WO2020026657A1 - 防振ゴム組成物およびその製造方法、ならびに防振ゴム部材 - Google Patents

防振ゴム組成物およびその製造方法、ならびに防振ゴム部材 Download PDF

Info

Publication number
WO2020026657A1
WO2020026657A1 PCT/JP2019/025604 JP2019025604W WO2020026657A1 WO 2020026657 A1 WO2020026657 A1 WO 2020026657A1 JP 2019025604 W JP2019025604 W JP 2019025604W WO 2020026657 A1 WO2020026657 A1 WO 2020026657A1
Authority
WO
WIPO (PCT)
Prior art keywords
vibration
rubber composition
component
composition according
parts
Prior art date
Application number
PCT/JP2019/025604
Other languages
English (en)
French (fr)
Inventor
圭市 村谷
英亮 浅野
正志 岡久
Original Assignee
住友理工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友理工株式会社 filed Critical 住友理工株式会社
Priority to JP2020534113A priority Critical patent/JP7285258B2/ja
Publication of WO2020026657A1 publication Critical patent/WO2020026657A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • C08K3/36Silica
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/20Carboxylic acid amides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/36Sulfur-, selenium-, or tellurium-containing compounds
    • C08K5/41Compounds containing sulfur bound to oxygen
    • C08K5/42Sulfonic acids; Derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/54Silicon-containing compounds
    • C08K5/548Silicon-containing compounds containing sulfur
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L9/00Compositions of homopolymers or copolymers of conjugated diene hydrocarbons
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F1/00Springs
    • F16F1/36Springs made of rubber or other material having high internal friction, e.g. thermoplastic elastomers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F15/00Suppression of vibrations in systems; Means or arrangements for avoiding or reducing out-of-balance forces, e.g. due to motion
    • F16F15/02Suppression of vibrations of non-rotating, e.g. reciprocating systems; Suppression of vibrations of rotating systems by use of members not moving with the rotating systems
    • F16F15/04Suppression of vibrations of non-rotating, e.g. reciprocating systems; Suppression of vibrations of rotating systems by use of members not moving with the rotating systems using elastic means
    • F16F15/08Suppression of vibrations of non-rotating, e.g. reciprocating systems; Suppression of vibrations of rotating systems by use of members not moving with the rotating systems using elastic means with rubber springs ; with springs made of rubber and metal

Definitions

  • the present invention relates to an anti-vibration rubber composition used for anti-vibration applications in vehicles such as automobiles and electric trains, a method for producing the same, and an anti-vibration rubber member.
  • a fine filler that is, a filler having a small particle diameter
  • the surface area of the filler increases, so that the friction between the fillers and the friction between the filler and the polymer increase, and as a result, the dynamic magnification of the vibration damping rubber increases.
  • the particle diameter of the filler is small, the dispersibility of the filler is deteriorated, and the filler agglomerates are likely to be generated. Therefore, the agglomerates increase the loss factor and increase the dynamic magnification of the vibration isolating rubber. There is also.
  • the particle size of the filler is large, it is possible to suppress the increase in the loss factor of the vibration-isolating rubber and to achieve a low dynamic magnification, but if the particle size of the filler is large, it tends to be a starting point of rubber destruction, and as a result, There is a problem that the durability of the vibration isolating rubber is deteriorated.
  • the present invention has been made in view of such circumstances, high durability, suppression of loss factor increase, low dynamic magnification, vibration-proof rubber composition capable of achieving a high level of compatibility, and a method for producing the same, And a vibration-proof rubber member.
  • the gist of the present invention is the following [1] to [13].
  • An anti-vibration rubber composition comprising the following component (B) and component (C) together with the following component (A).
  • (A) A diene rubber containing natural rubber as a main component.
  • C) At least one of the following (C1) and (C2).
  • (C1) A compound having an NH 2 group and an SSO 3 H group and having a molecular weight of 143 to 241.
  • C2 A compound having an NH 2 group and an ene structure and having a molecular weight of 228 to 480.
  • the component (C) is composed of S- (3-aminopropyl) thiosulfate represented by the following chemical formula (1) and (2Z) -4-[(4 -Aminophenyl) amino]-The vibration-proof rubber composition according to any one of [1] to [4], which is at least one of sodium 4-oxo-2-butenoate.
  • D silane coupling agent
  • the vibration damping rubber composition according to [6] wherein the component (D) is at least one of a mercapto silane coupling agent and a sulfide silane coupling agent.
  • silica was adopted as a filler for the diene rubber containing natural rubber as a main component, which is a polymer of the vibration-isolating rubber composition, thereby providing high durability, suppression of loss factor increase, and reduction of loss factor. It was studied to achieve a high level of dynamic magnification at the same time.
  • the compound represented by (C1) or (C2) was added to the vibration-isolating rubber composition, high durability, suppression of loss factor increase, and reduction in dynamic magnification are improved. I found out that it can be compatible at the level. Although the reason why such a result is obtained is not clear, it is considered as follows.
  • the NH 2 group of the above compound interacts with the hydroxyl group of the silica to release the aggregated silica, thereby improving the dispersibility of the silica. It is considered that as a result of these actions, a low dynamic magnification was able to be realized while maintaining high durability of the vibration-isolating rubber and suppression of a loss factor increase.
  • the vibration damping rubber composition of the present invention contains at least one of the above (C1) and (C2) together with the diene rubber (A) and the silica (B) containing natural rubber as main components. I do. Therefore, high durability, suppression of loss factor increase, and reduction of dynamic magnification can be achieved at a high level.
  • the vibration-proof rubber composition of the present invention contains the following components (A), (B) and (C).
  • A A diene rubber containing natural rubber as a main component.
  • B silica.
  • C At least one of the following (C1) and (C2).
  • C1) A compound having an NH 2 group and an SSO 3 H group and having a molecular weight of 143 to 241.
  • C2) A compound having an NH 2 group and an ene structure and having a molecular weight of 228 to 480.
  • diene rubber (A) As described above, as the diene rubber (A), a diene rubber mainly composed of natural rubber is used.
  • the “main component” indicates that the natural rubber is 50% by weight or more of the diene rubber (A), and includes a diene rubber (A) including only the natural rubber. As described above, by using natural rubber as a main component, it becomes excellent in terms of strength and low dynamic magnification.
  • the diene rubber used in combination with the natural rubber includes, for example, butadiene rubber (BR), styrene-butadiene rubber (SBR), chloroprene rubber (CR), isoprene rubber (IR), acrylonitrile- Butadiene rubber (NBR), ethylene-propylene-diene rubber (EPDM), butyl rubber (IIR), chloroprene rubber (CR) and the like. These may be used alone or in combination of two or more.
  • silica (B) for example, wet silica, dry silica, colloidal silica and the like are used. These may be used alone or in combination of two or more.
  • the silica (B) preferably has a BET specific surface area of 30 to 320 m 2 / g, more preferably. Is from 50 to 230 m 2 / g.
  • the BET specific surface area of the silica (B) is determined, for example, by degassing a sample at 200 ° C. for 15 minutes and then using a mixed gas (N 2 : 70%, He: 30%) as an adsorbed gas. It can be measured by a surface area measuring device (4232-II, manufactured by Micro Data).
  • the content of the silica (B) is 5 to 100 parts by weight based on 100 parts by weight of the diene rubber (A).
  • the amount is from 20 to 60 parts by weight.
  • (C1) and (C2) are used as the specific compound (C). That is, the compounds belonging to (C1) and (C2) are used alone or in combination of two or more.
  • (C1) A compound having an NH 2 group and an SSO 3 H group and having a molecular weight of 143 to 241.
  • (C2) A compound having an NH 2 group and an ene structure and having a molecular weight of 228 to 480.
  • the molecular weight of the compound represented by (C1) is in the range of 143 to 241 and preferably in the range of 157 to 185. Further, as described above, the molecular weight of the compound represented by (C2) is in the range of 228 to 480, preferably in the range of 228 to 312. That is, if the content is in such a range, the affinity with the diene rubber (A) is improved.
  • the molecular weight is a calculated value or a catalog value calculated from the molecular structure of the compound.
  • the content of the specific compound (C) is preferably 0.01 to 100 parts by weight of the diene rubber (A) from the viewpoint of achieving both high durability, suppression of loss factor increase, and reduction in dynamic magnification. It is preferably from 10 to 10 parts by weight, more preferably from 0.1 to 5 parts by weight.
  • the vibration-proof rubber composition of the present invention contains the above-mentioned components (A) to (C) as essential components, but may also contain the following components as necessary.
  • silane coupling agent (D) When a silane coupling agent (D) is contained in addition to the components (A) to (C), the silica (B) and the diene rubber (A) are bonded via the silane coupling agent (D), thereby further preventing the silica (B). This is preferable since the durability of the vibration rubber can be improved.
  • the silane coupling agent (D) include mercapto silane coupling agents, sulfide silane coupling agents, amine silane coupling agents, epoxy silane coupling agents, vinyl silane coupling agents, and the like. Used alone or in combination of two or more.
  • the silane coupling agent (D) is a mercapto silane coupling agent or a sulfide silane coupling agent, because the crosslink density is increased, and a low dynamic magnification and durability are particularly effective.
  • Examples of the mercapto-based silane coupling agent include 3-mercaptopropyltrimethoxysilane, 3-mercaptopropyltriethoxysilane, and the like. These may be used alone or in combination of two or more.
  • sulfide-based silane coupling agent examples include bis- (3- (triethoxysilyl) -propyl) -disulfide, bis (3-triethoxysilylpropyl) trisulfide, and bis- (3- (triethoxysilyl) -Propyl) -tetrasulfide, bis (3-trimethoxysilylpropyl) disulfide, bis (2-triethoxysilylethyl) tetrasulfide, bis (2-trimethoxysilylethyl) tetrasulfide, bis (3-triethoxysilylpropyl) ) Disulfide, 3-trimethoxysilylpropyl-N, N-dimethylthiocarbamoyltetrasulfide, 3-triethoxysilylpropyl-N, N-dimethylthiocarbamoyltetrasulfide, 2-triethoxys
  • Examples of the amine silane coupling agent include 3-aminopropyltriethoxysilane, 3-aminopropyltrimethoxysilane, N- (2-aminoethyl) -3-aminopropyltrimethoxysilane, N- (2- (Aminoethyl) -3-aminopropylmethyldimethoxysilane, 3- (N-phenyl) aminopropyltrimethoxysilane and the like. These may be used alone or in combination of two or more.
  • epoxy silane coupling agent examples include 2- (3,4-epoxycyclohexyl) ethyltrimethoxysilane, 3-glycidoxypropyltrimethoxysilane, 3-glycidoxypropylmethyldiethoxysilane, Glycidoxypropyltriethoxysilane, 3-glycidoxypropylmethyldimethoxysilane and the like can be mentioned. These may be used alone or in combination of two or more.
  • vinyl silane coupling agent examples include vinyl triethoxy silane, vinyl trimethoxy silane, vinyl tris ( ⁇ -methoxy ethoxy) silane, vinyl dimethyl chloro silane, vinyl trichloro silane, vinyl triisopropoxy silane, and vinyl tris (2-methoxyethoxy) silane and the like. These may be used alone or in combination of two or more.
  • the content of the silane coupling agent (D) is preferably 0.5 to 20 parts by weight based on 100 parts by weight of the diene rubber (A) because of excellent low dynamic magnification and durability. Preferably, it is 1 to 10 parts by weight.
  • Carbon black (E) It is preferable to include carbon black (E) in addition to the above components (A) to (C), since it is possible to prevent ultraviolet deterioration.
  • the carbon black (E) for example, various grades of carbon black such as SAF class, ISAF class, HAF class, MAF class, FEF class, GPF class, SRF class, FT class and MT class are used. These may be used alone or in combination of two or more.
  • the carbon black (E) is preferably a carbon black having a BET specific surface area of 5 to 200 m 2 / g. More preferred is carbon black having a BET specific surface area of 20 to 110 m 2 / g.
  • the BET specific surface area of the carbon black (E) is determined, for example, by degassing a sample at 200 ° C. for 15 minutes and then using a mixed gas (N 2 : 70%, He: 30%) as an adsorbed gas. It can be measured by a specific surface area measuring device (4232-II, manufactured by Micro Data).
  • the content of the carbon black (E) is in the range of 1 to 10 parts by weight with respect to 100 parts by weight of the diene rubber (A) from the viewpoint of achieving both durability and low dynamic magnification. And more preferably 2 to 5 parts by weight.
  • optional components (D) and (E), optional components (A) to (C), a vulcanizing agent, A sulfur accelerator, a vulcanization aid, an antioxidant, a process oil, and the like can be appropriately contained as needed.
  • vulcanizing agent examples include sulfur (powder sulfur, precipitated sulfur, insoluble sulfur), and sulfur-containing compounds such as alkylphenol disulfide. These may be used alone or in combination of two or more.
  • the content of the vulcanizing agent is preferably in the range of 0.1 to 10 parts by weight, particularly preferably 0.3 to 5 parts by weight, based on 100 parts by weight of the diene rubber (A). That is, when the content of the vulcanizing agent is too small, the crosslinking reactivity tends to be deteriorated. On the contrary, when the content of the vulcanizing agent is too large, the rubber properties (rupture strength, elongation at break) decrease. This is because there is a tendency to do so.
  • vulcanization accelerator examples include thiuram-based, sulfenamide-based, guanidine-based, thiazole-based, aldehyde-ammonia-based, aldehydeamine-based, and thiourea-based vulcanization accelerators. These may be used alone or in combination of two or more. Among these, a combination of a thiuram-based vulcanization accelerator and at least one vulcanization accelerator selected from a sulfenamide-based, guanidine-based, and thiazole-based one, because of its excellent compression set. Is preferred.
  • the content of the vulcanization accelerator is preferably 0.1 to 10 parts by weight, particularly preferably 0.3 to 5 parts by weight, based on 100 parts by weight of the diene rubber (A). is there.
  • thiuram-based vulcanization accelerator examples include, for example, tetramethylthiuram disulfide (TMTD), tetraethylthiuram disulfide (TETD), tetrabutylthiuram disulfide (TBTD), tetrakis (2-ethylhexyl) thiuram disulfide (TOT), tetrabenzylthiuram Disulfide (TBzTD) and the like.
  • TMTD tetramethylthiuram disulfide
  • TETD tetraethylthiuram disulfide
  • TBTD tetrabutylthiuram disulfide
  • TOT tetrakis (2-ethylhexyl) thiuram disulfide
  • TBzTD tetrabenzylthiuram Disulfide
  • sulfenamide vulcanization accelerator examples include N-oxydiethylene-2-benzothiazolylsulfenamide (NOBS), N-cyclohexyl-2-benzothiazolylsulfenamide (CBS), Nt -Butyl-2-benzothiazolesulfenamide (BBS), N, N'-dicyclohexyl-2-benzothiazolesulfenamide and the like. These may be used alone or in combination of two or more.
  • guanidine-based vulcanization accelerator examples include N, N'-diphenylthiourea, trimethylthiourea, N, N'-diethylthiourea, N, N'-dibutylthiourea and the like. These may be used alone or in combination of two or more.
  • thiazole vulcanization accelerator examples include dibenzothiazyl disulfide (MBTS), 2-mercaptobenzothiazole (MBT), 2-mercaptobenzothiazole sodium salt (NaMBT), and 2-mercaptobenzothiazole zinc salt (ZnMBT). And the like. These may be used alone or in combination of two or more. Among these, dibenzothiazyl disulfide (MBTS) and 2-mercaptobenzothiazole (MBT) are preferably used because they are particularly excellent in crosslinking reactivity.
  • vulcanization aid examples include zinc oxide (ZnO), stearic acid, and magnesium oxide. These may be used alone or in combination of two or more.
  • the content of the vulcanization aid is preferably in the range of 0.1 to 10 parts by weight, particularly preferably in the range of 0.3 to 7 parts by weight, based on 100 parts by weight of the diene rubber (A). is there.
  • antioxidants examples include, for example, carbamate antioxidants, phenylenediamine antioxidants, phenolic antioxidants, diphenylamine antioxidants, quinoline antioxidants, imidazole antioxidants, waxes and the like. can give. These may be used alone or in combination of two or more.
  • the content of the antioxidant is preferably 0.5 to 15 parts by weight, particularly preferably 1 to 10 parts by weight, based on 100 parts by weight of the diene rubber (A).
  • process oil examples include naphthenic oil, paraffin oil, aroma oil and the like. These may be used alone or in combination of two or more.
  • the content of the process oil is preferably in the range of 1 to 35 parts by weight, particularly preferably in the range of 3 to 30 parts by weight, based on 100 parts by weight of the diene rubber (A).
  • the anti-vibration rubber composition of the present invention uses the essential components (A) to (C) and, if necessary, the other materials listed above, and kneads them using a kneader, a Banbury mixer, an open mixer. It can be prepared by kneading using a kneader such as a roll or a twin screw stirrer. Since the silane coupling agent (D) has a property of more easily interacting with the silica (B) than the specific compound (C), the silane coupling agent (D) is used as a material for the vibration damping rubber composition.
  • the diene rubber (A), the silica (B), and the specific compound (C) are mixed in advance, and then the silane coupling agent (D) is added and mixed.
  • Etc. can be made better, and high durability, suppression of increase in loss factor, and reduction in dynamic magnification can be achieved at a higher level.
  • the thus obtained anti-vibration rubber composition of the present invention is vulcanized at a high temperature (150 to 170 ° C.) for 5 to 30 minutes to form an anti-vibration rubber member (vulcanized product).
  • the vibration-proof rubber member made of the vulcanized product of the vibration-proof rubber composition of the present invention is preferably used as a vibration-proof material such as an engine mount, a stabilizer bush, or a suspension bush used for a vehicle such as a gasoline automobile.
  • the BET specific surface area of carbon black and silica was measured by a BET specific surface area measuring device (manufactured by Micro Data, 4232-II) according to the method described above.
  • Examples 1 to 10, Comparative Example 1 Each of the above-mentioned materials was blended and kneaded at a ratio shown in Table 1 below to prepare a vibration-proof rubber composition.
  • materials other than the vulcanizing agent and the vulcanization accelerator excluding the silane coupling agent
  • a Banbury mixer at 140 ° C. for 5 minutes
  • An accelerator was blended (for those using a silane coupling agent, a silane coupling agent was also blended), and kneading was performed at 60 ° C. for 5 minutes using an open roll.
  • Each anti-vibration rubber composition was press-molded (vulcanized) under the conditions of 160 ° C. ⁇ 30 minutes to produce a rubber sheet having a thickness of 2 mm.
  • a JIS No. 3 dumbbell was punched out of the rubber sheet, and a dumbbell fatigue test (elongation test) was performed using the dumbbell according to JIS K6260. Then, the number of times of elongation at the time of breaking (the number of times of breaking) was measured.
  • Table 1 the measured value of the number of times of break in each example when the measured value of the number of times of break in Comparative Example 1 was set to 100 is shown as an index.
  • the vulcanized product of the vibration-proof rubber composition of the example has a smaller value of tan ⁇ and the dynamic magnification (Kd100 / Ks) than the vulcanized product of the vibration-proof rubber composition of Comparative Example 1. It can be seen that the number of fractures is high and the durability is high.
  • the anti-vibration rubber composition of the present invention is preferably used as an anti-vibration material for an engine mount, a stabilizer bush, a suspension bush, or the like used in a vehicle such as a gasoline automobile.
  • a vibration damper for a hard disk of a computer It can also be used as a vibration damper for general home appliances such as washing machines, a vibration damping wall for buildings in the construction and housing fields, a vibration damping device such as a vibration damping damper, and a seismic isolation device. it can.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

下記の(A)成分とともに、下記の(B)成分および(C)成分を含有する防振ゴム組成物により、課題を解決する。これにより、高耐久性、ロスファクター上昇の抑制、低動倍率化を、高いレベルで両立することができる。 (A)天然ゴムを主成分とするジエン系ゴム。 (B)シリカ。 (C)下記の(C1)および(C2)の少なくとも一方。 (C1)NH2基およびSSO3H基を有し、分子量が143~241である化合物。 (C2)NH2基およびエン構造を有し、分子量が228~480である化合物。

Description

防振ゴム組成物およびその製造方法、ならびに防振ゴム部材
 本発明は、自動車,電車等の車両等における防振用途に用いられる防振ゴム組成物およびその製造方法、ならびに防振ゴム部材に関するものである。
 防振ゴムの技術分野においては、高耐久性、損失係数tanδ(ロスファクター)上昇の抑制、低動倍率化(動倍率〔動的ばね定数(Kd)/静的ばね定数(Ks)〕の値を小さくすること)が要求される。これらの要求を実現する制御因子として、一般に、防振ゴム組成物中に配合されるフィラーの、含有量、粒子径、分散性、ポリマーとの相互作用等が、大きく寄与すると言われている。
 上記フィラーとしては、補強材としての性能が高いことから、通常、カーボンブラックやシリカ等が用いられる(例えば、特許文献1~3参照)。
特開2018-95810号公報 特開2017-119873号公報 特開2016-124880号公報
 しかしながら、防振ゴムの技術分野においては、特に、上記フィラーによって防振ゴムの高耐久性と低動倍率化とを両立させることが難しいと言われており、これらの特性を高いレベルで両立させることが従来から検討されている。
 通常、防振ゴムの高耐久性を実現するためには、補強材であるフィラーとして細かなもの、すなわち、粒子径が小さなものを用いる必要がある。
 しかしながら、フィラーの粒子径が小さいと、フィラーの表面積が増えることから、フィラー同士の摩擦や、フィラーとポリマーとの間の摩擦が増え、その結果、防振ゴムの動倍率が上昇する。また、フィラーの粒子径が小さいと、フィラーの分散性が悪くなり、フィラー凝集塊が生じやすくなることから、この凝集塊がロスファクターを上昇させ、防振ゴムの動倍率の上昇につながるといった問題もある。
 逆に、フィラーの粒子径が大きいと、防振ゴムにおけるロスファクター上昇の抑制や低動倍率化を図ることができるが、フィラーの粒子径が大きいとゴム破壊の起点になりやすく、その結果、防振ゴムの耐久性の悪化につながるといった問題が生じる。
 本発明は、このような事情に鑑みなされたもので、高耐久性、ロスファクター上昇の抑制、低動倍率化を、高いレベルで両立することが可能な防振ゴム組成物およびその製造方法、ならびに防振ゴム部材を提供する。
 本発明は、以下の[1]~[13]を、その要旨とする。
[1]下記の(A)成分とともに、下記の(B)成分および(C)成分を含有することを特徴とする防振ゴム組成物。
(A)天然ゴムを主成分とするジエン系ゴム。
(B)シリカ。
(C)下記の(C1)および(C2)の少なくとも一方。
 (C1)NH2基およびSSO3H基を有し、分子量が143~241である化合物。
 (C2)NH2基およびエン構造を有し、分子量が228~480である化合物。
[2]上記(A)成分100重量部に対する上記(C)成分の含有量が0.01~10重量部の範囲である、[1]に記載の防振ゴム組成物。
[3]上記シリカ(B)のBET比表面積が30~320m2/gの範囲である、[1]または[2]に記載の防振ゴム組成物。
[4]上記(A)成分100重量部に対する上記(B)成分の含有量が5~100重量部の範囲である、[1]~[3]のいずれかに記載の防振ゴム組成物。
[5]上記(C)成分が、下記の化学式(1)で表されるチオ硫酸S-(3-アミノプロピル)および下記の化学式(2)で表される(2Z)-4-[(4-アミノフェニル)アミノ]-4-オキソ-2-ブテン酸ナトリウムの少なくとも一方である、[1]~[4]のいずれかに記載の防振ゴム組成物。
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000004
[6]更にシランカップリング剤(D)を含有する、[1]~[5]のいずれかに記載の防振ゴム組成物。
[7]上記(D)成分が、メルカプト系シランカップリング剤およびスルフィド系シランカップリング剤の少なくとも一方である、[6]記載の防振ゴム組成物。
[8]上記(A)成分100重量部に対する上記(D)成分の含有量が0.5~20重量部の範囲である、[6]または[7]に記載の防振ゴム組成物。
[9]更にカーボンブラック(E)を含有する、[1]~[8]のいずれかに記載の防振ゴム組成物。
[10]上記(E)成分が、BET比表面積5~200m2/gのカーボンブラックである、[9]に記載の防振ゴム組成物。
[11]上記(A)成分100重量部に対する上記(E)成分の含有量が1~10重量部の範囲である、[9]または[10]に記載の防振ゴム組成物。
[12]上記[6]~[11]のいずれかに記載の防振ゴム組成物の製造方法であって、上記防振ゴム組成物の材料である上記(A)~(D)成分のうち、(A)~(C)成分を予め混合した後、(D)成分を添加して混合する工程を備えていることを特徴とする防振ゴム組成物の製造方法。
[13]上記[1]~[11]のいずれかに記載の防振ゴム組成物の加硫体からなることを特徴とする防振ゴム部材。
 すなわち、本発明者らは、前記課題を解決するため鋭意研究を重ねた。その研究の過程で、防振ゴム組成物のポリマーである、天然ゴムを主成分とするジエン系ゴムに対し、フィラーとしてシリカを採用し、これにより、高耐久性、ロスファクター上昇の抑制、低動倍率化を、高いレベルで両立させることを検討した。そして、鋭意研究を重ねた結果、更に前記(C1)や(C2)に示す化合物を防振ゴム組成物中に加えることにより、高耐久性、ロスファクター上昇の抑制、低動倍率化を、高いレベルで両立させることができることを突き止めた。
 このような結果が得られた理由は明らかではないが、つぎのように考えられる。すなわち、前記(C1)や(C2)に示す化合物は、添加剤としては比較的分子量が大きく、さらに、そのSSO3H基やエン構造(-C=C-)が、ジエン系ゴム(A)のエン構造部分に反応して相互作用することから、天然ゴムを主成分とするジエン系ゴムポリマーとの親和性が期待できる。また、上記化合物のNH2基が、シリカの水酸基と相互作用して、凝集しているシリカを解す役目を果たし、シリカの分散性等が向上する。これらの作用の結果、防振ゴムの高耐久性、ロスファクター上昇の抑制を維持しつつ、低動倍率を実現することができたものと考えられる。
 このように、本発明の防振ゴム組成物は、天然ゴムを主成分とするジエン系ゴム(A)、シリカ(B)とともに、前記(C1)および(C2)の少なくとも一方(C)を含有する。そのため、高耐久性、ロスファクター上昇の抑制、低動倍率化を、高いレベルで両立させることができる。
 つぎに、本発明の実施の形態について詳しく説明する。ただし、本発明は、この実施の形態に限られるものではない。
 本発明の防振ゴム組成物は、先に述べたように、下記の(A)成分とともに、下記の(B)成分および(C)成分を含有する。
(A)天然ゴムを主成分とするジエン系ゴム。
(B)シリカ。
(C)下記の(C1)および(C2)の少なくとも一方。
 (C1)NH2基およびSSO3H基を有し、分子量が143~241である化合物。
 (C2)NH2基およびエン構造を有し、分子量が228~480である化合物。
 以下、本発明の防振ゴム組成物の構成材料について詳しく説明する。
〔ジエン系ゴム(A)〕
 上記のように、ジエン系ゴム(A)としては、天然ゴムを主成分とするジエン系ゴムが用いられる。ここで、「主成分」とは、ジエン系ゴム(A)の50重量%以上が天然ゴムであるものを示し、ジエン系ゴム(A)が天然ゴムのみからなるものも含める趣旨である。このように、天然ゴムを主成分とすることにより、強度や低動倍率化の点で優れるようになる。
 なお、必要に応じ上記天然ゴムと併用して用いられるジエン系ゴムとしては、例えば、ブタジエンゴム(BR)、スチレン-ブタジエンゴム(SBR)、クロロプレンゴム(CR)、イソプレンゴム(IR)、アクリロニトリル-ブタジエンゴム(NBR)、エチレン-プロピレン-ジエンゴム(EPDM)、ブチルゴム(IIR)、クロロプレンゴム(CR)等があげられる。これらは単独でもしくは二種以上併せて用いられる。
〔シリカ(B)〕
 つぎに、上記シリカ(B)としては、例えば、湿式シリカ、乾式シリカ、コロイダルシリカ等が用いられる。そして、これらは単独でもしくは二種以上併せて用いられる。
 そして、より一層、高耐久性、ロスファクター上昇の抑制、低動倍率化を両立させる観点から、上記シリカ(B)のBET比表面積は、30~320m2/gであることが好ましく、より好ましくは50~230m2/gである。
 なお、上記シリカ(B)のBET比表面積は、例えば、試料を200℃で15分間脱気した後、吸着気体として混合ガス(N2:70%、He:30%)を用いて、BET比表面積測定装置(マイクロデータ社製、4232-II)により測定することができる。
 また、より一層、高耐久性、ロスファクター上昇の抑制、低動倍率化を両立させる観点から、上記シリカ(B)の含有量は、ジエン系ゴム(A)100重量部に対し、5~100重量部であることが好ましく、より好ましくは20~60重量部である。
〔特定の化合物(C)〕
 先に述べたように、上記特定の化合物(C)としては、下記の(C1)および(C2)の少なくとも一方が用いられる。すなわち、(C1)および(C2)に属する化合物は、単独でもしくは二種以上併せて用いられる。
(C1)NH2基およびSSO3H基を有し、分子量が143~241である化合物。
(C2)NH2基およびエン構造を有し、分子量が228~480である化合物。
 上記(C2)における「エン構造」とは、炭素-炭素二重結合部位(-C=C-)のことであり、この炭素-炭素二重結合部位は、(C2)に示す化合物の分子鎖末端にあっても分子鎖内部にあってもよい。
 また、上記のように、(C1)に示す化合物の分子量は143~241の範囲であり、好ましくは157~185の範囲である。また、上記のように、(C2)に示す化合物の分子量は228~480の範囲であり、好ましくは228~312の範囲である。すなわち、このような範囲であると、ジエン系ゴム(A)との親和性等により優れるようになるからである。なお、上記分子量は、上記化合物の分子構造から算出した計算値ないしカタログ値である。
 そして、上記に示すような、本発明で使用される特定の化合物(C)のなかでも、特に、下記の化学式(1)で表されるチオ硫酸S-(3-アミノプロピル)や、下記の化学式(2)で表される(2Z)-4-[(4-アミノフェニル)アミノ]-4-オキソ-2-ブテン酸ナトリウムが、より一層、高耐久性、ロスファクター上昇の抑制、低動倍率化を両立させる観点から好ましい。
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000006
 これら特定の化合物(C)の含有量は、より一層、高耐久性、ロスファクター上昇の抑制、低動倍率化を両立させる観点から、ジエン系ゴム(A)100重量部に対し、0.01~10重量部であることが好ましく、より好ましくは0.1~5重量部である。
 ここで、本発明の防振ゴム組成物は、前記(A)~(C)成分を必須成分とするものであるが、必要に応じ、以下に示す各成分も含有される。
〔シランカップリング剤(D)〕
 前記(A)~(C)成分に加え、シランカップリング剤(D)を含有すると、シリカ(B)とジエン系ゴム(A)がシランカップリング剤(D)を介して結合し、より防振ゴムの耐久性を向上させることができるようになるため、好ましい。
 上記シランカップリング剤(D)としては、例えば、メルカプト系シランカップリング剤、スルフィド系シランカップリング剤、アミン系シランカップリング剤、エポキシ系シランカップリング剤、ビニル系シランカップリング剤等が、単独でもしくは二種以上併せて用いられる。なかでも、上記シランカップリング剤(D)が、メルカプト系シランカップリング剤やスルフィド系シランカップリング剤であると、架橋密度が上がり、低動倍率、耐久性に特に効果があるため、好ましい。
 上記メルカプト系シランカップリング剤としては、例えば、3-メルカプトプロピルトリメトキシシラン、3-メルカプトプロピルトリエトキシシラン等があげられる。これらは単独でもしくは二種以上併せて用いられる。
 上記スルフィド系シランカップリング剤としては、例えば、ビス-(3-(トリエトキシシリル)-プロピル)-ジスルフィド、ビス(3-トリエトキシシリルプロピル)トリスルフィド、ビス-(3-(トリエトキシシリル)-プロピル)-テトラスルフィド、ビス(3-トリメトキシシリルプロピル)ジスルフィド、ビス(2-トリエトキシシリルエチル)テトラスルフィド、ビス(2-トリメトキシシリルエチル)テトラスルフィド、ビス(3-トリエトキシシリルプロピル)ジスルフィド、3-トリメトキシシリルプロピル-N,N-ジメチルチオカルバモイルテトラスルフィド、3-トリエトキシシリルプロピル-N,N-ジメチルチオカルバモイルテトラスルフィド、2-トリエトキシシリルエチル-N,N-ジメチルチオカルバモイルテトラスルフィド、2-トリメトキシシリルエチル-N,N-ジメチルチオカルバモイルテトラスルフィド、3-トリメトキシシリルプロピルベンゾチアゾリルテトラスルフィド、3-トリエトキシシリルプロピルベンゾチアゾールテトラスルフィド、3-トリエトキシシリルプロピルメタクリレートモノスルフィド、3-トリメトキシシリルプロピルメタクリレートモノスルフィド等があげられる。これらは単独でもしくは二種以上併せて用いられる。
 上記アミン系シランカップリング剤としては、例えば、3-アミノプロピルトリエトキシシラン、3-アミノプロピルトリメトキシシラン、N-(2-アミノエチル)-3-アミノプロピルトリメトキシシラン、N-(2-アミノエチル)-3-アミノプロピルメチルジメトキシシラン、3-(N-フェニル)アミノプロピルトリメトキシシラン等があげられる。これらは単独でもしくは二種以上併せて用いられる。
 上記エポキシ系シランカップリング剤としては、例えば、2-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン、3-グリシドキシプロピルトリメトキシシラン、3-グリシドキシプロピルメチルジエトキシシラン、3-グリシドキシプロピルトリエトキシシラン、3-グリシドキシプロピルメチルジメトキシシラン等があげられる。これらは単独でもしくは二種以上併せて用いられる。
 上記ビニル系シランカップリング剤としては、例えば、ビニルトリエトキシシラン、ビニルトリメトキシシラン、ビニル・トリス(β-メトキシエトキシ)シラン、ビニルジメチルクロロシラン、ビニルトリクロロシラン、ビニルトリイソプロポキシシラン、ビニル・トリス(2-メトキシエトキシ)シラン等があげられる。これらは単独でもしくは二種以上併せて用いられる。
 これらのシランカップリング剤(D)の含有量は、低動倍率、耐久性等に優れることから、前記ジエン系ゴム(A)100重量部に対し、0.5~20重量部であることが好ましく、より好ましくは1~10重量部である。
〔カーボンブラック(E)〕
 前記(A)~(C)成分に加え、カーボンブラック(E)を含有すると、紫外線劣化を防止することができるようになるため、好ましい。
 上記カーボンブラック(E)としては、例えば、SAF級,ISAF級,HAF級,MAF級,FEF級,GPF級,SRF級,FT級,MT級等の種々のグレードのカーボンブラックが用いられる。これらは単独でもしくは二種以上併せて用いられる。
 そして、耐久性と低動倍率化の観点から、上記カーボンブラック(E)は、BET比表面積5~200m2/gのカーボンブラックであることが好ましい。より好ましくはBET比表面積20~110m2/gのカーボンブラックである。
 なお、上記カーボンブラック(E)のBET比表面積は、例えば、試料を200℃で15分間脱気した後、吸着気体として混合ガス(N2:70%、He:30%)を用いて、BET比表面積測定装置(マイクロデータ社製、4232-II)により測定することができる。
 これらのカーボンブラック(E)の含有量は、より一層、耐久性と低動倍率を両立させる観点から、前記ジエン系ゴム(A)100重量部に対し、1~10重量部の範囲であることが好ましく、より好ましくは2~5重量部である。
 なお、本発明の防振ゴム組成物においては、必須成分である前記(A)~(C)成分とともに、任意成分である上記(D)および(E)成分、さらには、加硫剤、加硫促進剤、加硫助剤、老化防止剤、プロセスオイル等を、必要に応じて適宜に含有させることも可能である。
 上記加硫剤としては、例えば、硫黄(粉末硫黄,沈降硫黄,不溶性硫黄)、アルキルフェノールジスルフィド等の硫黄含有化合物等があげられる。これらは単独であるいは二種以上併せて用いられる。
 上記加硫剤の含有量は、前記ジエン系ゴム(A)100重量部に対し、0.1~10重量部の範囲が好ましく、特に好ましくは0.3~5重量部の範囲である。すなわち、上記加硫剤の含有量が少なすぎると、架橋反応性が悪くなる傾向がみられ、逆に上記加硫剤の含有量が多すぎると、ゴム物性(破断強度,破断伸び)が低下する傾向がみられるからである。
 上記加硫促進剤としては、例えば、チウラム系,スルフェンアミド系,グアニジン系,チアゾール系,アルデヒドアンモニア系,アルデヒドアミン系,チオウレア系等の加硫促進剤があげられる。これらは単独であるいは二種以上併せて用いられる。これらのなかでも、圧縮永久歪みに優れるようになることから、チウラム系加硫促進剤と、スルフェンアミド系,グアニジン系,チアゾール系から選択される少なくとも一つの加硫促進剤とを組み合わせたものが好ましい。
 また、上記加硫促進剤の含有量は、前記ジエン系ゴム(A)100重量部に対し、0.1~10重量部の範囲が好ましく、特に好ましくは0.3~5重量部の範囲である。
 上記チウラム系加硫促進剤としては、例えば、テトラメチルチウラムジスルフィド(TMTD)、テトラエチルチウラムジスルフィド(TETD)、テトラブチルチウラムジスルフィド(TBTD)、テトラキス(2-エチルヘキシル)チウラムジスルフィド(TOT)、テトラベンジルチウラムジスルフィド(TBzTD)等があげられる。
 上記スルフェンアミド系加硫促進剤としては、例えば、N-オキシジエチレン-2-ベンゾチアゾリルスルフェンアミド(NOBS)、N-シクロヘキシル-2-ベンゾチアゾリルスルフェンアミド(CBS)、N-t-ブチル-2-ベンゾチアゾールスルフェンアミド(BBS)、N,N'-ジシクロヘキシル-2-ベンゾチアゾールスルフェンアミド等があげられる。これらは単独でもしくは二種以上併せて用いられる。
 上記グアニジン系加硫促進剤としては、例えば、N,N'-ジフェニルチオ尿素、トリメチルチオ尿素、N,N'-ジエチルチオ尿素、N,N'-ジブチルチオ尿素等があげられる。これらは単独でもしくは二種以上併せて用いられる。
 上記チアゾール系加硫促進剤としては、例えば、ジベンゾチアジルジスルフィド(MBTS)、2-メルカプトベンゾチアゾール(MBT)、2-メルカプトベンゾチアゾールナトリウム塩(NaMBT)、2-メルカプトベンゾチアゾール亜鉛塩(ZnMBT)等があげられる。これらは単独でもしくは二種以上併せて用いられる。これらのなかでも、特に架橋反応性に優れる点で、ジベンゾチアジルジスルフィド(MBTS)、2-メルカプトベンゾチアゾール(MBT)が好適に用いられる。
 上記加硫助剤としては、例えば、酸化亜鉛(ZnO)、ステアリン酸、酸化マグネシウム等があげられる。これらは単独でもしくは2種以上併せて用いられる。
 また、上記加硫助剤の含有量は、上記ジエン系ゴム(A)100重量部に対し、0.1~10重量部の範囲が好ましく、特に好ましくは0.3~7重量部の範囲である。
 上記老化防止剤としては、例えば、カルバメート系老化防止剤、フェニレンジアミン系老化防止剤、フェノール系老化防止剤、ジフェニルアミン系老化防止剤、キノリン系老化防止剤、イミダゾール系老化防止剤、ワックス類等があげられる。これらは単独でもしくは2種以上併せて用いられる。
 また、上記老化防止剤の含有量は、上記ジエン系ゴム(A)100重量部に対し、0.5~15重量部の範囲が好ましく、特に好ましくは1~10重量部の範囲である。
 上記プロセスオイルとしては、例えば、ナフテン系オイル、パラフィン系オイル、アロマ系オイル等があげられる。これらは単独でもしくは2種以上併せて用いられる。
 また、上記プロセスオイルの含有量は、上記ジエン系ゴム(A)100重量部に対し、1~35重量部の範囲が好ましく、特に好ましくは3~30重量部の範囲である。
〔防振ゴム組成物の調製方法〕
 ここで、本発明の防振ゴム組成物は、その必須成分である(A)~(C)成分、および必要に応じて上記列記したその他の材料を用いて、これらをニーダー,バンバリーミキサー,オープンロール,二軸スクリュー式撹拌機等の混練機を用いて混練することにより、調製することができる。
 なお、前記特定の化合物(C)よりもシランカップリング剤(D)のほうがシリカ(B)と相互作用しやすい性質があるため、防振ゴム組成物の材料にシランカップリング剤(D)を用いる場合、先に、ジエン系ゴム(A)、シリカ(B)、前記特定の化合物(C)を予め混合した後、シランカップリング剤(D)を添加して混合したほうが、シリカ(B)の分散等がより良好になされ、高耐久性、ロスファクター上昇の抑制、低動倍率化を、より高いレベルで両立させることができる。
 このようにして得られた本発明の防振ゴム組成物は、高温(150~170℃)で5~30分間、加硫することにより防振ゴム部材(加硫体)となる。そして、本発明の防振ゴム組成物の加硫体からなる防振ゴム部材は、ガソリン自動車の車両等に用いられるエンジンマウント、スタビライザブッシュ、サスペンションブッシュ等の防振材料として好ましく用いられるが、それ以外にも、コンピューターのハードディスクの制振ダンパー、洗濯機等の一般家電製品の制振ダンパー、建築・住宅分野における建築用制震壁,制震(制振)ダンパー等の制震(制振)装置および免震装置の用途にも用いることができる。
 つぎに、実施例について比較例と併せて説明する。ただし、本発明は、これら実施例に限定されるものではない。
 まず、実施例および比較例に先立ち、下記に示す材料を準備した。なお、カーボンブラックおよびシリカのBET比表面積は、前記手法によりBET比表面積測定装置(マイクロデータ社製、4232-II)により測定されたものである。
〔天然ゴム(NR)〕
 RSS#3
〔酸化亜鉛〕
 堺化学工業社製、酸化亜鉛二種
〔ステアリン酸〕
 花王社製、ルーナックS30
〔老化防止剤〕
 精工化学社製、オゾノン6C
〔シリカ(i)〕
 東ソーシリカ社製、ニプシールVN3(BET比表面積180~230m2/g)
〔シリカ(ii)〕
 東ソーシリカ社製、ニプシールER(BET比表面積70~120m2/g)
〔シリカ(iii)〕
 東ソーシリカ社製、ニプシールEL(BET比表面積50m2/g)
〔カーボンブラック〕
 キャボット社製、ショウブラックN330(BET比表面積75m2/g、)
〔シランカップリング剤〕
 スルフィド系シランカップリング剤(EVONIK社製、Si-69)
〔化合物(i)〕
 前記化学式(1)に示す化合物(住友化学社製、SUMILINK100)
〔化合物(ii)〕
 前記化学式(2)に示す化合物(住友化学社製、SUMILINK200)
〔加硫促進剤〕
 スルフェンアミド系加硫促進剤(三新化学社製、サンセラーCZ)
〔硫黄(加硫剤)〕
 軽井沢製錬所社製
[実施例1~10、比較例1]
 上記各材料を、後記の表1に示す割合で配合して混練することにより、防振ゴム組成物を調製した。なお、上記混練は、まず、加硫剤と加硫促進剤以外の材料(シランカップリング剤を除く)を、バンバリーミキサーを用いて140℃で5分間混練し、ついで、加硫剤と加硫促進剤を配合(シランカップリング剤を使用するものは、シランカップリング剤も配合)し、オープンロールを用いて60℃で5分間混練することにより行った。
 このようにして得られた実施例および比較例の防振ゴム組成物を用い、下記の基準に従って、各特性の評価を行った。その結果を、後記の表1に併せて示した。
<減衰性>
 各防振ゴム組成物を、160℃×30分の条件でプレス成形(加硫)し、テストピースを作製した。つぎに、JIS K 6385に準じて、周波数15Hzでの損失係数(tanδ)を求めた。
 後記の表1には、比較例1におけるtanδの測定値を100としたときの、各実施例におけるtanδの測定値を指数換算したものを表記した。
 そして、そのtanδの値が、比較例1のtanδの値を下回るものを「○」と評価し、比較例1のtanδの値を上回るものを「×」と評価した。
<動倍率>
 各防振ゴム組成物を、160℃×30分の条件でプレス成形(加硫)し、テストピースを作製した。このテストピースの動ばね定数(Kd100)および静ばね定数(Ks)を、それぞれJIS K 6394に準じて測定した。その値をもとに、動倍率(Kd100/Ks)を算出した。
 後記の表1には、比較例1における動倍率(Kd100/Ks)の測定値を100としたときの、各実施例における動倍率の測定値を指数換算したものを表記した。
 そして、その動倍率の値が、比較例1の動倍率の値を下回るものを「○」と評価し、比較例1の動倍率の値を上回るものを「×」と評価した。
<耐久性>
 各防振ゴム組成物を、160℃×30分の条件でプレス成形(加硫)し、厚み2mmのゴムシートを作製した。そして、このゴムシートから、JIS3号ダンベルを打ち抜き、このダンベルを用い、JIS K 6260に準じてダンベル疲労試験(伸張試験)を行った。そして、その破断時の伸張回数(破断時回数)を測定した。
 後記の表1には、比較例1における破断時回数の測定値を100としたときの、各実施例における破断時回数の測定値を指数換算したものを表記した。
 そして、その破断時回数の値が、比較例1の破断時回数の値を上回るものを「○」と評価し、比較例1の破断時回数の値を下回るものを「×」と評価した。
Figure JPOXMLDOC01-appb-T000007
 上記表1の結果から、実施例の防振ゴム組成物の加硫体は、比較例1の防振ゴム組成物の加硫体に比べ、tanδの値が小さく、動倍率(Kd100/Ks)が低く、しかも、破断時回数が多く高耐久性を示していることがわかる。
 なお、上記実施例においては、本発明における具体的な形態について示したが、上記実施例は単なる例示にすぎず、限定的に解釈されるものではない。当業者に明らかな様々な変形は、本発明の範囲内であることが企図されている。
 本発明の防振ゴム組成物は、ガソリン自動車の車両等に用いられるエンジンマウント、スタビライザブッシュ、サスペンションブッシュ等の防振材料として好ましく用いられるが、それ以外にも、コンピューターのハードディスクの制振ダンパー、洗濯機等の一般家電製品の制振ダンパー、建築・住宅分野における建築用制震壁,制震(制振)ダンパー等の制震(制振)装置および免震装置の用途にも用いることができる。

Claims (13)

  1.  下記の(A)成分とともに、下記の(B)成分および(C)成分を含有することを特徴とする防振ゴム組成物。
    (A)天然ゴムを主成分とするジエン系ゴム。
    (B)シリカ。
    (C)下記の(C1)および(C2)の少なくとも一方。
     (C1)NH2基およびSSO3H基を有し、分子量が143~241である化合物。
     (C2)NH2基およびエン構造を有し、分子量が228~480である化合物。
  2.  上記(A)成分100重量部に対する上記(C)成分の含有量が0.01~10重量部の範囲である、請求項1記載の防振ゴム組成物。
  3.  上記シリカ(B)のBET比表面積が30~320m2/gの範囲である、請求項1または2記載の防振ゴム組成物。
  4.  上記(A)成分100重量部に対する上記(B)成分の含有量が5~100重量部の範囲である、請求項1~3のいずれか一項に記載の防振ゴム組成物。
  5.  上記(C)成分が、下記の化学式(1)で表されるチオ硫酸S-(3-アミノプロピル)および下記の化学式(2)で表される(2Z)-4-[(4-アミノフェニル)アミノ]-4-オキソ-2-ブテン酸ナトリウムの少なくとも一方である、請求項1~4のいずれか一項に記載の防振ゴム組成物。
    Figure JPOXMLDOC01-appb-C000001
    Figure JPOXMLDOC01-appb-C000002
  6.  更にシランカップリング剤(D)を含有する、請求項1~5のいずれか一項に記載の防振ゴム組成物。
  7.  上記(D)成分が、メルカプト系シランカップリング剤およびスルフィド系シランカップリング剤の少なくとも一方である、請求項6記載の防振ゴム組成物。
  8.  上記(A)成分100重量部に対する上記(D)成分の含有量が0.5~20重量部の範囲である、請求項6または7記載の防振ゴム組成物。
  9.  更にカーボンブラック(E)を含有する、請求項1~8のいずれか一項に記載の防振ゴム組成物。
  10.  上記(E)成分が、BET比表面積5~200m2/gのカーボンブラックである、請求項9記載の防振ゴム組成物。
  11.  上記(A)成分100重量部に対する上記(E)成分の含有量が1~10重量部の範囲である、請求項9または10記載の防振ゴム組成物。
  12.  請求項6~11のいずれか一項に記載の防振ゴム組成物の製造方法であって、上記防振ゴム組成物の材料である上記(A)~(D)成分のうち、(A)~(C)成分を予め混合した後、(D)成分を添加して混合する工程を備えていることを特徴とする防振ゴム組成物の製造方法。
  13.  請求項1~11のいずれか一項に記載の防振ゴム組成物の加硫体からなることを特徴とする防振ゴム部材。
PCT/JP2019/025604 2018-07-31 2019-06-27 防振ゴム組成物およびその製造方法、ならびに防振ゴム部材 WO2020026657A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020534113A JP7285258B2 (ja) 2018-07-31 2019-06-27 防振ゴム組成物およびその製造方法、ならびに防振ゴム部材

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018143729 2018-07-31
JP2018-143729 2018-07-31

Publications (1)

Publication Number Publication Date
WO2020026657A1 true WO2020026657A1 (ja) 2020-02-06

Family

ID=69230959

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/025604 WO2020026657A1 (ja) 2018-07-31 2019-06-27 防振ゴム組成物およびその製造方法、ならびに防振ゴム部材

Country Status (2)

Country Link
JP (1) JP7285258B2 (ja)
WO (1) WO2020026657A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020075945A (ja) * 2018-11-05 2020-05-21 Toyo Tire株式会社 防振ゴム用ゴム組成物および防振ゴムならびに防振ゴム用ゴム組成物の製造方法
JP2020075944A (ja) * 2018-11-05 2020-05-21 Toyo Tire株式会社 防振ゴム用ゴム組成物および防振ゴム
JP7333491B1 (ja) * 2022-03-31 2023-08-24 日本板硝子株式会社 水性処理剤、ゴム補強用部材の製造方法、ゴム補強用部材、及びゴム製品
WO2023190095A1 (ja) * 2022-03-31 2023-10-05 日本板硝子株式会社 水性処理剤、ゴム補強用部材の製造方法、ゴム補強用部材、及びゴム製品

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013159678A (ja) * 2012-02-03 2013-08-19 Sumitomo Chemical Co Ltd 加硫ゴムの製造方法
JP2013159628A (ja) * 2012-02-01 2013-08-19 Sumitomo Rubber Ind Ltd ゴム組成物の製造方法
JP2013209605A (ja) * 2011-04-26 2013-10-10 Sumitomo Chemical Co Ltd ゴム組成物
JP2014084312A (ja) * 2012-10-25 2014-05-12 Sumitomo Chemical Co Ltd 加硫ゴムの粘弾性特性を改善するための化合物及び該化合物を含んでなるゴム組成物
JP2017008182A (ja) * 2015-06-19 2017-01-12 東洋ゴム工業株式会社 防振ゴムの製造方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013015440A1 (ja) 2011-07-25 2013-01-31 住友化学株式会社 ゴム組成物
JP6910125B2 (ja) 2016-10-14 2021-07-28 Toyo Tire株式会社 タイヤ部材の製造方法
JP6779742B2 (ja) 2016-10-14 2020-11-04 Toyo Tire株式会社 ベーストレッドゴム部材、及びそれを用いた空気入りタイヤ

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013209605A (ja) * 2011-04-26 2013-10-10 Sumitomo Chemical Co Ltd ゴム組成物
JP2013159628A (ja) * 2012-02-01 2013-08-19 Sumitomo Rubber Ind Ltd ゴム組成物の製造方法
JP2013159678A (ja) * 2012-02-03 2013-08-19 Sumitomo Chemical Co Ltd 加硫ゴムの製造方法
JP2014084312A (ja) * 2012-10-25 2014-05-12 Sumitomo Chemical Co Ltd 加硫ゴムの粘弾性特性を改善するための化合物及び該化合物を含んでなるゴム組成物
JP2017008182A (ja) * 2015-06-19 2017-01-12 東洋ゴム工業株式会社 防振ゴムの製造方法

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020075945A (ja) * 2018-11-05 2020-05-21 Toyo Tire株式会社 防振ゴム用ゴム組成物および防振ゴムならびに防振ゴム用ゴム組成物の製造方法
JP2020075944A (ja) * 2018-11-05 2020-05-21 Toyo Tire株式会社 防振ゴム用ゴム組成物および防振ゴム
JP7248411B2 (ja) 2018-11-05 2023-03-29 Toyo Tire株式会社 防振ゴム用ゴム組成物および防振ゴムならびに防振ゴム用ゴム組成物の製造方法
JP7288749B2 (ja) 2018-11-05 2023-06-08 Toyo Tire株式会社 防振ゴム用ゴム組成物および防振ゴム
JP7333491B1 (ja) * 2022-03-31 2023-08-24 日本板硝子株式会社 水性処理剤、ゴム補強用部材の製造方法、ゴム補強用部材、及びゴム製品
WO2023190095A1 (ja) * 2022-03-31 2023-10-05 日本板硝子株式会社 水性処理剤、ゴム補強用部材の製造方法、ゴム補強用部材、及びゴム製品
CN117062948A (zh) * 2022-03-31 2023-11-14 日本板硝子株式会社 水性处理剂、橡胶增强用构件的制造方法、橡胶增强用构件和橡胶制品
CN117062948B (zh) * 2022-03-31 2024-06-04 日本板硝子株式会社 水性处理剂、橡胶增强用构件的制造方法、橡胶增强用构件和橡胶制品

Also Published As

Publication number Publication date
JP7285258B2 (ja) 2023-06-01
JPWO2020026657A1 (ja) 2021-08-02

Similar Documents

Publication Publication Date Title
JP7285258B2 (ja) 防振ゴム組成物およびその製造方法、ならびに防振ゴム部材
JP6657491B1 (ja) 防振ゴム組成物および防振ゴム部材
JP5376884B2 (ja) 防振ゴム組成物
JP6408905B2 (ja) 防振ゴム組成物
JP7037986B2 (ja) 電気自動車用防振ゴム組成物および電気自動車用防振ゴム部材
JP6644962B1 (ja) 防振ゴム組成物および防振ゴム部材
WO2011105266A1 (ja) 防振ゴム組成物
JP5847262B1 (ja) 防振ゴム組成物
JP5728569B2 (ja) 防振ゴム組成物およびその製法、並びにその加硫体
JP7409936B2 (ja) 防振ゴム組成物および防振ゴム部材
CN113728046B (zh) 防振橡胶组合物以及防振橡胶构件
JP2020090665A (ja) 防振ゴム用ゴム組成物および防振ゴム
JP6546570B2 (ja) 防振ゴム組成物および防振ゴム
WO2023127786A1 (ja) 防振ゴム組成物および防振ゴム部材
WO2022186025A1 (ja) 難燃性防振ゴム組成物および難燃性防振ゴム部材
WO2020202597A1 (ja) 防振ゴム組成物および防振ゴム部材
WO2023054341A1 (ja) 防振ゴム組成物および防振ゴム部材
JP2004307820A (ja) 耐熱性防振ゴム組成物
JP2024005739A (ja) 防振ゴム組成物および防振ゴム部材
WO2023127787A1 (ja) 防振ゴム組成物および防振ゴム部材
JP5830058B2 (ja) 防振ゴム組成物及び防振ゴム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19844294

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020534113

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19844294

Country of ref document: EP

Kind code of ref document: A1