO: 134, and SEQ ID NO: 136 and SEQ ID NO : 137.
  • the pathogen is R. salmoninarum
  • the sequence combination of the first primer and the second primer is SEQ ID NO: 125 and SEQ ID NO: 128,
  • the oligonucleotide probe sequence is from the 1035th to the 35th of the 57KD extracellular protein precursor (ECP) gene (GenBank accession No. Z12174) of the pathogen R. salmoninarum 13 to 31 base pair oligonucleotides between 1065 nucleotides; in certain preferred embodiments, the oligonucleotide probe sequence is shown in SEQ ID NO: 129.
  • the pathogen is R. salmoninarum
  • the sequence combination of the first primer and the second primer is SEQ ID NO: 126 and SEQ ID NO: 128,
  • the oligonucleotide probe sequence is a 1024 to 1065 nucleoside between the 57KD extracellular protein precursor (ECP) gene (GenBank accession No. Z12174) of the pathogen R. salmoninarum 13 to 35 base pair oligonucleotides between acids; in certain preferred embodiments, the oligonucleotide probe sequence is shown in SEQ ID NO: 129.
  • the pathogen is R. salmoninarum
  • the sequence combination of the first primer and the second primer is SEQ ID NO: 127 and SEQ ID NO: 128,
  • the oligonucleotide probe sequence is a 1037th to 1065th nucleoside between the 57KD extracellular protein precursor (ECP) gene (GenBank accession No. Z12174) of the pathogen R. salmoninarum 13 to 29 base pair oligonucleotides between acids; in certain preferred embodiments, the oligonucleotide probe sequence is shown in SEQ ID NO: 129.
  • the pathogen is R. salmoninarum
  • the sequence combination of the first primer and the second primer is SEQ ID NO: 130 and SEQ ID NO: 131
  • the oligonucleotide probe sequence is a nucleoside 782 to 806 between the 57KD extracellular protein precursor (ECP) gene (GenBank accession No. Z12174) of the pathogen R. salmoninarum 13 to 25 base pair oligonucleotides between acids; in certain preferred embodiments, the oligonucleotide probe sequence is shown in SEQ ID NO: 132.
  • the pathogen is R. salmoninarum
  • the sequence combination of the first primer and the second primer is SEQ ID NO: 133 and SEQ ID NO: 134
  • the oligonucleotide probe sequence is between the 880th and 964th nucleosides of the 57KD extracellular protein precursor (ECP) gene (GenBank accession No. Z12174) of the pathogen R. salmoninarum 13 to 35 base pair oligonucleotides between acids; in certain preferred embodiments, the oligonucleotide probe sequence is shown in SEQ ID NO: 135.
  • the pathogen is R. salmoninarum
  • the sequence combination of the first primer and the second primer is SEQ ID NO: 136 and SEQ ID NO: 137
  • the oligonucleotide probe sequence is between the 646th and 738th nucleosides of the 57KD extracellular protein precursor (ECP) gene (GenBank accession No. Z12174) of the pathogen R. salmoninarum 13 to 35 base pair oligonucleotides between acids; in certain preferred embodiments, the oligonucleotide probe sequence is shown in SEQ ID NO: 138.
  • the present invention relates to a fish pathogen detection method.
  • the method is polymerase chain reaction (PCR).
  • the method is reverse-transcription polymerase chain reaction (RT-PCR).
  • the method is thermal convection polymerase chain reaction (cPCR).
  • the method is real-time polymerase chain reaction (real-time polymerase chain reaction, real-time PCR).
  • the present invention relates to a fish pathogen detection method, including:
  • sample that may contain one or more nucleotide sequences of fish pathogens
  • the oligonucleotide primer pair includes a first primer and a second primer.
  • the oligonucleotide primer pair is defined in one or more nucleotide sequences of the pathogen 5 'end of the two complementary strands of the previous double strand target sequence;
  • PCR polymerase chain reaction
  • cPCR thermal convection polymerase chain reaction
  • the PCR product is detected to identify the double-stranded target sequence.
  • the invention relates to a fish pathogen detection method, comprising:
  • sample that may contain one or more nucleotide sequences of fish pathogens
  • the oligonucleotide primer pair includes a first primer and a second primer.
  • the oligonucleotide primer pair is defined in one or more nucleotide sequences of the pathogen 5 'end of the two complementary strands of the previous double strand target sequence;
  • an oligonucleotide probe comprising an oligonucleotide probe sequence complementary to a segment of the double-stranded target sequence, an probe attached to the oligonucleotide probe A fluorescent molecule at a first position on the needle, and a fluorescent inhibitor molecule at a second position attached to the oligonucleotide probe, when the oligonucleotide probe is not hybridized to the double
  • the fluorescence suppression molecule substantially suppresses the fluorescent molecule, and when the oligonucleotide probe is hybridized to the segment of the double-stranded target sequence, the The fluorescent molecule is not substantially inhibited;
  • PCR polymerase chain reaction
  • cPCR thermal convection polymerase chain reaction
  • the PCR product is detected to identify the double-stranded target sequence.
  • the invention relates to an oligonucleotide pair for detecting fish pathogens.
  • the present invention relates to an oligonucleotide pair and oligonucleotide probe for detecting fish pathogens.
  • oligonucleotide pairs and / or oligonucleotide probes disclosed herein can be used for variations in various basic PCR techniques, such as, but not limited to, reverse transcription polymerization Enzyme chain reaction (RT-PCR), thermal convection polymerase chain reaction (cPCR), real-time polymerase chain reaction (real-time PCR), nested polymerase chain reaction (nested PCR), and thermal asymmetry Sex interleaved polymerase chain reaction (thermal asymmetric interlaced PCR, TAIL-PCR).
  • RT-PCR reverse transcription polymerization Enzyme chain reaction
  • cPCR thermal convection polymerase chain reaction
  • real-time PCR real-time polymerase chain reaction
  • nested polymerase chain reaction nested PCR
  • thermal asymmetry Sex interleaved polymerase chain reaction thermal asymmetric interlaced PCR, TAIL-PCR
  • fish pathogen means viral, bacterial, and parasitic pathogens found in and out of fish organisms.
  • fish pathogens include, but are not limited to: Piscine Reovirus (PRV), Infectious Pancreatic Necrosis Virus (IPNV), Infectious Salmon Anemia Virus (ISAV) ), Piscine myocarditis virus (PMCV), Salmonid alphavirus (SAV), Neoparamoeba perurans, Candidatus Branchicomonas cysticola (CBc), Desmozoon lepeophtherii (Des) , Salmon Gill Poxvirus (SGPV), Salmon Rickettsia (Piscirickettsia salmonis), and Salmon Kidney Bacteria (Renibacterium salmoninarum).
  • PRV Piscine Reovirus
  • IPNV Infectious Pancreatic Necrosis Virus
  • ISAV Infectious Salmon Anemia Virus
  • PMCV Piscine myocarditis virus
  • SAV Salmonid alphavirus
  • thermal convection polymerase chain reaction refers to a polymerase chain reaction in which the bottom of a tubular container containing a PCR sample is embedded in a stable heat source and the PCR is controlled
  • the parameters including the total volume, viscosity, surface temperature of the PCR sample, and the inner diameter of the tubular container, cause the temperature gradient from the bottom to the top of the PCR sample to decrease, induce thermal convection, and cause denaturation and adhesion of the PCR sample
  • the polymerization occurs sequentially and repeatedly in different areas of the tubular container.
  • fluorescent molecule means a substance or a portion thereof, which is capable of displaying fluorescence within a detectable range.
  • fluorescence-inhibiting molecule means a substance or a portion thereof, which is capable of inhibiting the fluorescence emitted by the fluorescent molecule when excited by a light source.
  • fluorescent molecule and fluorescence inhibitory molecule are fluorescent molecules and fluorescence inhibitory molecules of the TaqMan TM analysis kit (Applied Biosystems Inc., California, United States).
  • TaqMan TM analysis kit See, for example, Holland et al., Proc. Natl. Acad. Sci, USA (1991) 88: 7276-7280; US Patent Nos. 5,538,848, 5,723,591, 5,876,930, and 7,413,708 are all cited. Way to incorporate its entirety into this article.
  • fluorescent molecule examples include, but are not limited to, 3- ( ⁇ -carboxy) -3'-ethyl-5,5'-dimethylhexylcarbocyanine (3- ( ⁇ -carboxypentyl) -3'- ethyl-5,5'-dimethyloxa-carbocyanine (CYA), 6-carboxyfluorescein (FAM), 5,6-carboxyrhodamine-L LO (5,6-carboxyrhodamine-lO, R110), 6-carboxyrhodamine-6G (6-carboxyrhodamine-6G, R6G), N ', N', N ', N'-tetramethyl-6-carboxyrhodamine (N', N ', N', N'- tetramethyl-6-carboxyrhodamine (TAMRA), 6-carboxy-X-rhodamine (ROX), 2 ', 4', 5 ', 7'
  • fluorescence inhibitory molecules include, but are not limited to, 4- (4'-dimethylamino-phenylazo) -benzoic acid (4- (4'-dimethylamino-phenylazo) -benzoic acid, Dabcyl), black holes Fluorescence inhibitor 1 (Black HoleQuencher1, BHQ1), black hole fluorescence inhibitor 2 (Black HoleQuencher2, BHQ2), black hole fluorescence inhibitor 3 (Black HoleQuencher3, BHQ3) Ditch conjugate (dihydro cyclopyrolo indole tripeptide mineral groove binder, MGB), tetramethylrhodamine (tetramethylrhodamine, TAMRA).
  • 4- (4'-dimethylamino-phenylazo) -benzoic acid (4- (4'-dimethylamino-phenylazo) -benzoic acid, Dabcyl
  • black holes Fluorescence inhibitor 1 Black HoleQuencher1, BHQ1
  • the fluorescent molecule is 6-carboxyfluorescein (FAM), and the fluorescence inhibitory molecule is dihydrocyclopyrroloindole tripeptide minor groove conjugate (MGB).
  • the fluorescent molecule is 6-carboxyfluorescein (FAM), and the fluorescence inhibitory molecule is black hole fluorescence inhibitor 1 (BHQ1) or dihydrocyclopyrroloindole tripeptide minor groove conjugate (MGB).
  • Pathogen fish respiratory tract and enterovirus (PRV) L1 segment gene (GenBank accession No. KY429943) and Sigma 3 protein gene (GenBank accession No. KX844958) fragments were inserted into a selection vector, the selection vector It can be, but not limited to, pUC57, pGEM-T to obtain pPRV-L1 and pPRV-S3 plasmids.
  • PRV Pathogen fish respiratory tract and enterovirus
  • 50 l PCR mixture was subjected to a conventional PCR used contains: 10 6 copy number pPRV-L1 plasmid or pPRV-S3, 0.01-2 ⁇ M forward primer, 0.01-2 ⁇ M reverse primer, 0.2 ⁇ M dNTP and 1.25U Taq DNA polymerase.
  • Amplify the reaction in a thermal cycler eg, but not limited to PC818, Astec Co. Ltd., Japan
  • a thermal cycler eg, but not limited to PC818, Astec Co. Ltd., Japan
  • the amplified product was then analyzed with 15% polyacrylamide gel in TAE buffer (40 mM Tris, 20 mM acetic acid, 1 mM EDTA) and visualized by staining with ethidium bromide.
  • PRV-F1 (SEQ ID NO: 1) PRV-R1 (SEQ ID NO: 2) 70 PRV-F2 (SEQ ID NO: 4) PRV-R1 (SEQ ID NO: 2) 92 PRV-F2 (SEQ ID NO: 4) PRV-R2 (SEQ ID NO: 5) 98 PRV-F3 (SEQ ID NO: 6) PRV-R3 (SEQ ID NO: 7) 83 PRV-F4 (SEQ ID NO: 9) PRV-R4 (SEQ ID NO: 10) 77 PRV-F5 (SEQ ID NO: 11) PRV-R5 (SEQ ID NO: 12) 76
  • each probe sequence is respectively joined with a fluorescent molecule 6-carboxyfluorescein (FAM) and a fluorescent inhibitor molecule black hole fluorescent inhibitor 1 (BHQ1)), 0.2 ⁇ M dNTP, 1X cPCR buffer, and 1-5U Taq DNA polymerase, 1-5U reverse transcriptase.
  • FAM fluorescent molecule 6-carboxyfluorescein
  • BHQ1 fluorescent inhibitor molecule black hole fluorescent inhibitor 1
  • the PCR mixture is added to a reaction tube and placed in a thermal convection polymerase chain reaction (cPCR) instrument for a specified period of time (approximately 30-45 minutes).
  • the cPCR instrument was used to detect FAM fluorescence in each sample.
  • diluted pPRV-L1 or pPRV-S3 plasmids (10 1 , 10 2 , 10 3 , 10 4 , 10 5 , 10 6 , 10 7 copy numbers, respectively) in a real-time PCR instrument (for example, but not limited to ABI StepOnePlus TM ; Applied BioSystem, Life Technologies, California, USA) for real-time PCR analysis.
  • a real-time PCR instrument for example, but not limited to ABI StepOnePlus TM ; Applied BioSystem, Life Technologies, California, USA
  • FAM fluorescein
  • BHQ1 fluorescence inhibitor molecule black hole fluorescence inhibitor 1
  • the real-time PCR program is 42 ° C for 5 minutes, 94 ° C for 10 seconds, and 40 cycles of 94 ° C for 10 seconds and 60 ° C for 30 minutes. Record the results of the fluorescence measurement in the 60 ° C step and calculate. Standard curve for real-time PCR analysis of serially diluted (10-fold) pPRV-L1 or pPRV-S3 plasmids. The results showed that at least 10 2 copy number pPRV-L1 or pPRV-S3 plasmid can be detected, and each primer pair R 2 value and the standard probe combinations curves are greater than 0.99, it indicates the primer of the present invention on the Probes can be used for real-time PCR and produce believable results.
  • the primer pair and the probe of the present invention can be used in the cPCR amplification reaction to detect the presence of fish respiratory tract and enterovirus (PRV), and have high sensitivity and specificity.
  • PRV fish respiratory tract and enterovirus
  • IPNV pancreatic necrosis virus
  • IPNV pathogen infectious pancreatic necrosis virus
  • polyprotein gene GenBank accession No. KY548514
  • PCR mixture 50 l PCR mixture was subjected to a conventional PCR used contained: pIPNV 106 plasmid copy number, 0.01-2 ⁇ M forward primer, 0.01-2 ⁇ M reverse primer, 0.2 ⁇ M dNTP and 1.25U Taq DNA polymerase.
  • Amplify the reaction in a thermal cycler eg, but not limited to PC818, Astec Co. Ltd., Japan
  • a thermal cycler eg, but not limited to PC818, Astec Co. Ltd., Japan
  • the amplified product was then analyzed with a 15% polyacrylamide gel in TAE buffer (40 mM Tris, 20 mM acetic acid, 1 mM EDTA) and visualized by ethidium bromide staining.
  • IPNV-F1 (SEQ ID NO: 14) IPNV-R1 (SEQ ID NO: 15) 86 IPNV-F2 (SEQ ID NO: 17) IPNV-R2 (SEQ ID NO: 18) 104 IPNV-F3 (SEQ ID NO: 20) IPNV-R3 (SEQ ID NO: 21) 88
  • IPNV-F4 (SEQ ID NO: 23) IPNV-R4 (SEQ ID NO: 24) 91
  • Multimeric protein VP5 gene RNA PCR mixture containing 5 ⁇ l 50 ⁇ l of infectious pancreatic necrosis virus (of IPNV) (respectively 102, 103, 104, 105, 106 the number of copies / ⁇ l) or pIPNV plasmid ( 10 2 , 10 3 , 10 4 , 10 5 , 10 6 copies), 0.01-2 ⁇ M forward primer, 0.01-2 ⁇ M reverse primer, 0.01-2 ⁇ M probe (the 5 ′ end of each probe sequence and At the 3 'end, a fluorescent molecule 6-carboxyfluorescein (FAM) and a fluorescent inhibitory molecule black hole fluorescent inhibitor 1 (BHQ1)), 0.2 ⁇ M dNTP, 1X cPCR buffer, and 1-5U Taq DNA polymerase, 1 -5U reverse transcriptase.
  • infectious pancreatic necrosis virus of IPNV
  • pIPNV plasmid 10 2 , 10 3 , 10 4 , 10 5 , 10 6 copies
  • the PCR mixture is added to a reaction tube and placed in a thermal convection polymerase chain reaction (cPCR) instrument for a specified period of time (approximately 30-45 minutes).
  • the cPCR instrument was used to detect FAM fluorescence in each sample.
  • RNA of the polyprotein gene or the 10 2 copy number pIPNV plasmid has a sensitivity of up to 10 2 copy number / ⁇ l and 10 2 copy number.
  • diluted pIPNV plasmids (10 1 , 10 2 , 10 3 , 10 4 , 10 5 , 10 6 , 10 7 copy numbers) on a real-time PCR instrument (for example, but not limited to ABI StepOnePlus TM ; Applied BioSystem, Life Technologies, California, USA) real-time PCR analysis.
  • a real-time PCR instrument for example, but not limited to ABI StepOnePlus TM ; Applied BioSystem, Life Technologies, California, USA
  • the real-time PCR program is 42 ° C for 5 minutes, 94 ° C for 10 seconds, and 40 cycles of 94 ° C for 10 seconds and 60 ° C for 30 minutes.
  • the results of the above examples show that the primer pair and probe of the present invention can be used in the cPCR amplification reaction to detect the presence of infectious pancreatic necrosis virus (IPNV), and have high sensitivity and specificity.
  • IPNV infectious pancreatic necrosis virus
  • ORF 1 and ORF2 genes (GenBank accession No. KX424589) of pathogen infectious salmon anemia virus (ISAV) are inserted into a selection vector, which can be, but is not limited to, pUC57, pGEM-T to get pISAV plasmid.
  • PCR mixture 50 l PCR mixture was subjected to a conventional PCR used contained: pISAV 106 plasmid copy number, 0.01-2 ⁇ M forward primer, 0.01-2 ⁇ M reverse primer, 0.2 ⁇ M dNTP and 1.25U Taq DNA polymerase.
  • Amplify the reaction in a thermal cycler eg, but not limited to PC818, Astec Co. Ltd., Japan
  • a thermal cycler eg, but not limited to PC818, Astec Co. Ltd., Japan
  • the amplified product was then analyzed with a 15% polyacrylamide gel in TAE buffer (40 mM Tris, 20 mM acetic acid, 1 mM EDTA) and visualized by ethidium bromide staining.
  • ISAV-F1 (SEQ ID NO: 26) ISAV-R1 (SEQ ID NO: 27) 87 ISAV-F2 (SEQ ID NO: 29) ISAV-R2 (SEQ ID NO: 30) 83 ISAV-F3 (SEQ ID NO: 32) ISAV-R3 (SEQ ID NO: 33) 77 ISAV-F4 (SEQ ID NO: 35) ISAV-R4 (SEQ ID NO: 36) 83 ISAV-F5 (SEQ ID NO: 37) ISAV-R5 (SEQ ID NO: 38) 96
  • ORF1 and RNA ORF2 gene PCR mixture 50 ⁇ l containing 5 ⁇ l infectious salmon anemia virus (ISAV) (respectively 102, 103, 104, 105, 106 the number of copies / ⁇ l) or pISAV plasmids (respectively 10 2 , 10 3 , 10 4 , 10 5 , 10 6 copies), 0.01-2 ⁇ M forward primer, 0.01-2 ⁇ M reverse primer, 0.01-2 ⁇ M probe (5 ′ end and 3 ′ end of each probe sequence Join a fluorescent molecule 6-carboxyfluorescein (FAM) and a fluorescent inhibitor black hole fluorescent inhibitor 1 (BHQ1)), 0.2 ⁇ M dNTP, 1X cPCR buffer, and 1-5U Taq DNA polymerase, 1-5U reverse Transcriptase.
  • ISAV infectious salmon anemia virus
  • BHQ1 fluorescent inhibitor black hole fluorescent inhibitor 1
  • the PCR mixture is added to a reaction tube and placed in a thermal convection polymerase chain reaction (cPCR) instrument for a specified period of time (approximately 30-45 minutes).
  • the cPCR instrument was used to detect FAM fluorescence in each sample.
  • each primer pair and probe combination can correctly detect samples containing infectious salmon anemia virus (ISAV), but no infectious pancreatic necrosis virus (IPNV), Fish Respiratory and Enteroviruses (PRV), Fish Myocarditis Virus (PMCV), Salmon Alpha Virus (SAV), Perulans New Paramoans (N.
  • ISAV infectious salmon anemia virus
  • IPNV pancreatic necrosis virus
  • PRV Fish Respiratory and Enteroviruses
  • PMCV Fish Myocarditis Virus
  • SAV Salmon Alpha Virus
  • diluted pISAV plasmids (10 1 , 10 2 , 10 3 , 10 4 , 10 5 , 10 6 , 10 7 copy numbers) on a real-time PCR machine (for example, but not limited to ABI StepOnePlus TM ; Applied BioSystem, Life Technologies, California, USA) real-time PCR analysis.
  • a real-time PCR machine for example, but not limited to ABI StepOnePlus TM ; Applied BioSystem, Life Technologies, California, USA
  • the real-time PCR program is 42 ° C for 5 minutes, 94 ° C for 10 seconds, and 40 cycles of 94 ° C for 10 seconds and 60 ° C for 30 minutes.
  • the primer pair and probe of the present invention can be used in the cPCR amplification reaction to detect the presence of infectious salmon anemia virus (ISAV), and have high sensitivity and specificity.
  • infectious salmon anemia virus ISAV
  • a fragment of the genome (GenBank accession No. HQ339954) of the pathogen fish myocarditis virus (PMCV) is inserted into a selection vector, which may be, but not limited to, pUC57, pGEM-T to obtain the pPMCV plasmid.
  • PCR mixture 50 l PCR mixture was subjected to a conventional PCR used contained: pPMCV 106 plasmid copy number, 0.01-2 ⁇ M forward primer, 0.01-2 ⁇ M reverse primer, 0.2 ⁇ M dNTP and 1.25U Taq DNA polymerase.
  • Amplify the reaction in a thermal cycler eg, but not limited to PC818, Astec Co. Ltd., Japan
  • a thermal cycler eg, but not limited to PC818, Astec Co. Ltd., Japan
  • the amplified product was then analyzed with a 15% polyacrylamide gel in TAE buffer (40 mM Tris, 20 mM acetic acid, 1 mM EDTA) and visualized by ethidium bromide staining.
  • PMCV-F1 (SEQ ID NO: 39) PMCV-R1 (SEQ ID NO: 40) 81 PMCV-F2 (SEQ ID NO: 42) PMCV-R2 (SEQ ID NO: 43) 81 PMCV-F3 (SEQ ID NO: 45) PMCV-R3 (SEQ ID NO: 46) 95 PMCV-F4 (SEQ ID NO: 48) PMCV-R4 (SEQ ID NO: 49) 80 PMCV-F5 (SEQ ID NO: 51) PMCV-R4 (SEQ ID NO: 49) 100 PMCV-F6 (SEQ ID NO: 52) PMCV-R4 (SEQ ID NO: 49) 83
  • 50 ⁇ l of the PCR mixture contains 5 ⁇ l of the RNA of the genome fragment of the fish myocarditis virus (PMCV) (10 2 , 10 3 , 10 4 , 10 5 , 10 6 copy number / ⁇ l) or the pPMCV plasmid (10 2 , 10 3 respectively) , 10 4 , 10 5 , 10 6 copy numbers), 0.01-2 ⁇ M forward primer, 0.01-2 ⁇ M reverse primer, 0.01-2 ⁇ M probe (each probe sequence 5 'end and 3' end were joined with a fluorescence The molecule 6-carboxyfluorescein (FAM) and a fluorescence-inhibiting molecule black hole fluorescence inhibitor 1 (BHQ1)), 0.2 ⁇ M dNTP, 1X cPCR buffer, and 1-5U Taq DNA polymerase, 1-5U reverse transcriptase.
  • PMCV fish myocarditis virus
  • the PCR mixture is added to a reaction tube and placed in a thermal convection polymerase chain reaction (cPCR) instrument for a specified period of time (approximately 30-45 minutes).
  • the cPCR instrument was used to detect FAM fluorescence in each sample.
  • the results of the sensitivity test are shown in Table 11.
  • the combination of each primer pair and probe can 100% correctly detect the RNA or 10 of the genome fragment containing 10 2 copies / ⁇ l of the fish myocarditis virus (PMCV) in the sample.
  • 2 pPMCV plasmid copy number with a sensitivity of up to 102 the number of copies / ⁇ l, and 102 copy numbers.
  • each primer pair and probe combination can correctly detect samples containing fish myocarditis virus (PMCV), but no fish respiratory and enterovirus (PRV) ), Infectious Pancreatic Necrosis Virus (IPNV), Infectious Salmon Anemia Virus (ISAV), Salmon Alpha Virus (SAV), Perulan New Paramotes (N.
  • PMCV fish myocarditis virus
  • PRV fish respiratory and enterovirus
  • IPNV Infectious Pancreatic Necrosis Virus
  • ISAV Infectious Salmon Anemia Virus
  • SAV Salmon Alpha Virus
  • diluted pPMCV plasmids (10 1 , 10 2 , 10 3 , 10 4 , 10 5 , 10 6 , 10 7 copies) on a real-time PCR machine (for example, but not limited to ABI StepOnePlus TM ; Applied BioSystem, Life Technologies, California, USA) real-time PCR analysis.
  • a real-time PCR machine for example, but not limited to ABI StepOnePlus TM ; Applied BioSystem, Life Technologies, California, USA
  • the real-time PCR program is 42 ° C for 5 minutes, 94 ° C for 10 seconds, and 40 cycles of 94 ° C for 10 seconds and 60 ° C for 30 minutes.
  • Standard curve for real-time PCR analysis of serially diluted (10-fold) pPMCV plasmids The results show, pPMCV least 102 plasmid copy number can be detected, and each primer pair 2 values to a standard curve of probe combinations are greater than 0.99 R, represents a primer with a probe of the present invention may be used Real-time PCR and produce credible results.
  • the results of the above examples show that the primer pair and probe of the present invention can be used in the cPCR amplification reaction to detect the presence of fish myocarditis virus (PMCV), and have high sensitivity and specificity.
  • PMCV fish myocarditis virus
  • a fragment of the genome (GenBank accession No. KC122926) of the pathogen Salmon Alpha Virus (SAV) is inserted into a selection vector, which may be, but not limited to, pUC57, pGEM-T, to obtain the pSAV plasmid.
  • PCR mixture 50 l PCR mixture was subjected to a conventional PCR used contained: pSAV 106 plasmid copy number, 0.01-2 ⁇ M forward primer, 0.01-2 ⁇ M reverse primer, 0.2 ⁇ M dNTP and 1.25U Taq DNA polymerase.
  • Amplify the reaction in a thermal cycler eg, but not limited to PC818, Astec Co. Ltd., Japan
  • a thermal cycler eg, but not limited to PC818, Astec Co. Ltd., Japan
  • the amplified product was then analyzed with a 15% polyacrylamide gel in TAE buffer (40 mM Tris, 20 mM acetic acid, 1 mM EDTA) and visualized by ethidium bromide staining.
  • SAV salmon alphavirus
  • BHQ1 fluorescence-inhibiting molecule black hole fluorescence inhibitor 1
  • the PCR mixture is added to a reaction tube and placed in a thermal convection polymerase chain reaction (cPCR) instrument for a specified period of time (approximately 30-45 minutes).
  • the cPCR instrument was used to detect FAM fluorescence in each sample.
  • the results of the sensitivity test are shown in Table 14.
  • the combination of each primer pair and probe can 100% correctly detect the RNA or 10 of the genomic fragment containing 10 2 copies / ⁇ l of salmonella virus (SAV) in the sample.
  • SAV salmonella virus
  • 2 pSAV plasmid copy number with a sensitivity of up to 102 the number of copies / ⁇ l, and 102 copy numbers.
  • diluted pSAV plasmids (10 1 , 10 2 , 10 3 , 10 4 , 10 5 , 10 6 , 10 7 copy numbers) on a real-time PCR instrument (for example, but not limited to ABI StepOnePlus TM ; Applied BioSystem, Life Technologies, California, USA) real-time PCR analysis.
  • a real-time PCR instrument for example, but not limited to ABI StepOnePlus TM ; Applied BioSystem, Life Technologies, California, USA
  • the real-time PCR program is 42 ° C for 5 minutes, 94 ° C for 10 seconds, and 40 cycles of 94 ° C for 10 seconds and 60 ° C for 30 minutes.
  • the results of the above examples show that the primer pair and the probe of the present invention can be used in the cPCR amplification reaction to detect the presence of salmonella virus (SAV), and have high sensitivity and specificity.
  • SAV salmonella virus
  • N. perurans is the pathogen that causes Amoebic Mill Disease (AGD).
  • ALD Amoebic Mill Disease
  • the fragment of the 18S ribosomal ribonucleic acid (rRNA) gene (GenBank accession No. KU985058) of N. perurans of Perulan is inserted into a selection vector, which may be, but not limited , PUC57, pGEM-T, to obtain pAGD plasmid.
  • PCR mixture 50 l PCR mixture was subjected to a conventional PCR used contained: pAGD 106 plasmid copy number, 0.01-2 ⁇ M forward primer, 0.01-2 ⁇ M reverse primer, 0.2 ⁇ M dNTP and 1.25U Taq DNA polymerase.
  • Amplify the reaction in a thermal cycler eg, but not limited to PC818, Astec Co. Ltd., Japan
  • a thermal cycler eg, but not limited to PC818, Astec Co. Ltd., Japan
  • the amplified product was then analyzed with a 15% polyacrylamide gel in TAE buffer (40 mM Tris, 20 mM acetic acid, 1 mM EDTA) and visualized by ethidium bromide staining.
  • AGD-F1 (SEQ ID NO: 68) AGD-R1 (SEQ ID NO: 69) 111 AGD-F2 (SEQ ID NO: 71) AGD-R2 (SEQ ID NO: 72) 95
  • AGD-F3 (SEQ ID NO: 74) AGD-R3 (SEQ ID NO: 75) 89 AGD-F4 (SEQ ID NO: 77) AGD-R4 (SEQ ID NO: 78) 70
  • 50 ⁇ l of the PCR mix contains 5 ⁇ l of the RNA of the 18S rRNA gene of N. perurans (10 2 , 10 3 , 10 4 , 10 5 , 10 6 copy number / ⁇ l) or pAGD plasmid ( 10 2 , 10 3 , 10 4 , 10 5 , 10 6 copies), 0.01-2 ⁇ M forward primer, 0.01-2 ⁇ M reverse primer, 0.01-2 ⁇ M probe (the 5 ′ end of each probe sequence and At the 3 'end, a fluorescent molecule 6-carboxyfluorescein (FAM) and a fluorescent inhibitory molecule black hole fluorescent inhibitor 1 (BHQ1)), 0.2 ⁇ M dNTP, 1X cPCR buffer, and 1-5U Taq DNA polymerase, 1 -5U reverse transcriptase.
  • FAM fluorescent molecule 6-carboxyfluorescein
  • BHQ1 fluorescent inhibitory molecule black hole fluorescent inhibitor 1
  • the PCR mixture is added to a reaction tube and placed in a thermal convection polymerase chain reaction (cPCR) instrument for a specified period of time (approximately 30-45 minutes).
  • the cPCR instrument was used to detect FAM fluorescence in each sample.
  • the results of the sensitivity test are shown in Table 17, and the combination of each primer pair and probe can detect 100% of the samples containing 10 2 copies / ⁇ l of N. perurans.
  • the sensitivity of 18S rRNA gene RNA or 10 2 copy number pAGD plasmids can reach 10 2 copy number / ⁇ l and 10 2 copy number.
  • diluted pAGD plasmids (10 1 , 10 2 , 10 3 , 10 4 , 10 5 , 10 6 , 10 7 copy numbers) on a real-time PCR instrument (for example, but not limited to ABI StepOnePlus TM ; Applied BioSystem, Life Technologies, California, USA) real-time PCR analysis.
  • a real-time PCR instrument for example, but not limited to ABI StepOnePlus TM ; Applied BioSystem, Life Technologies, California, USA
  • the real-time PCR program is 42 ° C for 5 minutes, 94 ° C for 10 seconds, and 40 cycles of 94 ° C for 10 seconds and 60 ° C for 30 minutes.
  • the primer pair and probe of the present invention can be used in a cPCR amplification reaction to detect the presence of N. perurans, and have high sensitivity and specificity.
  • the 16S ribosomal ribonucleic acid (rRNA) gene (GenBank accession No. JQ723599) fragment of the ca. -T to obtain the pCBc plasmid.
  • PCR mixture 50 l PCR mixture was subjected to a conventional PCR used contained: pCBc 106 plasmid copy number, 0.01-2 ⁇ M forward primer, 0.01-2 ⁇ M reverse primer, 0.2 ⁇ M dNTP and 1.25U Taq DNA polymerase.
  • Amplify the reaction in a thermal cycler eg, but not limited to PC818, Astec Co. Ltd., Japan
  • a thermal cycler eg, but not limited to PC818, Astec Co. Ltd., Japan
  • the amplified product was then analyzed with a 15% polyacrylamide gel in TAE buffer (40 mM Tris, 20 mM acetic acid, 1 mM EDTA) and visualized by ethidium bromide staining.
  • RNA Ca.B.cysticola (CBc) of the 16S rRNA gene (respectively 102, 103, 104, 105, 106 the number of copies / ⁇ l) or pCBc plasmids (respectively 102 , 10 3 , 10 4 , 10 5 , 10 6 copies), 0.01-2 ⁇ M forward primer, 0.01-2 ⁇ M reverse primer, 0.01-2 ⁇ M probe (the 5 ′ end and 3 ′ end of each probe sequence are Conjugation of a fluorescent molecule 6-carboxyfluorescein (FAM) and a fluorescent inhibitor molecule black hole fluorescence inhibitor 1 (BHQ1)), 0.2 ⁇ M dNTP, 1X cPCR buffer, and 1-5U Taq DNA polymerase, 1-5U inversion Record enzymes.
  • CBc RNA Ca.B.cysticola
  • the PCR mixture is added to a reaction tube and placed in a thermal convection polymerase chain reaction (cPCR) instrument for a specified period of time (approximately 30-45 minutes).
  • the cPCR instrument was used to detect FAM fluorescence in each sample.
  • Each primer pair and probe combination can 100% correctly detect the 16S rRNA gene of Ca.B. cysticola (CBc) containing 10 2 copies / ⁇ l in the sample.
  • the sensitivity of RNA or 10 2 copy number pCBc plasmids can reach 10 2 copy number / ⁇ l and 10 2 copy number.
  • each primer pair and probe combination can correctly detect samples containing Candidatus Branchiomonas cysticola (CBc), but no fish respiratory tract and enterovirus (PRV) ), Infectious Pancreatic Necrosis Virus (IPNV), Infectious Salmon Anemia Virus (ISAV), Fish Myocarditis Virus (PMCV), Salmon A Virus (SAV), Peruran's New Paraproteans (N.
  • CBDc Candidatus Branchiomonas cysticola
  • PRV enterovirus
  • IPNV Infectious Pancreatic Necrosis Virus
  • ISAV Infectious Salmon Anemia Virus
  • PMCV Fish Myocarditis Virus
  • SAV Salmon A Virus
  • diluted pCBc plasmids (10 1 , 10 2 , 10 3 , 10 4 , 10 5 , 10 6 , 10 7 copy numbers) on a real-time PCR instrument (for example, but not limited to ABI StepOnePlus TM ; Applied BioSystem, Life Technologies, California, USA) real-time PCR analysis.
  • a real-time PCR instrument for example, but not limited to ABI StepOnePlus TM ; Applied BioSystem, Life Technologies, California, USA
  • the real-time PCR program is 42 ° C for 5 minutes, 94 ° C for 10 seconds, and 40 cycles of 94 ° C for 10 seconds and 60 ° C for 30 minutes.
  • the 16S ribosomal ribonucleic acid (rRNA) gene (GenBank accession No. JQ723599) fragment of the pathogen Microsporidium D. lepeophtherii (Des) is inserted into a selection vector, which may be, but not limited to, pUC57 pGEM-T to obtain the pDes plasmid.
  • PCR mixture 50 l PCR mixture was subjected to a conventional PCR used contained: pDes 106 plasmid copy number, 0.01-2 ⁇ M forward primer, 0.01-2 ⁇ M reverse primer, 0.2 ⁇ M dNTP and 1.25U Taq DNA polymerase.
  • Amplify the reaction in a thermal cycler eg, but not limited to PC818, Astec Co. Ltd., Japan
  • a thermal cycler eg, but not limited to PC818, Astec Co. Ltd., Japan
  • the amplified product was then analyzed with a 15% polyacrylamide gel in TAE buffer (40 mM Tris, 20 mM acetic acid, 1 mM EDTA) and visualized by ethidium bromide staining.
  • Des-F1 (SEQ ID NO: 86) Des-R1 (SEQ ID NO: 87) 92 Des-F2 (SEQ ID NO: 89) Des-R2 (SEQ ID NO: 90) 82 Des-F3 (SEQ ID NO: 92) Des-R3 (SEQ ID NO: 93) 91 Des-F4 (SEQ ID NO: 95) Des-R4 (SEQ ID NO: 97) 89 Des-F5 (SEQ ID NO: 96) Des-R4 (SEQ ID NO: 97) 87
  • RNA 16S rRNA gene PCR mix containing 5 ⁇ l 50 ⁇ l Nosema D.lepeophtherii (Des) (respectively 102, 103, 104, 105, 106 the number of copies / ⁇ l) or pDes plasmids (respectively 10 2 , 10 3 , 10 4 , 10 5 , 10 6 copies), 0.01-2 ⁇ M forward primer, 0.01-2 ⁇ M reverse primer, 0.01-2 ⁇ M probe (5 ′ end and 3 ′ end of each probe sequence Join a fluorescent molecule 6-carboxyfluorescein (FAM) and a fluorescent inhibitor black hole fluorescent inhibitor 1 (BHQ1)), 0.2 ⁇ M dNTP, 1X cPCR buffer, and 1-5U Taq DNA polymerase, 1-5U reverse Transcriptase.
  • Des Nosema D.lepeophtherii
  • BHQ1 fluorescent inhibitor black hole fluorescent inhibitor 1
  • the PCR mixture is added to a reaction tube and placed in a thermal convection polymerase chain reaction (cPCR) instrument for a specified period of time (approximately 30-45 minutes).
  • the cPCR instrument was used to detect FAM fluorescence in each sample.
  • RNA or 10 2 copy number of pDes plasmid its sensitivity can reach 10 2 copy number / ⁇ l and 10 2 copy number.
  • PRV Infectious Pancreatic Necrosis Virus
  • IPNV Infectious Pancreatic Necrosis Virus
  • ISAV Infectious Salmon Anemia Virus
  • PMCV Fish Myocarditis Virus
  • SAV Salmon Alpha Virus
  • Perulan's New Paramotes N.perurans, in (Denoted by AGD in the table), Candidatus Branchiomonas cysticola (CBc), salmon parrot virus (SGPV), salmon rickettsia (P. salmononis, represented by SRS in the table), and salmon kidney fungus (R. salmononirum, in BKD in the table.
  • CBc Candidatus Branchiomonas cysticola
  • SGPV salmon parrot virus
  • P. salmononis represented by SRS in the table
  • R. salmononirum in BKD in the table.
  • the results show that each primer pair and probe combination are specific.
  • diluted pDes plasmids (10 1 , 10 2 , 10 3 , 10 4 , 10 5 , 10 6 , 10 7 copy numbers) on a real-time PCR instrument (for example, but not limited to ABI StepOnePlus TM ; Applied BioSystem, Life Technologies, California, USA) real-time PCR analysis.
  • a real-time PCR instrument for example, but not limited to ABI StepOnePlus TM ; Applied BioSystem, Life Technologies, California, USA
  • the real-time PCR program is 42 ° C for 5 minutes, 94 ° C for 10 seconds, and 40 cycles of 94 ° C for 10 seconds and 60 ° C for 30 minutes.
  • Standard curve for real-time PCR analysis of serially diluted (10-fold) pDes plasmids The results show that, at least 102 PDES plasmid copy number can be detected, and each primer pair 2 values to a standard curve of probe combinations are greater than 0.99 R, represents a primer with a probe of the present invention may be used Real-time PCR and produce credible results.
  • the genome (GenBank accession No. KT159937) fragment of the pathogen salmon parrot virus (SGPV) is inserted into a selection vector, which may be, but not limited to, pUC57, pGEM-T, to obtain the pSGPV plasmid.
  • PCR mixture 50 l PCR mixture was subjected to a conventional PCR used contained: pSGPV 106 plasmid copy number, 0.01-2 ⁇ M forward primer, 0.01-2 ⁇ M reverse primer, 0.2 ⁇ M dNTP and 1.25U Taq DNA polymerase.
  • Amplify the reaction in a thermal cycler eg, but not limited to PC818, Astec Co. Ltd., Japan
  • a thermal cycler eg, but not limited to PC818, Astec Co. Ltd., Japan
  • the amplified product was then analyzed with a 15% polyacrylamide gel in TAE buffer (40 mM Tris, 20 mM acetic acid, 1 mM EDTA) and visualized by ethidium bromide staining.
  • SGPV-F1 SEQ ID NO: 99
  • SGPV-R1 SEQ ID NO: 100
  • SGPV-F2 SGPV-R2
  • SGPV-R3 SGPV-F5
  • SGPV-R3 SEQ ID NO: 106
  • SGPV-F4 SEQ ID NO: 108
  • 50 ⁇ l of the PCR mix contains 5 ⁇ l of the RNA of the genomic fragment of salmon parrot virus (SGPV) (10 2 , 10 3 , 10 4 , 10 5 , 10 6 copy number / ⁇ l) or pSGPV plasmid (10 2 , 10 respectively) 3 , 10 4 , 10 5 , 10 6 copy numbers), 0.01-2 ⁇ M forward primer, 0.01-2 ⁇ M reverse primer, 0.01-2 ⁇ M probe (the 5 'end and the 3' end of each probe sequence are joined together Fluorescent molecule 6-carboxyfluorescein (FAM) and a fluorescent inhibitory molecule black hole fluorescence inhibitor 1 (BHQ1)), 0.2 ⁇ M dNTP, 1X cPCR buffer, and 1-5U Taq DNA polymerase, 1-5U reverse transcriptase .
  • SGPV salmon parrot virus
  • FAM fluorescent inhibitory molecule black hole fluorescence inhibitor 1
  • the PCR mixture is added to a reaction tube and placed in a thermal convection polymerase chain reaction (cPCR) instrument for a specified period of time (approximately 30-45 minutes).
  • the cPCR instrument was used to detect FAM fluorescence in each sample.
  • Each primer pair and probe combination can detect 100% of the RNA or genomic fragment of salmon parvovirus (SGPV) containing 10 2 copies / ⁇ l in the sample.
  • SGPV salmon parvovirus
  • pSGPV plasmid copy number of 102 a sensitivity of up to 102 the number of copies / ⁇ l, and 102 copy numbers.
  • Each primer pair and probe combination can correctly detect samples containing salmon parrot virus (SGPV), but no fish respiratory and enteroviruses ( PRV), Infectious Pancreatic Necrosis Virus (IPNV), Infectious Salmon Anemia Virus (ISAV), Fish Myocarditis Virus (PMCV), Salmon Alpha Virus (SAV), and Perulan's New Paramotes (Denoted by AGD in Chinese), Candidatus Branchiomonas cysticola (CBc), Microspore Desmozoon lepeophtherii (Des), salmon rickettsiae (P. salmonis, represented by SRS in the table), and salmon kidney (R. salmoninarum, BKD in the table. The results show that each primer pair and probe combination are specific.
  • diluted pSGPV plasmids (10 1 , 10 2 , 10 3 , 10 4 , 10 5 , 10 6 , 10 7 copy numbers) on a real-time PCR instrument (for example, but not limited to ABI StepOnePlus TM ; Applied BioSystem, Life Technologies, California, USA) real-time PCR analysis.
  • a real-time PCR instrument for example, but not limited to ABI StepOnePlus TM ; Applied BioSystem, Life Technologies, California, USA
  • the real-time PCR program is 42 ° C for 5 minutes, 94 ° C for 10 seconds, and 40 cycles of 94 ° C for 10 seconds and 60 ° C for 30 minutes.
  • the results of the above examples show that the primer pair and the probe of the present invention can be used in the cPCR amplification reaction to detect the presence of salmon parrot virus (SGPV), and have high sensitivity and specificity.
  • SGPV salmon parrot virus
  • Salmonid rickettsia is the pathogen that causes Salmonid Rickettsial Septicaemia (SRS).
  • SRS Salmonid Rickettsial Septicaemia
  • the 16S ribosomal ribonucleic acid (rRNA) gene (GenBank accession No. AY498634) fragment of P. salmonis is inserted into a selection vector, which can be, but is not limited to, pUC57, pGEM-T to obtain the pSRS plasmid.
  • PCR mixture 50 l PCR mixture was subjected to a conventional PCR used contained: pSRS 106 plasmid copy number, 0.01-2 ⁇ M forward primer, 0.01-2 ⁇ M reverse primer, 0.2 ⁇ M dNTP and 1.25U Taq DNA polymerase.
  • Amplify the reaction in a thermal cycler eg, but not limited to PC818, Astec Co. Ltd., Japan
  • a thermal cycler eg, but not limited to PC818, Astec Co. Ltd., Japan
  • the amplified product was then analyzed with a 15% polyacrylamide gel in TAE buffer (40 mM Tris, 20 mM acetic acid, 1 mM EDTA) and visualized by ethidium bromide staining.
  • SRS-F1 SRS-R1 (SEQ ID NO: 111)
  • SRS-R1 SEQ ID NO: 112)
  • SRS-F2 SEQ ID NO: 114)
  • SRS-R2 SEQ ID NO: 115)
  • SRS-F3 SEQ ID NO: 116)
  • SRS-R3 SEQ ID NO: 117)
  • SRS-F4 SEQ ID NO: 119
  • SRS-R4 SEQ ID NO: 120
  • 56 SRS-F5 (SEQ ID NO: 122)
  • SRS-R5 SEQ ID NO: 123)
  • the 50 ⁇ l PCR mix contains 5 ⁇ l of the RNA of the 16S rRNA gene of P. salmonis (10 2 , 10 3 , 10 4 , 10 5 , 10 6 copy number / ⁇ l) or the pSRS plasmid (respectively) 10 2 , 10 3 , 10 4 , 10 5 , 10 6 copies), 0.01-2 ⁇ M forward primer, 0.01-2 ⁇ M reverse primer, 0.01-2 ⁇ M probe (5 ′ end and 3 ′ of each probe sequence
  • 0.2 ⁇ M dNTP 1X cPCR buffer
  • 1-5U Taq DNA polymerase 1-5U Reverse transcriptase.
  • the PCR mixture is added to a reaction test tube and placed in a thermal convection polymerase chain reaction (cPCR) instrument for a specified period of time (about 30 to 45 minutes).
  • the cPCR instrument was used to detect FAM fluorescence in each sample.
  • Each primer pair and probe combination can 100% correctly detect 16S rRNA containing 10 2 copies / ⁇ l of salmonella rickettsiae (P. salmonii) in the sample.
  • the sensitivity of the gene RNA or 10 2 copy number pSRS plasmids can reach 10 2 copy number / ⁇ l and 10 2 copy number.
  • diluted pSRS plasmids (10 1 , 10 2 , 10 3 , 10 4 , 10 5 , 10 6 , 10 7 copy numbers) on a real-time PCR instrument (for example, but not limited to ABI StepOnePlus TM ; Applied BioSystem, Life Technologies, California, USA) real-time PCR analysis.
  • a real-time PCR instrument for example, but not limited to ABI StepOnePlus TM ; Applied BioSystem, Life Technologies, California, USA
  • FAM fluorescent molecule 6-carboxyfluorescein
  • BHQ1 Black Hole Fluorescence Inhibitor 1
  • the real-time PCR program is 42 ° C for 5 minutes, 94 ° C for 10 seconds, and 40 cycles of 94 ° C for 10 seconds and 60 ° C for 30 minutes. Record the results of the fluorescence measurement in the 60 ° C step and calculate. Standard curve for real-time PCR analysis of serially diluted (10-fold) pSRS plasmids. The results show that, at least 102 pSRS plasmid copy number can be detected, and each primer pair 2 values to a standard curve of probe combinations are greater than 0.99 R, represents a primer with a probe of the present invention may be used Real-time PCR and produce credible results.
  • Salmon kidney (R. salmoninarum) is a pathogen that causes bacterial kidney disease (Bacterial kidney disease, BKD) in fish.
  • the 57KD extracellular protein precursor (ECP) gene (GenBank accession No. Z12174) fragment of R. salmoninarum was inserted into a selection vector, which may be, but not limited to, pUC57, pGEM -T to obtain the pBKD plasmid.
  • PCR mixture 50 l PCR mixture was subjected to a conventional PCR used contained: pBKD 106 plasmid copy number, 0.01-2 ⁇ M forward primer, 0.01-2 ⁇ M reverse primer, 0.2 ⁇ M dNTP and 1.25U Taq DNA polymerase.
  • Amplify the reaction in a thermal cycler eg, but not limited to PC818, Astec Co. Ltd., Japan
  • a thermal cycler eg, but not limited to PC818, Astec Co. Ltd., Japan
  • the amplified product was then analyzed with a 15% polyacrylamide gel in TAE buffer (40 mM Tris, 20 mM acetic acid, 1 mM EDTA) and visualized by ethidium bromide staining.
  • BKD-F1 (SEQ ID NO: 125) BKD-R1 (SEQ ID NO: 128) 72 BKD-F2 (SEQ ID NO: 126) BKD-R1 (SEQ ID NO: 128) 85 BKD-F3 (SEQ ID NO: 127) BKD-R1 (SEQ ID NO: 128) 70 BKD-OF1 (SEQ ID NO: 130) BKD-OR1 (SEQ ID NO: 131) 65 BKD-OF2 (SEQ ID NO: 133) BKD-OR2 (SEQ ID NO: 134) 125 BKD-OF3 (SEQ ID NO: 136) BKD-OR3 (SEQ ID NO: 137) 133
  • 50 ⁇ l of the PCR mix contains 5 ⁇ l of the RNA of the 57KD extracellular protein precursor (ECP) gene of R. salmoninarum (10 2 , 10 3 , 10 4 , 10 5 , 10 6 copies / ⁇ l) or pBKD plasmids (respectively 10 2, 10 3, 10 4, 10 5, 10 6 copy number), 0.01-2 m forward primer, reverse primer 0.01-2 m, 0.01-2 m probes (probe sequences each 5 The 'end and 3' ends are joined with a fluorescent molecule 6-carboxyfluorescein (FAM) and a fluorescent inhibitory molecule black hole fluorescent inhibitor 1 (BHQ1)), 0.2 ⁇ M dNTP, 1X cPCR buffer, and 1-5U Taq DNA polymerization Enzyme, 1-5U reverse transcriptase.
  • ECP extracellular protein precursor
  • the PCR mixture is added to a reaction tube and placed in a thermal convection polymerase chain reaction (cPCR) instrument for a specified period of time (approximately 30-45 minutes).
  • the cPCR instrument was used to detect FAM fluorescence in each sample.
  • the results of the sensitivity test are shown in Table 32.
  • the combination of each primer pair and probe can 100% correctly detect the 57KD extracellular protein containing 10 2 copies / ⁇ l of R. salmoninarum in the sample.
  • the RNA of the precursor (ECP) gene or the 10 2 copy number pBKD plasmid has a sensitivity of 10 2 copy number / ⁇ l and 10 2 copy number.
  • diluted pBKD plasmid (10 1 , 10 2 , 10 3 , 10 4 , 10 5 , 10 6 , 10 7 copy numbers) on a real-time PCR instrument (for example, but not limited to ABI StepOnePlus TM ; Applied BioSystem, Life Technologies, California, USA) real-time PCR analysis.
  • a real-time PCR instrument for example, but not limited to ABI StepOnePlus TM ; Applied BioSystem, Life Technologies, California, USA
  • the real-time PCR program is 42 ° C for 5 minutes, 94 ° C for 10 seconds, and 40 cycles of 94 ° C for 10 seconds and 60 ° C for 30 minutes.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Analytical Chemistry (AREA)
  • Genetics & Genomics (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biotechnology (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Microbiology (AREA)
  • General Engineering & Computer Science (AREA)
  • Immunology (AREA)
  • Molecular Biology (AREA)
  • Biophysics (AREA)
  • Physics & Mathematics (AREA)
  • Virology (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Medicinal Chemistry (AREA)
  • Biomedical Technology (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Saccharide Compounds (AREA)

Abstract

一种检测鱼病原体的方法,以及用于检测鱼病原体的寡核苷酸对。

Description

鱼病原体检测方法 技术领域
本发明关于检测鱼病原体的方法,特别是关于使用寡核苷酸对检测鱼病原体的方法。
背景技术
水产动物是人类重要的能量、蛋白质与必需营养的来源之一。大量捕捞野生水产动物对海洋资源耗尽的疑虑,使得水产养殖业日益受到重视。根据联合国粮食及农业组织的统计,水产养殖对全球捕捞及养殖总产量的贡献逐步提升,从2000年的25.7%增至2016年的46.8%。然而,密集养殖加上管理不良可能造成水产动物容易感染疾病、死亡,而造成渔民的损失。此外,水产动物的病害多由细菌或病毒引起,细菌性疾病与病毒性疾病的处理方法相差甚远,一旦误诊,处理不当,就会造成巨大的损失。由此可见,在饲养渔场、虾场密集监控疾病对管理而言是不可或缺的一环。本发明即提供了快速、方便的鱼病原体检测方法以供产业利用。
发明内容
于一方面,本发明涉及一种鱼病原体检测方法,包含提供一可能含有一鱼病原体的一或多个核苷酸序列的样本;提供一寡核苷酸引物对,所述寡核苷酸引物对包含一第一引物与一第二引物,所述寡核苷酸引物对定义在所述病原体的一或多个核苷酸序列上一双股目标序列的二互补股的5’端;提供一聚合酶;在一容器中混合所述样本、所述寡核苷酸引物对、所述聚合酶、脱氧腺苷三磷酸(deoxyadenosine triphosphates,dATPs)、脱氧胞核苷三磷酸(deoxycytidine triphosphates,dCTPs)、脱氧鸟苷三磷酸(deoxyguanosine triphosphates,dGTPs),以及脱氧胸苷三磷酸(deoxythymidine triphosphates,dTTPs),以形成一聚合酶链锁反应(polymerase chain reaction,PCR)混合物;透过在一固定温度下加热所述容器的底部,使所述PCR混合物进行热对流聚合酶链锁反应(convective polymerase chain reaction,cPCR),以形成一PCR产物;以及侦测所述PCR产物以辨识所述双股目标序列。
在某些实施方案中,所述聚合酶链锁反应(PCR)混合物进一步包含一寡核苷酸探针,所述寡核苷酸探针包含一与所述双股目标序列的一区段互补的寡核苷酸探针序列、一附加于所述寡核苷酸探针上的一第一位置的荧光分子,以及一附加于所述寡核苷酸探针上的一第二位置的荧光抑制分子,当所述寡核苷酸探针未杂合于所述双股目标序列的所述区段时,所述荧光抑制分子大体上抑制所述荧光分子,且当所述寡核苷酸探针杂合于所述双股目标序列的所述区段时,所述荧光分子大体上未被抑制。
于另一方面,本发明涉及一种用于侦测鱼病原体的寡核苷酸对,包含一第一引物与一第二引物。
在某些实施方案中,所述寡核苷酸对进一步包含一寡核苷酸探针,所述寡核苷酸探针具有一寡核苷酸探针序列、一附加于所述寡核苷酸探针上的一第一位置的荧光分子,以及一附加于所述寡核苷酸探针上的一第二位置的荧光抑制分子。
在某些实施方案中,所述病原体为鱼呼吸道与肠道病毒(Piscine reovirus,PRV),且所述第一引物与所述第二引物的序列组合选自由下列所组成之群组:SEQ ID NO:1与SEQ ID NO:2、SEQ ID NO:4与SEQ ID NO:2、SEQ ID NO:4与SEQ ID NO:5、SEQ ID NO:6与SEQ ID NO:7、SEQ ID NO:9与SEQ ID NO:10,以及SEQ ID NO:11与SEQ ID NO:12。
在某些实施方案中,所述病原体为鱼呼吸道与肠道病毒(PRV),且当所述第一引物与所述第二引物的序列组合为SEQ ID NO:1与SEQ ID NO:2时,所述寡核苷酸探针序列为一介于所述病原体鱼呼吸道与肠道病毒(PRV)的L1区段基因(GenBank accession No.KY429943)的第71至第95个核苷酸之间的13至25个碱基对的寡核苷酸;在某些较佳实施方案中,所述寡核苷酸探针序列如SEQ ID NO:3所示。
在某些实施方案中,所述病原体为鱼呼吸道与肠道病毒(PRV),且当所述第一引物与所述第二引物的序列组合为SEQ ID NO:4与SEQ ID NO:2时,所述寡核苷酸探针序列为一介于所述病原体鱼呼吸道与肠道病毒(PRV)的L1区段基因(GenBank accession No.KY429943)的第52至第95个核苷酸之间的13至35个碱基对的寡核苷酸;在某些较佳实施方案中,所述寡核苷酸探针序列如SEQ ID NO:3所示。
在某些实施方案中,所述病原体为鱼呼吸道与肠道病毒(PRV),且当所述第一引物与所述第二引物的序列组合为SEQ ID NO:4与SEQ ID NO:5时,所述寡核苷酸探针序列为一介于所述病原体鱼呼吸道与肠道病毒(PRV)的L1区段基因(GenBank accession No.KY429943)的第52至第100个核苷酸之间的13至35个碱基对的寡核苷酸;在某些较佳实施方案中,所述寡核苷酸探针序列如SEQ ID NO:3所示。
在某些实施方案中,所述病原体为鱼呼吸道与肠道病毒(PRV),且当所述第一引物与所述第二引物的序列组合为SEQ ID NO:6与SEQ ID NO:7时,所述寡核苷酸探针序列为一介于所述病原体鱼呼吸道与肠道病毒(PRV)的Sigma 3蛋白基因(GenBank accession No.KX844958)的第343至第385个核苷酸之间的13至35个碱基对的寡核苷酸;在某些较佳实施方案中,所述寡核苷酸探针序列如SEQ ID NO:8所示。
在某些实施方案中,所述病原体为鱼呼吸道与肠道病毒(PRV),且当所述第一引物与所述第二引物的序列组合为SEQ ID NO:9与SEQ ID NO:10时,所述寡核苷酸探针序列为一介于所述病原体鱼呼吸道与肠道病毒(PRV)的Sigma 3蛋白基因(GenBank accession No.KX844958)的第350至第380个核苷酸之间的13至35个碱基对的寡核苷酸;在某些较佳实施方案中,所述寡核苷酸探针序列如SEQ ID NO:8所示。
在某些实施方案中,所述病原体为鱼呼吸道与肠道病毒(PRV),且当所述第一引物与所述第二引物的序列组合为SEQ ID NO:11与SEQ ID NO:12时,所述寡核苷酸探针序列为一介于所述病原体鱼呼吸道与肠道病毒(PRV)的L1区段基因(GenBank accession No.KY429943)的第280至第315个核苷酸之间的13至35个碱基对的寡核苷酸;在某些较佳实施方案中,所述寡核苷酸探针序列如SEQ ID NO:13所示。
在某些实施方案中,所述病原体为感染性胰脏坏死病毒(Infectious pancreatic necrosis virus,IPNV),且所述第一引物与所述第二引物的序列组合选自由下列所组成之群组:SEQ ID NO:14与SEQ ID NO:15、SEQ ID NO:17与SEQ ID NO:18、SEQ ID NO:20与SEQ ID NO:21,以及SEQ ID NO:23与SEQ ID NO:24。
在某些实施方案中,所述病原体为感染性胰脏坏死病毒(IPNV),且当所述第一引物与所述第二引物的序列组合为SEQ ID NO:14与SEQ ID NO:15时,所述寡核苷酸探针序列为一介于所述病原体感染性胰脏坏死病毒(IPNV)的VP5与多聚蛋白(polyprotein)基因(GenBank accession No.KY548514)的第2010至第2057个核苷酸之间的13至35个碱基对的寡核苷酸;在某些较佳实施方案中,所述寡核苷酸探针序列如SEQ ID NO:16所示。
在某些实施方案中,所述病原体为感染性胰脏坏死病毒(IPNV),且当所述第一引物与所述第二引物的序列组合为SEQ ID NO:17与SEQ ID NO:18时,所述寡核苷酸探针序列为一介于所述病原体感染性胰脏坏死病毒(IPNV)的VP5与多聚蛋白(polyprotein)基因(GenBank accession No.KY548514)的第2345至第2408个核苷酸之间的13至35个碱基对的寡核苷酸;在某些较佳实施方案中,所述寡核苷酸探针序列如SEQ ID NO:19所示。
在某些实施方案中,所述病原体为感染性胰脏坏死病毒(IPNV),且当所述第一引物与所述第二引物的序列组合为SEQ ID NO:20与SEQ ID NO:21时,所述寡核苷酸探针序列为一介于所述病原体感染性胰脏坏死病毒(IPNV)的VP5与多聚蛋白(polyprotein)基因(GenBank accession No.KY548514)的第2533至第2580个核苷酸之间的13至35个碱基对的寡核苷酸;在某些较佳实施方案中,所述寡核苷酸探针序列如SEQ ID NO:22所示。
在某些实施方案中,所述病原体为感染性胰脏坏死病毒(IPNV),且当所述第一引物与所述第二引物的序列组合为SEQ ID NO:23与SEQ ID NO:24时,所述寡核苷酸探针序列为一介于所述病原体感染性胰脏坏死病毒(IPNV)的VP5与多聚蛋白(polyprotein)基因(GenBank accession No.KY548514)的第2775至第2818个核苷酸之间的13至35个碱基对的寡核苷酸;在某些较佳实施方案中,所述寡核苷酸探针序列如SEQ ID NO:25所示。
在某些实施方案中,所述病原体为感染性鲑鱼贫血病毒(Infectious salmon anemia virus,ISAV),且所述第一引物与所述第二引物的序列组合选自由下列所组成之群组:SEQ ID NO:26与SEQ ID NO:27、SEQ ID NO:29与SEQ ID NO:30、SEQ ID NO:32与SEQ ID NO:33、SEQ ID NO:35与SEQ ID NO:36,以及SEQ ID NO:37与SEQ ID NO:38。
在某些实施方案中,所述病原体为感染性鲑鱼贫血病毒(ISAV),且当所述第一引物与所述第二引物的序列组合为SEQ ID NO:26与SEQ ID NO:27时,所述寡核苷酸探针序列为一介于所述病原体感染性鲑鱼贫血病毒(ISAV)的开放读码框(Open reading frame,ORF)1与ORF2基因(GenBank accession No.KX424589)的第282至第328个核苷酸之间的13至35个碱基对的寡核苷酸;在某些较佳实施方案中,所述寡核苷酸探针序列如SEQ ID NO:28所示。
在某些实施方案中,所述病原体为感染性鲑鱼贫血病毒(ISAV),且当所述第一引物与所述第二引物的序列组合为SEQ ID NO:29与SEQ ID NO:30时,所述寡核苷酸探针序列为一介于所述病原体感染性鲑鱼贫血病毒(ISAV)的ORF1与ORF2基因(GenBank accession No.KX424589)的第79至第121个核苷酸之间的13至35个碱基对的寡核苷酸;在某些较佳实施方案中,所述寡核苷酸探针序列如SEQ ID NO:31所示。
在某些实施方案中,所述病原体为感染性鲑鱼贫血病毒(ISAV),且当所述第一引物与所述第二引物的序列组合为SEQ ID NO:32与SEQ ID NO:33时,所述寡核苷酸探针序列为一介于所述病原体感染性鲑鱼贫血病毒(ISAV)的ORF1与ORF2基因(GenBank accession No.KX424589)的第244至第273个核苷酸之间的13至30个碱基对的寡核苷酸;在某些较佳实施方案中,所述寡核苷酸探针序列如SEQ ID NO:34所示。
在某些实施方案中,所述病原体为感染性鲑鱼贫血病毒(ISAV),且当所述第一引物与所述第二引物的序列组合为SEQ ID NO:35与SEQ ID NO:36时,所述寡核苷酸探针序列为一介于所述病原体感染性鲑鱼贫血病毒(ISAV)的ORF1与ORF2基因(GenBank accession No.KX424589)的第237至第272个核苷酸之间的13至35个碱基对的寡核苷酸;在某些较佳实施方案中,所述寡核苷酸探针序列如SEQ ID NO:34所示。
在某些实施方案中,所述病原体为感染性鲑鱼贫血病毒(ISAV),且当所述第一引物与所述第二引物的序列组合为SEQ ID NO:37与SEQ ID NO:38时,所述寡核苷酸探针序列为一介于所述病原体感染性鲑鱼贫血病毒(ISAV)的ORF1与ORF2基因(GenBank accession No.KX424589)的第235至第286个核苷酸之间的13至35个碱基对的寡核苷酸;在某些较佳实施方案中,所述寡核苷酸探针序列如SEQ ID NO:34所示。
在某些实施方案中,所述病原体为鱼心肌炎病毒(Piscine myocarditis virus,PMCV),且所述第一引物与所述第二引物的序列组合选自由下列所组成之群组:SEQ ID NO:39与SEQ ID NO:40、SEQ ID NO:42与SEQ ID NO:43、SEQ ID NO:45与SEQ ID NO:46、SEQ ID NO:48与SEQ ID NO:49、SEQ ID NO:51与SEQ ID NO:49,以及SEQ ID NO:52与SEQ ID NO:49。
在某些实施方案中,所述病原体为鱼心肌炎病毒(PMCV),且当所述第一引物与所述第二引物的序列组合为SEQ ID NO:39与SEQ ID NO:40时,所述寡核苷酸探针序列为一介于所述病原体鱼心肌炎病毒(PMCV)的基因组(GenBank accession No.HQ339954)的第6266至第6306个核苷酸之间的13至35个碱基对的寡核苷酸;在某些较佳实施方案中,所述寡核苷酸探针序列如SEQ ID NO:41所示。
在某些实施方案中,所述病原体为鱼心肌炎病毒(PMCV),且当所述第一引物与所述第二引物的序列组合为SEQ ID NO:42与SEQ ID NO:43时,所述寡核苷酸探针序列为一介于所述病原体鱼心肌炎病毒(PMCV)的基因组(GenBank accession No.HQ339954)的第5632至第5672个核苷酸之间的13至35个碱基对的寡核苷酸;在某些较佳实施方案中,所述寡核苷酸探针序列如SEQ ID NO:44所示。
在某些实施方案中,所述病原体为鱼心肌炎病毒(PMCV),且当所述第一引物与所述第二引物的序列组合为SEQ ID NO:45与SEQ ID NO:46时,所述寡核苷酸探针序列为一介于所述病原体鱼心肌炎病毒(PMCV)的基因组(GenBank accession No.HQ339954)的第5693至第5747个核苷酸之间的13至35个碱基对的寡核苷酸;在某些较佳实施方案中,所述寡核苷酸探针序列如SEQ ID NO:47所示。
在某些实施方案中,所述病原体为鱼心肌炎病毒(PMCV),且当所述第一引物与所述第二引物的序列组合为SEQ ID NO:48与SEQ ID NO:49时,所述寡核苷酸探针序列为一介于所述病原体鱼心肌炎病毒(PMCV)的基因组(GenBank accession No.HQ339954)的第6294至第6331个核苷酸之间的13至35个碱基对的寡核苷酸;在某些较佳实施方案中,所述寡核苷酸探针序列如SEQ ID NO:50所示。
在某些实施方案中,所述病原体为鱼心肌炎病毒(PMCV),且当所述第一引物与所述第二引物的序列组合为SEQ ID NO:51与SEQ ID NO:49时,所述寡核苷酸探针序列为一介于所述病原体鱼心肌炎病毒(PMCV)的基因组(GenBank accession No.HQ339954)的第6271至第6331个核苷酸之间的13至35个碱基对的寡核苷酸;在某些较佳实施方案中,所述寡核苷酸探针序列如SEQ ID NO:50所示。
在某些实施方案中,所述病原体为鱼心肌炎病毒(PMCV),且当所述第一引物与所述第二引物的序列组合为SEQ ID NO:52与SEQ ID NO:49时,所述寡核苷酸探针序列为一介于所述病原体鱼心肌炎病毒(PMCV)的基因组(GenBank accession No.HQ339954)的第6290至第6331个核苷酸之间的13至35个碱基对的寡核苷酸;在某些较佳实施方案中,所述寡核苷酸探针序列如SEQ ID NO:50所示。
在某些实施方案中,所述病原体为鲑鱼甲病毒(Salmonid alphavirus,SAV),且所述第一引物与所述第二引物的序列组合选自由下列所组成之群组:SEQ ID NO:53与SEQ ID NO:54、SEQ ID NO:56与SEQ ID NO:57、SEQ ID NO:59与SEQ ID NO:60、SEQ ID NO:62与SEQ ID NO:63,以及SEQ ID NO:65与SEQ ID NO:66。
在某些实施方案中,所述病原体为鲑鱼甲病毒(SAV),且当所述第一引物与所述第二引物的序列组合为SEQ ID NO:53与SEQ ID NO:54时,所述寡核苷酸探针序列为一介于所述病原体鲑鱼甲病毒(SAV)的基因组(GenBank accession No.KC122926)的第611至第653个核苷酸之间的13至35个碱基对的寡核苷酸;在某些较佳实施方案中,所述寡核苷酸探针序列如SEQ ID NO:55所示。
在某些实施方案中,所述病原体为鲑鱼甲病毒(SAV),且当所述第一引物与所述第二引物的序列组合为SEQ ID NO:56与SEQ ID NO:57时,所述寡核苷酸探针序列为一介于所述病原体鲑鱼甲病毒(SAV)的基因组(GenBank accession No.KC122926)的第145至第181个核苷酸之间的13至35个碱基对的寡核苷酸;在某些较佳实施方案中,所述寡核苷酸探针序列如SEQ ID NO:58所示。
在某些实施方案中,所述病原体为鲑鱼甲病毒(SAV),且当所述第一引物与所述第二引物的序列组合为SEQ ID NO:59与SEQ ID NO:60时,所述寡核苷酸探针序列为一介于所述病原体鲑鱼甲病毒(SAV)的基因组(GenBank accession No.KC122926)的第2691至第2761个核苷酸之间的13至35个碱基对的寡核苷酸;在某些较佳实施方案中,所述寡核苷酸探针序列如SEQ ID NO:61所示。
在某些实施方案中,所述病原体为鲑鱼甲病毒(SAV),且当所述第一引物与所述第二引物的序列组合为SEQ ID NO:62与SEQ ID NO:63时,所述寡核苷酸探针序列为一介于所述病原体鲑鱼甲病毒(SAV)的基因组(GenBank accession No.KC122926)的第1032至第1075个核苷酸之间的13至35个碱基对的寡核苷酸;在某些较佳实施方案中,所述寡核苷酸探针序列如SEQ ID NO:64所示。
在某些实施方案中,所述病原体为鲑鱼甲病毒(SAV),且当所述第一引物与所述第二引物的序列组合为SEQ ID NO:65与SEQ ID NO:66时,所述寡核苷酸探针序列为一介于所述病原体鲑鱼甲病毒(SAV)的基因组(GenBank accession No.KC122926)的第969至第1011个核苷酸之间的13至35个碱基对的寡核苷酸;在某些较佳实施方案中,所述寡核苷酸探针序列如SEQ ID NO:67所示。
在某些实施方案中,所述病原体为佩鲁兰新副变形虫(Neoparamoeba perurans),且所述第一引物与所述第二引物的序列组合选自由下列所组成之群组:SEQ ID NO:68与SEQ ID NO:69、SEQ ID NO:71与SEQ ID NO:72、SEQ ID NO:74与SEQ ID NO:75,以及SEQ ID NO:77与SEQ ID NO:78。
在某些实施方案中,所述病原体为佩鲁兰新副变形虫(N.perurans),且当所述第一引物与所述第二引物的序列组合为SEQ ID NO:68与SEQ ID NO:69时,所述寡核苷酸探针序列为一介于所述病原体佩鲁兰新副变形虫(N.perurans)的18S核糖体核糖核酸(ribosomal RNA,rRNA)基因(GenBank accession No.KU985058)的第462至第520个核苷酸之间的13至35个碱基对的寡核苷酸;在某些较佳实施方案中,所述寡核苷酸探针序列如SEQ ID NO:70所示。
在某些实施方案中,所述病原体为佩鲁兰新副变形虫(N.perurans),且当所述第一引物与所述第二引物的序列组合为SEQ ID NO:71与SEQ ID NO:72时,所述寡核苷酸探针序列为一介于所述病原体佩鲁兰新副变形虫(N.perurans)的18S rRNA基因(GenBank accession No.KU985058)的第355至第405个核苷酸之间的13至35个碱基对的寡核苷酸;在某些较佳实施方案中,所述寡核苷酸探针序列如SEQ ID NO:73所示。
在某些实施方案中,所述病原体为佩鲁兰新副变形虫(N.perurans),且当所述第一引物与所述第二引物的序列组合为SEQ ID NO:74与SEQ ID NO:75时,所述寡核苷酸探针序列为一介于所述病原体佩鲁兰新副变形虫(N.perurans)的18S rRNA基因(GenBank accession No.KU985058)的第234 至第281个核苷酸之间的13至35个碱基对的寡核苷酸;在某些较佳实施方案中,所述寡核苷酸探针序列如SEQ ID NO:76所示。
在某些实施方案中,所述病原体为佩鲁兰新副变形虫(N.perurans),且当所述第一引物与所述第二引物的序列组合为SEQ ID NO:77与SEQ ID NO:78时,所述寡核苷酸探针序列为一介于所述病原体佩鲁兰新副变形虫(N.perurans)的18S rRNA基因(GenBank accession No.KU985058)的第357至第380个核苷酸之间的13至24个碱基对的寡核苷酸;在某些较佳实施方案中,所述寡核苷酸探针序列如SEQ ID NO:79所示。
在某些实施方案中,所述病原体为Candidatus Branchiomonas cysticola(CBc)且所述第一引物与所述第二引物的序列组合选自由下列所组成之群组:SEQ ID NO:80与SEQ ID NO:81,以及SEQ ID NO:83与SEQ ID NO:84。
在某些实施方案中,所述病原体为Ca.B.cysticola(CBc),且当所述第一引物与所述第二引物的序列组合为SEQ ID NO:80与SEQ ID NO:81时,所述寡核苷酸探针序列为一介于所述病原体Ca.B.cysticola的16S核糖体核糖核酸(ribosomal RNA,rRNA)基因(GenBank accession No.JQ723599)的第1068至第1125个核苷酸之间的13至35个碱基对的寡核苷酸;在某些较佳实施方案中,所述寡核苷酸探针序列如SEQ ID NO:82所示。
在某些实施方案中,所述病原体为Ca.B.cysticola(CBc),且当所述第一引物与所述第二引物的序列组合为SEQ ID NO:83与SEQ ID NO:84时,所述寡核苷酸探针序列为一介于所述病原体Ca.B.cysticola的16S rRNA基因(GenBank accession No.JQ723599)的第1212至第1241个核苷酸之间的13至30个碱基对的寡核苷酸;在某些较佳实施方案中,所述寡核苷酸探针序列如SEQ ID NO:85所示。
在某些实施方案中,所述病原体为微孢子虫Desmozoon lepeophtherii(Des)且所述第一引物与所述第二引物的序列组合选自由下列所组成之群组:SEQ ID NO:86与SEQ ID NO:87、SEQ ID NO:89与SEQ ID NO:90、SEQ ID NO:92与SEQ ID NO:93、SEQ ID NO:95与SEQ ID NO:97,以及SEQ ID NO:96与SEQ ID NO:97。
在某些实施方案中,所述病原体为微孢子虫Desmozoon lepeophtherii(Des),且当所述第一引物与所述第二引物的序列组合为SEQ ID NO:86与SEQ ID NO:87时,所述寡核苷酸探针序列为一介于所述病原体微孢子虫D.lepeophtherii的16S核糖体核糖核酸(ribosomal RNA,rRNA)基因(GenBank accession No.JQ723599)的第967至第1010个核苷酸之间的13至35个碱基对的寡核苷酸;在某些较佳实施方案中,所述寡核苷酸探针序列如SEQ ID NO:88所示。
在某些实施方案中,所述病原体为微孢子虫Desmozoon lepeophtherii(Des),且当所述第一引物与所述第二引物的序列组合为SEQ ID NO:89与SEQ ID NO:90时,所述寡核苷酸探针序列为一介于所述病原体微孢子虫D.lepeophtherii的16S rRNA基因(GenBank accession No.JQ723599)的第1246至第1285个核苷酸之间的13至35个碱基对的寡核苷酸;在某些较佳实施方案中,所述寡核苷酸探针序列如SEQ ID NO:91所示。
在某些实施方案中,所述病原体为微孢子虫Desmozoon lepeophtherii(Des),且当所述第一引物与所述第二引物的序列组合为SEQ ID NO:92与SEQ ID NO:93时,所述寡核苷酸探针序列为一介于所述病原体微孢子虫D.lepeophtherii的16S rRNA基因(GenBank accession No.JQ723599)的第1366至第1414个核苷酸之间的13至35个碱基对的寡核苷酸;在某些较佳实施方案中,所述寡核苷酸探针序列如SEQ ID NO:94所示。
在某些实施方案中,所述病原体为微孢子虫Desmozoon lepeophtherii(Des),且当所述第一引物与所述第二引物的序列组合为SEQ ID NO:95与SEQ ID NO:97时,所述寡核苷酸探针序列为一介于所述病原体微孢子虫D.lepeophtherii的16S rRNA基因(GenBank accession No.JQ723599)的第815至第859个核苷酸之间的13至35个碱基对的寡核苷酸;在某些较佳实施方案中,所述寡核苷酸探针序列如SEQ ID NO:98所示。
在某些实施方案中,所述病原体为微孢子虫Desmozoon lepeophtherii(Des),且当所述第一引物与所述第二引物的序列组合为SEQ ID NO:96与SEQ ID NO:97时,所述寡核苷酸探针序列为一介于所述病原体微孢子虫D.lepeophtherii的16S rRNA基因(GenBank accession No.JQ723599)的第817至第859个核苷酸之间的13至35个碱基对的寡核苷酸;在某些较佳实施方案中,所述寡核苷酸探针序列如SEQ ID NO:98所示。
在某些实施方案中,所述病原体为鲑鱼腮痘病毒(Salmon gill poxvirus,SGPV)且所述第一引物与所述第二引物的序列组合选自由下列所组成之群组:SEQ ID NO:99与SEQ ID NO:100、SEQ ID NO:102与SEQ ID NO:103、SEQ ID NO:105与SEQ ID NO:106,以及SEQ ID NO:108与SEQ ID NO:109。
在某些实施方案中,所述病原体为鲑鱼腮痘病毒(SGPV),且当所述第一引物与所述第二引物的序列组合为SEQ ID NO:99与SEQ ID NO:100时,所述寡核苷酸探针序列为一介于所述病原体鲑鱼腮痘病毒(SGPV)的基因组(GenBank accession No.KT159937)的第99272至第99318个核苷酸之间的13至35个碱基对的寡核苷酸;在某些较佳实施方案中,所述寡核苷酸探针序列如SEQ ID NO:101所示。
在某些实施方案中,所述病原体为鲑鱼腮痘病毒(SGPV),且当所述第一引物与所述第二引物的序列组合为SEQ ID NO:102与SEQ ID NO:103时,所述寡核苷酸探针序列为一介于所述病原体鲑鱼腮痘病毒(SGPV)的基因组(GenBank accession No.KT159937)的第123213至第123239个核苷酸之间的13至27个碱基对的寡核苷酸;在某些较佳实施方案中,所述寡核苷酸探针序列如SEQ ID NO:104所示。
在某些实施方案中,所述病原体为鲑鱼腮痘病毒(SGPV),且当所述第一引物与所述第二引物的序列组合为SEQ ID NO:105与SEQ ID NO:106时,所述寡核苷酸探针序列为一介于所述病原体鲑鱼腮痘病毒(SGPV)的基因组(GenBank accession No.KT159937)的第123202至第123232个核苷酸之间的13至30个碱基对的寡核苷酸;在某些较佳实施方案中,所述寡核苷酸探针序列如SEQ ID NO:107所示。
在某些实施方案中,所述病原体为鲑鱼腮痘病毒(SGPV),且当所述第一引物与所述第二引物的序列组合为SEQ ID NO:108与SEQ ID NO:109时,所述寡核苷酸探针序列为一介于所述病原体鲑鱼腮痘病毒(SGPV)的基因组(GenBank accession No.KT159937)的第123556至第123610个核苷酸之间的13至35个碱基对的寡核苷酸;在某些较佳实施方案中,所述寡核苷酸探针序列如SEQ ID NO:110所示。
在某些实施方案中,所述病原体为鲑鱼立克次体(Piscirickettsia salmonis)且所述第一引物与所述第二引物的序列组合选自由下列所组成之群组:SEQ ID NO:111与SEQ ID NO:113、SEQ ID NO:114与SEQ ID NO:115、SEQ ID NO:116与SEQ ID NO:117、SEQ ID NO:119与SEQ ID NO:120,以及SEQ ID NO:122与SEQ ID NO:123。
在某些实施方案中,所述病原体为鲑鱼立克次体(P.salmonis),且当所述第一引物与所述第二引物的序列组合为SEQ ID NO:111与SEQ ID NO:112时,所述寡核苷酸探针序列为一介于所述病原体鲑鱼立克次体(P.salmonis)的16S核糖体核糖核酸(ribosomal RNA,rRNA)基因(GenBank accession No.AY498634)的第952至第1065个核苷酸之间的13至35个碱基对的寡核苷酸;在某些较佳实施方案中,所述寡核苷酸探针序列如SEQ ID NO:113所示。
在某些实施方案中,所述病原体为鲑鱼立克次体(P.salmonis),且当所述第一引物与所述第二引物的序列组合为SEQ ID NO:114与SEQ ID NO:115时,所述寡核苷酸探针序列为一介于所述病原体鲑鱼立克次体(P.salmonis)的16S rRNA基因(GenBank accession No.AY498634)的第1014至第1050个核苷酸之间的13至35个碱基对的寡核苷酸;在某些较佳实施方案中,所述寡核苷酸探针序列如SEQ ID NO:113所示。
在某些实施方案中,所述病原体为鲑鱼立克次体(P.salmonis),且当所述第一引物与所述第二引物的序列组合为SEQ ID NO:116与SEQ ID NO:117时,所述寡核苷酸探针序列为一介于所述病原体鲑鱼立克次体(P.salmonis)的16S rRNA基因(GenBank accession No.AY498634)的第315至第331个核苷酸之间的13至17个碱基对的寡核苷酸;在某些较佳实施方案中,所述寡核苷酸探针序列如SEQ ID NO:118所示。
在某些实施方案中,所述病原体为鲑鱼立克次体(P.salmonis),且当所述第一引物与所述第二引物的序列组合为SEQ ID NO:119与SEQ ID NO:120时,所述寡核苷酸探针序列为一介于所述病原体鲑鱼立克次体(P.salmonis)的16S rRNA基因(GenBank accession No.AY498634)的第529至第545个核苷酸之间的13至17个碱基对的寡核苷酸;在某些较佳实施方案中,所述寡核苷酸探针序列如SEQ ID NO:121所示。
在某些实施方案中,所述病原体为鲑鱼立克次体(P.salmonis),且当所述第一引物与所述第二引物的序列组合为SEQ ID NO:122与SEQ ID NO:123时,所述寡核苷酸探针序列为一介于所述病原体鲑鱼立克次体(P.salmonis)的16S rRNA基因(GenBank accession No.AY498634)的第1181至第1200个核苷酸之间的13至20个碱基对的寡核苷酸;在某些较佳实施方案中,所述寡核苷酸探针序列如SEQ ID NO:124所示。
在某些实施方案中,所述病原体为鲑鱼肾菌(Renibacterium salmoninarum)且所述第一引物与所述第二引物的序列组合选自由下列所组成之群组:SEQ ID NO:126与SEQ ID NO:128、SEQ ID NO:127与SEQ ID NO:128、SEQ ID NO:130与SEQ ID NO:131、SEQ ID NO:133与SEQ ID NO:134,以及SEQ ID NO:136与SEQ ID NO:137。
在某些实施方案中,所述病原体为鲑鱼肾菌(R.salmoninarum),且当所述第一引物与所述第二引物的序列组合为SEQ ID NO:125与SEQ ID NO:128时,所述寡核苷酸探针序列为一介于所述病原体鲑鱼肾菌(R.salmoninarum)的57KD细胞外蛋白前体(extracellular protein precursor,ECP)基因(GenBank accession No.Z12174)的第1035至第1065个核苷酸之间的13至31个碱基对的寡核苷酸;在某些较佳实施方案中,所述寡核苷酸探针序列如SEQ ID NO:129所示。
在某些实施方案中,所述病原体为鲑鱼肾菌(R.salmoninarum),且当所述第一引物与所述第二引物的序列组合为SEQ ID NO:126与SEQ ID NO:128时,所述寡核苷酸探针序列为一介于所述病原体鲑鱼肾菌(R.salmoninarum)的57KD细胞外蛋白前体(ECP)基因(GenBank accession No.Z12174)的第1024至第1065个核苷酸之间的13至35个碱基对的寡核苷酸;在某些较佳实施方案中,所述寡核苷酸探针序列如SEQ ID NO:129所示。
在某些实施方案中,所述病原体为鲑鱼肾菌(R.salmoninarum),且当所述第一引物与所述第二引物的序列组合为SEQ ID NO:127与SEQ ID NO:128时,所述寡核苷酸探针序列为一介于所述病原体鲑鱼肾菌(R.salmoninarum)的57KD细胞外蛋白前体(ECP)基因(GenBank accession No.Z12174)的第1037至第1065个核苷酸之间的13至29个碱基对的寡核苷酸;在某些较佳实施方案中,所述寡核苷酸探针序列如SEQ ID NO:129所示。
在某些实施方案中,所述病原体为鲑鱼肾菌(R.salmoninarum),且当所述第一引物与所述第二引物的序列组合为SEQ ID NO:130与SEQ ID NO:131时,所述寡核苷酸探针序列为一介于所述病原体鲑鱼肾菌(R.salmoninarum)的57KD细胞外蛋白前体(ECP)基因(GenBank accession No.Z12174)的第782至第806个核苷酸之间的13至25个碱基对的寡核苷酸;在某些较佳实施方案中,所述寡核苷酸探针序列如SEQ ID NO:132所示。
在某些实施方案中,所述病原体为鲑鱼肾菌(R.salmoninarum),且当所述第一引物与所述第二引物的序列组合为SEQ ID NO:133与SEQ ID NO:134时,所述寡核苷酸探针序列为一介于所述病原体鲑鱼肾菌(R.salmoninarum)的57KD细胞外蛋白前体(ECP)基因(GenBank accession No.Z12174)的第880至第964个核苷酸之间的13至35个碱基对的寡核苷酸;在某些较佳实施方案中,所述寡核苷酸探针序列如SEQ ID NO:135所示。
在某些实施方案中,所述病原体为鲑鱼肾菌(R.salmoninarum),且当所述第一引物与所述第二引物的序列组合为SEQ ID NO:136与SEQ ID NO:137时,所述寡核苷酸探针序列为一介于所述病原体鲑鱼肾菌(R.salmoninarum)的57KD细胞外蛋白前体(ECP)基因(GenBank accession No.Z12174)的第646至第738个核苷酸之间的13至35个碱基对的寡核苷酸;在某些较佳实施方案中,所述寡核苷酸探针序列如SEQ ID NO:138所示。
本说明书中所述的所有技术性及科学术语,除非另外有所定义,皆为该所属领域具有通常技艺者可共同了解的意义。
本发明以下面的实施例予以示范阐明,但本发明不受下述实施例所限制。
具体实施方式
于一方面,本发明涉及一种鱼病原体检测方法。在某些实施方案中,所述方法为聚合酶链锁反应(polymerase chain reaction,PCR)。在某些实施方案中,所述方法为反转录聚合酶链锁反应(reverse-transcription polymerase chain reaction,RT-PCR)。在某些实施方案中,所述方法为热对流聚合酶链锁反应(convective polymerase chain reaction,cPCR)。在某些实施方案中,所述方法为实时聚合酶链锁反应(real-time polymerase chain reaction,real-time PCR)。
于一方面,本发明涉及一种鱼病原体检测方法,包含:
提供一可能含有鱼病原体的一或多个核苷酸序列的样本;
提供一寡核苷酸引物对,所述寡核苷酸引物对包含一第一引物与一第二引物,所述寡核苷酸引物对定义在所述病原体的一或多个核苷酸序列上一双股目标序列的二互补股的5’端;
提供一聚合酶;
在一容器中混合所述样本、所述寡核苷酸引物对、所述聚合酶、脱氧腺苷三磷酸(dATPs)、脱氧胞核苷三磷酸(dCTPs)、脱氧鸟苷三磷酸(dGTPs),以及脱氧胸苷三磷酸(dTTPs),以形成一聚合酶链锁反应(PCR)混合物;
透过在一固定温度下加热所述容器的底部,使所述PCR混合物进行热对流聚合酶链锁反应(cPCR),以形成一PCR产物;以及
侦测所述PCR产物以辨识所述双股目标序列。
于另一方面,本发明涉及一种鱼病原体检测方法,包含:
提供一可能含有鱼病原体的一或多个核苷酸序列的样本;
提供一寡核苷酸引物对,所述寡核苷酸引物对包含一第一引物与一第二引物,所述寡核苷酸引物对定义在所述病原体的一或多个核苷酸序列上一双股目标序列的二互补股的5’端;
提供一寡核苷酸探针,所述寡核苷酸探针包含一与所述双股目标序列的一区段互补的寡核苷酸探针序列、一附加于所述寡核苷酸探针上的一第一位置的荧光分子,以及一附加于所述寡核苷酸探针上的一第二位置的荧光抑制分子,当所述寡核苷酸探针未杂合于所述双股目标序列的所述区段时,所述荧光抑制分子大体上抑制所述荧光分子,且当所述寡核苷酸探针杂合于所述双股目标序列的所述区段时,所述荧光分子大体上未被抑制;
提供一聚合酶;
在一容器中混合所述样本、所述寡核苷酸引物对、所述聚合酶、脱氧腺苷三磷酸(dATPs)、脱氧胞核苷三磷酸(dCTPs)、脱氧鸟苷三磷酸(dGTPs),以及脱氧胸苷三磷酸(dTTPs),以形成一聚合酶链锁反应(PCR)混合物;
透过在一固定温度下加热所述容器的底部,使所述PCR混合物进行热对流聚合酶链锁反应(cPCR),以形成一PCR产物;以及
侦测所述PCR产物以辨识所述双股目标序列。
于又一方面,本发明涉及一种用于侦测鱼病原体的寡核苷酸对。
于再一方面,本发明涉及一种用于侦测鱼病原体的寡核苷酸对与寡核苷酸探针。
应当进一步理解的是,在某些实施方案中,本文揭露的寡核苷酸对及/或寡核苷酸探针可用于各种基础PCR技术之变异,例如,但不限于,反转录聚合酶链锁反应(RT-PCR)、热对流聚合酶链锁反应(cPCR)、实时聚合酶链锁反应(real-time PCR)、巢式聚合酶链锁反应(nested PCR),以及热不对称性交错聚合酶链锁反应(thermal asymmetric interlaced PCR,TAIL-PCR)。
如本文所用,术语「鱼病原体」意指在鱼生物体内外发现的病毒性、细菌性及寄生性病原体。鱼病原体的实例如,但不限于:鱼呼吸道与肠道病毒(Piscine reovirus,PRV)、感染性胰脏坏死病毒(Infectious pancreatic necrosis virus,IPNV)、感染性鲑鱼贫血病毒(Infectious salmon anemia virus,ISAV)、鱼心肌炎病毒(Piscine myocarditis virus,PMCV)、鲑鱼甲病毒(Salmonid alphavirus,SAV)、佩鲁兰新副变形虫(Neoparamoeba perurans)、Candidatus Branchiomonas cysticola(CBc)、微孢子虫Desmozoon lepeophtherii(Des)、鲑鱼腮痘病毒(Salmon gill poxvirus,SGPV)、鲑鱼立克次体(Piscirickettsia salmonis),以及鲑鱼肾菌(Renibacterium salmoninarum)。
如本文所用,术语「热对流聚合酶链锁反应(cPCR)」是指一种聚合酶链锁反应,其中,将一装有一PCR样品的管状容器底部嵌入一稳定热源中,并控制所述PCR的参数,包括所述PCR样品的总体积、黏度、表面温度,以及所述管状容器的内径,使得所述PCR样品的底部到顶部的温度梯度下降,诱导热对流并且使得PCR样品的变性、黏合、聚合在所述管状容器的不同区域中依序且重复发生。热对流聚合酶链锁反应(cPCR)的详细描述请参见如美国专利号8,187,813,其以引用的方式将其整体并入本文。
如本文所用,术语「荧光分子」意指一物质或其一部份,其系能够在可侦测的范围内显示荧光。如本文所用,术语「荧光抑制分子」意指一物质或其一部份,其系能够抑制当由一光源激发时由所述荧光分子所发射的荧光。在某些实施方案中,术语「荧光分子」与「荧光抑制分子」为TaqMan TM分析套组(Applied Biosystems Inc.,加州,美国)的荧光分子与荧光抑制分子。TaqMan TM分析套组的详细描述请参见如,Holland et al.,Proc.Natl.Acad.Sci,U.S.A.(1991)88:7276-7280;美国专利号5,538,848、5,723,591、5,876,930,以及7,413,708皆以引用的方式将其整体并入本文。
所述荧光分子的例子包括,但不限于,3-(ε-羧)-3'-乙基-5,5'-二甲基己羰花青(3-(ε-carboxypentyl)-3'-ethyl-5,5'-dimethyloxa-carbocyanine,CYA)、6-羧基荧光素(6-carboxyfluorescein,FAM)、5,6-羧基罗丹明-L LO(5,6-carboxyrhodamine-l lO,R110)、6羧基罗丹明-6G(6-carboxyrhodamine-6G,R6G)、N’,N’,N’,N’-四甲基-6-羧基罗丹明(N’,N’,N’,N’-tetramethyl-6-carboxyrhodamine,TAMRA)、6-羧基-X-罗丹明(6-carboxy-X-rhodamine,ROX)、2’,4’,5’,7’-四氯4-7-二氯荧光素(2’,4’,5’,7’-tetrachloro-4-7-dichlorofluorescein,TET)、2',7-二甲 氧基-4',5'-6羧基罗丹明(2’,7-dimethoxy-4’,5’-6carboxyrhodamine,JOE)、6-羧基-2',4,4',5',7,7'-六氯荧光素(6-carboxy-2’,4,4’,5’,7,7’-hexachlorofluorescein,HEX)、ALEXA荧光、Cy3荧光与Cy5荧光。所述荧光抑制分子的例子包括,但不限于,4-(4'-二甲基氨基-苯偶氮基)苯甲酸(4-(4’-dimethylamino-phenylazo)-benzoic acid,Dabcyl)、黑洞荧光抑制剂1(Black Hole Quencher 1,BHQ1)、黑洞荧光抑制剂2(Black Hole Quencher 2,BHQ2)、黑洞荧光抑制剂3(Black Hole Quencher3,BHQ3)、二氢环吡咯并吲哚三肽小沟结合物(dihydro cyclo pyrrolo indole tripeptide minor groove binder,MGB)、四甲基罗丹明(tetramethylrhodamine,TAMRA)。在某些实施方案中,所述荧光分子为6-羧基荧光素(FAM),且所述荧光抑制分子为二氢环吡咯并吲哚三肽小沟结合物(MGB)。在某些实施方案中,所述荧光分子为6-羧基荧光素(FAM),且所述荧光抑制分子为黑洞荧光抑制剂1(BHQ1)或二氢环吡咯并吲哚三肽小沟结合物(MGB)。
除非本文另有定义,否则用以与本文结合的科学与技术术语应具有本领域普通技术人员通常理解的含义。此外,除非上下文另有要求,单数术语应包括复数,并且复数术语应包括单数。本发明的方法与技术一般可根据本领域已知的常规方法进行。一般而言,本文所描述之用以连结以下技术的命名法,以及生物化学、酵素学、分子及细胞生物学、微生物学、遗传学与蛋白质及核酸化学及杂合反应的技术皆为本领域已知且经常使用者。除非另有说明,本发明的方法与技术一般可根据本领域已知的常规方法进行,且被描述于在本说明书中被引用且讨论的各种一般及更具体的参考文献中。
本发明进一步透过以下的实施例阐释,其不应以任何方式被解释为进一步的限缩。本申请案中引用的所有引用文件(包括参考文献、核准的专利、公开的专利申请,以及一同在申请中的专利申请案)的整体内容,在此透过引用的方式明确地并入本案中。
实施例
实施例1病原体鱼呼吸道与肠道病毒(PRV)的检测
病原体鱼呼吸道与肠道病毒(PRV)的L1区段基因(GenBank accession No.KY429943)以及Sigma 3蛋白基因(GenBank accession No.KX844958)的片段分别被插入一选殖载体中,所述选殖载体可为,但不限于,pUC57、pGEM-T,以得到pPRV-L1以及pPRV-S3质粒。
1.传统聚合酶链锁反应
进行传统PCR所用的50μl PCR混合物含有:10 6个拷贝数的pPRV-L1或pPRV-S3质粒、0.01-2μM正向引物、0.01-2μM反向引物、0.2μM dNTP以及1.25U Taq DNA聚合酶。在一热循环仪(例如,但不限于PC818,Astec Co.Ltd.,日本)中进行扩增反应,且包含一个变性的初始循环94℃持续3分钟,以及35个循环的94℃ 30秒、60℃ 30秒以及72℃延展30秒。扩增的产物接着以15%聚丙烯酰胺凝胶(polyacrylamide gel)在TAE缓冲液(40mM Tris,20mM acetic acid,1mM EDTA)中分析,并且以溴化乙锭(ethidium bromide)染色显现。
传统PCR的结果如表1所示,各引物对扩增了各目标序列的正确大小的片段,而在负对照组中则无目标序列被扩增(结果未显示)。所述结果表明,各引物对可用于传统PCR扩增反应以检测鱼呼吸道与肠道病毒(PRV)的存在。
表1各引物对与探针组合进行传统PCR的结果
正向引物 反向引物 合成片段大小(bp)
PRV-F1(SEQ ID NO:1) PRV-R1(SEQ ID NO:2) 70
PRV-F2(SEQ ID NO:4) PRV-R1(SEQ ID NO:2) 92
PRV-F2(SEQ ID NO:4) PRV-R2(SEQ ID NO:5) 98
PRV-F3(SEQ ID NO:6) PRV-R3(SEQ ID NO:7) 83
PRV-F4(SEQ ID NO:9) PRV-R4(SEQ ID NO:10) 77
PRV-F5(SEQ ID NO:11) PRV-R5(SEQ ID NO:12) 76
2.热对流聚合酶链锁反应(cPCR)
50μl的PCR混合物含有5μl鱼呼吸道与肠道病毒(PRV)的L1区段基因或Sigma 3蛋白基因的RNA(分别为10 2,10 3,10 4,10 5,10 6拷贝数/μl)或pPRV-L1或pPRV-S3质粒(分别为10 2,10 3,10 4,10 5,10 6个拷贝数)、0.01-2μM正向引物、0.01-2μM反向引物、0.01-2μM探针(各探针序列的5’端及3’端分别接合一荧光分子6-羧基荧光素(FAM)以及一荧光抑制分子黑洞荧光抑制剂1(BHQ1))、0.2μM dNTP、1X cPCR缓冲液,以及1-5U Taq DNA聚合酶、1-5U反转录酶。将PCR混合物加入一反应试管中,并置于一热对流聚合酶链锁反应(cPCR)仪中一段指定的时间(约30~45分钟)。以所述cPCR仪侦测每个样本中的FAM荧光。重复上述cPCR分析试验8次(n=8)以评各估引物对与探针的敏感度。
敏感度测试的结果如表2所示,各引物对及探针的组合皆可100%正确侦测到样品中含有10 2拷贝数/μl的鱼呼吸道与肠道病毒(PRV)的L1区段基因或Sigma 3蛋白基因的RNA或10 2个拷贝数的pPRV-L1或pPRV-S3质粒,其敏感度可达10 2拷贝数/μl及10 2个拷贝数。
表2各引物对与探针组合的敏感度测试结果(n=8)
Figure PCTCN2019108518-appb-000001
Figure PCTCN2019108518-appb-000002
此外,以不同的鱼病原体基因质粒(10 6拷贝数/μl)作为cPCR模板分析上述各引物对及探针组合的专一性。cPCR方法如上所述。专一性测试的结果如表3所示,各引物对及探针的组合皆可正确侦测到含有鱼呼吸道与肠道病毒(PRV)的样品,而侦测不到含有感染性胰脏坏死病毒(IPNV)、感染性鲑鱼贫血病毒(ISAV)、鱼心肌炎病毒(PMCV)、鲑鱼甲病毒(SAV)、佩鲁兰新副变形虫(N.perurans,在表中以AGD表示)、Candidatus Branchiomonas cysticola(CBc)、微孢子虫Desmozoon lepeophtherii(Des)、鲑鱼腮痘病毒(SGPV)、鲑鱼立克次体(P.salmonis,在表中以SRS表示),以及鲑鱼肾菌(R.salmoninarum,在表中以BKD表示)的样品。所述结果显示各引物对及探针组合具有专一性。
表3各引物对与探针组合的专一性测试结果
Figure PCTCN2019108518-appb-000003
Figure PCTCN2019108518-appb-000004
“+”表示在所述样本中侦测到荧光讯号,而“-”表示在所述样本中未侦测到荧光讯号。
3.实时聚合酶链锁反应(real-time PCR,qPCR)
以稀释的pPRV-L1或pPRV-S3质粒(分别为10 1,10 2,10 3,10 4,10 5,10 6,10 7个拷贝数)于一实时PCR仪(例如,但不限于ABI StepOnePlus TM;Applied BioSystem,Life Technologies,加州,美国)中进行实时PCR分析。以含有2μl pPRV-L1或pPRV-S3质粒、0.01-2μM正向引物、0.01-2μM反向引物、0.01-2μM探针(各探针序列的5’端及3’端分别接合一荧光分子6-羧基荧光素(FAM)以及一荧光抑制分子黑洞荧光抑制剂1(BHQ1)),总体积为20μl的商用RT-PCR套组(例如,但不限于,OneStepPrimeScript TM RT-PCR Kit;Takara Bio Inc.,日本)进行实时PCR分析。实时PCR的程序为42℃ 5分钟、94℃ 10秒,以及40个循环的94℃ 10秒以及60℃ 30分钟。在60℃的步骤中记录荧光测量的结果并计算。连续稀释(10倍)的pPRV-L1或pPRV-S3质粒的实时PCR分析的标准曲线。结果显示,至少10 2个拷贝数的pPRV-L1或pPRV-S3质粒可被侦测到,且各引物对与探针组合的标准曲线的R 2值皆大于0.99,表示本发明的引物对与探针可以被用于实时PCR,并产生可信的结果。
上述实施例结果表明,本发明的引物对与探针可用于cPCR扩增反应以检测鱼呼吸道与肠道病毒(PRV)的存在,并且具有高度敏感度及专一性。
实施例2病原体感染性胰脏坏死病毒(IPNV)的检测
病原体感染性胰脏坏死病毒(IPNV)的VP5与多聚蛋白(polyprotein)基因(GenBank accession No.KY548514)的片段被插入一选殖载体中,所述选殖载体可为,但不限于,pUC57、pGEM-T,以得到pIPNV质粒。
1.传统聚合酶链锁反应
进行传统PCR所用的50μl PCR混合物含有:10 6个拷贝数的pIPNV质粒、0.01-2μM正向引物、0.01-2μM反向引物、0.2μM dNTP以及1.25U Taq DNA聚合酶。在一热循环仪(例如,但不限于PC818,Astec Co.Ltd.,日本)中进行扩增反应,且包含一个变性的初始循环94℃持续3分钟,以及35个循环的94℃ 30秒、60℃ 30秒以及72℃延展30秒。扩增的产物接着以15%聚丙烯酰胺凝胶在TAE缓冲液(40mM Tris,20mM acetic acid,1mM EDTA)中分析,并且以溴化乙锭染色显现。
传统PCR的结果如表4所示,各引物对扩增了各目标序列的正确大小的片段,而在负对照组中则无目标序列被扩增(结果未显示)。所述结果表明,各引物对可用于传统PCR扩增反应以检测感染性胰脏坏死病毒(IPNV)的存在。
表4各引物对与探针组合进行传统PCR的结果
正向引物 反向引物 合成片段大小(bp)
IPNV-F1(SEQ ID NO:14) IPNV-R1(SEQ ID NO:15) 86
IPNV-F2(SEQ ID NO:17) IPNV-R2(SEQ ID NO:18) 104
IPNV-F3(SEQ ID NO:20) IPNV-R3(SEQ ID NO:21) 88
正向引物 反向引物 合成片段大小(bp)
IPNV-F4(SEQ ID NO:23) IPNV-R4(SEQ ID NO:24) 91
2.热对流聚合酶链锁反应(cPCR)
50μl的PCR混合物含有5μl感染性胰脏坏死病毒(IPNV)的VP5与多聚蛋白基因的RNA(分别为10 2,10 3,10 4,10 5,10 6拷贝数/μl)或pIPNV质粒(分别为10 2,10 3,10 4,10 5,10 6个拷贝数)、0.01-2μM正向引物、0.01-2μM反向引物、0.01-2μM探针(各探针序列的5’端及3’端分别接合一荧光分子6-羧基荧光素(FAM)以及一荧光抑制分子黑洞荧光抑制剂1(BHQ1))、0.2μM dNTP、1X cPCR缓冲液,以及1-5U Taq DNA聚合酶、1-5U反转录酶。将PCR混合物加入一反应试管中,并置于一热对流聚合酶链锁反应(cPCR)仪中一段指定的时间(约30~45分钟)。以所述cPCR仪侦测每个样本中的FAM荧光。重复上述cPCR分析试验8次(n=8)以评各估引物对与探针的敏感度。
敏感度测试的结果如表5所示,各引物对及探针的组合皆可100%正确侦测到样品中含有10 2拷贝数/μl的感染性胰脏坏死病毒(IPNV)的VP5与多聚蛋白基因的RNA或10 2个拷贝数的pIPNV质粒,其敏感度可达10 2拷贝数/μl及10 2个拷贝数。
表5各引物对与探针组合的敏感度测试结果(n=8)
Figure PCTCN2019108518-appb-000005
此外,以不同的鱼病原体基因质粒(10 6拷贝数/μl)作为cPCR模板分析上述各引物对及探针组合的专一性。cPCR方法如上所述。专一性测试的结果如表6所示,各引物对及探针的组合皆可正确侦测到含有感染性胰脏坏死病毒(IPNV)的样品,而侦测不到含有鱼呼吸道与肠道病毒(PRV)、感染性鲑鱼贫血病毒(ISAV)、鱼心肌炎病毒(PMCV)、鲑鱼甲病毒(SAV)、佩鲁兰新副变形虫(N.perurans,在表中以AGD表示)、Candidatus Branchiomonas cysticola(CBc)、微孢子虫Desmozoon lepeophtherii(Des)、鲑鱼腮痘病毒(SGPV)、鲑鱼立克次体(P.salmonis,在表中以SRS表示),以及 鲑鱼肾菌(R.salmoninarum,在表中以BKD表示)的样品。所述结果显示各引物对及探针组合具有专一性。
表6各引物对与探针组合的专一性测试结果
Figure PCTCN2019108518-appb-000006
“+”表示在所述样本中侦测到荧光讯号,而“-”表示在所述样本中未侦测到荧光讯号。
3.实时聚合酶链锁反应(real-time PCR,qPCR)
以稀释的pIPNV质粒(分别为10 1,10 2,10 3,10 4,10 5,10 6,10 7个拷贝数)于一实时PCR仪(例如,但不限于ABI StepOnePlus TM;Applied BioSystem,Life Technologies,加州,美国)中进行实时PCR分析。以含有2μl pIPNV质粒、0.01-2μM正向引物、0.01-2μM反向引物、0.01-2μM探针(各探针序列的5’端及3’端分别接合一荧光分子6-羧基荧光素(FAM)以及一荧光抑制分子黑洞荧光抑制剂1(BHQ1)),总体积为20μl的商用RT-PCR套组(例如,但不限于,OneStep PrimeScript TM RT-PCR Kit;Takara Bio Inc.,日本)进行实时PCR分析。实时PCR的程序为42℃ 5分钟、94℃ 10秒,以及40个循环的94℃ 10秒以及60℃ 30分钟。在60℃的步骤中记录荧光测量的结果并计算。连续稀释(10倍)的pIPNV质粒的实时PCR分析的标准曲线。结果显示,至少10个拷贝数的pIPNV质粒可被侦测到,且各引物对与探针组合的标准曲线的R 2值皆大于0.99,表示本发明的引物对与探针可以被用于实时PCR,并产生可信的结果。
上述实施例结果表明,本发明的引物对与探针可用于cPCR扩增反应以检测感染性胰脏坏死病毒(IPNV)的存在,并且具有高度敏感度及专一性。
实施例3病原体感染性鲑鱼贫血病毒(ISAV)的检测
病原体感染性鲑鱼贫血病毒(ISAV)的开放读码框(ORF)1与ORF2基因(GenBank accession No.KX424589)的片段被插入一选殖载体中,所述选殖载体可为,但不限于,pUC57、pGEM-T,以得到pISAV质粒。
1.传统聚合酶链锁反应
进行传统PCR所用的50μl PCR混合物含有:10 6个拷贝数的pISAV质粒、0.01-2μM正向引物、0.01-2μM反向引物、0.2μM dNTP以及1.25U Taq DNA聚合酶。在一热循环仪(例如,但不限于PC818,Astec Co.Ltd.,日本)中进行扩增反应,且包含一个变性的初始循环94℃持续3分钟,以及35个循环的94℃ 30秒、60℃ 30秒以及72℃延展30秒。扩增的产物接着以15%聚丙烯酰胺凝胶在TAE缓冲液(40mM Tris,20mM acetic acid,1mM EDTA)中分析,并且以溴化乙锭染色显现。
传统PCR的结果如表7所示,各引物对扩增了各目标序列的正确大小的片段,而在负对照组中则无目标序列被扩增(结果未显示)。所述结果表明,各引物对可用于传统PCR扩增反应以检测感染性鲑鱼贫血病毒(ISAV)的存在。
表7各引物对与探针组合进行传统PCR的结果
正向引物 反向引物 合成片段大小(bp)
ISAV-F1(SEQ ID NO:26) ISAV-R1(SEQ ID NO:27) 87
ISAV-F2(SEQ ID NO:29) ISAV-R2(SEQ ID NO:30) 83
ISAV-F3(SEQ ID NO:32) ISAV-R3(SEQ ID NO:33) 77
ISAV-F4(SEQ ID NO:35) ISAV-R4(SEQ ID NO:36) 83
ISAV-F5(SEQ ID NO:37) ISAV-R5(SEQ ID NO:38) 96
2.热对流聚合酶链锁反应(cPCR)
50μl的PCR混合物含有5μl感染性鲑鱼贫血病毒(ISAV)的ORF1与ORF2基因的RNA(分别为10 2,10 3,10 4,10 5,10 6拷贝数/μl)或pISAV质粒(分别为10 2,10 3,10 4,10 5,10 6个拷贝数)、0.01-2μM正向引物、0.01-2μM反向引物、0.01-2μM探针(各探针序列的5’端及3’端分别接合一荧光分子6-羧基荧光素(FAM)以及一荧光抑制分子黑洞荧光抑制剂1(BHQ1))、0.2μM dNTP、1X cPCR缓冲液,以及1-5U Taq DNA聚合酶、1-5U反转录酶。将PCR混合物加入一反应试管中,并置于一热对流聚合酶链锁反应(cPCR)仪中一段指定的时间(约30~45分钟)。以所述cPCR仪侦测每个样本中的FAM荧光。重复上述cPCR分析试验8次(n=8)以评各估引物对与探针的敏感度。
敏感度测试的结果如表8所示,各引物对及探针的组合皆可100%正确侦测到样品中含有10 2拷贝数/μl的感染性鲑鱼贫血病毒(ISAV)的ORF1与ORF2基因的RNA或10 2个拷贝数的pISAV质粒,其敏感度可达10 2拷贝数/μl及10 2个拷贝数。
表8各引物对与探针组合的敏感度测试结果(n=8)
Figure PCTCN2019108518-appb-000007
Figure PCTCN2019108518-appb-000008
此外,以不同的鱼病原体基因质粒(10 6拷贝数/μl)作为cPCR模板分析上述各引物对及探针组合的专一性。cPCR方法如上所述。专一性测试的结果如表9所示,各引物对及探针的组合皆可正确侦测到含有感染性鲑鱼贫血病毒(ISAV)的样品,而侦测不到含有感染性胰脏坏死病毒(IPNV)、鱼呼吸道与肠道病毒(PRV)、鱼心肌炎病毒(PMCV)、鲑鱼甲病毒(SAV)、佩鲁兰新副变形虫(N.perurans,在表中以AGD表示)、Candidatus Branchiomonas cysticola(CBc)、微孢子虫Desmozoon lepeophtherii(Des)、鲑鱼腮痘病毒(SGPV)、鲑鱼立克次体(P.salmonis,在表中以SRS表示),以及鲑鱼肾菌(R.salmoninarum,在表中以BKD表示)的样品。所述结果显示各引物对及探针组合具有专一性。
表9各引物对与探针组合的专一性测试结果
Figure PCTCN2019108518-appb-000009
“+”表示在所述样本中侦测到荧光讯号,而“-”表示在所述样本中未侦测到荧光讯号。
3.实时聚合酶链锁反应(real-time PCR,qPCR)
以稀释的pISAV质粒(分别为10 1,10 2,10 3,10 4,10 5,10 6,10 7个拷贝数)于一实时PCR仪(例如,但不限于ABI StepOnePlus TM;Applied BioSystem,Life Technologies,加州,美国)中进行实时PCR分析。以含有2μl pISAV质粒、0.01-2μM正向引物、0.01-2μM反向引物、0.01-2μM探针(各探针序列的5’端及3’端分别接合一荧光分子6-羧基荧光素(FAM)以及一荧光抑制分子黑洞荧光抑制剂1(BHQ1)),总体积为20μl的商用RT-PCR套组(例如,但不限于,OneStep PrimeScript TM RT-PCR Kit;Takara Bio Inc.,日本)进行实时PCR分析。实时PCR的程序为42℃ 5分钟、94℃ 10秒,以及40个循环的94℃ 10秒以及60℃ 30分钟。在60℃的步骤中记录荧光测量的结果并计算。连续稀释(10倍)的pISAV质粒的实时PCR分析的标准曲线。结果显示,至少10 2个拷贝数的pISAV质粒可被侦测到,且各引物对与探针组合的标准曲线的R 2值皆大于0.99,表示本发明的引物对与探针可以被用于实时PCR,并产生可信的结果。
上述实施例结果表明,本发明的引物对与探针可用于cPCR扩增反应以检测感染性鲑鱼贫血病毒(ISAV)的存在,并且具有高度敏感度及专一性。
实施例4病原体鱼心肌炎病毒(PMCV)的检测
病原体鱼心肌炎病毒(PMCV)的基因组(GenBank accession No.HQ339954)的片段被插入一选殖载体中,所述选殖载体可为,但不限于,pUC57、pGEM-T,以得到pPMCV质粒。
1.传统聚合酶链锁反应
进行传统PCR所用的50μl PCR混合物含有:10 6个拷贝数的pPMCV质粒、0.01-2μM正向引物、0.01-2μM反向引物、0.2μM dNTP以及1.25U Taq DNA聚合酶。在一热循环仪(例如,但不限于PC818,Astec Co.Ltd.,日本)中进行扩增反应,且包含一个变性的初始循环94℃持续3分钟,以及35个循环的94℃ 30秒、60℃ 30秒以及72℃延展30秒。扩增的产物接着以15%聚丙烯酰胺凝胶在TAE缓冲液(40mM Tris,20mM acetic acid,1mM EDTA)中分析,并且以溴化乙锭染色显现。
传统PCR的结果如表10所示,各引物对扩增了各目标序列的正确大小的片段,而在负对照组中则无目标序列被扩增(结果未显示)。所述结果表明,各引物对可用于传统PCR扩增反应以检测鱼心肌炎病毒(PMCV)的存在。
表10各引物对与探针组合进行传统PCR的结果
正向引物 反向引物 合成片段大小(bp)
PMCV-F1(SEQ ID NO:39) PMCV-R1(SEQ ID NO:40) 81
PMCV-F2(SEQ ID NO:42) PMCV-R2(SEQ ID NO:43) 81
PMCV-F3(SEQ ID NO:45) PMCV-R3(SEQ ID NO:46) 95
PMCV-F4(SEQ ID NO:48) PMCV-R4(SEQ ID NO:49) 80
PMCV-F5(SEQ ID NO:51) PMCV-R4(SEQ ID NO:49) 100
PMCV-F6(SEQ ID NO:52) PMCV-R4(SEQ ID NO:49) 83
2.热对流聚合酶链锁反应(cPCR)
50μl的PCR混合物含有5μl鱼心肌炎病毒(PMCV)的基因组片段的RNA(分别为10 2,10 3,10 4,10 5,10 6拷贝数/μl)或pPMCV质粒(分别为10 2,10 3,10 4,10 5,10 6个拷贝数)、0.01-2μM正向引物、0.01-2μM反向引物、0.01-2μM探针(各探针序列的5’端及3’端分别接合一荧光分子6-羧基荧光素(FAM)以及一荧光抑制分子黑洞荧光抑制剂1(BHQ1))、0.2μM dNTP、1X cPCR缓冲液,以及1-5U Taq DNA聚合酶、1-5U反转录酶。将PCR混合物加入一反应试管中,并置于一热对流聚合酶链锁反应(cPCR)仪中一段指定的时间(约30~45分钟)。以所述cPCR仪侦测每个样本中的FAM荧光。重复上述cPCR分析试验8次(n=8)以评各估引物对与探针的敏感度。
敏感度测试的结果如表11所示,各引物对及探针的组合皆可100%正确侦测到样品中含有10 2拷贝数/μl的鱼心肌炎病毒(PMCV)的基因组片段的RNA或10 2个拷贝数的pPMCV质粒,其敏感度可达10 2拷贝数/μl及10 2个拷贝数。
表11各引物对与探针组合的敏感度测试结果(n=8)
Figure PCTCN2019108518-appb-000010
此外,以不同的鱼病原体基因质粒(10 6拷贝数/μl)作为cPCR模板分析上述各引物对及探针组合的专一性。cPCR方法如上所述。专一性测试的结果如表12所示,各引物对及探针的组合皆可正确侦测到含有鱼心肌炎病毒(PMCV)的样品,而侦测不到含有鱼呼吸道与肠道病毒(PRV)、感染性胰脏坏死病毒(IPNV)、感染性鲑鱼贫血病毒(ISAV)、鲑鱼甲病毒(SAV)、佩鲁兰新副变形虫(N. perurans,在表中以AGD表示)、Candidatus Branchiomonas cysticola(CBc)、微孢子虫Desmozoon lepeophtherii(Des)、鲑鱼腮痘病毒(SGPV)、鲑鱼立克次体(P.salmonis,在表中以SRS表示),以及鲑鱼肾菌(R.salmoninarum,在表中以BKD表示)的样品。所述结果显示各引物对及探针组合具有专一性。
表12各引物对与探针组合的专一性测试结果
Figure PCTCN2019108518-appb-000011
“+”表示在所述样本中侦测到荧光讯号,而“-”表示在所述样本中未侦测到荧光讯号。
3.实时聚合酶链锁反应(real-time PCR,qPCR)
以稀释的pPMCV质粒(分别为10 1,10 2,10 3,10 4,10 5,10 6,10 7个拷贝数)于一实时PCR仪(例如,但不限于ABI StepOnePlus TM;Applied BioSystem,Life Technologies,加州,美国)中进行实时PCR分析。以含有2μl pPMCV质粒、0.01-2μM正向引物、0.01-2μM反向引物、0.01-2μM探针(各探针序列的5’端及3’端分别接合一荧光分子6-羧基荧光素(FAM)以及一荧光抑制分子黑洞荧光抑制剂1(BHQ1)),总体积为20μl的商用RT-PCR套组(例如,但不限于,OneStep PrimeScript TM RT-PCR Kit;Takara Bio Inc.,日本)进行实时PCR分析。实时PCR的程序为42℃ 5分钟、94℃ 10秒,以及40个循环的94℃ 10秒以及60℃ 30分钟。在60℃的步骤中记录荧光测量的结果并计算。连续稀释(10倍)的pPMCV质粒的实时PCR分析的标准曲线。结果显示,至少10 2个拷贝数的pPMCV质粒可被侦测到,且各引物对与探针组合的标准曲线的R 2值皆大于0.99,表示本发明的引物对与探针可以被用于实时PCR,并产生可信的结果。
上述实施例结果表明,本发明的引物对与探针可用于cPCR扩增反应以检测鱼心肌炎病毒(PMCV)的存在,并且具有高度敏感度及专一性。
实施例5病原体鲑鱼甲病毒(SAV)的检测
病原体鲑鱼甲病毒(SAV)的基因组(GenBank accession No.KC122926)的片段被插入一选殖载体中,所述选殖载体可为,但不限于,pUC57、pGEM-T,以得到pSAV质粒。
1.传统聚合酶链锁反应
进行传统PCR所用的50μl PCR混合物含有:10 6个拷贝数的pSAV质粒、0.01-2μM正向引物、0.01-2μM反向引物、0.2μM dNTP以及1.25U Taq DNA聚合酶。在一热循环仪(例如,但不限于PC818,Astec Co.Ltd.,日本)中进行扩增反应,且包含一个变性的初始循环94℃持续3分钟,以及35个循环的94℃ 30秒、60℃ 30秒以及72℃延展30秒。扩增的产物接着以15%聚丙烯酰胺凝胶在TAE缓冲液(40mM Tris,20mM acetic acid,1mM EDTA)中分析,并且以溴化乙锭染色显现。
传统PCR的结果如表13所示,各引物对扩增了各目标序列的正确大小的片段,而在负对照组中则无目标序列被扩增(结果未显示)。所述结果表明,各引物对可用于传统PCR扩增反应以检测鲑鱼甲病毒(SAV)的存在。
表13各引物对与探针组合进行传统PCR的结果
正向引物 反向引物 合成片段大小(bp)
SAV-F1(SEQ ID NO:53) SAV-R1(SEQ ID NO:54) 87
SAV-F2(SEQ ID NO:56) SAV-R2(SEQ ID NO:57) 77
SAV-F3(SEQ ID NO:59) SAV-R3(SEQ ID NO:60) 110
SAV-F4(SEQ ID NO:62) SAV-R4(SEQ ID NO:63) 84
SAV-F5(SEQ ID NO:65) SAV-R5(SEQ ID NO:66) 83
2.热对流聚合酶链锁反应(cPCR)
50μl的PCR混合物含有5μl鲑鱼甲病毒(SAV)的基因组片段的RNA(分别为10 2,10 3,10 4,10 5,10 6拷贝数/μl)或pSAV质粒(分别为10 2,10 3,10 4,10 5,10 6个拷贝数)、0.01-2μM正向引物、0.01-2μM反向引物、0.01-2μM探针(各探针序列的5’端及3’端分别接合一荧光分子6-羧基荧光素(FAM)以及一荧光抑制分子黑洞荧光抑制剂1(BHQ1))、0.2μM dNTP、1X cPCR缓冲液,以及1-5U Taq DNA聚合酶、1-5U反转录酶。将PCR混合物加入一反应试管中,并置于一热对流聚合酶链锁反应(cPCR)仪中一段指定的时间(约30~45分钟)。以所述cPCR仪侦测每个样本中的FAM荧光。重复上述cPCR分析试验8次(n=8)以评各估引物对与探针的敏感度。
敏感度测试的结果如表14所示,各引物对及探针的组合皆可100%正确侦测到样品中含有10 2拷贝数/μl的鲑鱼甲病毒(SAV)的基因组片段的RNA或10 2个拷贝数的pSAV质粒,其敏感度可达10 2拷贝数/μl及10 2个拷贝数。
表14各引物对与探针组合的敏感度测试结果(n=8)
Figure PCTCN2019108518-appb-000012
Figure PCTCN2019108518-appb-000013
此外,以不同的鱼病原体基因质粒(10 6拷贝数/μl)作为cPCR模板分析上述各引物对及探针组合的专一性。cPCR方法如上所述。专一性测试的结果如表15所示,各引物对及探针的组合皆可正确侦测到含有鲑鱼甲病毒(SAV)的样品,而侦测不到含有鱼呼吸道与肠道病毒(PRV)、感染性胰脏坏死病毒(IPNV)、感染性鲑鱼贫血病毒(ISAV)、鱼心肌炎病毒(PMCV)、佩鲁兰新副变形虫(N.perurans,在表中以AGD表示)、Candidatus Branchiomonas cysticola(CBc)、微孢子虫Desmozoon lepeophtherii(Des)、鲑鱼腮痘病毒(SGPV)、鲑鱼立克次体(P.salmonis,在表中以SRS表示),以及鲑鱼肾菌(R.salmoninarum,在表中以BKD表示)的样品。。所述结果显示各引物对及探针组合具有专一性。
表15各引物对与探针组合的专一性测试结果
Figure PCTCN2019108518-appb-000014
Figure PCTCN2019108518-appb-000015
“+”表示在所述样本中侦测到荧光讯号,而“-”表示在所述样本中未侦测到荧光讯号。
3.实时聚合酶链锁反应(real-time PCR,qPCR)
以稀释的pSAV质粒(分别为10 1,10 2,10 3,10 4,10 5,10 6,10 7个拷贝数)于一实时PCR仪(例如,但不限于ABI StepOnePlus TM;Applied BioSystem,Life Technologies,加州,美国)中进行实时PCR分析。以含有2μl pSAV质粒、0.01-2μM正向引物、0.01-2μM反向引物、0.01-2μM探针(各探针序列的5’端及3’端分别接合一荧光分子6-羧基荧光素(FAM)以及一荧光抑制分子黑洞荧光抑制剂1(BHQ1)),总体积为20μl的商用RT-PCR套组(例如,但不限于,OneStep PrimeScript TM RT-PCR Kit;Takara Bio Inc.,日本)进行实时PCR分析。实时PCR的程序为42℃ 5分钟、94℃ 10秒,以及40个循环的94℃ 10秒以及60℃ 30分钟。在60℃的步骤中记录荧光测量的结果并计算。连续稀释(10倍)的pSAV质粒的实时PCR分析的标准曲线。结果显示,至少10 2个拷贝数的pSAV质粒可被侦测到,且各引物对与探针组合的标准曲线的R 2值皆大于0.99,表示本发明的引物对与探针可以被用于实时PCR,并产生可信的结果。
上述实施例结果表明,本发明的引物对与探针可用于cPCR扩增反应以检测鲑鱼甲病毒(SAV)的存在,并且具有高度敏感度及专一性。
实施例6病原体佩鲁兰新副变形虫(N.perurans)的检测
佩鲁兰新副变形虫(N.perurans)为造成阿米巴腮病(Amoebic gill disease,AGD)的病原体。佩鲁兰新副变形虫(N.perurans)的18S核糖体核糖核酸(rRNA)基因(GenBank accession No.KU985058)的片段被插入一选殖载体中,所述选殖载体可为,但不限于,pUC57、pGEM-T,以得到pAGD质粒。
1.传统聚合酶链锁反应
进行传统PCR所用的50μl PCR混合物含有:10 6个拷贝数的pAGD质粒、0.01-2μM正向引物、0.01-2μM反向引物、0.2μM dNTP以及1.25U Taq DNA聚合酶。在一热循环仪(例如,但不限于PC818,Astec Co.Ltd.,日本)中进行扩增反应,且包含一个变性的初始循环94℃持续3分钟,以及35个循环的94℃ 30秒、60℃ 30秒以及72℃延展30秒。扩增的产物接着以15%聚丙烯酰胺凝胶在TAE缓冲液(40mM Tris,20mM acetic acid,1mM EDTA)中分析,并且以溴化乙锭染色显现。
传统PCR的结果如表16所示,各引物对扩增了各目标序列的正确大小的片段,而在负对照组中则无目标序列被扩增(结果未显示)。所述结果表明,各引物对可用于传统PCR扩增反应以检测佩鲁兰新副变形虫(N.perurans)的存在。
表16各引物对与探针组合进行传统PCR的结果
正向引物 反向引物 合成片段大小(bp)
AGD-F1(SEQ ID NO:68) AGD-R1(SEQ ID NO:69) 111
AGD-F2(SEQ ID NO:71) AGD-R2(SEQ ID NO:72) 95
正向引物 反向引物 合成片段大小(bp)
AGD-F3(SEQ ID NO:74) AGD-R3(SEQ ID NO:75) 89
AGD-F4(SEQ ID NO:77) AGD-R4(SEQ ID NO:78) 70
2.热对流聚合酶链锁反应(cPCR)
50μl的PCR混合物含有5μl佩鲁兰新副变形虫(N.perurans)的18S rRNA基因的RNA(分别为10 2,10 3,10 4,10 5,10 6拷贝数/μl)或pAGD质粒(分别为10 2,10 3,10 4,10 5,10 6个拷贝数)、0.01-2μM正向引物、0.01-2μM反向引物、0.01-2μM探针(各探针序列的5’端及3’端分别接合一荧光分子6-羧基荧光素(FAM)以及一荧光抑制分子黑洞荧光抑制剂1(BHQ1))、0.2μM dNTP、1X cPCR缓冲液,以及1-5U Taq DNA聚合酶、1-5U反转录酶。将PCR混合物加入一反应试管中,并置于一热对流聚合酶链锁反应(cPCR)仪中一段指定的时间(约30~45分钟)。以所述cPCR仪侦测每个样本中的FAM荧光。重复上述cPCR分析试验8次(n=8)以评各估引物对与探针的敏感度。
敏感度测试的结果如表17所示,各引物对及探针的组合皆可100%正确侦测到样品中含有10 2拷贝数/μl的佩鲁兰新副变形虫(N.perurans)的18S rRNA基因的RNA或10 2个拷贝数的pAGD质粒,其敏感度可达10 2拷贝数/μl及10 2个拷贝数。
表17各引物对与探针组合的敏感度测试结果(n=8)
Figure PCTCN2019108518-appb-000016
此外,以不同的鱼病原体基因质粒(10 6拷贝数/μl)作为cPCR模板分析上述各引物对及探针组合的专一性。cPCR方法如上所述。专一性测试的结果如表18所示,各引物对及探针的组合皆可正确侦测到含有佩鲁兰新副变形虫(N.perurans,在表中以AGD表示)的样品,而侦测不到含有鱼呼吸道与肠道病毒(PRV)、感染性胰脏坏死病毒(IPNV)、感染性鲑鱼贫血病毒(ISAV)、鱼心肌炎病毒(PMCV)、鲑鱼甲病毒(SAV)、Candidatus Branchiomonas cysticola(CBc)、微孢子虫Desmozoon  lepeophtherii(Des)、鲑鱼腮痘病毒(SGPV)、鲑鱼立克次体(P.salmonis,在表中以SRS表示),以及鲑鱼肾菌(R.salmoninarum,在表中以BKD表示)的样品。所述结果显示各引物对及探针组合具有专一性。
表18各引物对与探针组合的专一性测试结果
Figure PCTCN2019108518-appb-000017
“+”表示在所述样本中侦测到荧光讯号,而“-”表示在所述样本中未侦测到荧光讯号。
3.实时聚合酶链锁反应(real-time PCR,qPCR)
以稀释的pAGD质粒(分别为10 1,10 2,10 3,10 4,10 5,10 6,10 7个拷贝数)于一实时PCR仪(例如,但不限于ABI StepOnePlus TM;Applied BioSystem,Life Technologies,加州,美国)中进行实时PCR分析。以含有2μl pAGD质粒、0.01-2μM正向引物、0.01-2μM反向引物、0.01-2μM探针(各探针序列的5’端及3’端分别接合一荧光分子6-羧基荧光素(FAM)以及一荧光抑制分子黑洞荧光抑制剂1(BHQ1)),总体积为20μl的商用RT-PCR套组(例如,但不限于,OneStep PrimeScript TM RT-PCR Kit;Takara Bio Inc.,日本)进行实时PCR分析。实时PCR的程序为42℃ 5分钟、94℃ 10秒,以及40个循环的94℃ 10秒以及60℃ 30分钟。在60℃的步骤中记录荧光测量的结果并计算。连续稀释(10倍)的pAGD质粒的实时PCR分析的标准曲线。结果显示,至少10 2个拷贝数的pAGD质粒可被侦测到,且各引物对与探针组合的标准曲线的R 2值皆大于0.99,表示本发明的引物对与探针可以被用于实时PCR,并产生可信的结果。
上述实施例结果表明,本发明的引物对与探针可用于cPCR扩增反应以检测佩鲁兰新副变形虫(N.perurans)的存在,并且具有高度敏感度及专一性。
实施例7病原体Ca.B.cysticola(CBc)的检测
病原体Ca.B.cysticola(CBc)的16S核糖体核糖核酸(rRNA)基因(GenBank accession No.JQ723599)片段被插入一选殖载体中,所述选殖载体可为,但不限于,pUC57、pGEM-T,以得到pCBc质粒。
1.传统聚合酶链锁反应
进行传统PCR所用的50μl PCR混合物含有:10 6个拷贝数的pCBc质粒、0.01-2μM正向引物、0.01-2μM反向引物、0.2μM dNTP以及1.25U Taq DNA聚合酶。在一热循环仪(例如,但不限于PC818,Astec Co.Ltd.,日本)中进行扩增反应,且包含一个变性的初始循环94℃持续3分钟,以及35个循环的94℃ 30秒、60℃ 30秒以及72℃延展30秒。扩增的产物接着以15%聚丙烯酰胺凝胶在TAE缓冲液(40mM Tris,20mM acetic acid,1mM EDTA)中分析,并且以溴化乙锭染色显现。
传统PCR的结果如表19所示,各引物对扩增了各目标序列的正确大小的片段,而在负对照组中则无目标序列被扩增(结果未显示)。所述结果表明,各引物对可用于传统PCR扩增反应以检测Ca.B.cysticola(CBc)的存在。
表19各引物对与探针组合进行传统PCR的结果
正向引物 反向引物 合成片段大小(bp)
CBc-F1(SEQ ID NO:80) CBc-R1(SEQ ID NO:81) 98
CBc-F2(SEQ ID NO:83) CBc-R2(SEQ ID NO:84) 70
2.热对流聚合酶链锁反应(cPCR)
50μl的PCR混合物含有5μl Ca.B.cysticola(CBc)的16S rRNA基因的RNA(分别为10 2,10 3,10 4,10 5,10 6拷贝数/μl)或pCBc质粒(分别为10 2,10 3,10 4,10 5,10 6个拷贝数)、0.01-2μM正向引物、0.01-2μM反向引物、0.01-2μM探针(各探针序列的5’端及3’端分别接合一荧光分子6-羧基荧光素(FAM)以及一荧光抑制分子黑洞荧光抑制剂1(BHQ1))、0.2μM dNTP、1X cPCR缓冲液,以及1-5U Taq DNA聚合酶、1-5U反转录酶。将PCR混合物加入一反应试管中,并置于一热对流聚合酶链锁反应(cPCR)仪中一段指定的时间(约30~45分钟)。以所述cPCR仪侦测每个样本中的FAM荧光。重复上述cPCR分析试验8次(n=8)以评各估引物对与探针的敏感度。
敏感度测试的结果如表20所示,各引物对及探针的组合皆可100%正确侦测到样品中含有10 2拷贝数/μl的Ca.B.cysticola(CBc)的16S rRNA基因的RNA或10 2个拷贝数的pCBc质粒,其敏感度可达10 2拷贝数/μl及10 2个拷贝数。
表20各引物对与探针组合的敏感度测试结果(n=8)
Figure PCTCN2019108518-appb-000018
此外,以不同的鱼病原体基因质粒(10 6拷贝数/μl)作为cPCR模板分析上述各引物对及探针组合的专一性。cPCR方法如上所述。专一性测试的结果如表21所示,各引物对及探针的组合皆可 正确侦测到含有Candidatus Branchiomonas cysticola(CBc)的样品,而侦测不到含有鱼呼吸道与肠道病毒(PRV)、感染性胰脏坏死病毒(IPNV)、感染性鲑鱼贫血病毒(ISAV)、鱼心肌炎病毒(PMCV)、鲑鱼甲病毒(SAV)、佩鲁兰新副变形虫(N.perurans,在表中以AGD表示)、微孢子虫Desmozoon lepeophtherii(Des)、鲑鱼腮痘病毒(SGPV)、鲑鱼立克次体(P.salmonis,在表中以SRS表示),以及鲑鱼肾菌(R.salmoninarum,在表中以BKD表示)的样品。所述结果显示各引物对及探针组合具有专一性。
【表21】各引物对与探针组合的专一性测试结果
Figure PCTCN2019108518-appb-000019
“+”表示在所述样本中侦测到荧光讯号,而“-”表示在所述样本中未侦测到荧光讯号。
3.实时聚合酶链锁反应(real-time PCR,qPCR)
以稀释的pCBc质粒(分别为10 1,10 2,10 3,10 4,10 5,10 6,10 7个拷贝数)于一实时PCR仪(例如,但不限于ABI StepOnePlus TM;Applied BioSystem,Life Technologies,加州,美国)中进行实时PCR分析。以含有2μl pCBc质粒、0.01-2μM正向引物、0.01-2μM反向引物、0.01-2μM探针(各探针序列的5’端及3’端分别接合一荧光分子6-羧基荧光素(FAM)以及一荧光抑制分子黑洞荧光抑制剂1(BHQ1)),总体积为20μl的商用RT-PCR套组(例如,但不限于,OneStep PrimeScript TM RT-PCR Kit;Takara Bio Inc.,日本)进行实时PCR分析。实时PCR的程序为42℃ 5分钟、94℃ 10秒,以及40个循环的94℃ 10秒以及60℃ 30分钟。在60℃的步骤中记录荧光测量的结果并计算。连续稀释(10倍)的pCBc质粒的实时PCR分析的标准曲线。结果显示,至少10 2个拷贝数的pCBc质粒可被侦测到,且各引物对与探针组合的标准曲线的R 2值皆大于0.99,表示本发明的引物对与探针可以被用于实时PCR,并产生可信的结果。
上述实施例结果表明,本发明的引物对与探针可用于cPCR扩增反应以检测Ca.B.cysticola(CBc)的存在,并且具有高度敏感度及专一性。
实施例8病原体微孢子虫D.lepeophtherii(Des)的检测
病原体微孢子虫D.lepeophtherii(Des)的16S核糖体核糖核酸(rRNA)基因(GenBank accession No.JQ723599)片段被插入一选殖载体中,所述选殖载体可为,但不限于,pUC57、pGEM-T,以得到pDes质粒。
1.传统聚合酶链锁反应
进行传统PCR所用的50μl PCR混合物含有:10 6个拷贝数的pDes质粒、0.01-2μM正向引物、0.01-2μM反向引物、0.2μM dNTP以及1.25U Taq DNA聚合酶。在一热循环仪(例如,但不限于 PC818,Astec Co.Ltd.,日本)中进行扩增反应,且包含一个变性的初始循环94℃持续3分钟,以及35个循环的94℃ 30秒、60℃ 30秒以及72℃延展30秒。扩增的产物接着以15%聚丙烯酰胺凝胶在TAE缓冲液(40mM Tris,20mM acetic acid,1mM EDTA)中分析,并且以溴化乙锭染色显现。
传统PCR的结果如表22所示,各引物对扩增了各目标序列的正确大小的片段,而在负对照组中则无目标序列被扩增(结果未显示)。所述结果表明,各引物对可用于传统PCR扩增反应以检测微孢子虫D.lepeophtherii(Des)的存在。
表22各引物对与探针组合进行传统PCR的结果
正向引物 反向引物 合成片段大小(bp)
Des-F1(SEQ ID NO:86) Des-R1(SEQ ID NO:87) 92
Des-F2(SEQ ID NO:89) Des-R2(SEQ ID NO:90) 82
Des-F3(SEQ ID NO:92) Des-R3(SEQ ID NO:93) 91
Des-F4(SEQ ID NO:95) Des-R4(SEQ ID NO:97) 89
Des-F5(SEQ ID NO:96) Des-R4(SEQ ID NO:97) 87
2.热对流聚合酶链锁反应(cPCR)
50μl的PCR混合物含有5μl微孢子虫D.lepeophtherii(Des)的16S rRNA基因的RNA(分别为10 2,10 3,10 4,10 5,10 6拷贝数/μl)或pDes质粒(分别为10 2,10 3,10 4,10 5,10 6个拷贝数)、0.01-2μM正向引物、0.01-2μM反向引物、0.01-2μM探针(各探针序列的5’端及3’端分别接合一荧光分子6-羧基荧光素(FAM)以及一荧光抑制分子黑洞荧光抑制剂1(BHQ1))、0.2μM dNTP、1X cPCR缓冲液,以及1-5U Taq DNA聚合酶、1-5U反转录酶。将PCR混合物加入一反应试管中,并置于一热对流聚合酶链锁反应(cPCR)仪中一段指定的时间(约30~45分钟)。以所述cPCR仪侦测每个样本中的FAM荧光。重复上述cPCR分析试验8次(n=8)以评各估引物对与探针的敏感度。
敏感度测试的结果如表23所示,各引物对及探针的组合皆可100%正确侦测到样品中含有10 2拷贝数/μl的微孢子虫D.lepeophtherii(Des)的16S rRNA基因的RNA或10 2个拷贝数的pDes质粒,其敏感度可达10 2拷贝数/μl及10 2个拷贝数。
表23各引物对与探针组合的敏感度测试结果(n=8)
Figure PCTCN2019108518-appb-000020
Figure PCTCN2019108518-appb-000021
此外,以不同的鱼病原体基因质粒(10 6拷贝数/μl)作为cPCR模板分析上述各引物对及探针组合的专一性。cPCR方法如上所述。专一性测试的结果如表24所示,各引物对及探针的组合皆可正确侦测到含有微孢子虫Desmozoon lepeophtherii(Des)的样品,而侦测不到含有鱼呼吸道与肠道病毒(PRV)、感染性胰脏坏死病毒(IPNV)、感染性鲑鱼贫血病毒(ISAV)、鱼心肌炎病毒(PMCV)、鲑鱼甲病毒(SAV)、佩鲁兰新副变形虫(N.perurans,在表中以AGD表示)、Candidatus Branchiomonas cysticola(CBc)、鲑鱼腮痘病毒(SGPV)、鲑鱼立克次体(P.salmonis,在表中以SRS表示),以及鲑鱼肾菌(R.salmoninarum,在表中以BKD表示)的样品。所述结果显示各引物对及探针组合具有专一性。
表24各引物对与探针组合的专一性测试结果
Figure PCTCN2019108518-appb-000022
“+”表示在所述样本中侦测到荧光讯号,而“-”表示在所述样本中未侦测到荧光讯号。
3.实时聚合酶链锁反应(real-time PCR,qPCR)
以稀释的pDes质粒(分别为10 1,10 2,10 3,10 4,10 5,10 6,10 7个拷贝数)于一实时PCR仪(例如,但不限于ABI StepOnePlus TM;Applied BioSystem,Life Technologies,加州,美国)中进行实时PCR分析。以含有2μl pDes质粒、0.01-2μM正向引物、0.01-2μM反向引物、0.01-2μM探针(各探针序列的5’端及3’端分别接合一荧光分子6-羧基荧光素(FAM)以及一荧光抑制分子黑洞荧光抑制剂1(BHQ1)),总体积为20μl的商用RT-PCR套组(例如,但不限于,OneStep PrimeScript TM RT-PCR Kit;Takara Bio Inc.,日本)进行实时PCR分析。实时PCR的程序为42℃ 5分钟、94℃ 10秒,以及40个循环的94℃ 10秒以及60℃ 30分钟。在60℃的步骤中记录荧光测量的结果并计算。连续稀释(10倍)的pDes质粒的实时PCR分析的标准曲线。结果显示,至少10 2个拷贝数的pDes质粒可被侦测到,且各引物对与探针组合的标准曲线的R 2值皆大于0.99,表示本发明的引物对与探针可以被用于实时PCR,并产生可信的结果。
上述实施例结果表明,本发明的引物对与探针可用于cPCR扩增反应以检测微孢子虫D.lepeophtherii(Des)的存在,并且具有高度敏感度及专一性。
实施例9病原体鲑鱼腮痘病毒(SGPV)的检测
病原体鲑鱼腮痘病毒(SGPV)的基因组(GenBank accession No.KT159937)片段被插入一选殖载体中,所述选殖载体可为,但不限于,pUC57、pGEM-T,以得到pSGPV质粒。
1.传统聚合酶链锁反应
进行传统PCR所用的50μl PCR混合物含有:10 6个拷贝数的pSGPV质粒、0.01-2μM正向引物、0.01-2μM反向引物、0.2μM dNTP以及1.25U Taq DNA聚合酶。在一热循环仪(例如,但不限于PC818,Astec Co.Ltd.,日本)中进行扩增反应,且包含一个变性的初始循环94℃持续3分钟,以及35个循环的94℃ 30秒、60℃ 30秒以及72℃延展30秒。扩增的产物接着以15%聚丙烯酰胺凝胶在TAE缓冲液(40mM Tris,20mM acetic acid,1mM EDTA)中分析,并且以溴化乙锭染色显现。
传统PCR的结果如表25所示,各引物对扩增了各目标序列的正确大小的片段,而在负对照组中则无目标序列被扩增(结果未显示)。所述结果表明,各引物对可用于传统PCR扩增反应以检测鲑鱼腮痘病毒(SGPV)的存在。
表25各引物对与探针组合进行传统PCR的结果
正向引物 反向引物 合成片段大小(bp)
SGPV-F1(SEQ ID NO:99) SGPV-R1(SEQ ID NO:100) 84
SGPV-F2(SEQ ID NO:102) SGPV-R2(SEQ ID NO:103) 74
SGPV-F3(SEQ ID NO:105) SGPV-R3(SEQ ID NO:106) 82
SGPV-F4(SEQ ID NO:108) SGPV-R4(SEQ ID NO:109) 106
2.热对流聚合酶链锁反应(cPCR)
50μl的PCR混合物含有5μl鲑鱼腮痘病毒(SGPV)的基因组片段的RNA(分别为10 2,10 3,10 4,10 5,10 6拷贝数/μl)或pSGPV质粒(分别为10 2,10 3,10 4,10 5,10 6个拷贝数)、0.01-2μM正向引物、0.01-2μM反向引物、0.01-2μM探针(各探针序列的5’端及3’端分别接合一荧光分子6-羧基荧光素(FAM)以及一荧光抑制分子黑洞荧光抑制剂1(BHQ1))、0.2μM dNTP、1X cPCR缓冲液,以及1-5U Taq DNA聚合酶、1-5U反转录酶。将PCR混合物加入一反应试管中,并置于一热对流聚合酶链锁反应(cPCR)仪中一段指定的时间(约30~45分钟)。以所述cPCR仪侦测每个样本中的FAM荧光。重复上述cPCR分析试验8次(n=8)以评各估引物对与探针的敏感度。
敏感度测试的结果如表26所示,各引物对及探针的组合皆可100%正确侦测到样品中含有10 2拷贝数/μl的鲑鱼腮痘病毒(SGPV)的基因组片段的RNA或10 2个拷贝数的pSGPV质粒,其敏感度可达10 2拷贝数/μl及10 2个拷贝数。
表26各引物对与探针组合的敏感度测试结果(n=8)
Figure PCTCN2019108518-appb-000023
此外,以不同的鱼病原体基因质粒(10 6拷贝数/μl)作为cPCR模板分析上述各引物对及探针组合的专一性。cPCR方法如上所述。专一性测试的结果如表27所示,各引物对及探针的组合皆可正确侦测到含有鲑鱼腮痘病毒(SGPV)的样品,而侦测不到含有鱼呼吸道与肠道病毒(PRV)、感染性胰脏坏死病毒(IPNV)、感染性鲑鱼贫血病毒(ISAV)、鱼心肌炎病毒(PMCV)、鲑鱼甲病毒(SAV)、佩鲁兰新副变形虫(N.perurans,在表中以AGD表示)、Candidatus Branchiomonas cysticola(CBc)、微孢子虫Desmozoon lepeophtherii(Des)、鲑鱼立克次体(P.salmonis,在表中以SRS表示),以及鲑鱼肾菌(R.salmoninarum,在表中以BKD表示)的样品。所述结果显示各引物对及探针组合具有专一性。
表27各引物对与探针组合的专一性测试结果
Figure PCTCN2019108518-appb-000024
Figure PCTCN2019108518-appb-000025
“+”表示在所述样本中侦测到荧光讯号,而“-”表示在所述样本中未侦测到荧光讯号。
3.实时聚合酶链锁反应(real-time PCR,qPCR)
以稀释的pSGPV质粒(分别为10 1,10 2,10 3,10 4,10 5,10 6,10 7个拷贝数)于一实时PCR仪(例如,但不限于ABI StepOnePlus TM;Applied BioSystem,Life Technologies,加州,美国)中进行实时PCR分析。以含有2μl pSGPV质粒、0.01-2μM正向引物、0.01-2μM反向引物、0.01-2μM探针(各探针序列的5’端及3’端分别接合一荧光分子6-羧基荧光素(FAM)以及一荧光抑制分子黑洞荧光抑制剂1(BHQ1)),总体积为20μl的商用RT-PCR套组(例如,但不限于,OneStep PrimeScript TM RT-PCR Kit;Takara Bio Inc.,日本)进行实时PCR分析。实时PCR的程序为42℃ 5分钟、94℃ 10秒,以及40个循环的94℃ 10秒以及60℃ 30分钟。在60℃的步骤中记录荧光测量的结果并计算。连续稀释(10倍)的pSGPV质粒的实时PCR分析的标准曲线。结果显示,至少10 2个拷贝数的pSGPV质粒可被侦测到,且各引物对与探针组合的标准曲线的R 2值皆大于0.99,表示本发明的引物对与探针可以被用于实时PCR,并产生可信的结果。
上述实施例结果表明,本发明的引物对与探针可用于cPCR扩增反应以检测鲑鱼腮痘病毒(SGPV)的存在,并且具有高度敏感度及专一性。
实施例10病原体鲑鱼立克次体(P.salmonis)的检测
鲑鱼立克次体(P.salmonis)为造成鱼类立克次体症(Salmonid Rickettsial Septicaemia,SRS)的病原体。鲑鱼立克次体(P.salmonis)的16S核糖体核糖核酸(rRNA)基因(GenBank accession No.AY498634)片段被插入一选殖载体中,所述选殖载体可为,但不限于,pUC57、pGEM-T,以得到pSRS质粒。
1.传统聚合酶链锁反应
进行传统PCR所用的50μl PCR混合物含有:10 6个拷贝数的pSRS质粒、0.01-2μM正向引物、0.01-2μM反向引物、0.2μM dNTP以及1.25U Taq DNA聚合酶。在一热循环仪(例如,但不限于PC818,Astec Co.Ltd.,日本)中进行扩增反应,且包含一个变性的初始循环94℃持续3分钟,以及 35个循环的94℃ 30秒、60℃ 30秒以及72℃延展30秒。扩增的产物接着以15%聚丙烯酰胺凝胶在TAE缓冲液(40mM Tris,20mM acetic acid,1mM EDTA)中分析,并且以溴化乙锭染色显现。
传统PCR的结果如表28所示,各引物对扩增了各目标序列的正确大小的片段,而在负对照组中则无目标序列被扩增(结果未显示)。所述结果表明,各引物对可用于传统PCR扩增反应以检测鲑鱼立克次体(P.salmonis)的存在。
表28各引物对与探针组合进行传统PCR的结果
正向引物 反向引物 合成片段大小(bp)
SRS-F1(SEQ ID NO:111) SRS-R1(SEQ ID NO:112) 151
SRS-F2(SEQ ID NO:114) SRS-R2(SEQ ID NO:115) 80
SRS-F3(SEQ ID NO:116) SRS-R3(SEQ ID NO:117) 54
SRS-F4(SEQ ID NO:119) SRS-R4(SEQ ID NO:120) 56
SRS-F5(SEQ ID NO:122) SRS-R5(SEQ ID NO:123) 58
2.热对流聚合酶链锁反应(cPCR)
50μl的PCR混合物含有5μl鲑鱼立克次体(P.salmonis)的16S rRNA基因的RNA(分别为10 2,10 3,10 4,10 5,10 6拷贝数/μl)或pSRS质粒(分别为10 2,10 3,10 4,10 5,10 6个拷贝数)、0.01-2μM正向引物、0.01-2μM反向引物、0.01-2μM探针(各探针序列的5’端及3’端分别接合一荧光分子6-羧基荧光素(FAM)以及一荧光抑制分子黑洞荧光抑制剂1(BHQ1))、0.2μM dNTP、1X cPCR缓冲液,以及1-5U Taq DNA聚合酶、1-5U反转录酶。将PCR混合物加入一反应试管中,并置于一热对流聚合酶链锁反应(cPCR)仪中一段指定的时间(约30~45分钟)。以所述cPCR仪侦测每个样本中的FAM荧光。重复上述cPCR分析试验8次(n=8)以评各估引物对与探针的敏感度。
敏感度测试的结果如表29所示,各引物对及探针的组合皆可100%正确侦测到样品中含有10 2拷贝数/μl的鲑鱼立克次体(P.salmonis)的16S rRNA基因的RNA或10 2个拷贝数的pSRS质粒,其敏感度可达10 2拷贝数/μl及10 2个拷贝数。
表29各引物对与探针组合的敏感度测试结果(n=8)
Figure PCTCN2019108518-appb-000026
Figure PCTCN2019108518-appb-000027
此外,以不同的鱼病原体基因质粒(10 6拷贝数/μl)作为cPCR模板分析上述各引物对及探针组合的专一性。cPCR方法如上所述。专一性测试的结果如表30所示,各引物对及探针的组合皆可正确侦测到含有鲑鱼立克次体(P.salmonis,在表中以SRS表示)的样品,而侦测不到含有鱼呼吸道与肠道病毒(PRV)、感染性胰脏坏死病毒(IPNV)、感染性鲑鱼贫血病毒(ISAV)、鱼心肌炎病毒(PMCV)、鲑鱼甲病毒(SAV)、佩鲁兰新副变形虫(N.perurans,在表中以AGD表示)、Candidatus Branchiomonas cysticola(CBc)、微孢子虫Desmozoon lepeophtherii(Des)、鲑鱼腮痘病毒(SGPV),以及鲑鱼肾菌(R.salmoninarum,在表中以BKD表示)的样品。所述结果显示各引物对及探针组合具有专一性。
表30各引物对与探针组合的专一性测试结果
Figure PCTCN2019108518-appb-000028
“+”表示在所述样本中侦测到荧光讯号,而“-”表示在所述样本中未侦测到荧光讯号。
3.实时聚合酶链锁反应(real-time PCR,qPCR)
以稀释的pSRS质粒(分别为10 1,10 2,10 3,10 4,10 5,10 6,10 7个拷贝数)于一实时PCR仪(例如,但不限于ABI StepOnePlus TM;Applied BioSystem,Life Technologies,加州,美国)中进行实时PCR分析。以含有2μl pSRS质粒、0.01-2μM正向引物、0.01-2μM反向引物、0.01-2μM探针(各探针序列的5’端及3’端分别接合一荧光分子6-羧基荧光素(FAM)以及一荧光抑制分子黑洞荧光抑制剂1 (BHQ1)),总体积为20μl的商用RT-PCR套组(例如,但不限于,OneStep PrimeScript TM RT-PCR Kit;Takara Bio Inc.,日本)进行实时PCR分析。实时PCR的程序为42℃ 5分钟、94℃ 10秒,以及40个循环的94℃ 10秒以及60℃ 30分钟。在60℃的步骤中记录荧光测量的结果并计算。连续稀释(10倍)的pSRS质粒的实时PCR分析的标准曲线。结果显示,至少10 2个拷贝数的pSRS质粒可被侦测到,且各引物对与探针组合的标准曲线的R 2值皆大于0.99,表示本发明的引物对与探针可以被用于实时PCR,并产生可信的结果。
上述实施例结果表明,本发明的引物对与探针可用于cPCR扩增反应以检测鲑鱼立克次体(P.salmonis)的存在,并且具有高度敏感度及专一性。
实施例11病原体鲑鱼肾菌(R.salmoninarum)的检测
鲑鱼肾菌(R.salmoninarum)为造成鱼类细菌性肾病(Bacterial kidney disease,BKD)的病原体。鲑鱼肾菌(R.salmoninarum)的57KD细胞外蛋白前体(ECP)基因(GenBank accession No.Z12174)片段被插入一选殖载体中,所述选殖载体可为,但不限于,pUC57、pGEM-T,以得到pBKD质粒。
1.传统聚合酶链锁反应
进行传统PCR所用的50μl PCR混合物含有:10 6个拷贝数的pBKD质粒、0.01-2μM正向引物、0.01-2μM反向引物、0.2μM dNTP以及1.25U Taq DNA聚合酶。在一热循环仪(例如,但不限于PC818,Astec Co.Ltd.,日本)中进行扩增反应,且包含一个变性的初始循环94℃持续3分钟,以及35个循环的94℃ 30秒、60℃ 30秒以及72℃延展30秒。扩增的产物接着以15%聚丙烯酰胺凝胶在TAE缓冲液(40mM Tris,20mM acetic acid,1mM EDTA)中分析,并且以溴化乙锭染色显现。
传统PCR的结果如表31所示,各引物对扩增了各目标序列的正确大小的片段,而在负对照组中则无目标序列被扩增(结果未显示)。所述结果表明,各引物对可用于传统PCR扩增反应以检测鲑鱼肾菌(R.salmoninarum)的存在。
表31各引物对与探针组合进行传统PCR的结果
正向引物 反向引物 合成片段大小(bp)
BKD-F1(SEQ ID NO:125) BKD-R1(SEQ ID NO:128) 72
BKD-F2(SEQ ID NO:126) BKD-R1(SEQ ID NO:128) 85
BKD-F3(SEQ ID NO:127) BKD-R1(SEQ ID NO:128) 70
BKD-OF1(SEQ ID NO:130) BKD-OR1(SEQ ID NO:131) 65
BKD-OF2(SEQ ID NO:133) BKD-OR2(SEQ ID NO:134) 125
BKD-OF3(SEQ ID NO:136) BKD-OR3(SEQ ID NO:137) 133
2.热对流聚合酶链锁反应(cPCR)
50μl的PCR混合物含有5μl鲑鱼肾菌(R.salmoninarum)的57KD细胞外蛋白前体(ECP)基因的RNA(分别为10 2,10 3,10 4,10 5,10 6拷贝数/μl)或pBKD质粒(分别为10 2,10 3,10 4,10 5,10 6个拷贝数)、0.01-2μM正向引物、0.01-2μM反向引物、0.01-2μM探针(各探针序列的5’端及3’端分别接合一荧光分子6-羧基荧光素(FAM)以及一荧光抑制分子黑洞荧光抑制剂1(BHQ1))、0.2μM dNTP、1X cPCR缓冲液,以及1-5U Taq DNA聚合酶、1-5U反转录酶。将PCR混合物加入一反应试管中,并 置于一热对流聚合酶链锁反应(cPCR)仪中一段指定的时间(约30~45分钟)。以所述cPCR仪侦测每个样本中的FAM荧光。重复上述cPCR分析试验8次(n=8)以评各估引物对与探针的敏感度。
敏感度测试的结果如表32所示,各引物对及探针的组合皆可100%正确侦测到样品中含有10 2拷贝数/μl的鲑鱼肾菌(R.salmoninarum)的57KD细胞外蛋白前体(ECP)基因的RNA或10 2个拷贝数的pBKD质粒,其敏感度可达10 2拷贝数/μl及10 2个拷贝数。
表32各引物对与探针组合的敏感度测试结果(n=8)
Figure PCTCN2019108518-appb-000029
此外,以不同的鱼病原体基因质粒(10 6拷贝数/μl)作为cPCR模板分析上述各引物对及探针组合的专一性。cPCR方法如上所述。专一性测试的结果如表33所示,各引物对及探针的组合皆可正确侦测到含有鲑鱼肾菌(R.salmoninarum,在表中以BKD表示)的样品,而侦测不到含有鱼呼吸道与肠道病毒(PRV)、感染性胰脏坏死病毒(IPNV)、感染性鲑鱼贫血病毒(ISAV)、鱼心肌炎病毒(PMCV)、鲑鱼甲病毒(SAV)、佩鲁兰新副变形虫(N.perurans,在表中以AGD表示)、Candidatus Branchiomonas cysticola(CBc)、微孢子虫Desmozoon lepeophtherii(Des)、鲑鱼腮痘病毒(SGPV),以及鲑鱼立克次体(P.salmonis,在表中以SRS表示)的样品。所述结果显示各引物对及探针组合具有专一性。
表33各引物对与探针组合的专一性测试结果
Figure PCTCN2019108518-appb-000030
Figure PCTCN2019108518-appb-000031
“+”表示在所述样本中侦测到荧光讯号,而“-”表示在所述样本中未侦测到荧光讯号。
3.实时聚合酶链锁反应(real-time PCR,qPCR)
以稀释的pBKD质粒(分别为10 1,10 2,10 3,10 4,10 5,10 6,10 7个拷贝数)于一实时PCR仪(例如,但不限于ABI StepOnePlus TM;Applied BioSystem,Life Technologies,加州,美国)中进行实时PCR分析。以含有2μl pBKD质粒、0.01-2μM正向引物、0.01-2μM反向引物、0.01-2μM探针(各探针序列的5’端及3’端分别接合一荧光分子6-羧基荧光素(FAM)以及一荧光抑制分子黑洞荧光抑制剂1(BHQ1)),总体积为20μl的商用RT-PCR套组(例如,但不限于,OneStep PrimeScript TM RT-PCR Kit;Takara Bio Inc.,日本)进行实时PCR分析。实时PCR的程序为42℃ 5分钟、94℃ 10秒,以及40个循环的94℃ 10秒以及60℃ 30分钟。在60℃的步骤中记录荧光测量的结果并计算。连续稀释(10倍)的pBKD质粒的实时PCR分析的标准曲线。结果显示,至少10 2个拷贝数的pBKD质粒可被侦测到,且各引物对与探针组合的标准曲线的R 2值皆大于0.99,表示本发明的引物对与探针可以被用于实时PCR,并产生可信的结果。
上述实施例结果表明,本发明的引物对与探针可用于cPCR扩增反应以检测鲑鱼肾菌(R.salmoninarum)的存在,并且具有高度敏感度及专一性。
上列详细说明系针对本发明之一可行实施例的具体说明,惟该实施例并非用以限制本发明的专利范围,凡未脱离本发明技艺精神所为的等效实施或变更,均应包含于本案的专利范围中。

Claims (24)

  1. 一种用于侦测鱼病原体的寡核苷酸对,包含一第一引物与一第二引物,所述病原体选自由下列所组成之群组:鱼呼吸道与肠道病毒(Piscine reovirus,PRV)、感染性胰脏坏死病毒(Infectious pancreatic necrosis virus,IPNV)、感染性鲑鱼贫血病毒(Infectious salmon anemia virus,ISAV)、鱼心肌炎病毒(Piscine myocarditis virus,PMCV)、鲑鱼甲病毒(Salmonid alphavirus,SAV)、佩鲁兰新副变形虫(Neoparamoeba perurans)、Candidatus Branchiomonas cysticola(CBc)、微孢子虫Desmozoon lepeophtherii(Des)、鲑鱼腮痘病毒(Salmon gill poxvirus,SGPV)、鲑鱼立克次体(Piscirickettsia salmonis),以及鲑鱼肾菌(Renibacterium salmoninarum);
    其中所述病原体为鱼呼吸道与肠道病毒(PRV)时,所述第一引物与所述第二引物的序列组合选自由下列所组成之群组:SEQ ID NO:1与SEQ ID NO:2、SEQ ID NO:4与SEQ ID NO:2、SEQ ID NO:4与SEQ ID NO:5、SEQ ID NO:6与SEQ ID NO:7、SEQ ID NO:9与SEQ ID NO:10,以及SEQ ID NO:11与SEQ ID NO:12;
    其中所述病原体为感染性胰脏坏死病毒(IPNV)时,所述第一引物与所述第二引物的序列组合选自由下列所组成之群组:SEQ ID NO:14与SEQ ID NO:15、SEQ ID NO:17与SEQ ID NO:18、SEQ ID NO:20与SEQ ID NO:21,以及SEQ ID NO:23与SEQ ID NO:24;
    其中所述病原体为感染性鲑鱼贫血病毒(ISAV)时,所述第一引物与所述第二引物的序列组合选自由下列所组成之群组:SEQ ID NO:26与SEQ ID NO:27、SEQ ID NO:29与SEQ ID NO:30、SEQ ID NO:32与SEQ ID NO:33、SEQ ID NO:35与SEQ ID NO:36,以及SEQ ID NO:37与SEQ ID NO:38;
    其中所述病原体为鱼心肌炎病毒(PMCV)时,所述第一引物与所述第二引物的序列组合选自由下列所组成之群组:SEQ ID NO:39与SEQ ID NO:40、SEQ ID NO:42与SEQ ID NO:43、SEQ ID NO:45与SEQ ID NO:46、SEQ ID NO:48与SEQ ID NO:49、SEQ ID NO:51与SEQ ID NO:49,以及SEQ ID NO:52与SEQ ID NO:49;
    其中所述病原体为鲑鱼甲病毒(SAV)时,所述第一引物与所述第二引物的序列组合选自由下列所组成之群组:SEQ ID NO:53与SEQ ID NO:54、SEQ ID NO:56与SEQ ID NO:57、SEQ ID NO:59与SEQ ID NO:60、SEQ ID NO:62与SEQ ID NO:63,以及SEQ ID NO:65与SEQ ID NO:66;
    其中所述病原体为佩鲁兰新副变形虫(N.perurans)时,所述第一引物与所述第二引物的序列组合选自由下列所组成之群组:SEQ ID NO:68与SEQ ID NO:69、SEQ ID NO:71与SEQ ID NO:72、SEQ ID NO:74与SEQ ID NO:75,以及SEQ ID NO:77与SEQ ID NO:78;
    其中所述病原体为Ca.B.cysticola时,所述第一引物与所述第二引物的序列组合选自由下列所组成之群组:SEQ ID NO:80与SEQ ID NO:81,以及SEQ ID NO:83与SEQ ID NO:84;
    其中所述病原体为微孢子虫D.lepeophtherii时,所述第一引物与所述第二引物的序列组合选自由下列所组成之群组:SEQ ID NO:86与SEQ ID NO:87、SEQ ID NO:89与SEQ ID NO:90、SEQ ID  NO:92与SEQ ID NO:93、SEQ ID NO:95与SEQ ID NO:97,以及SEQ ID NO:96与SEQ ID NO:97;
    其中所述病原体为鲑鱼腮痘病毒(SGPV)时,所述第一引物与所述第二引物的序列组合选自由下列所组成之群组:SEQ ID NO:99与SEQ ID NO:100、SEQ ID NO:102与SEQ ID NO:103、SEQ ID NO:105与SEQ ID NO:106,以及SEQ ID NO:108与SEQ ID NO:109;
    其中所述病原体为鲑鱼立克次体(P.salmonis)时,所述第一引物与所述第二引物的序列组合选自由下列所组成之群组:SEQ ID NO:111与SEQ ID NO:113、SEQ ID NO:114与SEQ ID NO:115、SEQ ID NO:116与SEQ ID NO:117、SEQ ID NO:119与SEQ ID NO:120,以及SEQ ID NO:122与SEQ ID NO:123;以及
    其中所述病原体为鲑鱼肾菌(R.salmoninarum)时,所述第一引物与所述第二引物的序列组合选自由下列所组成之群组:SEQ ID NO:126与SEQ ID NO:128、SEQ ID NO:127与SEQ ID NO:128、SEQ ID NO:130与SEQ ID NO:131、SEQ ID NO:133与SEQ ID NO:134,以及SEQ ID NO:136与SEQ ID NO:137。
  2. 如权利要求1所述的寡核苷酸对,进一步包含一寡核苷酸探针,所述寡核苷酸探针具有一寡核苷酸探针序列、一附加于所述寡核苷酸探针上的一第一位置的荧光分子,以及一附加于所述寡核苷酸探针上的一第二位置的荧光抑制分子。
  3. 如权利要求2所述的寡核苷酸对,其中所述病原体为鱼呼吸道与肠道病毒(PRV),且
    所述第一引物与所述第二引物的序列组合为SEQ ID NO:1与SEQ ID NO:2时,所述寡核苷酸探针序列为一介于所述病原体鱼呼吸道与肠道病毒(PRV)的L1区段基因的第71至第95个核苷酸之间的13至25个碱基对的寡核苷酸;
    所述第一引物与所述第二引物的序列组合为SEQ ID NO:4与SEQ ID NO:2时,所述寡核苷酸探针序列为一介于所述病原体鱼呼吸道与肠道病毒(PRV)的L1区段基因的第52至第95个核苷酸之间的13至35个碱基对的寡核苷酸;
    所述第一引物与所述第二引物的序列组合为SEQ ID NO:4与SEQ ID NO:5时,所述寡核苷酸探针序列为一介于所述病原体鱼呼吸道与肠道病毒(PRV)的L1区段基因的第52至第100个核苷酸之间的13至35个碱基对的寡核苷酸;
    所述第一引物与所述第二引物的序列组合为SEQ ID NO:6与SEQ ID NO:7时,所述寡核苷酸探针序列为一介于所述病原体鱼呼吸道与肠道病毒(PRV)的Sigma 3蛋白基因的第343至第385个核苷酸之间的13至35个碱基对的寡核苷酸;
    所述第一引物与所述第二引物的序列组合为SEQ ID NO:9与SEQ ID NO:10时,所述寡核苷酸探针序列为一介于所述病原体鱼呼吸道与肠道病毒(PRV)的Sigma 3蛋白基因的第350至第380个核苷酸之间的13至35个碱基对的寡核苷酸;以及
    所述第一引物与所述第二引物的序列组合为SEQ ID NO:11与SEQ ID NO:12时,所述寡核苷酸探针序列为一介于所述病原体鱼呼吸道与肠道病毒(PRV)的L1区段基因的第280至第315个核苷酸之间的13至35个碱基对的寡核苷酸。
  4. 如权利要求2所述的寡核苷酸对,其中所述病原体为鱼呼吸道与肠道病毒(PRV),且
    所述第一引物与所述第二引物的序列组合选自由下列所组成之群组:SEQ ID NO:1与SEQ ID NO:2、SEQ ID NO:4与SEQ ID NO:2,以及SEQ ID NO:4与SEQ ID NO:5时,所述寡核苷酸探针序列如SEQ ID NO:3所示;
    所述第一引物与所述第二引物的序列组合选自由下列所组成之群组:SEQ ID NO:6与SEQ ID NO:7,以及SEQ ID NO:9与SEQ ID NO:10时,所述寡核苷酸探针序列如SEQ ID NO:8所示;以及
    所述第一引物与所述第二引物的序列组合为SEQ ID NO:11与SEQ ID NO:12时,所述寡核苷酸探针序列如SEQ ID NO:13所示。
  5. 如权利要求2所述的寡核苷酸对,其中所述病原体为感染性胰脏坏死病毒(IPNV),且
    所述第一引物与所述第二引物的序列组合为SEQ ID NO:14与SEQ ID NO:15时,所述寡核苷酸探针序列为一介于所述病原体感染性胰脏坏死病毒(IPNV)的VP5与多聚蛋白(polyprotein)基因的第2010至第2057个核苷酸之间的13至35个碱基对的寡核苷酸;
    所述第一引物与所述第二引物的序列组合为SEQ ID NO:17与SEQ ID NO:18时,所述寡核苷酸探针序列为一介于所述病原体感染性胰脏坏死病毒(IPNV)的VP5与多聚蛋白(polyprotein)基因的第2345至第2408个核苷酸之间的13至35个碱基对的寡核苷酸;
    所述第一引物与所述第二引物的序列组合为SEQ ID NO:20与SEQ ID NO:21时,所述寡核苷酸探针序列为一介于所述病原体感染性胰脏坏死病毒(IPNV)的VP5与多聚蛋白(polyprotein)基因的第2533至第2580个核苷酸之间的13至35个碱基对的寡核苷酸;以及
    所述第一引物与所述第二引物的序列组合为SEQ ID NO:23与SEQ ID NO:24时,所述寡核苷酸探针序列为一介于所述病原体感染性胰脏坏死病毒(IPNV)的VP5与多聚蛋白(polyprotein)基因的第2775至第2818个核苷酸之间的13至35个碱基对的寡核苷酸。
  6. 如权利要求2所述的寡核苷酸对,其中所述病原体为感染性胰脏坏死病毒(IPNV),且
    所述第一引物与所述第二引物的序列组合为SEQ ID NO:14与SEQ ID NO:15时,所述寡核苷酸探针序列如SEQ ID NO:16所示;
    所述第一引物与所述第二引物的序列组合为SEQ ID NO:17与SEQ ID NO:18时,所述寡核苷酸探针序列如SEQ ID NO:19所示;
    所述第一引物与所述第二引物的序列组合为SEQ ID NO:20与SEQ ID NO:21时,所述寡核苷酸探针序列如SEQ ID NO:22所示;以及
    所述第一引物与所述第二引物的序列组合为SEQ ID NO:23与SEQ ID NO:24时,所述寡核苷酸探针序列如SEQ ID NO:25所示。
  7. 如权利要求2所述的寡核苷酸对,其中所述病原体为感染性鲑鱼贫血病毒(ISAV),且
    所述第一引物与所述第二引物的序列组合为SEQ ID NO:26与SEQ ID NO:27时,所述寡核苷酸探针序列为一介于所述病原体感染性鲑鱼贫血病毒(ISAV)的开放读码框(Open reading frame, ORF)1与ORF2基因的第282至第328个核苷酸之间的13至35个碱基对的寡核苷酸;
    所述第一引物与所述第二引物的序列组合为SEQ ID NO:29与SEQ ID NO:30时,所述寡核苷酸探针序列为一介于所述病原体感染性鲑鱼贫血病毒(ISAV)的ORF1与ORF2基因的第79至第121个核苷酸之间的13至35个碱基对的寡核苷酸;
    所述第一引物与所述第二引物的序列组合为SEQ ID NO:32与SEQ ID NO:33时,所述寡核苷酸探针序列为一介于所述病原体感染性鲑鱼贫血病毒(ISAV)的ORF1与ORF2基因的第244至第273个核苷酸之间的13至30个碱基对的寡核苷酸;
    所述第一引物与所述第二引物的序列组合为SEQ ID NO:35与SEQ ID NO:36时,所述寡核苷酸探针序列为一介于所述病原体感染性鲑鱼贫血病毒(ISAV)的ORF1与ORF2基因的第237至第272个核苷酸之间的13至35个碱基对的寡核苷酸;以及
    所述第一引物与所述第二引物的序列组合为SEQ ID NO:37与SEQ ID NO:38时,所述寡核苷酸探针序列为一介于所述病原体感染性鲑鱼贫血病毒(ISAV)的ORF1与ORF2基因的第235至第286个核苷酸之间的13至35个碱基对的寡核苷酸。
  8. 如权利要求2所述的寡核苷酸对,其中所述病原体为感染性鲑鱼贫血病毒(ISAV),且
    所述第一引物与所述第二引物的序列组合为SEQ ID NO:26与SEQ ID NO:27时,所述寡核苷酸探针序列如SEQ ID NO:28所示;
    所述第一引物与所述第二引物的序列组合为SEQ ID NO:29与SEQ ID NO:30时,所述寡核苷酸探针序列如SEQ ID NO:31所示;以及
    所述第一引物与所述第二引物的序列组合选自由下列所组成之群组:SEQ ID NO:32与SEQ ID NO:33、SEQ ID NO:35与SEQ ID NO:36,以及SEQ ID NO:37与SEQ ID NO:38时,所述寡核苷酸探针序列如SEQ ID NO:34所示。
  9. 如权利要求2所述的寡核苷酸对,其中所述病原体为鱼心肌炎病毒(PMCV),且
    所述第一引物与所述第二引物的序列组合为SEQ ID NO:39与SEQ ID NO:40时,所述寡核苷酸探针序列为一介于所述病原体鱼心肌炎病毒(PMCV)的基因组的第6266至第6306个核苷酸之间的13至35个碱基对的寡核苷酸;
    所述第一引物与所述第二引物的序列组合为SEQ ID NO:42与SEQ ID NO:43时,所述寡核苷酸探针序列为一介于所述病原体鱼心肌炎病毒(PMCV)的基因组的第5632至第5672个核苷酸之间的13至35个碱基对的寡核苷酸;
    所述第一引物与所述第二引物的序列组合为SEQ ID NO:45与SEQ ID NO:46时,所述寡核苷酸探针序列为一介于所述病原体鱼心肌炎病毒(PMCV)的基因组的第5693至第5747个核苷酸之间的13至35个碱基对的寡核苷酸;
    所述第一引物与所述第二引物的序列组合为SEQ ID NO:48与SEQ ID NO:49时,所述寡核苷酸探针序列为一介于所述病原体鱼心肌炎病毒(PMCV)的基因组的第6294至第6331个核苷酸之间的13至35个碱基对的寡核苷酸;
    所述第一引物与所述第二引物的序列组合为SEQ ID NO:51与SEQ ID NO:49时,所述寡核苷酸探针序列为一介于所述病原体鱼心肌炎病毒(PMCV)的基因组的第6271至第6331个核苷酸之间的13至35个碱基对的寡核苷酸;以及
    所述第一引物与所述第二引物的序列组合为SEQ ID NO:52与SEQ ID NO:49时,所述寡核苷酸探针序列为一介于所述病原体鱼心肌炎病毒(PMCV)的基因组的第6290至第6331个核苷酸之间的13至35个碱基对的寡核苷酸。
  10. 如权利要求2所述的寡核苷酸对,其中所述病原体为鱼心肌炎病毒(PMCV),且
    所述第一引物与所述第二引物的序列组合为SEQ ID NO:39与SEQ ID NO:40时,所述寡核苷酸探针序列如SEQ ID NO:41所示;
    所述第一引物与所述第二引物的序列组合为SEQ ID NO:42与SEQ ID NO:43时,所述寡核苷酸探针序列如SEQ ID NO:44所示;
    所述第一引物与所述第二引物的序列组合为SEQ ID NO:45与SEQ ID NO:46时,所述寡核苷酸探针序列如SEQ ID NO:47所示;以及
    所述第一引物与所述第二引物的序列组合选自由下列所组成之群组:SEQ ID NO:48与SEQ ID NO:49、SEQ ID NO:51与SEQ ID NO:49,以及SEQ ID NO:52与SEQ ID NO:49时,所述寡核苷酸探针序列如SEQ ID NO:50所示。
  11. 如权利要求2所述的寡核苷酸对,其中所述病原体为鲑鱼甲病毒(SAV),且
    所述第一引物与所述第二引物的序列组合为SEQ ID NO:53与SEQ ID NO:54时,所述寡核苷酸探针序列为一介于所述病原体鲑鱼甲病毒(SAV)的基因组的第611至第653个核苷酸之间的13至35个碱基对的寡核苷酸;
    所述第一引物与所述第二引物的序列组合为SEQ ID NO:56与SEQ ID NO:57时,所述寡核苷酸探针序列为一介于所述病原体鲑鱼甲病毒(SAV)的基因组的第145至第181个核苷酸之间的13至35个碱基对的寡核苷酸;
    所述第一引物与所述第二引物的序列组合为SEQ ID NO:59与SEQ ID NO:60时,所述寡核苷酸探针序列为一介于所述病原体鲑鱼甲病毒(SAV)的基因组的第2691至第2761个核苷酸之间的13至35个碱基对的寡核苷酸;
    所述第一引物与所述第二引物的序列组合为SEQ ID NO:62与SEQ ID NO:63时,所述寡核苷酸探针序列为一介于所述病原体鲑鱼甲病毒(SAV)的基因组的第1032至第1075个核苷酸之间的13至35个碱基对的寡核苷酸;以及
    所述第一引物与所述第二引物的序列组合为SEQ ID NO:65与SEQ ID NO:66时,所述寡核苷酸探针序列为一介于所述病原体鲑鱼甲病毒(SAV)的基因组的第969至第1011个核苷酸之间的13至35个碱基对的寡核苷酸。
  12. 如权利要求2所述的寡核苷酸对,其中所述病原体为鲑鱼甲病毒(SAV),且
    所述第一引物与所述第二引物的序列组合为SEQ ID NO:53与SEQ ID NO:54时,所述寡核苷 酸探针序列如SEQ ID NO:55所示;
    所述第一引物与所述第二引物的序列组合为SEQ ID NO:56与SEQ ID NO:57时,所述寡核苷酸探针序列如SEQ ID NO:58所示;
    所述第一引物与所述第二引物的序列组合为SEQ ID NO:59与SEQ ID NO:60时,所述寡核苷酸探针序列如SEQ ID NO:61所示;
    所述第一引物与所述第二引物的序列组合为SEQ ID NO:62与SEQ ID NO:63时,所述寡核苷酸探针序列如SEQ ID NO:64所示;以及
    所述第一引物与所述第二引物的序列组合为SEQ ID NO:65与SEQ ID NO:66时,所述寡核苷酸探针序列如SEQ ID NO:67所示。
  13. 如权利要求2所述的寡核苷酸对,其中所述病原体为佩鲁兰新副变形虫(N.perurans),且
    所述第一引物与所述第二引物的序列组合为SEQ ID NO:68与SEQ ID NO:69时,所述寡核苷酸探针序列为一介于所述病原体佩鲁兰新副变形虫(N.perurans)的18S核糖体核糖核酸(ribosomal RNA,rRNA)基因的第462至第520个核苷酸之间的13至35个碱基对的寡核苷酸;
    所述第一引物与所述第二引物的序列组合为SEQ ID NO:71与SEQ ID NO:72时,所述寡核苷酸探针序列为一介于所述病原体佩鲁兰新副变形虫(N.perurans)的18S rRNA基因的第355至第405个核苷酸之间的13至35个碱基对的寡核苷酸;
    所述第一引物与所述第二引物的序列组合为SEQ ID NO:74与SEQ ID NO:75时,所述寡核苷酸探针序列为一介于所述病原体佩鲁兰新副变形虫(N.perurans)的18S rRNA基因的第234至第281个核苷酸之间的13至35个碱基对的寡核苷酸;以及
    所述第一引物与所述第二引物的序列组合为SEQ ID NO:77与SEQ ID NO:78时,所述寡核苷酸探针序列为一介于所述病原体佩鲁兰新副变形虫(N.perurans)的18S rRNA基因的第357至第380个核苷酸之间的13至24个碱基对的寡核苷酸。
  14. 如权利要求2所述的寡核苷酸对,其中所述病原体为佩鲁兰新副变形虫(N.perurans),且
    所述第一引物与所述第二引物的序列组合为SEQ ID NO:68与SEQ ID NO:69时,所述寡核苷酸探针序列如SEQ ID NO:70所示;
    所述第一引物与所述第二引物的序列组合为SEQ ID NO:71与SEQ ID NO:72时,所述寡核苷酸探针序列如SEQ ID NO:73所示;
    所述第一引物与所述第二引物的序列组合为SEQ ID NO:74与SEQ ID NO:75时,所述寡核苷酸探针序列如SEQ ID NO:76所示;以及
    所述第一引物与所述第二引物的序列组合为SEQ ID NO:77与SEQ ID NO:78时,所述寡核苷酸探针序列如SEQ ID NO:79所示。
  15. 如权利要求2所述的寡核苷酸对,其中所述病原体为Ca.B.cysticola,且
    所述第一引物与所述第二引物的序列组合为SEQ ID NO:80与SEQ ID NO:81时,所述寡核苷酸探针序列为一介于所述病原体Ca.B.cysticola的16S核糖体核糖核酸(ribosomal RNA,rRNA)基因 的第1068至第1125个核苷酸之间的13至35个碱基对的寡核苷酸;以及
    所述第一引物与所述第二引物的序列组合为SEQ ID NO:83与SEQ ID NO:84时,所述寡核苷酸探针序列为一介于所述病原体Ca.B.cysticola的16S rRNA基因的第1212至第1241个核苷酸之间的13至30个碱基对的寡核苷酸。
  16. 如权利要求2所述的寡核苷酸对,其中所述病原体为Ca.B.cysticola,且
    所述第一引物与所述第二引物的序列组合为SEQ ID NO:80与SEQ ID NO:81时,所述寡核苷酸探针序列如SEQ ID NO:82所示;以及
    所述第一引物与所述第二引物的序列组合为SEQ ID NO:83与SEQ ID NO:84时,所述寡核苷酸探针序列如SEQ ID NO:85所示。
  17. 如权利要求2所述的寡核苷酸对,其中所述病原体为微孢子虫D.lepeophtherii,且
    所述第一引物与所述第二引物的序列组合为SEQ ID NO:86与SEQ ID NO:87时,所述寡核苷酸探针序列为一介于所述病原体微孢子虫D.lepeophtherii的16S核糖体核糖核酸(ribosomal RNA,rRNA)基因的第967至第1010个核苷酸之间的13至35个碱基对的寡核苷酸;
    所述第一引物与所述第二引物的序列组合为SEQ ID NO:89与SEQ ID NO:90时,所述寡核苷酸探针序列为一介于所述病原体微孢子虫D.lepeophtherii的16S rRNA基因的第1246至第1285个核苷酸之间的13至35个碱基对的寡核苷酸;
    所述第一引物与所述第二引物的序列组合为SEQ ID NO:92与SEQ ID NO:93时,所述寡核苷酸探针序列为一介于所述病原体微孢子虫D.lepeophtherii的16S rRNA基因的第1366至第1414个核苷酸之间的13至35个碱基对的寡核苷酸;
    所述第一引物与所述第二引物的序列组合为SEQ ID NO:95与SEQ ID NO:97时,所述寡核苷酸探针序列为一介于所述病原体微孢子虫D.lepeophtherii的16S rRNA基因的第815至第859个核苷酸之间的13至35个碱基对的寡核苷酸;以及
    所述第一引物与所述第二引物的序列组合为SEQ ID NO:96与SEQ ID NO:97时,所述寡核苷酸探针序列为一介于所述病原体微孢子虫D.lepeophtherii的16S rRNA基因的第817至第859个核苷酸之间的13至35个碱基对的寡核苷酸。
  18. 如权利要求2所述的寡核苷酸对,其中所述病原体为微孢子虫D.lepeophtherii,且
    所述第一引物与所述第二引物的序列组合为SEQ ID NO:86与SEQ ID NO:87时,所述寡核苷酸探针序列如SEQ ID NO:88所示;
    所述第一引物与所述第二引物的序列组合为SEQ ID NO:89与SEQ ID NO:90时,所述寡核苷酸探针序列如SEQ ID NO:91所示;
    所述第一引物与所述第二引物的序列组合为SEQ ID NO:92与SEQ ID NO:93时,所述寡核苷酸探针序列如SEQ ID NO:94所示;以及
    所述第一引物与所述第二引物的序列组合选自由下列所组成之群组:SEQ ID NO:95与SEQ ID NO:97,以及SEQ ID NO:96与SEQ ID NO:97时,所述寡核苷酸探针序列如SEQ ID NO:98所示。
  19. 如权利要求2所述的寡核苷酸对,其中所述病原体为鲑鱼腮痘病毒(SGPV),且
    所述第一引物与所述第二引物的序列组合为SEQ ID NO:99与SEQ ID NO:100时,所述寡核苷酸探针序列为一介于所述病原体鲑鱼腮痘病毒(SGPV)的基因组的第99272至第99318个核苷酸之间的13至35个碱基对的寡核苷酸;
    所述第一引物与所述第二引物的序列组合为SEQ ID NO:102与SEQ ID NO:103时,所述寡核苷酸探针序列为一介于所述病原体鲑鱼腮痘病毒(SGPV)的基因组的第123213至第123239个核苷酸之间的13至27个碱基对的寡核苷酸;
    所述第一引物与所述第二引物的序列组合为SEQ ID NO:105与SEQ ID NO:106时,所述寡核苷酸探针序列为一介于所述病原体鲑鱼腮痘病毒(SGPV)的基因组的第123202至第123232个核苷酸之间的13至30个碱基对的寡核苷酸;以及
    所述第一引物与所述第二引物的序列组合为SEQ ID NO:108与SEQ ID NO:109时,所述寡核苷酸探针序列为一介于所述病原体鲑鱼腮痘病毒(SGPV)的基因组的第123556至第123610个核苷酸之间的13至35个碱基对的寡核苷酸。
  20. 如权利要求2所述的寡核苷酸对,其中所述病原体为鲑鱼腮痘病毒(SGPV),且
    所述第一引物与所述第二引物的序列组合为SEQ ID NO:99与SEQ ID NO:100时,所述寡核苷酸探针序列如SEQ ID NO:101所示;
    所述第一引物与所述第二引物的序列组合为SEQ ID NO:102与SEQ ID NO:103时,所述寡核苷酸探针序列如SEQ ID NO:104所示;
    所述第一引物与所述第二引物的序列组合为SEQ ID NO:105与SEQ ID NO:106时,所述寡核苷酸探针序列如SEQ ID NO:107所示;以及
    所述第一引物与所述第二引物的序列组合为SEQ ID NO:108与SEQ ID NO:109时,所述寡核苷酸探针序列如SEQ ID NO:110所示。
  21. 如权利要求2所述的寡核苷酸对,其中所述病原体为鲑鱼立克次体(P.salmonis),且
    所述第一引物与所述第二引物的序列组合为SEQ ID NO:111与SEQ ID NO:112时,所述寡核苷酸探针序列为一介于所述病原体鲑鱼立克次体(P.salmonis)的16S核糖体核糖核酸(ribosomal RNA,rRNA)基因的第952至第1065个核苷酸之间的13至35个碱基对的寡核苷酸;
    所述第一引物与所述第二引物的序列组合为SEQ ID NO:114与SEQ ID NO:115时,所述寡核苷酸探针序列为一介于所述病原体鲑鱼立克次体(P.salmonis)的16S rRNA基因的第1014至第1050个核苷酸之间的13至35个碱基对的寡核苷酸;
    所述第一引物与所述第二引物的序列组合为SEQ ID NO:116与SEQ ID NO:117时,所述寡核苷酸探针序列为一介于所述病原体鲑鱼立克次体(P.salmonis)的16S rRNA基因的第315至第331个核苷酸之间的13至17个碱基对的寡核苷酸;
    所述第一引物与所述第二引物的序列组合为SEQ ID NO:119与SEQ ID NO:120时,所述寡核苷酸探针序列为一介于所述病原体鲑鱼立克次体(P.salmonis)的16S rRNA基因的第529至第545个 核苷酸之间的13至17个碱基对的寡核苷酸;以及
    所述第一引物与所述第二引物的序列组合为SEQ ID NO:122与SEQ ID NO:123时,所述寡核苷酸探针序列为一介于所述病原体鲑鱼立克次体(P.salmonis)的16S rRNA基因的第1181至第1200个核苷酸之间的13至20个碱基对的寡核苷酸。
  22. 如权利要求2所述的寡核苷酸对,其中所述病原体为鲑鱼立克次体(P.salmonis),且
    所述第一引物与所述第二引物的序列组合选自由下列所组成之群组:SEQ ID NO:111与SEQ ID NO:112,以及SEQ ID NO:114与SEQ ID NO:115时,所述寡核苷酸探针序列如SEQ ID NO:113所示;
    所述第一引物与所述第二引物的序列组合为SEQ ID NO:116与SEQ ID NO:117时,所述寡核苷酸探针序列如SEQ ID NO:118所示;
    所述第一引物与所述第二引物的序列组合为SEQ ID NO:119与SEQ ID NO:120时,所述寡核苷酸探针序列如SEQ ID NO:121所示;以及
    所述第一引物与所述第二引物的序列组合为SEQ ID NO:122与SEQ ID NO:123时,所述寡核苷酸探针序列如SEQ ID NO:124所示。
  23. 如权利要求2所述的寡核苷酸对,其中所述病原体为鲑鱼肾菌(R.salmoninarum),且
    所述第一引物与所述第二引物的序列组合为SEQ ID NO:125与SEQ ID NO:128时,所述寡核苷酸探针序列为一介于所述病原体鲑鱼肾菌(R.salmoninarum)的57KD细胞外蛋白前体(extracellular protein precursor,ECP)基因的第1035至第1065个核苷酸之间的13至31个碱基对的寡核苷酸;
    所述第一引物与所述第二引物的序列组合为SEQ ID NO:126与SEQ ID NO:128时,所述寡核苷酸探针序列为一介于所述病原体鲑鱼肾菌(R.salmoninarum)的57KD细胞外蛋白前体(ECP)基因的第1024至第1065个核苷酸之间的13至35个碱基对的寡核苷酸;
    所述第一引物与所述第二引物的序列组合为SEQ ID NO:127与SEQ ID NO:128时,所述寡核苷酸探针序列为一介于所述病原体鲑鱼肾菌(R.salmoninarum)的57KD细胞外蛋白前体(ECP)基因的第1037至第1065个核苷酸之间的13至29个碱基对的寡核苷酸;
    所述第一引物与所述第二引物的序列组合为SEQ ID NO:130与SEQ ID NO:131时,所述寡核苷酸探针序列为一介于所述病原体鲑鱼肾菌(R.salmoninarum)的57KD细胞外蛋白前体(ECP)基因的第782至第806个核苷酸之间的13至25个碱基对的寡核苷酸;
    所述第一引物与所述第二引物的序列组合为SEQ ID NO:133与SEQ ID NO:134时,所述寡核苷酸探针序列为一介于所述病原体鲑鱼肾菌(R.salmoninarum)的57KD细胞外蛋白前体(ECP)基因的第880至第964个核苷酸之间的13至35个碱基对的寡核苷酸;以及
    所述第一引物与所述第二引物的序列组合为SEQ ID NO:136与SEQ ID NO:137时,所述寡核苷酸探针序列为一介于所述病原体鲑鱼肾菌(R.salmoninarum)的57KD细胞外蛋白前体(ECP)基因的第646至第738个核苷酸之间的13至35个碱基对的寡核苷酸。
  24. 如权利要求2所述的寡核苷酸对,其中所述病原体为鲑鱼肾菌(R.salmoninarum),且
    所述第一引物与所述第二引物的序列组合选自由下列所组成之群组:SEQ ID NO:125与SEQ ID NO:128、SEQ ID NO:126与SEQ ID NO:128,以及SEQ ID NO:127与SEQ ID NO:128时,所述寡核苷酸探针序列如SEQ ID NO:129所示;
    所述第一引物与所述第二引物的序列组合为SEQ ID NO:130与SEQ ID NO:131时,所述寡核苷酸探针序列如SEQ ID NO:132所示;
    所述第一引物与所述第二引物的序列组合为SEQ ID NO:133与SEQ ID NO:134时,所述寡核苷酸探针序列如SEQ ID NO:135所示;以及
    所述第一引物与所述第二引物的序列组合为SEQ ID NO:136与SEQ ID NO:137时,所述寡核苷酸探针序列如SEQ ID NO:138所示。
PCT/CN2019/108518 2018-10-05 2019-09-27 鱼病原体检测方法 WO2020069656A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP19868650.3A EP3862443A4 (en) 2018-10-05 2019-09-27 PROCEDURE FOR DETECTING FISH PATHOGENS

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201862741635P 2018-10-05 2018-10-05
US62/741,635 2018-10-05

Publications (1)

Publication Number Publication Date
WO2020069656A1 true WO2020069656A1 (zh) 2020-04-09

Family

ID=70054939

Family Applications (3)

Application Number Title Priority Date Filing Date
PCT/CN2019/108523 WO2020069658A1 (zh) 2018-10-05 2019-09-27 鱼病原体检测方法
PCT/CN2019/108521 WO2020069657A1 (zh) 2018-10-05 2019-09-27 虾病原体检测方法
PCT/CN2019/108518 WO2020069656A1 (zh) 2018-10-05 2019-09-27 鱼病原体检测方法

Family Applications Before (2)

Application Number Title Priority Date Filing Date
PCT/CN2019/108523 WO2020069658A1 (zh) 2018-10-05 2019-09-27 鱼病原体检测方法
PCT/CN2019/108521 WO2020069657A1 (zh) 2018-10-05 2019-09-27 虾病原体检测方法

Country Status (5)

Country Link
EP (1) EP3862443A4 (zh)
CN (3) CN111004865A (zh)
CL (1) CL2021000615A1 (zh)
TW (5) TWI817777B (zh)
WO (3) WO2020069658A1 (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112068301A (zh) * 2020-08-11 2020-12-11 江苏省海洋水产研究所 一种显微染色鉴别肝肠胞虫的方法及其专用装置
CN112957392B (zh) * 2021-03-04 2022-03-08 上海联旺水产科技有限公司 用于防治对虾虾肝肠胞虫病的制剂及其制备方法与用途
CN113234814B (zh) * 2021-06-29 2023-08-22 江苏海洋大学 一种用于同时检测虾急性肝胰腺坏死症和肝肠孢子虫的多重rpa引物和探针组合物及检测方法
CN113913543B (zh) * 2021-10-28 2023-09-22 天津市动物疫病预防控制中心 Ehp实时荧光定量pcr检测引物探针组合、试剂盒及方法
CN113755648B (zh) * 2021-10-28 2024-02-20 天津市动物疫病预防控制中心 Wssv实时荧光定量pcr检测引物探针组合、试剂盒及方法
CN116179763A (zh) * 2023-01-04 2023-05-30 中国海洋大学三亚海洋研究院 一种基于era技术的基因ⅰ型和基因ⅱ型黄头病毒多重快速检测方法及检测用引物和探针

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5538848A (en) 1994-11-16 1996-07-23 Applied Biosystems Division, Perkin-Elmer Corp. Method for detecting nucleic acid amplification using self-quenching fluorescence probe
WO2008003734A1 (en) * 2006-07-06 2008-01-10 Intervet International B.V. Combination vaccine against streptococcus
US7413708B2 (en) 1995-05-05 2008-08-19 Applied Biosystems Inc. Methods and reagents for combined PCR amplification
US8187813B2 (en) 2008-01-24 2012-05-29 Medigen Biotechnology Corp. Methods and apparatuses for convective polymerase chain reaction (PCR)
CN105018593A (zh) * 2014-04-18 2015-11-04 富创蓝图有限公司 冷水鱼病原菌检测方法
EP3241909A1 (en) * 2014-12-30 2017-11-08 Universidad De Chile Pcr-rflp-based method for identifying, and determining the purity of piscirickettsia salmonis
CN107430131A (zh) * 2014-12-22 2017-12-01 生物群组有限公司 确定鱼中病理组织损伤和诊断鱼中感染性疾病的方法

Family Cites Families (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5315519B2 (ja) * 2006-04-13 2013-10-16 国立大学法人東京海洋大学 コイヘルペスウイルス(khv)の検出方法
WO2008024294A2 (en) * 2006-08-24 2008-02-28 E. I. Du Pont De Nemours And Company Sequences diagnostic for shrimp pathogens
WO2008024292A1 (en) * 2006-08-24 2008-02-28 E. I. Du Pont De Nemours And Company Sequences diagnostic for shrimp pathogens
WO2008024293A1 (en) * 2006-08-24 2008-02-28 E. I. Du Pont De Nemours And Company Sequences diagnostic for shrimp pathogens
CN101240351B (zh) * 2008-03-20 2010-12-01 山东出入境检验检疫局检验检疫技术中心 淋巴囊肿病毒的实时定量pcr检测方法
CA2776386C (en) * 2009-10-02 2018-02-27 The Trustees Of Columbia University In The City Of New York Piscine reovirus immunogenic compositions
CN102115786B (zh) * 2010-01-04 2013-02-20 深圳出入境检验检疫局动植物检验检疫技术中心 鲑鱼肾杆菌实时荧光rt-pcr检测方法和试剂盒
EP2560985B1 (en) * 2010-04-21 2016-06-29 Pharmaq AS Nucleic acid sequences of a fish virus and the use thereof
CN102559484B (zh) * 2012-01-31 2015-12-16 鲁东大学 对虾传染性肌肉坏死病毒荧光定量pcr检测试剂盒及检测方法
CN102912040B (zh) * 2012-10-31 2014-04-16 广西壮族自治区兽医研究所 检测对虾白斑综合征病毒的环介导等温扩增引物及其应用
CN102912041B (zh) * 2012-11-06 2014-10-01 厦门出入境检验检疫局检验检疫技术中心 一种用于检测对虾五种病毒的引物、液相芯片及其用途
WO2015051456A1 (en) * 2013-10-08 2015-04-16 University Of Prince Edward Island Multiplex diagnostic assay for detecting salmonid pathogens
CN103540687B (zh) * 2013-10-16 2015-03-04 广州迪澳生物科技有限公司 对虾白斑综合症病毒(wssv)的lamp检测引物组及试剂盒
MX2014003938A (es) * 2014-04-01 2015-09-30 Univ Nac Autónoma De México Macroarreglos para deteccion en muestras ambientales y biologicas de microorganismos enteropatogenos.
TWI498335B (zh) * 2014-06-24 2015-09-01 Univ Nat Cheng Kung 專一性檢測急性肝胰腺壞死病致病原毒素之引子對、方法及用途
CN104846098A (zh) * 2015-05-21 2015-08-19 广州金水动物保健品有限公司 一种试剂盒及检测方法
CN105039593A (zh) * 2015-06-15 2015-11-11 浙江省海洋开发研究院 一种对虾白斑病综合症病毒的快速检测试剂盒及应用
CN105002303B (zh) * 2015-08-23 2017-05-31 青岛农业大学 一种检测淋巴囊肿病毒的pcr方法
CN105368985A (zh) * 2015-12-10 2016-03-02 国家海洋局第三海洋研究所 对虾tsv和imnv荧光定量检测引物和探针及试剂盒
CN105567875A (zh) * 2016-03-03 2016-05-11 国家海洋局第三海洋研究所 一种同时检测对虾imnv、yhv和tsv的多重pcr检测引物及试剂盒
CN106048022A (zh) * 2016-06-16 2016-10-26 徐锦余 一种检测虾肝肠胞虫的试剂盒
CN106636471B (zh) * 2017-01-16 2020-04-24 山东省海洋生物研究院 同时检测对虾wssv、ahpnd、ehp、ihhnv的多重pcr检测试剂盒
CN106591474A (zh) * 2017-01-19 2017-04-26 浙江省淡水水产研究所 一种虾肝肠微孢子虫lamp检测试剂盒
CN107012258B (zh) * 2017-03-22 2020-09-18 中国水产科学研究院南海水产研究所 用于检测鱼类病毒性神经坏死病毒的引物组以及探针序列
CN107365858A (zh) * 2017-08-22 2017-11-21 中国科学院海洋研究所 脊尾白虾感染wssv后检测健康状态lamp检测引物及体系与方法
CN107488730A (zh) * 2017-09-30 2017-12-19 厦门出入境检验检疫局检验检疫技术中心 一种用于我国对虾虾肝肠孢虫检测的荧光检测试剂盒
CN107988325B (zh) * 2017-11-10 2021-06-25 杭州众测生物科技有限公司 虾肝肠胞虫(ehp)的raa恒温荧光检测方法及试剂
CN108018378A (zh) * 2017-12-11 2018-05-11 中国水产科学研究院珠江水产研究所 一种罗湖病毒Taq-man探针荧光定量PCR检测试剂盒及检测方法
CN108220483A (zh) * 2018-02-12 2018-06-29 深圳出入境检验检疫局动植物检验检疫技术中心 一种用于罗非鱼湖病毒检测的试剂、检测方法及应用

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5538848A (en) 1994-11-16 1996-07-23 Applied Biosystems Division, Perkin-Elmer Corp. Method for detecting nucleic acid amplification using self-quenching fluorescence probe
US5723591A (en) 1994-11-16 1998-03-03 Perkin-Elmer Corporation Self-quenching fluorescence probe
US5876930A (en) 1994-11-16 1999-03-02 Perkin-Elmer Corporation Hybridization assay using self-quenching fluorescence probe
US7413708B2 (en) 1995-05-05 2008-08-19 Applied Biosystems Inc. Methods and reagents for combined PCR amplification
WO2008003734A1 (en) * 2006-07-06 2008-01-10 Intervet International B.V. Combination vaccine against streptococcus
US8187813B2 (en) 2008-01-24 2012-05-29 Medigen Biotechnology Corp. Methods and apparatuses for convective polymerase chain reaction (PCR)
CN105018593A (zh) * 2014-04-18 2015-11-04 富创蓝图有限公司 冷水鱼病原菌检测方法
CN107430131A (zh) * 2014-12-22 2017-12-01 生物群组有限公司 确定鱼中病理组织损伤和诊断鱼中感染性疾病的方法
EP3241909A1 (en) * 2014-12-30 2017-11-08 Universidad De Chile Pcr-rflp-based method for identifying, and determining the purity of piscirickettsia salmonis

Non-Patent Citations (9)

* Cited by examiner, † Cited by third party
Title
"GenBank", Database accession no. AY498634
A H GARSETH, E BIERING, T TENGS: "Piscine Myocarditis Virus (PMCV) in Wild Atlantic Salmon Salmo Salar", DISEASES OF AQUATIC ORGANISMS, vol. 102, no. 2, 27 December 2012 (2012-12-27), pages 157 - 161, XP055492066, ISSN: 0177-5103, DOI: 10.3354/dao02536 *
àH GARSETH, M C GJESSING, T MOLDAL, A G GJEVRE: "A Survey of Salmon Gill Poxvirus (SGPV) in Wild Salmonids in Norway", JOURNAL OF FISH DISEASES, vol. 41, no. 1, 1 January 2018 (2018-01-01), pages 139 - 145, XP055701423, ISSN: 0140-7775, DOI: 10.1111/jfd.12688 *
HOLLAND ET AL., PROC. NATL. ACAD. SCI, U.S.A., vol. 88, 1991, pages 7276 - 7280
See also references of EP3862443A4
SHI XIUJIE , YU LI , WANG JINJIN , HE JUNQIANG , ZHENG XIACONG , JIA PENG , LAN WENSHENG , YANG JINSHUN , LIU HONG : "The Detection of Infectious Salmon Anaemia Virus Using Real-Time Fluorescent Loop-Mediated Isothermal Amplification", PROGRESS IN FISHERY SCIENCES, vol. 35, no. 4, 15 August 2014 (2014-08-15), pages 51 - 58, XP055789328, ISSN: 1000-7075, DOI: 10.11758/yykxjz.20140408 *
SIMON CHIOMA WELI, DALE OLE BENDIK, HANSEN HAAKON, GJESSING MONA CECILIE, RONNEBERG LIV BIRTE, FALK KNUT: "A Case Study of Desmozoon lepeophtherii Infection in Farmed Atlantic Salmon Associated with Gill Disease, Peritonitis, Intestinal Infection, Stunted Growth, and Increased Mortality", PARASITES & VECTORS, vol. 10, no. 1, 2 August 2017 (2017-08-02), pages 1 - 13, XP055701422, DOI: 10.1186/s13071-017-2303-5 *
TAKANITSU SAKAI , AKIRA KUMAGAI , HIROTO OHTA , NORIHISA OSEKO , MOTOHIKO SANO , TARAJI LIDA : "Improvement of PCR Targeting 16S Ribosomal DNA of Piscirickettsia salmonis", FISH PATHOLOGY, vol. 45, no. 3, 31 December 2010 (2010-12-31), pages 140 - 142, XP055701426, DOI: 10.3147/jsfp.45.140 *
YU KAIKANG, WANG YUNZHO: "Prevention and Treatment Technology of Common Diseases of Marine Fish in China", FISHERY MODERNIZATION, vol. 35, no. 6, 31 December 2003 (2003-12-31), pages 25 - 26+31, XP009526601 *

Also Published As

Publication number Publication date
TW202014524A (zh) 2020-04-16
CN111004864A (zh) 2020-04-14
EP3862443A4 (en) 2022-10-12
TWI732303B (zh) 2021-07-01
TWI784467B (zh) 2022-11-21
WO2020069658A1 (zh) 2020-04-09
CN111004863A (zh) 2020-04-14
TWI817777B (zh) 2023-10-01
EP3862443A1 (en) 2021-08-11
TW202132574A (zh) 2021-09-01
TWI727444B (zh) 2021-05-11
TW202014525A (zh) 2020-04-16
TW202309278A (zh) 2023-03-01
TW202024338A (zh) 2020-07-01
CN111004865A (zh) 2020-04-14
CL2021000615A1 (es) 2021-07-23
WO2020069657A1 (zh) 2020-04-09
TWI730432B (zh) 2021-06-11

Similar Documents

Publication Publication Date Title
TWI732303B (zh) 一種用於偵測魚心肌炎病毒(Piscine myocarditis virus,PMCV)的寡核苷酸對及探針
Sun et al. Sensitive and rapid detection of infectious hypodermal and hematopoietic necrosis virus (IHHNV) in shrimps by loop-mediated isothermal amplification
TWI731425B (zh) 一種用於偵測非洲豬瘟病毒的寡核苷酸對及探針
TWI660176B (zh) 冷水魚病原菌魚呼吸道與腸道病毒檢測方法
US11434529B2 (en) PCR assays for specific detection of enterocytozoon hepatopenaei
KR101503511B1 (ko) 흰반점 증후군 바이러스 진단용 프라이머 세트, 이를 포함하는 진단용 조성물, 및 진단용 키트
TW202239971A (zh) 可分辨非洲豬瘟野毒株與疫苗株病毒的檢測方法
CN115161413A (zh) 可区分非洲猪瘟野毒株与疫苗株病毒的检测方法
TW201814053A (zh) 檢測黃頭病毒基因一型的遺傳標記以及使用其檢測黃頭病毒基因一型的方法
CN114075613A (zh) 家禽病原菌的检测方法
Kamimura et al. Evaluation of quenching probe (QProbe)-PCR assay for quantification of the koi herpes virus (KHV)

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19868650

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2019868650

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2019868650

Country of ref document: EP

Effective date: 20210506