WO2020032138A1 - 複合構造体および電子機器用筐体 - Google Patents

複合構造体および電子機器用筐体 Download PDF

Info

Publication number
WO2020032138A1
WO2020032138A1 PCT/JP2019/031237 JP2019031237W WO2020032138A1 WO 2020032138 A1 WO2020032138 A1 WO 2020032138A1 JP 2019031237 W JP2019031237 W JP 2019031237W WO 2020032138 A1 WO2020032138 A1 WO 2020032138A1
Authority
WO
WIPO (PCT)
Prior art keywords
thermoplastic resin
mass
composite structure
acid
resin member
Prior art date
Application number
PCT/JP2019/031237
Other languages
English (en)
French (fr)
Inventor
高広 冨永
和樹 木村
Original Assignee
三井化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三井化学株式会社 filed Critical 三井化学株式会社
Priority to KR1020217003304A priority Critical patent/KR102493869B1/ko
Priority to US17/267,342 priority patent/US11865750B2/en
Priority to EP19847399.3A priority patent/EP3835054B1/en
Priority to CN201980050944.0A priority patent/CN112512794A/zh
Priority to JP2020535854A priority patent/JP6987256B2/ja
Publication of WO2020032138A1 publication Critical patent/WO2020032138A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/14Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor incorporating preformed parts or layers, e.g. injection moulding around inserts or for coating articles
    • B29C45/14467Joining articles or parts of a single article
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/14Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor incorporating preformed parts or layers, e.g. injection moulding around inserts or for coating articles
    • B29C45/14336Coating a portion of the article, e.g. the edge of the article
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/14Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor incorporating preformed parts or layers, e.g. injection moulding around inserts or for coating articles
    • B29C45/14311Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor incorporating preformed parts or layers, e.g. injection moulding around inserts or for coating articles using means for bonding the coating to the articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/17Component parts, details or accessories; Auxiliary operations
    • B29C45/26Moulds
    • B29C45/27Sprue channels ; Runner channels or runner nozzles
    • B29C45/2701Details not specific to hot or cold runner channels
    • B29C45/2708Gates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/56Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor using mechanical means or mechanical connections, e.g. form-fits
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/74Joining plastics material to non-plastics material
    • B29C66/742Joining plastics material to non-plastics material to metals or their alloys
    • B29C66/7422Aluminium or alloys of aluminium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • B32B15/095Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin comprising polyurethanes
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K5/00Casings, cabinets or drawers for electric apparatus
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/14Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor incorporating preformed parts or layers, e.g. injection moulding around inserts or for coating articles
    • B29C45/14336Coating a portion of the article, e.g. the edge of the article
    • B29C2045/14459Coating a portion of the article, e.g. the edge of the article injecting seal elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/14Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor incorporating preformed parts or layers, e.g. injection moulding around inserts or for coating articles
    • B29C2045/1486Details, accessories and auxiliary operations
    • B29C2045/14868Pretreatment of the insert, e.g. etching, cleaning
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2021/00Use of unspecified rubbers as moulding material
    • B29K2021/003Thermoplastic elastomers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2075/00Use of PU, i.e. polyureas or polyurethanes or derivatives thereof, as moulding material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2705/00Use of metals, their alloys or their compounds, for preformed parts, e.g. for inserts
    • B29K2705/02Aluminium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2715/00Condition, form or state of preformed parts, e.g. inserts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2031/00Other particular articles
    • B29L2031/34Electrical apparatus, e.g. sparking plugs or parts thereof
    • B29L2031/3481Housings or casings incorporating or embedding electric or electronic elements

Definitions

  • the present invention relates to a composite structure and a housing for an electronic device.
  • portable electronic devices such as notebook computers, tablet terminals, smartphones, mobile phones, wristwatch-type terminals, digital cameras, digital video cameras, and portable music players have recently become widespread.
  • various performances have been required for the electronic devices.
  • One typical example is a waterproof function. That is, as one of the essential performances required for electronic devices, the need for a waterproof function is increasing. It can be used in environments that are easily exposed to water, such as rain, sea, rivers, pools, and high-humidity environments, or indoor environments such as kitchens, bathrooms, and places where humans are exposed to sweat.
  • a housing for an electronic device that reliably exhibits a waterproof function and has an excellent sealing function.
  • a groove formed on the periphery of one halving.
  • a method has been used in which a packing is provided and a sealing function is developed by compressing the packing by fitting with the other half of the packing.
  • a packing material an elastomer typified by silicone rubber, EPDM rubber, fluorine rubber, chloroprene rubber, acrylic rubber, or the like was used, and a sealing function was developed by repulsive stress.
  • a thin, soft elastic gasket is temporarily fixed to the supporting resin film in a form capable of being peeled off at the time of molding, and the elastic gasket is fixed by the supporting resin film until the elastic gasket is attached to the sealing portion.
  • the elastic gasket is attached and fixed to the sealing portion while being temporarily fixed to the supporting resin film, and then the supporting resin film is peeled and removed, so that the elastic gasket having low rigidity can be easily formed.
  • Patent Document 5 A technique that can be attached to a seal site has been proposed (Patent Document 5).
  • Patent Document 5 the packing temporarily fixed to such a supporting resin film can cope with a seal portion having a planar shape, but it is difficult to cope with a seal portion having a three-dimensional structure.
  • thermoplastic resin member and a metal member composed of an elastomer, a composite in which the thermoplastic resin member has a packing function, and a housing for an electronic device including the composite are required.
  • the present invention has been made in view of the above circumstances, and provides a composite structure of a metal member and a thermoplastic resin member having excellent bonding strength.
  • the following composite structure and electronic device housing are provided.
  • a composite structure comprising a metal member and a thermoplastic resin member joined to the metal member, The metal member has a fine uneven structure at least on the metal surface to which the thermoplastic resin member is joined, The hardness of the thermoplastic resin member measured by a type A durometer in accordance with JIS K6253 is in a range of A60 to A95, A composite structure wherein the thermoplastic resin member has an acid value of 1 mgKOH / g to 100 mgKOH / g.
  • the above-mentioned [1], wherein the average length (RS m ) of the roughness curve element on the metal surface on which the fine uneven structure is formed is 10 nm or more and 500 ⁇ m or less, which is measured according to JIS B0601: 2001.
  • thermoplastic resin member contains a thermoplastic elastomer.
  • the content of the thermoplastic elastomer in the thermoplastic resin member is 50% by mass or more.
  • thermoplastic resin member further includes an acid-modified polymer.
  • thermoplastic elastomer in the thermoplastic resin member is 50% by mass or more and 99% by mass or less, and the content of the acid-modified polymer is 1% by mass or more and 50% by mass or less.
  • Composite structure [8] The composite structure according to any one of [4] to [7], wherein the thermoplastic elastomer includes a urethane-based thermoplastic elastomer. [9] The composite structure according to any one of [1] to [8], wherein the thermoplastic resin member includes a urethane-based thermoplastic elastomer and an amide-based thermoplastic elastomer.
  • thermoplastic resin member further contains an acid-modified polymer, and the content of the acid-modified polymer in the thermoplastic resin member is 1 to 100 parts by mass in total of the urethane-based thermoplastic elastomer and the amide-based thermoplastic elastomer.
  • the electronic device housing has a first metal member and a second metal member, A packing made of the thermoplastic resin member is joined to a peripheral portion of the first metal member, An electronic device housing in which an outer shell is formed by integrating the second metal member with the first metal member via the packing.
  • the electronic device housing has a metal member and a plastic member, A packing made of the thermoplastic resin member is joined to a peripheral portion of the metal member, An electronic device housing in which an outer shell is formed by integrating the metal member with the plastic member via the packing.
  • FIG. 1 is a drawing (cross-sectional view) schematically illustrating a tensile shear strength test method according to the present embodiment. It is sectional drawing which showed typically the structure of two types of mold gates used in the injection molding which concerns on this embodiment, (a) shows an I type pin gate, (b) shows a Z type pin gate. . It is the figure which showed typically the peel strength test method which concerns on this embodiment.
  • FIG. 3 is a view showing a photograph of a fracture surface of one of the test pieces prepared in Example 1.
  • FIG. 4 is a view showing a photograph of a fracture surface of one of the test pieces prepared in Comparative Example 1.
  • FIG. 10 is a view showing a photograph of a fracture surface of one of the test pieces prepared in Example 5.
  • FIG. 9 is a view showing a photograph of a fracture surface of one of the test pieces prepared in Comparative Example 2.
  • FIG. 3 is a view showing a photograph of a fractured surface of a test piece prepared in Reference Example 1 after a peel strength test.
  • FIG. 9 is a view showing a photograph of a fracture surface of a test piece prepared in Comparative Example 3 after a peel strength test. It is a figure which shows the photograph of the fracture surface after the shear strength test of the test piece produced in Reference Example 2.
  • FIG. 9 is a view showing a photograph of a fracture surface of a test piece prepared in Comparative Example 4 after a shear strength test.
  • FIG. 14 is a drawing showing a photograph of the metal side of the fractured surface of the test piece prepared in Example 9 after the peel strength test. 14 is a drawing showing a photograph of the metal side of the fractured surface of the test piece prepared in Example 10 after the peel strength test.
  • FIG. 2 is a cross-sectional view schematically illustrating a vicinity of a joint of the electronic device housing according to the first embodiment.
  • the composite structure according to the present embodiment is a composite structure including a metal member and a thermoplastic resin member joined to the metal member, wherein the metal member is at least a metal to which the thermoplastic resin member is joined.
  • the surface of the thermoplastic resin member has a fine uneven structure on the surface and is measured by a type A durometer according to JIS K6253, and the hardness of the thermoplastic resin member is in the range of A60 to A95, and the acid value of the thermoplastic resin member is 1 mgKOH. / G or more and 100 mgKOH / g or less.
  • the metal member has a fine uneven structure at least on the metal surface to be joined to the thermoplastic resin member, and further, the hardness and the acid value of the thermoplastic resin member satisfy the above ranges, so that the metal member and the heat A composite structure having excellent bonding strength with a plastic resin member can be realized.
  • the composite structure according to the present embodiment is excellent in both elasticity and acid resistance corresponding to the bonding strength, and thus can be suitably used as various packing materials.
  • the composite structure according to the present embodiment may have a feature that the collapse of the resin can be minimized even when the composite structure is treated in an acidic atmosphere.
  • the hardness of the thermoplastic resin member when the hardness of the thermoplastic resin member is equal to or less than the upper limit, the hardness of the thermoplastic resin member becomes appropriate, and the thermoplastic resin member easily penetrates into the fine uneven structure formed on the surface of the metal member. Further, it is considered that when the hardness of the thermoplastic resin member is equal to or more than the lower limit value, the mechanical strength of the thermoplastic resin member that has penetrated into the fine uneven structure can be improved. That is, when the hardness of the thermoplastic resin member is within the above range, the amount of penetration of the thermoplastic resin member into the fine uneven structure and the strength of the thermoplastic resin member are moderately balanced, and the metal member and the thermoplastic resin have an appropriate balance. It is considered that the anchor effect with the resin member is optimized, and the bonding strength can be improved.
  • thermoplastic resin member when the acid value of the thermoplastic resin member is within the above range, in addition to the physical bonding force due to the anchor effect, an ionic interaction between the acid group contained in the resin member and the metal member occurs. As a result, it is considered that the bonding strength between the metal member and the thermoplastic resin member can be improved. It is considered that a composite structure having excellent bonding strength between the metal member and the thermoplastic resin member can be realized by the above-described interaction. That is, according to the present embodiment, it is possible to obtain a composite structure in which the metal member and the thermoplastic resin member are directly and firmly joined without using an adhesive.
  • a composite structure in which a packing made of a thermoplastic resin member is joined to a peripheral portion of one metal fragment (first metal member) is attached to the other metal fragment (first metal member).
  • An electronic device housing in which an outer shell is formed by pressing and integrating the second metal member via the packing described above is included.
  • Such a housing for an electronic device is excellent in the bonding property of the packing to the metal member, and since the operation of forming the groove in the first metal member and then mounting the packing in the groove is omitted, such a case as in the related art is eliminated. The complexity at the time of packing installation work can be reduced.
  • the type of metal constituting the metal member is at least one selected from the group consisting of iron, stainless steel, aluminum, aluminum alloy, magnesium, magnesium alloy, copper, copper alloy, titanium, and titanium alloy.
  • iron, stainless steel, aluminum alloy, magnesium alloy, copper alloy and titanium alloy are more preferable, and stainless steel, aluminum alloy, magnesium alloy and copper alloy are more preferable.
  • the metal member is formed by processing a metal material into a predetermined shape by plastic working by cutting, pressing or the like; punching; cutting, polishing, electric discharge machining, or the like, and then subjected to a surface roughening process described later. Is preferred. In short, it is preferable to use one processed into a required shape by various processing methods.
  • the metal member according to the present embodiment has a fine uneven structure at least on the metal surface to which the thermoplastic resin member is joined.
  • the metal having the fine unevenness structure is measured according to JIS B0601: 2001.
  • the average length (RS m ) of the surface roughness curve element is preferably 10 nm to 500 ⁇ m, more preferably 30 nm to 200 ⁇ m, and particularly preferably 50 nm to 150 ⁇ m.
  • the fine uneven structure measured according to JIS B0601: 2001 was formed.
  • the ten-point average roughness (R zjis ) of the metal surface is preferably 10 nm to 300 ⁇ m, more preferably 10 nm to 100 ⁇ m, still more preferably 30 nm to 50 ⁇ m, and particularly preferably 50 nm to 30 ⁇ m.
  • the method of providing the fine uneven structure on the surface of the metal member is roughly classified into the following three methods based on the shape of the obtained fine uneven structure.
  • the first method is a method of immersing a metal member in an erosive aqueous solution or erosive suspension.
  • the surface has a shape covered with countless irregularities.
  • the average length (RS m ) of the roughness curve element of the irregularities is The thickness is 10 nm to 300 ⁇ m, and the ten-point average roughness (R zjis ) is 10 nm to 30 ⁇ m.
  • the second method is a method of roughening a metal member by an anodic oxidation method.
  • the surface of the metal member obtained by this method is mainly a metal oxide layer, and the surface layer is covered with, for example, a myriad of openings having a number average inner diameter of 10 to 200 nm.
  • the third method is, for example, a method of forming irregularities on a metal member surface by pressing a mold punch having irregularities produced by mechanical cutting such as diamond abrasive grain grinding or blasting, sand blasting, knurling, laser This is a method of forming an uneven shape on the surface of the metal member by processing or the like.
  • the width of the concave portion on the surface of the metal member obtained by this method is, for example, 1 to 100 ⁇ m.
  • the first method which is obtained by immersing a metal in an erodible aqueous solution or erodible suspension, is preferable because a metal material can be treated collectively over a wide range.
  • a method for forming the fine uneven structure a method of immersing the metal member in an aqueous solution of an inorganic base such as NaOH and / or an aqueous solution of an inorganic acid such as hydrochloric acid or nitric acid; a method of treating the metal member by an anodizing method; A method of immersing a metal member in at least one aqueous solution selected from hydrated hydrazine, ammonia, and a water-soluble amine compound as disclosed in US Pat. A method in which a member (magnesium alloy) is immersed in citric acid and then treated with an aqueous solution of potassium permanganate may be used. These methods are appropriately used and adopted depending on the metal type of the metal member to be used and the uneven shape.
  • an inorganic base such as NaOH and / or an aqueous solution of an inorganic acid such as hydrochloric acid or nitric acid
  • a method of treating the metal member by an anodizing method A method
  • the thermoplastic resin member according to this embodiment has a hardness (hereinafter, also referred to as a type A durometer hardness) in a range of A60 to A95 measured by a type A durometer according to JIS K6253, and the thermoplastic resin. It is characterized in that the acid value of the member is in the range of 1 mgKOH / g to 100 mgKOH / g.
  • the type A durometer hardness of the thermoplastic resin member according to the present embodiment is A60 to A95, preferably A65 to A90, and more preferably A70 to A85. When the durometer hardness satisfies the above range, a sufficient sealing function due to the repulsive stress of the thermoplastic resin member is secured.
  • the type A durometer hardness is a type of indentation hardness, a measurement method often used for rubber and elastomer, and the measurement procedure and the like are specified in JIS K6253 in detail.
  • the thermoplastic resin member preferably contains a carboxylic acid group and / or an acid anhydride group, and has an acid value of 1 mgKOH / g to 100 mgKOH / g, preferably 1 mgKOH / g to 85 mgKOH / g, more preferably It is in the range of 2 mgKOH / g to 85 mgKOH / g, more preferably 2 mgKOH / g to 70 mgKOH / g, still more preferably 2 mgKOH / g to 50 mgKOH / g, and particularly preferably 2 mgKOH / g to 30 mgKOH / g.
  • the carboxylic acid groups and / or acid anhydride groups are chemically bonded in the polymer chain.
  • the acid value is equal to or higher than the lower limit, sufficient bonding strength between the resin member and the metal member is ensured, and when the acid value is equal to or lower than the upper limit, generation of turbidity in the resin member can be suppressed.
  • the resin is desirably nearly transparent, and the turbidity of the resin is not preferred.
  • thermoplastic resin member according to the present embodiment has basically the same meaning as the thermoplastic resin composition injected onto the metal member when the composite is manufactured by the injection molding method described below. Therefore, when trying to obtain a thermoplastic resin member that satisfies both the durometer hardness characteristics and the acid value, it may be prepared by preparing a thermoplastic resin composition having such a durometer hardness characteristic and an acid value. .
  • the method for preparing the thermoplastic resin composition according to the present embodiment is not particularly limited, for example, for a thermoplastic resin, acrylic acid, unsaturated carboxylic acid such as methacrylic acid, acid anhydride such as maleic anhydride.
  • a method of blending to prepare a material satisfying the above hardness range and acid value range can be mentioned.
  • thermoplastic resin is a polar group-containing polymer such as a polyurethane resin, a polyester resin, a polystyrene resin, a polyvinyl chloride resin, or a polyamide resin
  • a carboxylic acid group and / or an acid anhydride group is used.
  • chemical introduction is difficult or impossible due to the operation of the reaction. Therefore, usually, a blending method, that is, a method in which a specific thermoplastic resin is selected as a mother resin, and an acid-modified polymer is physically blended or alloyed therewith. Is preferably employed.
  • the thermoplastic resin member according to the present embodiment preferably contains a thermoplastic elastomer (hereinafter, may be abbreviated as TPE), and more preferably contains a thermoplastic elastomer and an acid-modified polymer.
  • TPE thermoplastic elastomer
  • thermoplastic elastomer and an acid-modified polymer thereby, it is possible to realize a composite structure having more excellent bonding strength between the metal member and the thermoplastic resin member.
  • a moderate elastic function expressed by locally constraining the molecular motion of a soft segment skeleton such as a polyether structure, which constitutes a thermoplastic elastomer occupying a thermoplastic resin member, by a hard segment, is generated on a metal member surface.
  • thermoplastic resin member includes the thermoplastic elastomer composed of the hard segment and the soft segment, the balance between the penetration amount of the thermoplastic resin member into the fine uneven structure and the strength of the thermoplastic resin member is optimized. It is considered that the bonding strength was improved.
  • the content of the thermoplastic elastomer in the thermoplastic resin member according to the present embodiment is 50% by mass or more.
  • the content of the thermoplastic elastomer in the thermoplastic resin member is 50% by mass or more and 99% by mass or less, and the content of the acid-modified polymer is The content is preferably from 1% by mass to 50% by mass, and the content of the thermoplastic elastomer in the thermoplastic resin member is from 60% by mass to 95% by mass, and the content of the acid-modified polymer is from 5% by mass to 40% by mass. It is more preferable that the content is not more than mass%.
  • thermoplastic resin member may include other additives, such as, for example, an organic colorant, an inorganic pigment, a heat stabilizer, an antioxidant, Examples include weather stabilizers, flame retardants, plasticizers, lubricants, release agents, antistatic agents, and the like.
  • the TPE according to the present embodiment is an elastic material that does not need to be vulcanized like rubber and is generally a material composed of a hard component (a hard and rigid component) and a soft component (a soft and flexible component).
  • a hard component a hard and rigid component
  • a soft component a soft and flexible component
  • TPE olefin-based TPE
  • styrene-based TPE polystyrene-based TPE
  • polyester-based TPE polyurethane-based TPE
  • amide-based TPE amide-based TPE.
  • thermoplastic polyurethane (TPU) urethane-based TPEs
  • TPU thermoplastic polyurethane
  • TPAE thermoplastic polyamide
  • the total content of the TPU and the TPAE in the thermoplastic resin member is, for example, 60% by mass or more and 100% by mass or less, preferably 65% by mass or less. It is at least 70 mass% and at most 95 mass%, more preferably at least 70 mass% and at most 95 mass%.
  • the elastic function required for a sealing material such as packing can be improved, which is preferable.
  • the content of TPU in the TPE is, for example, 70% by mass or more and less than 100% by mass, preferably 70% by mass or more and 99% by mass or less, more preferably 75% by mass or more and 98% by mass or less
  • the content of the TPAE is, for example, more than 0% by mass and 30% by mass or less, preferably 1% by mass or more and 30% by mass or less, more preferably 2% by mass or more and 25% by mass or less.
  • thermoplastic resin member Since the elasticity of the thermoplastic resin member is improved and the fine dispersion of the thermoplastic resin member is also promoted, it is possible to improve the bonding strength with the metal and the moldability by improving the melt fluidity of the thermoplastic resin member.
  • the TPU is, for example, a multi-block polymer composed of a hard segment composed of diisocyanate and a short-chain glycol (chain extender) and a soft segment mainly composed of a polymer glycol having a number average molecular weight of about 1,000 to 4,000.
  • diisocyanate include aromatic isocyanates represented by 4,4'-diphenylmethane diisocyanate (MDI).
  • MDI 4,4'-diphenylmethane diisocyanate
  • HDI hexamethylene diisocyanate
  • Examples of the short-chain glycol include ethylene glycol, 1,3-propanediol, 1,4-butanediol, 1,5-pentanediol, 1,6-hexanediol, diethylene glycol, tetraethylene glycol, neopental glycol, Examples include 1,4-cyclohexanedimethanol, 1,4-bishydroxyethylhydroquinone, and mixtures thereof.
  • polymer glycol examples include a polyether polyol represented by polytetramethylene ether glycol (PTMEG), a polyester polyol which is a condensation system of adipic acid and an aliphatic or aromatic glycol, and a polymer obtained by ring-opening polymerization of ⁇ -caprolactone. And caprolactone polyol.
  • PTMEG polytetramethylene ether glycol
  • polyester polyol which is a condensation system of adipic acid and an aliphatic or aromatic glycol
  • polymer obtained by ring-opening polymerization of ⁇ -caprolactone a polymer obtained by ring-opening polymerization of ⁇ -caprolactone.
  • caprolactone polyol examples include a polyether polyol represented by polytetramethylene ether glycol (PTMEG), a polyester polyol which is a condensation system of adipic acid and an aliphatic or aromatic glycol, and a polymer obtained by ring-
  • TPU is classified into ether type, adipate ester type, caprolactone type, carbonate type, etc., depending on what components are used as the diisocyanate component, the short-chain glycol and the polymer glycol.
  • the above-described TPU can be used without limitation.
  • an ether-based TPU or an ester-based TPU is preferably used, and an ether-based TPU is more preferably used.
  • TPUs are commercially available from many companies under various trade names, for example, RESAMINE @ P (trademark) of Dainichi Seika Kogyo Co., Ltd., PANdex (trademark) of DIC Covestropolymer Co., Ltd., and Miractran (trademark) of Tosoh Corporation.
  • PELLETHANE TM from Dow Chemical Company, B.C. F. Goodrich's ESTANE TM and Bayer's DESMOPAN TM are commercially available. These commercial products can be used without limitation.
  • TPAE is a thermoplastic resin material comprising a copolymer having a polymer constituting a hard segment which is crystalline and has a high melting point and a polymer which is amorphous and constituting a soft segment having a low glass transition temperature. Means a polymer having an amide bond (—CONH—) in the main chain of the polymer.
  • TPAE include amide-based thermoplastic elastomers specified in JIS K6418: 2007, and polyamide-based elastomers described in JP-A-2004-346273.
  • a polyamide constitutes a hard segment having a crystalline and high melting point
  • another polymer eg, polyester or polyether
  • a soft segment having an amorphous and low glass transition temperature.
  • a chain extender such as dicarboxylic acid may be used for TPAE in addition to the hard segment and the soft segment.
  • the polyamide forming the hard segment include polyamides formed by ⁇ -aminocarboxylic acid and lactam.
  • Examples of the ⁇ -aminocarboxylic acid include those having 5 carbon atoms such as 6-aminocaproic acid, 7-aminoheptanoic acid, 8-aminooctanoic acid, 10-aminocapric acid, 11-aminoundecanoic acid, and 12-aminododecanoic acid. And up to 20 aliphatic ⁇ -aminocarboxylic acids.
  • Examples of the lactam include aliphatic lactams having 5 to 20 carbon atoms such as lauryl lactam, ⁇ -caprolactam, udecan lactam, ⁇ -enantholactam, and 2-pyrrolidone.
  • As the polyamide forming the hard segment a polyamide obtained by ring-opening polycondensation of lauryl lactam, ⁇ -caprolactam or udecan lactam can be preferably used.
  • polymer forming the soft segment examples include polyester and polyether, and examples of the polyether include polyethylene glycol, propylene glycol, polytetramethylene ether glycol, and ABA-type triblock polyether. These can be used alone or in combination of two or more. Further, polyether diamine or the like obtained by reacting animonia or the like with the terminal of the polyether can be used.
  • the number average molecular weight of the polymer (polyamide) constituting the hard segment is preferably from 300 to 15,000 from the viewpoint of melt moldability.
  • the number average molecular weight of the polymer constituting the soft segment is preferably from 200 to 6000 from the viewpoint of toughness and flexibility at low temperature.
  • the mass ratio (x: y) to the hard segment (x) and the soft segment (y) is preferably from 50:50 to 90:10, and more preferably from 50:50 to 80:20 from the viewpoint of moldability. preferable.
  • the TPAE can be synthesized by copolymerizing the polymer forming the hard segment and the polymer forming the soft segment by a known method.
  • TPAE examples include Pebax 33 series (for example, 7233, 7033, 6333, 5533, 4033, MX1205, 3533, 2533) of Arkema, and UBESTA @ XPA series (for example, XPA9063X1, XPA9055X1) of Ube Industries, Ltd. , XPA9048X2, XPA9048X1, XPA9040X1, XPA9040X2, etc., and the “Vestamide” series of Daicel Eponic Corporation (eg, E40-S3, E47-S1, E47-S3, E55-S1, E55-S3, EX9200, E50-R2). ) Etc. can be used.
  • the thermoplastic resin member according to the present embodiment further includes an acid-modified polymer.
  • the content of the acid-modified polymer in the thermoplastic resin member according to this embodiment is preferably 1 part by mass or more and 35 parts by mass or less, more preferably 3 parts by mass or more with respect to 100 parts by mass of the total of the TPU and the TPAE. It is at most 30 mass%, more preferably at least 5 mass% and at most 25 mass%.
  • the present inventors have confirmed that the melt flowability of a thermoplastic resin composition is improved by including an acid-modified polymer in the amount equal to or more than the lower limit as described in Examples described later.
  • the molten resin composition that has flowed into the cavity via the sprue, the runner, and the gate moves inside the cavity and fills the cavity. Even if the temperature of the molten resin composition drops during this process, the acid-modified polymer-containing thermoplastic resin composition maintains the resin fluidity. Therefore, by using the thermoplastic resin composition containing an acid-modified polymer, it is possible to obtain a composite structure having high bonding strength even when a mold having a long moving distance of the molten resin is used. It is not clear why the thermoplastic resin composition comprising TPU and TPAE contains an acid-modified polyolefin to improve the melt fluidity.
  • the present inventors have confirmed by morphological observation that blending of an acid-modified polyolefin with TPU promotes the fine dispersion of the urethane layer in the TPU. It is considered that the polar group (acid group) in the product is efficiently delocalized and the number of contact points with the metal surface is increased, which leads to an improvement in the bonding strength between the resin and the metal.
  • the TPU is an ether-based TPU containing an ether bond
  • fine dispersion is further promoted by the coexistence of TPAE containing an amide bond compatible with the ether group. We think that it brought.
  • the acid-modified polymer according to the present embodiment is, for example, a polymer containing a carboxylic acid and / or a carboxylic anhydride group.
  • an acid-modified polyolefin resin containing a skeleton derived from an olefin component and an unsaturated carboxylic acid component is preferably used as the acid-modified polymer.
  • the olefin component which is a main component of the acid-modified polyolefin resin include ethylene, propylene, 1-butene, 1-pentene, 1-hexene, 4-methyl-1-pentene, 1-heptene, 1-octene, and 1-nonene.
  • ⁇ -olefins such as, 1-decene, 1-undecene and 1-dodecene are preferred, and mixtures thereof may be used.
  • ethylene, propylene, and 1-butene are particularly preferable from the viewpoints of adhesion and water resistance.
  • Examples of the unsaturated carboxylic acid constituting the acid-modified polyolefin resin include acrylic acid, methacrylic acid, (anhydride) maleic acid, (anhydride) itaconic acid, (anhydride) aconitic acid, fumaric acid, crotonic acid, citraconic acid, and mesacon. Acids, allylsuccinic acid and the like.
  • the unsaturated carboxylic acid for example, a compound having at least one carboxyl group or acid anhydride group in a molecule, such as an unsaturated dicarboxylic acid half ester or half amide, can be used.
  • maleic acid (anhydride), acrylic acid, and methacrylic acid are preferable, and maleic anhydride is more preferable, from the viewpoint of easy introduction into a polyolefin resin.
  • (anhydrous) to acid means “to acid or anhydride to acid”. That is, (anhydrous) maleic acid means maleic acid or maleic anhydride.
  • the copolymerization form of the unsaturated carboxylic acid and the olefin component is not limited, and includes random copolymerization, block copolymerization, graft copolymerization, etc., but from the viewpoint of easy polymerization, graft copolymerization is preferable.
  • the acid-modified polyolefin resin examples include ethylene / (meth) acrylic acid copolymer; ethylene / propylene / (anhydride) maleic acid copolymer, ethylene / 1-butene / (maleic anhydride) Copolymers, ethylene / ⁇ -olefin / (anhydride) maleic acid copolymers such as ethylene / propylene / 1-butene / (anhydride) maleic acid copolymer; propylene / 1-butene / (anhydride) maleic acid copolymer Propylene / ⁇ -olefin / (anhydrous) maleic acid copolymer such as propylene / octene / (anhydride) maleic acid copolymer; ethylene / (meth) acrylate / (anhydride) maleic copolymer; ethylene / (Anhydride) maleic acid copolymer; propylene / (meth
  • the acid-modified polyolefin resin according to the present embodiment may contain other structural units other than the above as necessary.
  • Other structural units include, for example, (meth) acrylates such as methyl (meth) acrylate, ethyl (meth) acrylate, and butyl (meth) acrylate; dimethyl maleate, diethyl maleate, and dibutyl maleate (Meth) acrylic amides; alkyl vinyl ethers such as methyl vinyl ether and ethyl vinyl ether; vinyl esters such as vinyl formate, vinyl acetate, vinyl propionate, vinyl pivalate, and vinyl versatate; Vinyl alcohol obtained by saponifying vinyl esters with a basic compound or the like; 2-hydroxyethyl acrylate; glycidyl (meth) acrylate; (meth) acrylonitrile; styrene; substituted styrene; vinyl halides; Oxidized charcoal ; Sulfur dioxide and the like, may
  • the content of these other constituent units is preferably 10% by mass or less, when the entire acid-modified polyolefin resin is 100% by mass.
  • a (meth) acrylic block copolymer represented by the following general formula (1) obtained by living anionic polymerization can be used without limitation.
  • [a] is a methyl methacrylate polymer block
  • [b] is an alkyl (meth) acrylate polymer block having an alkyl group having 0 to 12 carbon atoms.
  • (meth) acryl means acryl or methacryl.
  • (meth) acrylate means acrylate or methacrylate.
  • Lexpearl (registered trademark) series which is an acid-modified polyethylene resin manufactured by Japan Polyethylene Corporation
  • Bondyne (registered trademark) series which is a maleic anhydride-modified polyolefin resin manufactured by Arkema. Since the acid value of these acid-modified polymers measured by the method defined in JIS K0070 is generally 1 to 1000 mgKOH / g, the acid value of the thermoplastic resin member or the thermoplastic resin composition according to the present embodiment is desired.
  • the thermoplastic resin and one or more acid-modified polymers may be appropriately blended (alloyed) so as to fall within the range.
  • thermoplastic resin composition examples include, for example, a thermoplastic resin, an acid-modified polymer, and, if necessary, an optional component, and a Banbury mixer, a Henshal mixer, a single-screw extruder, and a twin-screw extruder.
  • a known method of dry blending or melt mixing using a known mixing device such as a high-speed twin-screw extruder can be used without limitation.
  • the composite structure according to the present embodiment includes the metal member and a thermoplastic resin member joined to the metal member. More specifically, the composite structure according to the present embodiment includes a thermoplastic resin composition which is a raw material component for forming the above-described thermoplastic resin member, and a specific fine uneven structure portion formed on the surface of the metal member. (A part subjected to a surface roughening treatment) and joined.
  • the elastomer member is obtained by subjecting the cross-linkable elastomer to cross-linking treatment and shaping in advance and forming the metal member.
  • the bonding between the two members tends to be relatively low because the bonding is based on a chemical bonding force via an adhesive, and external factors such as moisture and light. It is a concern that when the adhesive component is deteriorated due to the influence, the joining strength is remarkably reduced.
  • the thermoplastic resin composition preferably a thermoplastic resin composition containing a thermoplastic elastomer has an appropriate hardness and acid value, so that the thermoplastic resin composition was formed on the surface of the metal member. It is possible to easily penetrate the fine uneven structure, and in that state, it is expected that polar groups chemically bonded to the resin skeleton (for example, carboxyl groups and hydroxyl groups) will generate ionic bonding interactions with the metal member surface. Is done. That is, in addition to the physical bonding force (anchor effect), more chemical interaction is developed, so that the bonding strength can be increased.
  • polar groups chemically bonded to the resin skeleton for example, carboxyl groups and hydroxyl groups
  • the composite structure can be manufactured by joining the metal member subjected to the above-described roughening treatment while molding the thermoplastic resin composition into a desired shape of the thermoplastic resin member.
  • Methods for joining and integrating a thermoplastic resin member on a metal member include injection molding, extrusion molding, hot press molding, compression molding, transfer molding, casting molding, laser welding molding, reaction injection molding (RIM molding), Various known molding methods such as rim molding (LIM molding) and thermal spray molding can be adopted without limitation.
  • the injection molding method is preferable from the viewpoint of productivity as a method of manufacturing the composite structure. Specifically, a metal member is inserted into a cavity of an injection molding die, and a thermoplastic resin composition is molded from a metal. It is preferable to manufacture by an injection molding method of injecting into a mold. Specific examples include the following method.
  • a mold for injection molding is prepared, the mold is opened, and a metal member is installed in a part of the mold. Thereafter, the mold is closed, and the thermoplastic resin composition is injected into the mold and solidified so that at least a part of the thermoplastic resin composition is in contact with the roughened region on the surface of the metal member. Thereafter, the composite structure can be obtained by opening the mold and releasing the mold.
  • high-speed heat cycle molding (RHCM, heat & cool molding) in which a mold is rapidly heated and cooled.
  • RHCM heat & cool molding
  • the bonding strength between the metal and the resin can be increased.
  • the mold surface temperature is maintained at a temperature of 250 to 300 ° C. from the start of the injection of the thermoplastic resin composition to the completion of the pressure holding, and thereafter, the mold is cooled to the mold surface temperature of 170 to 230.
  • the method can be exemplified.
  • the composite structure may be formed by injection foam molding.
  • injection foam molding a method of adding a chemical foaming agent to a resin, a method of injecting nitrogen gas or carbon dioxide gas directly into the cylinder part of an injection molding machine, or a method of injecting nitrogen gas or carbon dioxide gas in a supercritical state
  • MuCell injection foaming molding method in which the resin member is injected into a cylinder portion of a molding machine, and any method can obtain a composite structure in which the resin member is a foam.
  • a counter pressure can be used as a method of controlling the mold, or a core back can be used depending on the shape of the molded product.
  • the composite structure according to the present embodiment has high productivity and a high degree of freedom in shape control, and thus can be developed for various uses.
  • a housing for an electronic device to which a seal member such as a waterproof packing, a vacuum packing, and a packing for a pressure device is joined a stress relaxation member; a member for a portable device; a member for a solar cell; a member for a lithium ion battery; Automotive members; aerospace members and the like.
  • a waterproof sealing material for a portable device such as a mobile phone, a smartphone, a tablet, a hard disk drive, a digital camera, a watch, or the like
  • a waterproof sealing material for a household appliance such as a washing machine or a pot
  • Battery gasket packing for lithium ion battery, etc.
  • the composite structure according to the present embodiment can be suitably used for a housing for an electronic device.
  • An electronic device housing according to the first embodiment of the present invention is an electronic device housing including the composite structure according to the present embodiment, and the electronic device housing is a first metal member 1 (one side). ) And a second metal member 2 (also called the other metal nick).
  • a packing 3 made of a thermoplastic resin member is joined to a peripheral portion of the first metal member 1.
  • the outer shell is formed by integrating the second metal member 2 with the first metal member 1 via the packing 3. That is, in the electronic device housing according to the present embodiment, the fitting of the composite structure including the first metal member 1 and the packing 3 made of the thermoplastic resin member joined to the periphery of the first metal member 1 is performed.
  • the surface 11 and the fitting surface 21 of the other second metal member 2 which are integrated with the first metal member 1 are pressed so as to compress the packing 3 so that the first metal member 1 and the second metal member 2 are fitted and integrated (see FIG. 15).
  • the electronic device housing according to the first embodiment may be formed of three or more metal pieces.
  • the packing 3 joined to the peripheral portion of the first metal member 1 is provided around the concave groove 12 provided in the peripheral portion. If the depth of the concave grooves 12 and the d 1, the height h of the packing, it is preferable to satisfy d 1 ⁇ h ⁇ 5 ⁇ d 1.
  • a concave groove 22 is also formed in the mating surface 21 that is paired with the mating surface 11, and the two mating surfaces are fitted so as to be mirror-image-symmetrical and integrated by pressing. Such an electronic device housing can be obtained.
  • the opening width (w 2 ) of the concave groove 22 is in the range of 1.0 to 1.5 times the opening width (w 1 ) of the concave groove 12, and the depth (w 2 ) of the concave groove 22 is d 2 ) is preferably shallower than the depth (d 1 ) of the concave groove 12.
  • An electronic device housing is an electronic device housing including the composite structure according to the present embodiment, and the electronic device housing includes a metal member and a plastic member.
  • a packing made of the thermoplastic resin member is joined to a peripheral portion of the metal member, and an outer shell is formed by integrating the metal member with the plastic member via the packing.
  • the packing joined to the peripheral portion of the metal member is circumferentially provided so as to fill the concave groove provided in the peripheral portion, and the depth of the concave groove and the height of the packing are the same as those of the above-described first embodiment.
  • the electronic device housing according to the second embodiment is formed on the plastic member or the plastic member by fitting the two concave surfaces of the concave grooves provided as necessary so as to be mirror-symmetrical and by pressing and integrating. can get.
  • a compression ratio of 25% specified in JIS @ K6262 of the packing and a test are used.
  • the compression set at a temperature of 25 ° C. and a test time of 22 hours is usually 80% or less, preferably 70% or less, more preferably 60% or less.
  • the composite structure according to the present embodiment can be suitably used for a cushion material of a notebook computer.
  • a notebook personal computer usually comprises a personal computer main body and a lid connected via a hinge device, a keyboard is arranged on the surface of the main body, and a display is incorporated in the lid.
  • the lid of a notebook computer is opened and closed through a hinge device, but if the lid is closed strongly against the will of the user, if the lid of the notebook computer is strongly pressed by external pressure, or the notebook computer itself If it is dropped, the glass panel of the indicator incorporated in the lid may be damaged. In order to prevent this trouble, it is useful to use the composite structure according to the present embodiment as a cushion material.
  • a composite made by joining a packing made of a thermoplastic resin member to an aluminum alloy or magnesium alloy portion disposed at least on the peripheral edge of the lid, and wrapping around the glass surface with this packing, for example.
  • the structure functions as a cushioning material when the lid is opened and closed or when a strong impact is applied, which helps protect the notebook computer.
  • the compression set is usually 80% or less, preferably 70% or less, more preferably 60% or less.
  • Tip tip radius 5 ⁇ m ⁇ Reference length: 0.8mm ⁇ Evaluation length: 4mm ⁇ Measurement speed: 0.06 mm / sec The measurement was carried out on the surface of the metal member with respect to an arbitrary three linear portions in a parallel relationship and an arbitrary three linear portions orthogonal to the linear portion, for a total of six linear portions.
  • thermoplastic resin member The A hardness was measured 5 seconds after the start of the measurement using a type A durometer in accordance with JIS K6253.
  • the acid value of the thermoplastic resin member was measured according to the method specified in JIS K0070. That is, the sample solution was prepared by adding a pre-standardized alcohol solution of N / 10 potassium hydroxide (5 g of ion-exchanged water to 7 g of special grade potassium hydroxide, and making it 1 L (liter) with primary ethyl alcohol). The titer was titrated with a 1% phenolphthalein solution, and the acid value (mgKOH / g) was calculated from the neutralized amount.
  • thermoplastic resin member 102 width 10 mm ⁇ length 50 mm ⁇ length
  • thermoplastic resin member 101 width 18 mm ⁇ length 45 mm ⁇ thickness 2 mm
  • a test piece having a thickness of 3 mm was used.
  • a model 1323 (manufactured by Aiko Engineering Co., Ltd.) was used as a tensile tester, and a special jig 105 containing a test piece was attached to the tensile tester, and at room temperature (23 ° C.), the distance between the chucks was 60 mm, and the tensile test was performed. The measurement was performed under the condition of a speed of 10 mm / min.
  • Tensile shear strength (MPa) was obtained by dividing the breaking load (N) by the area of the metal / resin joint (see FIGS. 1 and 2). Note that the tensile shear strength is an average value of the measured values for five samples.
  • the 90 ° peel strength was measured using the same test piece as the test piece used for the tensile shear strength.
  • the metal member 101 of the test piece was fixed, the end opposite to the joint of the thermoplastic resin member 102 was sandwiched between chucks of a 90 ° peel strength tester, and at room temperature (23 ° C.) at a peeling rate of 100 mm / min.
  • the peel strength in the 90 ° direction was measured (see FIG. 4).
  • Model 1323 manufactured by Aiko Engineering
  • the 90 ° peel strength is an average value of the measured values for five samples.
  • the fracture surface of the metal member 101 side was observed with a loupe.
  • the 90 ° peel strength test is a fracture surface obtained by a strength test on a test piece before alumite treatment described later.
  • the photographs shown in FIGS. 5 to 14 are photographs arranged with the short side of the metal member facing upward so as to show the fracture surface.
  • a fracture surface on the resin member side is also photographed in FIGS. 5 to 12.
  • a portion where the fracture surface on the metal member side is black indicates resin residue, and this portion was regarded as a base material fracture.
  • the gray portion indicates that there is no resin residue, and this portion was determined to be interfacial fracture.
  • a indicates a base material fracture mode priority
  • c indicates an interface fracture mode priority
  • b indicates a fracture mode in between. The observation of the fracture surface was performed on five samples.
  • the composite structure sample (dumbbell test piece) manufactured in each of Examples and Comparative Examples was degreased, alkali-etched, and chemically polished by a known method, and then subjected to an electrolytic bath of a sulfuric acid aqueous solution (15% by mass). It was energized (1 A / dm 2 ) for 40 minutes, and then dyed at 45 ° C. for 10 minutes (using a red dye manufactured by Okuno Pharmaceutical). Next, a sealing treatment (nickel acetate method: 95 ° C., 10 minutes) was performed, followed by washing with hot water and air drying to complete the alumite treatment. For the composite structure sample after the alumite treatment, the 90 ° peel strength was measured in the same manner as described above, and the strength retention before and after the alumite treatment was calculated.
  • thermoplastic resin composition A1 80 parts by mass of Resazin P (grade P2275, manufactured by Dainichi Seika Kogyo Co., Ltd.), which is an ether-based thermoplastic polyurethane (TPU); 20 parts by weight were blended. Next, the mixture was sufficiently mixed with a tumbler mixer, melt-kneaded at 190 ° C. with a twin-screw extruder, and extruded to obtain a pellet-shaped resin composition A1.
  • the durometer hardness of the resin composition A1 was A78, and the acid value was 6 mgKOH / g.
  • thermoplastic resin composition A2 80 parts by mass of Rezamin P (grade name: P2275, manufactured by Dainichi Seika Kogyo Co., Ltd.), which is an ether-based thermoplastic polyurethane (TPU); 20 parts by mass (Chemical Co., Ltd.).
  • the mixture was sufficiently mixed with a tumbler mixer, melt-kneaded at 190 ° C. with a twin-screw extruder, and extruded to obtain a pellet-shaped resin composition A2.
  • the durometer hardness of the resin composition A2 was A79, and the acid value was 7 mgKOH / g.
  • thermoplastic resin composition A3 80 parts by mass of Resazin P (grade P2275, manufactured by Dainichi Seika Kogyo Co., Ltd.), which is an ether-based thermoplastic polyurethane (TPU); 20 parts by weight were blended. Next, the mixture was sufficiently mixed with a tumbler mixer, melt-kneaded at 190 ° C. with a twin-screw extruder, and extruded to obtain a pellet-shaped resin composition A3.
  • the durometer hardness of the resin composition A3 was A78, and the acid value was 4 mgKOH / g.
  • thermoplastic resin composition A4 90 parts by mass of Rezamin P (grade name P8766, manufactured by Dainichi Seika Kogyo Co., Ltd.), which is an ether-based thermoplastic polyurethane (TPU), and 10 parts by mass of clarity (grade name: LA2250, manufactured by Kuraray Co., Ltd.), which is an acrylic block copolymer. did.
  • the mixture was sufficiently mixed with a tumbler mixer, melt-kneaded at 190 ° C. with a twin-screw extruder, and extruded to obtain a pellet-shaped resin composition A4.
  • the durometer hardness of the resin composition A4 was A77, and the acid value was 3 mgKOH / g.
  • thermoplastic resin composition A 90 parts by mass of Rezamin P TM (grade name P2275, manufactured by Dainichi Seika Kogyo) which is a urethane-based thermoplastic elastomer (TPU), and 10 parts by mass of Pebax TM (grade name: 2533, manufactured by Arkema) which is an amide-based thermoplastic elastomer.
  • the mixture was sufficiently mixed with a tumbler mixer, melt-kneaded at 190 ° C. with a twin-screw extruder, and extruded to obtain a resin composition A in a pellet form.
  • the durometer hardness of the resin composition A was A73, and the acid value was 0 mgKOH / g.
  • thermoplastic resin composition B 80 parts by mass of Resazin P TM (grade name P2275, manufactured by Dainichi Seika Kogyo) which is a urethane-based thermoplastic elastomer (TPU), 10 parts by mass of Pebax TM (grade name: 2533, manufactured by Arkema) which is an amide-based thermoplastic elastomer, And 10 parts by mass of Nucrel (grade name: NO35C, manufactured by Du Pont-Mitsui Polychemicals), which is an ethylene-methacrylic acid copolymer.
  • the mixture was sufficiently mixed with a tumbler mixer, melt-kneaded at 190 ° C. with a twin-screw extruder, and extruded to obtain a resin composition B in a pellet form.
  • the durometer hardness of the resin composition B was A72, and the acid value was 3 mgKOH / g.
  • thermoplastic resin composition C 85 parts by mass of Resazin P TM (grade name P2275, manufactured by Dainichi Seika Kogyo) which is a urethane-based thermoplastic elastomer (TPU), 5 parts by mass of Pebax TM (grade name: 2533, manufactured by Arkema) which is an amide-based thermoplastic elastomer, And 10 parts by mass of Nucrel (grade name: NO35C, manufactured by Du Pont-Mitsui Polychemicals), which is an ethylene-methacrylic acid copolymer.
  • the mixture was sufficiently mixed with a tumbler mixer, melt-kneaded at 190 ° C. with a twin-screw extruder, and extruded to obtain a resin composition C in a pellet form.
  • the durometer hardness of the resin composition C was A71, and the acid value was 3 mgKOH / g.
  • ⁇ Roughened metal member used in this example> (Roughened aluminum alloy sheet M1) After degreasing an aluminum alloy plate (45 mm ⁇ 18 mm ⁇ 2 mm) having an alloy number 6063 specified in JIS H4000, an alkaline etching agent (30 ° C.) containing 15% by mass of sodium hydroxide and 3% by mass of zinc oxide. Is immersed in a treatment tank 1 filled with for 3 minutes (in the following description, it may be abbreviated as “alkali-based etching agent treatment”), and then immersed in 30% by mass of nitric acid (30 ° C.) for 1 minute, The system etchant treatment was further repeated once.
  • the obtained aluminum alloy plate was treated with an acid-based etching aqueous solution containing 3.9% by mass of ferric chloride, 0.2% by mass of cupric chloride, and 4.1% by mass of sulfuric acid. It was immersed in the filled processing tank 2 at 30 ° C. for 5 minutes and rocked. Next, ultrasonic cleaning (in water for 1 minute) with running water was performed, followed by drying to obtain a surface-roughened aluminum alloy plate M1.
  • the surface roughness of the surface-roughened aluminum alloy sheet M1 is measured using a surface roughness measuring device “Surfcom 1400D (manufactured by Tokyo Seimitsu Co., Ltd.)” in accordance with JIS B0601: 2001 (corresponding to ISO4287).
  • R zjis the ten-point average roughness
  • RS m the average length of the roughness curve element
  • R Zjis mean and RS m average value is an average value of measurement values of six points with different measurement locations.
  • the magnesium alloy plate AZ31B (45 mm ⁇ 18 mm ⁇ 2 mm) was immersed in a 7.5% by mass aqueous solution of a commercially available degreasing agent for magnesium alloy “Cleaner 160 (manufactured by Meltec)” at 65 ° C. for 5 minutes, and then washed with water. Next, it was immersed in a 1% by mass aqueous solution of citric acid at 40 ° C. for 4 minutes, and then washed with water. Then, it was immersed in an aqueous solution containing 1% by mass of sodium carbonate and 1% by mass of sodium hydrogen carbonate at 65 ° C. for 5 minutes.
  • the substrate was immersed in a 15% by mass aqueous sodium hydroxide solution at 65 ° C. for 5 minutes, and then washed with water. Then, it was immersed in a 0.25% by mass aqueous citric acid solution at 40 ° C. for 1 minute and washed with water. Next, after immersing for 1 minute in a 45 ° C. aqueous solution containing 2% by mass of potassium permanganate, 1% by mass of acetic acid and 0.5% by mass of hydrated sodium acetate, the substrate was washed with water for 15 seconds, and heated at 90 ° C. It was dried in a wind dryer. Thus, a surface-roughened magnesium alloy plate M2 was obtained.
  • the surface roughness of the surface-roughened magnesium alloy plate M2 is measured using a surface roughness measuring device “Surfcom 1400D (manufactured by Tokyo Seimitsu Co., Ltd.)” in accordance with JIS B0601: 2001 (corresponding to ISO4287).
  • the ten-point average roughness (R zjis ) and the average length of the roughness curve element (RS m ) were measured.
  • the mean value of RS m was 150 [mu] m.
  • R Zjis mean and RS m average value is an average value of measurement values of six points with different measurement locations.
  • a small dumbbell metal insert mold was attached to J85AD110H manufactured by Nippon Steel Works, Ltd., and the surface-roughened aluminum alloy sheet M1 or the surface-roughened magnesium alloy sheet M2 obtained by the above method was placed in the mold.
  • cylinder temperature 190 ° C., mold temperature 40 ° C., injection speed 25 mm / sec, holding pressure 80 MPa, and holding time 10 seconds were adopted.
  • a gate shape a pin gate having a short moving distance of the molten resin (hereinafter abbreviated as I-type pin gate; see FIG.
  • thermoplastic resin composition was injection-molded in the mold to produce a composite structure.
  • Example 1 The composite structure E1 was manufactured by injection molding (I-type pin gate) the above resin composition A1 as a thermoplastic resin composition on the surface-roughened aluminum alloy plate M1. Next, the tensile shear strength was measured (average value) according to the above method, and the result was 4.4 MPa. In addition, all of the fracture surfaces of the five samples were judged to be a (base material destruction priority). The results are summarized in Table 1.
  • FIG. 5 shows a photograph of the fracture surface.
  • Example 2 The composite structure E2 was manufactured by injection molding (I-type pin gate) the above resin composition A2 as a thermoplastic resin composition on the surface-roughened aluminum alloy plate M1. Next, the tensile shear strength was measured (average value) according to the above method, and as a result, it was 3.9 MPa. In addition, all of the fracture surfaces of the five samples were judged to be a (base material destruction priority). The results are summarized in Table 1.
  • Example 3 The composite structure E3 was manufactured by injection molding (I-type pin gate) the above resin composition A3 as a thermoplastic resin composition on the surface-roughened aluminum alloy plate M1. Next, the tensile shear strength was measured (average value) according to the above method, and as a result, it was 4.8 MPa. In addition, all of the fracture surfaces of the five samples were judged to be a (base material destruction priority). The results are summarized in Table 1.
  • Example 4 The composite structure E4 was manufactured by injection molding (I-type pin gate) the above resin composition A4 as a thermoplastic resin composition on the surface-roughened aluminum alloy plate M1. Next, the tensile shear strength was measured (average value) according to the above method, and as a result, it was 7.2 MPa. In addition, all of the fracture surfaces of the five samples were judged to be a (base material destruction priority). The results are summarized in Table 1.
  • Example 5 The composite structure E5 was manufactured by subjecting the resin composition A1 as a thermoplastic resin composition to a surface-roughened magnesium alloy plate M2 by injection molding (I-type pin gate). Next, the tensile shear strength was measured (average value) according to the above method, and the result was 3.8 MPa. In addition, all of the fracture surfaces of the five samples were judged to be a (base material destruction priority). The results are summarized in Table 1.
  • FIG. 7 shows a photograph of the fracture surface.
  • Example 6 The composite structure E6 was manufactured by injection molding (I-type pin gate) the above resin composition A2 as a thermoplastic resin composition on the surface-roughened magnesium alloy plate M2. Next, the tensile shear strength was measured (average value) according to the above method, and the result was 4.0 MPa. In addition, all of the fracture surfaces of the five samples were judged to be a (base material destruction priority). The results are summarized in Table 1.
  • Example 7 The composite structure E7 was manufactured by injection molding (I-type pin gate) the above resin composition A3 as a thermoplastic resin composition on the surface-roughened magnesium alloy plate M2. Next, the tensile shear strength was measured (average value) according to the above method, and as a result, it was 4.3 MPa. In addition, all of the fracture surfaces of the five samples were judged to be a (base material destruction priority). The results are summarized in Table 1.
  • a composite structure C1 was manufactured by performing the same operation as in Example 1 except for using the composite structure C1.
  • the tensile shear strength (average value) was 3.1 MPa.
  • all of the fractured surfaces of the five specimens were judged to be c (priority to interface destruction). The results are summarized in Table 1.
  • FIG. 6 shows a photograph of the fracture surface.
  • a composite structure C2 was manufactured in the same manner as in Example 5, except that the composite structure C2 was used.
  • the tensile shear strength (average value) was 1.7 MPa.
  • all of the fractured surfaces of the five specimens were judged to be c (priority to interface destruction). The results are summarized in Table 1.
  • FIG. 8 shows a photograph of the fracture surface.
  • the composite structure R1 was prepared by subjecting the thermoplastic resin composition A as a thermoplastic resin composition to the surface-roughened aluminum alloy plate M1 by injection molding using an I-type pin gate mold.
  • the peel strength of the composite structure R1 was measured (average value) according to the method described above. As a result, the strength (average value) was 32 N / 10 mm.
  • all of the fracture surfaces of the five samples were judged to be a (base material destruction priority).
  • FIG. 9 shows a photograph of the fracture surface.
  • the 90 ° peel strength (average value) after the acid resistance test was 18 N / 10 mm, and the strength retention was 56%.
  • the composite structure R2 was manufactured by subjecting the thermoplastic resin composition A as a thermoplastic resin composition to the surface-roughened magnesium alloy plate M2 by injection molding using an I-type pin gate mold. Next, the tensile shear strength was measured (average value) according to the above method. As a result, the bonding strength (average value) was 3.8 MPa. In addition, all of the fracture surfaces of the five samples were judged to be a (base material destruction priority). FIG. 11 shows a photograph of the fracture surface.
  • Reference Example 3 In Reference Example 1, a composite structure R3 was manufactured in exactly the same manner as in Reference Example 1, except that a Z-type pin gate mold was used instead of the I-type pin gate mold. Next, the peel strength was measured (average value) according to the above method. As a result, the strength (average value) was 10 N / 10 mm. In addition, all of the fracture surfaces of the five samples were judged to be a (base material destruction priority).
  • Example 8 The composite structure E8 was manufactured by subjecting the thermoplastic resin composition B as a thermoplastic resin composition to the surface-roughened aluminum alloy plate M1 by injection molding using a Z-type pin gate mold. Next, the peel strength was measured (average value) according to the above method. As a result, the strength (average value) was 23 N / 10 mm. In addition, all of the fracture surfaces of the five samples were judged to be a (base material destruction priority). The 90 ° peel strength (average value) after the acid resistance test was 21 N / 10 mm, and the strength retention was 91%.
  • Example 9 The composite structure E9 was manufactured by injection-molding the thermoplastic resin composition C as a thermoplastic resin composition on the surface-roughened aluminum alloy sheet M1 using an I-type pin gate mold. Next, the peel strength was measured (average value) according to the above method. As a result, the strength (average value) was 28 N / 10 mm. In addition, all of the fracture surfaces of the five samples were judged to be a (base material destruction priority). Further, the 90 ° peel strength (average value) after the acid resistance test was 25 N / 10 mm, and the strength retention was 90%.
  • FIG. 13 shows a photograph of the fracture surface (the right side of the metal seat).
  • Example 10 The composite structure E10 was manufactured by subjecting the thermoplastic resin composition C as a thermoplastic resin composition to the surface-roughened aluminum alloy plate M1 by injection molding using a Z-type pin gate mold. Next, the peel strength was measured (average value) according to the above method. As a result, the strength (average value) was 23 N / 10 mm. In addition, all of the fracture surfaces of the five samples were judged to be a (base material destruction priority). The 90 ° peel strength (average value) after the acid resistance test was 21 N / 10 mm, and the strength retention was 91%.
  • FIG. 14 shows a photograph of the fracture surface (the metal member side).
  • thermoplastic resin composition used in place of the thermoplastic resin composition A was Resin P TM (grade name P2275, manufactured by Dainichi Seika Kogyo Co., Ltd.) which is a urethane-based thermoplastic elastomer (TPU).
  • the operation was performed to produce a composite structure C3.
  • the same 90 ° peel strength test as in Reference Example 1 was performed. As a result, the strength (average value) was 5.0 N / 10 mm.
  • all of the fractured surfaces of the five specimens were judged to be c (priority to interface destruction).
  • FIG. 10 shows a photograph of the fracture surface.
  • the 90 ° peel strength (average value) after the acid resistance test was 4.8 N / 10 mm, and the strength retention was 96%.
  • Comparative Example 5 In Comparative Example 3, a composite structure C5 was manufactured in exactly the same manner as in Comparative Example 3 except that a Z-type pin gate mold was used instead of the I-type pin gate mold. Next, the peel strength was measured (average value) according to the above method. As a result, the strength (average value) was 2.0 N / 10 mm. In addition, all of the fractured surfaces of the five specimens were judged to be c (priority to interface destruction).
  • TPAE thermoplastic elastomer
  • the present invention also includes the following embodiments.
  • thermoplastic resin member A composite structure comprising a metal member and a thermoplastic resin member joined to the metal member, The metal member has a fine uneven structure at least on the metal surface to which the thermoplastic resin member is joined, The hardness of the thermoplastic resin member measured by a type A durometer in accordance with JIS K6253 is in a range of A60 to A95, A composite structure wherein the thermoplastic resin member has an acid value of 1 mgKOH / g to 100 mgKOH / g.
  • RSm average length
  • [3A] The [1A] or [2A] according to the above [1A] or [2A], wherein the ten-point average roughness (Rzjis) of the metal surface on which the fine uneven structure is formed is 10 nm or more and 300 ⁇ m or less, which is measured according to JIS B0601: 2001.
  • [4A] The composite structure according to any one of [1A] to [3A], wherein the thermoplastic resin member contains a thermoplastic elastomer.
  • [5A] The composite structure according to [4A], wherein the content of the thermoplastic elastomer in the thermoplastic resin member is 50% by mass or more.
  • thermoplastic resin member further contains an acid-modified polymer.
  • thermoplastic resin member further contains an acid-modified polymer.
  • thermoplastic resin member further contains an acid-modified polymer.
  • thermoplastic elastomer contains a urethane-based thermoplastic elastomer.
  • An electronic device housing including the composite structure according to any one of [1A] to [8A],
  • the metal member has a first metal member and a second metal member,
  • a packing made of the thermoplastic resin member is joined to a peripheral portion of the first metal member,
  • the present invention includes the following aspects.
  • thermoplastic resin member A composite structure comprising a metal member and a thermoplastic resin member joined to the metal member, The metal member has a fine uneven structure at least on the metal surface to which the thermoplastic resin member is joined, A composite structure in which the thermoplastic resin member contains a urethane-based thermoplastic elastomer and an amide-based thermoplastic elastomer.
  • thermoplastic resin member contains a urethane-based thermoplastic elastomer and an amide-based thermoplastic elastomer.
  • thermoplastic resin member further contains an acid-modified polymer, and the content of the acid-modified polymer in the thermoplastic resin member is 1 to 100 parts by mass in total of the urethane-based thermoplastic elastomer and the amide-based thermoplastic elastomer.
  • RSm average length
  • An electronic device housing including the composite structure according to any one of [1B] to [6B] The electronic device housing has a first metal member and a second metal member, A packing made of the thermoplastic resin member is joined to a peripheral portion of the first metal member, An electronic device housing in which an outer shell is formed by integrating the second metal member with the first metal member via the packing.
  • An electronic device housing including the composite structure according to any one of [1B] to [6B] The electronic device housing has a metal member and a plastic member, and a packing made of the thermoplastic resin member is joined to a peripheral portion of the metal member, An electronic device housing in which an outer shell is formed by integrating the metal member with the plastic member via the packing.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Laminated Bodies (AREA)
  • Injection Moulding Of Plastics Or The Like (AREA)

Abstract

金属部材と、上記金属部材に接合された熱可塑性樹脂部材と、を備える複合構造体であって、上記金属部材は少なくとも上記熱可塑性樹脂部材が接合する金属表面に微細凹凸構造を有し、JIS K6253に準拠してタイプAデュロメーターにより測定される、上記熱可塑性樹脂部材の硬度がA60以上A95以下の範囲にあり、上記熱可塑性樹脂部材の酸価が1mgKOH/g以上100mgKOH/g以下である複合構造体。 上記熱可塑性樹脂部材は、好ましくはウレタン系熱可塑性エラストマー、アミド系熱可塑性エラストマーおよび酸変性ポリオレフィンを含んでなる。

Description

複合構造体および電子機器用筐体
 本発明は、複合構造体および電子機器用筐体に関する。
 従来、ゴム、特にシリコーンゴム、フッ素ゴム、アクリルゴム等に代表されるエラストマーは、インスツルメントパネル、ドアパネル、グラスランチャンネル等の自動車内外装部品、ガスケット、キャップシール、チューブ類、消音ギア、工具類のグリップ部分等の工業用途に広く用いられている。
 これらの工業製品の用途にこれらのエラストマーを用いるに当たっては、該エラストマーで形成された樹脂部材と金属部材とを接着して用いる必要があった(特許文献1~4)。
特開平6-246848号公報 特開2004-14150号公報 特表2008-529833号公報 特表2009-524196号公報 特開2003-120816号公報
 しかし、エラストマーで形成された樹脂部材と金属部材とを工業的に有利な方法で、かつ高い接着強度で接合一体化する技術は実用化されていない。
 一方で、近年、ノートパソコン、タブレット端末、スマートフォン、携帯電話、腕時計型端末、デジタルカメラ、デジタルビデオカメラ、携帯音楽プレーヤー等の携帯型電子機器の普及が進んでいる。これらの携帯型電子機器の使用環境の多様化に伴い、電子機器には様々な性能が要求されるようになってきた。その一つの代表例が防水機能である。すなわち電子機器に求められる必須性能の一つとして、防水機能ニーズが高まっている。降雨や海、川、プール、高湿環境等の屋外環境下や、台所や浴室、人体からの発汗する汗に触れる状態等の屋内環境下等の水に接触し易い環境下で使用しても防水機能を確実に発現する、シール機能に優れた電子機器用筐体が求められるようになってきた。
 従来、携帯型電子機器用筐体に防水機能を付与する方法としては、例えば二つの片割れから構成される筐体の場合に、一方の片割れの周縁部に形成された溝(筐体溝)にパッキンを配し、相対するもう一方の片割れとの嵌合により該パッキンを圧縮することによってシール機能を発現する方法が一般的に用いられていた。またパッキン材料としては、シリコーンゴム、EPDMゴム、フッ素ゴム、クロロプレンゴム、アクリルゴム等に代表されるエラストマーを用い、反発応力によってシール機能を発現させていた。
 最近は、携帯電子機器自体の軽量化・軽薄化の観点から、上記のようなゴムパッキンを配する筐体溝の幅をより狭く、深さをより浅くする傾向が顕著になっている。この結果、対応するパッキンにも同様に、幅が狭く、厚みの薄い形状が望まれようになった。
 しかし、このような極細のパッキンは、撓み変形やカール変形が起こり易く、取り扱いも難しい。したがって、幅が狭い筐体溝への装着作業は煩雑にならざるを得ず、筐体組立時の作業性を極端に低下させていた。
 そのような装着性に関する課題に対し、細く、軟らかな弾性ガスケットをその成形時に支持樹脂フィルムに剥離可能な状態で仮留めし、弾性ガスケットをシール部位に取り付けるまで、上記支持樹脂フィルムにより弾性ガスケットの全体形状を維持しておき、支持樹脂フィルムに仮留めしたままで、弾性ガスケットをシール部位に装着固定し、その後に、上記支持樹脂フィルムを剥離除去することにより、剛性の低い弾性ガスケットを容易にシール部位に取り付けることのできる技術が提案されている(特許文献5)。しかし、このような支持樹脂フィルムに仮留めしたパッキンは平面形状のシール部位には対応できるが、三次元構造のシール部位への対応は困難である。
 以上から、エラストマーにより構成された熱可塑性樹脂部材と金属部材との複合体、ならびに該熱可塑性樹脂部材にパッキンの機能を持たせた複合体とこれからなる電子機器用筐体の開発が求められている。
 本発明は上記事情に鑑みてなされたものであり、接合強度に優れた金属部材と熱可塑性樹脂部材との複合構造体を提供するものである。
 本発明によれば以下に示す複合構造体および電子機器用筐体が提供される。
[1]
 金属部材と、上記金属部材に接合された熱可塑性樹脂部材と、を備える複合構造体であって、
 上記金属部材は少なくとも上記熱可塑性樹脂部材が接合する金属表面に微細凹凸構造を有し、
 JIS K6253に準拠してタイプAデュロメーターにより測定される、上記熱可塑性樹脂部材の硬度がA60以上A95以下の範囲にあり、
 上記熱可塑性樹脂部材の酸価が1mgKOH/g以上100mgKOH/g以下である複合構造体。
[2]
 JIS B0601:2001に準拠して測定される、上記微細凹凸構造が形成された上記金属表面の粗さ曲線要素の平均長さ(RS)が10nm以上500μm以下である上記[1]に記載の複合構造体。
[3]
 JIS B0601:2001に準拠して測定される、上記微細凹凸構造が形成された上記金属表面の十点平均粗さ(Rzjis)が10nm以上300μm以下である上記[1]または[2]に記載の複合構造体。
[4]
 上記熱可塑性樹脂部材が熱可塑性エラストマーを含む上記[1]乃至[3]のいずれか一つに記載の複合構造体。
[5]
 上記熱可塑性樹脂部材における上記熱可塑性エラストマーの含有量が50質量%以上である請求項4に記載の複合構造体。
[6]
 上記熱可塑性樹脂部材が酸変性ポリマーをさらに含む請求項4または5に記載の複合構造体。
[7]
 上記熱可塑性樹脂部材における、上記熱可塑性エラストマーの含有量が50質量%以上99質量%以下であり、上記酸変性ポリマーの含有量が1質量%以上50質量%以下である請求項6に記載の複合構造体。
[8]
 上記熱可塑性エラストマーがウレタン系熱可塑性エラストマーを含む上記[4]乃至[7]のいずれか一つに記載の複合構造体。
[9]
 上記熱可塑性樹脂部材が、ウレタン系熱可塑性エラストマーおよびアミド系熱可塑性エラストマーを含む上記[1]乃至[8]のいずれか一つに記載の複合構造体。
[10]
 上記熱可塑性樹脂部材中の上記ウレタン系熱可塑性エラストマーおよび上記アミド系熱可塑性エラストマーの合計含有量が60質量%以上100質量%以下である上記[9]に記載の複合構造体。
[11]
 上記熱可塑性エラストマーに占める、上記ウレタン系熱可塑性エラストマーの含有量が70質量%以上100質量%未満であり、上記アミド系熱可塑性エラストマーの含有量が0質量%超え30質量%以下である上記[9]または[10]に記載の複合構造体。
[12]
 上記熱可塑性樹脂部材が酸変性ポリマーをさらに含み、上記熱可塑性樹脂部材中の上記酸変性ポリマーの含有量が上記ウレタン系熱可塑性エラストマーと上記アミド系熱可塑性エラストマーの合計100質量部に対して1質量部以上35質量部以下である上記[9]乃至[11]のいずれか一つに記載の複合構造体。
[13]
 上記[1]乃至[12]のいずれか一つに記載の複合構造体を備える電子機器用筐体であって、
 上記電子機器用筐体は第1金属部材および第2金属部材を有し、
 上記第1金属部材の周縁部に上記熱可塑性樹脂部材からなるパッキンが接合しており、
 上記第2金属部材が上記パッキンを介して上記第1金属部材と一体化することによって外郭が形成されている電子機器用筐体。
[14]
 上記[1]乃至[12]のいずれか一つに記載の複合構造体を備える電子機器用筐体であって、
 上記電子機器用筐体は金属部材およびプラスチック部材を有し、
 上記金属部材の周縁部に上記熱可塑性樹脂部材からなるパッキンが接合しており、
 上記金属部材が上記パッキンを介して上記プラスチック部材と一体化することによって外郭が形成されている電子機器用筐体。
 本発明によれば、接合強度に優れた金属部材と熱可塑性樹脂部材との複合構造体を提供することができる。
本実施形態に係る引張せん断強度試験用の試験片の構造を模式的に示した斜視図である。 本実施形態に係る引張せん断強度試験方法を模式的に示した図面(断面図)である。 本実施形態に係る射出成形で用いた、二種類の金型ゲート形状の構造を模式的に示した断面図であり、(a)はI型ピンゲートを示し、(b)はZ型ピンゲートを示す。 本実施形態に係るピール強度試験方法を模式的に示した図面である。 実施例1で作製した試験片のうちの一つの破壊面の写真を示す図である。 比較例1で作製した試験片のうちの一つの破壊面の写真を示す図である。 実施例5で作製した試験片のうちの一つの破壊面の写真を示す図である。 比較例2で作製した試験片のうちの一つの破壊面の写真を示す図である。 参考例1で作製した試験片のピール強度試験後の破断面の写真を示す図である。 比較例3で作製した試験片のピール強度試験後の破断面の写真を示す図である。 参考例2で作製した試験片のせん断強度試験後の破断面の写真を示す図である。 比較例4で作製した試験片のせん断強度試験後の破断面の写真を示す図である。 実施例9で作成した試験片のピール強度試験後の破断面の内、金属側の写真を示す図面である。 実施例10で作成した試験片のピール強度試験後の破断面の内、金属側の写真を示す図面である。 第一の実施形態に係る電子機器用筐体の接合部付近を模式的に示した断面図である。
 以下、本発明に係る複合構造体を構成する各構成要素およびその調製方法、さらに、複合構造体の特徴について説明する。なお、文中の数字の間にある「~」は特に断りがなければ、以上から以下を表す。
 本実施形態に係る複合構造体は、金属部材と、上記金属部材に接合された熱可塑性樹脂部材と、を備える複合構造体であって、上記金属部材は少なくとも上記熱可塑性樹脂部材が接合する金属表面に微細凹凸構造を有し、JIS K6253に準拠してタイプAデュロメーターにより測定される、上記熱可塑性樹脂部材の硬度がA60以上A95以下の範囲にあり、上記熱可塑性樹脂部材の酸価が1mgKOH/g以上100mgKOH/g以下である。
 本実施形態によれば、金属部材が少なくとも熱可塑性樹脂部材と接合する金属表面に微細凹凸構造を有し、さらに熱可塑性樹脂部材の硬度および酸価が上記範囲を満たすことによって、金属部材と熱可塑性樹脂部材との接合強度に優れた複合構造体を実現することができる。
 また、本実施形態に係る複合構造体は、接合強度に見合った弾性と耐酸性の両者に優れることから、複合構造体を各種のパッキン材として好適に用いることもできる。さらに本実施形態に係る複合構造体は、酸性雰囲気化で処理したとしても樹脂の崩壊を最小限に抑えられるという特徴を持つ場合がある。
 この理由は明らかではないが、以下の理由が考えられる。まず、熱可塑性樹脂部材の硬度が上記上限値以下であることによって、熱可塑性樹脂部材の硬さが適度となり、金属部材表面に形成された微細凹凸構造内に熱可塑性樹脂部材が侵入しやすくなり、また熱可塑性樹脂部材の硬度が上記下限値以上であることによって、微細凹凸構造内に侵入した熱可塑性樹脂部材の機械的強度を向上できると考えられる。すなわち、熱可塑性樹脂部材の硬度が上記範囲内であることにより、微細凹凸構造内への熱可塑性樹脂部材の侵入量と、熱可塑性樹脂部材の強度とのバランスが適度となり、金属部材と熱可塑性樹脂部材とのアンカー効果が最適化され、接合強度を向上できると考えられる。
 また、熱可塑性樹脂部材の酸価が上記範囲内であることによって、上記アンカー効果に
よる物理的な接合力に加え、樹脂部材が含有する酸基と金属部材との間にイオン的な相互作用が発生する結果、金属部材と熱可塑性樹脂部材との接合強度を向上できると考えられる。
 以上のような相互作用によって、金属部材と熱可塑性樹脂部材との接合強度に優れた複合構造体を実現することができると考えられる。
 すなわち、本実施形態によれば、金属部材と熱可塑性樹脂部材とが、接着剤を用いることなく直接、強固に接合された複合構造体を得ることができる。このような複合構造体の応用例としては、一方の金属製片割れ(第1金属部材)の周縁部に熱可塑性樹脂部材からなるパッキンが接合した複合構造体に対して、他方の金属製片割れ(第2金属部材)を上記パッキンを介して押圧一体化して外郭が形成された電子機器用筐体が挙げられる。
 このような電子機器用筐体は、金属部材に対するパッキンの接合性に優れ、また第1金属部材に溝を形成させた後、この溝にパッキン装着する作業が省かれるため、従来技術のようなパッキン装着作業時の煩雑さを低減することができる。
<金属部材>
〔金属部材の金属種〕
 本実施形態において、上記金属部材を構成する金属の種類としては、鉄、ステンレス、アルミニウム、アルミニウム合金、マグネシウム、マグネシウム合金、銅、銅合金、チタンおよびチタン合金からなる群から選択される少なくとも一種であることが好ましい。これらのうち、より好ましくは鉄、ステンレス、アルミニウム合金、マグネシウム合金、銅合金、チタン合金であり、さらに好ましくはステンレス、アルミニウム合金、マグネシウム合金、銅合金である。
 上記金属部材は、金属材料を切断、プレス等による塑性加工;打ち抜き加工;切削、研磨、放電加工等の除肉加工によって所定の形状に加工された後に、後述の表面粗化処理がなされたものが好ましい。要するに、種々の加工法により、必要な形状に加工されたものを用いることが好ましい。
〔金属部材表面の微細凹凸構造〕
 本実施形態に係る金属部材は、少なくとも熱可塑性樹脂部材が接合する金属表面に微細凹凸構造をする。
 本実施形態に係る金属部材において、金属部材と熱可塑性樹脂部材との接合強度をより一層向上させる観点から、JIS B0601:2001に準拠して測定される、上記微細凹凸構造が形成された上記金属表面の粗さ曲線要素の平均長さ(RS)が好ましくは10nm~500μm、より好ましくは30nm~200μm、特に好ましくは50nm~150μmである。
 また、本実施形態に係る金属部材において、金属部材と熱可塑性樹脂部材との接合強度をより一層向上させる観点から、JIS B0601:2001に準拠して測定される、上記微細凹凸構造が形成された上記金属表面の十点平均粗さ(Rzjis)が好ましくは10nm~300μm、より好ましくは10nm~100μm、さらに好ましくは30nm~50μm、特に好ましくは50nm~30μmである。
 以下、金属部材表面の粗化処理の工程について説明する。
 金属部材表面に微細凹凸構造を付与する方法は、得られる微細凹凸構造の形状から大別して以下の3種類の方法がある。
 第一の方法は侵食性水溶液または侵食性懸濁液に金属部材を浸漬する方法である。この方法で得られた金属部材は、電子顕微鏡で観察すると、表面が無数の凹凸部で覆われた形となっており、例えば、凹凸部の粗さ曲線要素の平均長さ(RS)は10nm~300μm、十点平均粗さ(Rzjis)は10nm~30μmである。
 第二の方法は陽極酸化法によって金属部材を粗化処理する方法である。この方法で得られた金属部材は、表面は主として金属酸化物層となっており、しかもその表面層は、例えば、無数の数平均内径10~200nmの開口部で覆われている。
 第三の方法は、例えばダイヤモンド砥粒研削またはブラスト加工等の機械的切削によって作製した凹凸を有する金型パンチをプレスすることにより金属部材表面に凹凸を形成する方法や、サンドブラスト、ローレット加工、レーザー加工等により金属部材表面に凹凸形状を作製する方法である。この方法で得られた金属部材表面の凹部の幅は、例えば1~100μmである。
 これらのうち、第一の方法である侵食性水溶液または侵食性懸濁液に金属を浸漬して得たものが、金属材料を広範囲にわたってまとめて処理することができることから好ましい。
 微細凹凸構造を形成する方法としては、NaOH等の無機塩基水溶液および/または塩酸、硝酸等の無機酸水溶液に金属部材を浸漬する方法;陽極酸化法により金属部材を処理する方法、国際公開第2009/31632号パンフレットに開示されているような、水和ヒドラジン、アンモニア、及び水溶性アミン化合物から選ばれる1種以上の水溶液に金属部材を浸漬する方法;特許5129903号に記載されているように金属部材(マグネシウム合金)をクエン酸に浸漬させたのち過マンガン酸カリウム水溶液で処理する方法等が挙げられる。これらの方法は、使用する金属部材の金属種や、凹凸形状によって適宜使い分けて採用される。
<熱可塑性樹脂部材>
 本実施形態に係る熱可塑性樹脂部材は、JIS K6253に準拠してタイプAデュロメーターにより測定される、硬度(以下、タイプAデュロメーター硬度とも呼ぶ。)がA60~A95の範囲にあり、且つ熱可塑性樹脂部材の酸価が1mgKOH/g以上100mgKOH/g以下の範囲にあることを特徴としている。
 本実施形態に係る熱可塑性樹脂部材のタイプAデュロメーター硬度は、A60~A95であり、好ましくはA65~A90、より好ましくはA70~A85の範囲にある。デュロメーター硬度が上記範囲を満たすことにより熱可塑性樹脂部材の反発応力による十分なシール機能が確保される。なお、タイプAデュロメーター硬度とは、押し込み硬さの一種であり、ゴムやエラストマーで多く使用される測定法であり、測定手順等はJIS K6253に詳細に規定されている。
 上記熱可塑性樹脂部材はカルボン酸基および/又は酸無水物基を含むことが好ましく、その酸価は、1mgKOH/g~100mgKOH/gであり、好ましくは1mgKOH/g~85mgKOH/g、より好ましくは2mgKOH/g~85mgKOH/g、さらに好ましくは2mgKOH/g~70mgKOH/g、よりさらに好ましくは2mgKOH/g~50mgKOH/g、特に好ましくは2mgKOH/g~30mgKOH/gの範囲にある。なお本実施形態においては、カルボン酸基および/又は酸無水物基は、ポリマー鎖中に化学結合している。
 酸価が上記下限値以上であることによって、樹脂部材と金属部材との間の十分な接合強度が担保され、酸価が上記上限値以下であることによって樹脂部材の濁りの発生を抑制できる。例えば、樹脂部材からなるパッキン類をカラリングして意匠性を持たせるためには樹脂は透明に近いことが望ましく、樹脂の濁りは好ましくない。
 本実施形態に係る熱可塑性樹脂部材は、複合体を後述する射出成型法によって製造する際に、金属部材上に射出される熱可塑性樹脂組成物に基本的に同義である。したがって、上記デュロメーター硬度特性と酸価を共に満たす熱可塑性樹脂部材を得ようとする場合は、このようなデュロメーター硬度特性と酸価を備えた熱可塑性樹脂組成物を調製することにより準備すればよい。
 本実施形態に係る熱可塑性樹脂組成物の調製方法は特に限定されないが、例えば熱可塑性樹脂に対して、アクリル酸、メタクリル酸のような不飽和カルボン酸、無水マレイン酸のような酸無水物をグラフト重合させる方法;アクリル酸やメタクリル酸の共存下で熱可塑性樹脂を製造する方法;熱可塑性樹脂に対して、カルボン酸基および/又は酸無水物基を含有する、いわゆる「酸変性ポリマー」をブレンドして上記硬度範囲と酸価範囲を満たすものを調製する方法を挙げることができる。
 熱可塑性樹脂がポリウレタン系樹脂、ポリエステル系樹脂、ポリスチレン系樹脂、ポリ塩化ビニル系樹脂、ポリアミド系樹脂等の極性基含有ポリマーの場合は、一般的にはカルボン酸基および/又は酸無水物基の化学的導入が反応操作的に難しい、ないし不可能な場合も多いので、通常はブレンド法、すなわち、特定の熱可塑性樹脂を母樹脂として選び、これに酸変性ポリマーを物理ブレンド乃至アロイ化する方法が好ましく採用される。
 本実施形態に係る熱可塑性樹脂部材は、好ましくは熱可塑性エラストマー(以下、TPEと略す場合がある)を含み、より好ましくは熱可塑性エラストマーおよび酸変性ポリマーを含む。これにより、金属部材と熱可塑性樹脂部材との接合強度により一層優れた複合構造体を実現することができる。
 この理由は明らかではないが、以下の理由が考えられる。まず、熱可塑性樹脂部材に占める熱可塑性エラストマーを構成する、ポリエーテル構造等のソフトセグメント骨格の分子運動がハードセグメントによって局所的に物理拘束されることによって発現する適度な弾性機能が、金属部材表面に形成された微細凹凸構造内への侵入を最適化し、微細凹凸構造内に侵入した熱可塑性樹脂部材の機械的強度の向上に資すると考えられる。すなわち、熱可塑性樹脂部材が、ハードセグメントとソフトセグメントから成る熱可塑性エラストマーを含むことによって、微細凹凸構造内への熱可塑性樹脂部材の侵入量と、熱可塑性樹脂部材の強度とのバランスが最適化されて接合強度の向上をもたらしたと考えられる。
 本実施形態に係る熱可塑性樹脂部材における熱可塑性エラストマーの含有量は50質量%以上であることが好ましい。
 また、本実施形態に係る熱可塑性樹脂部材が酸変性ポリマーを含む場合、熱可塑性樹脂部材における、熱可塑性エラストマーの含有量が50質量%以上99質量%以下であり、酸変性ポリマーの含有量が1質量%以上50質量%以下であることが好ましく、熱可塑性樹脂部材における、熱可塑性エラストマーの含有量が60質量%以上95質量%以下であり、酸変性ポリマーの含有量が5質量%以上40質量%以下であることがより好ましい。ここで、熱可塑性樹脂部材に含まれる熱可塑性エラストマーおよび酸変性ポリマーの合計を100質量%とする。
 なお、本実施形態に係る熱可塑性樹脂部材は、その他の添加剤を含んでいてもよく、このような任意添加剤としては、例えば、有機着色剤、無機顔料、熱安定剤、酸化防止剤、耐候安定剤、難燃剤、可塑剤、滑剤、離型剤、帯電防止剤等を挙げることができる。
 本実施形態に係るTPEとは、ゴムのように加硫をする必要のない弾性体材料で一般にハード成分(硬く剛直な成分)とソフト成分(軟らかくフレキシブルな成分)から構成された材料である。TPEには多くの種類があり、本実施形態で使用されるTPEとしては、例えば、オレフィン系TPE、スチレン系TPE、ポリエステル系TPE、ウレタン系TPEおよびアミド系TPE等を挙げることができる。これらのTPEの中でも接着強度、シール特性、耐酸性、接合面の気密性およびパッキンとしての柔軟性や反発特性の視点から、ウレタン系TPE(以下、熱可塑性ポリウレタン(TPU)と呼ぶ場合がある。)を含むことが好ましく、TPUおよびアミド系TPE(以下、熱可塑性ポリアミド(TPAE)と呼ぶ場合がある。)を共に含むTPEがさらに好ましい。
 本実施形態に係る熱可塑性樹脂部材が、TPUおよびTPAEを含んでなる場合、上記熱可塑性樹脂部材中の上記TPUおよび上記TPAEの合計含有量は、例えば60質量%以上100質量%以下、好ましく65質量%以上95質量%以下、より好ましくは70質量%以上95質量%以下である。熱可塑性樹脂部材中に占めるTPUおよびTPAEの合計含有量が60質量%以上であることによって、パッキン等の封止材料に求められる弾性機能を良好にすることができるため好ましい。
 本実施形態においては、TPEに占めるTPUの含有量は、例えば70質量%以上100質量%未満、好ましくは70質量%以上99質量%以下、より好ましくは75質量%以上98質量%以下であり、上記TPAEの含有量は例えば0質量%超え30質量%以下、好ましくは1質量%以上30質量%以下、より好ましくは2質量%以上25質量%以下である。TPEに占めるTPUの含有量を上記下限値以上とすることで、本実施形態に係る熱可塑性樹脂部材の耐酸性を確保でき、またTPEに占めるTPAEの含有量を上記範囲にすることによって、熱可塑性樹脂部材の弾性を向上させるとともに、熱可塑性樹脂部材の微分散化も促進するので金属との接合強度向上、熱可塑性樹脂部材の溶融流動性向上による成形性改善も可能となる。
 TPUは、例えば、ジイソシアナートと短鎖グリコール(鎖延長剤)からなるハードセグメントと、数平均分子量が1000~4000程度のポリマーグリコールを主体とするソフトセグメントから構成されるマルチブロックポリマーである。
 ジイソシアナートとしては、例えば、4,4’-ジフェニルメタンジイソシアナート(MDI)に代表される芳香族イソシアナート等が挙げられる。耐候性を要求される用途では、ヘキサメチレンジイソシアナート(HDI)等の脂肪族イソシアナート等も適宜用いられる。
 短鎖グリコールとしては、例えば、エチレングリコール、1,3-プロパンジオール、1,4-ブタンジオール、1,5-ペンタンジオール、1,6-ヘキサンジオール、ジエチレングリコール、テトラエチレングリコール、ネオペンタルグリコール、1,4-シクロヘキサンジメタノール、1,4-ビスヒドロキシエチルハイドロキノン、及びそれらの混合物等が挙げられる。
 ポリマーグリコールとしては、例えば、ポリテトラメチレンエーテルグリコール(PTMEG)に代表されるポリエーテルポリオール、アジピン酸と脂肪族または芳香族グリコールとの縮合系であるポリエステルポリオール、ε-カプロラクトンを開環重合したポリカプロラクトンポリオール等が挙げられる。
 ジイソシアナート成分、短鎖グリコールおよびポリマーグリコールとしてどのような成分を用いるかによって、TPUはエーテル系、アジペートエステル系、カプロラクトン系、カーボネート系等に分類されているが、本実施形態において、本実施形態に係る熱可塑性樹脂部材のタイプAデュロメーター硬度がA60~A95の範囲を満たす限り、上記したTPUを制限なく使用することができる。本実施形態に係る複合構造体を酸性雰囲気下に晒す場合はエーテル系TPUまたはエステル系TPUが好んで用いられ、エーテル系TPUがより好ましく用いられる。
 種々のTPUが多くの企業から様々の商標名で市販されており、例えば、大日精化工業社のRESAMINE P(商標)、DICコベストロポリマー社のPANDEX(商標)、東ソー社のミラクトラン(商標)、ダウケミカル社のPELLETHANE(商標)、B.F.グッドリッチ社のESTANE(商標)、及びバイエル社のDESMOPAN(商標)等が市販されている。これらの市販品を制限なく使用することができる。
 TPAEとは、結晶性で融点の高いハードセグメントを構成するポリマーと非晶性でガラス転移温度の低いソフトセグメントを構成するポリマーとを有する共重合体からなる熱可塑性樹脂材料であって、ハードセグメントを構成するポリマーの主鎖にアミド結合(-CONH-)を有するものを意味する。TPAEとしては、例えば、JIS K6418:2007に規定されるアミド系熱可塑性エラストマー等や、特開2004-346273号公報に記載のポリアミド系エラストマー等を挙げることができる。
 上記TPAEとしては、例えば、少なくともポリアミドが結晶性で融点の高いハードセグメントを構成し、他のポリマー(例えば、ポリエステルまたはポリエーテル等)が非晶性でガラス転移温度の低いソフトセグメントを構成している材料が挙げられる。また、TPAEはハードセグメントおよびソフトセグメントの他に、ジカルボン酸等の鎖長延長剤を用いてもよい。上記ハードセグメントを形成するポリアミドとしては、例えば、ω-アミノカルボン酸やラクタムによって生成されるポリアミドを挙げることができる。
 上記ω-アミノカルボン酸としては、例えば、6-アミノカプロン酸、7-アミノヘプタン酸、8-アミノオクタン酸、10-アミノカプリン酸、11-アミノウンデカン酸、12-アミノドデカン酸等の炭素数5~20の脂肪族ω-アミノカルボン酸等を挙げることができる。また、ラクタムとしては、例えば、ラウリルラクタム、ε-カプロラクタム、ウデカンラクタム、ω-エナントラクタム、2-ピロリドン等の炭素数5~20の脂肪族ラクタム等を挙げることができる。
 上記ハードセグメントを形成するポリアミドとしては、ラウリルラクタム、ε-カプロラクタムまたはウデカンラクタムを開環重縮合したポリアミドを好ましく用いることができる。
 また、上記ソフトセグメントを形成するポリマーとしては、例えば、ポリエステル、ポリエーテルが挙げられ、上記ポリエーテルとしては、例えば、ポリエチレングリコール、プリプロピレングリコール、ポリテトラメチレンエーテルグリコール、ABA型トリブロックポリエーテル等が挙げられ、これらを単独でまたは2種以上を用いることができる。また、ポリエーテルの末端にアニモニア等を反応させることによって得られるポリエーテルジアミン等を用いることができる。
 上記ハードセグメントと上記ソフトセグメントとの組合せとしては、上述で挙げたハードセグメントとソフトセグメントとのそれぞれの組合せを挙げることができる。この中でも、ラウリルラクタムの開環重縮合体/ポリエチレングリコールの組合せ、ラウリルラクタムの開環重縮合体/ポリプロピレングリコールの組合せ、ラウリルラクタムの開環重縮合体/ポリテトラメチレンエーテルグリコールの組合せ、ラウリルラクタムの開環重縮合体/ABA型トリブロックポリエーテルの組合せ、が好ましく、ラウリルラクタムの開環重縮合体/ABA型トリブロックポリエーテルの組合せが特に好ましい。
 上記ハードセグメントを構成するポリマー(ポリアミド)の数平均分子量としては、溶融成形性の観点から、300~15000が好ましい。また、上記ソフトセグメントを構成するポリマーの数平均分子量としては、強靱性および低温柔軟性の観点から、200~6000が好ましい。更に、上記ハードセグメント(x)およびソフトセグメント(y)との質量比(x:y)は、成形性の観点から、50:50~90:10が好ましく、50:50~80:20が更に好ましい。
 上記TPAEは、上記ハードセグメントを形成するポリマーおよびソフトセグメントを形成するポリマーを公知の方法によって共重合することで合成することができる。
 上記TPAEとしては、例えば、アルケマ社のペバックス33シリーズ(例えば、7233、7033、6333、5533、4033、MX1205、3533、2533)、宇部興産(株)の「UBESTA XPA」シリーズ(例えば、XPA9063X1、XPA9055X1、XPA9048X2、XPA9048X1、XPA9040X1、XPA9040X2等)、ダイセル・エポニック(株)の「ベスタミド」シリーズ(例えば、E40-S3、E47-S1、E47-S3、E55-S1、E55-S3、EX9200、E50-R2)等を用いることができる。
 本実施形態に係る熱可塑性樹脂部材は、酸変性ポリマーをさらに含む。本実施形態に係る熱可塑性樹脂部材中の酸変性ポリマーの含有量は、上記TPUと上記TPAEの合計100質量部に対して好ましくは1質量部以上35質量部以下、より好ましくは3質量部以上30質量%以下、さらに好ましくは5質量部以上25質量%以下である。
 本発明者らは、後述する実施例においても触れるように、酸変性ポリマーを上記下限値以上含有させることによって、熱可塑性樹脂組成物の溶融流動性が向上することを確認している。例えば、本実施形態に係る複合構造体を射出成形で製造する場合、スプルー、ランナー、ゲートを経由してキャビティ内に流入した溶融樹脂組成物は、キャビティ内を移動してキャビティ内に充満する。この過程で溶融樹脂組成物の温度降下があったとしても、酸変性ポリマー含有熱可塑性樹脂組成物は樹脂流動性が確保されている。そのため、酸変性ポリマー含有熱可塑性樹脂組成物を用いることにより、溶融樹脂の移動距離が長い金型を使用した場合であっても高い接合強度を備えた複合構造体を得ることが可能となる。
 TPUとTPAEを含んでなる熱可塑性樹脂組成物が酸変性ポリオレフィンを含むことによって溶融流動性が向上する理由は定かではない。ただし、本発明者らはTPUに酸変性ポリオレフィンをブレンドすることによって、TPU中のウレタン層の微分散化が促進されることをモルフォロジー観察によって確認しており、おそらくこの微分散化現象によって樹脂組成物中の極性基(酸基)が効率よく非局在化して金属表面との接触点を増加させる結果として、樹脂-金属間の接合強度向上につながったものと考えている。TPUがエーテル結合を含むエーテル系TPUの場合では、エーテル基と相溶性のあるアミド結合を含有するTPAEの共存によって微分散化は更に促進され、接合強度向上のみならず、樹脂流動性の向上をももたらしたと考えている。
 本実施形態に係る酸変性ポリマーとは、例えば、カルボン酸および/又はカルボン酸無水物基を含有するポリマーである。本実施形態において酸変性ポリマーとしては、オレフィン成分と不飽和カルボン酸成分起因の骨格を含有する酸変性ポリオレフィン樹脂が好ましく用いられる。
 酸変性ポリオレフィン樹脂の主成分であるオレフィン成分としては、エチレンや、プロピレン、1-ブテン、1-ペンテン、1-ヘキセン、4-メチル-1-ペンテン、1-ヘプテン、1-オクテン、1-ノネン、1-デセン、1-ウンデセン、1-ドデセン等のα-オレフィンが好ましく、これらの混合物を用いてもよい。中でも、密着性や耐水性等の観点から、エチレン、プロピレン、1-ブテンが特に好ましい。 
 酸変性ポリオレフィン樹脂を構成する不飽和カルボン酸としては、例えば、アクリル酸、メタクリル酸、(無水)マレイン酸、(無水)イタコン酸、(無水)アコニット酸、フマル酸、クロトン酸、シトラコン酸、メサコン酸、アリルコハク酸等が挙げられる。また、不飽和カルボン酸としては、例えば、不飽和ジカルボン酸のハーフエステルやハーフアミド等のように、分子内に少なくとも1個のカルボキシル基または酸無水物基を有する化合物を用いることができる。中でもポリオレフィン樹脂への導入のし易さの点から、(無水)マレイン酸、アクリル酸、メタクリル酸が好ましく、無水マレイン酸がより好ましい。なお、「(無水)~酸」とは、「~酸または無水~酸」を意味する。すなわち、(無水)マレイン酸とは、マレイン酸または無水マレイン酸を意味する。
 不飽和カルボン酸とオレフィン成分との共重合形態は限定されず、ランダム共重合、ブロック共重合、グラフト共重合等が挙げられるが、重合のし易さの点から、グラフト共重合が好ましい。 
 本実施形態において、酸変性ポリオレフィン樹脂の具体例としては、エチレン/(メタ)アクリル酸共重合体;エチレン/プロピレン/(無水)マレイン酸共重合体、エチレン/1-ブテン/(無水)マレイン酸共重合体、エチレン/プロピレン/1-ブテン/(無水)マレイン酸共重合体等のエチレン/α-オレフィン/(無水)マレイン酸共重合体;プロピレン/1-ブテン/(無水)マレイン酸共重合体、プロピレン/オクテン/(無水)マレイン酸共重合体等のプロピレン/α-オレフィン/(無水)マレイン酸共重合体;エチレン/(メタ)アクリル酸エステル/(無水)マレイン共重合体;エチレン/(無水)マレイン酸共重合体;プロピレン/(無水)マレイン酸共重合体等が挙げられる。これらは単独で使用してもよいし、二種以上を組み合わせて使用してもよい。
 本実施形態に係る酸変性ポリオレフィン樹脂には、必要に応じて上記以外の他の構成単位が含まれていてもよい。他の構成単位としては、例えば、(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸ブチル等の(メタ)アクリル酸エステル類;マレイン酸ジメチル、マレイン酸ジエチル、マレイン酸ジブチル等のマレイン酸エステル類;(メタ)アクリル酸アミド類;メチルビニルエーテル、エチルビニルエーテル等のアルキルビニルエーテル類;ぎ酸ビニル、酢酸ビニル、プロピオン酸ビニル、ピバリン酸ビニル、バーサチック酸ビニル等のビニルエステル類;ビニルエステル類を塩基性化合物等でケン化して得られるビニルアルコール;2-ヒドロキシエチルアクリレート;グリシジル(メタ)アクリレート;(メタ)アクリロニトリル;スチレン;置換スチレン;ハロゲン化ビニル類;ハロゲン化ビリニデン類;一酸化炭素;二酸化硫黄等が挙げられ、これらの混合物を用いてもよい。これらの他の構成単位の含有量は、酸変性ポリオレフィン樹脂の全体を100質量%としたとき、10質量%以下であることが好ましい。
 なお、本実施形態においては酸変性ポリマーとして、リビングアニオン重合で得られる下記一般式(1)で表される(メタ)アクリル系ブロック共重合体も制限なく用いることもできる。
 -[a]-[b]-[a]-    (1)
(式中、[a]はメチルメタクリレート重合体ブロックであり、[b]はアルキル基の炭素数が0~12であるアルキル(メタ)アクリレート重合体ブロックである)。なお、本実施形態において、(メタ)アクリルとは、アクリル又はメタクリルを意味する。また、(メタ)アクリレートとは、アクリレート又はメタクリレートを意味する。
 様々な酸変性ポリマーが市販されており、例えば、三井・デュポンポリケミカル社製の酸変性ポリオレフィン樹脂であるニュクレル(登録商標)シリーズ、そのアイオノマー樹脂であるハイミラン(登録商標)シリーズ、クラレ社製のアクリル系ブロック共重合体であるクラリティ(登録商標)シリーズ、三菱化学社製の酸変性ポリオレフィン樹脂であるモディック(登録商標)シリーズ、三井化学社製の酸変性ポリプロピレンであるアドマー(登録商標)シリーズ、日本ポリエチレン社製の酸変性ポリエチレン樹脂であるレクスパール(登録商標)シリーズ、アルケマ社製の無水マレイン酸変性ポリオレフィン樹脂であるボンダイン(登録商標)シリーズ等が挙げられる。これらの酸変性ポリマーの、JIS K0070規定の方法で測定される酸価は概ね1~1000mgKOH/gであるので、本実施形態に係る熱可塑性樹脂部材または熱可塑性樹脂組成物の酸価が所望の範囲になるように、熱可塑性樹脂と1種または2種以上の酸変性ポリマーとを適宜ブレンド(アロイ化)すればよい。
 熱可塑性樹脂組成物を調製する方法は、例えば、熱可塑性樹脂と、酸変性ポリマーと、さらに必要に応じて任意添加成分と、をバンバリーミキサー、ヘンシャルミキサー、単軸押出機、二軸押出機、高速二軸押出機等の公知の混合装置を用いて、ドライブレンドまたは溶融混合する公知方法を制限なく用いることができる。
<複合構造体>
 本実施形態に係る複合構造体は、上記金属部材と、上記金属部材に接合された熱可塑性樹脂部材と、を備える。より詳細には、本実施形態に係る複合構造体は、上述した熱可塑性樹脂部材を形成する原料成分である熱可塑性樹脂組成物を、上記金属部材の表面に形成された特定の微細凹凸構造部(表面粗化処理された部分)に侵入させて接合することにより得られる。
 一般的な従来技術においては、金属部材とエラストマー部材とからなる複合構造体を製造する場合、エラストマー部材については、予め架橋性エラストマーを架橋処理するとともに賦形して得られるエラストマー部材と金属部材とを接着剤を用いて接合させている。当該方法では、両部材間の接合は、接着剤を介在した化学的な結合力に基づくものであるため強度が比較的低くなる傾向があり、また、外的な要因、例えば水分や光等の影響により、接着剤成分が劣化すると、接合強度は著しく低下することが懸念材料として挙げられる。
 一方、本実施形態においては、熱可塑性樹脂組成物、好ましくは熱可塑性エラストマーを含む熱可塑性樹脂組成物が適度な硬度と酸価を持つため、熱可塑性樹脂組成物が金属部材表面に形成された微細凹凸構造部に容易に侵入することができ、さらにその状態において樹脂骨格に化学結合した極性基(例えば、カルボキシル基や水酸基)が金属部材表面とイオン結合的な相互作用を発生させることが予想される。すなわち、物理的な結合力(アンカー効果)に加えてより化学的な相互作用が発現するので、接合強度を高くすることが可能になる。
(複合構造体の製造方法)
 複合構造体は、上記粗化処理を行った金属部材に対して、熱可塑性樹脂組成物を所望の熱可塑性樹脂部材の形状になるように成形しながら接合させることにより製造できる。
 金属部材上に熱可塑性樹脂部材を接合一体化する方法としては、射出成形、押出成形、加熱プレス成形、圧縮成形、トランスファーモールド成形、注型成形、レーザー溶着成形、反応射出成形(RIM成形)、リム成形(LIM成形)、溶射成形等の各種の公知成形方法を制限なく採用できる。これらの中でも、複合構造体の製造方法としては、生産性の視点から射出成形法が好ましく、具体的には、金属部材を射出成形金型のキャビティ部にインサートし、熱可塑性樹脂組成物を金型に射出する射出成形法により製造することが好ましい。具体例としては次のような方法を挙げることができる。
 まず、射出成形用の金型を用意し、その金型を開いてその一部に金属部材を設置する。その後、金型を閉じ、熱可塑性樹脂組成物の少なくとも一部が金属部材の表面の粗化された領域と接するように、上記金型内に熱可塑性樹脂組成物を射出して固化する。その後、金型を開き離型することにより、複合構造体を得ることができる。
 また、上記射出成形の際には、金型を急速に加熱冷却する高速ヒートサイクル成形(RHCM、ヒート&クール成形)を用いることが好ましい。高速ヒートサイクル成形を採用することにより、金属と樹脂間の接合強度を高められるからである。具体的には、熱可塑性樹脂組成物の射出開始から保圧完了までの間、金型の表面温度を250~300℃の温度に維持し、その後、金型の表面温度170~230まで冷却する方法を例示できる。
 本実施形態においては、射出発泡成形により複合構造体を形成させてもよい。射出発泡成形の方法として、化学発泡剤を樹脂に添加する方法や、射出成形機のシリンダー部に直接、窒素ガスや炭酸ガスを注入する方法、あるいは、窒素ガスや炭酸ガスを超臨界状態で射出成形機のシリンダー部に注入するMuCell射出発泡成形法があるが、いずれの方法でも樹脂部材が発泡体である複合構造体を得ることができる。また、いずれの方法でも、金型の制御方法として、カウンタープレッシャーを使用したり、成形品の形状によってはコアバックを利用したりすることも可能である。
(複合構造体の用途)
 本実施形態に係る複合構造体は、生産性が高く、形状制御の自由度も高いので、様々な用途に展開することが可能である。
 例えば、防水パッキン、真空パッキン、圧力機器用パッキン等のシール部材が接合した電子機器用筐体;応力緩和部材;携帯機器用部材;太陽電池用部材;リチウムイオン電池用部材;住建設用部材;自動車用部材;航空宇宙用部材等が挙げられる。
 より具体的には、携帯電話、スマートフォン、タブレット、ハードディスクドライブ、デジカメ、腕時計等の携帯機器用の防水シール材が接合した電子機器用筐体;洗濯機、ポット等の家電用防水シール材;燃料電池ガスケット;リチウムイオン電池用パッキン等が挙げられる。
(電子機器用筐体)
 本実施形態に係る複合構造体は電子機器用筐体に好適に用いることができる。
 本発明の第一の実施形態に係る電子機器用筐体は、本実施形態に係る複合構造体を備える電子機器用筐体であって、該電子機器用筐体は第1金属部材1(一方の金属製片割れとも呼ぶ。)および第2金属部材2(他方の金属製片割れとも呼ぶ。)を有し、第1金属部材1の周縁部に熱可塑性樹脂部材からなるパッキン3が接合しており、第2金属部材2がパッキン3を介して第1金属部材1と一体化することによって外郭が形成されている。
 すなわち、本実施形態に係る電子機器用筐体においては、第1金属部材1と第1金属部材1の周縁部に接合された熱可塑性樹脂部材からなるパッキン3とを備える複合構造体の嵌合面11と、他方の第2金属部材2の第1金属部材1と一体化される嵌合面21とが、上記パッキン3を圧縮するように押圧されて第1金属部材1および第2金属部材2を嵌合一体化している(図15参照)。
 第一の実施形態に係る電子機器用筐体は、3つ以上の金属製片割れから構成されていてもよい。
 本実施形態においては、第1金属部材1の周縁部に接合されるパッキン3は、上記周縁部に設けられた凹型溝12を埋める形で周設される。凹型溝12の深さをdとした場合、パッキンの高さhは、d<h<5×dを満たすことが好ましい。嵌合面11と対になる嵌合面21にも、凹型溝22が凹設されており、両嵌合面を鏡像対称となるように嵌合させ、押圧一体化することによって本実施形態に係る電子機器用筐体を得ることができる。通常は、凹型溝22の開口部幅(w)は、凹型溝12の開口部幅(w)の1.0倍~1.5倍の範囲にあり、また凹型溝22の深さ(d)は、凹型溝12の深さ(d)よりも浅いことが好ましい。
 本発明の第二の実施形態に係る電子機器用筐体は、本実施形態に係る複合構造体を備える電子機器用筐体であって、該電子機器用筐体は金属部材およびプラスチック部材を有し、上記金属部材の周縁部に上記熱可塑性樹脂部材からなるパッキンが接合しており、記第金属部材が上記パッキンを介して上記プラスチック部材と一体化することによって外郭が形成されている。
 第二の実施形態においては、金属部材の周縁部に接合されるパッキンは、上記周縁部に設けられた凹型溝を埋める形で周設され、その凹型溝の深さとパッキンの高さは上記第一の実施形態に同様である。プラスチック部材又はプラスチック部材上に、必要に応じて設けられる凹型溝両嵌合面を鏡像対称となるように嵌合させ、押圧一体化することによって第二の実施形態に係る電子機器用筐体が得られる。
 上記第一および第二実施形態に係る電子機器用筐体の一方の片割れとして、熱可塑性樹脂部材からなるパッキン接合体を用いる場合は、パッキンのJIS K6262に規定される、圧縮率25%、試験温度25℃、試験時間22hrの圧縮永久ひずみは、通常80%以下、好ましくは70%以下、より好ましくは60%以下である。
 上記パッキンを圧縮するように両片割れを嵌合面が対面するように押圧して、その後、公知の手段で固定化することによって電子機器用筐体が作製される。公知の固定化手段としては、二つの片割れの任意の部分に設けられたツメ部をスナップフィットする方法やネジ止め等の機械的嵌合手段を採用することが望ましい。このような機械的に固定化された場合では、電子機器用筐体に収納された電子機器類の予期せぬ故障への対応、電子機器類の定期点検のために、筐体を両片割れに分解・再嵌合する場合にも容易に対応できるからである。
(ノート型パソコンのクッション材)
 本実施形態に係る複合構造体はノート型パソコンのクッション材に好適に用いることができる。ノート型パソコンは通常、パソコン本体部と、ヒンジ装置を介して連結された蓋部からなり、本体部表面にはキーボードが配列され、蓋部には表示器が組み込まれている。ノート型パソコンは蓋体の開閉がヒンジ装置を通して行われるが、使用者の意に反して強く閉じてしまった場合、外圧によってノート型パソコンの蓋部が強く押圧された場合、あるいはノート型パソコン本体を落下してしまった場合は、蓋部に組み込まれた表示器のガラスパネル破損を引き起こす。このトラブルを防ぐために本実施形態に係る複合構造体をクッション材として用いる方法は有用である。具体的には、蓋体の少なくても表面周縁部に配置されたアルミニウム合金またはマグネシウム合金部に熱可塑性樹脂部材からなるパッキンを接合させ、このパッキンで例えばガラス表面の周囲を包み込むようにした複合構造体は、蓋体の開閉時や強い衝撃が加えられた際のクッション材として機能して、ノート型パソコンの保護に役立つ。
 上記ノート型パソコンの蓋部に、クッション材としての熱可塑性樹脂部材からなるパッキン接合体を用いる場合は、パッキンのJIS K6262に規定される、圧縮率25%、試験温度25℃、試験時間22hrの圧縮永久ひずみは、通常80%以下、好ましくは70%以下、より好ましくは60%以下である。
 以上、本発明のいくつかの実施形態について述べたが、これらは本発明の例示であり、上記以外の様々な構成を含む。
 以上、本発明の実施形態について述べたが、これらは本発明の例示であり、上記以外の様々な構成を含む。
 以下に、本発明の実施形態を実施例により説明するが、本実施形態はこれらに限定され
るものではない。
<本実施例で用いた各種分析・特性評価方法>
(金属部材表面の、十点平均粗さ(Rzjis)および粗さ曲線要素の平均長さ(RS)の測定)
 特に断らない限り、表面粗さ測定装置「サーフコム1400D(東京精密社製)」を使用し、JIS B0601:2001(対応ISO4287)に準拠して測定される表面粗さのうち、十点平均粗さ(Rzjis)および粗さ曲線要素の平均長さ(RS)をそれぞれ測定した。なお、測定条件は以下のとおりである。
・触針先端半径:5μm
・基準長さ:0.8mm
・評価長さ:4mm
・測定速度:0.06mm/sec
 測定は、金属部材の表面上の、平行関係にある任意の3直線部、および当該直線部と直交する任意の3直線部からなる合計6直線部についておこなった。
(熱可塑性樹脂部材の硬度測定)
 JIS K6253に準拠してタイプAデュロメーターを用いて、測定開始5秒後のA硬度を測定した。
(熱可塑性樹脂部材の酸価測定)
 塩化メチレン:ジメチルスルホキシド=1:1(質量比)の混合溶媒に、精秤した熱可塑性樹脂部材の試料を溶解させて試料溶液を得た。次いで、JIS K0070に規定された方法に準拠して熱可塑性樹脂部材の酸価を測定した。すなわち上記試料溶液を、予め標定されたN/10水酸化カリウムのアルコール溶液(特級水酸化カリウム7gにイオン交換水5gを添加し、1級エチルアルコールで1L(リットル)とし、N/10塩酸と1%フェノールフタレイン溶液にて力価=Fを標定したもの)で滴定し、その中和量から酸価(mgKOH/g)を算出した。
(引張せん断強度評価)
 各実施例・比較例で製造した複合構造体サンプル(ダンベル試験片)の引張せん断接合強度を評価した。引張せん断強度の評価には、板状の金属部材101(幅18mm×長さ45mm×厚み2mm)の端部103(0.5cm)部分に熱可塑性樹脂部材102(幅10mm×長さ50mm×厚み3mm)が接合した試験片を用いた。引っ張り試験機として、モデル1323(アイコーエンジニヤリング社製)を使用し、引張試験機に、試験片を収容した専用の治具105を取り付け、室温(23℃)にて、チャック間距離60mm、引張速度10mm/minの条件にて測定をおこなった。破断荷重(N)を金属/樹脂接合部分の面積で除することにより引張せん断強度(MPa)を得た(図1および図2参照)。なお、引張せん断強度は5検体についての測定値の平均値である。
(90°ピール強度測定)
 引張りせん断強度に用いた試験片と同様の試験片を用いて90°ピール強度測定を行った。試験片の金属部材101を固定し、熱可塑性樹脂部材102の接合部とは反対側の端部を90°ピール強度試験機のチャックに挟み、室温(23℃)にて剥離速度100mm/minで90°方向の剥離強度を測定した(図4参照)。引っ張り試験機として、モデル1323(アイコーエンジニヤリング社製)を使用した。なお、90°ピール強度は5検体についての測定値の平均値である。
(強度測定後の破壊面の観察)
 90°ピール強度試験後または引張せん断強度試験後の金属部材101側について、破壊面をルーペ観察した。ただし、ここでの90°ピール強度試験は後述するアルマイト処理前の試験片についての強度試験で得られた破壊面である。図5~図14に示す写真は、金属部材短辺側を上にして、破壊面が写るように配置した写真である。(図5~図12では樹脂部材側の破壊面も撮影した)金属部材側の破壊面が黒色になっている部分は樹脂残りを示し、この部分を母材破壊とした。一方で灰色部分は樹脂残りがないことを示し、この部分は界面破壊と判定した。接合部全体の面積(5mm×10mm=0.5cm)に占める黒色部分の面積を計測し、70面積%以上をa判定、50面積%以上70面積%未満をb判定、50面積%未満をc判定とした。aは母材破壊モード優先、cは界面破壊モード優先、bはその中間に破壊モードであることを示す。なお破壊面の観察は5検体について行った。
(耐酸性試験)
 各実施例・比較例で製造した複合構造体サンプル(ダンベル試験片)に対して、公知の方法で脱脂、アルカリエッチングおよび化学研磨をおこなった後、硫酸水溶液(15質量%)の電解浴中で40分通電(1A/dm)し、次いで45℃、10分間染色処理(奥野製薬製レッド染料を用いた)した。次いで、封孔処理(酢酸ニッケル法:95℃、10分間)し、次いで、湯洗後に風乾してアルマイト処理を完結させた。このアルマイト処理後の複合構造体サンプルについても上記と同様にして90°ピール強度を測定し、アルマイト処理前後の強度保持率を算出した。
<熱可塑性樹脂組成物の調製>
(熱可塑性樹脂組成物A1の調製)
 エーテル系熱可塑性ポリウレタン(TPU)であるレザミンP(グレード名P2275、大日精化工業製)80質量部、エチレン-メタクリル酸共重合体であるニュクレル(グレード名N1525、三井・デュポンポリケミカル社製)20質量部を配合した。次いで、タンブラーミキサーで十分に混合し、二軸押出機にて190℃で溶融混錬後、押し出してペレット状の樹脂組成物A1を得た。樹脂組成物A1のデュロメーター硬度はA78、酸価は6mgKOH/gであった。
(熱可塑性樹脂組成物A2の調製)
 エーテル系熱可塑性ポリウレタン(TPU)であるレザミンP(グレード名P2275、大日精化工業製)80質量部、エチレン-メタクリル酸共重合体のZnアイオノマー樹脂であるハイミラン(グレード名1702、三井・デュポンポリケミカル社製)20質量部を配合した。次いで、タンブラーミキサーで十分に混合し、二軸押出機にて190℃で溶融混錬後、押し出してペレット状の樹脂組成物A2を得た。樹脂組成物A2のデュロメーター硬度はA79、酸価は7mgKOH/gであった。
(熱可塑性樹脂組成物A3の調製)
 エーテル系熱可塑性ポリウレタン(TPU)であるレザミンP(グレード名P2275、大日精化工業製)80質量部、エチレン-メタクリル酸共重合体であるニュクレル(グレード名N0908C、三井・デュポンポリケミカル社製)20質量部を配合した。次いで、タンブラーミキサーで十分に混合し、二軸押出機にて190℃で溶融混錬後、押し出してペレット状の樹脂組成物A3を得た。樹脂組成物A3のデュロメーター硬度はA78、酸価は4mgKOH/gであった。
(熱可塑性樹脂組成物A4の調製)
 エーテル系熱可塑性ポリウレタン(TPU)であるレザミンP(グレード名P8766、大日精化工業製)90質量部、アクリル系ブロック共重合体であるクラリティ(グレード名LA2250、クラレ社製)10質量部を配合した。次いで、タンブラーミキサーで十分に混合し、二軸押出機にて190℃で溶融混錬後、押し出してペレット状の樹脂組成物A4を得た。樹脂組成物A4のデュロメーター硬度はA77、酸価は3mgKOH/gであった。
(熱可塑性樹脂組成物Aの調製)
 ウレタン系熱可塑性エラストマー(TPU)であるレザミンPTM(グレード名P2275、大日精化工業製)90質量部、アミド系熱可塑性エラストマーであるペバックスTM(グレード名2533、アルケマ社製)10質量部を配合した。次いで、タンブラーミキサーで十分に混合し、二軸押出機にて190℃で溶融混錬後、押し出してペレット状の樹脂組成物Aを得た。樹脂組成物Aのデュロメーター硬度はA73、酸価は0mgKOH/gであった。
(熱可塑性樹脂組成物Bの調製)
 ウレタン系熱可塑性エラストマー(TPU)であるレザミンPTM(グレード名P2275、大日精化工業製)80質量部、アミド系熱可塑性エラストマーであるペバックスTM(グレード名2533、アルケマ社製)10質量部、およびエチレン・メタクリル酸共重合体であるニュクレル(グレード名NO35C、三井デュポンポリケミカル社製)10質量部を配合した。次いで、タンブラーミキサーで十分に混合し、二軸押出機にて190℃で溶融混錬後、押し出してペレット状の樹脂組成物Bを得た。樹脂組成物Bのデュロメーター硬度はA72、酸価は3mgKOH/gであった。
(熱可塑性樹脂組成物Cの調製)
 ウレタン系熱可塑性エラストマー(TPU)であるレザミンPTM(グレード名P2275、大日精化工業製)85質量部、アミド系熱可塑性エラストマーであるペバックスTM(グレード名2533、アルケマ社製)5質量部、およびエチレン・メタクリル酸共重合体であるニュクレル(グレード名NO35C、三井デュポンポリケミカル社製)10質量部を配合した。次いで、タンブラーミキサーで十分に混合し、二軸押出機にて190℃で溶融混錬後、押し出してペレット状の樹脂組成物Cを得た。樹脂組成物Cのデュロメーター硬度はA71、酸価は3mgKOH/gであった。
<本実施例で用いた表面粗化金属部材>
(表面粗化アルミニウム合金板M1)
 JIS H4000に規定された合金番号6063のアルミニウム合金板(45mm×18mm×2mm)を脱脂処理した後、水酸化ナトリウムを15質量%と酸化亜鉛を3質量%含有するアルカリ系エッチング剤(30℃)が充填された処理槽1に3分間浸漬(以下の説明では「アルカリ系エッチング剤処理」と略称する場合がある)後、30質量%の硝酸(30℃)にて、1分間浸漬し、アルカリ系エッチング剤処理をさらに1回繰り返し実施した。次いで、得られたアルミニウム合金板を、塩化第二鉄を3.9質量%と、塩化第二銅を0.2質量%と、硫酸を4.1質量%とを含有する酸系エッチング水溶液が充填された処理槽2に、30℃で5分間浸漬し搖動させた。次いで、流水で超音波洗浄(水中、1分間)を行い、その後乾燥させることによって表面粗化アルミニウム合金板M1を得た。
 表面粗化アルミニウム合金板M1の表面粗さを、表面粗さ測定装置「サーフコム1400D(東京精密社製)」を使用し、JIS B0601:2001(対応ISO4287)に準拠して測定される表面粗さのうち、十点平均粗さ(Rzjis)および粗さ曲線要素の平均長さ(RS)をそれぞれ測定した。その結果、Rzjis平均値は20μm、RSの平均値は102μmであった。なお、Rzjis平均値およびRS平均値は、測定場所を変えた6点の測定値の平均値である。
(表面粗化マグネシウム合金板M2)
 マグネシウム合金板AZ31B(45mm×18mm×2mm)を、65℃の市販マグネシウム合金用脱脂剤「クリーナー160(メルテック製)」の7.5質量%水溶液に5分浸漬した後、水洗した。次いで40℃のクエン酸の1質量%水溶液に4分浸漬させた後、水洗した。その後1質量%の炭酸ナトリウムと1質量%の炭酸水素ナトリウムを含む水溶液に65℃で5分浸漬した。次いで、65℃の15質量%の水酸化ナトリウム水溶液に5分間浸漬した後、水洗した。その後、40℃の0.25質量%のクエン酸水溶液に1分浸漬した後水洗した。次に、過マンガン酸カリウムを2質量%、酢酸を1質量%、水和酢酸ナトリウムを0.5質量%含む45℃の水溶液に1分浸漬した後、15秒間水洗を行い、90℃の温風乾燥機で乾燥した。このようにして表面粗化マグネシウム合金板M2を得た。
 表面粗化マグネシウム合金板M2の表面粗さを、表面粗さ測定装置「サーフコム1400D(東京精密社製)」を使用し、JIS B0601:2001(対応ISO4287)に準拠して測定される表面粗さのうち、十点平均粗さ(Rzjis)および粗さ曲線要素の平均長さ(RS)をそれぞれ測定した。その結果、Rzjis平均値は2μm、RSの平均値は150μmであった。なお、Rzjis平均値およびRS平均値は、測定場所を変えた6点の測定値の平均値である。
<射出成形による複合体の製造方法>
 日本製鋼所社製のJ85AD110Hに小型ダンベル金属インサート金型を装着し、金型内に上記方法で得られた表面粗化アルミニウム合金板M1または表面粗化マグネシウム合金板M2を設置した。成形条件として、シリンダー温度190℃、金型温度40℃、射出速度25mm/sec、保圧80MPa、保圧時間10秒の成形条件を採用した。また、ゲート形状として溶融樹脂の移動距離の短いピンゲート(以下、I型ピンゲートと略称;図3(a)参照)または溶融樹脂の移動距離が40mmと長いピンゲート(以下、Z型ピンゲートと略称;図3(b)参照)のいずれかの金型を用いた。次いで、その金型内に上記熱可塑性樹脂組成物を射出成形し、複合構造体を作製した。
[実施例1]
 表面粗化アルミニウム合金板M1に、熱可塑性樹脂組成物として上記樹脂組成物A1を射出成形(I型ピンゲート)することによって複合構造体E1を製造した。次いで上記方法に従い引張せん断強度を測定(平均値)した結果、4.4MPaであった。また5検体の破壊面はいずれもa判定(母材破壊優先)であった。結果を表1にまとめた。また破壊面の写真を図5に示した。
[実施例2]
 表面粗化アルミニウム合金板M1に、熱可塑性樹脂組成物として上記樹脂組成物A2を射出成形(I型ピンゲート)することによって複合構造体E2を製造した。次いで上記方法に従い引張せん断強度を測定(平均値)した結果、3.9MPaであった。また5検体の破壊面はいずれもa判定(母材破壊優先)であった。結果を表1にまとめた。
[実施例3]
 表面粗化アルミニウム合金板M1に、熱可塑性樹脂組成物として上記樹脂組成物A3を射出成形(I型ピンゲート)することによって複合構造体E3を製造した。次いで上記方法に従い引張せん断強度を測定(平均値)した結果、4.8MPaであった。また5検体の破壊面はいずれもa判定(母材破壊優先)であった。結果を表1にまとめた。
[実施例4]
 表面粗化アルミニウム合金板M1に、熱可塑性樹脂組成物として上記樹脂組成物A4を射出成形(I型ピンゲート)することによって複合構造体E4を製造した。次いで上記方法に従い引張せん断強度を測定(平均値)した結果、7.2MPaであった。また5検体の破壊面はいずれもa判定(母材破壊優先)であった。結果を表1にまとめた。
[実施例5]
 表面粗化マグネシウム合金板M2に、熱可塑性樹脂組成物として上記樹脂組成物A1を射出成形(I型ピンゲート)することによって複合構造体E5を製造した。次いで上記方法に従い引張せん断強度を測定(平均値)した結果、3.8MPaであった。また5検体の破壊面はいずれもa判定(母材破壊優先)であった。結果を表1にまとめた。また破壊面の写真を図7に示した。
[実施例6]
 表面粗化マグネシウム合金板M2に、熱可塑性樹脂組成物として上記樹脂組成物A2を射出成形(I型ピンゲート)することによって複合構造体E6を製造した。次いで上記方法に従い引張せん断強度を測定(平均値)した結果、4.0MPaであった。また5検体の破壊面はいずれもa判定(母材破壊優先)であった。結果を表1にまとめた。
[実施例7]
 表面粗化マグネシウム合金板M2に、熱可塑性樹脂組成物として上記樹脂組成物A3を射出成形(I型ピンゲート)することによって複合構造体E7を製造した。次いで上記方法に従い引張せん断強度を測定(平均値)した結果、4.3MPaであった。また5検体の破壊面はいずれもa判定(母材破壊優先)であった。結果を表1にまとめた。
[比較例1]
 熱可塑性樹脂組成物として樹脂組成物A1の代わりにエーテル系熱可塑性ポリウレタン(TPU)であるレザミンPTM(グレード名P2275、大日精化工業製、デュロメーター硬度=A76、酸価=0mgKOH/g)を用いた以外は実施例1と同様な操作を行い、複合構造体C1を製造した。次いで実施例1と同様な評価試験を行った結果、引張せん断強度(平均値)は、3.1MPaであった。また5検体の破壊面はいずれもc判定(界面破壊優先)であった。結果を表1にまとめた。また破壊面の写真を図6に示した。
[比較例2]
 熱可塑性樹脂組成物として樹脂組成物A1の代わりにエーテル系熱可塑性ポリウレタン(TPU)であるレザミンPTM(グレード名P2275、大日精化工業製、デュロメーター硬度=A76、酸価=0mgKOH/g)を用いた以外は実施例5と同様な操作を行い、複合構造体C2を製造した。次いで実施例5と同様な評価試験を行った結果、引張せん断強度(平均値)は、1.7MPaであった。また5検体の破壊面はいずれもc判定(界面破壊優先)であった。結果を表1にまとめた。また破壊面の写真を図8に示した。
Figure JPOXMLDOC01-appb-T000001
[参考例1]
 表面粗化アルミニウム合金板M1に、熱可塑性樹脂組成物として上記熱可塑性樹脂組成物Aを、I型ピンゲート金型を用いて射出成形することによって複合構造体R1を作成した。複合構造体R1について前記方法に従いピール強度を測定(平均値)した。その結果、強度(平均値)は、32N/10mmであった。また5検体の破壊面はいずれもa判定(母材破壊優先)であった。また破壊面の写真を図9に示した。また、耐酸性試験後の90°ピール強度(平均値)は、18N/10mm、強度保持率は56%であった。
[参考例2]
 表面粗化マグネシウム合金板M2に、熱可塑性樹脂組成物として上記熱可塑性樹脂組成物Aを、I型ピンゲート金型を用いて射出成形することによって複合構造体R2を製造した。次いで上記方法に従い引張せん断強度を測定(平均値)した。その結果、接合強度(平均値)は、3.8MPaであった。また5検体の破壊面はいずれもa判定(母材破壊優先)であった。また破壊面の写真を図11に示した。
[参考例3]
 参考例1において、I型ピンゲート金型の代わりにZ型ピンゲート金型を用いた以外は参考例1と全く同様にして複合構造体R3を製造した。次いで上記方法に従いピール強度を測定(平均値)した。その結果、強度(平均値)は、10N/10mmであった。また5検体の破壊面はいずれもa判定(母材破壊優先)であった。
[実施例8]
 表面粗化アルミニウム合金板M1に、熱可塑性樹脂組成物として上記熱可塑性樹脂組成物Bを、Z型ピンゲート金型を用いて射出成形することによって複合構造体E8を製造した。次いで上記方法に従いピール強度を測定(平均値)した。その結果、強度(平均値)は、23N/10mmであった。また5検体の破壊面はいずれもa判定(母材破壊優先)であった。また、耐酸性試験後の90°ピール強度(平均値)は、21N/10mm、強度保持率は91%であった。 
[実施例9]
 表面粗化アルミニウム合金板M1に、熱可塑性樹脂組成物として上記熱可塑性樹脂組成物Cを、I型ピンゲート金型を用いて射出成形することによって複合構造体E9を製造した。次いで上記方法に従いピール強度を測定(平均値)した。その結果、強度(平均値)は、28N/10mmであった。また5検体の破壊面はいずれもa判定(母材破壊優先)であった。また、耐酸性試験後の90°ピール強度(平均値)は、25N/10mm、強度保持率は90%であった。破壊面(金属部座右側)の写真を図13に示した。
[実施例10]
 表面粗化アルミニウム合金板M1に、熱可塑性樹脂組成物として上記熱可塑性樹脂組成物Cを、Z型ピンゲート金型を用いて射出成形することによって複合構造体E10を製造した。次いで上記方法に従いピール強度を測定(平均値)した。その結果、強度(平均値)は、23N/10mmであった。また5検体の破壊面はいずれもa判定(母材破壊優先)であった。また、耐酸性試験後の90°ピール強度(平均値)は、21N/10mm、強度保持率は91%であった。破壊面(金属部材側)の写真を図14に示した。
[比較例3]
 熱可塑性樹脂組成物として熱可塑性樹脂組成物Aの代わりにウレタン系熱可塑性エラストマー(TPU)であるレザミンPTM(グレード名P2275、大日精化工業製)を用いた以外は参考例1と同様な操作を行い、複合構造体C3を製造した。次いで参考例1と同様な90°ピール強度試験を行った。その結果、強度(平均値)は、5.0N/10mmであった。また5検体の破壊面はいずれもc判定(界面破壊優先)であった。また破壊面の写真を図10に示した。なお、耐酸性試験後の90°ピール強度(平均値)は、4.8N/10mm、強度保持率は96%であった。
[比較例4]
 熱可塑性樹脂組成物として熱可塑性樹脂組成物Aの代わりにウレタン系熱可塑性エラストマー(TPU)であるレザミンPTM(グレード名P2275)を用いた以外は参考例2と同様な操作を行い、複合構造体C4を製造した。次いで参考例2と同様な評価試験を行った。その結果、接合強度(平均値)は、1.6MPaであった。また5検体の破壊面はいずれもc判定(界面破壊優先)であった。また破壊面の写真を図12に示した。
[比較例5]
 比較例3において、I型ピンゲート金型の代わりにZ型ピンゲート金型を用いた以外は比較例3と全く同様にして複合構造体C5を製造した。次いで上記方法に従いピール強度を測定(平均値)した。その結果、強度(平均値)は、2.0N/10mmであった。また5検体の破壊面はいずれもc判定(界面破壊優先)であった。
[比較例6]
 熱可塑性樹脂組成物として熱可塑性樹脂組成物Aの代わりにアミド系熱可塑性エラストマー(TPAE)であるペバックスTM(グレード名2533、アルケマ社製、デュロメーター硬度=A76、酸価=0mgKOH/g)を用いた以外は参考例1と同様な操作を行い、複合構造体C6を製造した。次いで参考例1と同様な90°ピール強度試験を行った。その結果、強度(平均値)は、28N/10mmであった。また5検体の破壊面はいずれもc判定(界面破壊優先)であった。なお、耐酸性試験後の90°ピール強度(平均値)は、8N/10mm、強度保持率は30%であった
Figure JPOXMLDOC01-appb-T000002
 この出願は、2018年8月10日に出願された日本出願特願2018-151598号および2018年11月16日に出願された日本出願特願2018-215777号を基礎とする優先権を主張し、その開示の全てをここに取り込む。
 本発明は以下の態様も含む。
[1A]
 金属部材と、上記金属部材に接合された熱可塑性樹脂部材と、を備える複合構造体であって、
 上記金属部材は少なくとも上記熱可塑性樹脂部材が接合する金属表面に微細凹凸構造を有し、
 JIS K6253に準拠してタイプAデュロメーターにより測定される、上記熱可塑性樹脂部材の硬度がA60以上A95以下の範囲にあり、
 上記熱可塑性樹脂部材の酸価が1mgKOH/g以上100mgKOH/g以下である複合構造体。
[2A]
 JIS B0601:2001に準拠して測定される、上記微細凹凸構造が形成された上記金属表面の粗さ曲線要素の平均長さ(RSm)が10nm以上500μm以下である上記[1A]に記載の複合構造体。
[3A]
 JIS B0601:2001に準拠して測定される、上記微細凹凸構造が形成された上記金属表面の十点平均粗さ(Rzjis)が10nm以上300μm以下である上記[1A]または[2A]に記載の複合構造体。
[4A]
 上記熱可塑性樹脂部材が熱可塑性エラストマーを含む上記[1A]乃至[3A]のいずれか一つに記載の複合構造体。
[5A]
 上記熱可塑性樹脂部材における上記熱可塑性エラストマーの含有量が50質量%以上である上記[4A]に記載の複合構造体。
[6A]
 上記熱可塑性樹脂部材が酸変性ポリマーをさらに含む上記[4A]または[5A]に記載の複合構造体。
[7A]
 上記熱可塑性樹脂部材における、上記熱可塑性エラストマーの含有量が50質量%以上99質量%以下であり、上記酸変性ポリマーの含有量が1質量%以上50質量%以下である上記[6A]に記載の複合構造体。
[8A]
 上記熱可塑性エラストマーがウレタン系熱可塑性エラストマーを含む上記[4A]乃至[7A]のいずれか一つに記載の複合構造体。
[9A]
 上記[1A]乃至[8A]のいずれか一つに記載の複合構造体を備える電子機器用筐体であって、
 上記金属部材は第1金属部材および第2金属部材を有し、
 上記第1金属部材の周縁部に上記熱可塑性樹脂部材からなるパッキンが接合しており、
 上記第2金属部材が上記パッキンを介して上記第1金属部材と一体化することによって外郭が形成されている電子機器用筐体。
 さらに、本発明は以下の態様も含む。
[1B]
 金属部材と、上記金属部材に接合された熱可塑性樹脂部材と、を備える複合構造体であって、
 上記金属部材は少なくとも上記熱可塑性樹脂部材が接合する金属表面に微細凹凸構造を有し、
 上記熱可塑性樹脂部材が、ウレタン系熱可塑性エラストマーおよびアミド系熱可塑性エラストマーを含む複合構造体。
[2B]
 上記熱可塑性樹脂部材中の上記ウレタン系熱可塑性エラストマーおよび上記アミド系熱可塑性エラストマーの合計含有量が60質量%以上100質量%以下である上記[1B]に記載の複合構造体。
[3B]
 上記熱可塑性エラストマーに占める、上記ウレタン系熱可塑性エラストマーの含有量が70質量%以上100質量%未満であり、上記アミド系熱可塑性エラストマーの含有量が0質量%超え30質量%以下である上記[1B]または[2B]に記載の複合構造体。
[4B]
 上記熱可塑性樹脂部材が酸変性ポリマーをさらに含み、上記熱可塑性樹脂部材中の上記酸変性ポリマーの含有量が上記ウレタン系熱可塑性エラストマーと上記アミド系熱可塑性エラストマーの合計100質量部に対して1質量部以上35質量部以下である上記[1B]乃至[3B]のいずれか一に記載の複合構造体。
[5B]
 JIS B0601:2001に準拠して測定される、上記微細凹凸構造が形成された上記金属表面の粗さ曲線要素の平均長さ(RSm)が10nm以上500μm以下である上記[1B]乃至[4B]のいずれか一つに記載の複合構造体。
[6B]
 JIS B0601:2001に準拠して測定される、上記微細凹凸構造が形成された上記金属表面の十点平均粗さ(Rzjis)が10nm以上300μm以下である上記[1B]乃至[5B]のいずれか一つに記載の複合構造体。
[7B]
 上記[1B]乃至[6B]のいずれか一つに記載の複合構造体を備える電子機器用筐体であって、
 上記電子機器用筐体は第1金属部材および第2金属部材を有し、
 上記第1金属部材の周縁部に上記熱可塑性樹脂部材からなるパッキンが接合しており、
 上記第2金属部材が上記パッキンを介して上記第1金属部材と一体化することによって外郭が形成されている電子機器用筐体。
[8B]
 上記[1B]乃至[6B]のいずれか一に記載の複合構造体を備える電子機器用筐体であって、
 上記電子機器用筐体は金属部材およびプラスチック部材を有し
 上記金属部材の周縁部に上記熱可塑性樹脂部材からなるパッキンが接合しており、
 上記金属部材が上記パッキンを介して上記プラスチック部材と一体化することによって外郭が形成されている電子機器用筐体。
1    第1金属部材
11   嵌合面
12   凹型溝
2    第2金属部材
21   嵌合面
22   凹型溝
3    パッキン
101  金属部材
102  熱可塑性樹脂部材
103  端部
105  専用の治具
106  ピンゲート

Claims (14)

  1.  金属部材と、前記金属部材に接合された熱可塑性樹脂部材と、を備える複合構造体であって、
     前記金属部材は少なくとも前記熱可塑性樹脂部材が接合する金属表面に微細凹凸構造を有し、
     JIS K6253に準拠してタイプAデュロメーターにより測定される、前記熱可塑性樹脂部材の硬度がA60以上A95以下の範囲にあり、
     前記熱可塑性樹脂部材の酸価が1mgKOH/g以上100mgKOH/g以下である複合構造体。
  2.  JIS B0601:2001に準拠して測定される、前記微細凹凸構造が形成された前記金属表面の粗さ曲線要素の平均長さ(RS)が10nm以上500μm以下である請求項1に記載の複合構造体。
  3.  JIS B0601:2001に準拠して測定される、前記微細凹凸構造が形成された前記金属表面の十点平均粗さ(Rzjis)が10nm以上300μm以下である請求項1または2に記載の複合構造体。
  4.  前記熱可塑性樹脂部材が熱可塑性エラストマーを含む請求項1乃至3のいずれか一項に記載の複合構造体。
  5.  前記熱可塑性樹脂部材における前記熱可塑性エラストマーの含有量が50質量%以上である請求項4に記載の複合構造体。
  6.  前記熱可塑性樹脂部材が酸変性ポリマーをさらに含む請求項4または5に記載の複合構造体。
  7.  前記熱可塑性樹脂部材における、前記熱可塑性エラストマーの含有量が50質量%以上99質量%以下であり、前記酸変性ポリマーの含有量が1質量%以上50質量%以下である請求項6に記載の複合構造体。
  8.  前記熱可塑性エラストマーがウレタン系熱可塑性エラストマーを含む請求項4乃至7のいずれか一項に記載の複合構造体。
  9.  前記熱可塑性樹脂部材が、ウレタン系熱可塑性エラストマーおよびアミド系熱可塑性エラストマーを含む請求項1乃至8のいずれか一項に記載の複合構造体。
  10.  前記熱可塑性樹脂部材中の前記ウレタン系熱可塑性エラストマーおよび前記アミド系熱可塑性エラストマーの合計含有量が60質量%以上100質量%以下である請求項9に記載の複合構造体。
  11.  前記熱可塑性エラストマーに占める、前記ウレタン系熱可塑性エラストマーの含有量が70質量%以上100質量%未満であり、前記アミド系熱可塑性エラストマーの含有量が0質量%超え30質量%以下である請求項9または10に記載の複合構造体。
  12.  前記熱可塑性樹脂部材が酸変性ポリマーをさらに含み、前記熱可塑性樹脂部材中の前記酸変性ポリマーの含有量が前記ウレタン系熱可塑性エラストマーと前記アミド系熱可塑性エラストマーの合計100質量部に対して1質量部以上35質量部以下である請求項9乃至11のいずれか一項に記載の複合構造体。
  13.  請求項1乃至12のいずれか一項に記載の複合構造体を備える電子機器用筐体であって、
     前記電子機器用筐体は第1金属部材および第2金属部材を有し、
     前記第1金属部材の周縁部に前記熱可塑性樹脂部材からなるパッキンが接合しており、
     前記第2金属部材が前記パッキンを介して前記第1金属部材と一体化することによって外郭が形成されている電子機器用筐体。
  14.  請求項1乃至12のいずれか一項に記載の複合構造体を備える電子機器用筐体であって、
     前記電子機器用筐体は金属部材およびプラスチック部材を有し、
     前記金属部材の周縁部に前記熱可塑性樹脂部材からなるパッキンが接合しており、
     前記金属部材が前記パッキンを介して前記プラスチック部材と一体化することによって外郭が形成されている電子機器用筐体。
PCT/JP2019/031237 2018-08-10 2019-08-07 複合構造体および電子機器用筐体 WO2020032138A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
KR1020217003304A KR102493869B1 (ko) 2018-08-10 2019-08-07 복합 구조체 및 전자 기기용 하우징
US17/267,342 US11865750B2 (en) 2018-08-10 2019-08-07 Composite structure and housing for electronic device
EP19847399.3A EP3835054B1 (en) 2018-08-10 2019-08-07 Compound structural body and housing for electronic device
CN201980050944.0A CN112512794A (zh) 2018-08-10 2019-08-07 复合结构体及电子设备用壳体
JP2020535854A JP6987256B2 (ja) 2018-08-10 2019-08-07 複合構造体および電子機器用筐体

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2018151598 2018-08-10
JP2018-151598 2018-08-10
JP2018215777 2018-11-16
JP2018-215777 2018-11-16

Publications (1)

Publication Number Publication Date
WO2020032138A1 true WO2020032138A1 (ja) 2020-02-13

Family

ID=69414914

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/031237 WO2020032138A1 (ja) 2018-08-10 2019-08-07 複合構造体および電子機器用筐体

Country Status (6)

Country Link
US (1) US11865750B2 (ja)
EP (1) EP3835054B1 (ja)
JP (1) JP6987256B2 (ja)
KR (1) KR102493869B1 (ja)
CN (1) CN112512794A (ja)
WO (1) WO2020032138A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2020031963A1 (ja) * 2018-08-10 2021-08-10 三井・ダウポリケミカル株式会社 熱可塑性ポリウレタンエラストマー組成物および積層体

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5129903B2 (ja) 1973-10-11 1976-08-28
JPH06246848A (ja) 1993-02-23 1994-09-06 Three Bond Co Ltd 支持枠付きゴム状成形品とその製造方法及びゴム状成形品の装着方法
JP2002072672A (ja) * 2000-08-28 2002-03-12 Kyoritsu:Kk トナーブレード及びその製造方法
JP2003120816A (ja) 2001-10-11 2003-04-23 Nhk Spring Co Ltd ガスケット、その製造方法及びその施工方法
JP2004014150A (ja) 2002-06-03 2004-01-15 Ge Toshiba Silicones Co Ltd 燃料電池のカーボンセパレータ用ガスケット材料
JP2004346273A (ja) 2003-05-26 2004-12-09 Ube Ind Ltd ポリアミド系エラストマー及びその製造方法
WO2009031632A1 (ja) 2007-09-05 2009-03-12 Taisei Plas Co., Ltd. 金属樹脂複合体の製造方法
JP2009518505A (ja) * 2005-12-09 2009-05-07 アドバンスド エラストマー システムズ,エル.ピー. 熱可塑性加硫ゴム接着剤組成物
JP2011074398A (ja) * 2010-12-13 2011-04-14 Mitsubishi Chemicals Corp 複合成形品
JP2018021577A (ja) 2016-08-01 2018-02-08 日本電産トーソク株式会社 油圧制御装置及びプログラム
JP2018151598A (ja) 2017-03-15 2018-09-27 国立研究開発法人産業技術総合研究所 センサ装置、共焦点顕微鏡及びnv中心を有するダイヤモンドからの蛍光を検出する方法

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4957968A (en) 1988-08-09 1990-09-18 Monsanto Company Adhesive thermoplastic elastomer blends
US5624999A (en) 1991-03-05 1997-04-29 Exxon Chemical Patents Inc. Manufacture of functionalized polymers
US5564714A (en) 1993-02-23 1996-10-15 Three Bond Co., Ltd. Rubber-like molded product with support frame
JP3428391B2 (ja) * 1996-10-03 2003-07-22 住友電気工業株式会社 電気絶縁ケーブル及びそのケーブルとハウジングの接続構造
US6503984B2 (en) 1998-12-22 2003-01-07 Advanced Elastomer Systems, L.P. TPE composition that exhibits excellent adhesion to textile fibers
US6822019B2 (en) * 2001-12-21 2004-11-23 National Chung-Hsing University Complex of clay and polyoxyalkylene amine grafted polypropylene and method for producing the same
JP4701732B2 (ja) * 2005-02-03 2011-06-15 三菱化学株式会社 複合成形品用熱可塑性樹脂組成物
JP4995100B2 (ja) 2005-02-07 2012-08-08 ヘンケル コーポレイション 射出成形プロセス、キュアインプレイスガスケットを形成するための装置および材料
US9073241B2 (en) 2005-02-07 2015-07-07 Henkel IP & Holding GmbH Injection molding process and compositions with improved sealing characteristics for mold-in-place gaskets
WO2010006093A2 (en) 2008-07-11 2010-01-14 Henkel Corporation Compositions with improved sealing characteristics for mold-in-place gaskets
US20110133366A1 (en) 2005-02-07 2011-06-09 Henkel Corporation Injection molding process, apparatus and material for forming cured-in-place gaskets
US8066288B2 (en) 2005-10-20 2011-11-29 Henkel Corporation Components comprising polyisobutylene compositions
US20090162715A1 (en) 2005-10-20 2009-06-25 Henkel Corporation Polyisobutylene compositions with improved reactivity and properties for bonding and sealing fuel cell components
CA2637064C (en) 2006-01-17 2015-11-24 Henkel Corporation Bonded fuel cell assembly, methods, systems and sealant compositions for producing the same
CN101395749B (zh) 2006-01-17 2013-06-19 汉高公司 紫外光可固化的燃料电池密封剂和由其形成的燃料电池
KR101482799B1 (ko) 2006-01-17 2015-01-14 헨켈 유에스 아이피 엘엘씨 실란트 통합 연료 전지 성분 및 이를 제조하기 위한 방법 및 시스템
KR101808902B1 (ko) 2006-01-17 2017-12-13 헨켈 아이피 앤드 홀딩 게엠베하 결합된 연료 전지 조립체, 이를 제조하기 위한 방법, 시스템 및 실란트 조성물
CN101395736B (zh) 2006-01-17 2011-04-13 汉高公司 粘结的燃料电池组件和生产它的方法与体系
US20110089792A1 (en) * 2009-10-16 2011-04-21 Apple Inc. Portable computer housing
US9573347B2 (en) * 2009-12-15 2017-02-21 Teknor Apex Company Thermoplastic elastomer with desirable grip especially during wet conditions
JP5355803B1 (ja) * 2013-01-18 2013-11-27 日新製鋼株式会社 塗装金属素形材、複合体、およびそれらの製造方法
MX366519B (es) * 2013-07-18 2019-07-11 Mitsui Chemicals Inc Estructura compuesta de metal-resina y miembro metalico.
KR102437457B1 (ko) 2016-05-31 2022-08-26 미쯔이가가꾸가부시끼가이샤 금속/수지 복합 구조체, 금속 부재 및 금속 부재의 제조 방법
EP3476563B1 (en) 2016-06-24 2023-08-02 ENEOS Materials Corporation Joined body and method for manufacturing same

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5129903B2 (ja) 1973-10-11 1976-08-28
JPH06246848A (ja) 1993-02-23 1994-09-06 Three Bond Co Ltd 支持枠付きゴム状成形品とその製造方法及びゴム状成形品の装着方法
JP2002072672A (ja) * 2000-08-28 2002-03-12 Kyoritsu:Kk トナーブレード及びその製造方法
JP2003120816A (ja) 2001-10-11 2003-04-23 Nhk Spring Co Ltd ガスケット、その製造方法及びその施工方法
JP2004014150A (ja) 2002-06-03 2004-01-15 Ge Toshiba Silicones Co Ltd 燃料電池のカーボンセパレータ用ガスケット材料
JP2004346273A (ja) 2003-05-26 2004-12-09 Ube Ind Ltd ポリアミド系エラストマー及びその製造方法
JP2009518505A (ja) * 2005-12-09 2009-05-07 アドバンスド エラストマー システムズ,エル.ピー. 熱可塑性加硫ゴム接着剤組成物
WO2009031632A1 (ja) 2007-09-05 2009-03-12 Taisei Plas Co., Ltd. 金属樹脂複合体の製造方法
JP2011074398A (ja) * 2010-12-13 2011-04-14 Mitsubishi Chemicals Corp 複合成形品
JP2018021577A (ja) 2016-08-01 2018-02-08 日本電産トーソク株式会社 油圧制御装置及びプログラム
JP2018151598A (ja) 2017-03-15 2018-09-27 国立研究開発法人産業技術総合研究所 センサ装置、共焦点顕微鏡及びnv中心を有するダイヤモンドからの蛍光を検出する方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3835054A4

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2020031963A1 (ja) * 2018-08-10 2021-08-10 三井・ダウポリケミカル株式会社 熱可塑性ポリウレタンエラストマー組成物および積層体
JP7052045B2 (ja) 2018-08-10 2022-04-11 三井・ダウポリケミカル株式会社 熱可塑性ポリウレタンエラストマー組成物および積層体

Also Published As

Publication number Publication date
KR102493869B1 (ko) 2023-01-30
US20210237322A1 (en) 2021-08-05
CN112512794A (zh) 2021-03-16
KR20210029223A (ko) 2021-03-15
JPWO2020032138A1 (ja) 2021-05-13
JP6987256B2 (ja) 2021-12-22
EP3835054A4 (en) 2022-04-27
EP3835054C0 (en) 2023-12-27
EP3835054A1 (en) 2021-06-16
EP3835054B1 (en) 2023-12-27
US11865750B2 (en) 2024-01-09

Similar Documents

Publication Publication Date Title
EP3951865A1 (en) Cooling unit, cooling device, battery structure, and electric vehicle
JP6132669B2 (ja) 金属樹脂複合成形体及びその製造方法
JPWO2018066670A1 (ja) 電池用包装材料、その製造方法、及び電池
EP3905322A1 (en) Cooling unit, method for manufacturing cooling unit, and structure
US10538667B2 (en) Toughened poly(aryl ether sulfone)/poly(aryl ether ketone) blends
JP2017500228A (ja) 携帯用電子機器部品
JP2018144475A (ja) アルミニウム系金属/樹脂複合構造体、アルミニウム系金属部材、アルミニウム系金属部材の製造方法およびアルミニウム系金属/樹脂複合構造体の製造方法
WO2020032138A1 (ja) 複合構造体および電子機器用筐体
TWI634159B (zh) 插入件成形用樹脂組合物、使用該組合物之金屬樹脂複合成形體以及其製造方法
WO2015118912A1 (ja) 金属/ゴム複合構造体
JP2019025868A (ja) 金属/樹脂複合構造体、金属/樹脂複合構造体の製造方法および耐リーク性部品
JP6638875B1 (ja) 電池用包装材料、その製造方法、ポリエステルフィルム、及び電池
JP2023155232A (ja) 導電用部材の製造方法
US20230361393A1 (en) Power storage device packaging material, method for producing same, and power storage device
EP3124541A1 (en) Fluoropolymer composition for mobile electronic device
WO2020031963A1 (ja) 熱可塑性ポリウレタンエラストマー組成物および積層体
CN101641408B (zh) 挠性树脂组合物和防水连接器用密封部件
KR20170092210A (ko) 알루미늄ㆍ수지 사출 일체 성형품 및 그 제조 방법
CN113692326B (zh) 电子设备壳体、其制造方法及金属树脂复合体
JP2021125295A (ja) 導電用部材、導電用部材の製造方法、電力変換装置、モーター、二次電池モジュール及び二次電池パック

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19847399

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020535854

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20217003304

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019847399

Country of ref document: EP

Effective date: 20210310