WO2020066561A1 - 重合体の製造方法、及び重合体を製造するフロー式反応システム - Google Patents

重合体の製造方法、及び重合体を製造するフロー式反応システム Download PDF

Info

Publication number
WO2020066561A1
WO2020066561A1 PCT/JP2019/035317 JP2019035317W WO2020066561A1 WO 2020066561 A1 WO2020066561 A1 WO 2020066561A1 JP 2019035317 W JP2019035317 W JP 2019035317W WO 2020066561 A1 WO2020066561 A1 WO 2020066561A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid
reaction
flow path
polymer
merging
Prior art date
Application number
PCT/JP2019/035317
Other languages
English (en)
French (fr)
Inventor
和田 健二
秀樹 松本
圭 原田
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Priority to CN201980063924.7A priority Critical patent/CN112867739B/zh
Priority to EP19867628.0A priority patent/EP3858870A4/en
Priority to JP2020548344A priority patent/JP7012866B2/ja
Publication of WO2020066561A1 publication Critical patent/WO2020066561A1/ja
Priority to US17/210,514 priority patent/US20210206886A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/04Polymerisation in solution
    • C08F2/06Organic solvent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/0093Microreactors, e.g. miniaturised or microfabricated reactors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/18Stationary reactors having moving elements inside
    • B01J19/1812Tubular reactors
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F112/00Homopolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring
    • C08F112/02Monomers containing only one unsaturated aliphatic radical
    • C08F112/04Monomers containing only one unsaturated aliphatic radical containing one ring
    • C08F112/14Monomers containing only one unsaturated aliphatic radical containing one ring substituted by hetero atoms or groups containing heteroatoms
    • C08F112/22Oxygen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/01Processes of polymerisation characterised by special features of the polymerisation apparatus used
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/38Polymerisation using regulators, e.g. chain terminating agents, e.g. telomerisation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/38Polymerisation using regulators, e.g. chain terminating agents, e.g. telomerisation
    • C08F2/42Polymerisation using regulators, e.g. chain terminating agents, e.g. telomerisation using short-stopping agents
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/56Organo-metallic compounds, i.e. organic compounds containing a metal-to-carbon bond
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00781Aspects relating to microreactors
    • B01J2219/00788Three-dimensional assemblies, i.e. the reactor comprising a form other than a stack of plates
    • B01J2219/00792One or more tube-shaped elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00781Aspects relating to microreactors
    • B01J2219/00788Three-dimensional assemblies, i.e. the reactor comprising a form other than a stack of plates
    • B01J2219/00792One or more tube-shaped elements
    • B01J2219/00795Spiral-shaped
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00781Aspects relating to microreactors
    • B01J2219/00819Materials of construction
    • B01J2219/00822Metal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00781Aspects relating to microreactors
    • B01J2219/00819Materials of construction
    • B01J2219/00824Ceramic
    • B01J2219/00826Quartz
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00781Aspects relating to microreactors
    • B01J2219/00819Materials of construction
    • B01J2219/00831Glass
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00781Aspects relating to microreactors
    • B01J2219/00819Materials of construction
    • B01J2219/00833Plastic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00781Aspects relating to microreactors
    • B01J2219/00851Additional features
    • B01J2219/00858Aspects relating to the size of the reactor
    • B01J2219/0086Dimensions of the flow channels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00781Aspects relating to microreactors
    • B01J2219/00873Heat exchange
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00781Aspects relating to microreactors
    • B01J2219/00889Mixing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00781Aspects relating to microreactors
    • B01J2219/00891Feeding or evacuation
    • B01J2219/00894More than two inlets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F12/00Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring
    • C08F12/02Monomers containing only one unsaturated aliphatic radical
    • C08F12/04Monomers containing only one unsaturated aliphatic radical containing one ring
    • C08F12/06Hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F12/00Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring
    • C08F12/02Monomers containing only one unsaturated aliphatic radical
    • C08F12/04Monomers containing only one unsaturated aliphatic radical containing one ring
    • C08F12/06Hydrocarbons
    • C08F12/08Styrene

Definitions

  • the present invention relates to a method for producing a polymer.
  • the present invention also relates to a flow reaction system used for producing a polymer.
  • Living anionic polymerization is known as a method that can realize a precise polymerization reaction in the synthesis of polymers having special structures such as monodisperse polymers, block copolymers, terminal functionalized polymers, multibranched polymers, and cyclic polymers. I have. Living anionic polymerization is usually performed in a batch mode. However, when the living anionic polymerization is performed in a batch system, it is necessary to suppress the heat generated during the polymerization, thereby suppressing a chain transfer reaction and a termination reaction, which are side reactions, and the polymerization reaction is performed at an extremely low temperature.
  • the polymerization reaction is carried out by mixing the anionic polymerizable monomer and the anionic polymerization initiator while cooling the mixture to ⁇ 78 ° C. or lower. Therefore, ultra low temperature cooling equipment is required for performing the living anion polymerization by the batch method, which is not suitable for mass production. Moreover, living anionic polymerization by a batch method is performed under mechanical stirring. Therefore, local unevenness of the monomer or the polymerization initiator is likely to occur in the reaction system. Therefore, in the living anionic polymerization by the batch method, there are limitations on the improvement of the degree of dispersion of the obtained polymer, the monomer conversion, and the like.
  • Patent Literature 1 in anion polymerization of an ⁇ -alkylstyrene monomer by a flow reaction, first, a raw material solution obtained by mixing a monomer and an initiator is adjusted to a certain high temperature to activate the monomer, and then, This raw material solution is rapidly cooled to a specific temperature range in which polymerization can be performed while flowing through the flow path to perform polymerization, whereby a polymer having a high molecular weight and a more monodispersed molecular weight distribution can be obtained.
  • a flow reactor such as a microreactor
  • the polymerization method described in Patent Document 1 excellent effects can be obtained in increasing the molecular weight of the obtained polymer and making the molecular weight distribution monodisperse.
  • the polymerization method described in Patent Document 1 may have a low monomer conversion rate, and the production efficiency and reproduction of the polymer may be poor. It has been found that the situation is not yet satisfactory in terms of properties and that further improvement in the monodispersity of the resulting polymer is limited even if the conditions are optimized.
  • the present invention provides a method for producing a polymer capable of obtaining a highly monodispersed polymer having a high molecular weight distribution in a living anionic polymerization using a flow reaction at an excellent monomer conversion rate. Make it an issue.
  • Another object of the present invention is to provide a flow-type reaction system suitable for carrying out the above production method.
  • a method for producing a polymer that performs an anionic polymerization reaction by a flow reaction The above manufacturing method Liquid A containing an anionic polymerizable monomer and a non-polar solvent, liquid B containing an anionic polymerization initiator and a non-polar solvent, liquid C containing a polar solvent, and a polymerization terminator are introduced into different flow paths, respectively.
  • [7] The sum of the number of flow paths through which the liquid A circulates and the number of flow paths through which the liquid B circulates, which is connected to the junction of the liquid A and the liquid B, is 3 to 10; [6] The method for producing a polymer according to any one of [6]. [8] The method according to any one of [1] to [7], wherein at least one of an organic lithium compound and an organic magnesium compound is used as the anionic polymerization initiator. [9] The method according to any one of [1] to [8], wherein an alkyl lithium is used as the anionic polymerization initiator. [10] The method according to any one of [1] to [9], wherein n-butyllithium is used as the anionic polymerization initiator.
  • a flow reaction system for producing a polymer by an anionic polymerization reaction A first flow path through which a liquid A containing an anionic polymerizable monomer and a non-polar solvent flows, a second flow path through which a liquid B containing an anionic polymerization initiator and a non-polar solvent flows, and a liquid C containing a polar solvent Flow path, a fourth flow path through which the polymerization terminator flows, a first junction where the first flow path and the second flow path merge, and a pre-flow path connected downstream of the first junction.
  • the combined liquid M ABC of the combined liquid M AB and the liquid C combined at the second combined portion is smaller than the polarity of the solvent of the combined liquid M AB of the liquid A and the liquid B combined at the first combined portion.
  • a flow-type reaction system that increases the polarity of the solvent.
  • a numerical range represented by using “to” means a range including numerical values described before and after “to” as a lower limit and an upper limit.
  • a connection part between flow paths, a connection part between a flow path and a junction, and a connection part between a flow path and a mixer Is the size excluding. That is, the size of each of the connection portions is appropriately adjusted using a connection tube or the like so that the fluid flows from the upstream to the downstream in the connection portion.
  • a polymer having a high molecular weight distribution and a high degree of monodispersion can be obtained at an excellent monomer conversion rate.
  • the flow-type reaction system of the present invention can obtain a polymer having a high molecular weight distribution and a high degree of monomer conversion by performing the above-described production method using the flow-type reaction system.
  • FIG. 1 is a schematic diagram showing an example of a flow type reaction system used in the production method of the present invention.
  • the flow-type reaction system (100) shown in FIG. 1 has an anion-polymerizable polymer having an inlet (I) for introducing a liquid containing an anion-polymerizable monomer and a non-polar solvent (hereinafter, also referred to as “liquid A”).
  • a monomer supply flow path (1) an anion polymerization initiator supply flow path having an inlet (II) for introducing a liquid containing an anionic polymerization initiator and a non-polar solvent (hereinafter, also referred to as “liquid B”) ( 2), a polar solvent supply channel (3) having an inlet (III) for introducing a liquid containing a polar solvent (hereinafter also referred to as "liquid C”), and an inlet (IV) for introducing a polymerization terminator.
  • inlet (II) for introducing a liquid containing an anionic polymerization initiator and a non-polar solvent
  • liquid B non-polar solvent
  • polar solvent supply channel (3) having an inlet (III) for introducing a liquid containing a polar solvent (hereinafter also referred to as "liquid C"), and an inlet (IV) for introducing a polymerization terminator.
  • each of the inlets (I), (II), (III) and (IV) is usually connected to a liquid feed pump (not shown) such as a syringe pump, and by operating this pump, The liquid A, the liquid B, the liquid C, and the polymerization terminator may be in a form of flowing through each flow path.
  • a liquid feed pump such as a syringe pump
  • upstream and downstream are used in the direction in which the liquid flows, and the side where the liquid is introduced (in FIG. 1, the inlets (I), (II), (III) and (III) IV) side) is upstream and the opposite side is downstream.
  • the inlets (I), (II), (III) and (III) IV) side is upstream and the opposite side is downstream.
  • the anion-polymerizable monomer supply channel (1) is a channel for supplying the liquid A introduced from the inlet (I) to the junction (J1).
  • the anion-polymerizable monomer supply channel (1) preferably has an equivalent diameter of 1 to 10 mm.
  • the equivalent diameter of the anion-polymerizable monomer supply channel (1) is more preferably 1 to 8 mm, and still more preferably 1 to 6 mm.
  • the “equivalent diameter” is also referred to as an equivalent (straight) diameter and is a term used in the field of mechanical engineering. When assuming a circular pipe equivalent to a pipe or a flow path having an arbitrary cross-sectional shape inside the pipe, the diameter of the cross-section of the pipe of the equivalent circular pipe is called an equivalent diameter.
  • the equivalent diameter is used to estimate the flow or heat transfer characteristics of the pipe based on the data of the equivalent circular pipe, and represents the spatial scale (representative length) of the phenomenon.
  • the length of the anion-polymerizable monomer supply channel (1) there is no particular limitation on the length of the anion-polymerizable monomer supply channel (1), and for example, it can be constituted by a tube having a length of about 10 cm to 15 m (preferably 30 cm to 10 m).
  • the material of the tube is not particularly limited.
  • perfluoroalkoxyalkane (PFA), Teflon (registered trademark), aromatic polyetherketone resin, stainless steel, copper or copper alloy, nickel or nickel alloy, titanium or titanium alloy Examples include quartz glass and lime soda glass.
  • the material of the tube is preferably PFA, Teflon (registered trademark), stainless steel, a nickel alloy, or titanium.
  • the flow rate at which the liquid A is introduced from the inlet (I) is not particularly limited, and can be appropriately selected according to the purpose in consideration of the equivalent diameter of the flow path, the concentration of the liquid B, the introduction flow rate of the liquid B, and the like. .
  • 1 to 4000 mL / min is preferable, 5 to 3000 mL / min is more preferable, and 50 to 3000 mL / min is further preferable.
  • the flow rate for introducing the liquid A may be 5 to 2000 mL / min, 10 to 1000 mL / min, 20 to 800 mL / min, or 40 to 600 mL / min.
  • the liquid A flowing through the anion-polymerizable monomer supply channel (1) is usually a solution obtained by dissolving the anion-polymerizable monomer in a solvent containing a non-polar solvent.
  • non-polar solvent means a hydrocarbon solvent.
  • the non-polar solvent contained in the liquid A include hexane, heptane, octane, cyclohexane, methylcyclohexane, benzene, toluene, xylene, decalin, tetralin, and derivatives thereof.
  • the non-polar solvent contained in the liquid A preferably contains at least one of an aromatic hydrocarbon and a saturated hydrocarbon.
  • the total proportion of the aromatic hydrocarbon and the saturated hydrocarbon in the nonpolar solvent is preferably 50% by mass or more, more preferably 70% by mass or more, further preferably 80% by mass or more, and more preferably 90% by mass or more. More preferred.
  • the non-polar solvent is at least one of an aromatic hydrocarbon and a saturated hydrocarbon.
  • This aromatic hydrocarbon is preferably at least one of toluene and xylene, more preferably toluene.
  • the saturated hydrocarbon is preferably at least one of hexane, heptane and cyclohexane, more preferably hexane.
  • the non-polar solvent contained in the liquid B is more preferably at least one of toluene and hexane.
  • Liquid A may further contain a polar solvent as long as it contains a non-polar solvent.
  • the “polar solvent” is a solvent (non-hydrocarbon solvent) having atoms other than carbon atoms and other than hydrogen atoms (hetero atoms, for example, oxygen atoms, sulfur atoms, nitrogen atoms, etc.) as constituent atoms. .
  • the liquid A may be appropriately selected according to the type of the monomer to be used, and examples thereof include an ether solvent (linear, branched, or cyclic ether solvent).
  • ether solvent examples include tetrahydrofuran, dioxane, trioxane, methyl tertiary butyl ether, cyclopentyl methyl ether, ethylene glycol dibutyl ether, diethylene glycol dimethyl ether, diethylene glycol diethyl ether, diethylene glycol dibutyl ether, and derivatives thereof.
  • ether solvent for example, N, N-dimethylacetamide, N-methylpyrrolidone, 1,3-dimethyl-2-imidazolidinone, N, N′-dimethylpropyleneurea, tert-butyl acetate
  • a polar solvent such as N-diisopropylethylamine, N, N, N ', N'-tetramethylethylenediamine, tetramethylpropylenediamine can be used.
  • the proportion of the nonpolar solvent in all the solvents contained in the liquid A is preferably 40% by mass or more, more preferably 50% by mass or more, further preferably 60% by mass or more, and particularly preferably 70% by mass or more. This ratio may be 80% by mass or more, or 90% by mass or more, and it is also preferable that all the solvents contained in the liquid A are nonpolar solvents.
  • the anionic polymerizable monomer in the liquid A is not particularly limited and can be appropriately selected depending on the purpose.
  • vinyl aromatic hydrocarbons, acrylic monomers, methacrylic monomers, conjugated dienes and the like can be mentioned.
  • vinyl aromatic hydrocarbon examples include styrene, styrene derivatives (p-dimethylsilylstyrene, (p-vinylphenyl) methylsulfide, p-hexynylstyrene, p-methoxystyrene, p-tert-butyldimethylsiloxystyrene , O-methylstyrene, p-methylstyrene, p-tert-butylstyrene, ⁇ -methylstyrene, p-tert-butoxystyrene, p-tert-butoxy- ⁇ -methylstyrene, m-tert-butoxystyrene, p- (1-ethoxy) styrene, etc.), vinylnaphthalene, 2-tert-butoxy-6-vinylnaphthalene, vinylanthracene, 1,1-diphenylethylene
  • acrylic monomer examples include methyl acrylate, ethyl acrylate, isopropyl acrylate, isobutyl acrylate, tert-butyl acrylate, cyclohexyl acrylate, benzyl acrylate, epoxy acrylate, ethylene glycol diacrylate, diethylene glycol diacrylate, trimethylolpropane triacrylate, and tetramethyl acrylate.
  • methacrylic monomer examples include monomers having a structure in which the acryloyl group of the monomer exemplified as the acrylic monomer is replaced with a methacryloyl group.
  • conjugated diene examples include 1,3-butadiene, 2-methyl-1,3-butadiene, 2,3-dimethyl-1,3-butadiene, 1,3-pentadiene, 1,3-hexadiene, 3-cyclohexadiene and the like.
  • the above monomers may be used alone or in combination of two or more.
  • the content of the anionic polymerizable monomer in the liquid A is not particularly limited, and is appropriately adjusted in consideration of the initiator concentration in the liquid B, the introduction flow rate of the liquid B, the molecular weight of the target polymer, and the like. is there.
  • the content of the anionic polymerizable monomer in the liquid A can be, for example, 1 to 100% by mass, preferably 3 to 70% by mass, more preferably 5 to 50% by mass, and still more preferably 10 to 40% by mass. .
  • the molar concentration of the anionic polymerizable monomer in the liquid A is preferably 0.5 to 10 M (mol / L), more preferably 0.5 to 5 M.
  • the anion polymerization initiator supply channel (2) is a channel for supplying the liquid B introduced from the inlet (II) to the junction (J1).
  • the anion polymerization initiator supply flow path (2) preferably has an equivalent diameter of 1 to 10 mm.
  • the length of the anion polymerization initiator supply flow path (2) is not particularly limited, and may be constituted, for example, by a tube having a length of about 10 cm to 15 m (preferably, 30 cm to 10 m).
  • the material of the tube is not particularly limited, and the tube of the material exemplified in the anion-polymerizable monomer supply channel (1) can be used.
  • the flow rate for introducing the liquid B from the inlet (II) is preferably higher than 10 mL / min and 2000 mL / min or less (ie, more than 10 mL / min and 2000 mL / min or less).
  • the introduction flow rate of the liquid B is 11 to 2000 mL / min.
  • the introduction flow rate of the liquid B may be 12 to 1000 mL / min, 12 to 600 mL / min, or 12 to 300 mL / min.
  • the flow rate B for introducing the liquid B from the inlet (II) is preferably lower than the flow rate A for introducing the liquid A from the inlet (I) from the viewpoint of controlling the molecular weight of the polymer.
  • the unit of the flow rate is mL / min.
  • the liquid B flowing in the anion polymerization initiator supply channel (2) is usually a solution obtained by dissolving the anion polymerization initiator in a solvent containing a non-polar solvent.
  • the nonpolar solvent contained in the liquid B include hexane, heptane, octane, cyclohexane, methylcyclohexane, benzene, toluene, xylene, decalin, tetralin, and derivatives thereof.
  • the non-polar solvent contained in the liquid B preferably contains at least one of an aromatic hydrocarbon and a saturated hydrocarbon.
  • the total proportion of the aromatic hydrocarbon and the saturated hydrocarbon in the nonpolar solvent is preferably 50% by mass or more, more preferably 70% by mass or more, further preferably 80% by mass or more, and more preferably 90% by mass or more. More preferred.
  • the non-polar solvent is at least one of an aromatic hydrocarbon and a saturated hydrocarbon.
  • This aromatic hydrocarbon is preferably at least one of toluene and xylene, more preferably toluene.
  • the saturated hydrocarbon is preferably at least one of hexane, heptane and cyclohexane, more preferably hexane.
  • the non-polar solvent contained in the liquid B is more preferably at least one of toluene and hexane.
  • Liquid B may further contain a polar solvent as long as it contains a non-polar solvent.
  • a polar solvent it may be appropriately selected according to the type of the anionic polymerization initiator to be used, and examples thereof include ether solvents (linear, branched, and cyclic ether solvents).
  • Specific examples of the ether solvent include tetrahydrofuran, dioxane, trioxane, methyl tertiary butyl ether, cyclopentyl methyl ether, ethylene glycol dibutyl ether, diethylene glycol dimethyl ether, diethylene glycol diethyl ether, diethylene glycol dibutyl ether, and derivatives thereof.
  • the proportion of the nonpolar solvent in all the solvents contained in the liquid B is preferably 40% by mass or more, more preferably 50% by mass or more, further preferably 60% by mass or more, and particularly preferably 70% by mass or more. This ratio may be 80% by mass or more, or 90% by mass or more, and it is also preferable that all the solvents contained in the liquid B are non-polar solvents.
  • anionic polymerization initiator used for the liquid B, and initiators used for ordinary anionic polymerization can be widely used, and are appropriately selected according to the type of the monomer used.
  • examples of the polymerization initiator include an organic lithium compound and an organic magnesium compound.
  • the organolithium compound is not particularly limited and can be appropriately selected from conventionally known organolithium compounds.
  • organolithium compounds For example, methyllithium, ethyllithium, propyllithium, butyllithium (n-butyllithium, sec-butyllithium, alkyl lithiums such as iso-butyllithium, tert-butyllithium), pentyllithium, hexyllithium, methoxymethyllithium, ethoxymethyllithium; ⁇ -methylstyryllithium, 1,1-diphenyl-3-methylpentolyllithium, 3- Benzyl lithium such as methyl-1,1-diphenylpentyl lithium; alkenyl lithium such as vinyl lithium, allyl lithium, propenyl lithium, butenyl lithium; ethynyl lithium, butynyl lithium, pentynyl Alkynyllithium such as lithium and hexynyllithium;
  • alkyllithium is more preferred, and n-butyllithium is particularly preferred, since it has high reactivity and can accelerate the initiation reaction.
  • n-butyllithium is preferable because of its high stability in a solution state.
  • sec-butyllithium when used, it does not dissolve in a solution but precipitates gradually in a suspension state, which may cause a problem in quality stability in industrial production of a polymer.
  • tert-butyl lithium has extremely high flammability and ignitability, and is not very suitable for industrial production.
  • the organic lithium compounds may be used alone or in combination of two or more.
  • organic magnesium compound examples include di-n-butyl magnesium, di-tert-butyl magnesium, di-sec-butyl magnesium, n-butyl-sec-butyl magnesium, n-butyl-ethyl magnesium, di-n-amyl magnesium, Examples include dibenzylmagnesium and diphenylmagnesium.
  • the content of the anionic polymerization initiator in the liquid B is not particularly limited, and is appropriately adjusted in consideration of the monomer concentration of the liquid A, the introduction flow rate of the liquid A, the molecular weight of the target polymer, and the like.
  • the content of the anionic polymerization initiator in the liquid B is usually from 0.01 to 20% by mass, preferably from 0.01 to 15% by mass, more preferably from 0.01 to 10% by mass, and preferably from 0.05 to 10% by mass. -10% by mass is more preferred.
  • the molar concentration of the anionic polymerization initiator in the liquid B is preferably 0.004 to 1.6 M, more preferably 0.008 to 1.6 M, and 0.008 to 0.1 M. 8M is more preferred.
  • the amounts of liquid A and liquid B introduced are such that, assuming that the two liquids are homogeneously mixed at the junction (J1), the equivalent ratio of the anionic polymerizable monomer and the anionic polymerization initiator in this mixed liquid is
  • the amount of the anionic polymerizable monomer is preferably 5 to 5000 equivalents, more preferably 10 to 5000 equivalents, and particularly preferably 10 to 1000 equivalents per equivalent of the polymerization initiator. Above all, setting the equivalent ratio within the above particularly preferred range is advantageous in that a polymer having a molecular weight substantially equal to the theoretical value can be obtained.
  • the amount of the monomer is preferably 5 to 5000 mol, more preferably 10 to 5000 mol, and more preferably 10 to 1000 mol, per 1 mol of the initiator. Particularly preferred.
  • the junction (J1) has a role of a mixer, and joins the anion-polymerizable monomer supply flow path (1) and the anion polymerization initiator supply flow path (2) into one flow path. It not particularly limited as long as it can feed the merging liquid M AB and prereacted pipe connecting the downstream end to (5).
  • a T-shaped connector is used as the junction (J1).
  • the equivalent diameter of the flow path in the junction (J1) is preferably from 0.2 to 10 mm from the viewpoint of better mixing performance, and more preferably from 1 to 5 mm from the viewpoint of further suppressing pressure loss.
  • junction (J1) there is no particular limitation on the material of the junction (J1).
  • PFA perfluoroalkoxyalkane
  • Teflon registered trademark
  • aromatic polyetherketone resin stainless steel
  • copper or copper alloy nickel or nickel alloy
  • titanium Alternatively, a material made of a material such as a titanium alloy, quartz glass, and lime soda glass can be used.
  • a commercially available mixer can be used for the junction (J1).
  • Pre-reaction tube (5) After the liquid A and the liquid B are joined and mixed at the junction (J1), the combined liquid MAB flows downstream in the pre-reaction tube (5).
  • the form of the pre-reaction tube (5) is not particularly limited, and usually a tube is used.
  • the preferred material for the pre-reaction tube (5) is the same as the preferred material for the anion-polymerizable monomer supply channel (1) described above. The shorter the residence time of the combined liquid MAB flowing in the pre-reaction tube (5), the better. That is, it is preferable that the initiation reaction or the growth reaction (polymerization reaction) does not substantially occur during the flow in the pre-reaction tube.
  • the monomer conversion is preferably 5% or less, more preferably 4% or less, and more preferably 3% or less. More preferably, it is more preferably 2% or less.
  • the equivalent diameter of the pre-reaction tube (5) is 0.1 to 50 mm, more preferably 0.2 to 20 mm, further preferably 0.4 to 15 mm, and still more preferably 0.7 to 10 mm. And more preferably 1 to 5 mm.
  • the length of the pre-reaction tube (5) is usually 0.2 to 5 m, preferably 0.4 to 3 m, more preferably 0.6 to 2 m.
  • the polar solvent supply channel (3) is a channel for supplying the liquid C introduced from the inlet (III) to the junction (J2).
  • the equivalent diameter of the polar solvent supply channel (3) is more preferably 1 to 10 mm, still more preferably 1 to 8 mm, and still more preferably 1 to 6 mm.
  • the length of the polar solvent supply channel (3) is not particularly limited.
  • the polar solvent supply channel (3) can be constituted by a tube having a length of about 10 cm to 15 m (preferably, 30 cm to 10 m).
  • the preferred material of the polar solvent supply channel (3) is the same as the preferred material of the anion-polymerizable monomer supply channel (1) described above.
  • the liquid C flowing in the polar solvent supply flow path (3) contains a polar solvent.
  • the polar solvent contained in the liquid C include ether solvents (linear, branched, and cyclic ether solvents).
  • Specific examples of the ether solvent include tetrahydrofuran, dioxane, trioxane, methyl tertiary butyl ether, cyclopentyl methyl ether, ethylene glycol dibutyl ether, diethylene glycol dimethyl ether, diethylene glycol diethyl ether, diethylene glycol dibutyl ether, and derivatives thereof.
  • a cyclic ether solvent is preferable, and tetrahydrofuran is more preferable.
  • ether solvent for example, N, N-dimethylacetamide, N-methylpyrrolidone, 1,3-dimethyl-2-imidazolidinone, N, N′-dimethylpropyleneurea, tert-butyl acetate,
  • a polar solvent such as N-diisopropylethylamine, N, N, N ', N'-tetramethylethylenediamine, tetramethylpropylenediamine can be used.
  • the content of the solvent in the liquid C is preferably 90% by mass or more, and more preferably 95% by mass or more.
  • the proportion of the polar solvent in the solvent constituting the liquid C is preferably 40% by mass or more, more preferably 50% by mass or more, further preferably 60% by mass or more, and particularly preferably 70% by mass or more. This ratio may be 80% by mass or more, or 90% by mass or more, and it is also preferable that all the solvents contained in the liquid C are polar solvents.
  • the remainder excluding the polar solvent is a non-polar solvent.
  • the non-polar solvent include hexane, heptane, octane, cyclohexane, methylcyclohexane, benzene, toluene, xylene, decalin, tetralin, and derivatives thereof.
  • the non-polar solvent that can be contained in the liquid C preferably contains an aromatic hydrocarbon.
  • the proportion of the aromatic hydrocarbon in the nonpolar solvent is preferably 50% by mass or more, more preferably 70% by mass or more, still more preferably 80% by mass or more, and further preferably 90% by mass or more.
  • the non-polar solvent is an aromatic hydrocarbon. This aromatic hydrocarbon is preferably at least one of toluene and xylene, more preferably toluene.
  • the concentration of the polar solvent in the liquid C is preferably higher than the concentration of the polar solvent in the liquid A, and is preferably higher than the concentration of the polar solvent in the liquid B.
  • the polarity of the solvent of the combined liquid M ABC of the combined liquid M AB and the liquid C is made higher than the polarity of the solvent of the combined liquid M AB (that is, the polarity of the solvent of the polymerization reaction liquid flowing through the reaction tube). Is higher than the polarity of the solvent of the combined liquid of the liquid A and the liquid B flowing through the pre-reaction tube).
  • the polarity of the merging liquid M ABC solvent, merging liquid M to be higher than the polarity of the solvent in AB and the concentration of the polar solvent merging solution M in ABC, a polar solvent in the merged liquid M AB Means higher than the concentration. These concentrations are on a mass basis.
  • the proportion (% by mass) of the polar solvent in the solvent of the combined liquid M ABC is preferably 1.5 times or more, and more preferably 2 times or more, the proportion (% by mass) of the polar solvent in the solvent of the combined liquid M AB. Is more preferable.
  • the junction (J2) has a role of a mixer, and joins the pre-reaction tube (5) and the polar solvent supply channel (3) into one channel and merges into the downstream reaction tube (6). There is no particular limitation as long as the solution can be sent out.
  • the junction (J2) uses a T-shaped connector.
  • the equivalent diameter of the flow path in the junction (J2) is preferably from 0.2 to 10 mm from the viewpoint of better mixing performance, and more preferably from 1 to 10 mm from the viewpoint of suppressing pressure loss.
  • the material of the junction (J2) is not particularly limited, and the same material as described in the junction (J1) can be used.
  • the specific examples of the mixer that can be adopted as the junction (J2) are also the same as the specific examples of the mixer that can be adopted as the junction (J1).
  • the polarity of the solvent in the merged liquid M ABC merged with the liquid C is instantaneously increased, and this triggers the initiation reaction to proceed simultaneously. That is, in the pre-reaction tube (5), the initiation reaction can be started all at once at the junction (J2) without substantially causing a polymerization reaction, and the subsequent growth reaction in the reaction tube (6) is started. It is presumed that the monodispersity of the obtained polymer can be enhanced to a high degree.
  • reaction tube (6) After the merged liquid M AB and the liquid C merge at the merge portion (J2), the merged liquid M ABC flows into the reaction tube (6), which is a reaction channel, and flows downstream in the reaction tube (6). During this, the anionic polymerizable monomer undergoes anionic polymerization (the growth reaction proceeds).
  • the form of the reaction tube (6) is not particularly limited, and usually a tube is used.
  • the preferred material of the reaction tube (6) is the same as the preferred material of the above-described anion-polymerizable monomer supply channel (1).
  • the reaction time of anionic polymerization can be adjusted by adjusting the equivalent diameter and length of the reaction tube (6), the flow rate setting of the liquid sending pump, and the like.
  • the residence time of the reaction solution flowing through the reaction tube (6) may be appropriately adjusted according to the desired molecular weight of the polymer.
  • the equivalent diameter of the reaction tube (6) is 0.1 to 50 mm, more preferably 0.2 to 20 mm, still more preferably 0.4 to 15 mm, and still more preferably 0.7 to 10 mm. And more preferably 1 to 5 mm.
  • the length of the reaction tube (6) is preferably 3 to 50 m, more preferably 5 to 50 m.
  • the polymerization terminator supply flow path (4) is a flow path for supplying the polymerization terminator introduced from the inlet (IV) to the junction (J3).
  • the equivalent diameter of the polymerization terminator supply channel (4) is more preferably 1 to 10 mm, still more preferably 1 to 8 mm, and still more preferably 1 to 6 mm.
  • the length of the polymerization terminator supply flow path (4) is not particularly limited, and for example, can be constituted by a tube having a length of about 10 cm to 15 m (preferably, 30 cm to 10 m).
  • the preferred material for the polymerization terminator supply channel (4) is the same as the preferred material for the anion-polymerizable monomer supply channel (1) described above.
  • the polymerization terminator is not particularly limited as long as it is a liquid containing a component (polymerization terminating component) that deactivates an anion as an active species.
  • An aqueous solution or an organic solution containing at least one of an alcohol and an acidic substance as a polymerization terminating component is used.
  • Solution for example, a solution using tetrahydrofuran (THF), methyl tertiary butyl ether, dioxane, cyclopentyl methyl ether, toluene or the like as a solvent).
  • a liquid containing an electrophilic agent such as an alkyl halide or chlorosilane as a polymerization terminator can be used as a polymerization terminator.
  • an electrophilic agent such as an alkyl halide or chlorosilane
  • examples of the alcohol as the polymerization terminating component include methanol, ethanol, propanol, and isopropyl alcohol.
  • Examples of the acidic substance as the polymerization terminating component include acetic acid and hydrochloric acid.
  • Examples of the alkyl halide as the polymerization terminating component include alkyl bromide and alkyl iodide.
  • the amount of the polymerization terminating component such as an alcohol, an acidic substance, and an electrophile contained in the polymerization terminator is 1 to 100 mol per 1 mol of the polymerization initiator in the mixed solution which is combined with the polymer solution. Is preferred.
  • the flow rate at which the polymerization terminator is introduced from the introduction port (IV) is not particularly limited, and can be appropriately selected depending on the purpose. For example, it can be 1 to 3000 mL / min, more preferably 2 to 2000 mL / min, still more preferably 4 to 2000 mL / min. When the flow rate is within the above range, rapid mixing becomes possible, and the concern about pressure loss is reduced.
  • the flow rate when introducing the polymerization terminator may be 5 to 2000 mL / min, 10 to 1000 mL / min, 20 to 800 mL / min, or 40 to 600 mL / min. .
  • junction (J3) The polymerization reaction solution in which the anion polymerization reaction is progressing while flowing in the reaction tube (6) and the polymerization terminator flowing in the polymerization terminator supply flow path (4) merge at the junction (J3).
  • the junction part (J3) has a role of a mixer, and the reaction tube (6) and the polymerization terminator supply flow path (4) are merged into one flow path, and the solution is merged into the downstream pipe (7). Is not particularly limited as long as it can be sent out.
  • the junction (J3) uses a T-shaped connector.
  • the equivalent diameter of the flow path in the junction (J3) is preferably from 0.2 to 10 mm from the viewpoint of better mixing performance, and more preferably from 1 to 10 mm from the viewpoint of suppressing pressure loss.
  • the material of the junction (J3) and the same material as described for the junction (J1) can be used.
  • the specific examples of the mixer that can be employed as the junction (J3) are also the same as the specific examples of the mixer that can be employed as the junction (J1).
  • the mixed solution containing the polymerization reaction solution and the polymerization terminator reacts while flowing through the pipe (7), deactivates anions and terminates the polymerization.
  • the pipe (7) can be constituted by a tube, and its equivalent diameter is preferably 1 to 50 mm, more preferably 1 to 10 mm, from the viewpoint of more precisely controlling the temperature of the flowing liquid.
  • the length of the pipe (7) may be appropriately adjusted according to the equivalent diameter, the flow rate, and the desired molecular weight of the polymer, and is preferably 1 to 20 m, more preferably 2 to 10 m.
  • the preferred material of the pipe (7) is the same as the preferred material of the anion-polymerizable monomer supply channel (1) described above.
  • the liquid temperature of the liquid flowing through the pipe (7) is not particularly limited, it is preferable that at least the upstream side be the same as the liquid temperature of the liquid flowing through the reaction tube (6), as shown in FIG. .
  • the flow rate of the liquid flowing in the pipe (7) is the sum of the flow rate of the liquid flowing in the polymerization terminator supply flow path (4) and the flow rate of the liquid flowing in the reaction tube (6).
  • FIG. 2 is the same as the embodiment of FIG. 1 except that the anion-polymerizable monomer supply flow path (1) is branched into two flow paths in the middle.
  • the anion-polymerizable monomer supply flow path (1) is branched into two flow paths on the way, and the two branched flow paths are formed at a junction (J4) which is a cross-shaped connector.
  • J4 which is a cross-shaped connector.
  • the anion polymerization initiator supply channel (2) through which the liquid B flows is connected to a connection port of the junction (J4) facing the connection portion of the pre-reaction tube (5).
  • Such a cross connector preferably has an inner diameter of 1 to 10 mm.
  • Commercially available products can be widely used as the cross connector. Examples of the commercially available products include a cross connector manufactured by Upchurch; a union cross manufactured by swagelok; and a four-way joint manufactured by EYELA.
  • the anion-polymerizable monomer supply flow path (1) is branched into two flow paths, but may be branched into three or more flow paths. Preferred as a form. Further, while branching the anion-polymerizable monomer supply channel (1) or without branching the anion-polymerizable monomer supply channel (1), the anion polymerization initiator supply channel (2) is branched and May be combined, and such a form is also included in the embodiment of the present invention.
  • the anion polymerizable monomer supply channel (1) is branched into two or more, and the anion polymerization initiator supply channel (2) is not branched, or the anion polymerization initiator supply channel (2) It is preferable to adopt a form in which is branched into two or more.
  • the relationship between the number of branches of the anion-polymerizable monomer supply channel (1) and the number of branches of the anion-polymerization initiator supply channel (2) is more preferably designed as in the following i) or ii). i) An embodiment in which the number of branches in the anion-polymerizable monomer supply channel (1) is 2, and the anion-polymerization initiator supply channel (2) has no branch.
  • the number of branches in the anion-polymerizable monomer supply channel (1) is 3 or more, the number of branches in the anion polymerization initiator supply channel (2) is 2 or more, and the number of branches in the anion-polymerizable monomer supply channel (1) is two. )) In which the number of branches is larger than the number of branches of the anion polymerization initiator supply flow path (2).
  • the sum of the number of flow paths through which the liquid A flows and the number of flow paths through which the liquid B flows, which is connected to the junction of the liquid A and the liquid B, is preferably 3 to 10, preferably 3 to 8 Is more preferable, the number is more preferably from 3 to 6, and even more preferably from 3 to 5.
  • the number of branches in the anion polymerizable monomer supply channel (1) is larger than the number of branches in the anion polymerization initiator supply channel (2).
  • the merging portion to which such a number of flow paths can be connected can be constituted by a connector having a number of connection ports corresponding to the number of flow paths to be connected.
  • the total number of the flow paths through which the liquid A circulates and the number of the flow paths through which the liquid B circulates can be made five, and the remaining one connection port is used as the discharge port.
  • a pre-reaction tube can be connected to the outlet.
  • a connector having five or more connection ports that can be used in the present invention commercially available products can be widely used. Examples of these commercially available products include a 6-way joint manufactured by EYELA, a 6-way joint manufactured by Sugiyama Shoji, and a 6-port manifold manufactured by Upchurch.
  • the connector having five or more connection ports preferably has an inner diameter of 1 to 10 mm.
  • the flow path having a branch has one inlet and the flow path branches midway.
  • a form in which a plurality of inlets for one solution are provided may be used.
  • a plurality of anion-polymerizable monomer supply channels (1) may be prepared, and the plurality of anion-polymerizable monomer supply channels (1) may be joined at a junction. This is the same for the anion polymerization initiator supply channel (2).
  • the residence time (polymerization reaction time) of the polymerization reaction liquid in the reaction tube 6 is preferably 15 seconds or more, more preferably 20 to 1800 seconds, and more preferably 20 to 1800 seconds. More preferably, it is 600 seconds.
  • a polymer can be obtained at an excellent monomer conversion rate and in a state where the molecular weight distribution is highly monodispersed.
  • Example 1 A polymer was synthesized by an anionic polymerization reaction using a flow reaction system 200 having the configuration shown in FIG. Details of each part are shown below.
  • Liquid pump (not shown): PU 716B or PU 718 manufactured by GL Sciences Co., Ltd. was installed in all of the introduction ports I, II, III and IV, and the liquid was sent.
  • a pulse damper HPD-1, a back pressure valve (44-2361-24) manufactured by Tescom Corporation, and a relief valve RHA (4 MPa) manufactured by IBS Corporation were sequentially installed.
  • Low temperature bath (R1) The temperature was set at ⁇ 25 ° C. using a low temperature constant temperature water tank PSL-2000 with a magnetic stirrer manufactured by Ira.
  • Anion polymerizable monomer supply channel (1) One SUS tube was divided into two parts by a T-shaped connector. More specifically, a T-connector (U-429, 1.0 mm inner diameter) manufactured by Upchurch was connected to a SUS316 tube having an outer diameter of 1/16 inch, an inner diameter of 1.0 mm, and a length of 10 m. Two SUS316 tubes having an outer diameter of 1/16 inch, an inner diameter of 1.0 mm, and a length of 5 cm were connected so as to face each other to form an anion-polymerizable monomer supply channel (1).
  • a T-connector U-429, 1.0 mm inner diameter manufactured by Upchurch was connected to a SUS316 tube having an outer diameter of 1/16 inch, an inner diameter of 1.0 mm, and a length of 10 m.
  • Two SUS316 tubes having an outer diameter of 1/16 inch, an inner diameter of 1.0 mm, and a length of 5 cm were connected so as to face each other to form an anion-polymerizable
  • Anion polymerization initiator supply channel (2) A SUS316 tube having an outer diameter of 1/16 inch, an inner diameter of 1.0 mm, and a length of 10 m was used.
  • J4 cross connector
  • U-431 inner diameter 1.0 mm
  • the anion polymerization initiator supply flow path (2) is connected to one of the remaining two connection ports, and the remaining connection port is further connected to a discharge port for sending out a liquid (a connection port with the pre-reaction tube (5)).
  • Pre-reaction tube (5) A SUS316 tube having an outer diameter of 1/8 inch, an inner diameter of 2.17 mm, and a length of 1 m was used.
  • Polar solvent supply channel (3) A SUS316 tube having an outer diameter of 1/16 inch, an inner diameter of 1.0 mm, and a length of 10 m was used.
  • J2 T-shaped connector: Swagelok Union Tee (SS-200-3, inner diameter 2.3 mm) was used.
  • the pre-reaction tube (5) and the polar solvent supply channel (3) were respectively connected to two opposing connection ports among the three connection ports of the union tee.
  • the remaining connection port was used as a discharge port for sending out the liquid (connection port to the reaction tube (6)).
  • Reaction tube (6) From the upstream side to the downstream side, (i) a SUS316 tube having an outer diameter of 1/8 inch, an inner diameter of 2.17 mm, and a length of 15 m, and (ii) a SUS316 tube having an outer diameter of 8 mm, an inner diameter of 6 mm, and a length of 20 m.
  • Polymerization terminator supply channel (4) A SUS316 tube having an outer diameter of 1/8 inch, an inner diameter of 2.17 mm, and a length of 10 m was used.
  • J3 T-shaped connector: Swagelok Union Tee (SS-200-3, inner diameter 2.3 mm) was used.
  • the reaction tube (6) and the polymerization terminator supply flow path (4) were respectively connected to two opposing connection ports among the three connection ports of the union tee.
  • the remaining connection port was used as a discharge port for sending out the liquid (connection port with the pipe (7)).
  • Piping (7) From the upstream side to the downstream side, (i) a SUS316 tube having an outer diameter of 1/8 inch, an inner diameter of 2.17 mm, and a length of 2.5 m, (ii) an outer diameter of 1/8 inch, an inner diameter of 2.17 mm, length Teflon tubes of 0.5 m were connected in this order using a union.
  • toluene deoxygenated grade
  • p-methoxystyrene special grade
  • Wako Pure Chemical Industries, Ltd. were added to prepare 4 L of a 3.5 M p-methoxy styrene / toluene solution.
  • This solution was dehydrated with a molecular sieve 3A to obtain a solution A.
  • the description “xM ⁇ y / z” means that the solution is a solution in which y is dissolved in a solvent z, and the y concentration in the solution is xM.
  • Liquid B containing an initiator to be introduced into the anion polymerization initiator supply channel (2) ⁇ N-butyllithium (nBuLi) / toluene> Toluene (deoxygenated grade) manufactured by Wako Pure Chemical Industries, Ltd. was added to a 5 L SUS tank and cooled to 0 ° C. NBuLi (1.6 M-nBuLi / hexane solution) manufactured by Kanto Chemical was added, and titration was performed with menthol / bipyridine to prepare 4 L of a 0.008 M-nBuLi / toluene solution.
  • NBuLi 1.6 M-nBuLi / hexane solution
  • THF tetrahydrofuran
  • Liquid A (3.5M-p-methoxystyrene / toluene): 100 mL / min
  • Liquid B (0.08 M-nBuLi / toluene): 36.5 mL / min
  • Liquid C (THF): 114 mL / min
  • Polymerization terminator (0.5M-MeOH / THF): 43.8 mL / min
  • Monomer conversion at the junction (J2) Instead of the polar solvent supply channel (3) connected to the junction (J2), a polymerization terminator supply channel (4) is connected to the junction (J2), and a polymerization terminator is added to the junction (J2). Supplied. 10 mL was collected from the outlet (outlet) of the junction (J2) and analyzed by gel permeation chromatography (GPC). The ratio of the peak area of the polymer to the sum of the peak area of the monomer and the peak area of the polymer was calculated and defined as a monomer conversion rate. Monomer conversion in the combined unit (J2) (i.e., monomer conversion in the liquid M AB immediately after passing the pre-reaction tube (5)) was 1 mol%.
  • Example 2 A polymer was obtained in the same manner as in Example 1, except that the type of liquid and the conditions for feeding the liquid were changed as described below.
  • Liquid B (0.08 M-nBuLi / toluene): 21.9 mL / min
  • Liquid C (THF): 49 mL / min
  • Polymerization terminator (0.5M MeOH / THF): 26.3 mL / min
  • the number average molecular weight of the obtained polymer was 18,300, the molecular weight distribution (dispersion degree, Mw / Mn) was 1.04, and the monomer conversion was 100 mol%.
  • the monomer conversion in the junction (J2) was 1 mol%.
  • Example 3 A polymer was obtained in the same manner as in Example 1 except that THF used as the liquid C was changed to diethylene glycol dimethyl ether, and the length of the SUS316 tube of the pre-reaction tube (5) was changed to 2.5 m. .
  • the number average molecular weight of the obtained polymer was 14,200, the molecular weight distribution (dispersion degree, Mw / Mn) was 1.05, and the monomer conversion was 100 mol%.
  • the monomer conversion rate at the junction (J2) was 5 mol%.
  • Example 1 a polymer was prepared in the same manner as in Example 1 except that the liquid C was not fed into the polar solvent supply flow path (3) (the liquid feeding pump was not operated). Obtained. The number average molecular weight of the obtained polymer was 15,000, and the molecular weight distribution (dispersion degree, Mw / Mn) was 1.12.
  • Example 2 a polymer was prepared in the same manner as in Example 2 except that the liquid C was not fed into the polar solvent supply channel (3) (the liquid feeding pump was not operated). Obtained.
  • the number average molecular weight of the obtained polymer was 19,800, and the molecular weight distribution (dispersion degree, Mw / Mn) was 1.10.
  • Example 3 A polymer was obtained in the same manner as in Example 1 except that the THF used as the liquid C was changed to toluene.
  • the number average molecular weight of the obtained polymer was 15,200, and the molecular weight distribution (dispersion degree, Mw / Mn) was 1.12.
  • a polymer was obtained in the same manner as in Example 2. The number average molecular weight of the obtained polymer was 18,500, and the molecular weight distribution (dispersion degree, Mw / Mn) was 1.09. In Comparative Example 4, the monomer conversion at the junction (J2) was 19 mol%.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Emergency Medicine (AREA)
  • Polymerisation Methods In General (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Polymerization Catalysts (AREA)

Abstract

フロー式反応による重合体の製造方法であって、 この製造方法は、 アニオン重合性モノマーと非極性溶媒とを含む液Aと、アニオン重合開始剤と非極性溶媒とを含む液Bと、極性溶媒を含む液Cと、重合停止剤とを異なる流路に導入して各液を各流路内に流通させ、 液Aと液Bとを合流し、この合流部の下流で、液Aと液Bとの合流液MABと液Cとを合流し、合流液MABと液Cとの合流液MABCが反応流路内を流通中に上記モノマーをアニオン重合し、反応流路内を流通する重合反応液と重合停止剤とを合流することにより重合体を得ることを含み、 液MABCの溶媒の極性を液MABの溶媒の極性よりも高くする重合体の製造方法、及びこの製造方法の実施に好適なフロー式反応システム。

Description

重合体の製造方法、及び重合体を製造するフロー式反応システム
 本発明は、重合体の製造方法に関する。また本発明は、重合体の製造に用いるフロー式反応システムに関する。
 リビングアニオン重合は、単分散ポリマー、ブロック共重合体、末端官能基化ポリマー、多分岐ポリマー、環状ポリマー等の特殊構造の重合体の合成において、精密な重合反応を実現可能な方法として知られている。
 リビングアニオン重合は、通常はバッチ方式で行われる。しかし、リビングアニオン重合をバッチ方式で行う場合、重合時の発熱を除熱することにより、副反応である連鎖移動反応や停止反応を抑制する必要があり、極低温下で重合反応が行われる。例えば、アニオン重合性モノマー及びアニオン重合開始剤を-78℃以下に冷却しながら混合して重合反応が行われる。そのため、バッチ方式によるリビングアニオン重合の実施には超低温冷却設備が必要となり、大量生産には適さない。
 また、バッチ方式によるリビングアニオン重合は、機械的撹拌下で行われる。そのため、反応系にモノマーや重合開始剤の局部的なムラが生じやすい。したがって、バッチ方式によるリビングアニオン重合では、得られる重合体の分散度、モノマー転化率等の向上には制約があった。
 他方、マイクロリアクター等のフロー式反応装置を用いて分子量分布の狭いポリマーをリビングアニオン重合により連続的に得る方法も知られている。例えば、特許文献1には、フロー式反応によりα-アルキルスチレンモノマーをアニオン重合するに当たり、まず、モノマーと開始剤とを混合した原料溶液を一定の高温に調整してモノマーを活性化し、次いで、この原料溶液を流路に流通させながら重合可能な特定温度範囲へと急速冷却して重合させること、これにより、高分子量で、かつ分子量分布がより単分散化された重合体が得られることが記載されている。
特開2016-183217号公報
 上記特許文献1記載の重合方法によれば、得られる重合体の高分子量化と分子量分布の単分散化において優れた効果が得られる。しかし、重合体製造の工業的な実用化の観点から本発明者らが検討を進めた結果、特許文献1記載の重合方法では、モノマー転化率に劣る場合があり、重合体の製造効率、再現性等の観点でいまだ十分といえる状況にはないこと、また、条件を最適化しても得られる重合体の単分散性のさらなる向上には限界があることがわかってきた。
 そこで本発明は、フロー式反応を用いたリビングアニオン重合において、分子量分布が高度に単分散化された重合体を、優れたモノマー転化率で得ることができる重合体の製造方法を提供することを課題とする。また本発明は、上記製造方法の実施に好適なフロー式反応システムを提供することを課題とする。
 本発明の課題は下記の手段により解決された。
〔1〕
 フロー式反応によりアニオン重合反応を行う重合体の製造方法であって、
 上記製造方法は、
 アニオン重合性モノマーと非極性溶媒とを含む液Aと、アニオン重合開始剤と非極性溶媒とを含む液Bと、極性溶媒を含む液Cと、重合停止剤とをそれぞれ異なる流路に導入して各液を各流路内に流通させ、
 上記液Aと上記液Bとを合流し、この合流部の下流で、上記液Aと上記液Bとの合流液MABと上記液Cとを合流し、上記合流液MABと上記液Cとの合流液MABCが反応流路内を下流へと流通中に上記アニオン重合性モノマーをアニオン重合し、反応流路内を流通する重合反応液と上記重合停止剤とを合流して重合反応を停止することにより重合体を得ることを含み、
 上記合流液MABと上記液Cとの合流により、上記液MABCの溶媒の極性を、上記液MABの溶媒の極性よりも高くする、重合体の製造方法。
〔2〕
 上記の液Aが流通する流路の等価直径及び上記の液Bが流通する流路の等価直径を、いずれも1~10mmとする、〔1〕記載の重合体の製造方法。
〔3〕
 上記合流液MAB中のモノマー転化率が5.0モル%以下の状態において、上記合流液MABと上記液Cとを合流する、〔1〕又は〔2〕記載の重合体の製造方法。
〔4〕
 上記合流液MABと上記液Cとの合流により、上記合流液MABCの溶媒中に占める極性溶媒の質量割合を、上記合流液MABの溶媒中に占める極性溶媒の質量割合の1.5倍以上とする、〔1〕~〔3〕のいずれか記載の重合体の製造方法。
〔5〕
 上記極性溶媒としてエーテル溶媒を用いる、〔1〕~〔4〕のいずれか記載の重合体の製造方法。
〔6〕
 上記液MABCが流通する上記反応流路の長さを3~50mとする、〔1〕~〔5〕のいずれか記載の重合体の製造方法。
〔7〕
 上記液Aと上記液Bとの合流部に連結する、上記液Aが流通する流路の数と上記液Bが流通する流路の数の合計を3~10本とする、〔1〕~〔6〕のいずれか記載の重合体の製造方法。
〔8〕
 上記アニオン重合開始剤として、有機リチウム化合物及び有機マグネシウム化合物の少なくとも1種を用いる、〔1〕~〔7〕のいずれか記載の製造方法。
〔9〕
 上記アニオン重合開始剤としてアルキルリチウムを用いる、〔1〕~〔8〕のいずれか記載の製造方法。
〔10〕
 上記アニオン重合開始剤としてn-ブチルリチウムを用いる、〔1〕~〔9〕のいずれか記載の製造方法。
〔11〕
 上記液Bが非極性溶媒として芳香族炭化水素及び飽和炭化水素の少なくとも1種を含有する、〔1〕~〔10〕のいずれか記載の製造方法。
〔12〕
 アニオン重合反応により重合体を製造するフロー式反応システムであって、
 アニオン重合性モノマーと非極性溶媒とを含む液Aが流通する第1流路と、アニオン重合開始剤と非極性溶媒とを含む液Bが流通する第2流路と、極性溶媒を含む液Cが流通する第3流路と、重合停止剤が流通する第4流路と、第1流路と第2流路が合流する第1合流部と、第1合流部の下流に接続されたプレ反応管と、このプレ反応管と第3流路とが合流する第2合流部と、第2合流部の下流に接続された反応管と、この反応管と第4流路とが合流する第3合流部と、第3合流部の下流に接続された配管とを有し、
 第1合流部で合流した上記液Aと上記液Bとの合流液MABの溶媒の極性よりも、第2合流部で合流した上記合流液MABと上記液Cとの合流液MABCの溶媒の極性を高くする、フロー式反応システム。
 本明細書において「~」を用いて表される数値範囲は、「~」の前後に記載される数値を下限値及び上限値として含む範囲を意味する。
 本明細書において流路、合流部、ミキサー等の管内断面サイズ(等価直径)について説明する場合、流路同士の連結部分、流路と合流部との連結部分、流路とミキサーとの連結部分は除いたサイズである。すなわち、上記各連結部分のサイズは、連結部分の中を上流から下流へと流体が流れるように、連結チューブ等を用いて適宜に調整される。
 本発明の製造方法によれば、分子量分布についても高度に単分散化された重合体を、優れたモノマー転化率で得ることができる。また本発明のフロー式反応システムは、これを用いて上記製造方法を実施することにより、分子量分布についても高度に単分散化された重合体を、優れたモノマー転化率で得ることができる。
本発明のフロー式反応システムの一実施形態の概略を示す説明図である。 本発明のフロー式反応システムの別の実施形態の概略を示す説明図である。
[フロー式反応システム]
 本発明の重合体の製造方法(以下、「本発明の製造方法」ともいう。)に用いるフロー式反応システムの一実施形態を、図面を用いて説明する。なお、本発明は、本発明で規定する事項以外は、図面に示された形態に何ら限定されるものではない。
 図1は、本発明の製造方法に用いるフロー式反応システムの一例を示す概略図である。図1に示すフロー式反応システム(100)は、アニオン重合性モノマーと非極性溶媒とを含む液(以下、「液A」ともいう。)を導入する導入口(I)を備えたアニオン重合性モノマー供給流路(1)、アニオン重合開始剤と非極性溶媒とを含む液(以下、「液B」ともいう。)を導入する導入口(II)を備えたアニオン重合開始剤供給流路(2)、極性溶媒を含む液(以下、「液C」ともいう。)を導入する導入口(III)を備えた極性溶媒供給流路(3)、重合停止剤を導入する導入口(IV)を備えた重合停止剤供給流路(4)、上記アニオン重合性モノマー供給流路(1)と上記アニオン重合開始剤供給流路(2)とが合流する合流部(J1)、この合流部(J1)の下流側端部に連結するプレ反応管(5)、このプレ反応管(5)と上記極性溶媒供給流路(3)とが合流する合流部(J2)、この合流部(J2)の下流側末端部に連結する反応管(6)、この反応管(6)と上記重合停止剤供給流路(4)とが合流する合流部(J3)、この合流部(J3)の下流側端部に連結する配管(7)を備える。
 図1の実施形態において、少なくとも合流部(J1)、この合流部(J1)の下流から合流部(J3)までの間、及び、合流部(J3)、合流部(J3)に続く配管(7)の一部は、恒温槽(R1)内に配設され、アニオン重合反応と重合停止反応における液温が-100℃~40℃(好ましくは-80℃~30℃、より好ましくは-50℃~20℃)となるように制御されていることが好ましい。
 また、導入口(I)、(II)、(III)及び(IV)にはそれぞれ、通常はシリンジポンプ等の送液ポンプ(図示していない)が接続され、このポンプを作動することにより、液A、液B、液C及び重合停止剤が各流路内を流通する形態とすることができる。
 本明細書において「上流」及び「下流」とは、液体が流れる方向に対して用いられ、液体が導入される側(図1においては導入口(I)、(II)、(III)及び(IV)側)が上流であり、その逆側が下流となる。
 図1の実施形態の各構成についてより詳細に説明する。
<アニオン重合性モノマー供給流路(1)>
 アニオン重合性モノマー供給流路(1)は、導入口(I)から導入された液Aを、上記合流部(J1)へと供給する流路である。アニオン重合性モノマー供給流路(1)は、その等価直径を1~10mmとすることが好ましい。アニオン重合性モノマー供給流路(1)の等価直径を1mm以上とすることにより、流速をある程度速めても系内圧力の過度な上昇を抑えることができ、重合体の生産性をより高めることができる。また、アニオン重合性モノマー供給流路(1)の等価直径を10mm以下とすることにより、合流部(J1)導入時の液温を、正確に制御することができる。アニオン重合性モノマー供給流路(1)の等価直径は、1~8mmがより好ましく、1~6mmがさらに好ましい。
 上記「等価直径」(equivalent diameter)は、相当(直)径とも呼ばれ、機械工学の分野で用いられる用語である。任意の管内断面形状の配管ないし流路に対し等価な円管を想定するとき、その等価円管の管内断面の直径を等価直径という。等価直径(deq)は、A:配管の管内断面積、p:配管のぬれぶち長さ(内周長)を用いて、deq=4A/pと定義される。円管に適用した場合、この等価直径は円管の管内断面の直径に一致する。等価直径は等価円管のデータを基に、その配管の流動あるいは熱伝達特性を推定するのに用いられ、現象の空間的スケール(代表的長さ)を表す。等価直径は、管内断面が一辺aの正四角形管ではdeq=4a/4a=a、一辺aの正三角形管ではdeq=a/31/2、流路高さhの平行平板間の流れではdeq=2hとなる(例えば、(社)日本機械学会編「機械工学事典」1997年、丸善(株)参照)。
 アニオン重合性モノマー供給流路(1)の長さに特に制限はなく、例えば、長さが10cm~15m程度(好ましくは、30cm~10m)のチューブにより構成することができる。
 チューブの材質に特に制限はなく、例えば、パーフルオロアルコキシアルカン(PFA)、テフロン(登録商標)、芳香族ポリエーテルケトン系樹脂、ステンレス、銅又は銅合金、ニッケル又はニッケル合金、チタン又はチタン合金、石英ガラス、ライムソーダガラスなどが挙げられる。可撓性、耐薬品性の観点から、チューブの材質は、PFA、テフロン(登録商標)、ステンレス、ニッケル合金又はチタンが好ましい。
 上記導入口(I)から液Aを導入する流速に特に制限はなく、流路の等価直径、液Bの濃度、液Bの導入流量等を考慮し、目的に応じて適宜選択することができる。例えば、1~4000mL/minが好ましく、5~3000mL/minがより好ましく、50~3000mL/minがさらに好ましい。液Aの導入流量を上記範囲内とすることにより、合流部における混合効率が高まり得られる重合体をより単分散化でき、かつ、圧力損失の懸念も低下する。液Aを導入する流速は、5~2000mL/minとしてもよく、10~1000mL/minとしてもよく、20~800mL/minとすることもでき、40~600mL/minとすることもできる。
-アニオン重合性モノマーと非極性溶媒とを含む液A-
 アニオン重合性モノマー供給流路(1)内を流通させる液Aは、通常は、非極性溶媒を含む溶媒中にアニオン重合性モノマーを溶解してなる溶液である。本発明において「非極性溶媒」とは、炭化水素溶媒を意味する。液Aに含まれる非極性溶媒としては、ヘキサン、ヘプタン、オクタン、シクロヘキサン、メチルシクロヘキサン、ベンゼン、トルエン、キシレン、デカリン、テトラリン、これらの誘導体などが挙げられる。
 液Aに含まれる非極性溶媒は芳香族炭化水素及び飽和炭化水素の少なくとも1種を含むことが好ましい。この場合、非極性溶媒に占める、芳香族炭化水素及び飽和炭化水素の合計の割合は50質量%以上が好ましく、70質量%以上がより好ましく、80質量%以上がさらに好ましく、90質量%以上がさらに好ましい。非極性溶媒は芳香族炭化水素及び飽和炭化水素の少なくとも1種であることが特に好ましい。この芳香族炭化水素はトルエン及びキシレンの少なくとも1種が好ましく、より好ましくはトルエンである。上記飽和炭化水素はヘキサン、ヘプタン及びシクロヘキサンの少なくとも1種が好ましく、より好ましくはヘキサンである。液Bに含まれる非極性溶媒は、より好ましくはトルエン及びヘキサンの少なくとも1種である。
 液Aは非極性溶媒を含有していれば、さらに極性溶媒を含有してもよい。本発明において「極性溶媒」とは、炭素原子以外で、かつ水素原子以外の原子(ヘテロ原子、例えば酸素原子、硫黄原子、窒素原子など)を構成原子として有する溶媒(非炭化水素溶媒)である。液Aが極性溶媒を含む場合、用いるモノマーの種類に応じて適宜に選択すればよく、例えば、エーテル溶媒(直鎖、分岐鎖、環状のエーテル溶媒)などが挙げられる。エーテル溶媒の具体例として、テトラヒドロフラン、ジオキサン、トリオキサン、メチルターシャリーブチルエーテル、シクロペンチルメチルエーテル、エチレングリコールジブチルエーテル、ジエチレングリコールジメチルエーテル、ジエチレングリコールジエチルエーテル、ジエチレングリコールジブチルエーテル、これらの誘導体などを挙げることができる。
 なお、エーテル溶媒以外にも、例えば、N,N-ジメチルアセトアミド、N-メチルピロリドン、1,3-ジメチル-2-イミダゾリジノン、N,N’-ジメチルプロピレン尿素、酢酸tert-ブチル、N,N-ジイソプロピルエチルアミン、N,N,N’,N’-テトラメチルエチレンジアミン、テトラメチルプロピレンジアミンなどの極性溶媒を用いることができる。
 液Aに含まれるすべての溶媒に占める非極性溶媒の割合は、40質量%以上が好ましく、50質量%以上がより好ましく、60質量%以上がさらに好ましく、70質量%以上が特に好ましい。この割合は80質量%以上でもよく、90質量%以上でもよく、液Aに含まれる溶媒のすべてが非極性溶媒であることも好ましい。
 液A中のアニオン重合性モノマーに特に制限はなく、目的に応じて適宜選択することができる。例えば、ビニル芳香族炭化水素、アクリルモノマー、メタクリルモノマー、共役ジエンなどが挙げられる。
 上記ビニル芳香族炭化水素としては、例えば、スチレン、スチレン誘導体(p-ジメチルシリルスチレン、(p-ビニルフェニル)メチルスルフィド、p-ヘキシニルスチレン、p-メトキシスチレン、p-tert-ブチルジメチルシロキシスチレン、o-メチルスチレン、p-メチルスチレン、p-tert-ブチルスチレン、α-メチルスチレン、p-tert-ブトキシスチレン、p-tert-ブトキシ-α-メチルスチレン、m-tert-ブトキシスチレン、p-(1-エトキシエトキシ)スチレンなど)、ビニルナフタレン、2-tert-ブトキシ-6-ビニルナフタレン、ビニルアントラセン、1,1-ジフェニルエチレンなどが挙げられる。
 上記アクリルモノマーとしては、例えば、メチルアクリレート、エチルアクリレート、イソプロピルアクリレート、イソブチルアクリレート、tert-ブチルアクリレート、シクロヘキシルアクリレート、ベンジルアクリレート、エポキシアクリレート、エチレングリコールジアクリレート、ジエチレングリコールジアクリレート、トリメチロールプロパントリアクリレート、テトラメチレングリコールテトラアクリレート、2-ヒドロキシ-1,3-ジアクリロキシプロパン、2,2-ビス[4-(アクリロキシメトキシ)フェニル]プロパン、2,2-ビス[4-(アクリロキシエトキシ)フェニル]プロパン、ジシクロペンテニルアクリレートトリシクロデカニルアクリレート、トリス(アクリロキシエチル)イソシアヌレート、ウレタンアクリレートなどが挙げられる。
 また、上記メタクリルモノマーとしては、上記のアクリルモノマーとして例示したモノマーのアクリロイル基を、メタクリロイル基にした構造のモノマーを挙げることができる。
 上記共役ジエンとしては、例えば、1,3-ブタジエン、2-メチル-1,3-ブタジエン、2,3-ジメチル-1,3-ブタジエン、1,3-ペンタジエン、1,3-ヘキサジエン、1,3-シクロヘキサジエンなどが挙げられる。
 上記モノマーは、1種単独で使用してもよいし、2種以上を併用してもよい。
 液A中のアニオン重合性モノマーの含有量に特に制限はなく、液B中の開始剤濃度、液Bの導入流量、目的とする重合体の分子量等を考慮し、適宜に調整されるものである。液A中のアニオン重合性モノマーの含有量は、例えば1~100質量%とすることができ、3~70質量%が好ましく、5~50質量%がより好ましく、10~40質量%がさらに好ましい。
 また、粘度、反応熱の除熱の観点から、液A中のアニオン重合性モノマーのモル濃度は、0.5~10M(mol/L)が好ましく、0.5~5Mがより好ましい。
<アニオン重合開始剤供給流路(2)>
 アニオン重合開始剤供給流路(2)は、導入口(II)から導入された液Bを、上記合流部(J1)へと供給する流路である。アニオン重合開始剤供給流路(2)は、その等価直径を1~10mmとすることが好ましい。アニオン重合開始剤供給流路(2)の等価直径を1mm以上とすることにより、流速をある程度上げても系内圧力の過度な上昇を抑えることができ、重合体の生産性をより高めることができる。また、アニオン重合開始剤供給流路(2)の等価直径を10mm以下とすることにより、合流部(J1)導入時の液温を、適切に制御することができる。アニオン重合開始剤供給流路(2)の等価直径は、1~8mmがより好ましく、1~6mmがさらに好ましい。
 アニオン重合開始剤供給流路(2)の長さに特に制限はなく、例えば、長さが10cm~15m程度(好ましくは、30cm~10m)のチューブにより構成することができる。
 チューブの材質に特に制限はなく、上記アニオン重合性モノマー供給流路(1)で例示した材質のチューブを用いることができる。
 上記導入口(II)から液Bを導入する流速は、10mL/minよりも速く且つ2000mL/min以下(すなわち10mL/min超2000mL/min以下)とすることが好ましい。液Bの流速を上記範囲内とすることにより、合流部における混合効率が高まり得られる重合体をより単分散化することができ、かつ、圧力損失の懸念も低下する。液Bの導入流量は11~2000mL/minとすることが好ましい。また、液Bの導入流量は12~1000mL/minとしてもよく、12~600mL/minとしてもよく、12~300mL/minとすることもできる。
 また、導入口(II)から液Bを導入する流速Bは、ポリマーの分子量制御の観点から、導入口(I)から液Aを導入する流速Aよりも遅いことが好ましい。流速Aと流速Bの比は、[流速A]/[流速B]=20/1~1.2/1が好ましく、[流速A]/[流速B]=10/1~1.3/1がより好ましい。なお、本明細書において流速の単位はmL/minである。
-アニオン重合開始剤と非極性溶媒とを含む液B-
 アニオン重合開始剤供給流路(2)内を流通させる液Bは、通常は、非極性溶媒を含む溶媒中にアニオン重合開始剤を溶解してなる溶液である。液Bに含まれる非極性溶媒としては、ヘキサン、ヘプタン、オクタン、シクロヘキサン、メチルシクロヘキサン、ベンゼン、トルエン、キシレン、デカリン、テトラリン、これらの誘導体などが挙げられる。
 液Bに含まれる非極性溶媒は芳香族炭化水素及び飽和炭化水素の少なくとも1種を含むことが好ましい。この場合、非極性溶媒に占める、芳香族炭化水素及び飽和炭化水素の合計の割合は50質量%以上が好ましく、70質量%以上がより好ましく、80質量%以上がさらに好ましく、90質量%以上がさらに好ましい。非極性溶媒は芳香族炭化水素及び飽和炭化水素の少なくとも1種であることが特に好ましい。この芳香族炭化水素はトルエン及びキシレンの少なくとも1種が好ましく、より好ましくはトルエンである。上記飽和炭化水素はヘキサン、ヘプタン及びシクロヘキサンの少なくとも1種が好ましく、より好ましくはヘキサンである。液Bに含まれる非極性溶媒は、より好ましくはトルエン及びヘキサンの少なくとも1種である。
 液Bは非極性溶媒を含有していれば、さらに極性溶媒を含有してもよい。液Bが極性溶媒を含む場合、用いるアニオン重合開始剤の種類に応じて適宜に選択すればよく、例えば、エーテル溶媒(直鎖、分岐鎖、環状のエーテル溶媒)などが挙げられる。エーテル溶媒の具体例として、テトラヒドロフラン、ジオキサン、トリオキサン、メチルターシャリーブチルエーテル、シクロペンチルメチルエーテル、エチレングリコールジブチルエーテル、ジエチレングリコールジメチルエーテル、ジエチレングリコールジエチルエーテル、ジエチレングリコールジブチルエーテル、これらの誘導体などを挙げることができる。
 液Bに含まれるすべての溶媒に占める非極性溶媒の割合は、40質量%以上が好ましく、50質量%以上がより好ましく、60質量%以上がさらに好ましく、70質量%以上が特に好ましい。この割合は80質量%以上でもよく、90質量%以上でもよく、液Bに含まれる溶媒のすべてが非極性溶媒であることも好ましい。
-アニオン重合開始剤-
 液Bに用いるアニオン重合開始剤に特に制限はなく、通常のアニオン重合に用いられる開始剤を広く用いることができ、使用するモノマーの種類に応じて適宜に選択される。
 上記重合方式が、リビング重合方式のアニオン重合である場合の重合開始剤としては、例えば、有機リチウム化合物及び有機マグネシウム化合物が挙げられる。
 上記有機リチウム化合物としては、特に制限は無く、従来公知の有機リチウム化合物から適宜選択することができ、例えば、メチルリチウム、エチルリチウム、プロピルリチウム、ブチルリチウム(n-ブチルリチウム、sec-ブチルリチウム、iso-ブチルリチウム、tert-ブチルリチウムなど)、ペンチルリチウム、ヘキシルリチウム、メトキシメチルリチウム、エトキシメチルリチウム等のアルキルリチウム;α-メチルスチリルリチウム、1,1-ジフェニル3-メチルペントリルリチウム、3-メチル-1,1-ジフェニルペンチルリチウム等のベンジルリチウム;ビニルリチウム、アリルリチウム、プロペニルリチウム、ブテニルリチウム等のアルケニルリチウム;エチニルリチウム、ブチニルリチウム、ペンチニルリチウム、ヘキシニルリチウム等のアルキニルリチウム;ベンジルリチウム、フェニルエチルリチウム等のアラルキルリチウム;フェニルリチウム、ナフチルリチウム等のアリールリチウム;2-チエニルリチウム、4-ピリジルリチウム、2-キノリルリチウム等のヘテロ環リチウム;トリ(n-ブチル)マグネシウムリチウム、トリメチルマグネシウムリチウム等のアルキルリチウムマグネシウム錯体等が挙げられる。中でも、反応性が高く開始反応を高速化できる点で、アルキルリチウムがより好ましく、n-ブチルリチウムが特に好ましい。ブチルリチウムの中でもn-ブチルリチウムが好ましい理由として、溶液状態における安定性が高いことが挙げられる。例えばsec-ブチルリチウムを用いた場合、溶液に溶解せず、懸濁液の状態で徐々に沈殿が生じてしまい、重合体の工業的生産における品質安定性の点で問題が生じるおそれがある。また、tert-ブチルリチウムは引火性、発火性が非常に高く、工業的生産にはあまり適さない。上記有機リチウム化合物は、1種単独で使用してもよいし、2種以上を併用してもよい。
 有機マグネシウム化合物としては、ジ-n-ブチルマグネシウム、ジ-tert-ブチルマグネシウム、ジ-sec-ブチルマグネシウム、n-ブチル-sec-ブチルマグネシウム、n-ブチル-エチルマグネシウム、ジ-n-アミルマグネシウム、ジベンジルマグネシウム、ジフェニルマグネシウム等が挙げられる。
 液B中のアニオン重合開始剤の含有量に特に制限はなく、液Aのモノマー濃度、液Aの導入流量、目的の重合体の分子量等を考慮し、適宜に調整されるものである。液B中のアニオン重合開始剤の含有量は、通常は0.01~20質量%であり、0.01~15質量%がより好ましく、0.01~10質量%がさらに好ましく、0.05~10質量%がさらに好ましい。
 また、ポリマーの分子量制御の観点から、液B中のアニオン重合開始剤のモル濃度は、0.004~1.6Mが好ましく、0.008~1.6Mがより好ましく、0.008~0.8Mがより好ましい。
 液Aと液Bの導入量は、合流部(J1)において両液が均質に混じり合ったと仮定した場合に、この混合液中において、アニオン重合性モノマーとアニオン重合開始剤の当量比が、アニオン重合開始剤1当量に対して、アニオン重合性モノマーが5~5000当量が好ましく、10~5000当量がより好ましく、10~1000当量が特に好ましい。なかでも当量比を上記特に好ましい範囲内とすることにより、理論値と事実上等しい分子量のポリマーを得ることができる点で有利である。すなわち、モノマーが重合性官能基を1つ有する化合物である場合、開始剤1モルに対して、モノマーの使用量が5~5000モルが好ましく、10~5000モルがより好ましく、10~1000モルが特に好ましい。
<合流部(J1)>
 アニオン重合性モノマー供給流路(1)内を流通する液Aと、アニオン重合開始剤供給流路(2)内を流通する液Bは、合流部(J1)で合流する。合流部(J1)はミキサーの役割を有し、アニオン重合性モノマー供給流路(1)とアニオン重合開始剤供給流路(2)とを1本の流路に合流し、合流部(J1)の下流側端部に連結するプレ反応管(5)へと合流液MABを送り出すことができれば特に制限されない。図1の実施形態においては、合流部(J1)としてT字型のコネクターを用いている。
 合流部(J1)内の流路の等価直径は、混合性能をより良好とする観点から、0.2~10mmが好ましく、圧損をより抑制する観点から1~5mmがより好ましい。
 合流部(J1)の材質に特に制限はなく、例えば、パーフルオロアルコキシアルカン(PFA)、テフロン(登録商標)、芳香族ポリエーテルケトン系樹脂、ステンレス、銅又は銅合金、ニッケル又はニッケル合金、チタン又はチタン合金、石英ガラス、ライムソーダガラスなどの材質からなるものを用いることができる。
 合流部(J1)には、市販されているミキサーを用いることができる。例えばミクログラス社製ミクログラスリアクター;CPCシステムス社製サイトス;山武社製YM-1、YM-2型ミキサー;島津GLC社製ミキシングティー及びティー(T字コネクタ);GLサイエンス社製ミキシングティー及びティー(T字コネクタ);Upchurch社製ミキシングティー及びティー(T字コネクタ);;Upchurch社製ミキシングティー及びティー(T字コネクタ);Valco社製ミキシングティー及びティー(T字コネクタ);swagelok社製T字、クロスコネクタ等が挙げられ、いずれも本発明に使用することができる。
<プレ反応管(5)>
 液Aと液Bは、合流部(J1)で合流、混合された後、この合流液MABはプレ反応管(5)内を下流へと流通する。
 プレ反応管(5)の形態に特に制限はなく、通常はチューブを用いる。プレ反応管(5)の好ましい材質は、上述したアニオン重合性モノマー供給流路(1)の好ましい材質と同じである。プレ反応管(5)内を流通する合流液MABの滞留時間は短い方がよい。
 すなわち、プレ反応管内を流通中には、開始反応ないし成長反応(重合反応)を事実上生じさせないことが好ましい。好ましくは、プレ反応管の通過直後において(液Cとの合流地点において)、モノマー転化率を5%以下とすることが好ましく、4%以下とすることがより好ましく、3%以下とすることがより好ましく、2%以下とすることがさらに好ましい。プレ反応管内におけるモノマー転化率は低いほど好ましいが、通常は0.1%以上であり、0.2%以上とするのが実際的である。
 プレ反応管(5)の等価直径は0.1~50mmであり、より好ましくは0.2~20mmであり、さらに好ましくは0.4~15mmであり、さらに好ましくは0.7~10mmであり、さらに好ましくは1~5mmである。また、プレ反応管(5)の長さは、通常、0.2~5mであり、0.4~3mが好ましく、0.6~2mがより好ましい。
<極性溶媒供給流路(3)>
 極性溶媒供給流路(3)は、導入口(III)から導入された液Cを、上記合流部(J2)へと供給する流路である。極性溶媒供給流路(3)の等価直径は、1~10mmがより好ましく、1~8mmがさらに好ましく、1~6mmがさらに好ましい。また、極性溶媒供給流路(3)の長さに特に制限はなく、例えば、長さが10cm~15m程度(好ましくは、30cm~10m)のチューブにより構成することができる。極性溶媒供給流路(3)の好ましい材質は、上述したアニオン重合性モノマー供給流路(1)の好ましい材質と同じである。
-極性溶媒を含む液C-
 極性溶媒供給流路(3)内を流通させる液Cは、極性溶媒を含有する。液Cに含まれる極性溶媒としては、例えば、エーテル溶媒(直鎖、分岐鎖、環状のエーテル溶媒)などが挙げられる。エーテル溶媒の具体例として、テトラヒドロフラン、ジオキサン、トリオキサン、メチルターシャリーブチルエーテル、シクロペンチルメチルエーテル、エチレングリコールジブチルエーテル、ジエチレングリコールジメチルエーテル、ジエチレングリコールジエチルエーテル、ジエチレングリコールジブチルエーテル、これらの誘導体などを用いることができる。反応制御性、コスト等の観点から環状エーテル溶媒が好ましく、テトラヒドロフランがより好ましい。
 なお、エーテル溶媒以外にも、例えば、N,N-ジメチルアセトアミド、N-メチルピロリドン、1,3-ジメチル-2-イミダゾリジノン、N,N’-ジメチルプロピレン尿素、酢酸tert-ブチル、N,N-ジイソプロピルエチルアミン、N,N,N’,N’-テトラメチルエチレンジアミン、テトラメチルプロピレンジアミンなどの極性溶媒を用いることができる。
 液C中の溶媒の含有量は90質量%以上が好ましく、95質量%以上がより好ましい。
 液Cを構成する溶媒中に占める極性溶媒の割合は、40質量%以上が好ましく、50質量%以上がより好ましく、60質量%以上がさらに好ましく、70質量%以上が特に好ましい。この割合は80質量%以上でもよく、90質量%以上でもよく、液Cに含まれる溶媒のすべてが極性溶媒であることも好ましい。
 液Cが極性溶媒以外の成分を含む場合、極性溶媒を除いた残部は非極性溶媒であることが好ましい。この非極性溶媒として、ヘキサン、ヘプタン、オクタン、シクロヘキサン、メチルシクロヘキサン、ベンゼン、トルエン、キシレン、デカリン、テトラリン、これらの誘導体などが挙げられる。液Cに含まれ得る非極性溶媒は、芳香族炭化水素を含むことが好ましい。この場合、非極性溶媒に占める芳香族炭化水素の割合は50質量%以上が好ましく、70質量%以上がより好ましく、80質量%以上がさらに好ましく、90質量%以上がさらに好ましい。非極性溶媒は芳香族炭化水素であることが特に好ましい。この芳香族炭化水素はトルエン及びキシレンの少なくとも1種が好ましく、より好ましくはトルエンである。
 液C中の極性溶媒の濃度は、液A中の極性溶媒の濃度よりも高いことが好ましく、また液B中の極性溶媒の濃度よりも高いことが好ましい。本発明では、合流液MABと液Cとの合流液MABCの溶媒の極性を、合流液MABの溶媒の極性よりも高くする(すなわち、反応管内を流通する重合反応液の溶媒の極性を、プレ反応管内を流通する、液Aと液Bとの合流液の溶媒の極性よりも高くする)。ここで、「合流液MABCの溶媒の極性を、合流液MABの溶媒の極性よりも高くする」とは、合流液MABC中の極性溶媒の濃度を、合流液MAB中の極性溶媒の濃度よりも高くすることを意味する。これらの濃度は質量基準である。
 合流液MABCの溶媒中に占める極性溶媒の割合(質量%)は、合流液MABの溶媒中に占める極性溶媒の割合(質量%)の1.5倍以上が好ましく、2倍以上とすることがより好ましい。
<合流部(J2)>
 プレ反応管(5)内を流通する合流液MABと、極性溶媒供給流路(3)内を流通する液Cとは、合流部(J2)で合流する。合流部(J2)はミキサーの役割を有し、プレ反応管(5)と極性溶媒供給流路(3)とを一本の流路に合流し、下流の反応管(6)へと合流した溶液を送り出すことができれば特に制限されない。図1の実施形態において、合流部(J2)はT字型のコネクターを用いている。
 合流部(J2)内の流路の等価直径は、混合性能をより良好とする観点から、0.2~10mmが好ましく、圧損をより抑制する観点から1~10mmがより好ましい。
 合流部(J2)の材質に特に制限はなく、上述した合流部(J1)で説明したのと同じ材質からなるものを用いることができる。また、合流部(J2)として採用しうるミキサーの具体例も、上記合流部(J1)として採用しうるミキサーの具体例と同じである。
 この合流部(J2)において、液Cと合流した合流液MABCは溶媒の極性が瞬時に高められ、これが引き金となって開始反応が一斉に進行するものと考えられる。つまり、プレ反応管(5)においては重合反応を事実上生じさせずに、合流部(J2)において開始反応を一斉にスタートさせることができ、これに続く反応管(6)内における生長反応を経て、得られる重合体の単分散性を高度に高めることができると推定される。
<反応管(6)>
 合流液MABと液Cとが合流部(J2)で合流した後、この合流液MABCは反応流路である反応管(6)内へと流れ、反応管(6)内を下流へ流通中に、アニオン重合性モノマーがアニオン重合する(生長反応が進行する)。
 反応管(6)の形態に特に制限はなく、通常はチューブを用いる。反応管(6)の好ましい材質は、上述したアニオン重合性モノマー供給流路(1)の好ましい材質と同じである。また、反応管(6)の等価直径と長さ、送液ポンプの流量設定等によって、アニオン重合の反応時間を調整することができる。反応管(6)内を流通する反応液の滞留時間は、所望する重合体の分子量に応じて適宜調節すればよい。通常は、反応管(6)の等価直径は0.1~50mmであり、より好ましくは0.2~20mmであり、さらに好ましくは0.4~15mmであり、さらに好ましくは0.7~10mmであり、さらに好ましくは1~5mmである。また、反応管(6)の長さは3~50mが好ましく、5~50mがより好ましい。
<重合停止剤供給流路(4)>
 重合停止剤供給流路(4)は、導入口(IV)から導入された重合停止剤を、上記合流部(J3)へと供給する流路である。重合停止剤供給流路(4)の等価直径は、1~10mmがより好ましく、1~8mmがさらに好ましく、1~6mmがさらに好ましい。また、重合停止剤供給流路(4)の長さに特に制限はなく、例えば、長さが10cm~15m程度(好ましくは、30cm~10m)のチューブにより構成することができる。重合停止剤供給流路(4)の好ましい材質は、上述したアニオン重合性モノマー供給流路(1)の好ましい材質と同じである。
-重合停止剤-
 重合停止剤としては、活性種であるアニオンを失活させる成分(重合停止成分)を含む液であれば特に制限はなく、重合停止成分としてアルコール及び酸性物質の少なくとも1種を含む、水溶液又は有機溶液(例えば、テトラヒドロフラン(THF)、メチルターシャリーブチルエーテル、ジオキサン、シクロペンチルメチルエーテル、トルエン等を溶媒とする溶液)が挙げられる。また、重合停止成分としてハロゲン化アルキルやクロロシラン等の求電子剤を含む液を重合停止剤として用いることもできる。
 重合停止成分としてのアルコールとしては、例えば、メタノール、エタノール、プロパノール、イソプロピルアルコール等が挙げられる。
 重合停止成分としての酸性物質としては、例えば、酢酸、塩酸等が挙げられる。
 重合停止成分としてのハロゲン化アルキルとしては、例えば、アルキルブロマイド、アルキルヨージド等が挙げられる。
 重合停止剤中に含まれるアルコール、酸性物質、求電子剤等の重合停止成分の量は、重合体溶液と合流した混合液中において、重合開始剤1モルに対して、1~100モルとするのが好ましい。
 導入口(IV)から重合停止剤を導入する際の流速は、特に制限はなく、目的に応じて適宜選択することができる。例えば、1~3000mL/minとすることができ、2~2000mL/minがより好ましく、4~2000mL/minがさらに好ましい。流速が上記範囲内であれば、迅速な混合が可能となり、かつ、圧力損失の懸念も低下する。重合停止剤を導入する際の流速は、5~2000mL/minとしてもよく、10~1000mL/minとしてもよく、20~800mL/minとすることもでき、40~600mL/minとすることもできる。
<合流部(J3)>
 反応管(6)内を流通しながらアニオン重合反応が進行している重合反応液と、重合停止剤供給流路(4)内を流通する重合停止剤とは、合流部(J3)で合流する。合流部(J3)はミキサーの役割を有し、反応管(6)と重合停止剤供給流路(4)とを一本の流路に合流し、下流の配管(7)へと合流した溶液を送り出すことができれば特に制限されない。図1の実施形態において、合流部(J3)はT字型のコネクターを用いている。
 合流部(J3)内の流路の等価直径は、混合性能をより良好とする観点から、0.2~10mmが好ましく、圧損をより抑制する観点から1~10mmがより好ましい。
 合流部(J3)の材質に特に制限はなく、上述した合流部(J1)で説明したのと同じ材質からなるものを用いることができる。また、合流部(J3)として採用しうるミキサーの具体例も、上記合流部(J1)として採用しうるミキサーの具体例と同じである。
<配管(7)>
 重合反応液と重合停止剤を含む混合溶液は、配管(7)内を流通しながら反応し、アニオンが失活して重合が停止する。
 配管(7)はチューブにより構成することができ、その等価直径は、流通する液の液温をより精密に制御する観点から、1~50mmが好ましく、1~10mmがより好ましい。配管(7)の長さは、等価直径、流量、所望する重合体の分子量に合わせて適宜調整すればよく、1~20mとするのが好ましく、2~10mがより好ましい。配管(7)の好ましい材質は、上述したアニオン重合性モノマー供給流路(1)の好ましい材質と同じである。
 配管(7)内を流通する液の液温は特に限定されないが、図1に示すように、少なくとも上流側を、反応管(6)内を流通する液の液温と同じにすることが好ましい。
 配管(7)内を流通する液の流速は、重合停止剤供給流路(4)内を流通する液の流速と、反応管(6)内を流通する液の流速の合計値となる。
 配管(7)の下流において液を採取することにより、目的の重合体を得ることができる。
 本発明の製造方法を実施するためのフロー式反応システムの別の実施形態を、図2を用いて説明する。図2の実施形態は、アニオン重合性モノマー供給流路(1)が途中で2つの流路に分岐していること以外は、図1の実施形態と同じである。図2の実施形態においては、アニオン重合性モノマー供給流路(1)は途中で2つの流路に分岐し、この分岐した2つの流路は、十字型のコネクターである合流部(J4)において、互いに対向する接続口から導入され、合流する。この実施形態において、液Bが流通するアニオン重合開始剤供給流路(2)は、合流部(J4)の、プレ反応管(5)の連結部位と対向する接続口に連結されている。このようにアニオン重合性モノマー供給流路(1)を分岐させることにより、合流部(J4)において、モノマーと開始剤とがより素早く、より均質に混合され、得られる重合体の分子量分布をより狭めることができ、より高度に単分散化した重合体を得ることが可能となる。かかる十字コネクターは、その内径が1~10mmであることが好ましい。
 上記十字コネクターとして市販品を広く用いることができ、市販品として例えば、Upchurch社製クロスコネクター;swagelok社製ユニオン・クロス;EYELA社製4方ジョイント等を用いることができる。
 図2の実施形態において、アニオン重合性モノマー供給流路(1)は2つの流路に分岐されているが、3つ以上の流路に分岐させてもよく、かかる実施形態も本発明の実施形態として好ましい。また、アニオン重合性モノマー供給流路(1)を分岐させるとともに、あるいはアニオン重合性モノマー供給流路(1)を分岐させずに、アニオン重合開始剤供給流路(2)を分岐させ、合流部で合流させる形態としてもよく、かかる形態も本発明の実施形態に含まれる。なかでも、アニオン重合性モノマー供給流路(1)を2つ以上に分岐させ、且つ、アニオン重合開始剤供給流路(2)を分岐させずに、あるいはアニオン重合開始剤供給流路(2)を2つ以上に分岐させた形態を採用することが好ましい。アニオン重合性モノマー供給流路(1)の分岐数と、アニオン重合開始剤供給流路(2)の分岐数の関係は下記i)又はii)のように設計することがより好ましい。
 i)アニオン重合性モノマー供給流路(1)の分岐数が2で、アニオン重合開始剤供給流路(2)が分岐を有しない形態。
 ii)アニオン重合性モノマー供給流路(1)の分岐数が3以上で、アニオン重合開始剤供給流路(2)の分岐数が2以上であり、且つ、アニオン重合性モノマー供給流路(1)の分岐数がアニオン重合開始剤供給流路(2)の分岐数よりも多い形態。
 液Aと液Bとの合流部に連結する、液Aが流通する流路の数と液Bが流通する流路の数の合計は、3~10本であることが好ましく、3~8本であることがより好ましく、3~6本であることがさらに好ましく、3~5本であることがさらに好ましい。この場合において、アニオン重合性モノマー供給流路(1)の分岐数がアニオン重合開始剤供給流路(2)の分岐数よりも多いことが好ましい。
 かかる本数の流路を接続可能な合流部は、接続する流路の数に応じた数の接続口を有するコネクターで構成することができる。例えば6方コネクターを用いれば、液Aが流通する流路の数と液Bが流通する流路の数の合計を5本とすることができ、残る1つの接続口を排出口とし、この排出口にプレ反応管を接続することができる。
 本発明に用いうる、5方以上の接続口を有するコネクターとして、市販品を広く用いることができる。これら市販品の例として、EYELA社製6方ジョイント、杉山商事製六方ジョイント、Upchurch社製6-ポートマニホールド等を挙げることができる。
 5方以上の接続口を有するコネクターは、その内径が1~10mmであることが好ましい。
 なお、上記では分岐を有する流路が有する導入口が1つであり、途中で流路が分岐する形態を説明したが、一の溶液に対する導入口を複数設けた形態としてもよく、かかる実施形態も本発明の実施形態に包含される。例えば、アニオン重合性モノマー供給流路(1)を複数本用意し、これら複数のアニオン重合性モノマー供給流路(1)を合流部で合流する形態とすることもできる。このことは、アニオン重合開始剤供給流路(2)についても同様である。
 図1及び2の実施形態において、重合反応液の、反応管6内の滞留時間(重合反応時間)は、15秒以上とすることが好ましく、20~1800秒とすることがより好ましく、20~600秒とすることがさらに好ましい。
 本発明の重合体の製造方法によれば、重合体を、優れたモノマー転化率で、かつ、分子量分布が高度に単分散化された状態で得ることができる。
 本発明をその好ましい実施形態と共に説明したが、本発明は、本発明で規定する事項以外は、上記実施形態に何ら限定されるものではない。また、以下に、本発明を実施例に基づき更に詳細に説明するが、本発明はこれらの実施例により限定されるものではない。
[実施例1]
 図2に示す構成のフロー式反応システム200を用いてアニオン重合反応により重合体を合成した。各部の詳細を下記に示す。
送液ポンプ(図示せず):
 導入口I、II、III及びIVのすべてに、株式会社GLサイエンス製PU716B又はPU718を設置して送液した。流量出口側にはパルスダンパーHPD-1、テスコム社製背圧弁(44-2361-24)、株式会社IBS社製リリーフバルブRHA(4MPa)を順次設置した。
低温恒温槽(R1):
 アイラ製マグネチックスターラー付低温恒温水槽PSL-2000を使用し、-25℃に設定した。
アニオン重合性モノマー供給流路(1):
 一本のSUSチューブをT字コネクターで2分割した構造とした。
 より詳細には、外径1/16インチ、内径1.0mm、長さ10mのSUS316チューブにアップチャーチ社製T-コネクター(U-429、内径1.0mm)を接続し、さらにこのT-コネクターに、外径1/16インチ、内径1.0mm、長さ5cmのSUS316チューブを2本、互いに対向するように接続したものをアニオン重合性モノマー供給流路(1)とした。
アニオン重合開始剤供給流路(2):
 外径1/16インチ、内径1.0mm、長さ10mのSUS316チューブを用いた。
合流部(J4)(十字コネクター):
 アップチャーチ社製クロスコネクター(U-431、内径1.0mm)を用いた。
 上記アニオン重合性モノマー供給流路(1)を構成する上記T字コネクターに互いに対向するように接続したSUS316チューブ2本を、上記クロスコネクターの4つの接続口のうち、互いに対向する2つの接続口にそれぞれ連結した。残り2つの接続口のうち1つに、上記アニオン重合開始剤供給流路(2)を連結し、さらに残りの接続口を、液を送り出す排出口(プレ反応管(5)との接続口)として用いた。
プレ反応管(5):
 外径1/8インチ、内径2.17mm、長さ1mのSUS316チューブを用いた。
極性溶媒供給流路(3):
 外径1/16インチ、内径1.0mm、長さ10mのSUS316チューブを用いた。
合流部(J2)(T字コネクター):
 swagelok社製ユニオンティー(SS-200-3、内径2.3mm)を用いた。
 上記プレ反応管(5)と極性溶媒供給流路(3)とを、上記ユニオンティーの3つの接続口のうち、互いに対向する2つの接続口にそれぞれ連結した。残りの接続口を、液を送り出す排出口(反応管(6)との接続口)として用いた。
反応管(6):
 上流側から下流側に向けて、(i)外径1/8インチ、内径2.17mm、長さ15mのSUS316チューブ、(ii)外径8mm、内径6mm、長さ20mのSUS316チューブの順にユニオンを用いて連結した。
重合停止剤供給流路(4):
 外径1/8インチ、内径2.17mm、長さ10mのSUS316チューブを用いた。
合流部(J3)(T字コネクター):
 swagelok社製ユニオンティー(SS-200-3、内径2.3mm)を用いた。
 上記反応管(6)と上記重合停止剤供給流路(4)を、上記ユニオンティーの3つの接続口のうち、互いに対向する2つの接続口にそれぞれ連結した。残りの接続口を、液を送り出す排出口(配管(7)との接続口)として用いた。
配管(7):
 上流側から下流側に向けて、(i)外径1/8インチ、内径2.17mm、長さ2.5mのSUS316チューブ、(ii)外径1/8インチ、内径2.17mm、長さ0.5mのテフロンチューブ、の順にユニオンを用いて連結した。
アニオン重合性モノマー供給流路(1)に導入する、モノマーを含む液A:
<p-メトキシスチレン/トルエン>
 5LのSUSタンクに和光純薬製トルエン(脱酸素グレード)と和光純薬社製p-メトキシスチレン(特級グレード)を加え、3.5M-p-メトキシスチレン/トルエン溶液4Lを調製した。この溶液をモレキュラーシーブ3Aにより脱水し、液Aとした。
 なお、本実施例において、「xM-y/z」との記載は、yを溶媒zに溶解した溶液であって、この溶液中のy濃度がxMであることを意味する。
アニオン重合開始剤供給流路(2)に導入する、開始剤を含む液B:
<n-ブチルリチウム(nBuLi)/トルエン>
 5LのSUSタンクに和光純薬製トルエン(脱酸素グレード)を加え0℃に冷却した。関東化学製nBuLi(1.6M-nBuLi/ヘキサン溶液)を加え、メントール/ビピリジンで滴定して、0.008M-nBuLi/トルエン溶液4Lを調製し、液Bとした。
極性溶媒供給流路(3)に導入する、極性溶媒を含む液C:
 和光純薬社製テトラヒドロフラン(THF)(脱酸素グレード)をモレキュラーシーブ3Aにより脱水し、液Cとした。
重合停止剤供給流路(4)に導入する重合停止剤:
<メタノール(MeOH)/THF>
 3LのSUSタンクに和光純薬製THF(脱酸素グレード)と和光純薬製MeOH(脱酸素グレード)を加え、0.5M-MeOH/THF溶液4Lを調製し、重合停止剤とした。
送液条件:
 液A(3.5M-p-メトキシスチレン/トルエン):100mL/min
 液B(0.08M-nBuLi/トルエン):36.5mL/min
 液C(THF):114mL/min
 重合停止剤(0.5M-MeOH/THF):43.8mL/min
合流部(J2)におけるモノマー転化率:
 合流部(J2)に接続された極性溶媒供給流路(3)に代えて、合流部(J2)に重合停止剤供給流路(4)を接続し、合流部(J2)に重合停止剤を供給した。合流部(J2)の排出口(出口)から10mLを採取し、ゲルパーミエーションクロマトグラフィー(GPC)により分析した。モノマーのピーク面積と重合体のピーク面積の合計に対する重合体のピーク面積の割合を算出し、モノマー転化率とした。合流部(J2)におけるモノマー転化率(すなわち、プレ反応管(5)を通過直後の液MAB中のモノマー転化率)は1モル%であった。
取り出し:
 配管(7)出口から重合体を含む溶液10mLを採取し、分子量と分子量分布をゲルパーミエーションクロマトグラフィー(GPC)にて測定した。その結果、数平均分子量(Mn)は14000、分子量分布(分散度、Mw/Mn)は1.04であった。また、採取した試料からモノマーは検出されず、モノマー転化率は100モル%であった。
 本明細書においてGPCは下記の条件で測定した。
装置:HLC-8220GPC(東ソー社製)
検出器:示差屈折計(RI(Refractive Index)検出器)
プレカラム:TSKGUARDCOLUMN HXL-L 6mm×40mm(東ソー社製)
サンプル側カラム:以下3本を順に直結(全て東ソー社製)
 ・TSK-GEL GMHXL 7.8mm×300mm
 ・TSK-GEL G4000HXL 7.8mm×300mm
 ・TSK-GEL G2000HXL 7.8mm×300mm
 リファレンス側カラム:TSK-GEL G1000HXL 7.8mm×300mm
 恒温槽温度:40℃
 移動層:THF
 サンプル側移動層流量:1.0mL/分
 リファレンス側移動層流量:1.0mL/分
 試料濃度:0.1質量%
 試料注入量:100μL
 データ採取時間:試料注入後5分~45分
 サンプリングピッチ:300msec
[実施例2]
 実施例1において、液の種類及び送液条件を下記の通り変更したこと以外は、実施例1と同様にして重合体を得た。
 液A(3.5M-t-ブトキシスチレン/(トルエン/THF=78/22(質量比))):60mL/min
 液B(0.08M-nBuLi/トルエン):21.9mL/min
 液C(THF):49mL/min
 重合停止剤(0.5M-MeOH/THF):26.3mL/min
 得られた重合体の数平均分子量は18300、分子量分布(分散度、Mw/Mn)は1.04、モノマー転化率は100モル%であった。
 合流部(J2)におけるモノマー転化率は1モル%であった。
[実施例3]
 実施例1において、液Cとして用いたTHFをジエチレングリコールジメチルエーテルに、プレ反応管(5)のSUS316チューブの長さを2.5mに変更した以外は、実施例1と同様にして重合体を得た。得られた重合体の数平均分子量は14200、分子量分布(分散度、Mw/Mn)は1.05、モノマー転化率は100モル%であった。
 実施例3において、合流部(J2)におけるモノマー転化率は5モル%であった。
[比較例1]
 実施例1において、極性溶媒供給流路(3)内に液Cを送液しなかった(液Cの送液ポンプを作動させなかった)こと以外は、実施例1と同様にして重合体を得た。得られた重合体の数平均分子量は15000、分子量分布(分散度、Mw/Mn)は1.12であった。
[比較例2]
 実施例2において、極性溶媒供給流路(3)内に液Cを送液しなかった(液Cの送液ポンプを作動させなかった)こと以外は、実施例2と同様にして重合体を得た。得られた重合体の数平均分子量は19800、分子量分布(分散度、Mw/Mn)は1.10であった。
[比較例3]
 実施例1において、液Cとして用いたTHFをトルエンに変更したこと以外は、実施例1と同様にして重合体を得た。得られた重合体の数平均分子量は15200、分子量分布(分散度、Mw/Mn)は1.12であった。
[比較例4]
 実施例2において、液Aとして用いた3.5M-t-ブトキシスチレン/(トルエン/THF=78/22(質量比))を、3.5M-t-ブトキシスチレン/THFに代えたこと以外は、実施例2と同様にして重合体を得た。得られた重合体の数平均分子量は18500、分子量分布(分散度、Mw/Mn)は1.09であった。
 比較例4において、合流部(J2)におけるモノマー転化率は19モル%であった。
 本発明をその実施態様とともに説明したが、我々は特に指定しない限り我々の発明を説明のどの細部においても限定しようとするものではなく、添付の請求の範囲に示した発明の精神と範囲に反することなく幅広く解釈されるべきであると考える。
 本願は、2018年9月27日に日本国で特許出願された特願2018-181794に基づく優先権を主張するものであり、これはここに参照してその内容を本明細書の記載の一部として取り込む。
 100、200 フロー式反応システム
  I、II、III、IV 導入口
  1 アニオン重合性モノマー供給流路
  2 アニオン重合開始剤供給流路
  3 極性溶媒供給流路
  4 重合停止剤供給流路
  5 プレ反応管
  6 反応管
  7 配管
  J1、J2、J3、J4 合流部
  R1 低温恒温槽

Claims (12)

  1.  フロー式反応によりアニオン重合反応を行う重合体の製造方法であって、
     該製造方法は、
     アニオン重合性モノマーと非極性溶媒とを含む液Aと、アニオン重合開始剤と非極性溶媒とを含む液Bと、極性溶媒を含む液Cと、重合停止剤とをそれぞれ異なる流路に導入して各液を各流路内に流通させ、
     前記液Aと前記液Bとを合流し、この合流部の下流で、前記液Aと前記液Bとの合流液MABと前記液Cとを合流し、前記合流液MABと前記液Cとの合流液MABCが反応流路内を下流へと流通中に前記アニオン重合性モノマーをアニオン重合し、該反応流路内を流通する重合反応液と前記重合停止剤とを合流して重合反応を停止することにより重合体を得ることを含み、
     前記合流液MABと前記液Cとの合流により、前記合流液MABCの溶媒の極性を、前記合流液MABの溶媒の極性よりも高くする、重合体の製造方法。
  2.  前記の液Aが流通する流路の等価直径及び前記の液Bが流通する流路の等価直径を、いずれも1~10mmとする、請求項1記載の重合体の製造方法。
  3.  前記合流液MAB中のモノマー転化率が5.0モル%以下の状態において、前記合流液MABと前記液Cとを合流する、請求項1又は2記載の重合体の製造方法。
  4.  前記合流液MABと前記液Cとの合流により、前記合流液MABCの溶媒中に占める極性溶媒の質量割合を、前記合流液MABの溶媒中に占める極性溶媒の質量割合の1.5倍以上とする、請求項1~3のいずれか1項記載の重合体の製造方法。
  5.  前記極性溶媒としてエーテル溶媒を用いる、請求項1~4のいずれか1項記載の重合体の製造方法。
  6.  前記液MABCが流通する前記反応流路の長さを3~50mとする、請求項1~5のいずれか1項記載の重合体の製造方法。
  7.  前記液Aと前記液Bとの合流部に連結する、前記液Aが流通する流路の数と前記液Bが流通する流路の数の合計を3~10本とする、請求項1~6のいずれか1項記載の重合体の製造方法。
  8.  前記アニオン重合開始剤として、有機リチウム化合物及び有機マグネシウム化合物の少なくとも1種を用いる、請求項1~7のいずれか1項記載の製造方法。
  9.  前記アニオン重合開始剤としてアルキルリチウムを用いる、請求項1~8のいずれか1項記載の製造方法。
  10.  前記アニオン重合開始剤としてn-ブチルリチウムを用いる、請求項1~9のいずれか1項記載の製造方法。
  11.  前記液Bが非極性溶媒として芳香族炭化水素及び飽和炭化水素の少なくとも1種を含有する、請求項1~10のいずれか1項記載の製造方法。
  12.  アニオン重合反応により重合体を製造するフロー式反応システムであって、
     アニオン重合性モノマーと非極性溶媒とを含む液Aが流通する第1流路と、アニオン重合開始剤と非極性溶媒とを含む液Bが流通する第2流路と、極性溶媒を含む液Cが流通する第3流路と、重合停止剤が流通する第4流路と、第1流路と第2流路が合流する第1合流部と、第1合流部の下流に接続されたプレ反応管と、該プレ反応管と第3流路とが合流する第2合流部と、第2合流部の下流に接続された反応管と、該反応管と第4流路とが合流する第3合流部と、第3合流部の下流に接続された配管とを有し、
     第1合流部で合流した前記液Aと前記液Bとの合流液MABの溶媒の極性よりも、第2合流部で合流した前記合流液MABと前記液Cとの合流液MABCの溶媒の極性を高くする、フロー式反応システム。
PCT/JP2019/035317 2018-09-27 2019-09-09 重合体の製造方法、及び重合体を製造するフロー式反応システム WO2020066561A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201980063924.7A CN112867739B (zh) 2018-09-27 2019-09-09 聚合物的制造方法及制造聚合物的流式反应系统
EP19867628.0A EP3858870A4 (en) 2018-09-27 2019-09-09 POLYMER PRODUCTION PROCESS AND FLOW-TYPE REACTIONAL SYSTEM FOR POLYMER PRODUCTION
JP2020548344A JP7012866B2 (ja) 2018-09-27 2019-09-09 重合体の製造方法、及び重合体を製造するフロー式反応システム
US17/210,514 US20210206886A1 (en) 2018-09-27 2021-03-24 Method for manufacturing polymer and flow-type reaction system for manufacturing polymer

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-181794 2018-09-27
JP2018181794 2018-09-27

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/210,514 Continuation US20210206886A1 (en) 2018-09-27 2021-03-24 Method for manufacturing polymer and flow-type reaction system for manufacturing polymer

Publications (1)

Publication Number Publication Date
WO2020066561A1 true WO2020066561A1 (ja) 2020-04-02

Family

ID=69953470

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/035317 WO2020066561A1 (ja) 2018-09-27 2019-09-09 重合体の製造方法、及び重合体を製造するフロー式反応システム

Country Status (5)

Country Link
US (1) US20210206886A1 (ja)
EP (1) EP3858870A4 (ja)
JP (1) JP7012866B2 (ja)
CN (1) CN112867739B (ja)
WO (1) WO2020066561A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102147494B1 (ko) * 2020-02-24 2020-08-24 류준상 롤 스크린용 원단/시트/필름 검단장치

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11209429A (ja) * 1998-01-23 1999-08-03 Fuji Xerox Co Ltd アルコキシスチレン重合体の製造方法およびアルコキシスチレン重合体
JP2014506950A (ja) * 2011-03-04 2014-03-20 スティロン ヨーロッパ ゲゼルシャフト ミット ベシュレンクテル ハフツング 高スチレン高ビニルスチレン−ブタジエンゴムおよびその調製方法
JP2014108977A (ja) * 2012-11-30 2014-06-12 Asahi Kasei Chemicals Corp 分岐状ブタジエン系重合体の製造方法
JP2016183217A (ja) 2015-03-25 2016-10-20 富士フイルム株式会社 重合体の製造方法
JP2017066276A (ja) * 2015-09-30 2017-04-06 富士フイルム株式会社 重合体の製造方法、及び重合体を製造するフロー式反応システム
JP2018181794A (ja) 2017-04-21 2018-11-15 トヨタ自動車株式会社 ラミネート電池の製造方法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6448353B1 (en) * 2000-02-08 2002-09-10 3M Innovative Properties Company Continuous process for the production of controlled architecture materials
JP2007131718A (ja) * 2005-11-10 2007-05-31 Sumitomo Rubber Ind Ltd アニオン重合により得られる重合体およびその製造方法
AU2011346749A1 (en) * 2010-12-22 2013-05-02 Purdue Pharma L.P. Phosphorus-substituted quinoxaline-type piperidine compounds and uses thereof
TWI580712B (zh) * 2012-06-08 2017-05-01 東麗 杜邦股份有限公司 聚亞醯胺膜
JP6225438B2 (ja) * 2013-03-14 2017-11-08 Dic株式会社 重合体の製造方法
JP6096703B2 (ja) * 2014-03-31 2017-03-15 富士フイルム株式会社 重合体の製造方法、及びこれに用いるフロー式反応システム
WO2016003146A1 (ko) * 2014-06-30 2016-01-07 코오롱인더스트리 주식회사 고내열 폴리아믹산 용액 및 폴리이미드 필름
JP2016046011A (ja) * 2014-08-20 2016-04-04 トヨタ自動車株式会社 リチウム電池用正極活物質
JP7091683B2 (ja) * 2017-02-06 2022-06-28 三菱ケミカル株式会社 オルガノポリシロキサン
CN110461503B (zh) * 2017-03-10 2022-01-14 东邦钛株式会社 镍粉和镍糊料

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11209429A (ja) * 1998-01-23 1999-08-03 Fuji Xerox Co Ltd アルコキシスチレン重合体の製造方法およびアルコキシスチレン重合体
JP2014506950A (ja) * 2011-03-04 2014-03-20 スティロン ヨーロッパ ゲゼルシャフト ミット ベシュレンクテル ハフツング 高スチレン高ビニルスチレン−ブタジエンゴムおよびその調製方法
JP2014108977A (ja) * 2012-11-30 2014-06-12 Asahi Kasei Chemicals Corp 分岐状ブタジエン系重合体の製造方法
JP2016183217A (ja) 2015-03-25 2016-10-20 富士フイルム株式会社 重合体の製造方法
JP2017066276A (ja) * 2015-09-30 2017-04-06 富士フイルム株式会社 重合体の製造方法、及び重合体を製造するフロー式反応システム
JP2018181794A (ja) 2017-04-21 2018-11-15 トヨタ自動車株式会社 ラミネート電池の製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3858870A4

Also Published As

Publication number Publication date
CN112867739A (zh) 2021-05-28
CN112867739B (zh) 2023-05-02
EP3858870A4 (en) 2021-12-08
US20210206886A1 (en) 2021-07-08
EP3858870A1 (en) 2021-08-04
JPWO2020066561A1 (ja) 2021-03-11
JP7012866B2 (ja) 2022-01-28

Similar Documents

Publication Publication Date Title
JP6225438B2 (ja) 重合体の製造方法
Zhang et al. Allyl functionalized telechelic linear polymer and star polymer via RAFT polymerization
EP3031838B1 (en) Method for producing block copolymer, and block copolymer obtained using same
JP6573812B2 (ja) 重合体の製造方法、及び重合体を製造するフロー式反応システム
JP2014084334A (ja) 重合体の製造方法
WO2020066561A1 (ja) 重合体の製造方法、及び重合体を製造するフロー式反応システム
KR20150143680A (ko) C3-c8 모노에틸렌성 불포화 모노- 또는 디카르복실산 또는 이의 무수물 및 염을 기반으로 하는 고분지형 중합체의 제조를 위한 연속 공정
Chen et al. Synthesis, surface property, micellization and pH responsivity of fluorinated gradient copolymers
JP2017133039A (ja) 重合体の製造方法
Xiang et al. Continuous synthesis of star polymers with RAFT polymerization in cascade microreactor systems
JP2013185005A (ja) 重合体の製造方法
JP6433912B2 (ja) コポリマーを製造する連続法
JP2013144785A (ja) 重合体の製造方法
US4049732A (en) Continuous telomerization process and its liquid products
JP6888094B2 (ja) 重合開始剤組成物、その製造方法およびそれを用いた重合体の製造方法
WO2019188749A1 (ja) 重合体の製造方法、及び重合体を製造するフロー式反応システム
US11332551B2 (en) Method for manufacturing polymer and flow-type reaction system for manufacturing polymer
WO2020255726A1 (ja) ブロック共重合体用中間体、ブロック共重合体及びそれらの製造方法
París et al. Diblock copolymers based on allyl methacrylate: Synthesis, characterization, and chemical modification
Zhang et al. An efficient way to tune grafting density of well‐defined copolymers via an unusual Br‐containing acrylate monomer
Shi et al. Anionic Polymerization of Acrylonitrile Using a Flow Microreactor System
Wang et al. Synthesis of chiral amphiphilic diblock copolymers via consecutive RAFT polymerizations and their aggregation behavior in aqueous solution
Mygiakis et al. Controlled block-polymerization of styrene, divinylbenzene and ethylene oxide. Intermolecular cross-linking towards well-defined miktoarm copolymer stars
Hu et al. Thermosensitivity of Narrow-Dispersed Poly (Nn-propylacrylamide) Prepared by Atom Transfer Radical Polymerization
JP2020143277A (ja) ポリマーの製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19867628

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020548344

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019867628

Country of ref document: EP

Effective date: 20210428