WO2020029657A1 - 一种二极管装置、显示面板及柔性显示器 - Google Patents

一种二极管装置、显示面板及柔性显示器 Download PDF

Info

Publication number
WO2020029657A1
WO2020029657A1 PCT/CN2019/088648 CN2019088648W WO2020029657A1 WO 2020029657 A1 WO2020029657 A1 WO 2020029657A1 CN 2019088648 W CN2019088648 W CN 2019088648W WO 2020029657 A1 WO2020029657 A1 WO 2020029657A1
Authority
WO
WIPO (PCT)
Prior art keywords
light emitting
emitting diode
micro
region
current limiting
Prior art date
Application number
PCT/CN2019/088648
Other languages
English (en)
French (fr)
Inventor
林宏诚
徐弘光
Original Assignee
林宏诚
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 林宏诚 filed Critical 林宏诚
Priority to EP19846917.3A priority Critical patent/EP3836234A4/en
Priority to CN202211122362.9A priority patent/CN115775852A/zh
Priority to CN201980021931.0A priority patent/CN112005387A/zh
Priority to JP2021531158A priority patent/JP7398818B2/ja
Publication of WO2020029657A1 publication Critical patent/WO2020029657A1/zh
Priority to TW109117578A priority patent/TW202044610A/zh
Priority to US16/917,346 priority patent/US11296254B2/en
Priority to US17/678,318 priority patent/US11881540B2/en
Priority to US18/481,334 priority patent/US20240047609A1/en
Priority to JP2023200399A priority patent/JP2024026189A/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/14Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a carrier transport control structure, e.g. highly-doped semiconductor layer or current-blocking structure
    • H01L33/145Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a carrier transport control structure, e.g. highly-doped semiconductor layer or current-blocking structure with a current-blocking structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/04Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
    • H01L25/075Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L33/00
    • H01L25/0753Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L33/00 the devices being arranged next to each other
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/16Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof the devices being of types provided for in two or more different main groups of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. forming hybrid circuits
    • H01L25/167Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof the devices being of types provided for in two or more different main groups of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. forming hybrid circuits comprising optoelectronic devices, e.g. LED, photodiodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/005Processes
    • H01L33/0095Post-treatment of devices, e.g. annealing, recrystallisation or short-circuit elimination
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/44Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the coatings, e.g. passivation layer or anti-reflective coating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/005Processes
    • H01L33/0093Wafer bonding; Removal of the growth substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/36Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes
    • H01L33/38Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes with a particular shape
    • H01L33/382Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes with a particular shape the electrode extending partially in or entirely through the semiconductor body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/36Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes
    • H01L33/40Materials therefor
    • H01L33/42Transparent materials

Definitions

  • the invention relates to a micro light-emitting diode (Micro-LED) device, in particular to a micro-light-emitting diode (Micro-LED) device capable of improving light-emitting efficiency and improving process yield and a micro-light-emitting diode device having the same Display panels and flexible displays.
  • Micro-LED micro light-emitting diode
  • Micro-LED micro-light-emitting diode
  • liquid crystal display LCD
  • organic light emitting diode OLED
  • micro-LED displays have the following advantages: high contrast, fast response speed, wide color gamut, low power consumption, long life, etc. Potential advantages.
  • technical challenges including: (1) epitaxial chips and processes, (2) massive transfers, and (3) inspection and maintenance.
  • Mass Transfer Transfer a huge amount of Micro-LEDs to a display substrate or circuit through a high-precision device, called Mass Transfer technology, such as: electrostatic transfer technology, micro- Transfer technology, fluid assembly technology, optical transfer, etc., the key challenge all technologies currently face is how to complete a large number of transfers in a reasonable time and reasonable cost.
  • the present invention provides a diode device, a display panel and a flexible display to solve the above technical problems.
  • a diode device is provided.
  • the diode device of the present invention includes: a first type semiconductor layer (101); a second type semiconductor layer (102); and a light emitting layer (103), which are located on the first type semiconductor layer (101) and the second type Between the semiconductor layers (102); a sidewall current limiting area (201), which is in contact with the four surrounding sidewall areas of the second-shaped semiconductor layer (102); wherein the peripheral perimeter of the sidewall current limiting area (201) is 400 ⁇ m or less.
  • the sidewall current limiting region (201) further includes a first upper surface (201-up); the second-type semiconductor layer (102) further includes a second upper surface (102-up). up); and the second upper surface (102-up) is coplanar with the first upper surface (201-up).
  • the diode device further includes a transparent electrode (301), the transparent electrode is located above the second type semiconductor layer (102), and is electrically connected to the second type semiconductor layer (102), The transparent electrode (301) partially covers the sidewall current limiting area (201).
  • the diode device further includes an electrode (302) located above the second type semiconductor layer (102) and electrically connected to the transparent electrode (301), and the electrode (302) and the electrode The second type semiconductor layer (102) is in contact.
  • the sidewall current limiting region (201) further includes a first upper surface (201-up); the second-type semiconductor layer (102) further includes a second upper surface (102-up) up); wherein the first upper surface (201-up) has a surface low-conductivity region
  • the second upper surface (102-up) has a surface high-conductivity region Low conductivity area of the surface Towards the surface with high conductivity Has a gradually increasing conductivity distribution.
  • the sidewall current limiting region (201) further includes a first outer surface (201-out); the second-type semiconductor layer (102) further includes a second outer surface (102- out); the first outer surface (201-out) has a region with low sidewall conductivity
  • the second outer surface (102-out) has a high-conductivity region of a sidewall. Low-conductivity region Towards the high-conductivity area of the sidewall Has a gradually increasing conductivity distribution.
  • the sidewall current limiting region (201) further includes a first upper surface (201-up); the first upper surface (201-up) has a first surface roughness ( RS-201-up), the first surface roughness does not exceed 10 nm.
  • the second type semiconductor layer (102) further includes a second upper surface (102-up); the second upper surface (102-up) has a second surface roughness (RS) -102-up), the second surface roughness does not exceed 10 nm.
  • RS surface roughness
  • the sidewall current limiting region (201) further includes a first upper surface (201-up); the second-type semiconductor layer (102) further includes a second upper surface (102) -up); the first upper surface (201-up) has a first surface roughness (RS-201-up), and the second upper surface (102-up) has a second surface roughness (RS-102) -up), the first surface roughness (RS-201-up) is greater than or equal to the second surface roughness (RS-102-up).
  • the sidewall current limiting region (201) further includes a first outer surface (201-out); and the roughness of the first outer surface (201-out) exceeds 10 nanometers.
  • the second-type semiconductor layer (102) further includes a second outer surface (102-out); and the roughness of the second outer surface (102-out) exceeds 10 nanometers.
  • the sidewall current limiting region (201) further includes a first outer surface (201-out); the second-type semiconductor layer (102) further includes a second outer surface (102) -out); wherein the first outer surface (201-out) has a third surface roughness (RS-201-out), and the second outer surface (102-out) has a fourth surface roughness (RS- 102-out), the third surface roughness (RS-201-out) is greater than or equal to the fourth surface roughness (RS-102-out).
  • the sidewall current limiting area (201) further includes a first upper surface (201-up), a first outer surface (201-out), and a first inner surface ( 201-in); wherein the first upper surface (201-up) and the first outer surface (201-out) have a first angle ( ⁇ 1), and the first upper surface (201-up) and the first An inner surface (201-in) has a second included angle ( ⁇ 2).
  • the first included angle ( ⁇ 1) and the second included angle ( ⁇ 2) are close to a right angle of 90 degrees.
  • the diode device further includes a magnetic layer located below the first-type semiconductor layer.
  • the diode device further includes a second current limiting area (202), wherein the shortest distance between the first current limiting area (201) and the second current limiting area (202) is 50 ⁇ m or less width.
  • the diode device further includes a third current limiting area (203), which is located between the first current limiting area (201) and the second current limiting area (202), and is connected to the first current limiting area (202).
  • the two current limiting regions (202) are in contact, wherein the upper surface of the third current limiting region (203) is coplanar with the upper surface of the first current limiting region (201).
  • the first current limiting region (201) has a first depth (D1)
  • the second current limiting region (202) has a second depth (D2)
  • the third current The restricted area (203) has a third depth (D3)
  • the first depth (D1) is equal to the second depth (D2) is equal to the third depth (D3).
  • the sidewall current limiting region (201), the second current limiting region (202), and the third current limiting region (203) are formed by an ion implantation technique.
  • a display panel using an array composed of the diode device of the present invention is provided.
  • the display panel includes a display substrate including a micro light emitting diode device array, a part of which includes a side wall current blocking area (501), and a part of the micro light emitting diode device which has a side wall current limiting area (201 ); Wherein each micro light emitting diode device has a maximum width of 1 ⁇ m to 100 ⁇ m; wherein each micro light emitting diode device includes a first type semiconductor layer (101), a second type semiconductor layer (102), and a light emitting layer ( 103), which is located between the first type semiconductor layer (101) and the second type semiconductor layer (102); it further includes a circuit for switching and driving the micro light emitting diode device array; and further includes a microcontroller Chip array; wherein each microcontroller chip is connected to a scan driving circuit and a data driving circuit.
  • a flexible display which adopts an array composed of the diode device of the present invention.
  • the flexible display includes: a flexible substrate (1010), which includes an array of micro light emitting diode devices, wherein a part of the micro light emitting diode devices has a side wall current blocking area (501), and a part of the micro light emitting diode devices has a side wall current Restricted area (201); wherein the sidewall current blocking area (501) is composed of a dielectric material; wherein the sidewall current limiting area is formed by an ion implantation technique; wherein each micro light emitting diode device has a width of 1 ⁇ m to 100 ⁇ m ; Wherein each micro light emitting diode device includes a first type semiconductor layer (101), a second type semiconductor layer (102), and a light emitting layer (103), which are located on the first type semiconductor layer (101) and the first Between the type 2 semiconductor layers (102); multiple scan lines (1014); multiple data lines (1015); each micro light emitting diode device (1011) is connected to a corresponding scan line (1014) and a corresponding A data line (10
  • the beneficial effects of the present invention are that the first current limiting area can reduce the side wall leakage current and improve the light emitting efficiency of the micro light emitting diode; the second current limiting area can improve the uniformity of the current distribution and the light emitting efficiency of the micro light emitting diode; and the third current limiting area
  • the uniformity of the current distribution can be improved, and the light emitting efficiency of the micro light emitting diode can be improved.
  • the peripheral perimeter of the first current limiting area is 400 ⁇ m or less, reaching the size of the micro light emitting diode, and thus has various advantages of the micro light emitting diode.
  • 1A is a top view of a conventional light emitting diode
  • 1B is a cross-sectional view of a conventional light emitting diode A-A ';
  • 1C is a sectional view of a conventional light emitting diode B-B ';
  • FIGS. 2A, 2Q, and 2T are top views of an embodiment of the present invention.
  • 2B, 2D, 2F, 2H, 2J, 2L, 2N, 2R, 2U are cross-sectional views of the embodiment A-A 'of the present invention.
  • 2C, 2E, 2G, 2I, 2K, 2M, 2O, 2V are sectional views of the embodiment B-B 'of the present invention.
  • 2P, 2S-up, 2S-out, and 2W are conductivity measurements of a conductive atomic force microscope (Conductive Atomic Force Microscope);
  • 3A is a top view of an embodiment of the present invention.
  • 3B and 3D are cross-sectional views of A-A 'according to the embodiment of the present invention.
  • 3C and 3E are cross-sectional views of embodiment B-B 'of the present invention.
  • FIG. 4A is a top view of an embodiment of the present invention.
  • 4B and 4D are cross-sectional views of A-A 'of the embodiment of the present invention.
  • 4C, 4E are sectional views of embodiment B-B 'of the present invention.
  • 5A is a top view of an embodiment of the present invention.
  • 5B is a cross-sectional view of an embodiment A-A 'of the present invention.
  • 5C is a cross-sectional view of an embodiment B-B 'of the present invention.
  • FIG. 6A is a top view of an embodiment of the present invention.
  • 6B is a cross-sectional view of an embodiment A-A 'of the present invention.
  • 6C is a cross-sectional view of an embodiment B-B 'of the present invention.
  • FIG. 7A and 7J are top views of an embodiment of the present invention.
  • 7B, 7D, 7F, 7H, and 7K are cross-sectional views of A-A 'of the embodiment of the present invention.
  • 7C, 7E, 7G, and 7I are cross-sectional views of the embodiment B-B 'of the present invention.
  • FIG. 8A is a top view of an embodiment of the present invention.
  • FIG. 8B is a cross-sectional view of an embodiment A-A 'of the present invention.
  • 8C is a cross-sectional view of an embodiment B-B 'of the present invention.
  • Figure 9-1 is a semiconductor structure
  • Figure 9-2 is to form a photomask and define the current limiting area by ion implantation
  • Figure 9-3 is removing the photomask
  • Figure 9-4 shows the formation of a transparent electrode, a metal electrode, and a metal electrode extension
  • Figure 9-5 is forming a trench
  • Figure 9-6 shows the connection between the light emitting body and the test substrate through a sacrificial layer
  • Figure 9-7 shows the removal of the growth substrate
  • FIG. 9-8 shows forming a metal electrode on a first type semiconductor layer
  • Figure 9-9 shows the test of the substrate and the photodetector to test the light-emitting diodes by electro-excitation light (EL);
  • 9-10 are selective removal of defective components onto a collection substrate
  • Figure 9-11 shows a huge array transferring light emitting components on a permanent substrate
  • FIG. 9-12 is a filling and transferring light-emitting component on a permanent substrate
  • Figure 9-13 is the completion of transferring the light-emitting component on the permanent substrate
  • Figure 9-14 shows the formation of a retaining wall and a transparent colloid on a permanent substrate
  • Figure 9-15 shows the formation of retaining walls and fluorescent colloids on a permanent substrate
  • Figure 9-16 shows the formation of retaining walls and transparent colloids and fluorescent colloids on permanent substrates
  • Figure 10-1 is a semiconductor structure
  • Figure 10-2 is forming a trench
  • Figure 10-3 is removing the photomask
  • Figure 10-4 shows the formation of a current blocking area by a dielectric material
  • FIG. 10-5 shows forming a transparent electrode, a metal electrode, and a metal electrode extension
  • Figure 10-6 shows the connection between the light emitting body and the test substrate through a sacrificial layer
  • Figure 10-7 shows the removal of the growth substrate
  • FIG. 10-8 shows forming a metal electrode on the first type semiconductor layer
  • FIG 10-9 shows the test of the substrate and the photodetector to detect the light emitting diode (EL);
  • Figure 10-11 shows a huge array transferring light emitting components on a permanent substrate
  • FIG. 10-12 is a filling and transferring light-emitting component on a permanent substrate
  • Figure 10-13 shows the completion of transferring the light-emitting component on the permanent substrate
  • Figure 10-14 shows the formation of a retaining wall and a transparent colloid on a permanent substrate
  • Figure 10-15 shows the formation of retaining walls and fluorescent colloids on a permanent substrate
  • Figure 10-16 shows the formation of a retaining wall and transparent colloids and fluorescent colloids on a permanent substrate
  • 11-1 is a top view of the miniature light emitting diode of the present invention, with a rectangular appearance;
  • 11-2 is a top view of the miniature light emitting diode of the present invention, with a circular appearance;
  • 11-3 is a top view of the miniature light emitting diode of the present invention, with a triangular appearance
  • FIG. 12 is a method of selectively transferring a large amount of light-emitting components into a first container after the detection, and fluidly transferring the micro light-emitting diodes to the receiving substrate through the first solution;
  • FIG. 13 is a top view of a receiving substrate
  • 16A is a top view of an embodiment of the present invention.
  • 16B is a cross-sectional view of an embodiment A-A 'of the present invention.
  • FIG. 17A is a top view of an embodiment of the present invention.
  • 17B is a cross-sectional view of an embodiment A-A 'of the present invention.
  • 18A is a top view of an embodiment of the present invention.
  • 18B is a cross-sectional view of an embodiment A-A 'of the present invention.
  • FIG. 19A is a top view of an embodiment of the present invention.
  • 19B is a cross-sectional view of an embodiment A-A 'of the present invention.
  • 20A is a top view of an embodiment of the present invention.
  • 20B is a cross-sectional view of an embodiment A-A 'of the present invention.
  • 21A is a top view of an embodiment of the present invention.
  • 21B is a cross-sectional view of an embodiment A-A 'of the present invention.
  • 22A is a top view of an embodiment of the present invention.
  • 22B is a cross-sectional view of an embodiment A-A 'of the present invention.
  • FIG. 23A is a top view of an embodiment of the present invention.
  • FIG. 23B is a sectional view of embodiment A-A 'of the present invention.
  • FIG. 24A is a top view of an embodiment of the present invention.
  • FIG. 24B is a cross-sectional view of an embodiment A-A 'of the present invention.
  • 25A is a top view of an embodiment of the present invention.
  • 25B is a cross-sectional view of an embodiment A-A 'of the present invention.
  • 26A is a top view of an embodiment of the present invention.
  • FIG. 26B is a cross-sectional view of an embodiment A-A 'of the present invention.
  • FIG. 27A is a top view of an embodiment of the present invention.
  • Fig. 27B is a cross-sectional view of an embodiment A-A 'of the present invention.
  • FIG. 28-1 is an epitaxial growth semiconductor structure on a growth substrate
  • Figure 28-2 is to form a photomask and define the current limiting area by ion implantation
  • Figure 28-3 is removing the photomask
  • FIG. 28-4 is forming a trench and an etched area
  • Figure 28-5 shows the formation of transparent electrodes and electrodes
  • Figure 28-6 shows the connection between the light emitting body and the test substrate through a sacrificial layer
  • Figure 28-7 shows the growth substrate removed by laser
  • Figure 28-8 is a schematic diagram after removing the growth substrate
  • Figure 28-9 shows the test of the substrate and the photodetector to detect the light-emitting diode (EL);
  • Figure 28-10 shows transfer to a transfer substrate
  • Figure 28-12 shows a huge array transferring light emitting components on a permanent substrate
  • Fig. 28-13 is for filling a vacancy and transferring a light emitting component on a permanent substrate
  • Figure 28-14 is the completion of transferring the light-emitting component on the permanent substrate
  • Figure 28-15 shows the formation of a retaining wall and a transparent colloid on a permanent substrate
  • Figures 28-16 form a retaining wall and fluorescent colloid on a permanent substrate
  • Figure 28-17 shows the formation of a retaining wall and transparent colloid and fluorescent colloid on a permanent substrate
  • FIG. 29 is a structural diagram of a conventional flip chip Micro LED
  • FIG. 30 is a structural diagram of a micro light emitting diode (Micro LED) reduced in size to a side length of 10 microns or less;
  • FIG. 31 is a structure diagram of a flip-chip micro light-emitting diode whose size is reduced to less than 10 micrometers by using ion implantation technology;
  • FIG. 32 is a structural diagram including at least one set of redundant light emitting diodes by using ion implantation technology
  • FIG. 33-1 is a first epitaxial layer structure (Epilayer-1) formed on the first epitaxial substrate S1;
  • FIG. 33-2 is a cross-sectional view of the first micro-light emitting diode (M1) formed by the yellow light lithography and etching process, with a pitch P1, along A-A ';
  • Figure 33-3 is a top view of Figure 33-2;
  • Figure 34-1 shows the first micro-light-emitting diode (M1) using the ion implantation (Ion Implantation) technology to define a first ion implantation region (Ion-1) and a first sub-pixel region (R1).
  • Ion Implantation ion implantation
  • Figure 34-2 is a top view of Figure 34-1;
  • 35-1 is a cross-sectional view of a conductive layer (ML) formed above the first sub-pixel region (R1), taken along A-A ';
  • 35-2 is a cross-sectional view of a conductive layer (ML) formed above the first sub-pixel region (R1), taken along A "-A" ';
  • Figure 35-3 is a top view of Figure 35-2;
  • FIG. 36-1 is an electrical connection between the first sub-pixel (R1) having the conductive layer structure (ML) and the first transparent substrate (T1) through the pad (BL);
  • FIG. 36-2 is the first epitaxial substrate (S1) removed, and a first light-transmissive intermediate layer (B1) is filled between the first transparent substrate (T1) and the first sub-pixel (R1);
  • Figure 36-3 is a top view of Figure 36-2;
  • FIG. 37-1 shows the formation of a second epitaxial layer structure (Epi layer-2) on the second epitaxial substrate S2;
  • Figure 37-2 is a cross-sectional view of the second micro-light emitting diode (M2) formed by the yellow light lithography and etching process, with a pitch P3, along C-C ';
  • Figure 37-3 is a top view of Figure 37-2;
  • Figure 38-1 is the definition of the first area (Ion-2a) and the second area (Ion-2b) of the second ion implantation area on the second micro light emitting diode (M2) by the ion implantation (Ion implantation) technology , And a cross-sectional view of the second sub-pixel region (G1) along CC ′;
  • Figure 38-2 is a top view of Figure 38-1;
  • FIG. 39-1 is a cross-sectional view of a conductive layer (ML) formed above the second sub-pixel region (G1), taken along C-C ";
  • 39-2 is a cross-sectional view of a conductive layer (ML) formed above the second sub-pixel region (G1), taken along C "-C" ';
  • Figure 39-3 is a top view of Figure 39-1;
  • FIG. 40-1 is an electrical connection between a second sub-pixel (G1) having a conductive layer structure (ML) and a second transparent substrate (T2) through a pad (BL);
  • G1 a second sub-pixel having a conductive layer structure (ML) and a second transparent substrate (T2) through a pad (BL);
  • FIG. 40-2 shows the second epitaxial substrate (S2) is removed, and a second transparent intermediate layer (B2) is filled between the second transparent substrate (T2) and the second sub-pixel (G1);
  • Figure 40-3 is a top view of Figure 40-1;
  • FIG. 41-1 is a third epitaxial layer structure (Epilayer-3) formed on the third epitaxial substrate S3;
  • 41-2 is a cross-sectional view of the third ion implantation region (Ion-3) and the third sub-pixel region (B1) defined by the ion implantation (Ion implantation) technique along E-E ';
  • Figure 41-3 is a top view of Figure 41-2;
  • Figure 42-1 defines the third ion implantation area (Ion-3) and the third sub-pixel area (B1) on the third micro-light emitting diode (M3) by using ion implantation (Ion implantation) technology.
  • Figure 42-2 is a top view of Figure 42-1;
  • 43-1 is a cross-sectional view of a conductive layer (ML) formed over the third sub-pixel region (B1), taken along E-E ';
  • Figure 43-2 is a cross-sectional view taken along E "-E" ';
  • Figure 43-3 is a top view of Figure 43-1;
  • FIG. 44-1 electrically connects the third sub-pixel (B1) with the conductive layer structure (ML) and the third transparent substrate (T3) through the pads (BL);
  • FIG. 44-2 The third epitaxial substrate (S3) is removed, and a third transparent intermediate layer (B3) is filled between the third transparent substrate (T3) and the third sub-pixel (B1);
  • Figure 44-3 is a top view of Figure 44-1;
  • Figure 45-1 shows the first sub-pixel structure, the second sub-pixel structure, and the third sub-pixel structure.
  • a 3D stacked RGB pixel matrix is realized by using A-1 and A-2 as a light-transmissive adhesive layer to realize a miniature light-emitting diode. ;
  • Figure 45-2 is an enlarged, cross-sectional view of the first pixel (Pixel 1) along G-G ';
  • Figure 45-3 is a top view of Figure 45-2;
  • Figure 46-1 shows another embodiment of the present invention, where R1-1 is the first sub-pixel, R1-2 is the first redundant sub-pixel, where G1-1 is the second sub-pixel, and G1-2 is the second Redundant sub-pixels, where B1-1 is the third sub-pixel and B1-2 is the third redundant sub-pixel, along the cross section of H-H '
  • Figure 46-2 is a top view of Figure 46-1;
  • Figure 47-1 is another embodiment of the present invention, where R1-1 is the first sub-pixel, and R1-2, R1-3, R1-4, R1-5, and R1-6 are the first redundant sub-pixels.
  • R1-1 is the second sub-pixel
  • G1-2, G1-3, and G1-4 are the second backup sub-pixels, of which B1-1 is the third sub-pixel and B1-2 is the third backup sub-pixel Pixels, cross-sectional view along I-I ';
  • Figure 47-2 is a top view of Figure 47-1;
  • FIG. 48-1 Another embodiment of the present invention, wherein R1-1 is the first sub-pixel, and R1-2, R1-3, R1-4, R1-5, and R1-6 are the first redundant sub-pixels, G1-1 is the second sub-pixel, G1-2, G1-3, G1-4, G1-5, G1-6 are the second backup sub-pixels, of which B1-1 is the third sub-pixel, B1- 2, B1-3, B1-4, B1-5, and B1-6 are the third backup sub-pixels, and cross-sectional views along J-J ';
  • Figure 48-2 is a top view of Figure 48-1;
  • Figure 49-1 Another embodiment of the present invention, wherein R1-1, R1-2, R1-3, R1-4, R1-5, and R1-6 are all first sub-pixels, where G1-1, G1- 2, G1-3, G1-4, G1-5, G1-6 are all second sub-pixels, of which B1-1, B1-2, B1-3, B1-4, B1-5, B1-6 are A third sub-pixel, a cross-sectional view taken along KK ';
  • Figure 49-2 is a top view of Figure 49-1;
  • FIG. 50 is another embodiment of the present invention.
  • the epitaxial substrates (S1), (S2), and (S3) are all transparent substrates, and 3D RGB MicroLEDs can be stacked directly, without the need to transfer to a transparent substrate, which simplifies the manufacturing process;
  • FIG. 51 is another embodiment of the present invention, further including a black matrix layer BM (Black Mattress) layer, which can increase the contrast of pixels;
  • BM Black Mattress
  • FIG. 52 is another embodiment of the present invention.
  • Each micro light emitting diode further includes a magnetic layer (Magnetic Layer) (ML), and its function is to improve the accuracy of 3D stacking;
  • ML Magnetic Layer
  • FIG. 53 is another embodiment of the present invention.
  • Each micro light emitting diode further includes a current blocking area located on a surface and a side area of the micro light emitting diode.
  • FIG. 54 is another embodiment of the present invention.
  • Each micro light emitting diode further includes a current limiting area located on a surface and a side area of the micro light emitting diode.
  • FIG. 55-1 is another embodiment of the present invention and is applied to Augmented Reality (AR);
  • FIG. 55-2 is another embodiment of the present invention, which is applied to Augmented Reality (AR);
  • AR Augmented Reality
  • FIG. 55-3 is another embodiment of the present invention and is applied to Augmented Reality (AR);
  • FIG. 55-4 is another embodiment of the present invention, which is applied to Augmented Reality (AR);
  • Figure 55-5 shows the integrated control system.
  • Figure 56-1 is a smart glasses structure
  • 56-2 is a structure of an embodiment of the present invention applied to smart glasses
  • FIG. 56-3 shows a structure of smart glasses applied to an embodiment of the present invention
  • FIG. 56-4 is a structure of an embodiment of the present invention applied to smart glasses.
  • 56-5 is a structure of an embodiment of the present invention applied to smart glasses
  • FIG. 57-1 is a structure of a micro light emitting diode (Magnetic Layer) with a magnetic layer (ML);
  • Figure 57-2 is a horizontal structure magnetic micro light emitting diode (Magnetic Micro light emitting diode) structure
  • Figure 57-3 is a vertical structure of a magnetic micro light emitting diode (Magnetic Micro light emitting diode) structure
  • Figure 57-4 is another vertical structure of a magnetic micro light emitting diode (Magnetic Micro light emitting diode) structure
  • Figure 57-5 shows that the magnetic micro light-emitting diode with a horizontal structure further includes a first current blocking layer
  • Figure 57-6 shows that the magnetic micro light-emitting diode of the vertical structure further includes a first current blocking layer
  • FIG. 57-7 is another magnetic micro light-emitting diode with a vertical structure further including a first current blocking layer;
  • Figure 57-8 shows that the magnetic micro-light-emitting diode with a horizontal structure further includes a current limiting layer
  • Figure 57-9 shows that the magnetic miniature light emitting diode of the vertical structure further includes a current limiting layer
  • Figure 57-10 shows another vertical structure magnetic miniature light emitting diode further comprising a current limiting layer
  • Figure 57-11 is a horizontal structure magnetic miniature light emitting diode
  • Figure 57-12 is a horizontal structure magnetic miniature light emitting diode
  • Figure 57-13 is a horizontal structure magnetic miniature light emitting diode
  • Figure 57-14 is a horizontal structure magnetic miniature light emitting diode
  • Figure 57-15 is a magnetic miniature light emitting diode with a vertical structure
  • Figure 57-16 is a magnetic miniature light emitting diode with a vertical structure
  • Figure 57-17 is a magnetic miniature light emitting diode with a vertical structure
  • Figure 57-18 shows a magnetic miniature light emitting diode with a vertical structure
  • Figure 57-19 shows a magnetically attractive programmable transfer head.
  • the magnetic layer micro light emitting diode can be transferred to a target substrate in a large amount
  • Figure 57-20 is a fluid transfer system
  • Figure 57-21-1 is a top view of the substrate of the fluid transfer system
  • Figure 57-21-2 is a top view of the substrate of the fluid transfer system
  • Figure 57-22-1 is a top view of the substrate of the fluid transfer system
  • Figure 57-22-2 is a top view of the substrate of the fluid transfer system
  • Figure 57-23 is a fluid transfer system
  • Figure 57-24 is a fluid transfer system
  • Figure 57-25 is a fluid transfer system
  • Figure 58-1A is a conventional display
  • Figure 58-2A is a conventional display
  • Figure 58-3A is a conventional display
  • Figure 58-1B is a high-resolution display
  • Figure 58-2B is a high-resolution display
  • Figure 58-3B is a high-resolution display
  • Figure 58-1C is a high-resolution display
  • Figure 58-2C is a high-resolution display
  • Figure 58-3C is a high-resolution display
  • FIG. 59 is a schematic diagram of identification requirements of human visual acuity.
  • T1A first horizontal width
  • a micro-LED device in an embodiment of the present invention includes: a first-type semiconductor layer 101; a second-type semiconductor layer 102; and a light-emitting layer 103, which are located on the first-type semiconductor layer 101 and the first Between the second-type semiconductor layers 102; a first current-limiting region 201, which is located around and around the second-type semiconductor layer 102; and a second current-limiting region 202, which is surrounded by the first current-limiting region 201
  • the shortest distance between the first current-limiting region 201 and the second current-limiting region 202 has a width of 50 ⁇ m or less; and the outer circumference of the first current-limiting region 201 is 400 ⁇ m or less.
  • the upper surface U6 of the second-type semiconductor layer 102 is coplanar with the upper surface U1 of the first current-limiting region 201 and the upper surface U2 of the second current-limiting region 202, and its beneficial effects are: improving surface flatness and improving products Stability, and can reduce non-radiative recombination, thereby increasing the efficiency of the micro light emitting diode.
  • the first current-limiting region 201 has a first depth D1
  • the second current-limiting region 201 has a second depth D2
  • the first depth D1 may be equal to, greater than, or smaller than the second depth D2.
  • the Micro-LED device may further include a third current-limiting region 203 located between the first current-limiting region 201 and the second current-limiting region 202 and in contact with the second current-limiting region 202.
  • the upper surface U3 of the third current limiting region 203 is coplanar with the upper surface U1 of the first current limiting region 201, which helps to improve the surface flatness, improve product stability, and reduce non-radiation. Recombination (non-radiative recombination), thereby increasing the efficiency of miniature light emitting diodes.
  • the first current limiting region 201 has a first depth D1
  • the second current limiting region 202 has a second depth D2
  • the third current limiting region 203 has a third depth D3, and the first depth D1 is equal to the first depth D1.
  • the two depths D2 are equal to the third depth D3.
  • the depth is the same, which can be completed in the same ion implantation procedure, simplifying the manufacturing process.
  • the first current-limiting region 201 has a first depth D1
  • the second current-limiting region 202 has a second depth D2
  • the third current-limiting region 203 has a third depth D3
  • the first depth D1 is greater than
  • the second depth D2 is greater than the third depth D3.
  • the Micro-LED device may further include a transparent electrode 301, which is located above the second type semiconductor layer 102 and is electrically connected to the second type semiconductor layer 102, and the transparent electrode 301 covers the The first current limiting area 201 and the third current limiting area 203 are covered.
  • the third current limiting region 203 is formed by ion implantation technology. Ion implantation technology can improve surface flatness and product stability.
  • the first current-limiting region 201 has a first width T1, wherein the second current-limiting region 202 has a second width T202, wherein the third current-limiting region 203 has a third width T203, and the second width T202 is greater than Or equal to the first width T1 and the first width T1 is greater than or equal to the third width T203.
  • This Micro-LED device may further include a transparent electrode 301, which is located above the second type semiconductor layer 102 and is electrically connected to the second type semiconductor layer 102, and the transparent electrode 301 covers the first A current limit region 201.
  • the transparent electrode has high light transmittance and improves the light emitting efficiency of the micro light emitting diode.
  • the above-mentioned Micro-LED device may further include an electrode 302 located above the second-type semiconductor layer 102 and electrically connected to the transparent electrode 301, and the electrode 302 is in direct contact with the second current limiting region 202.
  • the direct contact between the electrode and the semiconductor can avoid the problem of electrode shedding and improve product stability.
  • an electrode extension portion 303 may be further disposed above the transparent electrode 301 and electrically connected to the electrode 302. This helps to improve the uniformity of the current distribution and the luminous efficiency of the micro light emitting diode.
  • the back electrode 304 may further include a back electrode 304 located below the first type semiconductor layer, and the back electrode 304 is electrically connected to the first type semiconductor layer; the back electrode 304 may have a multilayer structure, and the multilayer structure Contains ohmic contact layer, diffusion barrier layer, connection layer, and highly reflective mirror layer.
  • the first current-limiting region 201 and the second current-limiting region 202 are formed by ion implantation technology.
  • Ion implantation technology can improve the flatness of the sidewall and improve the stability of the product.
  • ion implantation technology can improve the surface flatness and also improve the stability of the product.
  • the first current limiting region 201 may have a first width T1, which is greater than or equal to 1 ⁇ m.
  • the second current limiting region 202 may be located in the middle of the second type semiconductor layer region 102.
  • the first current limiting region 201 has a first depth D1, and the first depth D1 may be no greater than the depth of the second type semiconductor layer.
  • the first current limiting region 201 has a first depth D1, and the first depth D1 further includes four surroundings of the light emitting layer and the first type semiconductor layer.
  • the first depth D1 may be greater than the second type semiconductor And the depth of the light-emitting layer.
  • the first current limiting region 201 has a first depth D1.
  • the first depth D1 further includes a sidewall region of the light emitting layer and the first type semiconductor layer.
  • the first depth D1 may be greater than the second type semiconductor. And the depth of the light-emitting layer.
  • the first current limiting region 201 has a first depth D1.
  • the first depth D1 further includes a sidewall region of the light emitting layer and the first type semiconductor layer.
  • the first depth D1 is equal to that of the second type semiconductor.
  • the depth is the sum of the depth of the light emitting layer and the depth of the first type semiconductor.
  • the first current-limiting region 201 has a first depth D1.
  • the first depth D1 further includes a sidewall region of the light-emitting layer and the first-type semiconductor layer.
  • the first current-limiting region 201 is located in the first type.
  • the sidewall region of the semiconductor layer has a first lateral width T1A
  • the first current limiting region 201 is located in the sidewall region of the light emitting layer has a second lateral width T1B
  • the first current limiting region 201 is located in the second type semiconductor
  • the sidewall region of the layer has a third lateral width T1C.
  • the first lateral width is larger than the second lateral width and larger than the third lateral width
  • the third lateral width is larger than the second lateral width and larger than the first lateral width.
  • the surface of the first current-limiting region may have a first low-conductivity region
  • the surface of the first current limiting region has a first low-conductivity region
  • the surface of the second type semiconductor layer has a high conductivity region
  • the first low-conductivity region has a gradually increasing conductivity distribution toward the high-conductivity region.
  • a surface of the first current limiting region has a first low-conductivity region
  • the surface of the second current limiting region has a second low-conductivity region
  • the surface of the second type semiconductor layer has a high conductivity region
  • the second low conductivity region Toward the high conductivity area It also has a distribution that gradually increases conductivity.
  • the surface and side wall leakage currents are reduced, and the light emitting efficiency of the micro light emitting diode is improved.
  • the first current-limiting region 201 has a first width T1
  • the second current-limiting region 202 has a second width T202, and the second width is greater than or equal to the first width T1.
  • the first current-limiting region 201 has a first width T1
  • the second current-limiting region 202 has a second width T202
  • the first current-limiting region and the second current-limiting region have a width O3
  • the The second width is greater than or equal to the first width
  • the width O3 is greater than the second width T202.
  • the first current limiting region 201 can reduce the side wall leakage current and improve the light emitting efficiency of the micro LED; the second current limiting region 202 can improve the uniformity of the current distribution and improve the light emitting efficiency of the micro light emitting diode; the third current limiting region 203 can improve the uniformity of the current distribution and the light-emitting efficiency of the micro-light-emitting diode; wherein the peripheral circumference of the first current-limiting region 201 is 400 ⁇ m or less, thereby having various advantages of the micro-light-emitting diode.
  • Another micro-LED device in the embodiment of the present invention includes: a first-type semiconductor layer 101; a second-type semiconductor layer 102; and a light-emitting layer 103 located on the first-type semiconductor layer 101 and the Between the second type semiconductor layers 102; a first current limiting area 201, which is located around the second type semiconductor layer 102 and the sidewall area; a second current limiting area 202, which is controlled by the first current limiting area 201 Surrounded by; a third current-limiting region 203 surrounded by the first current-limiting region 201 and in contact with the second current-limiting region 202; wherein the shortest of the first current-limiting region 201 and the second current-limiting region 202 is The distance has a width of 50 ⁇ m or less; wherein the peripheral perimeter of the first current limiting region 201 is 400 ⁇ m or less.
  • the first current limiting region 201 can reduce the side wall leakage current and improve the light emitting efficiency of the micro light emitting diode
  • the second current limiting area 202 can improve the uniformity of the current distribution and improve the light emitting efficiency of the micro light emitting diode
  • the third current limiting region 203 can improve the uniformity of the current distribution and improve the light emitting efficiency of the micro light emitting diode
  • the distance of the peripheral circumference has various advantages of the micro light emitting diode.
  • the upper surface U6 of the second type semiconductor layer 102 is coplanar with the upper surface U6 of the first current limiting region 201 and the upper surface U2 of the second current limiting region 202 and the upper surface U3 of the third current limiting region 203. It helps to improve surface flatness, improve product stability, and can reduce non-radiative recombination, thereby increasing the efficiency of miniature light emitting diodes.
  • the first current limiting region 201 has a first depth D1
  • the second current limiting region 202 has a second depth D2
  • the third current limiting region 203 has a third depth D3
  • the first depth D1 is equal to the
  • the second depth D2 is equal to the third depth D3.
  • the first current limiting region 201 has a first depth D1
  • the second current limiting region 202 has a second depth D2
  • the third current limiting region 203 has a third depth D3
  • the first The depth D1 is greater than the second depth D2 and greater than the third depth D3.
  • Such a Micro-LED device may further include a transparent electrode 301, which is located above the second type semiconductor layer 102 and is electrically connected to the second type semiconductor layer 102, and the transparent electrode 301 covers the first
  • the current limiting area 201 covers the third current limiting area 203.
  • the transparent electrode has a high light transmittance, thereby improving the light emitting efficiency of the micro light emitting diode.
  • an electrode 302 is further located above the second type semiconductor layer 102 and electrically connected to the transparent electrode 301, and the electrode 302 is in direct contact with the second current limiting region 202, which can be avoided. The problem of electrode falling off improves product stability. It may further include an electrode extension 303 located above the transparent electrode 301 and electrically connected to the electrode 302.
  • the first current limiting area 201, the second current limiting area 202, and the third current limiting area 203 are formed by ion implantation technology.
  • Ion implantation technology can improve the flatness of the side wall and improve the stability of the product; at the same time, ion implantation technology can also improve the surface flatness, which can also improve the stability of the product.
  • the width of the first current limiting region 201 may be greater than or equal to 1 ⁇ m.
  • the second current limiting region 202 may be located at an intermediate position of the second type semiconductor layer region 102.
  • Another micro-LED device in the embodiment of the present invention includes: a first-type semiconductor layer 101; a second-type semiconductor layer 102; and a light-emitting layer 103, which are located on the first-type semiconductor layer 101 and the Between the second type semiconductor layers 102; a first current limiting area 201, which is located around the second type semiconductor layer 102 and the sidewall area; a second current limiting area 202, which is controlled by the first current limiting area 201 Surrounded by; a third current blocking region 503 surrounded by the first current limiting region 201 and in contact with the second current limiting region 202; wherein the shortest of the first current limiting region 201 and the second current limiting region 202 The distance has a width of 50 ⁇ m or less; wherein the peripheral perimeter of the first current limiting region 201 is 400 ⁇ m or less.
  • the first current limiting region 201 can reduce the side wall leakage current and improve the light emitting efficiency of the micro light emitting diode
  • the second current limiting area 202 can improve the uniformity of the current distribution and improve the light emitting efficiency of the micro light emitting diode
  • the third current blocking region 503 can improve the uniformity of the current distribution and improve the light emitting efficiency of the micro light emitting diode
  • the distance of the peripheral perimeter is less than 400 ⁇ m, so that it has various advantages of micro light emitting diodes.
  • the upper surface U6 of the second type semiconductor layer 102 is coplanar with the upper surface U1 of the first current limiting region 201 and the upper surface U2 of the second current limiting region 202.
  • the surface flatness is improved, the product stability is improved, and non-radiative recombination can be reduced, thereby increasing the efficiency of the micro light emitting diode.
  • the first current-limiting region 201 has a first depth D1
  • the second current-limiting region 201 has a second depth D2
  • the first depth D1 is equal to the second depth D2.
  • the same depth can be completed in the same process, simplifying the process.
  • the first current-limiting region 201 has a first depth D1
  • the second current-limiting region 201 has a second depth D2
  • the first depth D1 is greater than the second depth D2.
  • the first current limiting region 201 has a first depth D1
  • the second current limiting region 201 has a second depth D2
  • the first depth D1 is smaller than the second depth D2.
  • the micro-LED device may further include a transparent electrode 301, which is located above the second type semiconductor layer 102 and is electrically connected to the second type semiconductor layer 102, and the transparent electrode 301 covers The first current limiting region 201 and the third current blocking region 503 are covered.
  • the transparent electrode has high light transmittance and improves the light emitting efficiency of the micro light emitting diode.
  • the Micro-LED device may further include an electrode 302 located above the second-type semiconductor layer 102 and electrically connected to the transparent electrode 301, and the electrode 302 is in direct contact with the second current-limiting region 202. , Can avoid the problem of electrode shedding and improve product stability.
  • an electrode extension portion 303 is further located above the transparent electrode 301 and is electrically connected to the electrode 302.
  • the first current-limiting region 201 and the second current-limiting region 202 are formed by an ion implantation technique.
  • Ion implantation technology can improve the flatness of the side wall and improve the stability of the product; at the same time, ion implantation technology can also improve the surface flatness and also improve the stability of the product.
  • the third current blocking region 203 may be composed of a dielectric material.
  • the width of the first current limiting region 201 may be greater than or equal to 1 ⁇ m.
  • the second current limiting region 202 may be located in the middle of the second-type semiconductor layer region 102.
  • a micro-light emitting diode Micro-LED device including: a first-type semiconductor layer 101; a second-type semiconductor layer 102; and a light-emitting layer 103, which are located on the first-type semiconductor layer 101 and the first Between the second type semiconductor layers 102; a first current limiting region 201, which is located around and around the second type semiconductor layer 102, and a sidewall region; a second current blocking region 502, which is surrounded by the first current limiting region 201 Surround; a third current blocking region 503 surrounded by the first current limiting region 201 and in contact with the second current blocking region 502; wherein the shortest distance between the first current limiting region 201 and the second current blocking region 202 It has a width of 50 ⁇ m or less; wherein the peripheral perimeter of the first current limiting region 201 is 400 ⁇ m or less.
  • the first current limiting region 201 can reduce the side wall leakage current and improve the light emitting efficiency of the micro light emitting diode.
  • the second current blocking region 502 can improve the uniformity of the current distribution and improve the light emitting efficiency of the micro light emitting diode.
  • the third current blocking region 503 can improve the uniformity of the current distribution and improve the light emitting efficiency of the micro light emitting diode.
  • the distance of the peripheral perimeter is less than 400 ⁇ m, so as to reach the size of the micro light emitting diode, and has various advantages of the micro light emitting diode.
  • the upper surface U6 of the second-type semiconductor layer 102 is coplanar with the upper surface U1 of the first current-limiting region 201, which helps to improve surface flatness, improve product stability, and reduce non-radiative recombination (non-radiative recombination), thereby increasing the efficiency of the micro light emitting diode.
  • Such a Micro-LED device may further include a transparent electrode 301, which is located above the second type semiconductor layer 102 and is electrically connected to the second type semiconductor layer 102, and the transparent electrode 301 covers the first
  • the current limiting region 201 covers the second current blocking region 502 and covers the third current blocking region 503.
  • an electrode 302 is further located above the second-type semiconductor layer 102 and electrically connected to the transparent electrode 301, and the electrode 302 is in direct contact with the second-type semiconductor layer 102, which can prevent the electrode from falling off. Problems to improve product stability.
  • the transparent electrode has high light transmittance and improves the light emitting efficiency of the micro light emitting diode. It further includes an electrode extension 303 located above the transparent electrode 301 and electrically connected to the electrode 302.
  • the first current limiting region 201 is formed by an ion implantation technique. Ion implantation technology can improve the flatness of the sidewall and improve the stability of the product.
  • the second current blocking region 502 and the third current blocking region 503 may be composed of a dielectric material.
  • the width of the electrode extension 303 may be smaller than the width of the third current blocking region 503.
  • the width of the first current limiting region 201 may be greater than or equal to 1 ⁇ m.
  • the second current blocking region 502 may have a hollow ring shape, and has a hollow width O2, and the hollow width is greater than or equal to 1 micron.
  • the second current blocking region 502 may be located in the middle of the second type semiconductor layer region 102.
  • Another micro-LED device in the embodiment of the present invention includes: a first-type semiconductor layer 101; a second-type semiconductor layer 102; and a light-emitting layer 103 located on the first-type semiconductor layer 101 and the Between the second type semiconductor layers 102; a first current blocking region 501, which is located around the second type semiconductor layer 102 and the sidewall region; a second current limiting region 202, which is covered by the first current blocking region 501 Surrounded by; a third current blocking region 503 surrounded by the first current blocking region 501 and in contact with the second current limiting region 202; wherein the first current blocking region 501 and the second current limiting region 202 are The shortest distance has a width of 50 ⁇ m or less; wherein the peripheral perimeter of the first current blocking region 501 is 400 ⁇ m or less.
  • the first current blocking region 501 can reduce the side wall leakage current and improve the light emitting efficiency of the micro light emitting diode
  • the second current limiting area 202 can improve the uniformity of the current distribution and improve the light emitting efficiency of the micro light emitting diode
  • the third current blocking region 503 can improve the uniformity of the current distribution and improve the light emitting efficiency of the micro light emitting diode
  • the distance of the peripheral perimeter is less than 400 ⁇ m, reaching the size of a miniature light emitting diode, which has various advantages.
  • the first current blocking region 501 may cover at least a sidewall of the first type semiconductor layer 101, a sidewall of the second type semiconductor layer 102, and a sidewall of the first light emitting layer 103.
  • the Micro-LED device may further include a transparent electrode 301 located above the second-type semiconductor layer 102 and electrically connected to the second-type semiconductor layer 102, and the transparent electrode 301 covers the first current blocking Region 501 covers the second current limiting region 202 and covers the third current blocking region 503.
  • the transparent electrode has high light transmittance and improves the light emitting efficiency of the micro light emitting diode.
  • an electrode 302 is further located above the second type semiconductor layer 102 and is electrically connected to the transparent electrode 301, and the electrode 302 is in direct contact with the second current limiting region 202, which can prevent the electrode from falling off. Problems to improve product stability. It further includes an electrode extension 303 located above the transparent electrode 301 and electrically connected to the electrode 302.
  • the second current limiting region 202 is formed by an ion implantation technique. Ion implantation technology can improve surface flatness and product stability.
  • the first current blocking region 501 and the third current blocking region 503 may be composed of a dielectric material.
  • the width of the electrode extension 303 may be smaller than the width of the third current blocking region 503.
  • the width of the first current blocking region 501 may be greater than or equal to 1 ⁇ m.
  • the second current limiting region 202 may be located in the middle of the second type semiconductor layer region 102.
  • Another micro-LED device includes: a first-type semiconductor layer 101; a second-type semiconductor layer 102; and a light-emitting layer 103 located on the first-type semiconductor layer 101 and the first Between the second type semiconductor layers 102; a first current blocking region 501, which is located around and around the second type semiconductor layer 102, and a sidewall region; a second current limiting region 202, which is surrounded by the first current blocking region 501 Surround; a third current-limiting region 203 surrounded by the first current-blocking region 501 and in contact with the second current-limiting region 202; wherein the shortest of the first current-blocking region 501 and the second current-limiting region 202 The distance has a width of 50 ⁇ m or less; wherein the peripheral perimeter of the first current blocking region 501 is 400 ⁇ m or less.
  • the first current blocking region 501 can reduce the side wall leakage current and improve the light emitting efficiency of the micro light emitting diode
  • the second current limiting area 202 can improve the uniformity of the current distribution and improve the light emitting efficiency of the micro light emitting diode
  • the third current limiting region 203 can improve the uniformity of the current distribution and improve the light emitting efficiency of the micro light emitting diode
  • the distance of the peripheral perimeter is less than 400 ⁇ m, reaching the size of a miniature light emitting diode, which has various advantages.
  • the first current blocking region 501 covers at least a sidewall of the first type semiconductor layer 101, a sidewall of the second type semiconductor layer 102, and a sidewall of the first light emitting layer 103.
  • the Micro-LED device may further include a transparent electrode 301 located above the second-type semiconductor layer 102 and electrically connected to the second-type semiconductor layer 102, and the transparent electrode 301 covers the first current blocking A region 501 and the third current limiting region 203 are covered.
  • an electrode 302 may be further located above the second-type semiconductor layer 102 and electrically connected to the transparent electrode 301, and the electrode 302 is in direct contact with the second restricted area 202, which may prevent the electrode from falling off. Problems to improve product stability.
  • the transparent electrode has high light transmittance and improves the light emitting efficiency of the micro light emitting diode. It may further include an electrode extension portion 303 located above the transparent electrode 301 and electrically connected to the electrode 302.
  • the second current limiting area 202 and the third current limiting area 203 are formed by ion implantation technology.
  • Ion implantation technology can improve the flatness of the side wall and improve the stability of the product; Ion implantation technology can also improve the surface flatness, which can also improve the stability of the product.
  • the first current blocking region 501 may be composed of a dielectric material.
  • the width of the first current blocking region 501 may be greater than or equal to 1 ⁇ m.
  • the second current limiting region 202 may be located in the middle of the second type semiconductor layer region 102.
  • the second current limiting area 202 has a second depth D2
  • the third current limiting area 203 has a third depth D3
  • the second depth D2 may be equal to the third depth D3.
  • the second current limiting region 202 may be located in the middle of the second type semiconductor layer region 102.
  • the first current blocking region 501 has a thickness H1 covering the sidewall region and a thickness H2 covering the upper surface region.
  • the thickness of the H1 can be greater than, less than or equal to H2.
  • a transparent electrode may be exposed in the first current blocking region 501, and the transparent electrode may be located above the second-type semiconductor layer 102 and electrically connected to the second-type semiconductor layer 102.
  • a micro-light emitting diode Micro-LED device including: a first-type semiconductor layer 101; a second-type semiconductor layer 102; and a light-emitting layer 103, which are located on the first-type semiconductor layer 101 and the first Between the second type semiconductor layers 102; a first current blocking region 501, which is located around and around the second type semiconductor layer 102, and a sidewall region; a second current blocking region 502, which is surrounded by the first current blocking region 501 Surround; a third current blocking region 503 surrounded by the first current blocking region 501 and in contact with the second current blocking region 502; wherein the shortest of the first current blocking region 501 and the second current blocking region 502 The distance has a width of 50 ⁇ m or less; wherein the peripheral perimeter of the first current blocking region 501 is 400 ⁇ m or less.
  • the Micro-LED device has the following beneficial effects:
  • the first current blocking region 501 can reduce the side wall leakage current and improve the light emitting efficiency of the micro light emitting diode
  • the second current blocking region 502 can improve the uniformity of the current distribution and the light emitting efficiency of the micro light emitting diode
  • the third current blocking region 503 can improve the uniformity of the current distribution and improve the light emitting efficiency of the micro light emitting diode
  • the distance of the peripheral perimeter is less than 400 ⁇ m and reaches the size of a miniature light emitting diode, that is, it has various advantages.
  • the first current blocking region 501 may cover at least a sidewall of the first type semiconductor layer 101, a sidewall of the second type semiconductor layer 102, and a sidewall of the first light emitting layer 103.
  • Such a Micro-LED device may further include a transparent electrode 301, which is located above the second type semiconductor layer 102 and is electrically connected to the second type semiconductor layer 102, and the transparent electrode 301 covers the first
  • the current blocking region 501 covers the second current blocking region 502 and covers the third current blocking region 503.
  • an electrode 302 may be further included above the second type semiconductor layer 102 and electrically connected to the transparent electrode 301, and the electrode 302 is in direct contact with the second type semiconductor layer 102, which can be avoided.
  • the problem of electrode falling off improves product stability.
  • the transparent electrode has high light transmittance and improves the light emitting efficiency of the micro light emitting diode. It may further include an electrode extension portion 303 located above the transparent electrode 301 and electrically connected to the electrode 302. The width of the electrode extension 303 is smaller than the width of the third current blocking region 503.
  • the first current blocking region 501, the second current blocking region 502, and the third current blocking region 503 may be composed of a dielectric material.
  • the width of the first current blocking region 501 may be greater than or equal to 1 ⁇ m.
  • the second current blocking region 502 may have a hollow ring shape, and has a hollow width O2, and the hollow width is greater than or equal to 1 micron.
  • the second current blocking region 502 may be located in the middle of the second type semiconductor layer region 102.
  • a micro-light emitting diode Micro-LED device including: a first-type semiconductor layer 101; a second-type semiconductor layer 102; and a light-emitting layer 103, which are located on the first-type semiconductor layer 101 and the first Between the second type semiconductor layers 102; a first current blocking region 501, which is located around and around the second type semiconductor layer 102, and a sidewall region; a second current blocking region 502, which is surrounded by the first current blocking region 501 Surround; a third current limiting region 203, which is surrounded by the first current blocking region 501 and is in contact with the second current blocking region 502; wherein the shortest of the first current blocking region 501 and the second current blocking region 502 The distance has a width of 50 ⁇ m or less; wherein the peripheral perimeter of the first current blocking region 501 is 400 ⁇ m or less.
  • the first current blocking region 501 can reduce the side wall leakage current and improve the light emitting efficiency of the micro light emitting diode.
  • the second current blocking region 502 can improve the uniformity of the current distribution and improve the light emitting efficiency of the micro light emitting diode.
  • the third current limiting region 203 can improve the uniformity of the current distribution and improve the light emitting efficiency of the micro light emitting diode.
  • the distance of the peripheral perimeter is less than 400 ⁇ m, thereby achieving the advantages of the micro light emitting diode.
  • the first current blocking region 501 covers at least a sidewall of the first type semiconductor layer 101, a sidewall of the second type semiconductor layer 102, and a sidewall of the first light emitting layer 103.
  • the Micro-LED device further includes a transparent electrode 301 located above the second-type semiconductor layer 102 and electrically connected to the second-type semiconductor layer 102, and the transparent electrode 301 covers the first current blocking area 501 and the second current blocking region 502 and the third current limiting region 203 are covered.
  • an electrode 302 is further located above the second-type semiconductor layer 102 and electrically connected to the transparent electrode 301, and the electrode 302 is in direct contact with the second-type semiconductor layer 102, which can prevent the electrode from falling off. Problems to improve product stability.
  • the transparent electrode has high light transmittance and improves the light emitting efficiency of the micro light emitting diode. It further includes an electrode extension 303 located above the transparent electrode 301 and electrically connected to the electrode 302.
  • the first current blocking region 501, the second current blocking region 502, and the third current blocking region 503 are made of a dielectric material, such as SiO 2 , Si 3 N 4 , Al 2 O 3 , Y 2 O 3 , TiO 2 , Y 2 O 3 , HfO 2 , ZrO 2 , BaZrO 3 , BaTiO 3 , Ta 2 O 5 , Si.
  • a dielectric material such as SiO 2 , Si 3 N 4 , Al 2 O 3 , Y 2 O 3 , TiO 2 , Y 2 O 3 , HfO 2 , ZrO 2 , BaZrO 3 , BaTiO 3 , Ta 2 O 5 , Si.
  • the first current blocking region 501 and the third current blocking region 503 are made of a dielectric material.
  • the third current limiting region 203 is formed by ion implantation technology. Ion implantation technology can improve surface flatness and product stability.
  • the width of the first current blocking region 501 is greater than or equal to 1 ⁇ m.
  • the second current blocking region 502 has a hollow ring shape and has a hollow width O2, and the hollow width is greater than or equal to 1 micron.
  • the second current blocking region 502 is located in the middle of the second type semiconductor layer region 102.
  • a micro-LED device includes: a first type semiconductor layer 101; a second type semiconductor layer 102; and a light emitting layer 103, which are located on the first type semiconductor layer 101 and the second type semiconductor layer Between 102; a first current blocking region 501, which is located around the second type semiconductor layer 102 and the sidewall region; a second current blocking region 502, which is surrounded by the first current blocking region 501; wherein the The shortest distance between the first current blocking region 501 and the second current blocking region 502 has a width of 50 ⁇ m or less; wherein the peripheral perimeter of the first current blocking region 501 is 400 ⁇ m or less.
  • the first current blocking region 501 can reduce the side wall leakage current and improve the light emitting efficiency of the micro light emitting diode
  • the second current blocking region 502 can improve the uniformity of the current distribution and the light emitting efficiency of the micro light emitting diode
  • the distance of the peripheral perimeter is less than 400 ⁇ m, reaching the size of the micro light emitting diode, that is, it has the advantages of the micro light emitting diode.
  • the first current blocking region 501 covers at least a sidewall of the first type semiconductor layer 101, a sidewall of the second type semiconductor layer 102, and a sidewall of the first light emitting layer 103.
  • This Micro-LED device may further include a transparent electrode 301, which is located above the second type semiconductor layer 102 and is electrically connected to the second type semiconductor layer 102, and the transparent electrode 301 covers the first A current blocking region 501 and the second current blocking region 502 are covered.
  • an electrode 302 may be further included above the second type semiconductor layer 102 and electrically connected to the transparent electrode 301, and the electrode 302 is in direct contact with the second type semiconductor layer 102, which can be avoided. Electrode off problem, improve product stability.
  • the transparent electrode has high light transmittance and improves the light emitting efficiency of the micro light emitting diode. It may further include an electrode extension portion 303 located above the transparent electrode 301 and electrically connected to the electrode 302.
  • the first current blocking region 501 has a first thickness H1 covering the sidewall region and a second thickness H2 covering the upper surface region.
  • the second current blocking region 502 has a third thickness H3.
  • the third current blocking region 503 has a fourth thickness H4, wherein the first thickness H1 is greater than or equal to the second thickness H2 and greater than or equal to the third thickness H3, and is greater than or equal to the fourth thickness H4; or, the first current blocking region 501 covers a side wall region with a first thickness H1, and covers an upper surface region with a second thickness H2.
  • the second current blocking region 502 has a third thickness H3, and the third current blocking region 503 has a fourth thickness. H4, wherein the first thickness H1 is less than or equal to the second thickness H2 and less than or equal to the third thickness H3, and less than or equal to the fourth thickness H4.
  • the Micro-LED device may further include a third current blocking region 503 which is surrounded by the first current blocking region 501 and is in contact with the second current blocking region 502.
  • the third current blocking region 503 can improve the uniformity of the current distribution and improve the light emitting efficiency of the micro light emitting diode.
  • a transparent electrode 301 may be further included.
  • the transparent electrode is located above the second-type semiconductor layer 102 and is electrically connected to the second-type semiconductor layer 102.
  • the transparent electrode 301 covers the first electrode.
  • the current blocking region 501 and the second current blocking region 502 and the third current blocking region 503 may be further included.
  • An electrode 302 is located above the second semiconductor layer 102 and is electrically connected to the transparent electrode 301.
  • the electrode 302 is in direct contact with the second-type semiconductor layer 102.
  • the electrode 302 may further include an electrode extension 303 located above the transparent electrode 301 and electrically connected to the electrode 302.
  • the width of the electrode extension 303 is smaller than the width of the third current blocking region 503.
  • the first current blocking region 501, the second current blocking region 502, and the third current blocking region 503 may be composed of a dielectric material.
  • the width of the first current blocking region 501 may be greater than or equal to 1 ⁇ m.
  • the second current blocking region 502 may have a hollow ring shape, and has a hollow width O2, and the hollow width is greater than or equal to 1 micron.
  • the second current blocking region 502 may be located in the middle of the second type semiconductor layer region 102.
  • the first current blocking region 501 covers the sidewall region with a first thickness H1 and covers the upper surface region with a second thickness H2, wherein the first thickness H1 is greater than or equal to the second thickness H2.
  • the first current blocking region 501 covers the sidewall region with a first thickness H1 and covers the upper surface region with a second thickness H2, wherein the first thickness H1 is smaller than the second thickness H2.
  • the first current blocking region 501 has a first thickness H1 covering the sidewall region and a second thickness H2 covering the upper surface region.
  • the second current blocking region 502 has a third thickness H3, wherein the first thickness H1 It is greater than or equal to the second thickness H2 and greater than or equal to the third thickness H3.
  • the first current blocking region 501 has a first thickness H1 covering the side wall region, and has a second thickness H2 covering the upper surface region.
  • the second current blocking region 502 has a third thickness H3.
  • the thickness H1 is smaller than the second thickness H2 and smaller than the third thickness H3.
  • a transparent electrode 301 is exposed in the first current blocking region 501, and the transparent electrode is located above the second type semiconductor layer 102 and is electrically connected to the second type semiconductor layer 102.
  • An electrode 302 is exposed from the second current blocking region 502. The electrode 302 is located above the second type semiconductor layer 102 and is electrically connected to the transparent electrode 301. The electrode 302 is in direct contact with the second current limiting region 202. . Alternatively, an electrode 302 is exposed in the second current blocking region 502. The electrode 302 is located above the second-type semiconductor layer 102 and is electrically connected to the second-type semiconductor layer 102.
  • the above-mentioned miniature light emitting diode has a luminous efficiency higher than 250 lumens per watt [lm / W].
  • the display ability R9 for red in the color rendering index of the aforementioned micro light emitting diode is greater than 90.
  • the color rendering index (CRI) of the aforementioned miniature light emitting diode is greater than 90.
  • the average color rendering evaluation index Ra of the aforementioned micro light emitting diode is greater than 90.
  • a micro-light emitting diode Micro-LED device including: a first-type semiconductor layer 101; a second-type semiconductor layer 102; and a light-emitting layer 103, which are located on the first-type semiconductor layer 101 and the first Between the second-type semiconductor layers 102; a sidewall current limiting region 201, which is in direct contact with four peripheral sidewall regions of the second-shaped semiconductor layer 102, the light-emitting layer 103, and the first semiconductor layer 102;
  • the current limiting region 201 further includes an upper surface 201-up, a lower surface 101-down, an outer surface 201-out, and an inner surface 201-in; wherein the upper surface 201-up of the sidewall current limiting region and the second type semiconductor
  • the upper surface 102-up is coplanar; wherein the distance of the outermost perimeter of the vertical projection of the first current-limiting region has a distance of 400 ⁇ m or less.
  • a side wall current limiting region 201 can reduce the side wall leakage current and improve the light emitting efficiency of the micro light emitting diode
  • the distance of the peripheral perimeter is less than 400 ⁇ m, reaching the size of a miniature light emitting diode, and thus has various advantages.
  • the lower surface 201-down of the sidewall current limiting area is coplanar with the lower surface 101-down of the first type semiconductor layer.
  • the vertical projection of the upper surface 201-up of the side wall current limiting area is an upper surface distance T-up, where the vertical projection of the lower surface 201-down of the side wall current limiting area is the lower surface distance T-down, the upper surface distance T-up is greater than the lower surface distance T-down.
  • the vertical projection of the upper surface 201-up of the current limiting area of the sidewall is a top surface distance T-up
  • the vertical projection of the lower surface 201-down of the current limiting area of the sidewall is a lower surface distance T-down
  • the surface distance T-up is smaller than the lower surface distance T-down.
  • the vertical projection of the upper surface 201-up of the sidewall current limiting area and the lower surface 201-down of the sidewall current limiting area may partially overlap.
  • the outer surface 201-out of the sidewall current limiting area has a sidewall distance DS, wherein the inner surface 201-in of the sidewall current limiting area has a first depth D1, and the sidewall distance DS is equal to the first depth D1.
  • the outer surface 201-out of the sidewall current limiting region has a sidewall distance DS, wherein the inner surface 201-in of the sidewall current limiting region has a first depth D1, and the sidewall distance DS is substantially equal to the first depth D1.
  • the upper surface 201-up of the side wall current limiting area and the outer surface 201-out of the side wall current limiting area have a first included angle ⁇ 1, wherein the top surface 201-up of the side wall current limiting area and the side wall current limiting area
  • the inner surface 201-in has a second included angle ⁇ 2, the first included angle ⁇ 1 and the second included angle ⁇ 2 are close to or reach a right angle of 90 degrees, and may also be an obtuse angle, that is, greater than 90 degrees, or an acute angle, that is, less than 90 degrees.
  • the sidewall current limiting region 201 is located in a sidewall region of the first type semiconductor layer and has a first lateral width T1A.
  • the sidewall current limiting region 201 is located in a sidewall region of the light emitting layer and has a second lateral width T1B.
  • the sidewall current limiting region 201 is located in a sidewall region of the second type semiconductor layer and has a third lateral width T1C.
  • the first lateral width T1A overlaps with the vertical projections of the second lateral width T1B and the third lateral width T1C; wherein the vertical projection distance of the first lateral width T1A is greater than the third lateral width T1C The vertical projection distance.
  • the vertical projection distance of the first lateral width T1A is smaller than the vertical projection distance of the third lateral width T1C.
  • the vertical projection distance of the first lateral width T1A is equal to the vertical projection distance of the third lateral width T1C.
  • Such a Micro-LED device may further include a second current limiting area 202 surrounded by the sidewall current limiting area, wherein the shortest distance between the sidewall current limiting area and the second current limiting area 202 is 50 ⁇ m or more Small width.
  • the second current limiting region 202 can improve the uniformity of the current distribution and improve the light emitting efficiency of the micro light emitting diode.
  • the upper surface 102-up of the second type semiconductor layer is coplanar with the upper surface 201-up of the sidewall current limiting area and the upper surface 202-up of the second current limiting area.
  • a third current limiting region 203 may be further included between the sidewall current limiting region and the second current limiting region 202 and in contact with the second current limiting region 202.
  • the upper surface 203-up of the third current limiting area is coplanar with the upper surface 201-up of the sidewall current limiting area.
  • the second current limiting region 202 has a second depth D2
  • the third current limiting region 203 has a third depth D3
  • the second depth D2 is equal to the third depth D3.
  • the Micro-LED device may further include a transparent electrode 301 located above the second semiconductor 102 and electrically connected to the second type semiconductor 102, and the transparent electrode 301 covers the sidewall current limiting area The upper surface 201-up and the upper surface 203-up covering the third current limiting area.
  • it may further include an electrode 302 located above the second semiconductor 102 and electrically connected to the transparent electrode 301, and the electrode 302 is in direct contact with the second current limiting region 202; It includes an electrode extension 303 located above the transparent electrode 301 and electrically connected to the electrode 302.
  • the second current limiting region 202 may be located at an intermediate position of the second semiconductor region 102.
  • the Micro-LED device may further include a transparent electrode 301 located above the second semiconductor 102 and electrically connected to the second semiconductor 102, and the transparent electrode 301 covers the sidewall current limiting area. Upper surface 201-up.
  • an electrode 302 may be further located above the second semiconductor 102 and electrically connected to the transparent electrode 301, and the electrode 302 is in direct contact with the second current limiting region 202, which can avoid the problem of electrode falling off.
  • the transparent electrode has high light transmittance and improves the light emitting efficiency of the micro light emitting diode. It further includes an electrode extension 303 located above the transparent electrode 301 and electrically connected to the electrode 302.
  • the sidewall current limiting region 201, the second current limiting region 202, and the third current limiting region 203 may be formed by an ion implantation technique. Ion implantation technology can improve surface flatness and product stability.
  • the sidewall current-limiting region 201, the second current-limiting region 202, and the third current-limiting region 203 can also be formed by diffusion technology or thin film deposition.
  • the upper surface of the sidewall current limiting region has a first width T-up greater than or equal to 1 ⁇ m.
  • the light emitting layer includes a single quantum well and a multilayer quantum well structure.
  • the light-emitting layer includes a single-layer quantum wire and a multi-layer quantum wire structure.
  • the light emitting layer includes a single-layer quantum dot (dot) and a multi-layer quantum dot structure.
  • the Micro-LED device may further include a back electrode 304 located below the first type semiconductor layer, and the back electrode 304 is electrically connected to the first type semiconductor layer.
  • the sidewall current-limiting region 201 or the second current-limiting region 202 or the third current-limiting region 203 can be formed by an epitaxial re-growth technology of metal organic chemical vapor deposition (MOCVD).
  • MOCVD metal organic chemical vapor deposition
  • the sidewall current-limiting region 201 or the second current-limiting region 202 or the third current-limiting region 203 is formed by a molecular beam epitaxy (MBE) epitaxial re-growth technology.
  • MBE molecular beam epitaxy
  • the sidewall current limiting region 201 or the second current limiting region 202 or the third current limiting region 203 is formed by an atomic layer chemical vapor deposition system (Atomic Layer Chemical Vapor Deposition System, ALD) technology.
  • ALD atomic layer chemical vapor deposition System
  • the sidewall current limiting region 201 or the second current limiting region 202 or the third current limiting region 203 is formed by a laser surface modification technology.
  • the upper surface 201-up of the side wall current limiting area and the outer surface 201-out of the side wall current limiting area have a first included angle ⁇ 1, wherein the top surface 201-up of the side wall current limiting area and the side wall current limiting area
  • the inner surface 201-in has a second included angle ⁇ 2, the first included angle ⁇ 1 is an acute angle less than 90 degrees, and the second included angle ⁇ 2 is an obtuse angle greater than 90 degrees.
  • the upper surface 201-up of the side wall current limiting area and the outer surface 201-out of the side wall current limiting area have a first included angle ⁇ 1, wherein the top surface 201-up of the side wall current limiting area and the side wall current
  • the inner surface 201-in of the restricted area has a second included angle ⁇ 2, the first included angle ⁇ 1 is an obtuse angle greater than 90 degrees, and the second included angle ⁇ 2 is an acute angle less than 90 degrees.
  • the sidewall current limiting region 201 or the second current limiting region 202 or the third current limiting region 203 may be formed by a selective oxidation technique.
  • the sidewall current limiting region 201 or the second current limiting region 202 or the third current limiting region 203 is formed by a thermal oxidation technology.
  • the sidewall current-limiting region 201 or the second current-limiting region 202 or the third current-limiting region 203 is formed by a high temperature wet oxidation (Wet Thermal Oxidation) technology.
  • micro light emitting diode is formed on a growth substrate 100, wherein the step of forming the micro light emitting diode includes:
  • micro LEDs that passed the test are transferred to the permanent substrate for the first time, and a vacancy for removing the abnormal micro LED is left on the permanent substrate;
  • the second transfer fills the vacancy on the permanent substrate.
  • the abnormal micro-light-emitting diodes can be removed in advance through the massive detection, which can improve the yield of the massive transfer and save additional repair costs after the massive transfer.
  • the first selective removal of the abnormal micro LED can be performed by introducing a laser to change the viscosity of the sacrificial layer, so that the abnormal micro LED can be removed from the test substrate.
  • the first transfer method may be to change the viscosity of the sacrificial layer by introducing a laser to transfer the micro light emitting diode from the test substrate to the permanent substrate.
  • the second transfer method may be to change the viscosity of the sacrificial layer by introducing a laser to transfer the micro light emitting diode from the test substrate to the permanent substrate.
  • Using laser to change the viscosity of the sacrificial layer can increase the rate of huge transfers, reduce production costs, and improve production yield.
  • the first transferred micro light emitting diode and the second transferred micro light emitting diode are from the same growth substrate, or may be from different growth substrates.
  • the above-mentioned manufacturing method of the Micro-LED device may use a magnetic bonding layer, and the micro light emitting diode is temporarily bonded to a test substrate by the magnetic bonding layer.
  • the first selective removal of the abnormal micro light emitting diode may be to remove the abnormal micro light emitting diode from the test substrate by changing the magnetic force of the magnetic bonding layer.
  • the first transfer method may be to transfer the micro light emitting diode from the test substrate to the permanent substrate by changing the magnetic force of the magnetic bonding layer.
  • the second transfer method may be to transfer the micro light emitting diode from the test substrate to the permanent substrate by changing the magnetic force of the magnetic bonding layer.
  • the magnetic bonding layer can increase the speed and yield of testing and transfer, and reduce production costs.
  • the manufacturing method of the Micro-LED device may use a vacuum adsorption layer, and the micro light emitting diode is bonded to a test substrate through the vacuum adsorption layer.
  • the first selective removal of the abnormal micro light emitting diode may be to remove the abnormal micro light emitting diode from the test substrate by changing the suction of the vacuum adsorption layer.
  • the first transfer method may be to transfer the micro light emitting diode from the test substrate to the permanent substrate by changing the suction force of the vacuum adsorption layer.
  • the second transfer method may be to transfer the micro light emitting diode from the test substrate to the permanent substrate by changing the suction force of the vacuum adsorption layer.
  • the vacuum adsorption layer can improve the speed and yield of testing and transfer, and reduce production costs.
  • the manufacturing method of the Micro-LED device may use an electrostatic adsorption layer, and the miniature light emitting diode is bonded to a test substrate by the electrostatic adsorption layer.
  • the first selective removal of the abnormal micro light emitting diode may be to remove the abnormal micro light emitting diode from the test substrate by changing the electrostatic force of the electrostatic adsorption layer.
  • the first transfer mode may be to transfer the micro light emitting diode from the test substrate to the permanent substrate by changing the electrostatic force of the electrostatic adsorption layer.
  • the second transfer method may be to transfer the micro light emitting diode from the test substrate to the permanent substrate by changing the electrostatic force of the electrostatic adsorption layer.
  • the manufacturing method of the Micro-LED device may use an adhesive layer, and the micro light emitting diode is bonded to a test substrate through the adhesive layer.
  • the first selective removal of the abnormal micro LED can be performed by changing the adhesion of the adhesive layer to remove the abnormal micro LED from the test substrate.
  • the first transfer method may be to transfer the micro light emitting diode from the test substrate to the permanent substrate by changing the adhesive force of the adhesive layer.
  • the second transfer method may be to transfer the micro light emitting diode from the test substrate to the permanent substrate by changing the adhesive force of the adhesive layer. With the adhesive layer, the speed and yield of testing and transfer can be improved, and production costs can be reduced.
  • the first selective removal of the abnormal miniature LED has a first removal rate
  • the micro-light-emitting diode that passed the test for the first time has a first transfer rate on the permanent substrate
  • the second transfer fills a vacancy on the permanent substrate and has a second transfer rate
  • the first transfer rate is greater than the second transfer rate, and the first removal rate is greater than or equal to the second rate transfer rate.
  • the micro-light-emitting diode that passed the test for the first time has a first transfer rate on the permanent substrate
  • the second transfer fills a vacancy on the permanent substrate and has a second transfer rate
  • the first transfer rate is greater than the second transfer rate.
  • the miniature light emitting diodes on the growth substrate 100 are at a first pitch P1;
  • the miniature light emitting diodes on the permanent substrate 820 are separated by a second distance P2;
  • the second pitch P2 is greater than or equal to the first pitch P1.
  • the micro light emitting diode includes at least a matrix structure composed of a red light emitting diode, a green light emitting diode, and a blue light emitting diode.
  • the production method further includes:
  • a light-transmitting colloid F is formed to cover the micro light-emitting diode.
  • the file wall structure 850 can improve the display contrast of the micro light emitting diode display.
  • the miniature light emitting diode may include at least a matrix structure composed of ultraviolet light emitting diodes.
  • Micro-LED device For the manufacturing method of the above-mentioned Micro-LED device, it further includes:
  • a third fluorescent colloid F3 is formed to cover the micro light emitting diode, and the micro light emitting diode excites the third fluorescent colloid to emit green light.
  • the miniature light emitting diode includes at least a matrix structure composed of a blue light emitting diode.
  • Micro-LED device which further includes:
  • a third fluorescent colloid F3 is formed to cover the micro light emitting diode, and the micro light emitting diode excites the third fluorescent colloid to emit green light.
  • the micro-light emitting diode has a luminous efficiency higher than 250 lumens per watt [lm / W].
  • the color display index R9 of the miniature light emitting diode is greater than 90.
  • the color rendering index (CRI) of the miniature light emitting diode is greater than 90.
  • the average color rendering index Ra of the miniature light emitting diode is greater than 90.
  • the permanent substrate 820 is a flexible substrate.
  • the material of the flexible substrate may include ultra-thin glass, metal substrate, fiber-reinforced composite material, fiber-reinforced composite material, And plastic film (Ceramics), or ceramic substrates (Ceramics), or any combination of two or more of the above materials.
  • Flexible substrates can be used as applications for flexible displays.
  • the thermal expansion coefficient (Coefficieient of thermal expansion) of the metal substrate is similar to that of thin glass.
  • the plastic film has a light transmittance greater than 90%.
  • the material of the plastic film is, for example, polyethylene terephthalate (PET), polyethylene naphthalate (PEN), or polyethersulfone (PES).
  • the fiber-reinforced composite material is, for example, carbon fibers, silicon carbide fibers, or boron filaments.
  • the preferred thickness of the flexible substrate is less than 200 ⁇ m, the more preferred thickness is less than 50 ⁇ m, and the optimal thickness is between 25 ⁇ m and 50 ⁇ m.
  • the metal substrate is, for example, stainless steel, aluminum, nickel, titanium, titanium, zirconiu, copper, iron, cobalt, or palladium. ), Or a combination of any two or more of the above.
  • the surface roughness Ra of the metal substrate is less than 10 nm.
  • the permanent substrate 820 is a transparent substrate.
  • the material of the transparent substrate is, for example, ordinary glass, hard glass, quartz glass, ceramic, or plastic.
  • micro light emitting diode is formed on a growth substrate, wherein the step of forming the micro light emitting diode includes
  • the first container contains a first liquid to cover the micro light emitting diode
  • Fluid transfer has the advantages of low cost and fast transfer speed.
  • the second transfer method may be to transfer the micro light emitting diode to the receiving substrate by changing the flow rate of the first liquid.
  • the second transfer method may also be to transfer the micro light emitting diode to the receiving substrate by changing the viscosity of the first liquid.
  • the second transfer method may also be to transfer the micro light emitting diode to the receiving substrate by changing the capture rate of the receiving substrate.
  • the second transfer method may also be to transfer the micro light emitting diode to the receiving substrate by changing the capture rate of the receiving substrate.
  • the manufacturing method of the Micro-LED device further includes a sacrificial layer, such as the sacrificial layer (700) in FIG. 9-6 or FIG. 10-6 or FIG. 28-6.
  • the sacrificial layer is used to bond the micro light emitting diode to a test substrate.
  • the first selective removal of the abnormal micro-LED can be performed by introducing a laser to change the viscosity of the sacrificial layer, so that the abnormal micro-LED is removed from the test substrate.
  • the first transfer method may be to change the viscosity of the sacrificial layer by introducing a laser to transfer the micro light emitting diode from the test substrate into the first container. With the sacrificial layer and laser, the speed and yield of testing and transfer can be improved, and production costs can be reduced.
  • the first transferred micro light emitting diode and the second transferred micro light emitting diode are from the same growth substrate. Alternatively, the first transferred micro light emitting diode and the second transferred micro light emitting diode are from different growth substrates.
  • the manufacturing method of the Micro-LED device can use a magnetic bonding layer, and the micro light emitting diode is bonded to a test substrate by the magnetic bonding layer.
  • the first selective shifting of the abnormal micro light emitting diode may be to remove the abnormal micro light emitting diode from the test substrate by changing the magnetic force of the magnetic bonding layer.
  • the first transfer method may be to transfer the micro-light-emitting diode from the test substrate to the first container by changing the magnetic force of the magnetic bonding layer.
  • the magnetic bonding layer can increase the speed and yield of testing and transfer, and reduce production costs.
  • the manufacturing method of the Micro-LED device may use a vacuum adsorption layer, and the micro light emitting diode is bonded to a test substrate by the vacuum adsorption layer.
  • the first selective removal of the abnormal micro light emitting diode may be to remove the abnormal micro light emitting diode from the test substrate by changing the suction of the vacuum adsorption layer.
  • the first transfer method may be to transfer the micro light emitting diode from the test substrate to the first container by changing the suction force of the vacuum adsorption layer.
  • the vacuum adsorption layer can improve the speed and yield of testing and transfer, and reduce production costs.
  • the manufacturing method of the Micro-LED device may use an electrostatic adsorption layer, and the micro light emitting diode is bonded to a test substrate by the electrostatic adsorption layer.
  • the first selective removal of the abnormal micro light emitting diode may be to remove the abnormal micro light emitting diode from the test substrate by changing the electrostatic force of the electrostatic adsorption layer.
  • the first transfer method may be to transfer the micro light emitting diode from the test substrate to the first container by changing the electrostatic force of the electrostatic adsorption layer. With the electrostatic adsorption layer, the speed and yield of testing and transfer can be improved, and production costs can be reduced.
  • the manufacturing method of the Micro-LED device may use an adhesive layer, and the micro light-emitting diode is bonded to a test substrate through the adhesive layer.
  • the first selective removal of the abnormal micro light emitting diode may be to remove the abnormal micro light emitting diode from the test substrate by changing the adhesive force of the adhesive layer.
  • the first transfer method may be to transfer the micro light emitting diode from the test substrate to the first container by changing an adhesive force of the adhesive layer. With the adhesive layer, the speed and yield of testing and transfer can be improved, and production costs can be reduced.
  • the manufacturing method of the Micro-LED device wherein the selective removal of the abnormal micro light emitting diode has a first removal rate
  • the micro-light-emitting diode that passed the test for the first time has a first transfer rate in a first container
  • the second transfer of the micro light emitting diode to a receiving substrate has a second transfer rate
  • the first transfer rate is greater than the second transfer rate and the first removal rate is greater than or equal to the second transfer rate.
  • the second transfer of the micro light emitting diode to a receiving substrate has a second transfer rate
  • the first transfer rate is greater than the second transfer rate.
  • the miniature light emitting diodes on the growth substrate 100 are at a first pitch P1;
  • the second pitch P2 is greater than or equal to the first pitch P1.
  • the miniature light emitting diodes on the growth substrate 100 are at a first pitch P1;
  • the second pitch P2 is greater than the first pitch P1.
  • the micro light emitting diode includes at least a matrix structure composed of a red light emitting diode, a green light emitting diode, and a blue light emitting diode. In this case, it contains:
  • a light-transmitting colloid F is formed to cover the micro light-emitting diode.
  • the file wall structure 850 can improve the display contrast of the micro light emitting diode display.
  • the miniature light emitting diode includes at least a matrix structure composed of ultraviolet light emitting diodes. In this case, even more
  • a third fluorescent colloid F3 is formed to cover the micro light emitting diode, and the micro light emitting diode excites the third fluorescent colloid to emit green light.
  • the miniature light emitting diode includes at least a matrix structure composed of a blue light emitting diode. In this case, even more
  • a third fluorescent colloid F3 is formed to cover the micro light emitting diode, and the micro light emitting diode excites the third fluorescent colloid to emit green light.
  • the micro-light emitting diode has a luminous efficiency higher than 250 lumens per watt [lm / W].
  • the color display index R9 of the miniature light emitting diode is greater than 90.
  • the color rendering index (CRI) of the miniature light emitting diode is greater than 90.
  • the average color rendering index Ra of the miniature light emitting diode is greater than 90.
  • micro light emitting diode is formed on a growth substrate, wherein the step of forming the micro light emitting diode includes:
  • the micro light emitting diode includes a micro light emitting diode of a first color, a micro light emitting diode of a second color, and a micro light emitting diode of a third color;
  • the micro-light-emitting diode of the first color passing the test is transferred into a first container, and the first container is placed in a first sub-cavity, and the first sub-cavity contains a liquid to micro-light the first color. Diode coating
  • the second sub-cavity contains a liquid that micro-luminesces the second color.
  • the third sub-cavity contains a liquid that micro-luminesces the third color.
  • the micro square photodiodes of the first color, the micro light emitting diodes of the second color, and the micro light emitting diodes of the third color are respectively transferred to a receiving substrate.
  • Fluid transfer has the advantages of low cost and fast transfer speed
  • the receiving substrate has a plurality of grooves, and a plurality of programmable suction layers are provided in the substrate.
  • the suction layers can provide an electric attraction, a magnetic attraction, an electrostatic attraction, a fluid attraction, and an air attraction.
  • the attractive force of Van der Waals, the thermal attraction, and the cladding attraction can generate the attraction of the miniature light-emitting diodes in the fluid.
  • the fluid transfer system includes a first sub-cavity, a second sub-cavity, and a third sub-cavity.
  • the first sub-cavity has a plurality of micro-lights of a first color.
  • the diode includes a solution, a first valve, and a first input port.
  • the first valve When the first valve is opened, a plurality of miniature light-emitting diodes of the first color are entered downward by the solution injected by the first input port through the first valve.
  • the main cavity is moved to the corresponding groove above the substrate by the fluid, and the micro-light emitting diode of the first color is attracted by the suction force of the suction layer on the substrate, and self-aligns into the groove, wherein
  • the groove has the same appearance as the micro LED of the first color, and the micro LED of the first color is transferred to the substrate.
  • the second sub-cavity has a plurality of micro-light-emitting diodes of the second color, and contains a solution, a second valve and a first input port.
  • the micro-light-emitting diodes of the second color are multiple.
  • the solution injected by the second input port enters the main cavity downward through the second valve, and moves to the corresponding groove above the substrate by the fluid.
  • the micro-light emitting diode of the second color is subjected to the Attracted by the suction force of the suction layer, it is self-aligned into the groove, wherein the groove has the same appearance as the micro LED of the second color, and the micro LED of the second color is transferred to the substrate.
  • Fluid transfer has the advantages of low cost and fast transfer speed
  • the third sub-cavity has a plurality of micro-light-emitting diodes of a third color, and contains a solution, and a third valve and a third input port.
  • the third valve When the third valve is opened, the micro-light-emitting diodes of a third color are multiple.
  • the solution injected by the third input port enters the main cavity downward through the third valve, and moves to the corresponding groove above the substrate through the fluid.
  • the third-color micro light-emitting diode is subjected to the Attracted by the suction force of the suction layer, it is self-aligned into the groove, wherein the groove has the same appearance as the micro LED of the third color, and the magnetic micro LED of the third color is transferred to the substrate. .
  • a first type semiconductor layer 101 is formed by:
  • a second type semiconductor layer 102 is formed on a first type semiconductor layer 102;
  • a first current-limiting region 201 is located on four sides of the second-type semiconductor layer 102 and a sidewall region.
  • the first current limiting region 201 can reduce the side wall leakage current and improve the light emitting efficiency of the micro light emitting diode.
  • the upper surface U6 of the second type semiconductor layer 102 is coplanar with the upper surface U1 of the first current limiting region 201.
  • the above-mentioned Micro-LED device may further include a transparent electrode 301 located above the second-type semiconductor layer 102 and electrically connected to the second-type semiconductor layer 102, and the transparent electrode 301 covers the first Current limit area 201.
  • an electrode 302 may be further included above the second type semiconductor layer 102 and electrically connected to the transparent electrode 301, and the electrode 302 is in direct contact with the second type semiconductor layer 102, which can be avoided.
  • the problem of electrode falling off improves product stability.
  • It may further include another electrode 304, which is located above the first type semiconductor layer 101 and the second type semiconductor layer 102 and is electrically connected to the first type semiconductor layer 101, and the other electrode 304 and the first type The semiconductor layer 102 is in direct contact.
  • the transparent electrode has high light transmittance and improves the light emitting efficiency of the micro light emitting diode. It may further include a fifth current blocking region 505 covering the transparent electrode 301 and isolating the electrode 302 from the other electrode 304.
  • the other electrode 304 has a fourth width T4.
  • the electrode has a fifth width T5.
  • the fourth width T4 is greater than or equal to the fifth width T5.
  • the contact electrode of the other electrode 304 and the first-type semiconductor layer has a third width T3, and the third width T3 is smaller than the fourth width T4.
  • the first current limiting region 201 is formed by an ion implantation technique. Ion implantation technology can improve the flatness of the sidewall and improve the stability of the product.
  • the first current limiting region 201 has a first width T1 greater than or equal to 1 ⁇ m.
  • the Micro-LED device may include an etching trench 105.
  • the trench is formed by removing a portion of the second type semiconductor layer 102 and the light emitting layer 103 and exposing the first type semiconductor layer 101.
  • the trench has a The seventh depth D7, wherein the first current limiting area has a first depth D1, and the first depth D1 is less than or equal to the seventh depth D7.
  • a fifth current blocking region 505 is further included.
  • the fifth current blocking region 505 is located on a sidewall of the etched trench.
  • the first type semiconductor layer 101, the second type semiconductor layer 102, and the light emitting layer 103 have an epitaxial thickness (E1), and the thickness is less than 10 ⁇ m.
  • the Micro-LED device may include a sixth current blocking region 506, which covers the side wall of the second semiconductor body 102, the side wall of the light emitting layer 103, and the first type semiconductor. A sidewall of the layer 101, and the sixth current blocking region 506 surrounds the first current limiting region 201.
  • the Micro-LED device may include a fourth current-limiting region 204 surrounded by the first current-limiting region 201.
  • the first current-limiting region 201 has a first depth D1 and the fourth current-limiting region 204.
  • the fourth current limiting region 204 is formed by an ion implantation technique.
  • the upper surface U4 of the fourth current limiting region 204 is coplanar with the upper surface U6 of the second type semiconductor layer 102.
  • the fifth current limiting region 205 is formed by an ion implantation technique.
  • the upper surface U5 of the fifth current limiting region 205 is coplanar with the upper surface U6 of the second type semiconductor layer 102.
  • the Micro-LED device may include a fifth current-limiting region 205 surrounded by the first current-limiting region 201.
  • the first current-limiting region 201 has a first depth D1 and the fifth current-limiting region 205. There is a fifth depth D5, the first depth D1 is equal to the fifth depth D5, and the fifth current limiting region 205 surrounds the etching trench 105.
  • the Micro-LED device may include a fourth current blocking region 504 which is surrounded by the first current limiting region 201 and is in direct contact with the second-type semiconductor layer 102.
  • a periphery of the first current limiting region 201 has a first length S1, a second length S2, a third length S3, and a fourth length S4.
  • the first length S1, the second length S2, the third length S3, and the fourth length S4 are less than or equal to 100 ⁇ m.
  • a periphery of the first current limiting region 201 has a first length S1, a second length S2, a third length S3, and a fourth length S4.
  • the sum of the first length S1, the second length S2, the third length S3, and the fourth length S4 is less than or equal to 400 ⁇ m.
  • the micro-light emitting diode has a luminous efficiency higher than 250 lumens per watt [lm / W].
  • the color display index R9 of the miniature light emitting diode is greater than 90.
  • the color rendering index (CRI) of the miniature light emitting diode is greater than 90.
  • the average color rendering index Ra of the miniature light emitting diode is greater than 90.
  • the peripheral perimeter of the first current-limiting region 201 is 400 ⁇ m or less; or the distance of the peripheral perimeter of the first current-limiting region 201 has a width of 200 ⁇ m or less; or the peripheral perimeter of the first current-limiting region 201 A distance of 100 ⁇ m or less; or a distance of 50 ⁇ m or less of the circumference of the first current-limiting region 201; or a distance of 20 ⁇ m or less of the circumference of the first current-limiting region 201. Small width.
  • the above ion implantation technology can be used with any material, such as, but not limited to, H +, He +, N +, F +, Mg +, Ar +, Zn +, O +, Si +, P +, Be +, C +, B +, P +, As + , Sb +, Te +, Fe +, Co +, Sn +, Zr +, Ag +, Au +, Ti +, Al +, ions, or a combination thereof.
  • the ion implantation technology first passes ions through a mass analyzer to remove unnecessary ions using a magnetic field, and after the screened doped ions enter the accelerator, the electric field is used to accelerate to high energy.
  • the high-energy ion beam is directly injected into the semiconductor to preset the doped ions.
  • the preset doping concentration can be controlled by the current and implantation time of the ion beam; and the distribution of the dopant in the semiconductor can be obtained by the energy obtained by the acceleration of the ion Adjust, so you can accurately grasp the concentration and distribution of doped ions in the semiconductor.
  • RTA rapid heating treatment
  • Furnace high temperature furnace tube
  • the first type semiconductor layer 101, the second type semiconductor layer 102, and the light emitting layer 103 may include any material, such as, but not limited to, gallium nitride (GaN) and aluminum nitride (AlN).
  • the individual micro light emitting diodes can be controlled independently.
  • a method for manufacturing a micro-LED device includes:
  • micro light emitting diode is formed on a growth substrate, wherein the step of forming the micro light emitting diode includes:
  • micro LEDs that passed the test are transferred to the permanent substrate for the first time, and a vacancy for removing the abnormal micro LED is left on the permanent substrate;
  • the second transfer fills the vacancy on the permanent substrate.
  • the manufacturing method of the Micro-LED device further includes a sacrificial layer, such as the sacrificial layer (700) in FIG. 9-6 or FIG. 10-6 or FIG. 28-6.
  • the sacrificial layer is used to connect the micro light emitting diode and a test substrate. Join.
  • the first selective removal of the abnormal micro LED can be performed by introducing a laser to change the viscosity of the sacrificial layer, so that the abnormal micro LED can be removed from the test substrate.
  • the first transfer method may be to change the viscosity of the sacrificial layer by introducing a laser to transfer the micro light emitting diode from the test substrate to the permanent substrate.
  • the second transfer method may be to change the viscosity of the sacrificial layer by introducing a laser to transfer the micro light emitting diode from the test substrate to the permanent substrate.
  • the first transferred micro light emitting diode and the second transferred micro light emitting diode are from different growth substrates.
  • the manufacturing method of the Micro-LED device further includes a magnetic bonding layer, and the micro-light emitting diode is temporarily bonded to a test substrate by the magnetic bonding layer.
  • the first selective removal of the abnormal micro light emitting diode may be to remove the abnormal micro light emitting diode from the test substrate by changing the magnetic force of the magnetic bonding layer.
  • the first transfer method may be to transfer the micro light emitting diode from the test substrate to the permanent substrate by changing the magnetic force of the magnetic bonding layer.
  • the second transfer method may be to transfer the micro light emitting diode from the test substrate to the permanent substrate by changing the magnetic force of the magnetic bonding layer.
  • the first selective removal of the abnormal micro light emitting diode may be to remove the abnormal micro light emitting diode from the test substrate by changing the suction of the vacuum adsorption layer.
  • the first transfer method may be to transfer the micro light emitting diode from the test substrate to the permanent substrate by changing the suction force of the vacuum adsorption layer.
  • the second transfer method may be to transfer the micro light emitting diode from the test substrate to the permanent substrate by changing the suction force of the vacuum adsorption layer.
  • the first transferred micro light emitting diode and the second transferred micro light emitting diode may be from the same growth substrate.
  • the manufacturing method of the Micro-LED device may further include a vacuum adsorption layer, and the micro light emitting diode is bonded to a test substrate by the vacuum adsorption layer.
  • the method for manufacturing such a Micro-LED device further includes an electrostatic adsorption layer, and the miniature light emitting diode is bonded to a test substrate through the electrostatic adsorption layer.
  • the first selective removal of the abnormal micro light emitting diode may be to remove the abnormal micro light emitting diode from the test substrate by changing the electrostatic force of the electrostatic adsorption layer.
  • the first transfer mode may be to transfer the micro light emitting diode from the test substrate to the permanent substrate by changing the electrostatic force of the electrostatic adsorption layer.
  • the second transfer method may be to transfer the micro light emitting diode from the test substrate to the permanent substrate by changing the electrostatic force of the electrostatic adsorption layer.
  • the method for manufacturing the Micro-LED device further includes an adhesive layer, and the micro light emitting diode is bonded to a test substrate by the adhesive layer.
  • the first selective removal of the abnormal micro light emitting diode may be to remove the abnormal micro light emitting diode from the test substrate by changing the adhesive force of the adhesive layer.
  • the first transfer method may be to transfer the micro light emitting diode from the test substrate to the permanent substrate by changing the adhesive force of the adhesive layer.
  • the second transfer method may be to transfer the micro light emitting diode from the test substrate to the permanent substrate by changing the adhesive force of the adhesive layer.
  • the first selective removal of the abnormal miniature LED has a first removal rate
  • the micro-light-emitting diode that passed the test for the first time has a first transfer rate on the permanent substrate
  • the second transfer fills a vacancy on the permanent substrate and has a second transfer rate
  • the first transfer rate is greater than the second transfer rate, and the first removal rate is greater than or equal to the second rate transfer rate.
  • the micro-light-emitting diode that passed the test for the first time has a first transfer rate on the permanent substrate
  • the second transfer fills a vacancy on the permanent substrate and has a second transfer rate
  • the first transfer rate is greater than the second transfer rate.
  • the miniature light emitting diodes on the growth substrate 100 are at a first pitch P1;
  • the micro-light-emitting diodes on the conveyor board 801 are at a second distance P2;
  • the miniature light emitting diodes on the permanent substrate 820 have a third pitch P3;
  • the second pitch P2 is greater than or equal to the first pitch P1;
  • the third pitch P3 is greater than or equal to the second pitch P2.
  • the miniature light emitting diodes on the growth substrate 100 are at a first pitch P1;
  • the micro-light-emitting diodes on the conveyor board 801 are at a second distance P2;
  • the miniature light emitting diodes on the permanent substrate 820 have a third pitch P3;
  • the second pitch P2 is greater than the first pitch P1.
  • the third pitch P3 is greater than the second pitch P2.
  • the miniature light emitting diode includes at least a matrix structure composed of a red light emitting diode, a green light emitting diode, and a blue light emitting diode. Among them, it also contains:
  • a light-transmitting colloid F is formed to cover the micro light-emitting diode.
  • the miniature light emitting diode includes at least a matrix structure composed of ultraviolet light emitting diodes.
  • the above method further includes:
  • a third fluorescent colloid F3 is formed to cover the micro light emitting diode, and the micro light emitting diode excites the third fluorescent colloid to emit green light.
  • the miniature light emitting diode includes at least a matrix structure composed of blue light emitting diodes.
  • the above method further includes:
  • a third fluorescent colloid F3 is formed to cover the micro light emitting diode, and the micro light emitting diode excites the third fluorescent colloid to emit green light.
  • the micro-light emitting diode has a luminous efficiency higher than 250 lumens per watt [lm / W].
  • the color display index R9 of the miniature light emitting diode is greater than 90.
  • the color rendering index (CRI) of the miniature light emitting diode is greater than 90.
  • the average color rendering index Ra of the miniature light emitting diode is greater than 90.
  • the micro-light-emitting diodes that pass the first transfer test on the permanent substrate have a first transfer rate, and the first transfer rate is greater than 1 million micro-LEDs / hour.
  • the micro-light-emitting diodes that pass the test for the first time have a first transfer rate on the permanent substrate, and the first transfer rate is greater than 10 million micro-LEDs per hour [Million Micro-LEDs / hour ].
  • the micro-light-emitting diodes that pass the first transfer test on the permanent substrate have a first transfer rate, and the first transfer rate is greater than 20 million micro-LEDs per hour [Million Micro-LEDs / hour ].
  • the micro-light-emitting diodes that pass the test for the first time have a first transfer rate on the permanent substrate, and the first transfer rate is greater than 100 million micro-LEDs / hour ].
  • the micro-light-emitting diodes that pass the first transfer test on the permanent substrate have a first transfer rate that is greater than 200 million micro-LEDs per hour [Million Micro-LEDs / hour ].
  • the micro-light-emitting diodes that pass the test for the first time on the permanent substrate have a first transfer rate, and the first transfer rate is greater than 500 million micro-LEDs per hour [Million Micro-LEDs / hour ].
  • the first selective removal of the abnormal micro-LEDs has a first removal rate, and the first removal rate is greater than 1 million micro-LEDs / hour.
  • the first selective removal of the abnormal micro-LEDs has a first removal rate, and the first removal rate is greater than 10 million micro-LEDs / hour.
  • the first selective removal of the abnormal micro-LEDs has a first removal rate, and the first removal rate is greater than 20 million micro-LEDs / hour.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Led Devices (AREA)
  • Electroluminescent Light Sources (AREA)
  • Led Device Packages (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Abstract

一种微型发光二极管(Micro-LED)装置,包括一第一型半导体层(101)、一第二型半导体层(102)、一发光层(103),其位于第一型半导体层(101)及第二型半导体层(102)之间,一第一电流限制区域(201),其位于第二型半导体层(102)的四周围及侧壁区域、一第二电流限制区域(202),其被第一电流限制区域(201)所环绕。其中该第一电流限制区域(201)及第二电流限制区域(202)的最短距离具有50μm或更小宽度。其中第一电流限制区域(201)外围周长为400μm或更小。

Description

一种二极管装置、显示面板及柔性显示器 技术领域
本发明有关于一种微型发光二极管(Micro-LED)装置,特别是有关于一种可以提升发光效率及改善制程良率的微型发光二极管(Micro-LED)装置及及具有该微型发光二极管装置的显示面板和柔性显示器。
背景技术
微型发光二极管(Micro-LED)显示器与传统显示技术,液晶显示器(LCD)和有机发光二极管(OLED)相比具有下列优点:对比度高,响应速度快,色域宽,功耗低,寿命长等潜在优势。但仍然存在一些尚未完全解决的技术挑战,以实现大批量产商业化,其中包括:(1)磊晶芯片与制程,(2)巨量移转,(3)检测与维修。
(1)磊晶芯片与制程:当LED芯片尺寸缩小时其外部量子效率(EQE)也随之降低,其主要损失来自于LED侧壁或表面的缺陷及表面能态,形成非辐射复合(non-radiative recombination),进而降低微型发光二极管的效率。如何降低非辐射复合进而提升发光效率为一大关键技术。
(2)巨量移转:将巨量的Micro-LED,透过高准度的设备转移至显示基板或电路上,称为巨量移转(Mass Transfer)技术,例如:静电转移技术、微转印技术、流体组装技术、光学移转等等,所有的技术目前所面临的关键挑战是如何在合理的时间与合理成本内完成巨量移转。
(3)检测与维修:要如何快速且准确的检测与维修,也是现阶段Micro-LED所面临的技术瓶颈。
发明内容
有鉴于此,本发明提供一种二极管装置、显示面板及柔性显示器,以解决上述技术问题。
为实现上述目的,根据本发明的一个方面,提供了一种二极管装置。
本发明的二极管装置包括:一第一型半导体层(101);一第二型半导体层(102);一发光层(103),其位于该第一型半导体层(101)及该第二型半导体层(102)之间;一侧壁电流限制区域(201),其与该第二形半导体层(102)的四周围侧壁区域接触;其中侧壁电流限制区域(201)外围周长为400μm或更小。
可选地,对于该二极管装置,该侧壁电流限制区域(201)更包括一第一上表面(201-up);该第二型半导体层(102)更包一第二上表面(102-up);并且该第二上表面(102-up)与该第一上表面(201-up)共平面。
可选地,对于该二极管装置,其进一步包括一透明电极(301),该透明电极位于该第二型半导体层(102)的上方,并且与该第二型半导体层(102)电性连接,且该透明电极(301)部分覆盖该侧壁电流限制区域(201)。
可选地,对于该二极管装置,其进一步包括一电极(302),位于该第二型半导体层(102)的上方并与该透明电极(301)电性连结,且该电极(302)与该第二型半导体层(102)接触。
可选地,对于该二极管装置,该侧壁电流限制区域(201)更包括一第一上表面(201-up);该第二型半导体层(102)更包括一第二上表面(102-up);其中第一上表面(201-up)具有一表面低导电率区域
Figure PCTCN2019088648-appb-000001
该第二上表面(102-up)具有一表面高导电率区域
Figure PCTCN2019088648-appb-000002
该表面低导电率区域
Figure PCTCN2019088648-appb-000003
往该表面高导电率区域
Figure PCTCN2019088648-appb-000004
具有一逐渐增导电率的分布。
可选地,对于该二极管装置,该侧壁电流限制区域(201)更包括一第一外表面(201-out);该第二型半导体层(102)更包括一第二外 表面(102-out);该第一外表面(201-out)具有一侧壁低导电率区域
Figure PCTCN2019088648-appb-000005
该第二外表面(102-out)具有一侧壁高导电率区域
Figure PCTCN2019088648-appb-000006
该侧壁低导电率区域
Figure PCTCN2019088648-appb-000007
往该侧壁高导电率区域
Figure PCTCN2019088648-appb-000008
具有一逐渐增导电率的分布。
可选地,对于该二极管装置,其中该侧壁电流限制区域(201)更包括一第一上表面(201-up);该第一上表面(201-up)具有一第一表面粗糙度(RS-201-up),该第一表面粗糙度不超过10纳米。
可选地,对于该二极管装置,该第二型半导体层(102)更包括一第二上表面(102-up);该第二上表面(102-up)具有一第二表面粗糙度(RS-102-up),该第二表面粗糙度不超过10纳米。
可选地,对于该二极管装置,其中该侧壁电流限制区域(201)更包括一第一上表面(201-up);该第二型半导体层(102)更包括一第二上表面(102-up);该第一上表面(201-up)具有一第一表面粗糙度(RS-201-up),该第二上表面(102-up)具有一第二表面粗糙度(RS-102-up),该第一表面粗糙度(RS-201-up)大于或等于该第二表面粗糙度(RS-102-up)。
可选地,对于该二极管装置,其中该侧壁电流限制区域(201)更包括一第一外表面(201-out);该第一外表面(201-out)的粗糙度超过10纳米。
可选地,对于该二极管装置,其中该第二型半导体层(102)更包括一第二外表面(102-out);该第二外表面(102-out)的粗糙度超过10纳米。
可选地,对于该二极管装置,其中该侧壁电流限制区域(201)更包括一第一外表面(201-out);该第二型半导体层(102)更包括一第二外表面(102-out);其中该第一外表面(201-out)具有一第三表面粗糙度(RS-201-out),该第二外表面(102-out)具有一第四表面粗糙度(RS-102-out),该第三表面粗糙度(RS-201-out)大于或等于该第四表面粗糙度(RS-102-out)。
可选地,对于该二极管装置,其中该侧壁电流限制区域(201)更包括一第一上表面(201-up),一第一外表面(201-out),及一第一 内表面(201-in);其中该第一上表面(201-up)与该第一外表面(201-out)具有一第一夹角(Θ1),该第一上表面(201-up)与该第一内表面(201-in)具有一第二夹角(Θ2),该第一夹角(Θ1)及该第二夹角(Θ2)为接近直角90度。
可选地,对于该二极管装置,其进一步包括一磁性层,其位于该第一型半导体层的下方。
可选地,对于该二极管装置,其进一步包括一第二电流限制区域(202),其中该第一电流限制区域(201)及该第二电流限制区域(202)的最短距离具有50μm或更小宽度。
可选地,对于该二极管装置,其进一步包括一第三电流限制区域(203),其位于该第一电流限制区域(201)及该第二电流限制区域(202)之间,并且与该第二电流限制区域(202)接触,其中该第三电流限制区域(203)的上表面与该第一电流限制区域(201)的上表面共平面。
可选地,对于该二极管装置,其中该第一电流限制区域(201)具有一第一深度(D1),该第二电流限制区域(202)具有一第二深度(D2),该第三电流限制区域(203)具有一第三深度(D3),及该第一深度(D1)等于该第二深度(D2)等于该第三深度(D3)。
可选地,对于该二极管装置,其中该侧壁电流限制区域(201)及该第二电流限制区域(202)与该第三电流限制区域(203)借由离子布植技术形成。
根据本发明的另一方面,提供了一种显示面板,其采用本发明的二极管装置组成的阵列。
该显示面板包含:一显示基板,该显示基板包括一微型发光二极管装置阵列,其中一部分微型发光二极管装置具有侧壁电流阻挡区域(501),其中一部分微型发光二极管装置具有侧壁电流限制区域(201);其中每一微型发光二极管装置具有1μm至100μm之一最大宽度;其中每一微型发光二极管装置包括一第一型半导体层(101)、一第二型半导体层(102)及一发光层(103),其位于该第一型半导体层(101)及该第二型半导体层(102)之间;其进一步包含用于切换及驱动该微 型发光二极管装置阵列的电路;其中更包含微型控制器芯片阵列;其中每一微型控制器芯片连接至一扫描驱动电路及一数据驱动电路。
根据本发明的又一方面,提供了一种柔性显示器,其采用本发明的二极管装置组成的阵列。
该柔性显示器包含:一柔性基板(1010),该柔性基板上包括一微型发光二极管装置阵列,其中一部分微型发光二极管装置具有侧壁电流阻挡区域(501),其中一部分微型发光二极管装置具有侧壁电流限制区域(201);其中该侧壁电流阻挡区域(501)由介电材料组成;其中该侧壁电流限制区域借由离子布植技术形成;其中每一微型发光二极管装置的宽度为1μm至100μm;其中每一微型发光二极管装置包括一第一型半导体层(101)、一第二型半导体层(102)及一发光层(103),其位于该第一型半导体层(101)及该第二型半导体层(102)之间;多条扫描线路(1014);多条数据线路(1015);其中每一微型发光二极管装置(1011)连接于一对应的扫描线路(1014)以及一对应的数据线路(1015);其进一步包含驱动该微型发光二极管装置阵列的驱动电路;该驱动电路包含有:一闸极驱动器(1012);一源极驱动器(1013)。
本发明的有益效果为,第一电流限制区域可降低侧壁漏电流,提高微发光二极管发光效率;第二电流限制区域可提高电流分布均匀性,提高微发光二极管发光效率;第三电流限制区域可提高电流分布均匀性,提高微发光二极管发光效率;其中该第一电流限制区域外围周长为400μm或更小,达到微型发光二极管的尺寸量级,从而具备微型发光二极管的各种优点。
附图说明
附图用于更好地理解本发明,不构成对本发明的不当限定。其中:
图1A为传统发光二极管上视图;
图1B为传统发光二极管A-A’剖面图;
图1C为传统发光二极管B-B’剖面图;
图2A,2Q,2T为本发明实施例上视图;
图2B,2D,2F,2H,2J,2L,2N,2R,2U为本发明实施例A-A’剖面图;
图2C,2E,2G,2I,2K,2M,2O,2V为本发明实施例B-B’剖面图;
图2P,2S-up,2S-out,2W为导电式原子力显微镜(Conductive Atomic Force Microscope)导电率量测;
图3A为本发明实施例上视图;
图3B,3D为本发明实施例A-A’剖面图;
图3C,3E为本发明实施例B-B’剖面图;
图4A为本发明实施例上视图;
图4B,4D为本发明实施例A-A’剖面图;
图4C,4E为本发明实施例B-B’剖面图;
图5A为本发明实施例上视图;
图5B为本发明实施例A-A’剖面图;
图5C为本发明实施例B-B’剖面图;
图6A为本发明实施例上视图;
图6B为本发明实施例A-A’剖面图;
图6C为本发明实施例B-B’剖面图;
图7A,7J为本发明实施例上视图;
图7B,7D,7F,7H,7K为本发明实施例A-A’剖面图;
图7C,7E,7G,7I为本发明实施例B-B’剖面图;
图8A为本发明实施例上视图;
图8B为本发明实施例A-A’剖面图;
图8C为本发明实施例B-B’剖面图;
图9-1为半导体结构;
图9-2为形成光罩并借由离子布植定义电流限制区域;
图9-3为移除光罩;
图9-4为形成透明电极、金属电极与金属电极延伸部;
图9-5为形成沟槽;
图9-6为借由一牺牲层将发光极体与测试基板连接;
图9-7为移除成长基板;
图9-8为形成金属电极于第一型半导体层上;
图9-9为借由测试基板与光电侦测器将发光二极管进行电激发光(EL)检测;
图9-10为选择性移除缺陷组件至一收集基板上;
图9-11为巨量阵列移转发光组件于永久基板上;
图9-12为填补空缺移转发光组件于永久基板上;
图9-13为完成移转发光组件于永久基板上;
图9-14为形成档墙及透光胶体于永久基板上;
图9-15为形成档墙及荧光胶体于永久基板上;
图9-16为形成档墙及透光胶体及荧光胶体于永久基板上;
图10-1为半导体结构;
图10-2为形成沟槽;
图10-3为移除光罩;
图10-4为借由介电材料形成电流阻挡区域;
图10-5为形成透明电极、金属电极与金属电极延伸部;
图10-6为借由一牺牲层将发光极体与测试基板连接;
图10-7为移除成长基板;
图10-8为形成金属电极于第一型半导体层上;
图10-9为借由测试基板与光电侦测器将发光二极管进行电激发光(EL)检测;
图10-10为选择性移除缺陷组件至一收集基板上;
图10-11为巨量阵列移转发光组件于永久基板上;
图10-12为填补空缺移转发光组件于永久基板上;
图10-13为完成移转发光组件于永久基板上;
图10-14为形成档墙及透光胶体于永久基板上;
图10-15为形成档墙及荧光胶体于永久基板上;
图10-16为形成档墙及透光胶体及荧光胶体于永久基板上;
图11-1为本发明微型发光二极管的上视图,矩形外观;
图11-2为本发明微型发光二极管的上视图,圆形外观;
图11-3为本发明微型发光二极管的上视图,三角形外观;
图12为将检测后的组件进行选择性巨量移转发光组件于第一容器内,借由第一溶液进行流体移转微型发光二极管至接收基板;
图13为接收基板上视图;
图14为本发明的第一流程图;
图15为本发明的第二流程图;
图16A为本发明实施例上视图;
图16B为本发明实施例A-A’剖面图;
图17A为本发明实施例上视图;
图17B为本发明实施例A-A’剖面图;
图18A为本发明实施例上视图;
图18B为本发明实施例A-A’剖面图;
图19A为本发明实施例上视图;
图19B为本发明实施例A-A’剖面图;
图20A为本发明实施例上视图;
图20B为本发明实施例A-A’剖面图;
图21A为本发明实施例上视图;
图21B为本发明实施例A-A’剖面图;
图22A为本发明实施例上视图;
图22B为本发明实施例A-A’剖面图;
图23A为本发明实施例上视图;
图23B为本发明实施例A-A’剖面图;
图24A为本发明实施例上视图;
图24B为本发明实施例A-A’剖面图;
图25A为本发明实施例上视图;
图25B为本发明实施例A-A’剖面图;
图26A为本发明实施例上视图;
图26B为本发明实施例A-A’剖面图;
图27A为本发明实施例上视图;
图27B为本发明实施例A-A’剖面图;
图28-1为磊晶成长半导体结构于一成长基板上;
图28-2为形成光罩并借由离子布植定义电流限制区域;
图28-3为移除光罩;
图28-4为形成沟槽以及蚀刻区域;
图28-5为形成透明电极、电极;
图28-6为借由一牺牲层将发光极体与测试基板连接;
图28-7为借由激光移除成长基板;
图28-8为移除成长基板后示意图;
图28-9为借由测试基板与光电侦测器将发光二极管进行电激发光(EL)检测;
图28-10为移转至一传送基板;
图28-11为选择性移除缺陷组件至一收集基板上;
图28-12为巨量阵列移转发光组件于永久基板上;
图28-13为填补空缺移转发光组件于永久基板上;
图28-14为完成移转发光组件于永久基板上;
图28-15为形成档墙及透光胶体于永久基板上;
图28-16为形成档墙及荧光胶体于永久基板上;
图28-17为形成档墙及透光胶体及荧光胶体于永久基板上;
图28-18为柔性显示器的电路方块图;
图29为传统覆晶(Flip chip)微型发光二极管(Micro LED)结构图;
图30为尺寸缩小至边长10微米以下的微型发光二极管(Micro LED)结构图;
图31为借由离子布植技术(Ion implantation)达成尺寸缩小至边长10微米以下的覆晶微型发光二极管结构图;
图32为借由离子布植技术(Ion implantation)包含至少一组备援发光二极管结构图;
图33-1为在第一磊晶基板S1形成第一磊晶层结构(Epi layer-1);
图33-2为借由黄光微影与蚀刻制程形成第一微型发光二极管 (M1),间距P1,沿着A-A’的横截面图;
图33-3为图33-2的上视图;
图34-1为在第一微型发光二极管(M1)上借由离子布植(Ion implantation)技术定义出第一离子布植区域(Ion-1),以及第一子像素区域(R1),沿着A-A’的横截面图;
图34-2为图34-1的上视图;
图35-1为在第一子像素区域(R1)上方形成导电层(ML),沿着A-A’的横截面图;
图35-2为在第一子像素区域(R1)上方形成导电层(ML),沿着A”-A”’横截面图;
图35-3为图35-2的上视图;
图36-1为将具有导电层结构(ML)的第一子像素(R1)与第一透明基板(T1)透过接垫(BL)电性连接;
图36-2为将第一磊晶基板(S1)移除,并于第一透明基板(T1)与第一子像素(R1)间填充第一透光中间层(B1);
图36-3为图36-2的上视图;
图37-1为在第二磊晶基板S2形成第二磊晶层结构(Epi layer-2);
图37-2为借由黄光微影与蚀刻制程形成第二微型发光二极管(M2),间距P3,沿着C-C’的横截面图;
图37-3为图37-2的上视图;
图38-1为在第二微型发光二极管(M2)上借由离子布植(Ion implantation)技术定义出第二离子布植区域第一区(Ion-2a)及第二区(Ion-2b),以及第二子像素区域(G1),沿着C-C’的横截面图;
图38-2为图38-1的上视图;
图39-1为在第二子像素区域(G1)上方形成导电层(ML),沿着C-C”横截面图;
图39-2为在第二子像素区域(G1)上方形成导电层(ML),沿着C”-C”’横截面图;
图39-3为图39-1的上视图;
图40-1为将具有导电层结构(ML)的第二子像素(G1)与第二 透明基板(T2)透过接垫(BL)电性连接;
图40-2为将第二磊晶基板(S2)移除,并于第二透明基板(T2)与第二子像素(G1)间填充第二透光中间层(B2);
图40-3为图40-1的上视图;
图41-1为在第三磊晶基板S3形成第三磊晶层结构(Epi layer-3);
图41-2为借由离子布植(Ion implantation)技术定义出第三离子布植区域(Ion-3),以及第三子像素区(B1),沿着E-E’的横截面图;
图41-3为图41-2的上视图;
图42-1在第三微型发光二极管(M3)上借由离子布植(Ion implantation)技术定义出第三离子布植区域(Ion-3),以及第三子像素区(B1),沿着C-C’的横截面图;
图42-2为图42-1的上视图;
图43-1为在第三子像素区域(B1)上方形成导电层(ML),沿着E-E’横截面图;
图43-2为沿着E”-E”’横截面图;
图43-3为图43-1的上视图;
图44-1将具有导电层结构(ML)的第三子像素(B1)与第三透明基板(T3)透过接垫(BL)电性连接;
图44-2将第三磊晶基板(S3)移除,并于第三透明基板(T3)与第三子像素(B1)间填充第三透光中间层(B3);
图44-3为图44-1的上视图;
图45-1为将第一子像素结构,第二子像素结构,第三子像素结构,透过A-1与A-2为透光黏接层将其3D堆叠RGB像素矩阵实现微型发光二极管;
图45-2为第一像素(Pixel 1)的放大,沿G-G’横截面图;
图45-3为图45-2的上视图;
图46-1为本发明的另一实施例,其中R1-1为第一子像素,R1-2为第一备援子像素,其中G1-1为第二子像素,G1-2为第二备援子像素,其中B1-1为第三子像素,B1-2为第三备援子像素,沿H-H’横截面图
图46-2为图46-1的上视图;
图47-1为本发明的另一实施例,其中R1-1为第一子像素,R1-2,R1-3,R1-4,R1-5,R1-6皆为第一备援子像素,其中G1-1为第二子像素,G1-2,G1-3,G1-4皆为第二备援子像素,其中B1-1为第三子像素,B1-2为第三备援子像素,沿I-I’横截面图;
图47-2为图47-1的上视图;
图48-1本发明的另一实施例,其中R1-1为第一子像素,R1-2,R1-3,R1-4,R1-5,R1-6皆为第一备援子像素,其中G1-1为第二子像素,G1-2,G1-3,G1-4,G1-5,G1-6皆为第二备援子像素,其中B1-1为第三子像素,B1-2,B1-3,B1-4,B1-5,B1-6皆为第三备援子像素,沿J-J’横截面图;
图48-2为图48-1的上视图;
图49-1本发明的另一实施例,其中R1-1,R1-2,R1-3,R1-4,R1-5,R1-6皆为第一子像素,其中G1-1,G1-2,G1-3,G1-4,G1-5,G1-6皆为第二子像素,其中B1-1,B1-2,B1-3,B1-4,B1-5,B1-6皆为第三子像素,沿K-K’横截面图;
图49-2为图49-1的上视图;
图50为本发明的另一实施例,磊晶基板(S1),(S2),(S3)皆为透明基板,可直接3D堆叠RGB Micro LED,不需要移转至透明基板,简化制程;
图51为本发明的另一实施例,更包含一黑色矩阵层BM(Black Mattress)layer,可以增加像素的对比度;
图52为本发明的另一实施例,每个微型发光二极管更包含一磁性层(Magnetic Layer,ML),其功能为提升3D堆叠的精准度;
图53为本发明的另一实施例,每个微型发光二极管更包含一电流阻挡区域(Current blocking area)位于微型发光二极管的表面及侧面区域;
图54为本发明的另一实施例,每个微型发光二极管更包含一电流限制区域(Current limiting area)位于微型发光二极管的表面及侧面区域;
图55-1为本发明的另一实施例,应用于扩增实境(Augmented Reality,AR);
图55-2为本发明的另一实施例,应用于扩增实境(Augmented Reality,AR);
图55-3为本发明的另一实施例,应用于扩增实境(Augmented Reality,AR);
图55-4为本发明的另一实施例,应用于扩增实境(Augmented Reality,AR);
图55-5为合控制系统(Integrated control system);
图56-1为一种智能眼镜结构;
图56-2为本发明的一实施例应用于智能眼镜结构;
图56-3为本发明的一实施例应用于智能眼镜结构;
图56-4为本发明的一实施例应用于智能眼镜结构;
图56-5为本发明的一实施例应用于智能眼镜结构;
图57-1为具有磁性层(Magnetic Layer,ML)的微型发光二极管(Micro light emitting diode)结构;
图57-2为一水平结构磁性微型发光二极管(Magnetic Micro light emitting diode)结构;
图57-3为一垂直结构磁性微型发光二极管(Magnetic Micro light emitting diode)结构;
图57-4为另一垂直结构磁性微型发光二极管(Magnetic Micro light emitting diode)结构;
图57-5为水平结构磁性微型发光二极管更包含一第一电流阻挡层(Current blocking layer);
图57-6为垂直结构磁性微型发光二极管更包含一第一电流阻挡层(Current blocking layer);
图57-7为另一垂直结构磁性微型发光二极管更包含一第一电流阻挡层(Current blocking layer);
图57-8为水平结构磁性微型发光二极管更包含一电流限制层(Current limiting layer);
图57-9为垂直结构磁性微型发光二极管更包含一电流限制层(Current limiting layer);
图57-10为另一垂直结构磁性微型发光二极管更包含一电流限制层(Current limiting layer);
图57-11为水平结构磁性微型发光二极管;
图57-12为水平结构磁性微型发光二极管;
图57-13为水平结构磁性微型发光二极管;
图57-14为水平结构磁性微型发光二极管;
图57-15为垂直结构磁性微型发光二极管;
图57-16为垂直结构磁性微型发光二极管;
图57-17为垂直结构磁性微型发光二极管;
图57-18为垂直结构磁性微型发光二极管;
图57-19为借由一具有磁性吸引力的可程控转移头,借由控制该移转头,可以将该磁性层微型发光二极管巨量移转至一目标基板;
图57-20为流体移转系统;
图57-21-1为流体移转系统基板的一上视图;
图57-21-2为流体移转系统基板的一上视图;
图57-22-1为流体移转系统基板的一上视图;
图57-22-2为流体移转系统基板的一上视图;
图57-23为流体移转系统;
图57-24为流体移转系统;
图57-25为流体移转系统;
图58-1A为传统显示器;
图58-2A为传统显示器;
图58-3A为传统显示器;
图58-1B为高分辨率显示器;
图58-2B为高分辨率显示器;
图58-3B为高分辨率显示器;
图58-1C为高分辨率显示器;
图58-2C为高分辨率显示器;
图58-3C为高分辨率显示器;
图59为人眼视觉敏锐能力的辨识需求示意图。
其中,
100 成长基板
101 第一型半导体层
102 第二型半导体层
103 发光层
104 沟槽
105 蚀刻区域
101-down 第一型半导体层下表面;第二下表面
102-up 第二型半导体层上表面;第二上表面
201 第一电流限制区域、侧壁电流限制区域
202 第二电流限制区域
203 第三电流限制区域
204 第四电流限制区域
205 第五电流限制区域
201-up 侧壁电流限制区域上表面;第一上表面
201-down 侧壁电流限制区域下表面;第一下表面
201-out 侧壁电流限制区域外侧壁表面;第一外表面
201-in 侧壁电流限制区域内侧壁表面;第一内表面
202-up 第二电流限制区域上表面
203-up 第三电流限制区域上表面
301 透明电极
302 电极
303 电极延伸部
304 电极、背后电极
305 金属层
306 金属层,磁力接合层,真空吸附层,静电吸附层,粘合层
307 金属层,磁力接合层,真空吸附层,静电吸附层,粘合层
308 金属层,磁力接合层,真空吸附层,静电吸附层,粘合层
309 金属层
Arc 圆弧角
D1  第一深度
D2  第二深度
D3  第三深度
D4  第四深度
D5  第五深度
D6  第六深度
D7  第七深度
DS  侧壁长度
E1  磊晶厚度
F   透明胶体
F1  第一荧光胶体
F2  第二荧光胶体
F3  第三荧光胶体
H1  第一厚度
H2  第二厚度
H3 第三厚度
H4  第四厚度
Figure PCTCN2019088648-appb-000009
第一低导电率区域
Figure PCTCN2019088648-appb-000010
第二低导电率区域
Figure PCTCN2019088648-appb-000011
高导电率区域
Figure PCTCN2019088648-appb-000012
上表面低导电率区域
Figure PCTCN2019088648-appb-000013
上表面高导电率区域
Figure PCTCN2019088648-appb-000014
侧壁低导电率区域、外表面低导电率区域
Figure PCTCN2019088648-appb-000015
侧壁高导电率区域、外表面高导电率区域
O1  第一开口宽度
O2  第二开口宽度
O3  第三宽度
O4  第四宽度
O5  第五宽度
P1  第一间距
P2  第二间距
P3   第三间距
RS-102-top,RS-201-top,RS-501-top 上表面的粗糙度
RS-102-out,RS-201-out,RS-501-out 外表面的粗糙度、侧壁的粗糙度
S1  第一长度
S2  第二长度
S3  第三长度
S4  第四长度
T1  第一宽度
T2  宽度
T3  第三宽度
T4  第四宽度
T-up 上表面宽度
T-down 下表面宽度
T1A 第一横向宽度
T1B 第二横向宽度
T1C 第三横向宽度
U1  第一表面
U2  第二表面
U3  第三表面
U4  第四表面
U5  第五表面
U6  第六表面
400 光电侦测器
501 第一电流阻挡区域
502 第二电流阻挡区域
503 第三电流阻挡区域
504 第四电流阻挡区域
505 第五电流阻挡区域
506 第六电流阻挡区域
507 开口
601 屏蔽
602 屏蔽
603 屏蔽
700 牺牲层
800 检测基板
801 传送机板
805 绝缘层
810 收集基板
820 永久基板
821 空缺
830 接收基板
840 检测基板
841 电压源
831 第一凹
832 第二凹
833 第三凹
850 档墙
901 离子布植
902 激光
903 激光
1001 第一容器
2001 第一液体
Θ1 第一夹角
Θ2 第二夹角
1010 柔性基板(Flexible substrate)
1011 微型发光二极管(Micro light emitting diode)
1012 闸极驱动器(Gate driver)
1013 源极驱动器(Source driver)
1014 扫描线路(Scan line)
1015 数据线路(Data line)
1100 焊垫(BUMP)
1101 脊状区域(Ridge area)
1102 N型接垫(N-pad)
1103 P型接垫(P-pad)
1104 P型接触层(P-contact layer)
1105 多层量子井(MQW)
1106 N型接触层(N-contact layer)
1107 缓冲层(Buffer layer)
1108 离子布植区域(Ion implantation area)
1109 备援微型发光二极管(Redundancy Micro LED)
1110 第一磊晶基板(S1)
1111 第一磊晶层结构(Epi layer-1)
1112 第一微型发光二极管(M1)
111P1 间距(P1)
111P2 间距(P2)
1114 第一离子布植区域(Ion-1)
1115 第一子像素区域(R1)
1116 导电层(ML)
1117 第一透明基板(T1)
1118 接垫(BL)
1119 导电层(ML)
111BR1 第一透光中间层(BR1)
1120 第二磊晶基板(S2)
1121 第二磊晶层结构(Epi layer-2)
1122 第二微型发光二极管(M2)
112P3 间距(P3)
112P4 间距(P4)
1124 第二离子布植区域(ion-2)
1124-2a 第二离子布植区域第一区(ion-2a)
1124-2b 第二离子布植区域第二区(ion-2b)
1125 第二子像素区域(G1)
1126 导电层(ML)
1127 第二透明基板(T2)
1128 接垫(BL)
1129 导电层(ML)
112BR2 第二透光中间层(BR2)
1130 第三磊晶基板(S3)
1131 第三磊晶层结构(Epi layer-3)
1132 第三微型发光二极管(M3)
113P5 间距(P5)
113P6 间距(P6)
1134 第三离子布植区域(Ion-3)
1135 第三子像素区域(B1)
1136 导电层(ML)
1137 第三透明基板(T3)
1138 接垫(BL)
1139 导电层(ML)
113BR3 第三透光中间层(BR3)
141,1161,1171,1181,1191,1201,1211,1221,1231,1241,1251第一子像素结构(Pixel 1)
1142,1162,1172,1182,1192,1202,1212,1222,1232,1242,1252第二子像素结构(Pixel 2)
1143,1163,1173,1183,1193,1203,1213,1223,1233,1243,1253第三子像素结构(Pixel 3)
1151 第一透光黏接层(T1)
1152 第二透光黏接层(T2)
1153 厚度(D-1)
1161 第一子像素(R1-1),(R1-1A),(R1-2A),(R1-3),(R1-4),(R1-5),(R1-6)
1162 第二子像素(G1-1),(G1-1A),(G1-2A),(G1-3A),(G1-4A),(G1-5A),(G1-6A)
1163 第三子像素(B1-1),(B1-1A),(B1-2A),(B1-3A),(B1-4A),(B1-5A),(B1-6A)
1171 第一备援子像素(R1-2),(R1-3),(R1-4),(R1-5),(R1-6)
1172 第二备援子像素(G1-2),(G1-3),(G1-4),(G1-5),(G1-6)
1173 第三备援子像素(B1-2),(B1-3),(B1-4),(B1-5),(B1-6)
1300 黑色矩阵层BM(Black Mattress)layer
1301 磁性层(Magnetic Layer,ML)
1302 电流阻挡区域(Current blacking area)
1303 电流限制区域(Current limiting area)
1400 综合控制系统(Integrated control system)
1401 微型发光二极管显示器(Micro-led display)
1402 透镜系统(Lens system)
1403 光学组件(Optical component)
1404 人眼(eye)
1405 扩增实境(Augmented Reality,AR)
1500 综合控制系统(Integrated control system)
1501 RGB微型发光二极管显示器(Micro-led display)
1502 透镜系统(Lens system)
1503 光学组件(Optical component)
1504 人眼(eye)
1505 扩增实境(Augmented Reality,AR)
1600 综合控制系统(Integrated control system)
1601 微型发光二极管显示器(Micro-led display)
1602 透镜系统(Lens system)
1603 光学组件(Optical component)
1604 人眼(eye)
1605 扩增实境(Augmented Reality,AR)
1700 综合控制系统(Integrated control system)
1701 RGB微型发光二极管显示器(Micro-led display)
1702 透镜系统(Lens system)
1703 光学组件(Optical component)
1704 人眼(eye)
1705 扩增实境(Augmented Reality,AR)
1800 综合控制系统(Integrated control system)
1801 多功能传感器(multi-function sensor)
1802 微芯片处理器(Microchip processors)
1803 网络接口(Network interface)
1900 综合控制系统(Integrated control system)
1901 显示器(display)
1902 支架(Frame)
1903 光学组件(Optical component)
1904 人眼(eye)
1905 扩增实境(Augmented Reality,AR)
1906 眼镜边框(Rims)
1907 桥接部位(Bridge)
2000,2010,2020,2030 综合控制系统(Integrated control system)
2001,2011,2021,2031 微型发光二极管显示器(Micro-led display)
2002,2012,2022,2032 支架(Frame)
2003,2013,2023,2033 光学组件(Optical component)
2004,2014,2024,2034 人眼(eye)
2005,2015,2025,2035 扩增实境(Augmented Reality,AR)
2006,2016,2026,2036 眼镜边框(Rims)
2007,2017,2027,2037 桥接部位(Bridge)
3000 磊晶基板
3001 磁性层(Magnetic Layer,ML)
3002 第一型半导体层
3003 发光层
3004 第二型半导体层
3005,3006,3007,3008,3009,3010 金属层
3011,3012 透明导电层
3100,3101,3102 第一电流阻挡层
3200,3201,3202 第一电流限制层
3300,第二电流阻挡层
3400 第二电流限制层
3500 可程控转移头
3501 电磁层
3502 磁性微型发光二极管
3503 基板
3600 流体移转系统
3601 主腔体
3602 溶液
3603 基板
3604 凹槽
3605 磁力层
3606 输入端
3607 输入端阀门
3608 输出端
3609 输出端阀门
3610 流速(F)
3611 第一子腔体
3612 第二子腔体
3613 第三子腔体
3614 第一颜色的磁性微型发光二极管
3615 第一阀门
3616 第一输入口
3617 第二颜色的磁性微型发光二极管
3618 第二阀门
3619 第二输入口
3620 第三颜色的磁性微型发光二极管
3621 第三阀门
3622 第三输入口
3623 流体
3624 第一型状的第一凹槽
3625 第二型状的第二凹槽
3626 第三型状的第三凹槽
3627 第一子像素区(Sub-pixel area)
3628 第二子像素区(Sub-pixel area)
3629 第三子像素区(Sub-pixel area)
3630 像素区(pixel area)
3634 第一凹槽
3635 第二凹槽
3636 第三凹槽
3637 第一子像素区(Sub-pixel area)
3638 第二子像素区(Sub-pixel area)
3639 第三子像素区(Sub-pixel area)
3640 像素区(pixel area)
3650 备援磁力层
3651,3661,3671 第一备援凹槽
3652,3662,3672 第二备援凹槽
3653,3663,3673 第三备援凹槽
3654,3664,3674 第一凹槽
3655,3665,3675 第二凹槽
3656,3666,3676 第三凹槽
3657,3667,3677 第一子像素区(Sub-pixel area)
3658,3668,3678 第二子像素区(Sub-pixel area)
3659,3669,3679 第三子像素区(Sub-pixel area)
3660,3670,3680 像素区(pixel area)
3700 流体移转系统
3701 主腔体
3702 溶液
3703 基板
3704-1 第一凹槽
3704-2 第二凹槽
3704-3 第三凹槽
3705 吸力层
3706 输入端
3707 输入端阀门
3708 输出端
3709 输出端阀门
3710 流速(F)
3711 第一子腔体
3712 第二子腔体
3713 第三子腔体
3714 第一颜色的微型发光二极管
3715 第一阀门
3716 第一输入口
3717 第二颜色的微型发光二极管
3718 第二阀门
3719 第二输入口
3720 第三颜色的微型发光二极管
3721 第三阀门
3722 第三输入口
3723 流体
3724 基板第一阀门
3725 基板第二阀门
3726 基板第三阀门
3800 流体移转系统
3801 主腔体
3802 溶液
3803 基板
3804-1 第一凹槽
3804-2 第二凹槽
3804-3 第三凹槽
3805-1 第一吸力层
3805-2 第二吸力层
3805-3 第三吸力层
3806 输入端
3807 输入端阀门
3808 输出端
3809 输出端阀门
3810 流速(F)
3811 第一子腔体
3812 第二子腔体
3813 第三子腔体
3814 第一颜色的微型发光二极管
3815 第一阀门
3816 第一输入口
3817 第二颜色的微型发光二极管
3818 第二阀门
3819 第二输入口
3820 第三颜色的微型发光二极管
3821 第三阀门
3822 第三输入口
3823 流体
3900 流体移转系统
3901 主腔体
3902 溶液
3903 基板
3904-1 第一填充层
3904-2 第二填充层
3904-3 第三填充层
3905-1 第一吸力层
3905-2 第二吸力层
3905-3 第三吸力层
3906 输入端
3907 输入端阀门
3908 输出端
3909 输出端阀门
3910 流速(F)
3911 第一子腔体
3912 第二子腔体
3913 第三子腔体
3914 第一颜色的微型发光二极管
3915 第一阀门
3916 第一输入口
3917 第二颜色的微型发光二极管
3918 第二阀门
3919 第二输入口
3920 第三颜色的微型发光二极管
3921 第三阀门
3922 第三输入口
3923 流体
3924 基板第一阀门
3925 基板第二阀门
3926 基板第三阀门
3927 光源
具体实施方式
以下结合附图对本发明的示范性实施例做出说明,其中包括本发明实施例的各种细节以助于理解,应当将它们认为仅仅是示范性的。因此,本领域普通技术人员应当认识到,可以对这里描述的实施例做出各种改变和修改,而不会背离本发明的范围和精神。同样,为了清楚和简明,以下的描述中省略了对公知功能和结构的描述。
本发明实施方式中的一种微型发光二极管Micro-LED装置包括:一第一型半导体层101;一第二型半导体层102;一发光层103,其位于该第一型半导体层101及该第二型半导体层102之间;一第一电流限制区域201,其位于第二型半导体层102的四周围及侧壁区域;一第二电流限制区域202,其被该第一电流限制区域201所环绕;其中该第一电流限制区域201及该第二电流限制区域202的最短距离具有50μm或更小宽度;其中该第一电流限制区域201外围周长为400μm或更小。
该第二型半导体层102的上表面U6与该第一电流限制区域201的上表面U1及该第二电流限制区域202的上表面U2共平面,其有益效果为:提高表面平坦度,提高产品稳定性,并且可降低非辐射复合(non-radiative recombination),进而增加微型发光二极管的效率。
该第一电流限制区域201具有一第一深度D1,该第二电流限制区域201具有一第二深度D2,及该第一深度D1可以等于、大于、或者小于该第二深度D2。
这种Micro-LED装置可进一步包括一第三电流限制区域203,其位于该第一电流限制区域201及该第二电流限制区域202之间,并且与该第二电流限制区域202接触。在这种情况下,第三电流限制区域203的上表面U3与该第一电流限制区域201的上表面U1共平面,这 样有助于提高表面平坦度,提高产品稳定性,并且可降低非辐射复合(non-radiative recombination),进而增加微型发光二极管的效率。
第一电流限制区域201具有一第一深度D1,该第二电流限制区域202具有一第二深度D2,该第三电流限制区域203具有一第三深度D3,及该第一深度D1等于该第二深度D2等于该第三深度D3。深度相同,可在同一次离子布植程序完成,简化制程。
或者,第一电流限制区域201具有一第一深度D1,该第二电流限制区域202具有一第二深度D2,该第三电流限制区域203具有一第三深度D3,及该第一深度D1大于该第二深度D2且大于该第三深度D3。这种根据不同磊晶结构设计以增加D1深度来设计的方式,可达到降低侧壁漏电流更佳效果,提高微型发光二极管发光效率。
这种Micro-LED装置还可进一步包括一透明电极301,该透明电极301位于该第二型半导体层102的上方,并且与该第二型半导体层102电性连接,且该透明电极301覆盖该第一电流限制区域201及覆盖第三电流限制区域203。其中该第三电流限制区域203借由离子布植(ion implantation)技术形成。离子布植技术可提高表面平坦度,提高产品稳定性。该第一电流限制区域201具有一第一宽度T1,其中该第二电流限制区域202具有一第二宽度T202,其中该第三电流限制区域203具有一第三宽度T203,该第二宽度T202大于或等于该第一宽度T1且该第一宽度T1大于或等于该第三宽度T203。
这种Micro-LED装置还可进一步包括一透明电极301,该透明电极位于该第二型半导体层102的上方,并且与该第二型半导体层102电性连接,且该透明电极301覆盖该第一电流限制区域201。透明电极具有高光穿透率,提高微型发光二极管发光效率。
上述Micro-LED装置可进一步包括一电极302,位于该第二型半导体层102的上方并与该透明电极301电性连结,且该电极302与该第二电流限制区域202直接接触。电极与半导体直接接触可以避免电极脱落问题,提高产品稳定性。在此情况下,还可进一步包括一电极延伸部303位于该透明电极301的上方,并且与该电极302电性连接。这样有助于提高电流分布均匀性,提高微型发光二极管发光效率。此 时还可进一步包括一背后电极304位于该第一型半导体层的下方,该背后电极304与该第一型半导体层电性连接;该背后电极304可以为一多层结构,该多层结构包含欧姆接触层,扩散阻挡层,连接层,高反射镜层。
该第一电流限制区域201及该第二电流限制区域202借由离子布植(ion implantation)技术形成。离子布植技术可提高侧壁平坦度,提高产品稳定性;同时,离子布植技术可提高表面平坦度,同样可提高产品稳定性。
该第一电流限制区域201可具有一第一宽度T1,大于或等于1μm。
该第二电流限制区域202可位于该第二型半导体层区域102的中间位置。
关于该第一电流限制区域201的深度,有如下可选的实施方式:
该第一电流限制区域201具有一第一深度D1,该第一深度D1可以是不大于该第二型半导体层的深度。
或者,该第一电流限制区域201具有一第一深度D1,该第一深度D1更包括该发光层与该第一型半导体层的四周围,该第一深度D1可以是大于该第二型半导体的深度与该发光层的深度总和。
或者,该第一电流限制区域201具有一第一深度D1,该第一深度D1更包括该发光层与该第一型半导体层的侧壁区域,该第一深度D1可大于该第二型半导体的深度与该发光层的深度总和。
或者,该第一电流限制区域201具有一第一深度D1,该第一深度D1更包括该发光层与该第一型半导体层的侧壁区域,该第一深度D1等于该第二型半导体的深度与该发光层的深度与该第一型半导体的深度总和。
或者,该第一电流限制区域201具有一第一深度D1,该第一深度D1更包括该发光层与该第一型半导体层的侧壁区域,该第一电流限制区域201位于该第一型半导体层的侧壁区域具有一第一横向宽度T1A,该第一电流限制区域201位于该发光层的侧壁区域具有一第二横向宽度T1B,该第一电流限制区域201位于该第二型半导体层的侧壁区域具有一第三横向宽度T1C。其中,该第一横向宽度大于该第二横向宽 度且大于该第三横向宽度;该第三横向宽度大于该第二横向宽度且大于该第一横向宽度。
此外,该第一电流限制区域的表面可具有一第一低导电率区域
Figure PCTCN2019088648-appb-000016
并有如下可选的具体实施方式:
该第一电流限制区域的表面具有一第一低导电率区域
Figure PCTCN2019088648-appb-000017
其中该第二型半导体层表面具有一高导电率区域
Figure PCTCN2019088648-appb-000018
该第一低导电率区域往该高导电率区域具有一逐渐增导电率的分布。
或者,该第一电流限制区域的表面具有一第一低导电率区域
Figure PCTCN2019088648-appb-000019
其中该第二电流限制区域的表面具有一第二低导电率区域
Figure PCTCN2019088648-appb-000020
其中该第二型半导体层表面具有一高导电率区域
Figure PCTCN2019088648-appb-000021
该第一低导电率区域
Figure PCTCN2019088648-appb-000022
以及该第二低导电率区域
Figure PCTCN2019088648-appb-000023
往该高导电率区域
Figure PCTCN2019088648-appb-000024
同时具有一逐渐增导电率的分布。
采用上述实施方式,有助于降低表面及侧壁漏电流,提高微型发光二极管发光效率。
关于该第一电流限制区域201的宽度,有如下可选的实施方式:
该第一电流限制区域201具有一第一宽度T1,其中该第二电流限制区域202具有一第二宽度T202,该第二宽度大于或等于该第一宽度T1。
或者该第一电流限制区域201具有一第一宽度T1,其中该第二电流限制区域202具有一第二宽度T202,其中该第一电流限制区域与该第二电流限制区域具有一宽度O3,该第二宽度大于或等于该第一宽度,且该宽度O3大于该第二宽度T202。
采用上述实施方式,第一电流限制区域201可降低侧壁漏电流,提高微型发光二极管发光效率;第二电流限制区域202可提高电流分布均匀性,提高微型发光二极管发光效率;第三电流限制区域203可提高电流分布均匀性,提高微型发光二极管发光效率;其中该第一电流限制区域201外围周长为400μm或更小,从而具备微型发光二极管的各种优点。
本发明实施方式中的另一种微型发光二极管Micro-LED装置包括: 一第一型半导体层101;一第二型半导体层102;一发光层103,其位于该第一型半导体层101及该第二型半导体层102之间;一第一电流限制区域201,其位于第二型半导体层102的四周围及侧壁区域;一第二电流限制区域202,其被该第一电流限制区域201所环绕;一第三电流限制区域203,其被该第一电流限制区域201所环绕并且与第二电流限制区域202接触;其中该第一电流限制区域201及该第二电流限制区域202的最短距离具有50μm或更小宽度;其中该第一电流限制区域201外围周长为400μm或更小。
根据上述结构:
(1)第一电流限制区域201可降低侧壁漏电流,提高微型发光二极管发光效率;
(2)第二电流限制区域202可提高电流分布均匀性,提高微型发光二极管发光效率;
(3)第三电流限制区域203可提高电流分布均匀性,提高微型发光二极管发光效率;
(4)外围周长的距离从而具备微型发光二极管的各种优点。
该第二型半导体层102的上表面U6与该第一电流限制区域201的上表面U6及该第二电流限制区域202的上表面U2及该第三电流限制区域203的上表面U3共平面。有助于提高表面平坦度,提高产品稳定性,并且可降低非辐射复合(non-radiative recombination),进而增加微型发光二极管的效率。
该第一电流限制区域201具有一第一深度D1,该第二电流限制区域202具有一第二深度D2,该第三电流限制区域203具有一第三深度D3,及该第一深度D1等于该第二深度D2,以及等于该第三深度D3。该方案中深度相同,可在同一次制程程序完成,简化制程。
另外也可以是该第一电流限制区域201具有一第一深度D1,该第二电流限制区域202具有一第二深度D2,该第三电流限制区域203具有一第三深度D3,及该第一深度D1大于该第二深度D2且大于该第三深度D3。这种方式是根据不同磊晶结构设计以增加D1深度来设计,可达到降低侧壁漏电流更佳效果,提高微型发光二极管发光效率。
这种Micro-LED装置可进一步包括一透明电极301,该透明电极位于该第二型半导体层102的上方,并且与该第二型半导体层102电性连接,且该透明电极301覆盖该第一电流限制区域201且覆盖第三电流限制区域203。透明电极具有高光穿透率,从而可提高微型发光二极管发光效率。在这种情况下,还可进一步包括一电极302位于该第二型半导体层102的上方并与该透明电极301电性连结,且该电极302与该第二电流限制区域202直接接触,可以避免电极脱落问题,提高产品稳定性。并可进一步包括一电极延伸部303,位于该透明电极301的上方,并且与该电极302电性连接。
该第一电流限制区域201及该第二电流限制区域202及该第三电流限制区域203借由离子布植(ion implantation)技术形成。离子布植技术可提高侧壁平坦度,提高产品稳定性;同时,离子布植技术还可提高表面平坦度,同样可提高产品稳定性。
该第一电流限制区域201的宽度可大于或等于1μm。
另外,该第二电流限制区域202可位于该第二型半导体层区域102的中间位置。
本发明实施方式中的另一种微型发光二极管Micro-LED装置包括:一第一型半导体层101;一第二型半导体层102;一发光层103,其位于该第一型半导体层101及该第二型半导体层102之间;一第一电流限制区域201,其位于第二型半导体层102的四周围及侧壁区域;一第二电流限制区域202,其被该第一电流限制区域201所环绕;一第三电流阻挡区域503,其被该第一电流限制区域201所环绕并且与第二电流限制区域202接触;其中该第一电流限制区域201及该第二电流限制区域202的最短距离具有50μm或更小宽度;其中该第一电流限制区域201外围周长为400μm或更小。
根据上述结构:
(1)第一电流限制区域201可降低侧壁漏电流,提高微型发光二极管发光效率;
(2)第二电流限制区域202可提高电流分布均匀性,提高微型发 光二极管发光效率;
(3)第三电流阻挡区域503可提高电流分布均匀性,提高微型发光二极管发光效率;
(4)外围周长的距离低于400μm,从而具备微型发光二极管的各种优点。
该第二型半导体层102的上表面U6与该第一电流限制区域201的上表面U1及该第二电流限制区域202的上表面U2共平面。提高表面平坦度,提高产品稳定性,并且可降低非辐射复合(non-radiative recombination),进而增加微型发光二极管的效率。
该第一电流限制区域201具有一第一深度D1,该第二电流限制区域201具有一第二深度D2,及该第一深度D1等于该第二深度D2。深度相同,可在同一次制程程序完成,简化制程。
或者,该第一电流限制区域201具有一第一深度D1,该第二电流限制区域201具有一第二深度D2,及该第一深度D1大于该第二深度D2。
或者,该第一电流限制区域201具有一第一深度D1,该第二电流限制区域201具有一第二深度D2,及该第一深度D1小于该第二深度D2。
根据不同磊晶结构设计以增加或降低D1深度来设计,可达到降低侧壁漏电流更佳效果,提高微型发光二极管发光效率。
这种微型发光二极管Micro-LED装置可进一步包括一透明电极301,该透明电极位于该第二型半导体层102的上方,并且与该第二型半导体层102电性连接,且该透明电极301覆盖该第一电流限制区域201及覆盖该第三电流阻挡区域503。透明电极具有高光穿透率,提高微型发光二极管发光效率。在这种情况下,Micro-LED装置可进一步包括一电极302位于该第二型半导体层102的上方并与该透明电极301电性连结,且该电极302与该第二电流限制区域202直接接触,可以避免电极脱落问题,提高产品稳定性。另外还可进一步包括一电极延伸部303位于该透明电极301的上方,并且与该电极302电性连接。
该第一电流限制区域201及该第二电流限制区域202借由离子布 植(ion implantation)技术形成。离子布植技术可提高侧壁平坦度,提高产品稳定性;同时,离子布植技术还可提高表面平坦度,同样提高产品稳定性。
该第三电流阻挡区域203可由介电材料组成。
该第一电流限制区域201的宽度可大于或等于1μm。
该第二电流限制区域202可以位于该第二型半导体层区域102的中间位置。
本发明实施方式的又一种微型发光二极管Micro-LED装置包括:一第一型半导体层101;一第二型半导体层102;一发光层103,其位于该第一型半导体层101及该第二型半导体层102之间;一第一电流限制区域201,其位于第二型半导体层102的四周围及侧壁区域;一第二电流阻挡区域502,其被该第一电流限制区域201所环绕;一第三电流阻挡区域503,其被该第一电流限制区域201所环绕并且与第二电流阻挡区域502接触;其中该第一电流限制区域201及该第二电流阻挡区域202的最短距离具有50μm或更小宽度;其中该第一电流限制区域201外围周长为400μm或更小。
这种Micro-LED装置的结构具备如下有益效果:
(1)第一电流限制区域201可降低侧壁漏电流,提高微型发光二极管发光效率
(2)第二电流阻挡区域502可提高电流分布均匀性,提高微型发光二极管发光效率
(3)第三电流阻挡区域503可提高电流分布均匀性,提高微型发光二极管发光效率
(4)外围周长的距离低于400μm,从而达到微型发光二极管尺寸量级,具备微型发光二极管的各种优点。
该第二型半导体层102的上表面U6与该第一电流限制区域201的上表面U1共平面,这样有助于提高表面平坦度,提高产品稳定性,并且可降低非辐射复合(non-radiative recombination),进而增加微型发光二极管的效率。
这种Micro-LED装置可进一步包括一透明电极301,该透明电极位于该第二型半导体层102的上方,并且与该第二型半导体层102电性连接,且该透明电极301覆盖该第一电流限制区域201及覆盖该第二电流阻挡区域502及覆盖该第三电流阻挡区域503。在这种情况下,进一步包括一电极302位于该第二型半导体层102的上方并与该透明电极301电性连结,且该电极302与该第二型半导体层102直接接触,可以避免电极脱落问题,提高产品稳定性。透明电极具有高光穿透率,提高微型发光二极管发光效率。进一步包括一电极延伸部303位于该透明电极301的上方,并且与该电极302电性连接。
该第一电流限制区域201借由离子布植(ion implantation)技术形成。离子布植技术可提高侧壁平坦度,提高产品稳定性。
该第二电流阻挡区域502及该第三电流阻挡区域503可由介电材料组成。
该电极延伸部303的宽度可小于该第三电流阻挡区域503的宽度。
该第一电流限制区域201的宽度可大于或等于1μm。
该第二电流阻挡区域502可以是一中空环状外型,并且具有一中空宽度O2,该中空宽度大于或等于1微米。
该第二电流阻挡区域502可位于该第二型半导体层区域102的中间位置。
本发明实施方式中的又一种微型发光二极管Micro-LED装置包括:一第一型半导体层101;一第二型半导体层102;一发光层103,其位于该第一型半导体层101及该第二型半导体层102之间;一第一电流阻挡区域501,其位于第二型半导体层102的四周围及侧壁区域;一第二电流限制区域202,其被该第一电流阻挡区域501所环绕;一第三电流阻挡区域503,其被该第一电流阻挡区域501所环绕并且与该第二电流限制区域202接触;其中该第一电流阻挡区域501及该第二电流限制区域202的最短距离具有50μm或更小宽度;其中该第一电流阻挡区域501外围周长为400μm或更小。
根据这种微型发光二极管Micro-LED装置的结构,其有益效果为:
(1)第一电流阻挡区域501可降低侧壁漏电流,提高微型发光二极管发光效率;
(2)第二电流限制区域202可提高电流分布均匀性,提高微型发光二极管发光效率;
(3)第三电流阻挡区域503可提高电流分布均匀性,提高微型发光二极管发光效率;
(4)外围周长的距离低于400μm,达到微型发光二极管尺寸量级,从而具备其各种优点。
该第一电流阻挡区域501可至少覆盖该第一型半导体层101的侧壁,以及覆盖该第二型半导体层102的侧壁,及覆盖该第一发光层103的侧壁。
Micro-LED装置可进一步包括一透明电极301,该透明电极位于该第二型半导体层102的上方,并且与该第二型半导体层102电性连接,且该透明电极301覆盖该第一电流阻挡区域501及覆盖该第二电流限制区域202及覆盖该第三电流阻挡区域503。透明电极具有高光穿透率,提高微型发光二极管发光效率。在这种情况下,进一步包括一电极302位于该第二型半导体层102的上方并与该透明电极301电性连结,且该电极302与该第二电流限制区域202直接接触,可以避免电极脱落问题,提高产品稳定性。进一步包括一电极延伸部303位于该透明电极301的上方,并且与该电极302电性连接。
该第二电流限制区域202借由离子布植(ion implantation)技术形成。离子布植技术可提高表面平坦度,提高产品稳定性。
该第一电流阻挡区域501及该第三电流阻挡区域503可由介电材料组成。
该电极延伸部303的宽度可小于该第三电流阻挡区域503的宽度。
该第一电流阻挡区域501的宽度可大于或等于1μm。
该第二电流限制区域202可位于该第二型半导体层区域102的中间位置。
本发明实施方式的又一种微型发光二极管Micro-LED装置包括: 一第一型半导体层101;一第二型半导体层102;一发光层103,其位于该第一型半导体层101及该第二型半导体层102之间;一第一电流阻挡区域501,其位于第二型半导体层102的四周围及侧壁区域;一第二电流限制区域202,其被该第一电流阻挡区域501所环绕;一第三电流限制区域203,其被该第一电流阻挡区域501所环绕并且与该第二电流限制区域202接触;其中该第一电流阻挡区域501及该第二电流限制区域202的最短距离具有50μm或更小宽度;其中该第一电流阻挡区域501外围周长为400μm或更小。
根据这种微型发光二极管Micro-LED装置的结构,其有益效果为:
(1)第一电流阻挡区域501可降低侧壁漏电流,提高微型发光二极管发光效率;
(2)第二电流限制区域202可提高电流分布均匀性,提高微型发光二极管发光效率;
(3)第三电流限制区域203可提高电流分布均匀性,提高微型发光二极管发光效率;
(4)外围周长的距离低于400μm,达到微型发光二极管尺寸量级,从而具备其各种优点。
该第一电流阻挡区域501至少覆盖该第一型半导体层101的侧壁,以及覆盖该第二型半导体层102的侧壁,及覆盖该第一发光层103的侧壁。
Micro-LED装置可进一步包括一透明电极301,该透明电极位于该第二型半导体层102的上方,并且与该第二型半导体层102电性连接,且该透明电极301覆盖该第一电流阻挡区域501及覆盖该第三电流限制区域203。在这种情况下,可进一步包括一电极302位于该第二型半导体层102的上方并与该透明电极301电性连结,且该电极302与该第二限制区域202直接接触,可以避免电极脱落问题,提高产品稳定性。透明电极具有高光穿透率,提高微型发光二极管发光效率。另可进一步包括一电极延伸部303,位于该透明电极301的上方,并且与该电极302电性连接。
该第二电流限制区域202及第三电流限制区域203借由离子布植 (ion implantation)技术形成。离子布植技术可提高侧壁平坦度,提高产品稳定性;离子布植技术还可提高表面平坦度,同样能提高产品稳定性。
该第一电流阻挡区域501可由介电材料组成。
该第一电流阻挡区域501的宽度可大于或等于1μm。
该第二电流限制区域202可位于该第二型半导体层区域102的中间位置。
该第二电流限制区域202具有一第二深度D2,该第三电流限制区域203具有一第三深度D3,及该第二深度D2可等于该第三深度D3。
该第二电流限制区域202可位于该第二型半导体层区域102的中间位置。
该第一电流阻挡区域501覆盖侧壁区域具有一厚度H1,以及覆盖上表面区域具有一厚度H2,其中该H1的厚度可大于、小于或等于H2。该第一电流阻挡区域501可裸露出一透明电极,该透明电极可位于该第二型半导体层102的上方,并且与该第二型半导体层102电性连接。
本发明实施方式的又一种微型发光二极管Micro-LED装置包括:一第一型半导体层101;一第二型半导体层102;一发光层103,其位于该第一型半导体层101及该第二型半导体层102之间;一第一电流阻挡区域501,其位于第二型半导体层102的四周围及侧壁区域;一第二电流阻挡区域502,其被该第一电流阻挡区域501所环绕;一第三电流阻挡区域503,其被该第一电流阻挡区域501所环绕并且与该第二电流阻挡区域502接触;其中该第一电流阻挡区域501及该第二电流阻挡区域502的最短距离具有50μm或更小宽度;其中该第一电流阻挡区域501外围周长为400μm或更小。
根据上述结构,该Micro-LED装置具备如下有益效果:
(1)第一电流阻挡区域501可降低侧壁漏电流,提高微型发光二极管发光效率;
(2)第二电流阻挡区域502可提高电流分布均匀性,提高微型发光二极管发光效率;
(3)第三电流阻挡区域503可提高电流分布均匀性,提高微型发光二极管发光效率;
(4)外围周长的距离低于400μm达到微型发光二极管尺寸量级,即具备其各种优点。
该第一电流阻挡区域501可至少覆盖该第一型半导体层101的侧壁,以及覆盖该第二型半导体层102的侧壁,及覆盖该第一发光层103的侧壁。
这种Micro-LED装置可进一步包括一透明电极301,该透明电极位于该第二型半导体层102的上方,并且与该第二型半导体层102电性连接,且该透明电极301覆盖该第一电流阻挡区域501及覆盖该第二电流阻挡区域502及覆盖该第三电流阻挡区域503。在这种情况下,可进一步包括一电极302,位于该第二型半导体层102的上方并与该透明电极301电性连结,且该电极302与该第二型半导体层102直接接触,可以避免电极脱落问题,提高产品稳定性。透明电极具有高光穿透率,提高微型发光二极管发光效率。另可进一步包括一电极延伸部303,位于该透明电极301的上方,并且与该电极302电性连接。其中该电极延伸部303的宽度小于该第三电流阻挡区域503的宽度。
该第一电流阻挡区域501及该第二电流阻挡区域502及该第三电流阻挡区域503可由介电材料组成。
该第一电流阻挡区域501的宽度可大于或等于1μm。
该第二电流阻挡区域502可为一中空环状外型,并且具有一中空宽度O2,该中空宽度大于或等于1微米。
该第二电流阻挡区域502可位于该第二型半导体层区域102的中间位置。
本发明实施方式的又一种微型发光二极管Micro-LED装置包括:一第一型半导体层101;一第二型半导体层102;一发光层103,其位于该第一型半导体层101及该第二型半导体层102之间;一第一电流阻挡区域501,其位于第二型半导体层102的四周围及侧壁区域;一第二电流阻挡区域502,其被该第一电流阻挡区域501所环绕;一第三电 流限制区域203,其被该第一电流阻挡区域501所环绕并且与该第二电流阻挡区域502接触;其中该第一电流阻挡区域501及该第二电流阻挡区域502的最短距离具有50μm或更小宽度;其中该第一电流阻挡区域501外围周长为400μm或更小。
这种微型发光二极管Micro-LED装置的结构具备如下有益效果:
(1)第一电流阻挡区域501可降低侧壁漏电流,提高微型发光二极管发光效率
(2)第二电流阻挡区域502可提高电流分布均匀性,提高微型发光二极管发光效率
(3)第三电流限制区域203可提高电流分布均匀性,提高微型发光二极管发光效率
(4)外围周长的距离低于400μm,从而达到微型发光二极管优点。
该第一电流阻挡区域501至少覆盖该第一型半导体层101的侧壁,以及覆盖该第二型半导体层102的侧壁,及覆盖该第一发光层103的侧壁。
Micro-LED装置进一步包括一透明电极301,该透明电极位于该第二型半导体层102的上方,并且与该第二型半导体层102电性连接,且该透明电极301覆盖该第一电流阻挡区域501及覆盖该第二电流阻挡区域502及覆盖该第三电流限制区域203。在这种情况下,进一步包括一电极302位于该第二型半导体层102的上方并与该透明电极301电性连结,且该电极302与该第二型半导体层102直接接触,可以避免电极脱落问题,提高产品稳定性。透明电极具有高光穿透率,提高微型发光二极管发光效率。进一步包括一电极延伸部303位于该透明电极301的上方,并且与该电极302电性连接。该第一电流阻挡区域501及该第二电流阻挡区域502及该第三电流阻挡区域503由介电材料组成,例如SiO 2、Si 3N 4、Al 2O 3、Y 2O 3、TiO 2、Y 2O 3、HfO 2、ZrO 2、BaZrO 3、BaTiO 3、Ta 2O 5、Si。
该第一电流阻挡区域501及该第三电流阻挡区域503由介电材料组成。
该第三电流限制区域203借由离子布植(ion implantation)技术形成。离子布植技术可提高表面平坦度,提高产品稳定性。
该第一电流阻挡区域501的宽度大于或等于1μm。
该第二电流阻挡区域502为一中空环状外型,并且具有一中空宽度O2,该中空宽度大于或等于1微米。
该第二电流阻挡区域502位于该第二型半导体层区域102的中间位置。
一种微型发光二极管Micro-LED装置,其包括:一第一型半导体层101;一第二型半导体层102;一发光层103,其位于该第一型半导体层101及该第二型半导体层102之间;一第一电流阻挡区域501,其位于第二型半导体层102的四周围及侧壁区域;一第二电流阻挡区域502,其被该第一电流阻挡区域501所环绕;其中该第一电流阻挡区域501及该第二电流阻挡区域502的最短距离具有50μm或更小宽度;其中该第一电流阻挡区域501外围周长为400μm或更小。
其有益效果为:
(1)第一电流阻挡区域501可降低侧壁漏电流,提高微型发光二极管发光效率;
(2)第二电流阻挡区域502可提高电流分布均匀性,提高微型发光二极管发光效率;
(3)外围周长的距离低于400μm,达到微型发光二极管尺寸量级,即具备微型发光二极管的各项优点。
该第一电流阻挡区域501至少覆盖该第一型半导体层101的侧壁,以及覆盖该第二型半导体层102的侧壁,及覆盖该第一发光层103的侧壁。
这种Micro-LED装置还可进一步包括一透明电极301,该透明电极位于该第二型半导体层102的上方,并且与该第二型半导体层102电性连接,且该透明电极301覆盖该第一电流阻挡区域501及覆盖该第二电流阻挡区域502。在这种情况下,可进一步包括一电极302,位于该第二型半导体层102的上方并与该透明电极301电性连结,且该电极302与该第二型半导体层102直接接触,可以避免电极脱落问题, 提高产品稳定性。透明电极具有高光穿透率,提高微型发光二极管发光效率。另可进一步包括一电极延伸部303,位于该透明电极301的上方,并且与该电极302电性连接。该第一电流阻挡区域501覆盖侧壁区域具有一第一厚度H1,以及覆盖上表面区域具有一第二厚度H2,该第二电流阻挡区域502具有一第三厚度H3,该第三电流阻挡区域503具有一第四厚度H4,其中该第一厚度H1大于或等于该第二厚度H2并且大于或等于该第三厚度H3,并且大于或等于该第四厚度H4;或者,该第一电流阻挡区域501覆盖侧壁区域具有一第一厚度H1,以及覆盖上表面区域具有一第二厚度H2,该第二电流阻挡区域502具有一第三厚度H3,该第三电流阻挡区域503具有一第四厚度H4,其中该第一厚度H1小于或等于该第二厚度H2并且小于或等于该第三厚度H3,并且小于或等于该第四厚度H4。
这种Micro-LED装置可进一步包括一第三电流阻挡区域503,其被该第一电流阻挡区域501所环绕并且与该第二电流阻挡区域502接触。第三电流阻挡区域503可提高电流分布均匀性,提高微型发光二极管发光效率。在这种情况下,可进一步包括一透明电极301,该透明电极位于该第二型半导体层102的上方,并且与该第二型半导体层102电性连接,且该透明电极301覆盖该第一电流阻挡区域501及覆盖该第二电流阻挡区域502及覆盖该第三电流阻挡区域503;又可进一步包括一电极302位于该第二型半导体层102的上方并与该透明电极301电性连结,且该电极302与该第二型半导体层102直接接触;还可进一步包括一电极延伸部303位于该透明电极301的上方,并且与该电极302电性连接。其中该电极延伸部303的宽度小于该第三电流阻挡区域503的宽度。
该第一电流阻挡区域501及该第二电流阻挡区域502及该第三电流阻挡区域503可由介电材料组成。
该第一电流阻挡区域501的宽度可大于或等于1μm。
该第二电流阻挡区域502可为一中空环状外型,并且具有一中空宽度O2,该中空宽度大于或等于1微米。
该第二电流阻挡区域502可位于该第二型半导体层区域102的中 间位置。
该第一电流阻挡区域501覆盖侧壁区域具有一第一厚度H1,以及覆盖上表面区域具有一第二厚度H2,其中该第一厚度H1大于或等于该第二厚度H2。或者,该第一电流阻挡区域501覆盖侧壁区域具有一第一厚度H1,以及覆盖上表面区域具有一第二厚度H2,其中该第一厚度H1小于该第二厚度H2。
该第一电流阻挡区域501覆盖侧壁区域具有一第一厚度H1,以及覆盖上表面区域具有一第二厚度H2,该第二电流阻挡区域502具有一第三厚度H3,其中该第一厚度H1大于或等于该第二厚度H2并且大于或等于该第三厚度H3。或者,该第一电流阻挡区域501覆盖侧壁区域具有一第一厚度H1,以及覆盖上表面区域具有一第二厚度H2,该第二电流阻挡区域502具有一第三厚度H3,其中该第一厚度H1小于该第二厚度H2并且小于该第三厚度H3。
该第一电流阻挡区域501裸露出一透明电极301,该透明电极位于该第二型半导体层102的上方,并且与该第二型半导体层102电性连接。该第二电流阻挡区域502裸露出一电极302,该电极302位于该第二型半导体层102的上方并与该透明电极301电性连结,且该电极302与该第二电流限制区域202直接接触。或者,该第二电流阻挡区域502裸露出一电极302,该电极302位于该第二型半导体层102的上方,并且与该第二型半导体层102电性连接。
上述的微型发光二极管的发光效率高于250流明每瓦[lm/W]。
上述的微型发光二极管的显色指数中对红色的显示能力R9大于90。
上述的微型发光二极管的演色性指数(Color Rendering Index,CRI)大于90。
上述的微型发光二极管的平均演色评价指数Ra大于90。
本发明实施方式的又一种微型发光二极管Micro-LED装置包括:一第一型半导体层101;一第二型半导体层102;一发光层103,其位于该第一型半导体层101及该第二型半导体层102之间;一侧壁电流 限制区域201,其与该第二形半导体层102及该发光层103及该第一半导体层102的四周围侧壁区域直接接触;其中该侧壁电流限制区域201更包括上表面201-up,下表面101-down,外表面201-out,及内表面201-in;其中该侧壁电流限制区域的上表面201-up与该第二型半导体的上表面102-up共平面;其中该第一电流限制区域的垂直投影最外围周长的距离具有400μm或更小的距离。
这种Micro-LED装置的有益效果为:
(1)一侧壁电流限制区域201可降低侧壁漏电流,提高微型发光二极管发光效率;
(2)外围周长的距离低于400μm,达到微型发光二极管的尺寸量级,从而具备其各种优点。
该侧壁电流限制区域的下表面201-down与该第一型半导体层的下表面101-down共平面。
该侧壁电流限制区域上表面201-up的垂直投影为一上表面距离T-up,其中该侧壁电流限制区域下表面201-down的垂直投影为一下表面距离T-down,该上表面距离T-up大于该下表面距离T-down。或者,该侧壁电流限制区域上表面201-up的垂直投影为一上表面距离T-up,其中该侧壁电流限制区域下表面201-down的垂直投影为一下表面距离T-down,该上表面距离T-up小于该下表面距离T-down。
该侧壁电流限制区域上表面201-up与该侧壁电流限制区域下表面201-down的垂直投影可部分重叠。
该侧壁电流限制区域外表面201-out具有一侧壁距离DS,其中该侧壁电流限制区域内表面201-in具有一第一深度D1,该侧壁距离DS等于该第一深度D1。或者,该侧壁电流限制区域外表面201-out具有一侧壁距离DS,其中该侧壁电流限制区域内表面201-in具有一第一深度D1,该侧壁距离DS大等于该第一深度D1。
该侧壁电流限制区域上表面201-up与该侧壁电流限制区域外表面201-out具有一第一夹角Θ1,其中该侧壁电流限制区域上表面201-up与该侧壁电流限制区域内表面201-in具有一第二夹角Θ2,该第一夹角Θ1及该第二夹角Θ2为接近或达到直角90度,也可以是钝角,即大 于90度,或者是锐角,即小于90度。
该侧壁电流限制区域201位于该第一型半导体层的侧壁区域具有一第一横向宽度T1A,该侧壁电流限制区域201位于该发光层的侧壁区域具有一第二横向宽度T1B,该侧壁电流限制区域201位于该第二型半导体层的侧壁区域具有一第三横向宽度T1C。在这种情况下,该第一横向宽度T1A与该第二横向宽度T1B及该第三横向宽度T1C的垂直投影部分重叠;其中该第一横向宽度T1A的垂直投影距离大于该第三横向宽度T1C的垂直投影距离。或者,该第一横向宽度T1A的垂直投影距离小于该第三横向宽度T1C的垂直投影距离。或者,该第一横向宽度T1A的垂直投影距离等于该第三横向宽度T1C的垂直投影距离。
上述装置中,透过控制侧壁电流限制区域的深度,可达到降低侧壁漏电流更佳效果,提高微型发光二极管发光效率。
这种Micro-LED装置可进一步包括一第二电流限制区域202,其被该侧壁电流限制区域所环绕,其中该侧壁电流限制区域及该第二电流限制区域202的最短距离具有50μm或更小宽度。第二电流限制区域202可提高电流分布均匀性,提高微型发光二极管发光效率。其中该第二型半导体层的上表面102-up与该侧壁电流限制区域的上表面201-up及该第二电流限制区域的上表面202-up共平面。在这种情况下,可进一步包括一第三电流限制区域203,其位于该侧壁电流限制区域及该第二电流限制区域202之间,并且与该第二电流限制区域202接触。其中该第三电流限制区域的上表面203-up与该侧壁电流限制区域的上表面201-up共平面。该第二电流限制区域202具有一第二深度D2,该第三电流限制区域203具有一第三深度D3,该第二深度D2等于该第三深度D3。该Micro-LED装置还可进一步包括一透明电极301,该透明电极位于该第二半导体102的上方,并且与该第二型半导体102电性连接,且该透明电极301覆盖该侧壁电流限制区域上表面201-up及覆盖第三电流限制区域上表面203-up。在这种情况下,可进一步包括一电极302,位于该第二半导体102的上方,并与该透明电极301电性连接,且该电极302与该第二电流限制区域202直接接触;还可进一 步包括一电极延伸部303,位于该透明电极301的上方,并且与该电极302电性连接。其中该第二电流限制区域202可位于该第二半导体区域102的中间位置。
这种Micro-LED装置可进一步包括一透明电极301,该透明电极位于该第二半导体102的上方,并且与该第二型半导体102电性连接,且该透明电极301覆盖该侧壁电流限制区域上表面201-up。在这种情况下,可进一步包括一电极302位于该第二半导体102的上方并与该透明电极301电性连结,且该电极302与该第二电流限制区域202直接接触,可以避免电极脱落问题,提高产品稳定性。透明电极具有高光穿透率,提高微型发光二极管发光效率。还进一步包括一电极延伸部303位于该透明电极301的上方,并且与该电极302电性连接。
该侧壁电流限制区域201与该第二电流限制区域202及该第三电流限制区域203可借由离子布植技术形成。离子布植技术可提高表面平坦度,提高产品稳定性。
该侧壁电流限制区域201与该第二电流限制区域202及该第三电流限制区域203也可借由扩散技术或薄膜沉积形成。
该侧壁电流限制区域上表面具有一第一宽度T-up大于或等于1μm。
该发光层包含单层量子井(quantum well)、多层量子井结构。
或者,该发光层包含单层量子线(quantum wire)、多层量子线结构。
或者,该发光层包含单层量子点(quantum dot)、多层量子点结构。
这种Micro-LED装置可进一步包括一背后电极304,位于该第一型半导体层的下方,该背后电极304与该第一型半导体层电性连接。
该侧壁电流限制区域201或该第二电流限制区域202或该第三电流限制区域203可借由有机金属化学气相沉积(Metal Organic Chemical Vapor Phase Deposition,MOCVD)磊晶再成长技术形成。
或者,该侧壁电流限制区域201或该第二电流限制区域202或第三电流限制区域203借由分子束磊晶(Molecular Beam Epitaxy,MBE) 磊晶再成长技术形成。
或者,该侧壁电流限制区域201或该第二电流限制区域202或该第三电流限制区域203借由原子层化学气相沉积系统(Atomic Layer Chemical Vapor Deposition System,ALD)技术形成。
或者,该侧壁电流限制区域201或该第二电流限制区域202或该第三电流限制区域203借由激光表面改质技术形成。
该侧壁电流限制区域上表面201-up与该侧壁电流限制区域外表面201-out具有一第一夹角Θ1,其中该侧壁电流限制区域上表面201-up与该侧壁电流限制区域内表面201-in具有一第二夹角Θ2,该第一夹角Θ1为一锐角小于90度,该第二夹角Θ2为一钝角大于90度。
或者,该侧壁电流限制区域上表面201-up与该侧壁电流限制区域外表面201-out具有一第一夹角Θ1,其中该侧壁电流限制区域上表面201-up与该侧壁电流限制区域内表面201-in具有一第二夹角Θ2,该第一夹角Θ1为一钝角大于90度,该第二夹角Θ2为一锐角小于90度。
该侧壁电流限制区域201或该第二电流限制区域202或该第三电流限制区域203可借由选择性氧化(Selective oxidation)技术形成。
或者,该侧壁电流限制区域201或该第二电流限制区域202或该第三电流限制区域203借由高温氧化(Thermal oxidation)技术形成。
或者,该侧壁电流限制区域201或该第二电流限制区域202或该第三电流限制区域203借由高温湿氧化(Wet thermal oxidation)技术形成。
本发明实施方式的一种微型发光二极管Micro-LED装置的制作方法包含:
在一成长基板100上形成上述的微型发光二极管,其中形成微型发光二极管的步骤包含:
形成一电极与该第二型半导体层电性连接;
将微型发光二极管与一测试基板接合;
移除该成长基板;
形成另一电极与该第一型半导体层电性连接;
提供一电压源对每一个微型发光二极管进行电性(EL)检测,并 记录异常微型发光二极管位置;
第一次选择性移除该异常微型发光二极管,并留下通过测试的微型发光二极管;
第一次移转通过测试的微型发光二极管于永久基板上,并于该永久基板上留下该移除异常微型发光二极管的空缺;
第二次移转填补该永久基板上的空缺。
巨量移转前,借由巨量检测,事先移除异常的微型发光二极管,可以提高巨量移转的良率,节省巨量移转后还需要额外修复成本。
更包含一牺牲层,如图9-6或图10-6或图28-6中牺牲层(700),借由该牺牲层将微型发光二极管与一测试基板接合。其中,该第一次选择性移除该异常微型发光二极管的方式可以为借由导入一激光,改变该牺牲层的黏粘性,使该异常微型发光二极管自该测试基板移除。该第一次移转的方式可以为借由导入一激光,改变该牺牲层的黏粘性,使该微型发光二极管自该测试基板移转至该永久基板。该第二次移转的方式可以为借由导入一激光,改变该牺牲层的黏粘性,使该微型发光二极管自该测试基板移转至该永久基板。采用激光改变该牺牲层的黏粘性,可提高巨量移转的速率,减少生产成本,提高生产良率的优点。
该第一次移转的的微型发光二极管与该第二次移转的微型发光二极管来自同一个成长基板,也可以来自不同一个成长基板。
上述方法的优点在于:
(1)相同磊晶芯片的波长接近,可提高巨量移转的速率;
(2)可以减少芯片材料的浪费,提高来源芯片的晶粒使用比率,降低生产成本。
上述Micro-LED装置的制作方法可采用一磁力接合层,借由该磁力接合层暂时性将微型发光二极管与一测试基板接合。在这种情况下,该第一次选择性移除该异常微型发光二极管的方式可以为借由改变该磁力接合层的磁力,使该异常微型发光二极管自该测试基板移除。该第一次移转的方式可以为借由改变该磁力接合层的磁力,使该微型发光二极管自该测试基板移转至该永久基板。该第二次移转的方式可以 为借由改变该磁力接合层的磁力,使该微型发光二极管自该测试基板移转至该永久基板。借由磁力接合层,可提高测试及移转的速度及良率,并可降低生产成本。
或者,该Micro-LED装置的制作方法可采用一真空吸附层,借由该真空吸附层将微型发光二极管与一测试基板接合。在这种情况下,该第一次选择性移除该异常微型发光二极管的方式可以为借由改变该真空吸附层的吸力,使该异常微型发光二极管自该测试基板移除。该第一次移转的方式可以为借由改变该真空吸附层的吸力,使该微型发光二极管自该测试基板移转至该永久基板。该第二次移转的方式可以为借由改变该真空吸附层的吸力,使该微型发光二极管自该测试基板移转至该永久基板。借由真空吸附层,可提高测试及移转的速度及良率,并可降低生产成本。
或者,该Micro-LED装置的制作方法可采用一静电吸附层,借由该静电吸附层将微型发光二极管与一测试基板接合。在这种情况下,该第一次选择性移除该异常微型发光二极管的方式可以为借由改变该静电吸附层的静电力,使该异常微型发光二极管自该测试基板移除。该第一次移转的方式可以为借由改变该静电吸附层的静电力,使该微型发光二极管自该测试基板移转至该永久基板。该第二次移转的方式可以为借由改变该静电吸附层的静电力,使该微型发光二极管自该测试基板移转至该永久基板。借由静电吸附层,可提高测试及移转的速度及良率,并可降低生产成本。
或者,该Micro-LED装置的制作方法可采用一粘合层,借由该粘合层将微型发光二极管与一测试基板接合。在这种情况下,该第一次选择性移除该异常微型发光二极管的方式可以为借由改变该粘合层的粘合力,使该异常微型发光二极管自该测试基板移除。该第一次移转的方式可以为借由改变该粘合层的粘合力,使该微型发光二极管自该测试基板移转至该永久基板。该第二次移转的方式可以为借由改变该粘合层的粘合力,使该微型发光二极管自该测试基板移转至该永久基板。借由粘合层,可提高测试及移转的速度及良率,并可降低生产成本。
对于上述Micro-LED装置的制作方法,其中:
该第一次选择性移除该异常微型发光二极管,具有一第一移除速率;
该第一次移转通过测试的微型发光二极管于永久基板上,具有一第一移转速率;
该第二次移转填补该永久基板上的空缺,具有一第二移转速率;
其中该第一移转速率大于该第二移转速率,且该第一移除率度大于或等于该第二率转速率。
对于上述Micro-LED装置的制作方法,还可以采用如下方式:
该第一次移转通过测试的微型发光二极管于永久基板上,具有一第一移转速率;
该第二次移转填补该永久基板上的空缺,具有一第二移转速率;
其中该第一移转速率大于该第二移转速率。借由控制移转速率及移除速率可以改善巨量移转的良率及降低生产成本。
Micro-LED装置的制作方法,
该成长基板100上的微型发光二极管距有一第一间距P1;
该永久基板820上的微型发光二极管距有一第二间距P2;
其中该第二间距P2大于或等于该第一间距P1。
借由控制移转间距可以降低后续的生产成本。
对于上述Micro-LED装置的制作方法中,该微型发光二极管至少包含红光发光二极管、绿光发光二极管、蓝光发光二极管所组成的矩阵结构。在这种情况下,该制作方法更包含:
形成一文件墙结构850,该文件墙结构介于该微型光二极管之间;
形成一透光胶体F覆盖该微型发光二极管。文件墙结构850可提高微型发光二极管显示器的显示对比度。
该微型发光二极管可至少包含紫外光发光二极管所组成的矩阵结构。
对于上述Micro-LED装置的制作方法,其中更包含:
形成一文件墙结构850,该文件墙结构介于该微型光二极管之间;
形成一第一荧光胶体F1覆盖该微型发光二极管,该微型发光二极管激发该第一荧光胶体发出红光;
形成一第二荧光胶体F2覆盖该微型发光二极管,该微型发光二极管激发该第二荧光胶体发出蓝光;
形成一第三荧光胶体F3覆盖该微型发光二极管,该微型发光二极管激发该第三荧光胶体发出绿光。
该微型发光二极管至少包含蓝光发光二极管所组成的矩阵结构。
或者对于上述Micro-LED装置的制作方法,其中更包含:
形成一文件墙结构850,该文件墙结构介于该微型光二极管之间;
形成一第一透光胶体F覆盖该微型发光二极管,该微型发光二极管穿透该第一透光胶体发出蓝光;
形成一第一荧光胶体F1覆盖该微型发光二极管,该微型发光二极管激发该第一荧光胶体发出红光;
形成第三荧光胶体F3覆盖该微型发光二极管,该微型发光二极管激发该第三荧光胶体发出绿光。
该微型发光二极管的发光效率高于250流明每瓦[lm/W]。
该微型发光二极管的显色指数中对红色的显示能力R9大于90。
该微型发光二极管的演色性指数(Color Rendering Index,CRI)大于90。
该微型发光二极管的平均演色评价指数Ra大于90。
该永久基板820为一柔性基板(flexible substrate),其中该柔性基板的材料可包含超薄玻璃(Ultra-thin Glass)、金属基板(Metal Foil)、纤维加强复合材料(fiber-reinforced composite material)、及塑料薄膜(Plastic)、陶瓷基板(Ceramics),或上述材料中的任何两种或更多种的组合。柔性基板可作为柔性显示器的应用。优选地,该金属基板的热膨胀系数(Coefficieient of thermal expansion)与薄玻璃相近。该塑料薄膜在550nm波长下,其光学穿透度(light transmittance)大于90%。该塑料薄膜的材料例如为聚对苯二甲酸乙二酯(polyethylene  terephthalate,PET)、聚萘二甲酸乙二醇酯(polyethylene naphthalate,PEN)、聚醚(polyethersulfone,PES)。该纤维加强复合材料例如碳纤维(carbon fibers),碳化硅纤维(silicon carbide fibers)或硼丝(boron filament)。
该柔性基板较佳的厚度低于200μm,更佳的厚度低于50μm,最佳的厚度介于25μm至50μm。
该金属基板例如为不锈钢(stainless stainless steel)、铝(aluminum)、镍(nickel)、钛(titanium)、锆(Zirconiu)、铜(Copper)、铁(iron)、钴(cobalt)、钯(palladium),或上述材料中的任何两种或更多种的组合。
该金属基板的表面粗糙度Ra低于10nm。
该永久基板820为一透明基板,该透明基板的材料例如为普通玻璃、硬玻璃、石英玻璃、陶瓷或塑料制成。
本发明实施方式的又一种微型发光二极管Micro-LED装置的制作方法,包含:
在一成长基板上形成上述微型发光二极管,其中形成微型发光二极管的步骤包含
形成一电极与该第二型半导体层电性连接;
将微型发光二极管与一测试基板接合;
移除该成长基板;
形成另一电极与该第一型半导体层电性连接;
提供一电压源对每一个微型发光二极管进行电性(EL)检测,并记录异常微型发光二极管位置;
择性移除该异常微型发光二极管,并留下通过测试的微型发光二极管;
第一次移转通过测试的微型发光二极管于一第一容器内;
该第一容器内包含一第一液体将该微型发光二极管包覆;
第二次移转该微型发光二极管于一接收基板。
该方法的有益效果为:
(1)借由移转前对每一个微型发光二极管进行电性(EL)检测,可节省移转后修复的成本
(2)流体移转具有低成本,移转速度快的优点。
该第二次移转的方式可以为借由改变该第一液体的流速,使该微型发光二极管移转至该接收基板。
该第二次移转的方式也可以为借由改变该第一液体的黏度,使该微型发光二极管移转至该接收基板。
该第二次移转的方式还可以为借由改变该接收基板捕捉率,使该微型发光二极管移转至该接收基板。借由控制液体流速、液体黏度及改变该接收基板捕捉率完成巨量移转。
Micro-LED装置的制作方法,更包含一牺牲层,如图9-6或图10-6或图28-6中牺牲层(700),借由该牺牲层将微型发光二极管与一测试基板接合。在这种情况下,该第一次选择性移除该异常微型发光二极管的方式可以为借由导入一激光,改变该牺牲层的黏粘性,使该异常微型发光二极管自该测试基板移除。该第一次移转的方式可以为借由导入一激光,改变该牺牲层的黏粘性,使该微型发光二极管自该测试基板移转至该第一容器内。借由牺牲层及激光,可提高测试及移转的速度及良率,并可降低生产成本。
该第一次移转的的微型发光二极管与该第二次移转的微型发光二极管来自同一个成长基板。或者,该第一次移转的微型发光二极管与该第二次移转的微型发光二极管来自不同一个成长基板。
上述方法的优点在于:
(1)相同磊晶芯片的波长接近,可以可提高巨量移转的速率;
(2)可以减少芯片材料的浪费,提高来源芯片的晶粒使用比率,降低生产成本。
该Micro-LED装置的制作方法,可采用一磁力接合层,借由该磁力接合层将微型发光二极管与一测试基板接合。在这种情况下,该第一次选择性移该异常微型发光二极管的方式可以为借由改变该磁力接合层的磁力,使该异常微型发光二极管自该测试基板移除。该第一次移转的方式可以为借由改变该磁力接合层的磁力,使该微型发光二极 管自该测试基板移转至该第一容器内。借由磁力接合层,可提高测试及移转的速度及良率,并可降低生产成本。
或者,Micro-LED装置的制作方法,可采用一真空吸附层,借由该真空吸附层将微型发光二极管与一测试基板接合。在这种情况下,该第一次选择性移除该异常微型发光二极管的方式可以为借由改变该真空吸附层的吸力,使该异常微型发光二极管自该测试基板移除。该第一次移转的方式可以为借由改变该真空吸附层的吸力,使该微型发光二极管自该测试基板移转至该第一容器内。借由真空吸附层,可提高测试及移转的速度及良率,并可降低生产成本。
或者,Micro-LED装置的制作方法,可采用一静电吸附层,借由该静电吸附层将微型发光二极管与一测试基板接合。在这种情况下,该第一次选择性移除该异常微型发光二极管的方式可以为借由改变该静电吸附层的静电力,使该异常微型发光二极管自该测试基板移除。该第一次移转的方式可以为借由改变该静电吸附层的静电力,使该微型发光二极管自该测试基板移转至该第一容器内。借由静电吸附层,可提高测试及移转的速度及良率,并可降低生产成本。
或者Micro-LED装置的制作方法,可采用一粘合层,借由该粘合层将微型发光二极管与一测试基板接合。在这种情况下,该第一次选择性移除该异常微型发光二极管的方式可以为借由改变该粘合层的粘合力,使该异常微型发光二极管自该测试基板移除。该第一次移转的方式可以为借由改变该粘合层的粘合力,使该微型发光二极管自该测试基板移转至该第一容器。借由粘合层,可提高测试及移转的速度及良率,并可降低生产成本。
这种Micro-LED装置的制作方法,其中,该选择性移除该异常微型发光二极管,具有第一移除速率;
其中该第一次移转通过测试的微型发光二极管于一第一容器内,具有一第一移转速率;
其中该第二次移转该微型发光二极管于一接收基板,具有一第二移转速率;
其中该第一移转速率大于该第二移转速率且该第一移除速率大于 或等于该第二移转速率。
借由控制移转速率及移除速率可以改善巨量移转的良率及降低生产成本。
或者这种Micro-LED装置的制作方法,其中,该第一次移转通过测试的微型发光二极管于一第一容器内,具有一第一移转速率;
其中该第二次移转该微型发光二极管于一接收基板,具有一第二移转速率;
其中该第一移转速率大于该第二移转速率。
根据这种Micro-LED装置的制作方法,
该成长基板100上的微型发光二极管距有一第一间距P1;
该接收基板830上的微型发光二极管距有一第二间距P2;
其中该第二间距P2大于或等于该第一间距P1。
或者,在这种Micro-LED装置的制作方法中,
该成长基板100上的微型发光二极管距有一第一间距P1;
该接收基板830上的微型发光二极管距有一第二间距P2;
其中该第二间距P2大于该第一间距P1。借由控制移转间距可以降低后续的生产成本。
根据这种Micro-LED装置的制作方法,其中,该微型发光二极管至少包含红光发光二极管、绿光发光二极管、蓝光发光二极管所组成的矩阵结构。在这种情况下,更包含:
形成一文件墙结构850,该文件墙结构介于该微型光二极管之间;
形成一透光胶体F覆盖该微型发光二极管。文件墙结构850可提高微型发光二极管显示器的显示对比度。
该微型发光二极管至少包含紫外光发光二极管所组成的矩阵结构。在这种情况下,更包含
形成一文件墙结构850,该文件墙结构介于该微型光二极管之间;
形成一第一荧光胶体F1覆盖该微型发光二极管,该微型发光二极管激发该第一荧光胶体发出红光;
形成一第二荧光胶体F2覆盖该微型发光二极管,该微型发光二极管激发该第二荧光胶体发出蓝光;
形成一第三荧光胶体F3覆盖该微型发光二极管,该微型发光二极管激发该第三荧光胶体发出绿光。
该微型发光二极管至少包含蓝光发光二极管所组成的矩阵结构。在这种情况下,更包含
形成一文件墙结构850,该文件墙结构介于该微型光二极管之间;
形成一第一透光胶体F覆盖该微型发光二极管,该微型发光二极管穿透该第一透光胶体发出蓝光;
形成一第一荧光胶体F1覆盖该微型发光二极管,该微型发光二极管激发该第一荧光胶体发出红光;
形成第三荧光胶体F3覆盖该微型发光二极管,该微型发光二极管激发该第三荧光胶体发出绿光。
该微型发光二极管的发光效率高于250流明每瓦[lm/W]。
该微型发光二极管的显色指数中对红色的显示能力R9大于90。
该微型发光二极管的演色性指数(Color Rendering Index,CRI)大于90。
该微型发光二极管的平均演色评价指数Ra大于90。
根据本发明实施方式的又一种微型发光二极管Micro-LED装置的制作方法包含:
在一成长基板上形成上述微型发光二极管,其中形成微型发光二极管的步骤包含:
形成一电极与该第二型半导体层电性连接;
将微型发光二极管与一测试基板接合;
移除该成长基板;
形成另一电极与该第一型半导体层电性连接;
提供一电压源对每一个微型发光二极管进行电性(EL)检测,并记录异常微型发光二极管位置;
择性移除该异常微型发光二极管,并留下通过测试的微型发光二极管;
该微型发光二极管包含一第一颜色的微型发光二极管,及一第二 颜色的微型发光二极管,以及一第三颜色的微型发光二极管;
移转通过测试的第一颜色的微型发光二极管于一第一容器内,并将该第一容器放置于一第一子腔体内,该第一子腔体内包含一液体将该第一颜色微型发光二极管包覆;
移转通过测试的第二颜色的微型发光二极管于一第二容器内,并将第二该容器放置于一第二子腔体内,该第二子腔体内包含一液体将该第二颜色微型发光二极管包覆;
移转通过测试的第三颜色的微型发光二极管于一第三容器内,并将该第三容器放置于一第三子腔体内,该第三子腔体内包含一液体将该第三颜色微型发光二极管包覆;
借由一流体移转系统分别将该第一颜色的微型方光二极管,及该第二颜色的微型发光二极管,以及该第三颜色的微型发光二极管,分别移转至一接收基板。
这种方法的有益效果为:
(1)借由移转前对每一个微型发光二极管进行电性(EL)检测,可节省移转后修复的成本;
(2)流体移转具有低成本,移转速度快的优点;
(3)借由第一子腔体、第二子腔体、第三子腔体的设计,可以分批移转不同发光颜色的微型发光二极管的优点,提高生产速度。
该接收基板上具有多个凹槽,设置多个可程控的吸力层于该基板中,该吸力层可为提供一电力吸引力、磁力吸引力、静电力吸引力、流体吸引力、空气吸引力、凡得瓦力吸引力、热力吸引力、附层吸引力,所产生的吸引力可以具有捕捉流体内的微型发光二极管的功能。在这种情况下,该流体移转系统统包含一第一子腔体、一第二子腔体、及一第三子腔体,该第一子腔体内具有多个第一颜色的微型发光二极管,并且包含溶液,以及第一阀门与第一输入口,当该第一阀门打开时,多个第一颜色的微型发光二极管被该第一输入口所注入的溶体往下经由第一阀门进入该主腔体,并借由流体移动至该基板上方的所对应凹槽,该第一颜色的微型发光二极管受到该基板上的吸力层的吸力所吸引,自我对准至该凹槽内,其中该凹槽与该第一颜色的微型发光 二极管具有相同的外型,完成第一颜色的微型发光二极管移转至该基板上方。
其中第二子腔体内具有多个第二颜色的微型发光二极管,并且包含溶液,以及一第二阀门与一第一输入口,当该第二阀门打开时,多个第二颜色的微型发光二极管被该第二输入口所注入的溶体往下经由第二阀门进入该主腔体,并借由流体移动至该基板上方的所对应凹槽,该第二颜色的微型发光二极管受到该基板上的吸力层的吸力所吸引,自我对准至该凹槽内,其中该凹槽与该第二颜色的微型发光二极管具有相同的外型,完成第二颜色的微型发光二极管移转至该基板上方。
上述的方式的有益效果为:
(1)借由移转前对每一个微型发光二极管进行电性(EL)检测,可节省移转后修复的成本;
(2)流体移转具有低成本,移转速度快的优点;
(3)借由第一子腔体、第二子腔体、第三子腔体的设计,可以分批移转不同发光颜色的微型发光二极管的优点,提高生产速度;
(4)自我对准凹槽设计可以降低生产成本。
其中第三子腔体内具有多个第三颜色的微型发光二极管,并且包含溶液,以及一第三阀门与一第三输入口,当该第三阀门打开时,多个第三颜色的微型发光二极管被该第三输入口所注入的溶体往下经由第三阀门进入该主腔体,并借由流体移动至该基板上方的所对应凹槽,该第三颜色的微型发光二极管受到该基板上的吸力层的吸力所吸引,自我对准至该凹槽内,其中该凹槽与该第三颜色的微型发光二极管具有相同的外型,完成第三颜色的磁性微型发光二极管移转至该基板上方。
根据本发明实施方式的又一种微型发光二极管Micro-LED装置包括:
一第一型半导体层101;
一第二型半导体层102;
一发光层103,其位于该第一型半导体层101及该第二型半导体层 102之间;
一第一电流限制区域201,其位于第二型半导体层102的四周围及侧壁区域。第一电流限制区域201可降低侧壁漏电流,提高微型发光二极管发光效率。
该第二型半导体层102的上表面U6与该第一电流限制区域201的上表面U1共平面。
上述Micro-LED装置,可进一步包括一透明电极301,该透明电极位于该第二型半导体层102的上方,并且与该第二型半导体层102电性连接,且该透明电极301覆盖该第一电流限制区域201。在这种情况下,可进一步包括一电极302,位于该第二型半导体层102的上方并与该透明电极301电性连结,且该电极302与该第二型半导体层102直接接触,可以避免电极脱落问题,提高产品稳定性。另可进一步包括另一电极304,位于该第一型半导体层101以及该第二型半导体层102的上方并与该第一型半导体层101电性连结,且该另一电极304与该第一型半导体层102直接接触。透明电极具有高光穿透率,提高微型发光二极管发光效率。另可进一步包括一第五电流阻挡区域505,该电流第五电流阻挡区域505覆盖该透明电极301,且让该电极302与该另一电极304绝缘。其中该另一电极304具有一第四宽度T4,其中该电极具有一第五宽度T5,该第四宽度T4大于或等于该第五宽度T5。该另一电极304与该第一型半导体层接触面具有一第三宽度T3,该第三宽度T3小于该第四宽度T4。
该第一电流限制区域201借由离子布植(ion implantation)技术形成。离子布植技术可提高侧壁平坦度,提高产品稳定性。
该第一电流限制区域201具有一第一宽度T1大于或等于1μm。
该Micro-LED装置,可包括一蚀刻沟槽105,该沟槽借由移除部分该第二型半导体层102及该发光层103并且裸露该第一型半导体层101,其中该沟槽具有一第七深度D7,其中该第一电流限制区域具有一第一深度D1,且该第一深度D1小于或等于该第七深度D7。具有覆晶结构的特征。在这种情况下,进一步包括一第五电流阻挡区域505,该电流第五电流阻挡区域505位于该蚀刻沟槽的侧壁。
该第一型半导体层101与该第二型半导体层102及该发光层103具有一磊晶厚度(E1),该厚度小于10μm。
该Micro-LED装置,可包括一第6电流阻挡区域506,该第六电流阻挡区域506覆盖该第二半导102体的侧壁以及覆盖该发光层103的侧壁以及覆盖该第一型半导体层101的侧壁,且该第六电流阻挡区域506环绕着该第一电流限制区域201。
该Micro-LED装置,可包括一第四电流限制区域204,其被该第一电流限制区域201所环绕,其中该第一电流限制区域201具有一第一深度D1,该第四电流限制区域204具有一第四深度D4,该第一深度D1等于该第四深度D4。在这种情况下,该第四电流限制区域204借由离子布植(ion implantation)技术形成。其中该第四电流限制区域204的上表面U4与该第二型半导体层102的上表面U6共平面。该第五电流限制区域205借由离子布植(ion implantation)技术形成。其中该第五电流限制区域205的上表面U5与该第二型半导体层102的上表面U6共平面。
该Micro-LED装置,可包括一第五电流限制区域205,其被该第一电流限制区域201所环绕,其中该第一电流限制区域201具有一第一深度D1,该第五电流限制区域205具有一第五深度D5,该第一深度D1等于该第五深度D5,且该第五电流限制区域205环绕着该蚀刻沟槽105。
该Micro-LED装置,可包括一第四电流阻挡区域504,其被该第一电流限制区域201所环绕且与该第二型半导体层102直接接触。
该第一电流限制区域201外围具一第一长度S1、一第二长度S2、一第三长度S3、一第四长度S4;
其中该第一长度S1、该一第二长度S2、该第三长度S3、该第四长度S4具有小于或等于100μm。
该第一电流限制区域201外围具一第一长度S1、一第二长度S2、一第三长度S3、一第四长度S4;
其中该第一长度S1、该一第二长度S2、该第三长度S3、该第四长度S4的总和具有小于或等于400μm。
该微型发光二极管的发光效率高于250流明每瓦[lm/W]。
该微型发光二极管的显色指数中对红色的显示能力R9大于90。
该微型发光二极管的演色性指数(Color Rendering Index,CRI)大于90。
该微型发光二极管的平均演色评价指数Ra大于90。
该第一电流限制区域201外围周长为400μm或更小;或者,该第一电流限制区域201外围周长的距离具有200μm或更小的宽度;或者,该第一电流限制区域201外围周长的距离具有100μm或更小的宽度;或者,该第一电流限制区域201外围周长的距离具有50μm或更小的宽度;或者,该第一电流限制区域201外围周长的距离具有20μm或更小的宽度。
上述离子布植(ion implantation)技术可以使用含任何材料,例如,但不限于,H+、He+、N+、F+、Mg+、Ar+、Zn+、O+、Si+、P+、Be+、C+、B+、P+、As+、Sb+、Te+、Fe+、Co+、Sn+、Zr+、Ag+、Au+、Ti+、Al+、离子或其组合。其中,该离子布植(ion implantation)技术,先将离子行经质量分析器利用磁场而去掉不要的离子(ionized),而所筛选出的掺杂离子进入加速器后,利用电场加速至高能量,将此高能量的离子束通过纵向和横向扫描仪后,直接打入半导体,来进行掺杂离子的预置。进行掺杂离子预置时,所预置的掺杂浓度,可以经由离子束的电流大小和布植时间来控制;而掺质在半导体内的分布,则可借由离子经加速所获得的能量来调整,因此可以精确的掌握掺杂离子在半导体内的浓度和分布情形。在离子布植后,可使用快速加热处理(RTA)或高温炉管(Furnace)来做回火活化的动作来修复因为碰撞造成的晶格破坏和脱序现象,并且让布植离子和半导体原子重新结晶,使布植离子能在新晶格主原子的位置上。
上述微型发光二极管,其中该第一型半导体层101、该第二型半导体层102、该发光层103可包含任何材料,例如,但不限于,氮化镓(GaN)、氮化铝(AlN)、氮化铟(InN)、氮化铟镓(InGaN)、氮化铝镓(AlGaN)、氮化铝铟镓(AlGaInN)、磷化镓(GaP)、磷化铝(AlP)、磷化铝镓(AlGaP)、砷化铝(AlAs)、砷化铝镓(AlGaAs)、磷化铝铟镓 (AlInGaP)、砷化铝铟镓(AlInGaAs)、硒化锌(ZnSe)、氧化锌(ZnO)或其合金。
上述微型发光二极管,其中该个别微型发光二极管可以独立控制。
一种微型发光二极管Micro-LED装置的制作方法,包含:
在一成长基板上形成上述的微型发光二极管,其中形成微型发光二极管的步骤包含:
形成一电极与该第二型半导体层电性连接;
形成另一电极与该第一型半导体层电性连接;
将微型发光二极管与一测试基板接合;
移除该成长基板;
提供一电压源对每一个微型发光二极管进行电性(EL)检测,并记录异常微型发光二极管位置;
将该微型发光二极管移转至一传送机板;
第一次选择性移除该异常微型发光二极管,并留下通过测试的微型发光二极管;
第一次移转通过测试的微型发光二极管于永久基板上,并于该永久基板上留下该移除异常微型发光二极管的空缺;
第二次移转填补该永久基板上的空缺。
该Micro-LED装置的制作方法,更包含一牺牲层,如图9-6或图10-6或图28-6中牺牲层(700),借由该牺牲层将微型发光二极管与一测试基板接合。其中,该第一次选择性移除该异常微型发光二极管的方式可以为借由导入一激光,改变该牺牲层的黏粘性,使该异常微型发光二极管自该测试基板移除。该第一次移转的方式可以为借由导入一激光,改变该牺牲层的黏粘性,使该微型发光二极管自该测试基板移转至该永久基板。该第二次移转的方式可以为借由导入一激光,改变该牺牲层的黏粘性,使该微型发光二极管自该测试基板移转至该永久基板。该第一次移转的的微型发光二极管与该第二次移转的微型发光二极管来自不同一个成长基板。Micro-LED装置的制作方法,更包含一磁力接合层,借由该磁力接合层暂时性将微型发光二极管与一测 试基板接合。在这种情况下,该第一次选择性移除该异常微型发光二极管的方式可以为借由改变该磁力接合层的磁力,使该异常微型发光二极管自该测试基板移除。该第一次移转的方式可以为借由改变该磁力接合层的磁力,使该微型发光二极管自该测试基板移转至该永久基板。该第二次移转的方式可以为借由改变该磁力接合层的磁力,使该微型发光二极管自该测试基板移转至该永久基板。该第一次选择性移除该异常微型发光二极管的方式可以为借由改变该真空吸附层的吸力,使该异常微型发光二极管自该测试基板移除。该第一次移转的方式可以为借由改变该真空吸附层的吸力,使该微型发光二极管自该测试基板移转至该永久基板。该第二次移转的方式可以为借由改变该真空吸附层的吸力,使该微型发光二极管自该测试基板移转至该永久基板。
该第一次移转的微型发光二极管与该第二次移转的微型发光二极管可来自同一个成长基板。
这种Micro-LED装置的制作方法,可更包含一真空吸附层,借由该真空吸附层将微型发光二极管与一测试基板接合。
或者这种Micro-LED装置的制作方法,更包含一静电吸附层,借由该静电吸附层将微型发光二极管与一测试基板接合。在这种情况下,该第一次选择性移除该异常微型发光二极管的方式可以为借由改变该静电吸附层的静电力,使该异常微型发光二极管自该测试基板移除。该第一次移转的方式可以为借由改变该静电吸附层的静电力,使该微型发光二极管自该测试基板移转至该永久基板。该第二次移转的方式可以为借由改变该静电吸附层的静电力,使该微型发光二极管自该测试基板移转至该永久基板。
或者这种Micro-LED装置的制作方法,更包含一粘合层,借由该粘合层将微型发光二极管与一测试基板接合。其中,该第一次选择性移除该异常微型发光二极管的方式可以为借由改变该粘合层的粘合力,使该异常微型发光二极管自该测试基板移除。该第一次移转的方式可以为借由改变该粘合层的粘合力,使该微型发光二极管自该测试基板移转至该永久基板。该第二次移转的方式可以为借由改变该粘合层的粘合力,使该微型发光二极管自该测试基板移转至该永久基板。
在这种Micro-LED装置的制作方法中,
该第一次选择性移除该异常微型发光二极管,具有一第一移除速率;
该第一次移转通过测试的微型发光二极管于永久基板上,具有一第一移转速率;
该第二次移转填补该永久基板上的空缺,具有一第二移转速率;
其中该第一移转速率大于该第二移转速率,且该第一移除率度大于或等于该第二率转速率。
在这种Micro-LED装置的制作方法中,
该第一次移转通过测试的微型发光二极管于永久基板上,具有一第一移转速率;
该第二次移转填补该永久基板上的空缺,具有一第二移转速率;
其中该第一移转速率大于该第二移转速率。
在这种Micro-LED装置的制作方法中,
该成长基板100上的微型发光二极管距有一第一间距P1;
该传送机板801上的微型发光二极管距有一第二间距P2;
该永久基板820上的微型发光二极管距有一第三间距P3;
其中该第二间距P2大于或等于该第一间距P1;
其中该第三间距P3大于或等于该第二间距P2。
或者,Micro-LED装置的制作方法,其中
该成长基板100上的微型发光二极管距有一第一间距P1;
该传送机板801上的微型发光二极管距有一第二间距P2;
该永久基板820上的微型发光二极管距有一第三间距P3;
其中该第二间距P2大于该第一间距P1;
其中该第三间距P3大于该第二间距P2。
该微型发光二极管至少包含红光发光二极管、绿光发光二极管、蓝光发光二极管所组成的矩阵结构。其中,更包含:
形成一文件墙结构850,该文件墙结构介于该微型光二极管之间;
形成一透光胶体F覆盖该微型发光二极管。
可选地,该微型发光二极管至少包含紫外光发光二极管所组成的 矩阵结构。上述方法中更包含:
形成一文件墙结构850,该文件墙结构介于该微型光二极管之间;
形成一第一荧光胶体F1覆盖该微型发光二极管,该微型发光二极管激发该第一荧光胶体发出红光;
形成一第二荧光胶体F2覆盖该微型发光二极管,该微型发光二极管激发该第二荧光胶体发出蓝光;
形成一第三荧光胶体F3覆盖该微型发光二极管,该微型发光二极管激发该第三荧光胶体发出绿光。
可选地,该微型发光二极管至少包含蓝光发光二极管所组成的矩阵结构。上述方法中更包含:
形成一文件墙结构850,该文件墙结构介于该微型光二极管之间;
形成一第一透光胶体F覆盖该微型发光二极管,该微型发光二极管穿透该第一透光胶体发出蓝光;
形成一第一荧光胶体F1覆盖该微型发光二极管,该微型发光二极管激发该第一荧光胶体发出红光;
形成第三荧光胶体F3覆盖该微型发光二极管,该微型发光二极管激发该第三荧光胶体发出绿光。
该微型发光二极管的发光效率高于250流明每瓦[lm/W]。
该微型发光二极管的显色指数中对红色的显示能力R9大于90。
该微型发光二极管的演色性指数(Color Rendering Index,CRI)大于90。
该微型发光二极管的平均演色评价指数Ra大于90。
该第一次移转通过测试的微型发光二极管于永久基板上,具有一第一移转速率,该第一移转速率大于1百万个微型发光二极管每小时[Million Micro-LEDs/hour]。
或者,该第一次移转通过测试的微型发光二极管于永久基板上,具有一第一移转速率,该第一移转速率大于10百万个微型发光二极管每小时[Million Micro-LEDs/hour]。
或者,该第一次移转通过测试的微型发光二极管于永久基板上,具有一第一移转速率,该第一移转速率大于20百万个微型发光二极管 每小时[Million Micro-LEDs/hour]。
或者,该第一次移转通过测试的微型发光二极管于永久基板上,具有一第一移转速率,该第一移转速率大于100百万个微型发光二极管每小时[Million Micro-LEDs/hour]。
或者,该第一次移转通过测试的微型发光二极管于永久基板上,具有一第一移转速率,该第一移转速率大于200百万个微型发光二极管每小时[Million Micro-LEDs/hour]。
或者,该第一次移转通过测试的微型发光二极管于永久基板上,具有一第一移转速率,该第一移转速率大于500百万个微型发光二极管每小时[Million Micro-LEDs/hour]。
该第一次选择性移除该异常微型发光二极管,具有一第一移除速率,该第一移除速率大于1百万个微型发光二极管每小时[Million Micro-LEDs/hour]。
或者,该第一次选择性移除该异常微型发光二极管,具有一第一移除速率,该第一移除速率大于10百万个微型发光二极管每小时[Million Micro-LEDs/hour]。
或者,该第一次选择性移除该异常微型发光二极管,具有一第一移除速率,该第一移除速率大于20百万个微型发光二极管每小时[Million Micro-LEDs/hour]。
或者,该第一次选择性移除该异常微型发光二极管,具有一第一移除速率,该第一移除速率大于100百万个微型发光二极管每小时[Million Micro-LEDs/hour]。
或者,该第一次选择性移除该异常微型发光二极管,具有一第一移除速率,该第一移除速率大于200百万个微型发光二极管每小时[Million Micro-LEDs/hour]。
或者,该第一次选择性移除该异常微型发光二极管,具有一第一移除速率,该第一移除速率大于500百万个微型发光二极管每小时[Million Micro-LEDs/hour]。
该第二次移转填补该永久基板上的空缺,具有一第二移转速率,该第二移转速率大于1百万个微型发光二极管每小时[Million  Micro-LEDs/hour]。
或者,该第二次移转填补该永久基板上的空缺,具有一第二移转速率,该第二移转速率大于10百万个微型发光二极管每小时[Million Micro-LEDs/hour]。
或者,该第二次移转填补该永久基板上的空缺,具有一第二移转速率,该第二移转速率大于20百万个微型发光二极管每小时[Million Micro-LEDs/hour]。
或者,该第二次移转填补该永久基板上的空缺,具有一第二移转速率,该第二移转速率大于100百万个微型发光二极管每小时[Million Micro-LEDs/hour]。
或者,该第二次移转填补该永久基板上的空缺,具有一第二移转速率,该第二移转速率大于200百万个微型发光二极管每小时[Million Micro-LEDs/hour]。
或者,该第二次移转填补该永久基板上的空缺,具有一第二移转速率,该第二移转速率大于500百万个微型发光二极管每小时[Million Micro-LEDs/hour]。
上述Micro-LED装置的制作方法,其中该成长基板100可包含任何材料,例如,但不限于,硅(silicon)、蓝宝石(Al 2O 3)、氮化镓(GaN)、碳化硅(SiC)、砷化镓(GaAs)。
上述Micro-LED装置的制作方法,其中该个别微型发光二极管可以独立控制。
本发明实施方式中的又一种微型发光二极管Micro-LED装置包括:
一第一型半导体层101;
一第二型半导体层102;
一发光层103,其位于该第一型半导体层101及该第二型半导体层102之间;
一磁性层(Magnetic Layer),其位于该第一型半导体层的下方;
一侧壁电流限制区域,其位于该第二半导体102及该发光层103及该第二半导体层102的四周围侧壁区域;
其中该侧壁电流限制区域的上表面与该第二型半导体的上表面共平面;
其中该第一电流限制区域外围周长为400μm或更小。
微型发光二极管Micro-LED装置的上述结构的有益效果为:具有磁性微型发光二极管的特征,侧壁电流限制区域可降低侧壁漏电流,提高微型发光二极管发光效率。
该Micro-LED装置可更包括一第二电流限制区域202,其被该侧壁电流限制区域所环绕,其中该侧壁电流限制区域及该第二电流限制区域202的最短距离具有50μm或更小宽度。该第二电流限制区域202位于该第二半导体区域102的中间位置。该磁性层的材料可为一半导体、导体层、氧化层,再借由磊晶掺杂(doping)、离子布植(ion implantation)、扩散(diffusion)、薄膜沉积(Thin Film Deposition)等技术形成该磁性层,其中借由磊晶掺杂(doping)、离子布植(ion implantation)、扩散(diffusion)、薄膜沉积(Thin FilmDeposition)等磁性材料可包括例如Fe、Co、Ni、Tb、Al、Pt、Sm、Cu、Cr或上述组合。该发光层包含单层量子井(quantum well)、多层量子井结构。该发光层包含单层量子线(quantum wire)、多层量子线结构。该发光层包含单层量子点(quantum dot)、多层量子点结构。在这种情况下,该第二型半导体102的上表面与该侧壁电流限制区域的上表面及该第二电流限制区域202的上表面共平面。该第二电流限制区域202借由离子布植技术形成。可进一步包括一第三电流限制区域203,其位于该侧壁电流限制区域及该第二电流限制区域202之间,并且与该第二电流限制区域202接触。还可进一步包括一透明电极301,该透明电极位于该第二半导体102的上方,并且与该第二型半导体102电性连接,且该透明电极301覆盖该侧壁电流限制区域及覆盖第三电流限制区域203。另外也可进一步包括一电极302位于该第二半导体102的上方并与该透明电极301电性连结,且该电极302与该第二电流限制区域202直接接触。以及进一步包括一电极延伸部303,位于该透明电极301的上方,并且与该电极302电性连接。该第三电流限制区域203的上表面与该侧壁电流限制区域的上表面共平面。该第三电流限制区域203 借由离子布植技术形成。该第二电流限制区域202具有一第二深度D2,该第三电流限制区域203具有一第三深度D3,该第二深度D2等于该第三深度D3。还可进一步包括一透明电极301,该透明电极位于该第二半导体102的上方,并且与该第二型半导体102电性连接,且该透明电极301覆盖该侧壁电流限制区域。透明电极具有高光穿透率,提高微型发光二极管发光效率;。还可进一步包括一电极302,位于该第二半导体102的上方并与该透明电极301电性连结,且该电极302与该第二电流限制区域202直接接触,可以避免电极脱落问题,提高产品稳定性。还可进一步包括一电极延伸部303,位于该透明电极301的上方,并且与该电极302电性连接。
该侧壁电流限制区域借由离子布植技术形成。
其中:
(1)侧壁电流限制区可降低侧壁漏电流,提高微型发光二极管发光效率;
(2)第二电流限制区域202可提高电流分布均匀性,提高微型发光二极管发光效率;
(3)第三电流限制区域203可提高电流分布均匀性,提高微型发光二极管发光效率;
(4)离子布植技术可提高侧壁平坦度,提高产品稳定性;
(5)离子布植技术可提高表面平坦度,提高产品稳定性。
该侧壁电流限制区域具有一第一宽度T1大于或等于1μm。
本发明实施方式的又一种微型发光二极管Micro-LED装置包括:
一第一型半导体层101;
一第二型半导体层102;
一发光层103,其位于该第一型半导体层101及该第二型半导体层102之间;
一磁性层(Magnetic Layer),其位于该第一型半导体层的下方;
一第一电流阻挡区域501,其位于该第二半导体102及该发光层103及该第二半导体层102的四周围侧壁区域;
其中该第一电流阻挡区域501外围周长为400μm或更小。
采用上述结构的有益效果为:具有磁性微型发光二极管的特征,第一电流阻挡区域501可降低侧壁漏电流,提高微型发光二极管发光效率;外围周长的距离低于400μm,从而达到微型发光二极管的尺寸量级,具有其各种优点。
该Micro-LED装置可进一步包括一第二电流阻挡区域502,其被该第一电流阻挡区域501所环绕,其中该第一电流阻挡区域501及该第二电流阻挡区域502的最短距离具有50μm或更小宽度。在这种情况下,可进一步包括一第三电流阻挡区域503,其被该第一电流阻挡区域501所环绕并且与该第二电流阻挡区域502接触;还可进一步包括一透明电极301,该透明电极位于该第二半导体102的上方,并且与该第二型半导体102电性连接,且该透明电极301覆盖该第一电流阻挡区域501及覆盖该第二电流阻挡区域502及覆盖该第三电流阻挡区域503。该第二电流阻挡区域502为一中空环状外型,并且具有一中空宽度O2,该中空宽度大于或等于1微米。该第二电流阻挡区域502位于该第二半导体区域102的中间位置。还可进一步包括一电极302位于该第二半导体102的上方并与该透明电极301电性连结,且该电极302与该第二半导体层102直接接触。也可进一步包括一电极延伸部303位于该透明电极301的上方,并且与该电极302电性连接。该电极延伸部303的宽度小于该第三电流阻挡区域503的宽度。进一步包括一透明电极301,该透明电极位于该第二半导体102的上方,并且与该第二型半导体102电性连接,且该透明电极301覆盖该第一电流阻挡区域501及覆盖该第二电流阻挡区域502。还可进一步包括一电极302,位于该第二半导体102的上方并与该透明电极301电性连结,且该电极302与该第二半导体层102直接接触,可以避免电极脱落问题,提高产品稳定性。透明电极具有高光穿透率,提高微型发光二极管发光效率。还可进一步包括一电极延伸部303位于该透明电极301的上方,并且与该电极302电性连接。
该第一电流阻挡区域501的宽度T2大于或等于1μm。
根据本发明实施方式的又一种微型发光二极管Micro-LED装置包括:
一第一型半导体层101;
一第二型半导体层102;
一发光层103,其位于该第一型半导体层101及该第二型半导体层102之间;
一侧壁电流限制区域201,其与该第二形半导体层102的四周围侧壁区域直接接触;
其中该侧壁电流限制区域201更包括上表面201-up,下表面101-down,外表面201-out,及内表面201-in;
其中该第二型半导体层102更包括上表面102-up,外表面102-out;
其中侧壁电流限制区域201外围周长为400μm或更小。
采用上述结构,得到的有益效果为:
(1)侧壁电流限制区域201可降低侧壁漏电流,提高微型发光二极管发光效率;
(2)外围周长的距离低于400μm,达到微型发光二极管的尺寸量级,具备其各种优点。
该第二型半导体层102的上表面102-up与该侧壁电流限制区域201的上表面201-up共平面。
该Micro-LED装置可进一步包括一透明电极301,该透明电极位于该第二型半导体层102的上方,并且与该第二型半导体层102电性连接,且该透明电极301覆盖该侧壁电流限制区域201。还可进一步包括一电极302位于该第二型半导体层102的上方并与该透明电极301电性连结,且该电极302与该第二型半导体层102直接接触,可以避免电极脱落问题,提高产品稳定性。透明电极具有高光穿透率,提高微型发光二极管发光效率。
该侧壁电流限制区域201借由离子布植(ion implantation)技术形成。离子布植技术可提高侧壁平坦度,提高产品稳定性。
该侧壁电流限制区域201具有一第一宽度T1大于或等于1μm。
该Micro-LED装置可进一步包括一背后电极304,位于该第一型 半导体层的下方,该背后电极304与该第一型半导体层电性连接。
该侧壁电流限制区域的上表面201-up具有一表面低导电率区域
Figure PCTCN2019088648-appb-000025
其中该第二型半导体层的上表面102-up具有一表面高导电率区域
Figure PCTCN2019088648-appb-000026
该表面低导电率区域
Figure PCTCN2019088648-appb-000027
往该表面高导电率区域
Figure PCTCN2019088648-appb-000028
具有一逐渐增导电率的分布。这样有助于降低表面及侧壁漏电流,提高微型发光二极管发光效率。
该侧壁电流限制区域的外表面201-out具有一侧壁低导电率区域
Figure PCTCN2019088648-appb-000029
其中该第二型半导体层的外表面102-out具有一侧壁高导电率区域
Figure PCTCN2019088648-appb-000030
该侧壁低导电率区域
Figure PCTCN2019088648-appb-000031
往该高导电率区域
Figure PCTCN2019088648-appb-000032
具有一逐渐增导电率的分布。
该侧壁电流限制区域的上表面201-up具有一第一表面粗糙度RS-201-up,该第一表面粗糙度不超过10纳米。
该第二型半导体层的上表面102-up具有一第二表面粗糙度RS-102-up,该第二表面粗糙度不超过10纳米。
另外也可以是,该侧壁电流限制区域的上表面201-up具有一第一表面粗糙度RS-201-up,其中该第二型半导体层的上表面102-up具有一第二表面粗糙度RS-102-up,该第一表面粗糙度RS-201-up大于或等于该第二表面粗糙度RS-102-up。
该侧壁电流限制区域的外表面201-out具有一第三表面粗糙度RS-201-out,该第三表面粗糙度超过10纳米。
该第二型半导体层的外表面102-out具有一第四表面粗糙度RS-102-out,该第四表面粗糙度超过10纳米。
另外也可以是,该侧壁电流限制区域的外表面201-out具有一第三表面粗糙度RS-201-out,其中该第二型半导体层的外表面102-out具有一第四表面粗糙度RS-102-out,该第三表面粗糙度RS-201-out大于或等于该第四表面粗糙度RS-102-out。
可选地,该侧壁电流限制区域的上表面201-up具有一第一表面粗糙度RS-201-up,其中该侧壁电流限制区域的外表面201-out具有一第三表面粗糙度RS-201-out,该第一表面粗糙度RS-201-up大于或等于该第三表面粗糙度RS-201-out。
可选地,该第二型半导体层的上表面102-up具有一第二表面粗糙度RS-102-up,其中该第二型半导体层的外表面102-out具有一第四表面粗糙度RS-102-out,该第二表面粗糙度RS-102-up大于或等于该第四表面粗糙度RS-102-out。
上述列举的各可选方式的优点在于,控制表面及侧壁的表面粗糙度,可以降低漏电流,提高微型发光二极管发光效率。
该侧壁电流限制区域201具有一第一深度D1,该第一深度小于1μm。或者,该侧壁电流限制区域201具有一第一深度D1,该第一深度大于或等于1μm。
该侧壁电流限制区域201更包括该发光层103的侧壁区域103-out。
该侧壁电流限制区域201更包括该发光层103以外的侧壁区域。
该侧壁电流限制区域201更包括该发光层103的侧壁区域103-out,以及该第一型半导体101的侧壁区域101-out。
上述各可选方式的优点在于:透过控制侧壁电流限制区域的深度,可达到降低侧壁漏电流更佳效果,提高微型发光二极管发光效率。
可选地,该侧壁电流限制区域上表面201-up与该侧壁电流限制区域外表面201-out具有一第一夹角Θ1,其中该侧壁电流限制区域上表面201-up与该侧壁电流限制区域内表面201-in具有一第二夹角Θ2,该第一夹角Θ1为一锐角小于90度,该第二夹角Θ2为一钝角大于90度。
可选地,该侧壁电流限制区域上表面201-up与该侧壁电流限制区域外表面201-out具有一第一夹角Θ1,其中该侧壁电流限制区域上表面201-up与该侧壁电流限制区域内表面201-in具有一第二夹角Θ2,该第一夹角Θ1为一钝角大于90度,该第二夹角Θ2为一锐角小于90度。
可选地,该侧壁电流限制区域上表面201-up与该侧壁电流限制区域外表面201-out具有一第一夹角Θ1,其中该侧壁电流限制区域上表面201-up与该侧壁电流限制区域内表面201-in具有一第二夹角Θ2,该第一夹角Θ1及该第二夹角Θ2为接近直角90度。
可选地,该侧壁电流限制区域上表面201-up与该侧壁电流限制区 域外表面201-out具有一第一夹角Θ1,其中该侧壁电流限制区域上表面201-up与该侧壁电流限制区域内表面201-in具有一第二夹角Θ2,该第一夹角Θ1及该第二夹角Θ2为一直角90度。
可选地,该侧壁电流限制区域上表面201-up与该侧壁电流限制区域外表面201-out具有一第一夹角Θ1,其中该侧壁电流限制区域上表面201-up与该侧壁电流限制区域内表面201-in具有一第二夹角Θ2,该第一夹角Θ1及该第二夹角Θ2为一钝角大于90度。
可选地,该侧壁电流限制区域上表面201-up与该侧壁电流限制区域外表面201-out具有一第一夹角Θ1,其中该侧壁电流限制区域上表面201-up与该侧壁电流限制区域内表面201-in具有一第二夹角Θ2,该第一夹角Θ1及该第二夹角Θ2为一锐角小于90度。
根据本发明实施方式的又一种微型发光二极管Micro-LED装置包括:
一第一型半导体层101;
一第二型半导体层102;
一发光层103,其位于该第一型半导体层101及该第二型半导体层102之间;
一第一电流阻挡区域501,其位于第二型半导体层102的四周围及侧壁区域;
其中该第一电流阻挡区域501外围周长为400μm或更小。
采用上述结构,能够带来的有益效果为:
(1)第一电流阻挡区域501可降低侧壁漏电流,提高微型发光二极管发光效率;
(2)外围周长的距离低于400μm,达到微型发光二极管的尺寸量级,从而具备其各种优点。
该第一电流阻挡区域501至少覆盖该第一型半导体层101的侧壁,以及覆盖该第二型半导体层102的侧壁,及覆盖该第一发光层103的侧壁。另有以下各项可选方式:
该第一电流阻挡区域501只覆盖该盖该第二型半导体层102的侧 壁,及覆盖该第一发光层103的侧壁;
该第一电流阻挡区域501只完全覆盖该盖该第二型半导体层102的侧壁;
该第一电流阻挡区域501部分覆盖该盖该第二型半导体层102的侧壁;
该第一电流阻挡区域501完全覆盖该第一发光层103的侧壁;
该第一电流阻挡区域501部分覆盖该第一发光层103的侧壁;
该第一电流阻挡区域501完全覆盖该第一型半导体层101的侧壁;
该第一电流阻挡区域501部分覆盖该第一型半导体层101的侧壁。
上述装置中,透过控制第一电流阻挡区域501的深度及范围,可达到降低侧壁漏电流更佳效果,提高微型发光二极管发光效率。
该Micro-LED装置可进一步包括一透明电极301,该透明电极位于该第二型半导体层102的上方,并且与该第二型半导体层102电性连接,且该透明电极301覆盖该第一电流阻挡区域501。在这种情况下,该透明电极301的上表面301-up具有一上表面高导电率区域
Figure PCTCN2019088648-appb-000033
其中该第一电流阻挡区域501的上表面501-up具有一上表面低导电率区域
Figure PCTCN2019088648-appb-000034
该上表面低导电率区域
Figure PCTCN2019088648-appb-000035
往该上表面高导电率区域
Figure PCTCN2019088648-appb-000036
具有一逐渐增导电率的分布。
该Micro-LED装置可进一步包括一电极302,位于该第二型半导体层102的上方,并与该透明电极301电性连结,且该电极302与该第二限制区域202直接接触,可以避免电极脱落问题,提高产品稳定性。透明电极具有高光穿透率,提高微型发光二极管发光效率。
该第一电流阻挡区域501由介电材料组成。
该第一电流阻挡区域501的宽度大于或等于1μm。
该第一电流阻挡区域501覆盖侧壁区域具有一厚度H1,以及覆盖上表面区域具有一厚度H2,其中该H1的厚度大于、小于或等于H2。该第一电流阻挡区域501覆盖侧壁区域具有一圆弧角(Arc)。透过控制第一电流阻挡区域501的几何外型,可达到降低侧壁漏电流更佳效果,提高微型发光二极管发光效率。
关于该第一电流阻挡区域501的上表面501-up以及外表面501-out, 有如下各项可选方式:
该第一电流阻挡区域501的上表面501-up具有一第一表面粗糙度RS-501-up,该第一表面粗糙度不超过10纳米;
该第一电流阻挡区域501的外表面501-out具有一第二表面粗糙度RS-501-out,该第二表面粗糙度不超过10纳米;
该第一电流阻挡区域501的上表面501-up具有一第一表面粗糙度RS-501-up,其中该第一电流阻挡区域501的外表面501-out具有一第二表面粗糙度RS-501-out,其中该第一表面粗糙度大于该第二表面粗糙度;
该第一电流阻挡区域501的上表面501-up具有一第一表面粗糙度RS-501-up,其中该第一电流阻挡区域501的外表面501-out具有一第二表面粗糙度RS-501-out,其中该第一表面粗糙度等于该第二表面粗糙度;
该第一电流阻挡区域501的上表面501-up具有一第一表面粗糙度RS-501-up,其中该第一电流阻挡区域501的外表面501-out具有一第二表面粗糙度RS-501-out,其中该第一表面粗糙度小于该第二表面粗糙度。
上述装置中,控制电流阻挡区域501表面及侧壁的表面粗糙度,可以降低漏电流,提高微型发光二极管发光效率。
可选地,该第一电流阻挡区域501的上表面501-up具有一表面低导电率区域
Figure PCTCN2019088648-appb-000037
其中该第二型半导体层的上表面102-up具有一表面高导电率区域
Figure PCTCN2019088648-appb-000038
该表面低导电率区域
Figure PCTCN2019088648-appb-000039
往该表面高导电率区域
Figure PCTCN2019088648-appb-000040
具有一逐渐增导电率的分布。
可选地,该第一电流阻挡区域501的外表面501-out具有一外表面低导电率区域
Figure PCTCN2019088648-appb-000041
其中该第一电流阻挡区域501的上表面501-up具有一上表面低导电率区域
Figure PCTCN2019088648-appb-000042
外表面低导电率区域
Figure PCTCN2019088648-appb-000043
的导电率等于该上表面低导电率区域
Figure PCTCN2019088648-appb-000044
的导电率。
可选地,该第一电流阻挡区域501的外表面501-out具有一外表面低导电率区域
Figure PCTCN2019088648-appb-000045
其中该第一电流阻挡区域501的上表面501-up具有一上表面低导电率区域
Figure PCTCN2019088648-appb-000046
外表面低导电率区域
Figure PCTCN2019088648-appb-000047
的导电率大 于该上表面低导电率区域
Figure PCTCN2019088648-appb-000048
的导电率。
可选地,该第一电流阻挡区域501的外表面501-out具有一外表面低导电率区域
Figure PCTCN2019088648-appb-000049
其中该第一电流阻挡区域501的上表面501-up具有一上表面低导电率区域
Figure PCTCN2019088648-appb-000050
外表面低导电率区域
Figure PCTCN2019088648-appb-000051
的导电率小于该上表面低导电率区域
Figure PCTCN2019088648-appb-000052
的导电率。
上述装置中,降低表面及侧壁漏电流,提高微型发光二极管发光效率。
本发明实施方式还包括一种显示面板,该显示面板包含:一显示基板,该显示基板包括一微型发光二极管Micro-LED装置阵列,其中一部分微型发光二极管Micro-LED装置具有侧壁电流阻挡区域501,其中一部分微型发光二极管Micro-LED装置具有侧壁电流限制区域201。
关于该侧壁电流阻挡区域的形成,有如下可选方式:
该侧壁电流阻挡区域借由原子层化学气相沉积系统(Atomic Layer Chemical Vapor Deposition System,ALD)技术形成。
该侧壁电流阻挡区域501借由有机金属化学气相沉积(Metal Organic Chemical Vapor Phase Deposition,MOCVD)磊晶再成长技术形成。
该侧壁电流阻挡区域501借由分子束磊晶(Molecular Beam Epitaxy,MBE)磊晶再成长技术形成。
该侧壁电流阻挡区域501借由电浆化学气相沉积(Plasma Enhanced Chemical Vapor Deposition,PECVD)技术形成。
该侧壁电流限制区域201借由选择性氧化(Selective oxidation)技术形成。
该侧壁电流限制区域201借由高温氧化(Thermal oxidation)技术形成。
该侧壁电流限制区域201借由高温湿氧化(Wet thermal oxidation)技术形成。
该侧壁电流限制区域借由离子布植(ion implantation)技术形成。
每一微型发光二极管Micro-LED装置具有1μm至100μm的一最大宽度。
每一微型发光二极管Micro-LED装置包含一半导体材料。
每一微型发光二极管Micro-LED装置包括一第一型半导体层101、一第二型半导体层102及一发光层103,其位于该第一型半导体层101及该第二型半导体层102之间。
上述显示面板进一步包含用于切换及驱动该微型发光二极管Micro-LED装置阵列的电路。其中,更包含微型控制器芯片阵列。同时,每一微型控制器芯片连接至一扫描驱动电路及一数据驱动电路。
本发明实施方式还提供一种柔性显示器(flexible display),该柔性显示器包含:一柔性基板(flexible substrate),该柔性基板上包括一微型发光二极管Micro-LED装置阵列,其中一部分微型发光二极管Micro-LED装置具有侧壁电流阻挡区域501,其中一部分微型发光二极管Micro-LED装置具有侧壁电流限制区域201。
该侧壁电流阻挡区域501由介电材料组成。
或者该侧壁电流限制区域借由离子布植(ion implantation)技术形成。
每一微型发光二极管Micro-LED装置具有1μm至100μm的一最大宽度。
每一微型发光二极管Micro-LED装置包含一半导体材料。
每一微型发光二极管Micro-LED装置包括一第一型半导体层101、一第二型半导体层102及一发光层103,其位于该第一型半导体层101及该第二型半导体层102之间。
该柔性显示器可进一步包含用于切换及驱动该微型发光二极管Micro-LED装置阵列的电路。其中,更包含微型控制器芯片阵列。每一微型控制器芯片连接至一扫描驱动电路及一数据驱动电路。
该柔性基板的材料可包含超薄玻璃(Ultra-thin Glass)、金属基板(Metal Foil)、纤维加强复合材料(fiber-reinforced composite material)、及塑料薄膜(Plastic)、陶瓷基板(Ceramics),或上述材料中的任何 两种或更多种的组合。其中,该柔性基板较佳的厚度低于200μm,更佳的厚度低于50μm,最佳的厚度介于25μm至50μm。金属基板例如为不锈钢(stainless stainless steel)、铝(aluminum)、镍(nickel)、钛(titanium)、锆(Zirconiu)、铜(Copper)、铁(iron)、钴(cobalt)、钯(palladium),或上述材料中的任何两种或更多种的组合。其中,该金属基板的热膨胀系数(Coefficieient of thermal expansion)与该超薄玻璃相近。该金属基板的表面粗糙度Ra低于10nm。该塑料薄膜在550nm波长下,其光学穿透度(light transmittance)大于90%。该塑料薄膜的材料例如为聚对苯二甲酸乙二酯(polyethylene terephthalate,PET)、聚萘二甲酸乙二醇酯(polyethylene naphthalate,PEN)、聚醚(polyethersulfone,PES)。该纤维加强复合材料例如碳纤维(carbon fibers),碳化硅纤维(silicon carbide fibers)或硼丝(boron filament)。
本发明实施方式还提供一种柔性显示器(flexible display)的制造方法,包括:
提供一柔性基板(flexible substrate);
设置多个扫描走线,该些扫描走线系沿着一第一方向平行地设置于该柔性基板上;
设置多个数据走线,该些资料走线沿着一第二方向平行地设置于该该柔性基板上,该第一方向系与该第二方向垂直;以及
设置多个微型发光二极管阵列,
其中每一微型发光二极管系对应地与该些数据走线电性连接,
其中每一微型发光二极管系分别与该些扫描走线电性连接。
一部分微型发光二极管Micro-LED装置具有侧壁电流阻挡区域501,其中一部分微型发光二极管Micro-LED装置具有侧壁电流限制区域201。
本发明另一实施例为借由3D堆叠RGB像素矩阵实现Micro-LED,并且结合离子布植(Ion implantation)平坦化技术,提高巨量移转良率,因借由3D堆叠RGB像素矩阵技术,将备援发光LED放置于子像素内,避免因坏点需要置换坏点的生产成本,此外,借由缩小子像素的距离, 因子像素的距离已经小于人眼睛最小分辨率,故当有坏点发生时不易被人眼睛察觉,故不需要更换坏点的技术,最后借由透光磊晶基板结合3D堆叠RGB像素矩阵实现Micro-LED,且不需要巨量移转技术,达成磊芯片直接形成Micro-LED display技术。
先前技术:
传统覆晶(Flip chip)Micro LED结构如图29所示,Micro LED尺寸为边长小于100微米的大小的尺寸,传统制程可实现10~100微米的边长。
当尺寸继续缩短至低于10微米以下时,如图30所示,一般可借由蚀刻方式,例如干式蚀刻(Dry etching)或湿式蚀刻(Wet etching),或切割等方式定义出更小间距Micro LED组件,但是在组件表面及侧壁容易产生悬浮键(dangling bond)即未形成键结的电子。悬浮键含有极高的活性,容易形成trap centers,造成电子电洞对的再结合,因而降低载子的寿命,降低转换效率,进而使得微型发光二极管中漏电流占总电流的比例随的提高,并导致微型发光二极管的发光效率降低。本发明借由离子布植技术(Ion implantation)减少组件表面及侧壁的粗糙度,达到减少微型发光二极管的非辐射复合(non-radiative recombination),进而增加微型发光二极管的效率。
如图30所示,因为尺寸缩短低于10微米以下时,蚀刻脊状区域(Ridge area)容易发生断裂的问题,特别是在覆晶制程或巨量移转时,此外,因为金属接垫(Metal bump0)高低不平坦的问题,也会导致巨量移转时发生断裂,降低制程生产良率。
如图31所示,借由离子布植技术(Ion implantation)缩小Flip chip Micro LED尺寸,因为增加表面平坦度,可以同时解决蚀刻脊状区域断裂或金属接垫高低不平坦的问题,进而提升制程生产良率。
如图32所示,借由离子布植技术(Ion implantation)将至少一组备援发光二极管设置于结构中,避免因坏点需要置换坏点的额外生产成本。
如图33-1所示,在第一磊晶基板S1形成第一磊晶层结构(Epi layer-1),并借由黄光微影与蚀刻制程形成第一微型发光二极管(M1), 间距P1,如图33-2所示为图33-3上视图沿着A-A’的横截面图。
如图34-1及34-2所示,在第一微型发光二极管(M1)上借由离子布植(Ion implantation)技术定义出第一离子布植区域(Ion-1),以及第一子像素区域(R1)。
如图35-1,35-2及35-3所示,在第一子像素区域(R1)上方形成导电层(ML),图35-1,35-2为图35-3分别沿着A-A’以及A”-A”’横截面图。
如图36-1所示,将具有导电层结构(ML)的第一子像素(R1)与第一透明基板(T1)透过接垫(BL)电性连接,并将第一磊晶基板(S1)移除,例如蚀刻或激光移除第一磊晶基板,如图36-2所示,并于第一透明基板(T1)与第一子像素(R1)间填充第一透光中间层(B1),目的为强化其机械结构,其中位于第一透明基板(T1)的第一微型发光二极管(M1)间距为P2,且P1=P2,其中图36-2为第一子像素矩阵结构。
如图37-1所示,在第二磊晶外延基板S2形成第二磊晶外延层结构(Epi layer-2),并借由黄光微影与蚀刻制程形成第二微型发光二极管(M2),间距P3,如图37-2所示为图37-3上视图沿着C-C’的横截面图。
如图38-1及38-2所示,在第二微型发光二极管(M2)上借由离子布植(Ion implantation)技术定义出第二离子布植区域第一区(Ion-2a)及第二区(Ion-2b),以及第二子像素区域(G1)。
如图39-1,39-2及39-3所示,在第二子像素区域(G1)上方形成导电层(ML),图39-1,39-2为图39-3分别沿着C-C’以及C”-C”’横截面图。
如图40-1所示,将具有导电层结构(ML)的第二子像素(G1)与第二透明基板(T2)透过接垫(BL)电性连接,并将第二磊晶基板(S2)移除,例如蚀刻或激光移除第二磊晶基板,如图40-2所示,并于第二透明基板(T2)与第二子像素(G1)间填充第二透光中间层(B2),目的为强化其机械结构,其中位于第二透明基板(T2)的第二微型发光二极管(M2)间距为P4,且P3=P4,其中图40-2为第二子像素矩阵 结构。
如图41-1所示,在第三磊晶基板(S3)形成第三磊晶层结构(Epi layer-3),并借由黄光微影与蚀刻制程形成第三微型发光二极管(M3),间距P5,如图41-2所示为图42-3上视图沿着C-C’的横截面图。
如图42-1及42-2所示,在第三微型发光二极管(M3)上借由离子布植(Ion implantation)技术定义出第三离子布植区域(Ion-3),以及第三子像素区(B1)。
如图43-1,43-2及43-3所示,在第三子像素区域(B1)上方形成导电层(ML),图43-1,43-2为图43-3分别沿着E-E’以及E”-E”’横截面图。
如图44-1所示,将具有导电层结构(ML)的第三子像素(B1)与第三透明基板(T3)透过接垫(BL)电性连接,并将第三磊晶基板(S3)移除,例如蚀刻或激光移除第三磊晶基板,如图44-2所示,并于第三透明基板(T3)与第三子像素(B1)间填充第三透光中间层(B3),目的为强化其机械结构,其中位于第三透明基板(T3)的第三微型发光二极管(M3)间距为P6,且P5=P6,其中图44-2为第三子像素矩阵结构,其中P2=P4=P6。
如图45-1,45-2为将第一子像素结构,第二子像素结构,第三子像素结构,透过A-1与A-2为透光黏接层将其3D堆叠RGB像素矩阵实现Micro-LED,其中图45-2为第一像素(Pixel 1)的放大,且为图45-3G-G’横截面图,其中第一子像素区域(R1)等于第二离子布植区域第一区(Ion-2a),其中第三子像素区域(B1)等于第二离子布植区域第二区(Ion-2a),其中第二子像素区域(G1)加上第三子像素区域(B1)等于第一离子布植区域(Ion-1)。本发明3D堆叠RGB像素矩阵实现Micro-LED具有一厚度D-1,其中一实施例D-1具有低于500微米的厚度,其中较佳的另一实施例D-1具有低于200微米的厚度,其中更佳的另一实施例D-1具有低于100微米的厚度,其中更佳的另一实施例D-1具有低于50微米的厚度。其中一种实施例为波长最长的子像素位于最下方,波长对短的子像素位于最上方,具有避免短波长的子像素误触发(光激发)长波长子像素的疑虑,但子像素的发光波 长位置不以此为限制。本发明的3D堆叠RGB像素矩阵实现Micro-LED,其中一种实施例其透光率大于60%,其中较佳实施例为具有透光率大于70%,其中更佳实施例为具有透光率大于80%,其中最佳实施例为具有透光率大于90%。
本发明的透明基板(T1,T2,T3)可为一柔性基板(flexible substrate),其中该柔性基板的材料可包含超薄玻璃(Ultra-thin Glass)、透明金属基板(Metal Foil)、纤维加强复合材料(fiber-reinforced composite material)、及塑料薄膜(Plastic)、陶瓷基板(Ceramics),或上述材料中的任何两种或更多种的组合。其中该柔性基板较佳的厚度低于200μm,更佳的厚度低于50μm,最佳的厚度介于25μm至50μm。
其中该金属基板的热膨胀系数(Coefficieient of thermal expansion)与薄玻璃相近。其中该透明金属基板的表面粗糙度Ra低于10nm。其中该塑料薄膜在550nm波长下,其光学穿透度(light transmittance)大于90%。其中该塑料薄膜的材料例如为聚对苯二甲酸乙二酯(polyethylene terephthalate,PET)、聚萘二甲酸乙二醇酯(polyethylene naphthalate,PEN)、聚醚(polyethersulfone,PES)。其中该纤维加强复合材料例如碳纤维(carbon fibers),碳化硅纤维(silicon carbide fibers)或硼丝(boron filament)。
如图46-1,46-2为本发明的另一实施例,其中R1-1为第一子像素,R1-2为第一备援子像素,其中G1-1为第二子像素,G1-2为第二备援子像素,其中B1-1为第三子像素,B1-2为第三备援子像素,利用电路控制R1-1与R1-2只有其中一个子像素发光G1-1及G1-2只有其中一个子像素发光,B1-1及B1-2只有其中一个子像素发光,且第一子像素(R1-1)区域加上第一备援子像素(R1-2)区域等于第二离子布植区域第一区(Ion-2a)。第三子像素(B1-1)加上第三备援像素(B1-2)区域等于第二离子布植区域第二区(Ion-2b)。第二子像素(G1-1)区域加上第二备援子像素(G1-2)加上第三子像素(B1-1)加上第三备援子像素(B1-2)的距离等于第一离子布植区域(Ion-1)。
(R1-1)+(R1-2)=Ion-2a
(B1-1)+(B1-2)=Ion-2b
(G1-1)+(G1-2)+(B1-1)+(B1-2)=Ion-1
如图47-1,47-2为本发明的另一实施例,其中R1-1为第一子像素,R1-2,R1-3,R1-4,R1-5,R1-6皆为第一备援子像素,其中G1-1为第二子像素,G1-2,G1-3,G1-4皆为第二备援子像素,其中B1-1为第三子像素,B1-2为第三备援子像素,利用电路控制R1-1,R1-2,R1-3,R1-4,R1-5,R1-6只有其中一个子像素发光G1-1,G1-2,G1-3,G1-4只有其中一个子像素发光,B1-1,B1-2只有其中一个子像素发光,优点为让备援像素运用更为灵活。
其中第一子像素(R1-1)区域加上第一备援子像素(R1-2)区域等于第二离子布植区域(Ion-2)。
(R1-1)+(R1-2)=Ion-2
(R1-3)+(R1-4)=(G1-1)+(G1-2)
(R1-5)+(R1-6)=(G1-3)+(G1-4)=(B1-1)+(B1-2)
(R1-1)+(R1-2)+(R1-3)+(R1-4)=Ion-3
如图48-1,48-2为本发明的另一实施例,其中R1-1为第一子像素,R1-2,R1-3,R1-4,R1-5,R1-6皆为第一备援子像素,其中G1-1为第二子像素,G1-2,G1-3,G1-4,G1-5,G1-6皆为第二备援子像素,其中B1-1为第三子像素,B1-2,B1-3,B1-4,B1-5,B1-6皆为第三备援子像素,利用电路控制R1-1,R1-2,R1-3,R1-4,R1-5,R1-6只有其中一个子像素发光G1-1,G1-2,G1-3,G1-4,G1-5,G1-6只有其中一个子像素发光,B1-1,B1-2,B1-3,B1-4,B1-5,B1-6只有其中一个子像素发光,优点为让备援像素运用更为灵活。
(R1-1)=(G1-5)=(B1-3)
(R1-2)=(G1-6)=(B1-4)
(R1-3)=(G1-1)=(B1-5)
(R1-4)=(G1-2)=(B1-6)
(R1-5)=(G1-3)=(B1-1)
(R1-6)=(G1-4)=(B1-2)
如图49-1,49-2为本发明的另一实施例,其中R1-1A,R1-2A,R1-3A,R1-4A,R1-5A,R1-6A皆为第一子像素,其中G1-1A,G1-2A, G1-3A,G1-4A,G1-5A,G1-6A皆为第二子像素,其中B1-1A,B1-2A,B1-3A,B1-4A,B1-5A,B1-6A皆为第三子像素。
Pixel 1由Pixel 1A~Pixel 1F组成,由于Pixel 1A~Pixel 1F的任一个宽度小于人眼最小分辨率,故不需要备援像素,及使Pixel 1A~Pixel1F其中一个损坏,因人眼无法辨识损坏点,故不需要更换坏点。本发明的其中一实施例,例如屏幕分辨率为1440 X 960(pixels),每英寸像素数494.48ppi,子像素的点间距(dot pitch)为小于0.0514mm,在正常观看距离下足以使人肉眼无法分辨其中的单独像素的坏点,故不需要备援像素。本发明的其中一较佳实施例,例如屏幕分辨率为1920 X 1280(pixels),每英寸像素数659.3ppi,子像素的点间距(dot pitch)为小于0.0385mm,在正常观看距离下足以使人肉眼无法分辨其中的单独像素的坏点,任一个相邻的微型发光二极管即使故障也不需要备援像素。本发明的其中一较佳实施例,例如屏幕分辨率为3840 X 2560(pixels),每英寸像素数1318.6ppi,子像素的点间距(dot pitch)为小于0.0193mm,在正常观看距离下足以使人肉眼无法分辨其中的单独像素的坏点,任2个相邻的微型发光二极管即使故障也不需要备援像素。
如图50为本发明的另一实施例,磊晶基板(S1),(S2),(S3)皆为透明基板,可直接3D堆叠RGB Micro LED,不需要移转至透明基板,简化制程。
如图51为本发明的另一实施例,更包含一黑色矩阵层BM(Black Mattress)layer,可以增加像素的对比度。
如图52为本发明的另一实施例,每个微型发光二极管更包含一磁性层(Magnetic Layer,ML),其功能为提升3D堆叠的精准度,其中磁性层可以借由磊晶掺杂(doping)、离子布植(ion implantation)、扩散(diffusion)、薄膜沉积(Thin Film Deposition)等技术达成,其中磁性材料可包括例如Fe、Co、Ni、Tb、Al、Pt、Sm、Cu、Cr或上述组合。
如图53为本发明的另一实施例,每个微型发光二极管更包含一电流阻挡区域(Current blocking area)位于微型发光二极管的表面及侧面 区域,此电流阻挡区域具有减少微型发光二极管的非辐射复合(non-radiative recombination),进而增加微型发光二极管的效率,其中电流阻挡区域由介电材料组成,例如氮化硅(silicon nitride)或二氧化硅(silicon dioxide)或三氧化二铝(Al 2O 3),其中本发明中的电流阻挡区覆盖侧壁区域具有一圆弧角(Arc)。
如图54为本发明的另一实施例,每个微型发光二极管更包含一电流限制区域(Current limiting area)位于微型发光二极管的表面及侧面区域,此电流限制区域具有减少微型发光二极管的非辐射复合(non-radiative recombination),进而增加微型发光二极管的效率,其中电流限制区域借由离子布植技术形成。
如图55-1为本发明的另一实施例,借由一综合控制系统(Integrated control system)与微型发光二极管显示器(Micro-led display)电性连结,控制其发光并且借由一透镜系统(Lens system),将微型发光二极管显示器影像投影至一光学组件(Optical component),并反射至人眼(eye),而人眼可透过光学组件,同时看实际景象以及由微型发光二极管显示器影像所产生的扩增实境(Augmented Reality,AR),其中光学组件可以是一透光的挡风玻璃,或是一透明树脂玻璃,或是一透光眼镜镜片,或是一软性折迭显示器(foldable display),其中光学组件具有透光以及反射的功能。其中微型发光二极管显示器借由3D堆叠RGB像素矩阵实现Micro-LED,并且结合离子布植(Ion implantation)平坦化技术实施。本发明其中Micro-LED的尺寸其边长最佳小于4μm。
如图55-2为本发明的另一实施例,与图55-1的差异为,借由一综合控制系统(Integrated control system)分别与RGB微型发光二极管显示器(Micro-led display)电性连结,因RGB微型发光二极管显示器可以独立控制并借由投影后显示,故不需要巨量移转且可以实现单片磊芯片完成RGB微型发光二极管显示器。其中微型发光二极管显示器借由3D堆叠RGB像素矩阵实现Micro-LED,并且结合离子布植(Ion implantation)平坦化技术实施。本发明其中Micro-LED的尺寸其边长最佳小于4μm。
如图55-3为本发明的另一实施例,将微型发光二极管显示器 (Micro-led display)与透镜系统(Lens system)整合至一光学组件(Optical component)内部,借由一综合控制系统(Integrated control system)与微型发光二极管显示器(Micro-led display)电性连结,将微型发光二极管显示器影像投影至透镜系统(Lens system),并反射至人眼(eye),而人眼可透过光学组件,同时看实际景象以及由微型发光二极管显示器影像所产生的扩增实境(Augmented Reality,AR),其中光学组件可以是一透光的挡风玻璃,或是一透明树脂玻璃,或是一透光眼镜镜片,或是一软性折迭显示器(foldable display)。其中综合控制系统可设置于光学组件外部或是内部。其中微型发光二极管显示器借由3D堆叠RGB像素矩阵实现Micro-LED,并且结合离子布植(Ion implantation)平坦化技术实施。本发明其中Micro-LED的尺寸其边长最佳小于4μm。
如图55-4为本发明的另一实施例,与图55-3的差异为,借由一综合控制系统(Integrated control system)分别与RGB微型发光二极管显示器(Micro-led display)电性连结,因RGB微型发光二极管显示器可以独立控制并借由投影后显示,故不需要巨量移转且可以实现单片磊芯片完成RGB微型发光二极管显示器。其中综合控制系统可设置于光学组件外部或是内部。其中微型发光二极管显示器借由3D堆叠RGB像素矩阵实现Micro-LED,并且结合离子布植(Ion implantation)平坦化技术实施。本发明其中Micro-LED的尺寸其边长最佳小于4μm。
如图55-5,其中上述综合控制系统(Integrated control system)更包含一多功能传感器(multi-function sensor)、微芯片处理器(Microchip processors)、网络接口(Network interface),其目的为让使用者控制微型发光二极管显示器,并且提供适当的扩增实境。其中多功能传感器可以是一超声波传感器、温度传感器、湿度传感器、气体传感器、压力传感器、加速度传感器、紫外线传感器、磁敏传感器、磁阻传感器、图像传感器、电量传感器、位移传感器、触碰传感器、IR红外线近接/测距传感器、GPS卫星定位模块、陀螺仪与加速度计、指纹传感器、虹膜传感器、按钮、旋钮、开关、麦克风、照相机、RFID Reader模块,用户可以借由多功能输入传感器来调整或缩放扩增实境的位置 及大小,并且提供适当的扩增实境信息。在一实施例当中,借由多功能传感器侦测人眼瞳孔位置及状态,配合微芯片处理器来调整扩增实境投影的位置,其目的为让人眼透过光学组件看到实际景象与扩增实境可以匹配,避免扩增实境失真,达到准确显示的目的。此外可配合网络接口可将数据传送至其他网络,并提供适当的扩增实境信息。
一种智能眼镜结构如图56-1所示,将一综合控制系统(Integrated control system)与显示器(display)设置于眼镜支架(Frame)上,显示器将影像投影至一光学组件(Optical component),并反射至人眼(eye),而人眼可透过光学组件,同时看实际景象以及由显示器影像所产生的扩增实境(Augmented Reality,AR)。由于此智慧眼镜受限于显示器的光源大小,无法达到轻薄短小的优点,其中这种显示器的技术大致可分为数字光源处理(DLP)、微机电系统(MEMS)激光、液晶覆硅(LCOS,Liquid Crystal on Silicon)等。其中,DLP技术是以一种微机电(MEMS)组件为基础,称为数字微型反射镜组件(Digital Micromirror Device,简称DMD),由于DMD复杂的外围配置电路体积较大,且MEMS组件的高频率开关也会发生功耗过高的问题,另外LCOS技术的缺点为发光效率不佳以及体积等问题。本发明使用微型发光二极管显示器(Micro-led display)取代一般显示器,不仅可以提高分辨率更可以缩小尺寸至符合穿戴装置所需的大小,因此在低功耗与小尺寸的特色下,可提高市场的竞争力。此外,一般智能眼镜受限于显示器的光源大小及反射镜设计,所提供的扩增实境范围受到局限,本发明因为缩小显示器的大小,使得投影光路设计更具弹性,并可提供较大范围的扩增实境,提供使用者更舒适使用环境。其中微型发光二极管显示器借由3D堆叠RGB像素矩阵实现Micro-LED,并且结合离子布植(Ion implantation)平坦化技术实施。本发明其中Micro-LED的尺寸最佳边长小于4μm。
如图56-2所示为本发明的一实施例,将一综合控制系统(Integrated control system)结合微型发光二极管显示器(Micro-led display),设置于眼镜支架(Frame)上,并将影像投影至一光学组件(Optical component),并反射至人眼(eye),而人眼可透过光学组件,同时看 实际景象以及由显示器影像所产生的扩增实境(Augmented Reality,AR)。
如图56-3所示为本发明的一实施例,将一综合控制系统(Integrated control system)结合微型发光二极管显示器(Micro-led display),并设置于眼镜边框(Rims)的上部,并将影像投影至一光学组件(Optical component),并反射至人眼(eye),而人眼可透过光学组件,同时看实际景象以及由显示器影像所产生的扩增实境(Augmented Reality,AR)。
如图56-4所示为本发明的一实施例,将一综合控制系统(Integrated control system)结合微型发光二极管显示器(Micro-led display),并设置于眼镜边框(Rims)的四周任意位置,或是设置于连接眼镜边框的桥接部位(Bridge)内,且不受限于眼镜边框的外型,并将影像投影至一光学组件(Optical component),并反射至人眼(eye),而人眼可透过光学组件,同时看实际景象以及由显示器影像所产生的扩增实境(Augmented Reality,AR)。
如图56-5所示为本发明的一实施例,将一综合控制系统(Integrated control system)设置于眼镜边框(Rims)的上部,并将微型发光二极管显示器(Micro-led display)与透镜系统(Lens system)整合至一光学组件(Optical component)内部,借由一综合控制系统(Integrated control system)与微型发光二极管显示器(Micro-led display)电性连结,将微型发光二极管显示器影像投影至透镜系统(Lens system),并反射至人眼(eye),而人眼可透过光学组件,同时看实际景象以及由微型发光二极管显示器影像所产生的扩增实境(Augmented Reality,AR)。
如图57-1为本发明的另一实施例,具有磁性层(Magnetic Layer,ML)的微型发光二极管(Micro light emitting diode)结构,首先提供一磊晶基板,在该磊晶基板上方形成一磁性层(Magnetic Layer,ML),其中该磁性层的材料可为一半导体、导体层、氧化层,再借由磊晶掺杂(doping)、离子布植(ion implantation)、扩散(diffusion)、薄膜沉积(Thin Film Deposition)等技术形成该磁性层,其中借由磊晶掺 杂(doping)、离子布植(ion implantation)、扩散(diffusion)、薄膜沉积(Thin Film Deposition)等磁性材料可包括例如Fe、Co、Ni、Tb、Al、Pt、Sm、Cu、Cr或上述组合。接着在磁性层上方依序形成第一型半导体层、发光层、第二型半导体层。
如图57-2为一水平结构磁性微型发光二极管(Magnetic Micro light emitting diode)结构,借由蚀刻方式移除部分第二型半导体层、发光层,并且露出部分第一型半导体层,形成一金属层与该第一型半导体欧母接触,形成另一金属层与该第二型半导体欧母接触,并且移除该磊晶基板,形成该水平结构磁性微型发光二极管。
如图57-3为一垂直结构磁性微型发光二极管(Magnetic Micro light emitting diode)结构,形成一金属层与该第二型半导体欧母接触,借由移除磊晶基板,裸露出磁性层,形成另一金属层与该磁性层接触,并且形成该垂直结构磁性微型发光二极管。
如图57-4为另一垂直结构磁性微型发光二极管(Magnetic Micro light emitting diode)结构,形成一金属层与该第二型半导体欧母接触,借由移除磊晶基板,并且移除部分磁性层,裸露出第一型半导体,形成另一金属层与该第一型半导体层欧母接触,并且形成该垂直结构磁性微型发光二极管。
如图57-5、57-6、57-7,磁性微型发光二极管更包含一第一电流阻挡层(Current blocking layer)位于磁性微型发光二极管的表面及侧面区域,此第一电流阻挡层具有减少磁性微型发光二极管的非辐射复合(non-radiative recombination),进而增加微型发光二极管的效率,其中第一电流阻挡层由介电材料组成,例如氮化硅(silicon nitride)或二氧化硅(silicon dioxide)或三氧化二铝(Al 2O 3)。
如图57-8、57-9、57-10,磁性微型发光二极管更包含一第一电流限制层(Current limiting layer)位于磁性微型发光二极管的表面及侧面区域,此电流限制层具有减少磁性微型发光二极管的非辐射复合(non-radiative recombination),进而增加磁性微型发光二极管的效率,其中第一电流限制层借由离子布植技术形成。
如图57-11为一水平结构磁性微型发光二极管(Magnetic Micro  light emitting diode)结构,借由蚀刻方式移除部分第二型半导体层、发光层,并且露出部分第一型半导体层,形成一金属层与该第一型半导体欧母接触,形成一第二电流阻挡层于该第二半导体层上方,形成一透明导电层于该第二半导体层上方并且与该第二半导体层形成欧母接触,其中该透明导电层覆盖该第二电流阻挡层,移除部分该透明导电层与该第二电流阻挡层,并且裸露出部分该第二型半导体层,形成另一金属层与该第二型半导体层直接接触,且该另一金属层与该透明导电层电性连接,形成一第一电流阻挡层,覆盖侧壁区域以及该透明导电层,并且移除该磊晶基板,形成该水平结构磁性微型发光二极管。其中该第一电流阻挡层具有减少磁性微型发光二极管的非辐射复合(non-radiative recombination),进而增加微型发光二极管的效率,其中第一电流阻挡层由介电材料组成。其中该第二电流阻挡层可以防止电流壅塞,提高电流扩散的效果,进而增加电子电洞复合的机率,提高发光效率,其中该第二电流阻挡层由介电材料组成。其中该另一金属层直接与该第二型半导体接触,具有稳定接合的效果,提高结构的稳定性。
如图57-12为一水平结构磁性微型发光二极管(Magnetic Micro light emitting diode)结构,借由蚀刻方式移除部分第二型半导体层、发光层,并且露出部分第一型半导体层,形成一金属层与该第一型半导体欧母接触,形成一第二电流限制层于该第二半导体层内部上层区域,形成一透明导电层于该第二半导体层上方并且与该第二半导体层形成欧母接触,其中该透明导电层覆盖该第二电流限制层,移除部分该透明导电层,并且裸露出部分该第二型半导体层,形成另一金属层与该第二型半导体层直接接触,且该另一金属层与该透明导电层电性连接,形成一第一电流限制层于侧壁区域,移除该外延基板,形成该水平结构磁性微型发光二极管。其中该第一电流限制层位于磁性微型发光二极管的表面及侧面区域,此电流限制层具有减少磁性微型发光二极管的非辐射复合(non-radiative recombination),进而增加磁性微型发光二极管的效率,其中第一电流限制层借由离子布植技术形成。其中该第二电流限制层可以防止电流壅塞,提高电流扩散的效果,进 而增加电子电洞复合的机率,提高发光效率,其中该第二电流限制层由离子布植技术形成。其中该另一金属层直接与该第二型半导体接触,具有稳定接合的效果,提高结构的稳定性。
如图57-13为一水平结构磁性微型发光二极管(Magnetic Micro light emitting diode)结构,借由蚀刻方式移除部分第二型半导体层、发光层,并且露出部分第一型半导体层,形成一金属层与该第一型半导体欧母接触,形成一第二电流限制层于该第二半导体层内部上层区域,形成一透明导电层于该第二半导体层上方并且与该第二半导体层形成欧母接触,其中该透明导电层覆盖该第二电流限制层,移除部分该透明导电层,并且裸露出部分该第二型半导体层,形成另一金属层与该第二型半导体层直接接触,且该另一金属层与该透明导电层电性连接,形成一第一电流阻挡层,覆盖侧壁区域以及该透明导电层,并且移除该外延基板,形成该水平结构磁性微型发光二极管。其中该第一电流阻挡层具有减少磁性微型发光二极管的非辐射复合(non-radiative recombination),进而增加微型发光二极管的效率,其中第一电流阻挡层由介电材料组成。其中该第二电流限制层可以防止电流壅塞,提高电流扩散的效果,进而增加电子电洞复合的机率,提高发光效率,其中该第二电流限制层由离子布植技术形成。其中该另一金属层直接与该第二型半导体接触,具有稳定接合的效果,提高结构的稳定性。
如图57-14为一水平结构磁性微型发光二极管(Magnetic Micro light emitting diode)结构,借由蚀刻方式移除部分第二型半导体层、发光层,并且露出部分第一型半导体层,形成一金属层与该第一型半导体欧母接触,形成一第二电流阻挡层于该第二半导体层上方,形成一透明导电层于该第二半导体层上方并且与该第二半导体层形成欧母接触,其中该透明导电层覆盖该第二电流阻挡层,移除部分该透明导电层与该第二电流阻挡层,并且裸露出部分该第二型半导体层,形成另一金属层与该第二型半导体层直接接触,且该另一金属层与该透明导电层电性连接,形成一第一电流限制层于侧壁区域,移除该磊晶基板,形成该水平结构磁性微型发光二极管。其中该第一电流限制层位 于磁性微型发光二极管的表面及侧面区域,此电流限制层具有减少磁性微型发光二极管的非辐射复合(non-radiative recombination),进而增加磁性微型发光二极管的效率,其中第一电流限制层借由离子布植技术形成。其中该第二电流阻挡层可以防止电流壅塞,提高电流扩散的效果,进而增加电子电洞复合的机率,提高发光效率,其中该第二电流阻挡层由介电材料组成。其中该另一金属层直接与该第二型半导体接触,具有稳定接合的效果,提高结构的稳定性。
如图57-15为一垂直结构磁性微型发光二极管(Magnetic Micro light emitting diode)结构,形成一第二电流阻挡层于该第二半导体层上方,形成一透明导电层于该第二半导体层上方并且与该第二半导体层形成欧母接触,其中该透明导电层覆盖该第二电流阻挡层,移除部分该透明导电层与该第二电流阻挡层,并且裸露出部分该第二型半导体层,形成一金属层与该第二型半导体层直接接触,且该金属层与该透明导电层电性连接,借由移除外延基板,并且移除部分磁性层,裸露出第一型半导体,形成另一金属层与该第一型半导体层欧母接触,形成一第一电流阻挡层,覆盖侧壁区域以及该透明导电层,形成该垂直结构磁性微型发光二极管。其中该第一电流阻挡层具有减少磁性微型发光二极管的非辐射复合(non-radiative recombination),进而增加微型发光二极管的效率,其中第一电流阻挡层由介电材料组成。其中该第二电流阻挡层可以防止电流壅塞,提高电流扩散的效果,进而增加电子电洞复合的机率,提高发光效率,其中该第二电流阻挡层由介电材料组成。其中该金属层直接与该第二型半导体接触,具有稳定接合的效果,提高结构的稳定性。
如图57-16为一垂直结构磁性微型发光二极管(Magnetic Micro light emitting diode)结构,形成一第一电流限制层于侧壁区域,形成一第二电流限制层于该第二半导体层内部上层区域,形成一透明导电层于该第二半导体层上方并且与该第二半导体层形成欧母接触,其中该透明导电层覆盖该第二电流限制层,移除部分该透明导电层,并且裸露出部分该第二型半导体层,形成一金属层与该第二型半导体层直接接触,且该金属层与该透明导电层电性连接,形成一第一电流限制 层于侧壁区域,借由移除外延基板,并且移除部分磁性层,裸露出第一型半导体,形成另一金属层与该第一型半导体层欧母接触,形成该垂直结构磁性微型发光二极管。其中该第一电流限制层位于磁性微型发光二极管的表面及侧面区域,此电流限制层具有减少磁性微型发光二极管的非辐射复合(non-radiative recombination),进而增加磁性微型发光二极管的效率,其中第一电流限制层借由离子布植技术形成。其中该第二电流限制层可以防止电流壅塞,提高电流扩散的效果,进而增加电子电洞复合的机率,提高发光效率,其中该第二电流限制层由离子布植技术形成。其中该金属层直接与该第二型半导体接触,具有稳定接合的效果,提高结构的稳定性。
如图57-17为一垂直结构磁性微型发光二极管(Magnetic Micro light emitting diode)结构,形成一第二电流限制层于该第二半导体层内部上层区域,形成一透明导电层于该第二半导体层上方并且与该第二半导体层形成欧母接触,其中该透明导电层覆盖该第二电流限制层,移除部分该透明导电层,并且裸露出部分该第二型半导体层,形成一金属层与该第二型半导体层直接接触,且该金属层与该透明导电层电性连接,形成一第一电流阻挡层,覆盖侧壁区域以及该透明导电层,借由移除外延基板,并且移除部分磁性层,裸露出第一型半导体,形成另一金属层与该第一型半导体层欧母接触,形成该垂直结构磁性微型发光二极管。
其中该第一电流阻挡层具有减少磁性微型发光二极管的非辐射复合(non-radiative recombination),进而增加微型发光二极管的效率,其中第一电流阻挡层由介电材料组成。其中该第二电流限制层可以防止电流壅塞,提高电流扩散的效果,进而增加电子电洞复合的机率,提高发光效率,其中该第二电流限制层由离子布植技术形成。其中该金属层直接与该第二型半导体层接触,具有稳定接合的效果,提高结构的稳定性。
如图57-18为一垂直结构磁性微型发光二极管(Magnetic Micro light emitting diode)结构,形成一第一电流限制层于侧壁区域,形成一第二电流阻挡层于该第二半导体层上方,形成一透明导电层于该第 二半导体层上方并且与该第二半导体层形成欧母接触,其中该透明导电层覆盖该第二电流阻挡层,移除部分该透明导电层与该第二电流阻挡层,并且裸露出部分该第二型半导体层,形成一金属层与该第二型半导体层直接接触,且该金属层与该透明导电层电性连接,借由移除磊晶基板,并且移除部分磁性层,裸露出第一型半导体,形成另一金属层与该第一型半导体层欧母接触,形成该垂直结构磁性微型发光二极管。其中该第一电流限制层位于磁性微型发光二极管的表面及侧面区域,此电流限制层具有减少磁性微型发光二极管的非辐射复合(non-radiative recombination),进而增加磁性微型发光二极管的效率,其中第一电流限制层借由离子布植技术形成。其中该第二电流阻挡层可以防止电流壅塞,提高电流扩散的效果,进而增加电子电洞复合的机率,提高发光效率,其中该第二电流阻挡层由介电材料组成。其中该金属层直接与该第二型半导体接触,具有稳定接合的效果,提高结构的稳定性。
如图57-19,由于磁性微型发光二极管具有一磁性层,可以借由一具有磁性吸引力的可程控转移头,借由控制该移转头,可以将该磁性层微型发光二极管巨量移转至一目标基板,由于该磁性层本身具有磁力与移转头具有良好的吸引结合,可提高巨量移转微型发光二极管的良率。
如图57-20,本发明的磁性微型发光二极管结构,更适合于流体巨量移转,当磁性微型发光二极管置于流体移转系统中时,由于磁性微型发光二极管具有一磁性层结构,可以借由此磁性层结构具有自动对位的功能,减少流体移转时发生对位错误,例如极性相反或位置错误等等,提高巨量移转的良率,且具有降低成本的功效。
如图57-20,为一流体移转系统,一主腔体,腔体内包含一溶液,将一基板放置于该主腔体内,其中该基板具有多个凹槽,该多个凹槽中央具有相对应多个磁力层,该磁力层位于该基板内,并且裸露部分该磁力层。该主腔体更包含一输入端及一输入端阀门,以及一输出端及一输出端阀门,借由控制该输入端阀门的开口率以及该输出端阀门开口率可以让该溶液形成一具有流速为F的流体。该流体移转系统包 含一第一子腔体、一第二子腔体、及一第三子腔体,该第一子腔体内具有多个第一颜色的磁性微型发光二极管,并且包含溶液,以及第一阀门与第一输入口,当该第一阀门打开时,多个第一颜色的磁性微型发光二极管被该第一输入口所注入的溶体往下经由第一阀门进入该主腔体,并借由流体移动至该基板上方的所对应凹槽,该第一颜色的磁性微型发光二极管受到该基板上的磁力层的磁力所吸引,自我对准至该凹槽内,其中该凹槽与该第一颜色的磁性微型发光二极管具有相同的外型,完成第一颜色的磁性微型发光二极管移转至该基板上方。
其中第二子腔体内具有多个第二颜色的磁性微型发光二极管,并且包含溶液,以及一第二阀门与一第一输入口,当该第二阀门打开时,多个第二颜色的磁性微型发光二极管被该第二输入口所注入的溶体往下经由第二阀门进入该主腔体,并借由流体移动至该基板上方的所对应凹槽,该第二颜色的磁性微型发光二极管受到该基板上的磁力层的磁力所吸引,自我对准至该凹槽内,其中该凹槽与该第二颜色的磁性微型发光二极管具有相同的外型,完成第二颜色的磁性微型发光二极管移转至该基板上方。
其中第三子腔体内具有多个第三颜色的磁性微型发光二极管,并且包含溶液,以及一第三阀门与一第三输入口,当该第三阀门打开时,多个第三颜色的磁性微型发光二极管被该第三输入口所注入的溶体往下经由第三阀门进入该主腔体,并借由流体移动至该基板上方的所对应凹槽,该第三颜色的磁性微型发光二极管受到该基板上的磁力层的磁力所吸引,自我对准至该凹槽内,其中该凹槽与该第三颜色的磁性微型发光二极管具有相同的外型,完成第三颜色的磁性微型发光二极管移转至该基板上方。
如图57-21-1,为流体移转系统基板的一上视图,包含第一型状的第一凹槽,及第二型状的第二凹槽,及第三型状的第三凹槽,其中各凹槽内具有磁力层,且该第一凹槽的形状与该第一颜色的磁性微型发光二极管的形状相同,该第二凹槽的形状与该第二颜色的磁性微型发光二极管的形状相同,该第三凹槽的形状与该第三颜色的磁性微型发光二极管的形状相同。
当该第一阀门打开时,多个第一颜色的磁性微型发光二极管被该第一输入口所注入的溶体往下经由第一阀门进入该主腔体,并借由流体移动至该基板上方的所对应凹槽,该第一颜色的磁性微型发光二极管受到该基板上的磁力层的磁力所吸引,自我对准至该凹槽内,其中该凹槽与该第一颜色的磁性微型发光二极管具有相同的外型,完成第一颜色的磁性微型发光二极管移转至该基板上方。其中该第一颜色的磁性微型发光二极管位于该基板上方的该第一凹槽内,形成一第一子像素区(Sub-pixel area)。
当该第二阀门打开时,多个第二颜色的磁性微型发光二极管被该第二输入口所注入的溶体往下经由第二阀门进入该主腔体,并借由流体移动至该基板上方的所对应凹槽,该第二颜色的磁性微型发光二极管受到该基板上的磁力层的磁力所吸引,自我对准至该凹槽内,其中该凹槽与该第二颜色的磁性微型发光二极管具有相同的外型,完成第二颜色的磁性微型发光二极管移转至该基板上方。其中该第二颜色的磁性微型发光二极管位于该基板上方的该第二凹槽内,形成一第二子像素区(Sub-pixel area)。
当该第三阀门打开时,多个第三颜色的磁性微型发光二极管被该第三输入口所注入的溶体往下经由第三阀门进入该主腔体,并借由流体移动至该基板上方的所对应凹槽,该第三颜色的磁性微型发光二极管受到该基板上的磁力层的磁力所吸引,自我对准至该凹槽内,其中该凹槽与该第三颜色的磁性微型发光二极管具有相同的外型,完成第三颜色的磁性微型发光二极管移转至该基板上方。其中该第三颜色的磁性微型发光二极管位于该基板上方的该第三凹槽内,形成一第三子像素区(Sub-pixel area)。
其中该第一子像素区及该第二子像素区与该第三子像素区形成一像素区(pixel area)。
如图57-21-2,为流体移转系统基板的一上视图,包含第一凹槽,及第二凹槽,及第三凹槽,其中各凹槽内具有磁力层,且该磁力层具有可程序化控制的功能,例如借由一电磁力控制其具有磁吸力或不具有磁吸力。
当该第一阀门打开前,借由控制第一凹槽内的磁力层具有磁吸力,且第二凹槽及第三凹槽内的磁力层不具有磁吸力,当该第一阀门打开时,多个第一颜色的磁性微型发光二极管被该第一输入口所注入的溶体往下经由第一阀门进入该主腔体,并借由流体移动至该基板上方的所对应凹槽,该第一颜色的磁性微型发光二极管受到该基板上的磁力层的磁力所吸引,自我对准至该凹槽内,当第一颜色的磁性微型发光二极管落入第二凹槽或第三凹槽时,因凹槽内的磁力层控制为不具有磁吸力,借由控制流体的流速,因流速的推力大于凹槽的捕捉力,故可将第一颜色的磁性微型发光二极管移开凹槽,直到第一颜色的磁性微型发光二极管落入第一凹槽,并完成第一颜色的磁性微型发光二极管移转至该基板上方。其中该第一颜色的磁性微型发光二极管位于该基板上方的该第一凹槽内,形成一第一子像素区(Sub-pixel area)。
当该第二阀门打开前,借由控制第一凹槽及第二凹槽内的磁力层具有磁吸力,且第三凹槽的磁力层不具有磁吸力,当该第二阀门打开时,多个第二颜色的磁性微型发光二极管被该第二输入口所注入的溶体往下经由第二阀门进入该主腔体,并借由流体移动至该基板上方的所对应凹槽,该第二颜色的磁性微型发光二极管受到该基板上的磁力层的磁力所吸引,自我对准至该凹槽内,当第二颜色的磁性微型发光二极管落入第三凹槽时,因第三凹槽内的磁力层控制为不具有磁吸力,借由控制流体的流速,因流速的推力大于第三凹槽的捕捉力,故可将第二颜色的磁性微型发光二极管移开第三凹槽,直到第二颜色的磁性微型发光二极管落入第二凹槽,并完成第二颜色的磁性微型发光二极管移转至该基板上方。其中该第二颜色的磁性微型发光二极管位于该基板上方的该第二凹槽内,形成一第二子像素区(Sub-pixel area)。
当该第三阀门打开前,借由控制第一凹槽及第二凹槽内及第三凹槽的磁力层具有磁吸力,当该第三阀门打开时,多个第三颜色的磁性微型发光二极管被该第三输入口所注入的溶体往下经由第三阀门进入该主腔体,并借由流体移动至该基板上方的所对应凹槽,该第三颜色的磁性微型发光二极管受到该基板上的磁力层的磁力所吸引,自我对准至该凹槽内,并完成第三颜色的磁性微型发光二极管移转至该基板 上方。其中该第三颜色的磁性微型发光二极管位于该基板上方的该第三凹槽内,形成一第三子像素区(Sub-pixel area)。
其中该第一子像素区及该第二子像素区与该第三子像素区形成一像素区(pixel area)。
如图57-22-1及图57-22-2,为流体移转系统基板的上视图,包含第一凹槽,及第二凹槽,及第三凹槽,更包含第一备援凹槽,及第二备援凹槽,及第三备援凹槽,其中各凹槽内具有磁力层,其中各备援凹槽内具有备援磁力层,且该磁力层及备援磁力层皆具有可程序化控制的功能,例如借由一电磁力控制其具有磁吸力或不具有磁吸力。当移转磁性微型发光二极管后进行测试,借由程序纪录功能异常坏点的地址,并且借由备援凹槽进行巨量修补,将磁性微型发光二极管移转至所对应的备援凹槽并取代异常的坏点,并完成修补,因为一次可以修补大量坏点,大幅降低修补所需要的时间及费用,其中各备援凹槽的外型可以与第一凹槽及第二凹槽及第三凹槽的外型相异或相同。其中第一凹槽与第一备援凹槽区形成一第一子像素区,第二凹槽与第二备援凹槽区形成一第二子像素区,第三凹槽与第三备援凹槽区形成一第三子像素区,其中该第一子像素区及该第二子像素区与该第三子像素区形成一像素区(pixel area)。
如图57-23,为一流体移转系统,其中该基板更包括一基板第一阀门,一基板第二阀门,一基板第三阀门。可借由程控该基板上的阀门,当基板阀门开启时,露出该基板的凹槽,使该基板捕捉该微型发光二极管,且该微型发光二极管不限于磁性微型发光二极管,其中该基板凹槽内更包含一吸力层,该吸力层可为提供一电力吸引力,磁力吸引力,静电力吸引力,流体吸引力,空气吸引力,凡得瓦力吸引力,热力吸引力,黏附层吸引力,所产生的吸引力可以具有捕捉流体内的微型发光二极管的功能。
当该第一阀门打开前,借由控制基板第一阀门开启,且控制基板第二阀门关闭,且基板第三阀门关闭。当该第一阀门打开时,多个第一颜色的微型发光二极管被该第一输入口所注入的溶体往下经由第一阀门进入该主腔体,并借由流体移动至该基板上方的所对应凹槽,该 第一颜色的微型发光二极管受到该基板上的吸力层的吸力所吸引,自我对准至该凹槽内,并完成第一颜色的微型发光二极管移转至该基板上方。
当该第二阀门打开前,借由控制基板第二阀门开启,且控制基板第三阀门关闭。当该第二阀门打开时,多个第二颜色的微型发光二极管被该第二输入口所注入的溶体往下经由第二阀门进入该主腔体,并借由流体移动至该基板上方的所对应凹槽,该第二颜色的微型发光二极管受到该基板上的吸力层的吸力所吸引,自我对准至该凹槽内,并完成第二颜色的微型发光二极管移转至该基板上方。
如图57-24,为一流体移转系统,其中该基板更包括一可程控的吸力层,该吸力层可为提供一电力吸引力,磁力吸引力,静电力吸引力,流体吸引力,空气吸引力,凡得瓦力吸引力,热力吸引力,黏附层吸引力,所产生的吸引力可以具有捕捉流体内的微型发光二极管的功能。
当该第一阀门打开前,借由控制基板第一吸力层具有吸力,且控制基板第二吸力层不具有吸力,且第三吸力层不具有吸力。当该第一阀门打开时,多个第一颜色的微型发光二极管被该第一输入口所注入的溶体往下经由第一阀门进入该主腔体,并借由流体移动至该基板上方的所对应凹槽,该第一颜色的微型发光二极管受到该基板上的吸力层的吸力所吸引,自我对准至该凹槽内,当第一颜色的微型发光二极管落入第二凹槽或第三凹槽时,因凹槽内的吸力层控制为不具有吸力,借由控制流体的流速,因流速的推力大于凹槽的捕捉力,故可将第一颜色的微型发光二极管移开凹槽,直到第一颜色的微型发光二极管落入第一凹槽,并完成第一颜色的微型发光二极管移转至该基板上方。
当该第二阀门打开前,借由控制基板第一吸力层以及第二吸力层具有吸力,且控制基板第三吸力层不具有吸力。当该第二阀门打开时,多个第二颜色的微型发光二极管被该第二输入口所注入的溶体往下经由第二阀门进入该主腔体,并借由流体移动至该基板上方的所对应凹槽,该第二颜色的微型发光二极管受到该基板上的吸力层的吸力所吸引,自我对准至该凹槽内,当第二颜色的微型发光二极管落入第三二凹槽时,因凹槽内的吸力层控制为不具有吸力,借由控制流体的流速, 因流速的推力大于凹槽的捕捉力,故可将第二颜色的微型发光二极管移开凹槽,直到第二颜色的微型发光二极管落入第二凹槽,并完成第二颜色的微型发光二极管移转至该基板上方。
当该第三阀门打开前,借由控制基板第一吸力层以及第二吸力层以及第三吸力层具有吸力。当该第三阀门打开时,多个第三颜色的微型发光二极管被该第三输入口所注入的溶体往下经由第三阀门进入该主腔体,并借由流体移动至该基板上方的所对应凹槽,该第三颜色的微型发光二极管受到该基板上的吸力层的吸力所吸引,自我对准至该凹槽内,并完成第三颜色的微型发光二极管移转至该基板上方。
如图57-25,为一流体移转系统,其中该基板更包括一填充层,该填充层可为一光阻或一受热溶解的介电层,或受腔体内的液体溶解的固体。当填充层遇到一激光光源或UV光源所照射时,因而溶解被流体所带走,或借由控制基板的第一阀门,第二阀门,第三阀门的开关,使该填充层受到光照射或液体流动因而被移除,因而裸露出该凹槽下方的可程控吸力层。该可程控的吸力层,该吸力层可为提供一电力吸引力,磁力吸引力,静电力吸引力,流体吸引力,空气吸引力,凡得瓦力吸引力,热力吸引力,黏附层吸引力,所产生的吸引力可以具有捕捉流体内的微型发光二极管的功能。
本发明的基板可为一柔性基板(flexible substrate),其中该柔性基板的材料可包含超薄玻璃(Ultra-thin Glass)、金属基板(Metal Foil)、纤维加强复合材料(fiber-reinforced composite material)、及塑料薄膜(Plastic)、陶瓷基板(Ceramics),或上述材料中的任何两种或更多种的组合。其中该柔性基板较佳的厚度低于200μm,更佳的厚度低于50μm,最佳的厚度介于25μm至50μm。其中该金属基板例如为不锈钢(stainless stainless steel)、铝(aluminum)、镍(nickel)、钛(titanium)、锆(Zirconiu)、铜(Copper)、铁(iron)、钴(cobalt)、钯(palladium),或上述材料中的任何两种或更多种的组合。其中该金属基板的热膨胀系数(Coefficieient of thermal expansion)与薄玻璃相近。其中该金属基板的表面粗糙度(Ra)低于10nm。其中该塑料薄膜在550nm波长下,其光学穿透度(light transmittance)大于90%。其中该塑料薄膜的材料 例如为聚对苯二甲酸乙二酯(polyethylene terephthalate,PET)、聚萘二甲酸乙二醇酯(polyethylene naphthalate,PEN)、聚醚(polyethersulfone,PES)。
其中该纤维加强复合材料例如碳纤维(carbon fibers),碳化硅纤维(silicon carbide fibers)或硼丝(boron filament)。
本发明提供一种微型发光二极管Micro-LED装置,特别是一种不需要备援设计的微型发光二极管装置,如图58-1A,58-2A,58-3A为传统显示器数据规格例如为水平分辨率(Horizontal resolution)为960pixels,垂直分辨率(Vertical resolution)为640 pixels,屏幕对角线(Diagonal)距离为3.5 inches(8.89cm),显示器尺寸为2.91"×1.94"=5.65in 2(7.4cm×4.93cm=36.48cm 2)at 329.65 PPI,其中点间距(dot pitch)为0.0771mm,其中屏幕分辨率为960×640(每英寸像素数329.65 PPI),这种分辨率在正常观看距离下足以使人肉眼无法分辨其中的单独像素,例如为Retina显示器,其中发光单元例如由RGB三种微型发光二极管所组成的显示设备,但本传统装置,其中一个微型发光二极管发生工作异常时,导致无法正常显示而被人眼所察觉,传统解决此问题的方法例如为具有备援电路设计或备援微型发光二极管等方法,但具有提高成本的缺点。
本发明提出一种不需要备援设计的微型发光二极管装置,如图58-1B,58-2B,58-3B为本发明的其中一种实施例,显示器数据规格例如为水平分辨率(Horizontal resolution)为1920 pixels,垂直分辨率(Vertical resolution)为1280 pixels,屏幕对角线(Diagonal)距离为3.5 inches(8.89cm),显示器尺寸为2.91"×1.94"=5.65in 2(7.4cm×4.93cm=36.48cm 2)at 659.3 PPI,其中点间距(dot pitch)为0.0385mm,其中屏幕分辨率为1920×1280(每英寸像素数659.3PPI),因为当任两个相同颜色的微型发光二极管中间,可以容忍一个工作异常的微型发光二极管,因为工作异常的微型发光二极管不会被人眼所察觉,故不需要备援电路设计或备援微型发光二极管的优点。任两个像素(Pixel)中间,可以容忍一个具有工作异常的像素,因为工作异常的像素不会被人眼所察觉,故不需要备援电路设计或备援微型发光 二极管的优点。任两个相同颜色的子像素(Sub Pixel)中间,可以容忍一个具有工作异常的子像素,因为工作异常的子像素不会被人眼所察觉,故不需要备援电路设计或备援微型发光二极管的优点。
本发明提出一种不需要备援设计的微型发光二极管装置,如图58-1C,58-2C,58-3C为本发明的另一种实施例,显示器数据规格例如为水平分辨率(Horizontal resolution)为3840pixels,垂直分辨率(Vertical resolution)为2560 pixels,屏幕对角线(Diagonal)距离为3.5 inches(8.89cm),显示器尺寸为2.91"×1.94"=5.65in 2(7.4cm×4.93cm=36.48cm 2)at 1318.6 PPI,,其中点间距(dot pitch)为0.0193mm,其中屏幕分辨率为3840×2560(每英寸像素数1318.6 PPI),因为当任两个相同颜色的微型发光二极管中间,可以容忍至少两个工作异常的微型发光二极管,因为工作异常的微型发光二极管不会被人眼所察觉,故不需要备援电路设计或备援微型发光二极管的优点。任两个像素(Pixel)中间,可以容忍至少两个具有工作异常的像素,因为工作异常的像素不会被人眼所察觉,故不需要备援电路设计或备援微型发光二极管的优点。任两个相同颜色的子像素(Sub Pixel)中间,可以容忍至少两个具有工作异常的子像素,因为工作异常的子像素不会被人眼所察觉,故不需要备援电路设计或备援微型发光二极管的优点。
本发明提出一种不需要备援设计的微型发光二极管装置,其中一种实施例,显示器数据规格例如为水平分辨率(Horizontal resolution)为1440 pixels,垂直分辨率(Vertical resolution)为960 pixels,屏幕对角线(Diagonal)距离为3.5 inches(8.89cm),显示器尺寸为2.91"×1.94"=5.65in 2(7.4cm×4.93cm=36.48cm 2)at 494.48 PPI,其中点间距(dot pitch)为0.0514mm,其中屏幕分辨率为1440×960(每英寸像素数494.48 PPI),因为当任两个相同颜色的微型发光二极管中间,可以容忍一个工作异常的微型发光二极管,因为工作异常的微型发光二极管不易被人眼所察觉,故不需要备援电路设计或备援微型发光二极管的优点。任两个像素(Pixel)中间,可以容忍一个具有工作异常的像素,因为工作异常的像素不易被人眼所察觉,故不需要备援 电路设计或备援微型发光二极管的优点。任两个相同颜色的子像素(Sub Pixel)中间,可以容忍一个具有工作异常的子像素,因为工作异常的子像素不易被人眼所察觉,故不需要备援电路设计或备援微型发光二极管的优点。
如图58-1B,58-1C,58-2B,58-2C,58-3B,58-3C所示,其中虚线所围绕的区域为工作异常的微型发光二极管。
如图58-1B,58-1C,58-2B,58-2C,58-3B,58-3C所示,其中虚线所围绕的区域为工作异常的子像素。
本发明由RGB三种不同颜色的微型发光二极管组成一像素(Pixel)。
本发明由RGB三种不同颜色的子像素(Sub pixel)组成一像素(Pixel)。
其中点间距(dot pitch)又可称为线间距(line pitch)或条间距(stripe pitch)或荧光体间距(phosphor pitch),或像素间距(pixel pitch),其描述例如子像素(Sub pixel)之间的距离。
Figure PCTCN2019088648-appb-000053
Retina设计标准的公式:
Figure PCTCN2019088648-appb-000054
如图59所示,其中a代表人眼视角,h代表点间距(dot pitch),d代表肉眼与屏幕的距离。符合以上条件的屏幕可以使肉眼看不见单个物理像素点,就是属于Retina Display。
h/2=d×tan(a/2)
a=1/53.53degree
d=观看距离=10inch
h=辨识极限
h=2×d×tan(1/53.53/2)×π/180
if d=10inch
h=2×10×tan(1/53.53/2)×π/180
=0.003258911inch
1/h=306.85 PPI
if d=15inch
h=2×15×tan(1/53.53/2)×π/180
=0.004888366831inch
1/h=204.57PPI
if d=20inch
h=2×15×tan(1/53.53/2)×π/180
=0.00651788224416inch
1/h=153.42PPI
Figure PCTCN2019088648-appb-000055
本发明为借由提高分辨率,以及缩小子像素之距离,让人眼可以不易察觉工作异常的子像素,因而不需要备援设计之微发光二极管装置。如上表所示为本发明之一实施例说明,分别列出不同屏幕大小其适合眼睛与屏幕观看距离,可以计算出符合使肉眼看不见单个物理像素点,就是属于Retina Display之Pixel per inch以及dot pitch,借由缩小dot pitch 1.5倍,或缩小dot pitch 2倍,或缩小dot pitch 4倍,让人眼可以不易察觉工作异常的子像素,因而不需要备援设计之微发光二极管装置。
本发明其中一实施例,借由提高分辨率,以及缩小子像素之距离,让人眼可以不易察觉工作异常的子像素,并结合备援设计之微发光二极管装置,以适应更高分辨率之应用。
上述具体实施方式,并不构成对本发明保护范围的限制。本领域技术人员应该明白的是,取决于设计要求和其他因素,可以发生各种各样的修改、组合、子组合和替代。任何在本发明的精神和原则的内所作的修改、等同替换和改进等,均应包含在本发明保护范围的内。

Claims (20)

  1. 一种二极管装置,其特征在于,包括:
    一第一型半导体层(101);
    一第二型半导体层(102);
    一发光层(103),其位于该第一型半导体层(101)及该第二型半导体层(102)之间;
    一侧壁电流限制区域(201),其与该第二形半导体层(102)的四周围侧壁区域接触;
    其中侧壁电流限制区域(201)外围周长为400μm或更小。
  2. 根据权利要求1所述的二极管装置,该侧壁电流限制区域(201)更包括一第一上表面(201-up);该第二型半导体层(102)更包一第二上表面(102-up);
    并且该第二上表面(102-up)与该第一上表面(201-up)共平面。
  3. 根据权利要求1所述的二极管装置,其进一步包括一透明电极(301),该透明电极位于该第二型半导体层(102)的上方,并且与该第二型半导体层(102)电性连接,且该透明电极(301)部分覆盖该侧壁电流限制区域(201)。
  4. 根据权利要求3所述的二极管装置,其进一步包括一电极(302),位于该第二型半导体层(102)的上方并与该透明电极(301)电性连结,且该电极(302)与该第二型半导体层(102)接触。
  5. 根据权利要求1所述的二极管装置,该侧壁电流限制区域(201)更包括一第一上表面(201-up);该第二型半导体层(102)更包括一第二上表面(102-up);
    其中第一上表面(201-up)具有一表面低导电率区域
    Figure PCTCN2019088648-appb-100001
    该第二上表面(102-up)具有一表面高导电率区域
    Figure PCTCN2019088648-appb-100002
    该表面低导电率区域
    Figure PCTCN2019088648-appb-100003
    往该表面高导电率区域
    Figure PCTCN2019088648-appb-100004
    具有一逐渐增导电率的分布。
  6. 根据权利要求1所述的二极管装置,该侧壁电流限制区域(201)更包括一第一外表面(201-out);该第二型半导体层(102)更包括一 第二外表面(102-out);
    该第一外表面(201-out)具有一侧壁低导电率区域
    Figure PCTCN2019088648-appb-100005
    该第二外表面(102-out)具有一侧壁高导电率区域
    Figure PCTCN2019088648-appb-100006
    该侧壁低导电率区域
    Figure PCTCN2019088648-appb-100007
    往该侧壁高导电率区域
    Figure PCTCN2019088648-appb-100008
    具有一逐渐增导电率的分布。
  7. 根据权利要求1所述的二极管装置,其中该侧壁电流限制区域(201)更包括一第一上表面(201-up);
    该第一上表面(201-up)具有一第一表面粗糙度(RS-201-up),该第一表面粗糙度不超过10纳米。
  8. 根据权利要求1所述的二极管装置,该第二型半导体层(102)更包括一第二上表面(102-up);
    该第二上表面(102-up)具有一第二表面粗糙度(RS-102-up),该第二表面粗糙度不超过10纳米。
  9. 根据权利要求1所述的二极管装置,其中该侧壁电流限制区域(201)更包括一第一上表面(201-up);该第二型半导体层(102)更包括一第二上表面(102-up);
    该第一上表面(201-up)具有一第一表面粗糙度(RS-201-up),该第二上表面(102-up)具有一第二表面粗糙度(RS-102-up),该第一表面粗糙度(RS-201-up)大于或等于该第二表面粗糙度(RS-102-up)。
  10. 根据权利要求1所述的二极管装置,其中该侧壁电流限制区域(201)更包括一第一外表面(201-out);
    该第一外表面(201-out)的粗糙度超过10纳米。
  11. 根据权利要求1所述的二极管装置,其中该第二型半导体层(102)更包括一第二外表面(102-out);
    该第二外表面(102-out)的粗糙度超过10纳米。
  12. 根据权利要求1所述的二极管装置,其中该侧壁电流限制区域(201)更包括一第一外表面(201-out);该第二型半导体层(102)更包括一第二外表面(102-out);
    其中该第一外表面(201-out)具有一第三表面粗糙度(RS-201-out),该第二外表面(102-out)具有一第四表面粗糙度(RS-102-out),该第 三表面粗糙度(RS-201-out)大于或等于该第四表面粗糙度(RS-102-out)。
  13. 根据权利要求1所述的二极管装置,其中该侧壁电流限制区域(201)更包括一第一上表面(201-up),一第一外表面(201-out),及一第一内表面(201-in);
    其中该第一上表面(201-up)与该第一外表面(201-out)具有一第一夹角(Θ1),该第一上表面(201-up)与该第一内表面(201-in)具有一第二夹角(Θ2),该第一夹角(Θ1)及该第二夹角(Θ2)为接近直角90度。
  14. 根据权利要求1所述的二极管装置,其进一步包括一磁性层,其位于该第一型半导体层的下方。
  15. 根据权利要求1所述的二极管装置,其进一步包括一第二电流限制区域(202),其中该第一电流限制区域(201)及该第二电流限制区域(202)的最短距离具有50μm或更小宽度。
  16. 根据权利要求15所述的二极管装置,其进一步包括一第三电流限制区域(203),其位于该第一电流限制区域(201)及该第二电流限制区域(202)之间,并且与该第二电流限制区域(202)接触,其中该第三电流限制区域(203)的上表面与该第一电流限制区域(201)的上表面共平面。
  17. 根据权利要求16所述的二极管装置,其中该第一电流限制区域(201)具有一第一深度(D1),该第二电流限制区域(202)具有一第二深度(D2),该第三电流限制区域(203)具有一第三深度(D3),及该第一深度(D1)等于该第二深度(D2)等于该第三深度(D3)。
  18. 根据权利要求17所述的二极管装置,其中该侧壁电流限制区域(201)及该第二电流限制区域(202)与该第三电流限制区域(203)借由离子布植技术形成。
  19. 一种显示面板,其特征在于,该显示面板包含:一显示基板,该显示基板包括一微型发光二极管装置阵列,其中一部分微型发光二极管装置具有侧壁电流阻挡区域(501),其中一部分微型发光二极管装置具有侧壁电流限制区域(201);
    其中每一微型发光二极管装置具有1μm至100μm之一最大宽度;
    其中每一微型发光二极管装置包括一第一型半导体层(101)、一第二型半导体层(102)及一发光层(103),其位于该第一型半导体层(101)及该第二型半导体层(102)之间;
    其进一步包含用于切换及驱动该微型发光二极管装置阵列的电路;
    其中更包含微型控制器芯片阵列;
    其中每一微型控制器芯片连接至一扫描驱动电路及一数据驱动电路。
  20. 一种柔性显示器,其特征在于,该柔性显示器包含:一柔性基板(1010),该柔性基板上包括一微型发光二极管装置阵列,其中一部分微型发光二极管装置具有侧壁电流阻挡区域(501),其中一部分微型发光二极管装置具有侧壁电流限制区域(201);
    其中该侧壁电流阻挡区域(501)由介电材料组成;
    其中该侧壁电流限制区域借由离子布植技术形成;
    其中每一微型发光二极管装置的宽度为1μm至100μm;
    其中每一微型发光二极管装置包括一第一型半导体层(101)、一第二型半导体层(102)及一发光层(103),其位于该第一型半导体层(101)及该第二型半导体层(102)之间;
    多条扫描线路(1014);
    多条数据线路(1015);
    其中每一微型发光二极管装置(1011)连接于一对应的扫描线路(1014)以及一对应的数据线路(1015);
    其进一步包含驱动该微型发光二极管装置阵列的驱动电路;
    该驱动电路包含有:
    一闸极驱动器(1012);
    一源极驱动器(1013)。
PCT/CN2019/088648 2018-08-10 2019-05-27 一种二极管装置、显示面板及柔性显示器 WO2020029657A1 (zh)

Priority Applications (9)

Application Number Priority Date Filing Date Title
EP19846917.3A EP3836234A4 (en) 2018-08-10 2019-05-27 DIODE DEVICE, DISPLAY PANEL AND SOFT DISPLAY DEVICE
CN202211122362.9A CN115775852A (zh) 2018-08-10 2019-05-27 流体移转系统、发光二极管装置及制作方法、发光及显示设备
CN201980021931.0A CN112005387A (zh) 2018-08-10 2019-05-27 一种二极管装置、显示面板及柔性显示器
JP2021531158A JP7398818B2 (ja) 2018-08-10 2019-05-27 流体トランスファーシステムおよびマイクロled装置の製造方法
TW109117578A TW202044610A (zh) 2018-08-10 2020-05-27 一種發光二極體裝置、顯示面板及軟性顯示裝置
US16/917,346 US11296254B2 (en) 2018-08-10 2020-06-30 Diode device, display device and method for manufacturing the same
US17/678,318 US11881540B2 (en) 2018-08-10 2022-02-23 Diode array
US18/481,334 US20240047609A1 (en) 2018-08-10 2023-10-05 Diode array
JP2023200399A JP2024026189A (ja) 2018-08-10 2023-11-28 マイクロ発光ダイオード装置の製造方法

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
US201862716995P 2018-08-10 2018-08-10
US62/716,995 2018-08-10
US201862773202P 2018-11-30 2018-11-30
US62/773,202 2018-11-30
US201962824313P 2019-03-27 2019-03-27
US62/824,313 2019-03-27

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/917,346 Continuation US11296254B2 (en) 2018-08-10 2020-06-30 Diode device, display device and method for manufacturing the same

Publications (1)

Publication Number Publication Date
WO2020029657A1 true WO2020029657A1 (zh) 2020-02-13

Family

ID=69413671

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/088648 WO2020029657A1 (zh) 2018-08-10 2019-05-27 一种二极管装置、显示面板及柔性显示器

Country Status (6)

Country Link
US (3) US11296254B2 (zh)
EP (1) EP3836234A4 (zh)
JP (2) JP7398818B2 (zh)
CN (2) CN115775852A (zh)
TW (1) TW202044610A (zh)
WO (1) WO2020029657A1 (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113409699A (zh) * 2020-03-16 2021-09-17 重庆康佳光电技术研究院有限公司 一种便于修复的led显示器及其修复方法
CN113471341A (zh) * 2021-05-26 2021-10-01 厦门大学 一种基于红光AlInGaAs量子点的Micro-LED结构及其制备方法
EP3965171A1 (en) * 2020-09-08 2022-03-09 Samsung Electronics Co., Ltd. Micro light emitting device and display apparatus having the same
CN114388670A (zh) * 2021-12-27 2022-04-22 泉州三安半导体科技有限公司 一种不可见光发光二极管
WO2023181246A1 (ja) * 2022-03-24 2023-09-28 アルディーテック株式会社 半導体発光素子チップ集積装置およびその製造方法

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7398818B2 (ja) * 2018-08-10 2023-12-15 ビジョンラボ コーポレーション 流体トランスファーシステムおよびマイクロled装置の製造方法
US11322646B2 (en) * 2019-01-18 2022-05-03 Innolux Corporation Light-emitting diode package and electronic device
CN110350063B (zh) * 2019-07-22 2020-08-11 京东方科技集团股份有限公司 发光二极管、显示基板和转移方法
US10989735B2 (en) * 2019-08-21 2021-04-27 Facebook Technologies, Llc Atomic force microscopy tips for interconnection
CN211125682U (zh) * 2019-12-23 2020-07-28 厦门三安光电有限公司 一种正装发光二极管芯片
CN113380932A (zh) * 2020-03-10 2021-09-10 隆达电子股份有限公司 覆晶式发光二极管的结构及其制造方法
TW202213311A (zh) * 2020-09-18 2022-04-01 許華珍 一種顯示裝置
EP4012755A1 (en) * 2020-12-11 2022-06-15 Samsung Electronics Co., Ltd. Micro-semiconductor chip wetting align apparatus
KR20220085931A (ko) * 2020-12-15 2022-06-23 삼성디스플레이 주식회사 발광 다이오드 및 이를 포함한 표시 장치
US20220208834A1 (en) * 2020-12-28 2022-06-30 Jade Bird Display (shanghai) Limited Micro-led structure and micro-led chip including same
TWI762172B (zh) * 2021-01-29 2022-04-21 台灣愛司帝科技股份有限公司 發光模組及其製作方法
CN115336015A (zh) * 2021-03-11 2022-11-11 京东方科技集团股份有限公司 显示基板以及显示装置
TWI779672B (zh) * 2021-06-17 2022-10-01 錼創顯示科技股份有限公司 微型發光元件
CN113725340A (zh) * 2021-08-31 2021-11-30 錼创显示科技股份有限公司 微型发光二极管显示设备
TWI790827B (zh) * 2021-11-22 2023-01-21 錼創顯示科技股份有限公司 微型發光二極體顯示裝置
JP7450158B2 (ja) * 2021-12-23 2024-03-15 日亜化学工業株式会社 発光装置の製造方法
WO2023142152A1 (en) * 2022-01-31 2023-08-03 Jade Bird Display (Shanghai) Company Micro led structure and micro display panel
CN114597229B (zh) * 2022-03-22 2023-06-27 业成科技(成都)有限公司 触控式微型发光二极体显示器及其制造方法
TWI826022B (zh) * 2022-09-29 2023-12-11 錼創顯示科技股份有限公司 微型發光元件及微型發光元件顯示裝置
TWI833576B (zh) * 2023-02-09 2024-02-21 友達光電股份有限公司 發光元件、包含其之發光裝置及發光裝置之製造方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59124184A (ja) * 1982-12-29 1984-07-18 Fujitsu Ltd 半導体発光装置
CN101339739A (zh) * 2007-07-02 2009-01-07 统宝光电股份有限公司 像素、显示面板、显示装置、及电子装置
CN101567417A (zh) * 2008-04-25 2009-10-28 三洋电机株式会社 氮化物类半导体元件和其制造方法
CN202196806U (zh) * 2011-08-10 2012-04-18 安徽三安光电有限公司 一种具有电流阻挡层的led芯片
CN103972350A (zh) * 2014-05-30 2014-08-06 马鞍山太时芯光科技有限公司 一种新型结构的led芯片及其制作方法

Family Cites Families (45)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59124184U (ja) 1983-02-12 1984-08-21 池本 允 ボ−ルペン先端部ボ−ル及び周辺部の汚れおとし器
US5545291A (en) * 1993-12-17 1996-08-13 The Regents Of The University Of California Method for fabricating self-assembling microstructures
US6410942B1 (en) 1999-12-03 2002-06-25 Cree Lighting Company Enhanced light extraction through the use of micro-LED arrays
JP2001257218A (ja) * 2000-03-10 2001-09-21 Sony Corp 微細チップの実装方法
JP2005026688A (ja) * 2003-06-30 2005-01-27 Osram Opto Semiconductors Gmbh 放射放出半導体チップ、該半導体チップの作製方法および該半導体チップの明るさの調整設定方法
JP2006113258A (ja) * 2004-10-14 2006-04-27 Sony Corp 部品実装装置及び部品実装方法
TWI440210B (zh) * 2007-01-22 2014-06-01 Cree Inc 使用發光裝置外部互連陣列之照明裝置及其製造方法
JP2010109331A (ja) * 2008-09-30 2010-05-13 Sanyo Electric Co Ltd 半導体レーザ装置および表示装置
US8008683B2 (en) * 2008-10-22 2011-08-30 Samsung Led Co., Ltd. Semiconductor light emitting device
US8587017B2 (en) 2009-07-05 2013-11-19 Industrial Technology Research Institute Light emitting device and method of fabricating a light emitting device
KR101134731B1 (ko) * 2009-10-22 2012-04-13 엘지이노텍 주식회사 발광소자 및 그 제조방법
JP2012028749A (ja) 2010-07-22 2012-02-09 Seoul Opto Devices Co Ltd 発光ダイオード
US9245875B2 (en) * 2012-04-20 2016-01-26 Rensselaer Polytechnic Institute Light emitting diodes and a method of packaging the same
US20140367693A1 (en) * 2013-06-14 2014-12-18 Epistar Corporation Light-emitting device and the manufacturing method thereof
US9231153B2 (en) 2014-05-30 2016-01-05 Mikro Mesa Technology Co., Ltd. Micro-light-emitting diode
US9219197B1 (en) * 2014-05-30 2015-12-22 Mikro Mesa Technology Co., Ltd. Micro-light-emitting diode
US9590137B2 (en) 2014-05-30 2017-03-07 Mikro Mesa Technology Co., Ltd. Light-emitting diode
US9607907B2 (en) 2014-12-01 2017-03-28 Industrial Technology Research Institute Electric-programmable magnetic module and picking-up and placement process for electronic devices
US9773711B2 (en) 2014-12-01 2017-09-26 Industrial Technology Research Institute Picking-up and placing process for electronic devices and electronic module
TWI549316B (zh) * 2014-12-02 2016-09-11 The method of transferring light emitting wafers
US9865772B2 (en) * 2015-01-06 2018-01-09 Apple Inc. LED structures for reduced non-radiative sidewall recombination
KR101771461B1 (ko) * 2015-04-24 2017-08-25 엘지전자 주식회사 반도체 발광 소자를 이용한 디스플레이 장치 및 이의 제조방법
CN105552190B (zh) * 2015-04-30 2018-10-09 美科米尚技术有限公司 微型发光二极管
US10297719B2 (en) 2015-08-27 2019-05-21 Mikro Mesa Technology Co., Ltd. Micro-light emitting diode (micro-LED) device
CN113991003A (zh) * 2015-12-01 2022-01-28 夏普株式会社 图像形成元件及其制造方法
EP3357096B1 (en) * 2015-12-22 2022-07-27 Apple Inc. Led sidewall processing to mitigate non-radiative recombination
US10199542B2 (en) * 2015-12-22 2019-02-05 Epistar Corporation Light-emitting device
US9705035B1 (en) * 2015-12-30 2017-07-11 Epistar Corporation Light emitting device
US10917953B2 (en) 2016-03-21 2021-02-09 X Display Company Technology Limited Electrically parallel fused LEDs
US10223962B2 (en) 2016-03-21 2019-03-05 X-Celeprint Limited Display with fused LEDs
DE102017205639A1 (de) * 2016-04-18 2017-10-19 Seoul Viosys Co., Ltd Lumineszenzdiode mit hoher Effizienz
JP7006600B2 (ja) 2016-08-23 2022-02-10 ソニーグループ株式会社 単一粒子捕捉用装置、単一粒子捕捉システム及び単一粒子の捕捉方法
US9980341B2 (en) 2016-09-22 2018-05-22 X-Celeprint Limited Multi-LED components
KR20180081371A (ko) * 2017-01-06 2018-07-16 서울바이오시스 주식회사 전류 차단층을 가지는 발광 소자
CN108110099B (zh) * 2017-04-01 2019-03-12 厦门乾照光电股份有限公司 一种led芯片及其制作方法
WO2019055271A1 (en) 2017-09-15 2019-03-21 Glo Ab OPTICAL EXTENSION IMPROVEMENT OF LIGHT-EMITTING DIODE SUB-PIXELS
US10693042B2 (en) 2017-11-23 2020-06-23 Lg Display Co., Ltd. Light-emitting device and display device using the same
US20190237940A1 (en) * 2018-01-26 2019-08-01 Lumentum Operations Llc Modified emitter array
US11011677B2 (en) * 2018-03-09 2021-05-18 Innolux Corporation Display device
US10622519B2 (en) * 2018-03-30 2020-04-14 Facebook Technologies, Llc Reduction of surface recombination losses in micro-LEDs
CN108766972B (zh) * 2018-05-11 2021-10-22 京东方科技集团股份有限公司 薄膜晶体管及其制作方法、显示基板
US11393955B2 (en) * 2018-08-03 2022-07-19 Genesis Photonics Inc. Light emitting diode and manufacturing method thereof
JP7398818B2 (ja) * 2018-08-10 2023-12-15 ビジョンラボ コーポレーション 流体トランスファーシステムおよびマイクロled装置の製造方法
KR102613051B1 (ko) 2018-09-05 2023-12-12 삼성전자주식회사 고해상도 디스플레이 장치
KR20200062863A (ko) 2018-11-27 2020-06-04 삼성전자주식회사 디스플레이 장치 및 제조 방법

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59124184A (ja) * 1982-12-29 1984-07-18 Fujitsu Ltd 半導体発光装置
CN101339739A (zh) * 2007-07-02 2009-01-07 统宝光电股份有限公司 像素、显示面板、显示装置、及电子装置
CN101567417A (zh) * 2008-04-25 2009-10-28 三洋电机株式会社 氮化物类半导体元件和其制造方法
CN202196806U (zh) * 2011-08-10 2012-04-18 安徽三安光电有限公司 一种具有电流阻挡层的led芯片
CN103972350A (zh) * 2014-05-30 2014-08-06 马鞍山太时芯光科技有限公司 一种新型结构的led芯片及其制作方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3836234A4 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113409699A (zh) * 2020-03-16 2021-09-17 重庆康佳光电技术研究院有限公司 一种便于修复的led显示器及其修复方法
EP3965171A1 (en) * 2020-09-08 2022-03-09 Samsung Electronics Co., Ltd. Micro light emitting device and display apparatus having the same
US11769855B2 (en) 2020-09-08 2023-09-26 Samsung Electronics Co., Ltd. Micro light emitting device and display apparatus having the same
CN113471341A (zh) * 2021-05-26 2021-10-01 厦门大学 一种基于红光AlInGaAs量子点的Micro-LED结构及其制备方法
CN114388670A (zh) * 2021-12-27 2022-04-22 泉州三安半导体科技有限公司 一种不可见光发光二极管
WO2023181246A1 (ja) * 2022-03-24 2023-09-28 アルディーテック株式会社 半導体発光素子チップ集積装置およびその製造方法
JP7465612B2 (ja) 2022-03-24 2024-04-11 アルディーテック株式会社 半導体発光素子チップ集積装置およびその製造方法

Also Published As

Publication number Publication date
JP2024026189A (ja) 2024-02-28
EP3836234A1 (en) 2021-06-16
US20240047609A1 (en) 2024-02-08
CN115775852A (zh) 2023-03-10
US20210057607A1 (en) 2021-02-25
EP3836234A4 (en) 2022-05-04
US20220223755A1 (en) 2022-07-14
JP2021534594A (ja) 2021-12-09
JP7398818B2 (ja) 2023-12-15
CN112005387A (zh) 2020-11-27
TW202044610A (zh) 2020-12-01
US11881540B2 (en) 2024-01-23
US11296254B2 (en) 2022-04-05

Similar Documents

Publication Publication Date Title
WO2020029657A1 (zh) 一种二极管装置、显示面板及柔性显示器
JP7402023B2 (ja) ディスプレイ装置及びその製造方法
EP3221890B1 (en) Integrated led micro-display and method of fabricating the same
CN111524926A (zh) 具有led单位像素的显示装置
US20210384181A1 (en) Systems and methods for multi-color led pixel unit with vertical light emission
JP5270088B2 (ja) 垂直型発光素子及びその製造方法
KR20210073955A (ko) 디스플레이 장치 및 그 제조 방법
KR20220024706A (ko) 동축 다색 led를 위한 시스템들 및 방법들
US11967589B2 (en) Systems and methods for multi-color LED pixel unit with horizontal light emission
WO2024098972A1 (zh) Micro LED微显示芯片及其制造方法
US20220344313A1 (en) Systems and Methods for Multi-Color LED Pixel Unit
TW201914061A (zh) 微型led元件、影像顯示元件、及製造方法
TW202213311A (zh) 一種顯示裝置
CN117012770B (zh) 一种可监测亮度的MicroLED及其制备方法
CN115735279A (zh) 利用了Micro-Nano PIN LED元件的全彩LED显示器及其制造方法
JP6981444B2 (ja) 発光装置、発光装置の製造方法、およびプロジェクター
CN115668517A (zh) Micro-Nano PIN LED元件及其制造方法
US20230307599A1 (en) Light-emitting device, projector, display, and head-mounted display
KR102669057B1 (ko) 반사체가 적용된 마이크로디스플레이 패널 제조 방법
US20220115437A1 (en) Wafer having auxiliary pattern for aligning light emitting device and method of fabricating unit pixel using the same
US20240038928A1 (en) Light-emitting device, projector, display, and head-mounted display
CN117594721A (zh) 发光元件、制造其的方法以及包括该发光元件的显示装置
KR20150087483A (ko) 발광 다이오드 소자, 발광 다이오드 모듈 및 이의 제조 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19846917

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021531158

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019846917

Country of ref document: EP

Effective date: 20210310