WO2020027178A1 - 光学製品およびその製造方法 - Google Patents

光学製品およびその製造方法 Download PDF

Info

Publication number
WO2020027178A1
WO2020027178A1 PCT/JP2019/029961 JP2019029961W WO2020027178A1 WO 2020027178 A1 WO2020027178 A1 WO 2020027178A1 JP 2019029961 W JP2019029961 W JP 2019029961W WO 2020027178 A1 WO2020027178 A1 WO 2020027178A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
metal
optical product
oxide layer
metal layer
Prior art date
Application number
PCT/JP2019/029961
Other languages
English (en)
French (fr)
Inventor
鈴木 慶一
Original Assignee
ホヤ レンズ タイランド リミテッド
鈴木 慶一
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ホヤ レンズ タイランド リミテッド, 鈴木 慶一 filed Critical ホヤ レンズ タイランド リミテッド
Priority to KR1020207036467A priority Critical patent/KR102618674B1/ko
Priority to EP19843914.3A priority patent/EP3832378A4/en
Priority to CN201980042430.0A priority patent/CN112534341A/zh
Priority to JP2020534694A priority patent/JP7266037B2/ja
Publication of WO2020027178A1 publication Critical patent/WO2020027178A1/ja
Priority to US17/125,256 priority patent/US20210109374A1/en
Priority to US18/530,599 priority patent/US20240111177A1/en

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02CSPECTACLES; SUNGLASSES OR GOGGLES INSOFAR AS THEY HAVE THE SAME FEATURES AS SPECTACLES; CONTACT LENSES
    • G02C7/00Optical parts
    • G02C7/02Lenses; Lens systems ; Methods of designing lenses
    • G02C7/022Ophthalmic lenses having special refractive features achieved by special materials or material structures
    • GPHYSICS
    • G02OPTICS
    • G02CSPECTACLES; SUNGLASSES OR GOGGLES INSOFAR AS THEY HAVE THE SAME FEATURES AS SPECTACLES; CONTACT LENSES
    • G02C7/00Optical parts
    • G02C7/02Lenses; Lens systems ; Methods of designing lenses
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/10Glass or silica
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/58After-treatment
    • C23C14/5826Treatment with charged particles
    • C23C14/5833Ion beam bombardment
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/58After-treatment
    • C23C14/5846Reactive treatment
    • C23C14/5853Oxidation
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/12Optical coatings produced by application to, or surface treatment of, optical elements by surface treatment, e.g. by irradiation
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/14Protective coatings, e.g. hard coatings
    • GPHYSICS
    • G02OPTICS
    • G02CSPECTACLES; SUNGLASSES OR GOGGLES INSOFAR AS THEY HAVE THE SAME FEATURES AS SPECTACLES; CONTACT LENSES
    • G02C7/00Optical parts
    • G02C7/10Filters, e.g. for facilitating adaptation of the eyes to the dark; Sunglasses

Definitions

  • the present invention relates to an optical product and a method for manufacturing the same.
  • Patent Document 1 discloses an optical product including a metal layer as a functional layer. When the optical product includes the metal layer, transmission and reflection of light incident on the optical product can be controlled.
  • a property desired for an optical product is that there is little change in physical properties over time.
  • One embodiment of the present invention provides an optical product which includes a metal layer and has little change in physical properties over time.
  • One embodiment of the present invention relates to an optical product in which a metal layer is provided on a base material, and a surface layer portion of the metal layer opposite to the base material side is passivated.
  • Passive state refers to a state in which a metal is thermodynamically corroded but does not corrode.Corrosion is a state in which a metal becomes a nonmetal from its surface due to a chemical reaction and is lost. That means.
  • the surface layer of the metal layer is passivated, a change in physical properties due to corrosion of the metal layer, in particular, a change in transmittance can be suppressed with time. This is preferable for an optical article that is desired to exhibit stable transmittance characteristics.
  • an optical product having a metal layer on a base material and having little change in transmittance over time.
  • the substrate various substrates generally used for optical products can be used.
  • the substrate can be, for example, a plastic substrate or a glass substrate.
  • the glass substrate can be, for example, a substrate made of inorganic glass.
  • a plastic base material is preferable from the viewpoint that it is lightweight and hard to crack.
  • plastic base material examples include styrene resin including (meth) acrylic resin, polycarbonate resin, allyl resin, allyl carbonate resin such as diethylene glycol bisallyl carbonate resin (CR-39), vinyl resin, polyester resin, polyether resin, Contains urethane resin obtained by reaction of isocyanate compound with hydroxy compound such as diethylene glycol, thiourethane resin obtained by reacting isocyanate compound with polythiol compound, and (thio) epoxy compound having at least one disulfide bond in the molecule
  • a cured product (generally referred to as a transparent resin) obtained by curing a curable composition to be formed can be given.
  • the substrate may be undyed or dyed.
  • the base material when the optical product is a spectacle lens, the base material (lens base material) may be an unstained lens (a so-called colorless lens) or a stained lens.
  • the refractive index of the lens substrate of the spectacle lens can be, for example, about 1.60 to 1.75.
  • the refractive index of the lens substrate of the spectacle lens is not limited to the above range, and may be within the above range or may be vertically separated from the above range.
  • the term “refractive index” refers to a refractive index for light having a wavelength of 500 nm.
  • the lens substrate of the spectacle lens may be a lens having a refractive power (a so-called prescription lens) or a lens having no refractive power (a so-called prescription lens).
  • the spectacle lens can be various lenses such as a single focus lens, a multifocal lens, and a progressive-power lens.
  • the type of spectacle lens is determined by the surface shape of both surfaces of the lens substrate.
  • the surface of the lens substrate of the spectacle lens may be any of a convex surface, a concave surface, and a flat surface. In ordinary lens substrates and spectacle lenses, the object-side surface is convex and the eyeball-side surface is concave. However, the present invention is not limited to this.
  • the “object-side surface” is a surface located on the object side when spectacles provided with spectacle lenses are worn by a wearer, and the “eyeball-side surface” is the opposite, that is, spectacles provided with spectacle lenses Is a surface located on the eyeball side when worn by a wearer.
  • the optical product has a metal layer on the substrate.
  • the “metal layer” includes a component selected from the group consisting of a simple substance of a metal element (pure metal) and an alloy of a plurality of metal elements (hereinafter, also simply referred to as “metal”). It means a film formed by deposition by an arbitrary film forming method, and is made of metal except for impurities that are unavoidably mixed during film formation and known additives that are optionally used to assist film formation. It is a membrane.
  • the metal layer may be, for example, a film occupying 90 to 100% by mass of a metal, or may be a film occupying 95 to 100% by mass, based on the mass of the film.
  • a metal element capable of forming a passive state for example, a chromium group element (for example, chromium (Cr), molybdenum (Mo), tungsten (W)), an iron group element (for example, iron (Fe), cobalt (Co) ), Nickel (Ni)), niobium (Nb), transition elements such as titanium (Ti), noble metal elements (eg, copper (Cu), silver (Ag), gold (Au)), and aluminum (Al).
  • chromium, niobium, titanium, and aluminum are preferred, and chromium is more preferred.
  • the thickness of the metal layer can be, for example, in the range of 3 to 100 nm, and is preferably in the range of 3 to 50 nm. From the viewpoint of further suppressing the change in transmittance over time, the thickness of the metal layer is more preferably in the range of 3 to 30 nm, further preferably in the range of 3 to 25 nm, and more preferably in the range of 5 to 25 nm. More preferably, it is in the range of 10 to 20 nm. On the other hand, from the viewpoint of improving the durability of the optical product, the thickness of the metal layer is more preferably in the range of 10 to 30 nm, and still more preferably in the range of 15 to 30 nm. The thickness of the metal layer can be determined by a known thickness measurement method. This is the same for various layers described later. In addition, the thickness of the metal layer refers to the thickness including the passivated surface layer portion.
  • the metal layer can be formed on the substrate by a known film forming method. From the viewpoint of ease of film formation, it is preferable to form the film by vapor deposition. That is, the metal layer is preferably an evaporation film.
  • the vapor deposition film means a film formed by vapor deposition.
  • the term “evaporation” in the present invention and the present specification includes a dry method, for example, a vacuum evaporation method, an ion plating method, a sputtering method and the like. In the vacuum evaporation method, an ion beam assist method in which an ion beam is simultaneously irradiated during the evaporation may be used.
  • the surface layer on the side opposite to the substrate is passivated.
  • the “surface layer portion” is a partial region extending from the surface of the metal layer opposite to the substrate side to the inside of the layer.
  • the thickness of the surface layer portion is less than the thickness of the metal layer, and is, for example, 80% or less, 70% or less, 60% or less, or 50% or less of the thickness of the metal layer. Can be.
  • the thickness of the surface layer is less than the thickness of the metal layer, and is 5% or more of the thickness of the metal layer, 10% or more, 15% or more, 20% or more, and 25% of the thickness of the metal layer. Or more than 30%.
  • the thickness of the surface layer portion is less than the thickness of the metal layer and can be in the range of 1 to 30 nm, preferably in the range of 1 to 10 nm.
  • the thickness of the surface layer portion can be determined from the processing conditions of the passivation processing described in detail below. For example, the penetration depth at which oxygen ions penetrate by oxygen ion irradiation can be set as the thickness of the surface layer portion.
  • the thickness of the surface layer can be determined by X-ray photoelectron spectroscopy. X-ray photoelectron spectroscopy is an analysis method called ESCA (Electron Spectroscopy for Chemical Analysis) or XPS (X-ray Photoelectron Spectroscopy).
  • the surface layer portion of the metal layer may be a metal oxide layer in which the metal constituting the metal layer is oxidized and passivated, and portions of the metal layer other than the surface layer portion may be passivated by oxidation. Can be a layer of metal that is not.
  • X-ray photoelectron spectroscopy for example, a portion where oxygen atoms are detected at a content of 10 atom% or more can be determined as a surface layer portion.
  • the O1s_1 spectrum is used for oxygen atoms.
  • the passivation of the surface layer of the metal layer can be performed by an oxidation treatment.
  • the oxidation treatment may be performed by any method as long as oxygen can be introduced into the inside of the metal layer from the surface opposite to the substrate side.
  • the oxygen to be introduced is preferably in a state of higher activity than oxygen molecules from the viewpoint of oxidation efficiency, and includes, for example, oxygen ions and oxygen radicals (oxygen free radicals such as hydroxy radical and superoxide anion). ) Etc.
  • Specific examples of the oxygen introduction method include irradiation with an ion gun (ion gun), ion beam irradiation, an ion plating method, and a method using an RF (Radio Frequency) radical source.
  • Various conditions at the time of introducing oxygen may be set so that a region having a desired thickness can be oxidized (passivated) from the surface of the metal layer opposite to the substrate side.
  • the irradiation time of oxygen ions can be, for example, 5 to 60 seconds
  • the acceleration voltage of the ion gun is, for example, 100 to 1000 V
  • the current is, for example, 100 600600 mA.
  • the metal layer may be located directly on the surface of the lens substrate, or indirectly on the surface of the substrate via one or more other layers.
  • Examples of the layer that can be formed between the base material and the metal layer include a polarizing layer, a light control layer, and a hard coat layer.
  • the hard coat layer can be a cured layer obtained by curing the curable composition.
  • the cured layer that can function as a hard coat layer for example, refer to paragraphs 0025 to 0028 and 0030 of JP-A-2012-128135.
  • the cured layer is, for example, a curable composition containing a silane compound and metal oxide particles is applied directly or indirectly via another layer to a substrate surface to form a coating layer, and the coating layer is subjected to a curing treatment. (Heating, light irradiation, etc.). Further, a primer layer for improving adhesion may be formed between the metal layer and the substrate. For details of the primer layer, refer to, for example, paragraphs 0029 to 0030 of JP-A-2012-128135.
  • the optical product can include a metal oxide layer (hereinafter, also referred to as a “first metal oxide layer”) between the metal layer and the base material.
  • the optical product has a metal oxide layer (hereinafter, also referred to as a “second metal oxide layer”) on the surface of the metal layer on the surface layer side opposite to the substrate side. ).
  • the optical product has a metal oxide layer (first metal oxide layer) between the metal layer and a substrate, and the surface of the metal layer on the surface layer side. It can be an optical product having a metal oxide layer (second metal oxide layer) thereon.
  • the term “metal oxide layer” refers to a film formed by depositing a metal oxide by an arbitrary film forming method. Except for known additives optionally used to assist the above, the film is made of a metal oxide.
  • the metal oxide layer can be, for example, a film in which the metal oxide occupies 90 to 100% by mass, or a film in which the metal oxide occupies 95 to 100% by mass, based on the mass of the film.
  • the metal oxide layer examples include a silicon oxide layer, an aluminum oxide layer, a cerium oxide layer, a chromium oxide layer, a molybdenum oxide layer, a tungsten oxide layer, a zirconium oxide layer, a titanium oxide layer, a niobium oxide layer, a tin oxide layer, and an oxide layer. Tantalum layers and the like can be mentioned.
  • the first metal oxide layer located between the metal oxide layer and the substrate can be a layer preferably directly in contact with the metal layer, and more preferably a cured layer provided on the substrate. Can be a layer directly laminated on the surface. From the viewpoint of improving the adhesion to the metal layer and / or the cured layer, the first metal oxide layer is preferably a silicon oxide layer. The thickness of the first metal oxide layer is preferably in the range of 1 to 100 nm, more preferably 1 to 50 nm, from the viewpoint of improving the adhesion to the adjacent layer and the transmittance. .
  • the second metal oxide layer located on the surface of the metal layer on the surface layer side opposite to the base material side can preferably be a layer directly in contact with the metal layer.
  • the second metal oxide layer can play a role of protecting the metal layer, a role of improving the durability of the optical product, and the like.
  • the second metal oxide layer is formed of a silicon oxide layer, an aluminum oxide layer, a cerium oxide layer, a chromium oxide layer, a molybdenum oxide layer, a tungsten oxide layer, It is preferably a zirconium layer, a titanium oxide layer, a niobium oxide layer, a tin oxide layer, or a tantalum oxide layer, and more preferably a silicon oxide layer.
  • the thickness of the second metal oxide layer is preferably in the range of 1 to 100 nm, and more preferably in the range of 1 to 50 nm, from the viewpoint of protection of the metal layer, improvement of durability of the optical product, and transmittance. Is more preferred.
  • the “metal oxide” may be in a stoichiometric composition, or may be in a state where oxygen is deficient or excessive in the stoichiometric composition.
  • the optical product may include a layer other than the above-described layer at an arbitrary position.
  • examples of such other layers include various layers such as a water repellent or hydrophilic antifouling layer and an antifogging layer. Known techniques can be applied to all of these layers.
  • a surface treatment can be performed on a surface on which a film is formed before one or more layers of the above various layers are formed.
  • surface cleaning can be mentioned, and as a specific example, ion cleaning can be mentioned.
  • ion cleaning By the ion cleaning, the organic substances attached to the surface on which the film is formed can be removed to clean the surface.
  • the ion cleaning is a process of irradiating a processing surface with ions by an ion gun (IG; Ion gun).
  • IG ion gun
  • the ion to be irradiated is preferably an oxygen ion from the viewpoint of cleaning properties.
  • the surface cleaning may be performed using an inert gas, for example, an argon (Ar) gas, a xenon (Xe) gas, or a nitrogen (N 2 ) gas, or may be performed by irradiating oxygen radicals or oxygen plasma. Good.
  • an inert gas for example, an argon (Ar) gas, a xenon (Xe) gas, or a nitrogen (N 2 ) gas, or may be performed by irradiating oxygen radicals or oxygen plasma. Good.
  • optical product examples include various lenses such as spectacle lenses, telescope lenses, binocular lenses, microscope lenses, endoscope lenses, and imaging system lenses of various cameras.
  • Example 1 A curable composition containing a silane compound and metal oxide particles on the object-side surface (convex surface) of a spectacle lens substrate manufactured using a spectacle lens monomer (MR8 manufactured by Mitsui Chemicals, Inc.) (Trade name: HC60S)) to form a coating layer, and the coating layer was cured by heating to provide a hard coat layer (cured layer). In the vacuum evaporation apparatus, ion cleaning with oxygen ions was performed on the surface of the hard coat layer.
  • MR8 manufactured by Mitsui Chemicals, Inc.
  • Ion cleaning was performed by irradiating oxygen ions with an ion gun at an acceleration voltage of 350 V, a current of 180 mA, an O 2 introduction flow rate of 10 sccm, an Ar introduction flow rate of 10 sccm, and a processing time of 45 sec. Subsequently, a silicon oxide layer (first metal oxide layer) was deposited on the surface of the hard coat layer after the ion cleaning (Emi. Current: 155 mA), and then a chromium layer was formed as a metal layer on the surface of the silicon oxide layer. (Emi. Current: 38 mA).
  • the surface of the chromium layer was irradiated with oxygen ions by an ion gun at an acceleration voltage of 200 V, a current of 150 mA, an O 2 introduction flow rate of 20 sccm, and a processing time of 20 sec to oxidize and passivate the surface layer of the chromium layer. Thereafter, a silicon oxide layer (second metal oxide layer) was further deposited on the surface of the passivated surface layer (Emi. Current: 155 mA). As described above, a spectacle lens having a silicon oxide layer (10 nm), a chromium layer (10 nm) having a passivated surface layer, and a silicon oxide layer (10 nm) in this order on a substrate having a hard coat layer was obtained.
  • the film thickness in parentheses and the film thickness described later are the film thicknesses of the respective layers determined from the film forming conditions.
  • Examples 2 and 3 A spectacle lens was obtained in the same manner as in Example 1, except that the chromium layer having the thickness shown in Table 1 was formed by changing the deposition time during the formation of the chromium layer.
  • the thickness of the surface layer passivated by oxidation performed in Examples 1 to 3 (the thickness calculated from the above oxidation conditions) is 5 nm.
  • Rate of change in transmittance after standing ((visual transmittance after standing ⁇ initial luminous transmittance) / initial luminous transmittance) ⁇ 100
  • another spectacle lens other than the above-mentioned spectacle lens was prepared for Examples 1 to 3 and Comparative Example 1, and after measuring the luminous transmittance (initial luminous transmittance), the second spectacle lens of each spectacle lens was measured.
  • the surface of the metal oxide layer (silicon oxide layer) was subjected to forced oxidation treatment by irradiating oxygen ions with an ion gun at an acceleration voltage of 200 V, a current of 150 mA, an O 2 introduction flow rate of 20 sccm, and a treatment time of 40 sec.
  • the luminous transmittance of the spectacle lens after the forced oxidation treatment was measured.
  • the luminous transmittance measured here is hereinafter referred to as “luminous transmittance after forced oxidation treatment”.
  • Rate of change in transmittance after forced oxidation ((luminous transmittance after forced oxidation ⁇ initial luminous transmittance) / initial luminous transmittance) ⁇ 100
  • the measurement of the luminous transmittance described above was performed according to JIS T 7333: 2005.
  • Abrasion resistance Steel wool (Bonnstar # 00000) was applied to the outermost surface of each of the spectacle lenses of Examples 1 to 3 on a surface opposite to the base material using a reciprocating friction abrasion tester manufactured by Shinto Kagaku Co., Ltd. under a load of 2.5 kg. was used to perform a 20-way reciprocating abrasion test, and evaluated according to the following evaluation criteria. (Evaluation criteria) A: No or almost no scratches can be visually confirmed. B: Slight scratches are observed. C: Clear scratches are observed.
  • an optical product having a metal layer on a base material, wherein a surface layer portion of the metal layer opposite to the base material side is passivated.
  • the above optical products can exhibit stable transmittance over time.
  • the metal layer can be a chromium layer, a niobium layer, a titanium layer, or an aluminum layer.
  • the surface layer may be a metal oxide layer in which a metal constituting the metal layer is oxidized.
  • the thickness of the surface layer may be in the range of 1 to 30 nm.
  • the optical product may have a metal oxide layer between the metal layer and the base material, and may have a metal oxide layer on the surface side surface of the metal layer. it can.
  • the metal oxide layer located between the metal layer and the substrate can be a silicon oxide layer.
  • the metal oxide layer located on the surface side of the metal layer may be a silicon oxide layer.
  • the optical product can be a lens.
  • the optical product can be a spectacle lens.
  • the method for manufacturing an optical product described above wherein the optical product includes forming a metal layer on a substrate, and passivating a surface portion of the formed metal layer by an oxidation treatment.
  • the manufacturing method can include performing the oxidation treatment by oxygen ion irradiation.
  • the oxygen ion irradiation can be performed by an ion gun.
  • One embodiment of the present invention is useful in the field of manufacturing various optical products such as spectacle lenses.

Abstract

基材上に金属層を有し、上記金属層の基材側とは反対側の表層部が不働態化されている光学製品が提供される。

Description

光学製品およびその製造方法
 本発明は、光学製品およびその製造方法に関する。
 レンズ等の各種光学製品は、一般に、基材の表面上に光学製品に所望の機能をもたらすための機能性層を形成することにより製造される(例えば特許文献1参照)。
特開2013-11711号公報
 特許文献1には、機能性層として金属層を含む光学製品が開示されている。光学製品が金属層を含むことにより、光学製品に入射する光の透過や反射をコントロールすることができる。
 光学製品に望まれる性質としては、経時的な物性変化が少ないことが挙げられる。
 本発明の一態様は、金属層を含む光学製品であって、経時的な物性変化が少ない光学物品を提供する。
 本発明の一態様は、基材上に金属層を有し、上記金属層の基材側とは反対側の表層部が不働態化されている光学製品に関する。
 「不働態」とは、金属が熱力学的には腐食する条件にありながら腐食を起こさない状態をいい、腐食とは、金属が化学反応によって表面から金属ではない状態になって失われていくことをいう。上記光学物品は、金属層の表層部が不働態化されていることにより、金属層の腐食に起因する物性変化、中でも透過率変化を経時的に抑制することができる。この点は、安定な透過率特性を示すことが望まれる光学物品として好ましい。
 本発明の一態様によれば、基材上に金属層を有する光学製品であって、経時的な透過率変化が少ない光学製品を提供することができる。
 以下、上記光学製品およびその製造方法について、更に詳細に説明する。
<基材>
 基材としては、光学製品に一般的に使用される各種基材を用いることができる。基材は、例えばプラスチック基材またはガラス基材であることができる。ガラス基材は、例えば無機ガラス製の基材であることができる。基材としては、軽量で割れ難いという観点から、プラスチック基材が好ましい。プラスチック基材としては、(メタ)アクリル樹脂をはじめとするスチレン樹脂、ポリカーボネート樹脂、アリル樹脂、ジエチレングリコールビスアリルカーボネート樹脂(CR-39)等のアリルカーボネート樹脂、ビニル樹脂、ポリエステル樹脂、ポリエーテル樹脂、イソシアネート化合物とジエチレングリコールなどのヒドロキシ化合物との反応で得られたウレタン樹脂、イソシアネート化合物とポリチオール化合物とを反応させたチオウレタン樹脂、分子内に1つ以上のジスルフィド結合を有する(チオ)エポキシ化合物を含有する硬化性組成物を硬化した硬化物(一般に透明樹脂と呼ばれる。)を挙げることができる。基材としては、染色されていないものを用いてもよく、染色されているものを用いてもよい。例えば、光学製品が眼鏡レンズの場合、基材(レンズ基材)は、染色されていないレンズ(いわゆる無色レンズ)であってもよく、染色レンズであってもよい。また、眼鏡レンズのレンズ基材の屈折率は、例えば、1.60~1.75程度であることができる。ただし眼鏡レンズのレンズ基材の屈折率は、上記範囲に限定されるものではなく、上記の範囲内でも、上記の範囲から上下に離れていてもよい。本発明および本明細書において、屈折率とは、波長500nmの光に対する屈折率をいうものとする。また、眼鏡レンズのレンズ基材は、屈折力を有するレンズ(いわゆる度付レンズ)であってもよく、屈折力なしのレンズ(いわゆる度なしレンズ)であってもよい。また、眼鏡レンズは、単焦点レンズ、多焦点レンズ、累進屈折力レンズ等の各種レンズであることができる。眼鏡レンズの種類は、レンズ基材の両面の面形状により決定される。眼鏡レンズのレンズ基材表面は、凸面、凹面、平面のいずれであってもよい。通常のレンズ基材および眼鏡レンズでは、物体側表面は凸面、眼球側表面は凹面である。ただし、本発明は、これに限定されるものではない。「物体側表面」とは、眼鏡レンズを備えた眼鏡が装用者に装用された際に物体側に位置する表面であり、「眼球側表面」とは、その反対、即ち眼鏡レンズを備えた眼鏡が装用者に装用された際に眼球側に位置する表面である。
<金属層>
 上記光学製品は、上記基材上に金属層を有する。本発明および本明細書において、「金属層」は、金属元素の単体(純金属)および複数の金属元素の合金からなる群から選ばれる成分(以下において、単に「金属」とも記載する。)を任意の成膜方法によって堆積させて形成された膜を意味し、成膜時に不可避的に混入する不純物および成膜を補助するために任意に使用される公知の添加剤を除けば、金属からなる膜である。金属層は、膜の質量に対して、例えば90~100質量%を金属が占める膜であることができ、95~100質量%を金属が占める膜であることもできる。金属元素としては、不働態を形成可能な金属元素、例えば、クロム族元素(例えばクロム(Cr)、モリブデン(Mo)、タングステン(W))、鉄族元素(例えば鉄(Fe)、コバルト(Co)、ニッケル(Ni))、ニオブ(Nb)、チタン(Ti)等の遷移元素、貴金属元素(例えば銅(Cu)、銀(Ag)、金(Au))、アルミニウム(Al)等を挙げることができる。透過率、膜安定性、材料の入手容易性等の観点からは、クロム、ニオブ、チタンおよびアルミニウムが好ましく、クロムがより好ましい。金属層の膜厚は、例えば3~100nmの範囲であることができ、3~50nmの範囲であることが好ましい。経時的な透過率変化の更なる抑制の観点からは、金属層の膜厚は、3~30nmの範囲であることがより好ましく、3~25nmの範囲であることが更に好ましく、5~25nmの範囲であることが一層好ましく、10~20nmの範囲であることがより一層好ましい。一方、光学製品の耐久性向上の観点からは、金属層の膜厚は、10~30nmの範囲であることがより好ましく、15~30nmの範囲であることが更に好ましい。上記金属層の膜厚は、公知の膜厚測定方法によって求めることができる。この点は、後述する各種の層についても同様である。また、金属層の膜厚とは、不働態化された表層部も含む膜厚をいうものとする。
 金属層は、公知の成膜方法により基材上に形成することができる。成膜の容易性の観点からは、成膜は蒸着により行うことが好ましい。即ち、上記金属層は、蒸着膜であることが好ましい。蒸着膜とは、蒸着によって成膜された膜を意味する。本発明および本明細書における「蒸着」には、乾式法、例えば、真空蒸着法、イオンプレーティング法、スパッタリング法等が含まれる。真空蒸着法では、蒸着中にイオンビームを同時に照射するイオンビームアシスト法を用いてもよい。
 上記金属層は、基材側とは反対側の表層部が不働態化されている。本発明および本明細書において、「表層部」とは、上記金属層の基材側とは反対側の表面から層内部にわたる一部領域である。表層部の厚みは、金属層の膜厚未満であって、例えば、金属層の膜厚の80%以下の厚み、70%以下の厚み、60%以下の厚みまたは50%以下の厚みであることができる。また、表層部の厚みは、金属層の膜厚未満であって、金属層の膜厚の5%以上の厚み、10%以上の厚み、15%以上の厚み、20%以上の厚み、25%以上の厚みまたは30%以上の厚みであることができる。例えば、表層部の厚みは、金属層の膜厚未満であって、1~30nmの範囲であることができ、1~10nmの範囲であることが好ましい。表層部の厚みは、詳細を後述する不働態化処理の処理条件から求めることができる。例えば、酸素イオン照射により酸素イオンが侵入する侵入深さを、表層部の厚みとすることができる。または、表層部の厚みは、X線光電子分光分析によって求めることができる。X線光電子分光分析は、ESCA(Electron Spectroscopy for Chemical Analysis)またはXPS(X-ray Photoelectron Spectroscopy)と呼ばれる分析方法である。上記金属層の表層部は、金属層を構成する金属が酸化されて不働態化した金属酸化物の層であることができ、上記金属層の上記表層部以外の部分は酸化による不働態化がされていない金属の層であることができる。X線光電子分光分析において、例えば、酸素原子が10原子%以上の含有率で検出される部分を、表層部と判定することができる。X線光電子分光分析では、酸素原子についてO1s_1スペクトルを用いるものとする。
 上記金属層の表層部の不働態化は、酸化処理によって行うことができる。酸化処理は、上記金属層の基材側とは反対側の表面から層の内部に酸素を導入可能な方法であれば、いずれの方法によって行ってもよい。導入される酸素は、酸化効率の観点からは、酸素分子より活性の高い状態であることが好ましく、例えば、酸素イオン、酸素ラジカル(ヒドロキシラジカル、スーパーオキサイドアニオン等の酸素フリーラジカルが包含される。)等であることができる。酸素導入方法の具体例としては、イオン銃(イオンガン)による照射、イオンビーム照射、イオンプレーティング法、RF(Radio Frequency)ラジカルソースを使用する方法等を挙げることができる。酸素導入時の各種条件は、金属層の基材側とは反対側の表面から所望の厚みの領域を酸化(不働態化)可能な条件に設定すればよい。例えば、酸素導入をイオン銃による酸素イオン照射により行う場合、酸素イオンの照射時間は、例えば5~60秒間とすることができ、イオン銃の加速電圧は、例えば100~1000V、電流は、例えば100~600mAとすることができる。
<任意に設けられ得る層>
 上記金属層は、レンズ基材の表面上に直接位置してもよく、一層以上の他の層を介して間接的に基材の表面上に位置してもよい。基材と金属層との間に形成され得る層としては、例えば、偏光層、調光層、ハードコート層等を挙げることができる。ハードコート層を設けることにより、光学製品の耐久性(強度)を高めることができる。ハードコート層は、硬化性組成物を硬化した硬化層であることができる。ハードコート層として機能し得る硬化層については、例えば特開2012-128135号公報の段落0025~0028、0030を参照できる。上記硬化層は、例えばシラン化合物と金属酸化物粒子を含む硬化性組成物を基材表面に直接または他の層を介して間接的に塗布して塗布層を形成し、この塗布層を硬化処理(加熱、光照射等)により硬化させて形成することができる。また、上記金属層と基材との間には、密着性向上のためのプライマー層を形成してもよい。プライマー層の詳細については、例えば特開2012-128135号公報の段落0029~0030を参照できる。
(金属酸化物層)
 一態様では、上記光学製品は、上記金属層と基材との間に、金属酸化物層(以下、「第1の金属酸化物層」とも記載する。)を有することができる。他の一態様では、上記光学製品は、上記金属層の基材側とは反対側の表層部側の表面上に金属酸化物層(以下、「第2の金属酸化物層」とも記載する。)を有することができる。また、他の一態様では、上記光学製品は、上記金属層と基材との間に金属酸化物層(第1の金属酸化物層)を有し、かつ上記金属層の上記表層部側表面上に金属酸化物層(第2の金属酸化物層)を有する光学製品であることができる。本発明および本明細書において、「金属酸化物層」とは、金属酸化物を任意の成膜方法によって堆積させて形成された膜を意味し、成膜時に不可避的に混入する不純物および成膜を補助するために任意に使用される公知の添加剤を除けば、金属酸化物からなる膜である。金属酸化物層は、膜の質量に対して、例えば90~100質量%を金属酸化物が占める膜であることができ、95~100質量%を金属酸化物が占める膜であることもできる。金属酸化物層としては、例えば、酸化ケイ素層、酸化アルミニウム層、酸化セリウム層、酸化クロム層、酸化モリブデン層、酸化タングステン層、酸化ジルコニウム層、酸化チタン層、酸化ニオブ層、酸化スズ層、酸化タンタル層等を挙げることができる。
 上記金属酸化物層と基材との間に位置する第1の金属酸化物層は、好ましくは上記金属層と直接接する層であることができ、より好ましくは基材上に設けられた硬化層の表面に直接積層された層であることができる。金属層および/または硬化層との密着性向上の観点からは、第1の金属酸化物層は、酸化ケイ素層であることが好ましい。第1の金属酸化物層の膜厚は、隣接する層との密着性向上および透過率の観点からは、1~100nmの範囲であることが好ましく、1~50nmの範囲であることがより好ましい。
 上記金属層の基材側とは反対側の表層部側の表面上に位置する第2の金属酸化物層は、好ましくは上記金属層と直接接する層であることができる。第2の金属酸化物層は、金属層を保護する役割、光学製品の耐久性を向上させる役割等を果たすことができる。金属層の保護および光学製品の耐久性向上の観点からは、第2の金属酸化物層は、酸化ケイ素層、酸化アルミニウム層、酸化セリウム層、酸化クロム層、酸化モリブデン層、酸化タングステン層、酸化ジルコニウム層、酸化チタン層、酸化ニオブ層、酸化スズ層、酸化タンタル層であることが好ましく、酸化ケイ素層であることがより好ましい。第2の金属酸化物層の膜厚は、金属層の保護、光学製品の耐久性向上および透過率の観点からは、1~100nmの範囲であることが好ましく、1~50nmの範囲であることがより好ましい。
 本発明および本明細書において、「金属酸化物」は、化学量論組成の状態であってもよく、化学量論組成から酸素が欠損または過多の状態にあるものであってもよい。
 更に、上記光学製品は、任意の位置に、上記の層以外の他の層を含むこともできる。
かかる他の層としては、撥水性または親水性の防汚層、防曇層等の各種の層を挙げることができる。それらの層については、いずれも公知技術を適用することができる。
 一態様では、上記の各種層の一層以上の成膜前、成膜が行われる表面に対して表面処理を行うことができる。この表面処理としては、表面クリーニングを挙げることができ、具体例としてはイオンクリーニングを挙げることができる。イオンクリーニングにより、成膜が行われる表面に付着した有機物を除去して表面を清浄化することができる。イオンクリーニングは、イオン銃(IG;Ion gun)によって処理表面にイオンを照射する処理である。照射されるイオンとしては、クリーニング性の観点から、酸素イオンが好ましい。また、表面クリーニングは、不活性ガス、例えばアルゴン(Ar)ガスやキセノン(Xe)ガス、または窒素(N2)ガスを用いて行ってもよく、酸素ラジカルや酸素プラズマを照射して行ってもよい。
 上記光学製品の具体的態様としては、例えば、眼鏡レンズ、望遠鏡レンズ、双眼鏡レンズ、顕微鏡レンズ、内視鏡レンズ、各種カメラの撮像系レンズ等の各種レンズを挙げることができる。
 以下、本発明を実施例により更に説明する。ただし本発明は実施例に示す態様に限定されるものではない。
[実施例1]
 眼鏡レンズ用モノマー(三井化学株式会社製MR8)により製造した眼鏡用レンズ基材の物体側表面(凸面)に、シラン化合物と金属酸化物粒子を含む硬化性組成物(HOYA株式会社製ハードコート液(商品名:HC60S))を塗布して塗布層を形成し、この塗布層を加熱により硬化させてハードコート層(硬化層)を設けた。
 真空蒸着装置において、ハードコート層表面に対して、酸素イオンによるイオンクリーニングを実施した。イオンクリーニングは、加速電圧350V、電流180mA、O導入流量10sccm、Ar導入流量10sccm、処理時間45secとし、イオン銃によって酸素イオンを照射することにより行った。
 続いて、上記イオンクリーニング後のハードコート層表面に酸化ケイ素層(第1の金属酸化物層)を蒸着し(Emi.電流:155mA)、次いで、上記酸化ケイ素層の表面に金属層としてクロム層を蒸着した(Emi.電流:38mA)。
 上記クロム層の表面に、加速電圧200V、電流150mA、O導入流量20sccm、処理時間20secとしてイオン銃によって酸素イオンを照射して上記クロム層の表層部を酸化して不働態化した。
 その後、不働態化された表層部の表面に、酸化ケイ素層(第2の金属酸化物層)を更に蒸着した(Emi.電流:155mA)。
 以上により、ハードコート層を有する基材上に、酸化ケイ素層(10nm)、表層部が不働態化されたクロム層(10nm)、酸化ケイ素層(10nm)をこの順に有する眼鏡レンズを得た。上記の括弧内の膜厚および後述する膜厚は、成膜条件から求められる各層の膜厚である。
[実施例2、3]
 クロム層形成時の蒸着時間を変えることにより、表1に示す膜厚のクロム層を形成した点以外、実施例1と同様の方法により眼鏡レンズを得た。
 実施例1~3において行われた酸化により不働態化された表層部の厚み(上記酸化条件から算出される厚み)は、5nmである。
[比較例1]
 クロム層の表層部の酸化処理(酸素イオン照射)を行わなかった点以外、実施例2と同様の方法により眼鏡レンズを得た。
[評価方法]
1.透過率変化
 実施例1~3、比較例1の各眼鏡レンズの視感透過率(以下、「初期視感透過率」と記載する。)を測定した。
 各眼鏡レンズの視感透過率を、大気中、室温下で1日放置した後に測定した。ここで測定された視感透過率を、以下、「放置後視感透過率」と記載する。
 以下の式により、放置後透過率変化率を算出した。
 放置後透過率変化率=((放置後視感透過率-初期視感透過率)/初期視感透過率)×100
 また、上記の眼鏡レンズとは別の眼鏡レンズを、実施例1~3、比較例1について準備し、視感透過率(初期視感透過率)を測定した後、各眼鏡レンズの第2の金属酸化物層(酸化ケイ素層)の表面に、加速電圧200V、電流150mA、O導入流量20sccm、処理時間40secとしてイオン銃によって酸素イオンを照射して、強制酸化処理を施した。この強制酸化処理後の眼鏡レンズの視感透過率を測定した。ここで測定された視感透過率を、以下、「強制酸化処理後視感透過率」と記載する。
 以下の式により、強制酸化後透過率変化率を算出した。
 強制酸化後透過率変化率=((強制酸化後視感透過率-初期視感透過率)/初期視感透過率)×100
 以上の視感透過率の測定は、JIS T 7333 :2005にしたがい行った。
2.耐摩耗性
 実施例1~3の各眼鏡レンズの基材とは反対側の最表面に、新東科学社製往復摩擦磨耗試験機にて、荷重2.5kgでスチールウール(ボンスター製#00000)を用いて20往復摩耗テストを行い、以下の評価基準によって評価した。
(評価基準)
A:目視でキズが全くまたは殆ど確認できない。
B:僅かにキズが確認される。
C:明らかなキズが確認される。
 以上の結果を、表1、2に示す。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 表1に示す結果から、実施例1~3の眼鏡レンズは、比較例1の眼鏡レンズと比べて経時的な透過率変化が抑制されている(放置後透過率変化率が低い)ことが確認できる。また、実施例1~3の眼鏡レンズは、比較例1の眼鏡レンズと比べて、強制酸化後の透過率変化率が低いことから、酸素による影響を受け難いことも確認された。
 また、表2に示す結果から、実施例1~3の眼鏡レンズが摩耗され難く耐久性に優れることも確認できる。
 これに対し、第2の金属酸化物層(酸化ケイ素層)を形成しなかった点以外、実施例2と同様の方法により作製した眼鏡レンズについて、上記方法によって耐摩耗性の評価を行ったところ、評価結果はCであった。
 最後に、前述の各態様を総括する。
 一態様によれば、基材上に金属層を有し、上記金属層の基材側とは反対側の表層部が不働態化されている光学製品が提供される。
 上記光学製品は、経時的に安定した透過率を示すことができる。
 一態様では、上記金属層は、クロム層、ニオブ層、チタン層またはアルミニウム層であることができる。
 一態様では、上記表層部は、上記金属層を構成する金属が酸化された金属酸化物の層であることができる。
 一態様では、上記表層部の厚みは、1~30nmの範囲であることができる。
 一態様では、上記光学製品は、上記金属層と上記基材との間に金属酸化物層を有することができ、かつ上記金属層の上記表層部側表面上に金属酸化物層を有することができる。
 一態様では、上記金属層と上記基材との間に位置する金属酸化物層は、酸化ケイ素層であることができる。
 一態様では、上記金属層の上記表層部側表面上に位置する金属酸化物層は、酸化ケイ素層であることができる。
 一態様では、上記光学製品は、レンズであることができる。
 一態様では、上記光学製品は、眼鏡レンズであることができる。
 一態様によれば、上記光学製品の製造方法であって、基材上に金属層を形成すること、および、形成された金属層の表層部を酸化処理により不働態化することを含む光学製品の製造方法が提供される。
 上記製造方法によれば、経時的な透過率変化が少ない光学製品を製造することができる。
 一態様では、上記製造方法は、上記酸化処理を酸素イオン照射により行うことを含むことができる。
 一態様では、上記酸素イオン照射は、イオン銃により行われ得る。
 本明細書に記載の各種態様は、任意の組み合わせで2つ以上を組み合わせることができる。
 今回開示された実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。
 本発明の一態様は、眼鏡レンズ等の各種光学製品の製造分野において有用である。

Claims (12)

  1. 基材上に金属層を有し、
    前記金属層の基材側とは反対側の表層部が不働態化されている光学製品。
  2. 前記金属層は、クロム層、ニオブ層、チタン層またはアルミニウム層である、請求項1に記載の光学製品。
  3. 前記表層部は、前記金属層を構成する金属が酸化された金属酸化物の層である、請求項1または2に記載の光学製品。
  4. 前記表層部の厚みは、1~30nmの範囲である、請求項1~3のいずれか1項に記載の光学製品。
  5. 前記金属層と前記基材との間に金属酸化物層を有し、かつ前記金属層の前記表層部側表面上に金属酸化物層を有する、請求項1~4のいずれか1項に記載の光学製品。
  6. 前記金属層と前記基材との間に位置する金属酸化物層は、酸化ケイ素層である、請求項5に記載の光学製品。
  7. 前記金属層の前記表層部側表面上に位置する金属酸化物層は、酸化ケイ素層である、請求項5または6に記載の光学製品。
  8. レンズである、請求項1~7のいずれか1項に記載の光学製品。
  9. 眼鏡レンズである、請求項1~8のいずれか1項に記載の光学製品。
  10. 光学製品の製造方法であって、
    前記光学製品は、請求項1~9のいずれか1項に記載の光学製品であり、
    基材上に金属層を形成すること、および、
    形成された金属層の表層部を酸化処理により不働態化すること、
    を含む光学製品の製造方法。
  11. 前記酸化処理を酸素イオン照射により行うことを含む、請求項10に記載の光学製品の製造方法。
  12. 前記酸素イオン照射をイオン銃により行うことを含む、請求項11に記載の光学製品の製造方法。
     
PCT/JP2019/029961 2018-07-31 2019-07-31 光学製品およびその製造方法 WO2020027178A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
KR1020207036467A KR102618674B1 (ko) 2018-07-31 2019-07-31 광학 제품 및 그 제조 방법
EP19843914.3A EP3832378A4 (en) 2018-07-31 2019-07-31 OPTICAL PRODUCT AND METHOD OF MANUFACTURING IT
CN201980042430.0A CN112534341A (zh) 2018-07-31 2019-07-31 光学产品及其制造方法
JP2020534694A JP7266037B2 (ja) 2018-07-31 2019-07-31 光学製品およびその製造方法
US17/125,256 US20210109374A1 (en) 2018-07-31 2020-12-17 Optical product and method of manufacturing the same
US18/530,599 US20240111177A1 (en) 2018-07-31 2023-12-06 Optical product and method of manufacturing the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-144187 2018-07-31
JP2018144187 2018-07-31

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/125,256 Continuation US20210109374A1 (en) 2018-07-31 2020-12-17 Optical product and method of manufacturing the same

Publications (1)

Publication Number Publication Date
WO2020027178A1 true WO2020027178A1 (ja) 2020-02-06

Family

ID=69231070

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/029961 WO2020027178A1 (ja) 2018-07-31 2019-07-31 光学製品およびその製造方法

Country Status (6)

Country Link
US (2) US20210109374A1 (ja)
EP (1) EP3832378A4 (ja)
JP (1) JP7266037B2 (ja)
KR (1) KR102618674B1 (ja)
CN (1) CN112534341A (ja)
WO (1) WO2020027178A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02223909A (ja) * 1989-02-25 1990-09-06 Shigenobu Kasamatsu 空気浄化性眼鏡
JP3122481U (ja) * 2006-03-30 2006-06-15 外男 林 バリアー被膜を備えた金属蒸着加工レンズ
JP2012128135A (ja) 2010-12-15 2012-07-05 Seiko Epson Corp 光学物品およびその製造方法
JP2012215725A (ja) * 2011-04-01 2012-11-08 Yamamoto Kogaku Co Ltd レンズおよび眼鏡
JP2013011711A (ja) 2011-06-29 2013-01-17 Ito Kogaku Kogyo Kk 光学要素
WO2016159252A1 (ja) * 2015-03-31 2016-10-06 ホヤ レンズ タイランド リミテッド 眼鏡レンズおよびその製造方法、ならびに眼鏡

Family Cites Families (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2276601A1 (fr) * 1974-06-27 1976-01-23 France Etat Filtres de bande et application a la fabrication de lunettes de protection
CH595458A5 (ja) * 1975-03-07 1978-02-15 Balzers Patent Beteilig Ag
US4223974A (en) * 1978-08-02 1980-09-23 American Optical Corporation Enhanced bonding of silicon oxides and silver by intermediate coating of metal
JPS57180315U (ja) * 1981-05-11 1982-11-16
JPS59117124A (ja) * 1982-12-24 1984-07-06 Fujitsu Ltd 配線パタ−ンの形成方法
US4770479A (en) * 1985-07-01 1988-09-13 Raytheon Company Optical elements having buried layers and method of manufacture
US5055358A (en) * 1989-09-29 1991-10-08 Libbey-Owens-Ford Co. Low reflectance films for transparent substrates
JPH03248119A (ja) * 1990-02-26 1991-11-06 Hoya Corp 眼鏡フレーム
JPH05265181A (ja) * 1992-03-19 1993-10-15 Nec Corp 縮小投影露光用レティクル及びそれに用いるブランク
CA2120877A1 (en) * 1993-04-28 1994-10-29 Jesse D. Wolfe Durable first and second surface mirrors
US5846649A (en) * 1994-03-03 1998-12-08 Monsanto Company Highly durable and abrasion-resistant dielectric coatings for lenses
JPH1016113A (ja) * 1996-07-05 1998-01-20 Fuaa Seal Kikaku:Kk 光透過部材
JPH10209276A (ja) * 1997-01-20 1998-08-07 Sony Corp 配線形成方法
US6793339B1 (en) * 1997-10-21 2004-09-21 Sola-International Holdings, Ltd. Coated sunglass lens
JP4119959B2 (ja) * 1998-01-13 2008-07-16 山梨県 有色皮膜上への透明保護膜の形成方法
CA2355021C (en) * 2000-08-29 2004-11-02 Hoya Corporation Optical element having antireflection film
EP1354225A2 (en) 2001-01-25 2003-10-22 Jax Holdings, Inc. Multi-layer thin film optical filter arrangement
US6814440B2 (en) * 2002-01-10 2004-11-09 Intercast Europe S.P.A. Lenses having chromatic effect
US6886937B2 (en) * 2003-06-20 2005-05-03 Vision - Ease Lens, Inc. Ophthalmic lens with graded interference coating
JP2006308722A (ja) 2005-04-27 2006-11-09 Nikon Corp 低反射パターン膜及び高さ測定装置
WO2009004163A1 (fr) * 2007-06-01 2009-01-08 Mustapha Mekki Procédé de dépôt d'un métal ou d'un alliage métallique pour former un revêtement de surface coloré
FR2930996B1 (fr) * 2008-05-07 2010-08-27 Christian Dalloz Sunoptics Nouveau type de verre pour lunettes et son procede d'obtention
KR20090130717A (ko) * 2008-06-16 2009-12-24 김용성 마이크로 렌즈용 코팅필름 및 그 제조방법
JP2010101918A (ja) * 2008-09-26 2010-05-06 Toshiba Corp 眼鏡
JP5413978B2 (ja) * 2010-05-20 2014-02-12 東海光学株式会社 プラスチック光学製品及び眼鏡プラスチックレンズ
US9233842B2 (en) * 2013-03-15 2016-01-12 Robert Bosch Gmbh Passivation layer for harsh environments and methods of fabrication thereof
US9279923B2 (en) * 2013-03-26 2016-03-08 United Microelectronics Corporation Color filter layer and method of fabricating the same
JP6282142B2 (ja) * 2014-03-03 2018-02-21 日東電工株式会社 赤外線反射基板およびその製造方法
CN106062587A (zh) * 2014-03-03 2016-10-26 3M创新有限公司 具有不对称构造的耐久太阳能镜膜
JP6423198B2 (ja) * 2014-08-05 2018-11-14 日東電工株式会社 赤外線反射フィルム
CA2969346C (en) * 2014-12-01 2021-03-23 Hoya Lens Thailand Ltd. Spectacle lens and spectacles
WO2016189848A1 (ja) * 2015-05-28 2016-12-01 富士フイルム株式会社 反射防止膜、光学素子および光学系
TWM519743U (zh) * 2015-11-17 2016-04-01 Wei-Xian Lai 護目鏡片結構
FR3054043B1 (fr) * 2016-07-18 2018-07-27 Essilor Int Procede de marquage permanent visible d'article optique et article optique marque
KR102320479B1 (ko) * 2016-08-22 2021-11-03 삼성전자주식회사 분광기 및 이를 이용한 스펙트럼 측정방법
EP3457197A1 (en) * 2017-09-19 2019-03-20 Essilor International Optical lens for correcting color vision
JP6473281B1 (ja) * 2017-09-29 2019-02-20 ホヤ レンズ タイランド リミテッドHOYA Lens Thailand Ltd 眼鏡レンズおよび眼鏡
FR3076628B1 (fr) * 2018-01-11 2020-07-17 Dalloz Creations Nouveau verre oculaire realise en un materiau composite a usage optique, ainsi que son procede d'obtention

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02223909A (ja) * 1989-02-25 1990-09-06 Shigenobu Kasamatsu 空気浄化性眼鏡
JP3122481U (ja) * 2006-03-30 2006-06-15 外男 林 バリアー被膜を備えた金属蒸着加工レンズ
JP2012128135A (ja) 2010-12-15 2012-07-05 Seiko Epson Corp 光学物品およびその製造方法
JP2012215725A (ja) * 2011-04-01 2012-11-08 Yamamoto Kogaku Co Ltd レンズおよび眼鏡
JP2013011711A (ja) 2011-06-29 2013-01-17 Ito Kogaku Kogyo Kk 光学要素
WO2016159252A1 (ja) * 2015-03-31 2016-10-06 ホヤ レンズ タイランド リミテッド 眼鏡レンズおよびその製造方法、ならびに眼鏡

Also Published As

Publication number Publication date
EP3832378A4 (en) 2022-04-27
US20210109374A1 (en) 2021-04-15
US20240111177A1 (en) 2024-04-04
JPWO2020027178A1 (ja) 2021-08-02
JP7266037B2 (ja) 2023-04-27
EP3832378A1 (en) 2021-06-09
CN112534341A (zh) 2021-03-19
KR102618674B1 (ko) 2023-12-27
KR20210035089A (ko) 2021-03-31

Similar Documents

Publication Publication Date Title
JP5966011B2 (ja) 眼鏡レンズおよびその製造方法
KR20040040393A (ko) 반사방지 안경 렌즈 및 그것의 제조 방법
EP2199835A1 (en) Optical component and manufacturing method of the optical component
EP3182177B1 (en) Composite high index layers for anti reflective stacks
JP5698902B2 (ja) 光学物品およびその製造方法
JP2022509087A (ja) 耐摩耗性を改善するためのフィルタリング干渉コーティング及び多層系を有する光学レンズ
JP2004514939A (ja) 反射防止層の冷間堆積方法
AU2014355397B2 (en) Spectacle lens
KR20160034419A (ko) 안경 렌즈
WO2019189763A1 (ja) 眼鏡レンズおよび眼鏡、ならびに眼鏡レンズの製造方法
JP7266037B2 (ja) 光学製品およびその製造方法
WO2018038114A1 (ja) 眼鏡レンズおよび眼鏡
JP2023010987A (ja) 眼鏡レンズおよび眼鏡
JP2022507735A (ja) 干渉コーティング及び耐摩耗性改善のための多層系を有する光学レンズ
JP2023009170A (ja) 眼鏡レンズの製造方法
EP4318091A1 (en) Eyeglass lens, manufacturing method for eyeglass lens, and eyeglasses
EP3279706B1 (en) Eyeglass lens and method for manufacturing same, and eyeglasses
EP4145186A1 (en) Optical member
CN107430211A (zh) 具有低Rv和低Ruv的减反射溅射叠层
JP7242753B2 (ja) 眼鏡レンズおよび眼鏡
JP2022157713A (ja) 眼鏡レンズの製造方法
US20240077754A1 (en) Method for producing spectacle lens
JP2009210677A (ja) 眼鏡レンズ及びその製造方法
CN117440755A (zh) 具有抗菌和/或抗病毒特性的眼镜片及其制造方法
CN117331245A (zh) 一种大角度低反射防蓝光树脂镜片及其制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19843914

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020534694

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019843914

Country of ref document: EP

Effective date: 20210301