WO2020009213A1 - 表面処理鋼板および表面処理鋼板の製造方法 - Google Patents

表面処理鋼板および表面処理鋼板の製造方法 Download PDF

Info

Publication number
WO2020009213A1
WO2020009213A1 PCT/JP2019/026781 JP2019026781W WO2020009213A1 WO 2020009213 A1 WO2020009213 A1 WO 2020009213A1 JP 2019026781 W JP2019026781 W JP 2019026781W WO 2020009213 A1 WO2020009213 A1 WO 2020009213A1
Authority
WO
WIPO (PCT)
Prior art keywords
steel sheet
concentration
plating layer
plating
less
Prior art date
Application number
PCT/JP2019/026781
Other languages
English (en)
French (fr)
Inventor
高橋 武寛
完 齊藤
石塚 清和
後藤 靖人
Original Assignee
日本製鉄株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本製鉄株式会社 filed Critical 日本製鉄株式会社
Priority to EP19830900.7A priority Critical patent/EP3819406A4/en
Priority to KR1020217000886A priority patent/KR102395426B1/ko
Priority to US17/254,714 priority patent/US11352682B2/en
Priority to CN201980044960.9A priority patent/CN112368425B/zh
Priority to JP2019568778A priority patent/JP6729821B2/ja
Publication of WO2020009213A1 publication Critical patent/WO2020009213A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/01Layered products comprising a layer of metal all layers being exclusively metallic
    • B32B15/013Layered products comprising a layer of metal all layers being exclusively metallic one layer being formed of an iron alloy or steel, another layer being formed of a metal other than iron or aluminium
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D17/00Constructional parts, or assemblies thereof, of cells for electrolytic coating
    • C25D17/10Electrodes, e.g. composition, counter electrode
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/02Electroplating: Baths therefor from solutions
    • C25D3/12Electroplating: Baths therefor from solutions of nickel or cobalt
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/02Electroplating: Baths therefor from solutions
    • C25D3/56Electroplating: Baths therefor from solutions of alloys
    • C25D3/562Electroplating: Baths therefor from solutions of alloys containing more than 50% by weight of iron or nickel or cobalt
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/10Electroplating with more than one layer of the same or of different metals
    • C25D5/12Electroplating with more than one layer of the same or of different metals at least one layer being of nickel or chromium
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/48After-treatment of electroplated surfaces
    • C25D5/50After-treatment of electroplated surfaces by heat-treatment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/116Primary casings; Jackets or wrappings characterised by the material
    • H01M50/117Inorganic material
    • H01M50/119Metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/116Primary casings; Jackets or wrappings characterised by the material
    • H01M50/124Primary casings; Jackets or wrappings characterised by the material having a layered structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/543Terminals
    • H01M50/545Terminals formed by the casing of the cells
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/26Methods of annealing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/74Methods of treatment in inert gas, controlled atmosphere, vacuum or pulverulent material
    • C21D1/76Adjusting the composition of the atmosphere
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/005Ferrite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/005Heat treatment of ferrous alloys containing Mn
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0236Cold rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0252Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment with application of tension
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0257Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment with diffusion of elements, e.g. decarburising, nitriding
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0273Final recrystallisation annealing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0278Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips involving a particular surface treatment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0002Aqueous electrolytes
    • H01M2300/0014Alkaline electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/661Metal or alloys, e.g. alloy coatings
    • H01M4/662Alloys

Definitions

  • the present invention relates to a surface-treated steel sheet and a method for producing the surface-treated steel sheet.
  • Priority is claimed on Japanese Patent Application No. 2018-128846 filed on July 6, 2018, the content of which is incorporated herein by reference.
  • Ni-plated steel sheets have been used as surface-treated steel sheets for battery containers.
  • Ni-plated steel sheets are used for various battery containers such as alkaline manganese dry batteries, lithium ion batteries, and nickel metal hydride battery cans because of the excellent chemical stability of Ni.
  • a method in which a steel strip before can making is continuously and continuously plated is advantageous in terms of manufacturing cost and uniformity of plating.
  • Ni-plated steel sheets are deep drawn and pressed, and a positive electrode material, a negative electrode material, an electrolytic solution and the like are filled therein, and the number of cases used for a positive electrode can or the like, which is a container that also serves as a positive electrode terminal, has increased. ing.
  • a conductive paint containing graphite is applied to the inner surface of the positive electrode can to maintain contact with the positive electrode mixture.
  • an organic solvent-based paint is used, there is a problem of environmental pollution, and when an aqueous paint is used, energy consumption for drying becomes a problem.
  • a Ni-plated steel sheet is used as a positive electrode can, it is said that oxidation of Ni occurs with time, the contact resistance increases, and the discharge characteristics decrease. But it is not always satisfactory.
  • Patent Literature 1 when a plated steel sheet in which only a Ni plating layer is subjected to Co plating is used as a container of a battery using a strongly alkaline electrolytic solution, the passage of time is lapsed.
  • Co elutes to make it difficult to maintain battery characteristics
  • the outermost layer of the plating layer is made of a Ni—Co alloy layer, and Co / Ni is analyzed by Auger electron spectroscopy on the surface of the Ni—Co alloy layer. It is appropriate to control the value in the range of 0.1 to 1.5.
  • the outermost layer portion of the plating layer is a Ni—Co alloy layer
  • the Co / Ni value on the surface of the Ni—Co alloy layer by Auger electron spectroscopy is 0.1 to 1 It is said that control in the range of 0.5 is appropriate.
  • the method of forming the Ni—Co alloy layer as the outermost layer of the plating layer is not particularly limited, and the following methods (i) to (iii) are exemplified. Have been.
  • heat diffusion method
  • a nickel plating layer or a nickel-cobalt alloy plating layer having a thickness of 0.5 to 2.0 ⁇ m is formed on the inner surface of a battery can of a steel plate as a substrate. Thereafter, by subjecting the nickel plating layer or the nickel-cobalt alloy plating layer to a thermal diffusion treatment, the unit area (0%) of the steel sheet having the iron-nickel diffusion layer or the iron-nickel-cobalt alloy diffusion layer and serving as the base material is obtained.
  • a steel plate for forming a battery can having an average number of crystals per .25 mm square) of 12.3 or more is disclosed.
  • the main properties related to workability required as a steel sheet for a can including the above-described surface-treated steel sheet for a battery can include (1) press formability (without generation of defects such as cracks during processing). Formability), (2) Roughness resistance (Surface roughness after pressing is small), (3) Low earring rate (Material anisotropy is small and ears are generated after deep drawing is small), (4) Non-aging property (no stretcher strain is generated during drawing).
  • Al-killed steel sheets or IF steel-based steel sheets have been mainly used as base steel sheets for steel sheets for cans (particularly, steel sheets for battery cans).
  • the Al-killed steel sheet is somewhat difficult to secure a high level of average plastic strain ratio rm as compared with the IF steel sheet, but the refinement of ferrite crystal grains is easier than that of the IF steel sheet. Continuous annealing for recrystallization is also possible at relatively low temperatures.
  • the average plastic strain ratio rm is a value defined by the following equation (I).
  • r m (r 0 + 2 ⁇ r 45 + r 90 ) / 4 (I)
  • r 0 is a rolling direction r value
  • r 90 is a rolling orthogonal direction r value
  • r 45 is a 45 ° direction r value
  • the r value is a plastic strain ratio (Lankford value).
  • a surface-treated steel sheet in which the above-described Ni-plated layer is further coated with a Co-plated layer, or a surface-treated steel sheet in which such a steel sheet is subjected to heat diffusion treatment from the viewpoint of ensuring the workability, usually a base metal As the steel sheet, an Al-killed steel sheet or an IF steel-based steel sheet is used.
  • At least 9.0 g / m 2 in the total amount of Ni and Co is obtained, while securing the same chemical and mechanical properties as those of the surface layer of the conventional Ni—Co alloy plating. It is an object of the present invention to provide a surface-treated steel sheet having the above-mentioned adhesion amount, having a hard plating layer, and having base material characteristics required for a battery can.
  • the present inventors have studied the means for solving the above-mentioned problems, and as a result, have obtained the following findings (a) to (e).
  • Co plating is applied to the upper layer of the Ni-plated steel sheet, and the Co plating is heated and diffused (corresponding to (iii) described above) to secure an Fe concentration of the outermost layer of the plating layer of 5 atomic% or more. (That is, by replacing a part of Co in conventional Ni—Co plating (at least the surface layer of the plating layer is a Ni—Co alloy) with Fe), the scratch resistance of the plating layer can be improved, and the positive electrode current collector can be improved. Has been obtained that conductivity and electrolyte resistance can be ensured.
  • the Ni—Co plating layer since Fe is contained in the Ni—Co plating layer, even when a surface-treated steel sheet is used as a current collector of a battery using an alkaline aqueous solution as an electrolyte, the Ni—Co plating layer has the same characteristics as the Ni—Co plating layer. It has been found that the increase in surface resistance can be suppressed. However, when the concentration of Fe was too high, it was also clarified that Fe was dissolved in the electrolytic solution, and particularly in an alkaline manganese battery, the possibility of causing the dissolution of Zn in the negative electrode leading to liquid leakage was increased. .
  • the composition of the outermost layer of the plating layer means, unless otherwise specified, the removal of a contaminant layer or an oxide layer that may be present on the surface of the plating layer by argon ion etching, followed by Auger electron spectroscopy. It refers to the composition of the surface observed by the method (Auger Electron Spectroscopy: AES).
  • a hard thick plating layer can be provided by applying Co plating to the upper layer of Ni plating having a large amount of adhesion and alloying by heat treatment in the above (a). Then, if Fe is diffused to the outermost layer of the plating layer based on the concept of (a), the soft Ni plating layer existing underneath changes into a hard Fe—Ni alloy layer, so that hard plating is performed. The object of providing a thick layer can be achieved. In addition, as a result of the formation of the Fe—Ni alloy layer from the steel plate side in the heat treatment process, the adhesion of the plating layer is enhanced.
  • the thickness of the Ni plating layer before the diffusion treatment is preferably 1.0 ⁇ m or less (the Ni adhesion amount is approximately 8.9 g in terms of Ni. / m 2 corresponds to the following.) is set to be.
  • the thickness of the Ni plating layer deviates from the above range, Ni not alloyed with Fe remains in the surface layer portion of the plating. That is, in the conventional technique, when the amount of Ni plating exceeds 8.9 g / m 2 , or in the case of Ni—Co two-layer plating, the total amount of Ni and Co exceeds 8.9 g / m 2.
  • Ni electroplating bath containing a chloride ion concentration of 35 g / L or more when Ni electroplating is performed on a steel sheet the Ni—Co—Fe alloying in the thermal diffusion treatment can be performed by a Watts bath or the like. Is significantly promoted as compared with the case where
  • the present inventors have developed a Ni—Co—Fe-based Ni—Co—Fe-based alloy having a hard thick plating layer and having excellent adhesion of the plating layer and excellent surface roughness resistance while suppressing the amount of Co used.
  • the surface treated steel sheet of the present invention having a plating layer was completed.
  • the gist of the present invention completed on the basis of such knowledge is as follows.
  • a Ni—Co—Fe alloy plating layer is provided on at least one side of a base steel sheet, and the Ni—Co—Fe alloy plating layer has a Ni adhesion of 7.1 to 18.5 g / m 2. And the Co adhesion amount is in the range of 0.65 to 3.6 g / m 2 , and the total of the Ni adhesion amount and the Co adhesion amount is 9.0 to 20.0 g / m 2. m 2 , the Co concentration in the outermost layer of the Ni—Co—Fe alloy plating layer is in the range of 20 to 60 atomic%, and the Fe concentration is in the range of 5 to 30 atomic%.
  • Ni—Co—Fe alloy plating layer a region where the total of the Ni concentration and the Co concentration is 10 at% or more and the Fe concentration is 5 at% or more exists with a thickness of 2 ⁇ m or more.
  • the chemical composition of the base steel sheet is represented by mass% and C: 0.01 to 0.25. , Si: 0.1% or less, Mn: 0.05 ⁇ 0.90%, P: 0.020% or less, S: 0.015% or less, sol. Al: 0.003 to 0.100%, N: 0.007% or less, B: 0 to 0.0050%, the balance being Fe and impurities, according to JIS G 0551 (2013) of the base steel sheet.
  • a surface-treated steel sheet having a specified ferrite grain size number of 10.0 or more.
  • the sum of the Fe concentration and the Co concentration is 65 atomic% or less, and the Co concentration is larger than the Fe concentration.
  • [3] The surface-treated steel sheet according to [1] or [2], wherein the ferrite grain number of the base steel sheet is 11 or more.
  • a ratio of the Co adhesion amount to the Ni adhesion amount is in a range of 0.05 to 0.27.
  • At least the total of Ni and Co is obtained while securing substantially the same or more chemical and mechanical properties in the surface layer portion of the conventional Ni—Co alloy plating and the plating layer. It is possible to provide a surface-treated steel sheet having an adhesion amount of 9.0 g / m 2 or more, a plating layer being hard, and having base material characteristics required for a battery can.
  • FIGS. 1A and 1B are explanatory views schematically showing an example of the structure of the surface-treated steel sheet according to the present embodiment.
  • the surface-treated steel sheet 1 according to the present embodiment includes at least a base steel sheet 11 and a Ni—Co—Fe alloy plating layer 13 located on the base steel sheet 11.
  • the Ni—Co—Fe alloy plating layer 13 according to the present embodiment may be provided on one surface of the base steel sheet 11 as schematically shown in FIG. 1A, or may be schematically shown in FIG. 1B. As shown in the figure, it may be provided on both sides of the base material steel plate 11.
  • the surface-treated steel sheet 1 according to the present embodiment can be used as a material for containers (battery containers) of various batteries such as an alkaline manganese dry battery, a lithium ion battery, and a nickel hydride battery. It is processed into the shape of a battery container.
  • the surface-treated steel sheet 1 according to the present embodiment can be used as a material of a positive electrode current collector of a battery using an alkaline aqueous solution as an electrolytic solution.
  • FIG. 1A when the Ni—Co—Fe alloy plating layer 13 is provided on one surface of the base material steel plate 11, the base material steel plate 11 is formed on the side to be the inner surface of the battery container by press forming. It is preferable to provide a Ni—Co—Fe alloy plating layer 13 on the side in contact with the alkaline solution.
  • the Ni—Co—Fe alloy is obtained by sequentially applying Ni plating and Co plating to the base steel sheet 101 and then alloying by heating.
  • the plating layer 13 is formed.
  • the Fe concentration inside the Ni—Co—Fe alloy plating layer 13 decreases from the base steel sheet 101 side toward the surface of the Ni—Co—Fe alloy plating layer 13,
  • the Co concentration has a concentration gradient that decreases from the surface of the Ni—Co—Fe alloy plating layer 13 toward the inside of the Ni—Co—Fe alloy plating layer 13.
  • the “Ni—Co—Fe alloy plating layer 13” is not necessarily a Ni—Co—Fe ternary alloy in which the entire Ni—Co—Fe alloy plating layer 13 is formed. It does not mean that.
  • the base steel sheet 11 of the surface-treated steel sheet 1 according to the present embodiment is an Al-killed steel base steel sheet.
  • an Al-killed steel-based steel sheet which is noted below, is a steel sheet that easily achieves both workability and a fine structure. It is suitable as a base material steel plate.
  • the base material steel sheet 11 according to the present embodiment is, by mass%, C: 0.01 to 0.25%, Si: 0.1% or less, Mn: 0.05 to 0.90%, P: 0.020. %, S: 0.015% or less, sol. Al: 0.003 to 0.100%, N: 0.007% or less, B: 0 to 0.005%, the balance being Fe and impurities.
  • C is an element that has a great effect on the crystal grain size and formability of the steel sheet.
  • C advantageous texture as moldability contains less is easily formed, it is possible to increase the average plastic strain ratio r m as defined by the formula (I), refining the ferrite crystal grains This makes it difficult to produce rough skin in can processing. Such surface roughness during processing becomes remarkable when the content of C is less than 0.01%. Therefore, in the base steel sheet 11 according to the present embodiment, the content of C is set to 0.01% or more.
  • the content of C is preferably 0.015% or more, and more preferably 0.02% or more.
  • the content of C is set to 0.25% or less.
  • the content of C is preferably 0.20% or less, more preferably 0.10% or less, and further preferably 0.05% or less.
  • Si silicon
  • Si silicon
  • the content of Si is set to 0.1% or less.
  • the content of Si is preferably 0.05% or less, more preferably 0.02% or less.
  • the lower limit of the content of Si is not particularly limited, and may be 0%. On the other hand, in order to reduce the refining cost, the lower limit of the Si content may be set to 0.002%, 0.005%, or 0.01%.
  • Mn manganese
  • S sulfur
  • MnS is precipitated during continuous casting to easily cause hot brittleness.
  • the Mn content is set to 0.90% or less.
  • the Mn content is preferably 0.70% or less, more preferably 0.50% or less, and still more preferably 0.35% or less.
  • P phosphorus
  • the base steel sheet 11 is contained as an impurity. Since P is an element that contributes to strength, 0.020% may be contained in the base steel sheet 11 at the upper limit. However, P is also an element that embrittles steel and impairs workability. Therefore, when it is not intended to ensure the strength by P, the P content is preferably 0.012% or less. From the viewpoints of toughness and workability, the content of P is preferably a lower value.
  • the lower limit of the P content is not particularly limited, and may be 0%. On the other hand, in order to reduce the refining cost, the lower limit of the P content may be set to 0.001%, 0.002%, or 0.005%.
  • S sulfur
  • S sulfur
  • the base steel sheet 11 As an impurity. If the S content exceeds 0.015%, red hot embrittlement is caused during hot rolling, or MnS is precipitated during continuous casting to cause hot embrittlement, leading to slab cracking. Therefore, in the base steel sheet 11 according to the present embodiment, the content of S is set to 0.015% or less. The smaller the content of S, the better. However, from the viewpoint of desulfurization cost, the lower limit of S is preferably set to about 0.0001%. In order to reduce the refining cost, the lower limit of the S content may be 0.0002%, 0.0005%, 0.001%, 0.002%, or 0.005%.
  • Al (aluminum) is an element necessary for deoxidation of steel, and is an element that fixes solid solution N in steel as AlN and suppresses age hardening. To obtain these effects, the Al content needs to be 0.003% or more. In particular, for applications where age hardening should be severely suppressed, the Al content is preferably 0.015% or more. In addition, when the N fixing effect of Al is to be positively obtained (for example, when steel does not contain B (boron) and there is no alloying element fixing solid solution N other than Al), It is preferable that the content of Al be 0.030% or more.
  • the base steel sheet 11 sets the Al content to 0.100% or less.
  • the Al content is preferably 0.080% or less, more preferably 0.070% or less.
  • Al is sol. It means Al (acid soluble Al).
  • N is an element that age hardens the steel, reduces the press formability of the cold rolled steel sheet, and generates stretcher strain.
  • N is an element that age hardens the steel, reduces the press formability of the cold rolled steel sheet, and generates stretcher strain.
  • the base material steel sheet 11 according to the present embodiment when B is contained in steel, N is combined with B to form a nitride, so that age hardening due to solid solution N is suppressed.
  • the N content exceeds 0.007% age hardening due to solid solution N tends to occur. Therefore, in the base steel sheet 11 according to the present embodiment, the content of N is set to 0.007% or less. Since the N content is preferably as low as possible, the lower limit of the N content is not particularly limited and may be 0%.
  • the N content is preferably 0.0005% or more.
  • the content of N is set to 0.002% or more. Is preferred.
  • B is an optional additive element in the present embodiment.
  • B is an effect of improving the r value (Lankford value) by texture control, an effect of bringing the in-plane anisotropy ⁇ r (anisotropy of the r value) defined by the following equation (101) close to 0, It is an element that exerts various effects such as an effect of reducing aging by fixing solid solution N that cannot be completely fixed as BN and an effect of refining crystal grains.
  • the content of B is preferably 0.0005% or more, more preferably 0.0010% or more.
  • the content of B is set to 0.0050% or less.
  • the content of B is preferably 0.0030% or less, and more preferably 0.0020% or less.
  • the mass% ratio B / N of B and N is in the range of 0.4 to 2.5.
  • the balance of the chemical composition consists of Fe and impurities.
  • the impurities are assumed to be ores, scraps, or impurities mixed from a manufacturing environment or the like as raw materials when the steel material is industrially manufactured.
  • the impurities include Cu, Ni, Cr, and Sn.
  • the preferred contents of these elements are Cu: 0.5% or less, Ni: 0.5% or less, Cr: 0.3% or less, and Sn: 0.05% or less.
  • the base steel sheet 11 is preferably a cold-rolled steel sheet.
  • the crystal grain size number of the ferrite grains (that is, the ferrite grain size number) is 10.0 or more.
  • the crystal grain size number of the ferrite grains in the base steel sheet 11 is preferably 11.0 or more, 11.5 or more, or 12.0 or more.
  • the upper limit of the crystal grain size number of the ferrite grains in the base steel sheet 11 is not particularly specified, but it is often difficult to make the crystal grain size number more than 14.5.
  • the upper limit of the crystal grain number of the ferrite grains in the base steel sheet 11 may be 14.0 or less, 13.5 or less, or 13.0 or less.
  • the grain size number of ferrite grains in the present embodiment means the grain size number of ferrite grains according to JIS G 0551 (2013).
  • the particle size number is defined as the value of G calculated by the following formula (151) using the average number of crystal grains m per 1 mm 2 of the cross section of the test piece. May be positive, zero, or negative.
  • the crystal grain size number of the ferrite grains is a value of G calculated by the above equation (151) using the average number m of ferrite grains per 1 mm 2 of the cross section of the test piece.
  • a large crystal grain size number means that the average number of crystal grains m per 1 mm 2 of the test piece section is large, and it means that the ferrite grains are refined. means.
  • the crystal grain size number of the ferrite grains as described above can be measured according to the method specified in JIS G 0551 (2013). For example, it is described in item 7.2 of JIS G 0551 (2013). It can be measured by the comparison method provided. More specifically, the crystal grain number of the ferrite grains can be measured by observing the entire thickness of the cross section parallel to the rolling direction (L direction) of the base steel sheet 11 by the above-described comparison method.
  • Ni—Co-Fe alloy plating layer 13 (Regarding Ni-Co-Fe alloy plating layer 13) Subsequently, the Ni—Co—Fe alloy plating layer 13 according to the present embodiment will be described in detail.
  • the entire plating layer is formed of a Ni-Co-Fe-based diffusion alloy plating layer (in other words, Ni-Co-Fe-based diffusion alloy plating layer). Fe is diffused to the surface of the Co—Fe alloy plating layer 13).
  • the entire plating layer 13 is made of a Ni—Co—Fe alloy, and at least the outermost layer of the plating layer, that is, the surface of the plating layer and its vicinity are made of Ni—Co—Fe. It has a ternary alloy composition.
  • the Co layer in the vicinity of the steel plate 11 of the plating layer has a relatively low Co concentration, and in some cases, has a binary alloy composition of Ni—Fe.
  • a portion having a composition corresponding to ⁇ -Fe in the Fe—Ni phase diagram, in which Ni has been diffused and dissolved in Ni may be observed on the surface side of the base steel sheet 11 (in this case, The Ni present in the portion is included in the Ni adhesion amount in the measurement of the Ni adhesion amount using the acid dissolution method described later.) Since the Ni—Co—Fe diffusion alloy plating according to the present embodiment is more base than pure Ni, even if cracks (defects) reaching the base steel sheet 11 exist in the plating layer, the plating layer and the base metal It is characterized in that it is difficult to form a corrosion battery with Fe of the steel sheet 11 and corrosion from a defective portion does not easily progress.
  • the surface-treated steel sheet according to the present embodiment aims at least to a Ni diffusion-coated steel sheet having a Ni adhesion amount of 9.0 g / m 2 or more and a thick plating layer equal to or more than the Ni adhesion amount, the Ni adhesion amount in the plating layer and Co
  • the total amount of adhesion is 9.0 g / m 2 or more.
  • the total of the Ni adhesion amount and the Co adhesion amount of the surface-treated steel sheet according to the present embodiment is 20.0 g / m 2 or less.
  • Total Ni deposition amount and Co deposition amount is preferably 10.0 g / m 2 or more, 12.0 g / m 2 or more, or 14.0 g / m 2 or more.
  • Total Ni deposition amount and Co deposition amount is preferably 18.0 g / m 2 or less, 17.0 g / m 2 or less, or 15.0 g / m 2 or less.
  • the Ni deposition amount is in the range of 7.1 to 18.5 g / m 2 . If the amount of Ni is less than 7.1 g / m 2 , the required amount of Co to be added increases, which is contrary to the purpose of the present invention of reducing the amount of Co to be used. And Therefore, in the present embodiment, the Ni adhesion amount of the Ni—Co—Fe alloy plating layer 13 is set to 7.1 g / m 2 or more.
  • the Ni adhesion amount of the Ni—Co—Fe alloy plating layer 13 is preferably 8.0 g / m 2 or more, 8.5 g / m 2 or more, or 9.0 g / m 2 or more.
  • the amount of Ni deposited on the Ni—Co—Fe alloy plating layer 13 is preferably 16.5 g / m 2 or less, 15.0 g / m 2 or less, or 13.0 g / m 2 or less.
  • the amount of Co adhesion is in the range of 0.65 to 3.6 g / m 2 .
  • the Co adhesion amount is less than 0.65 g / m 2 , it is difficult to obtain the effect of suppressing the surface resistance of the plated steel sheet after the alloying treatment.
  • the Co adhesion amount exceeds 3.6 g / m 2 , the production cost of the surface-treated steel sheet 1 according to the present embodiment increases, which is contrary to the aim of the present invention, and thus is out of the scope of the present invention.
  • the amount of Co deposited on the Ni—Co—Fe alloy plating layer 13 is preferably 0.9 g / m 2 or more, 1.0 g / m 2 or more, or 1.1 g / m 2 or more.
  • the amount of Co deposited on the Ni—Co—Fe alloy plating layer 13 is preferably 3.0 g / m 2 or less, or 2.5 g / m 2 or less.
  • the above-described ratio of the Ni adhesion amount to the Co adhesion amount (more specifically, the ratio of the Co adhesion amount to the Ni adhesion amount) is 0.05 to 0. .27 or less.
  • the ratio of the Ni deposition amount to the Co deposition amount in the above range, the Co deposition amount with respect to the total plating deposition amount is further suppressed, and the production cost is further reduced for the same performance target. It can be a film.
  • the ratio between the amount of Ni and the amount of Co attached is more preferably 0.06 or more, or 0.08 or more.
  • the ratio of the amount of Ni attached and the amount of Co attached is more preferably 0.22 or less, or 0.20 or less.
  • the Ni adhesion amount and the Co adhesion amount of the Ni—Co—Fe alloy plating layer 13 are determined by adjusting the Ni—Co—Fe alloy plating layer 13 to an acid (for example, a mixed acid of concentrated hydrochloric acid and concentrated nitric acid [volume ratio 1: 1]). After dissolving the resulting solution, the obtained solution can be identified by analyzing it by ICP (Inductively Coupled Plasma) emission spectroscopy. Further, the above ratio can be calculated based on the specified Ni adhesion amount and Co adhesion amount.
  • an acid for example, a mixed acid of concentrated hydrochloric acid and concentrated nitric acid [volume ratio 1: 1]
  • ICP Inductively Coupled Plasma
  • the Co concentration is in the range of 20 to 60 at%, and the Fe concentration is in the range of 5 to 30 at%. . Note that such a composition is an atomic% when the Ni concentration + Co concentration + Fe concentration is 100 atomic%.
  • the Co concentration in the outermost layer of the plating layer is less than 20 atomic%, the charge transfer resistance on the surface of the surface-treated steel sheet 1 cannot be sufficiently reduced, and the alkali resistance cannot be ensured.
  • the Co concentration is preferably at least 25 at%, more preferably at least 30 at%.
  • the Co concentration in the outermost layer of the plating layer exceeds 60 atomic%, the liquid leakage resistance decreases.
  • the surface-treated steel sheet 1 according to the present embodiment by diffusing Fe to the outermost layer of the Ni—Co—Fe alloy plating layer 13, the charge transfer resistance is reduced and the liquid leakage resistance (for example, The effect of Co, which contributes to imparting alkali dissolution resistance and slidability, can be replaced or assisted to reduce the amount of Co deposited.
  • the Co concentration in the outermost layer of the plating layer 13 can be reduced to 60 atomic% or less, and the manufacturing cost can be reduced.
  • the Co concentration is preferably at most 55 at%, more preferably at most 52 at%.
  • the Fe concentration of the outermost layer of the plating layer is less than 5 atomic%, the slidability of the Ni—Co—Fe alloy plating layer 13 is insufficient, and adhesion to a die or the like occurs during press working. It is not preferable because it becomes easy.
  • Fe also has the effect of reducing the charge transfer resistance on the surface of the plating layer 13 of the surface-treated steel sheet 1 like Co. By including Fe in the outermost layer of the plating layer, the effect of reducing expensive Co can be obtained. is there.
  • the Fe concentration in the outermost layer of the plating layer 13 is preferably at least 8 at%, more preferably at least 12 at%.
  • the Fe concentration of the outermost layer of the plating layer exceeds 30 atomic%, rust easily occurs from the Ni—Co—Fe alloy plating layer 13 itself, which is not preferable.
  • the Fe concentration in the outermost layer of the plating layer is preferably 24 atomic% or less, more preferably 20 atomic% or less.
  • the total of the Co concentration and the Fe concentration is preferably 65 atomic% or less, and the Co concentration of the outermost layer is Is preferably higher than the Fe concentration.
  • the liquid leakage resistance for example, alkali dissolution resistance
  • the total of the Co concentration and the Fe concentration in the outermost plating layer is more preferably in the range of 32 to 60 atomic%.
  • the Co concentration, the Fe concentration, and the Ni concentration in the outermost layer of the Ni—Co—Fe alloy plating layer 13 can be measured by Auger Electron Spectroscopy (AES).
  • AES Auger Electron Spectroscopy
  • the surface is converted into SiO 2 by argon ion etching in an AES apparatus.
  • a portion corresponding to, for example, a thickness of 10 nm is removed from the surface layer of the treated steel sheet 1.
  • the etching amount of in terms of SiO 2 mean etch depth if etched material was SiO 2.
  • the amount of etching by argon ion etching differs depending on the type of the material to be etched even under the same etching conditions. Therefore, it is usual to estimate the etching amount based on the relationship between the etching condition and the etching amount in the standard material (SiO 2 ). Thereafter, the Ni, Co, and Fe concentrations were measured by an AES device at arbitrary nine locations in consideration of the variation in the measured values due to the measurement position, and two locations from the upper measurement limit and two from the lower measurement limit were measured. The average value of the measured values is calculated for the remaining five places excluding the five places. The average value obtained at this time can be used as the composition of the outermost layer of the surface-treated steel sheet 1.
  • a region where the Fe concentration is 5 atomic% or more (more specifically, the total of the Ni concentration and the Co concentration is 10 atomic% or more, and (A region where the concentration is 5 atom% or more) exists with a thickness of 2 ⁇ m or more.
  • a region where the total of the Ni concentration and the Co concentration is 10 atomic% or more and the Fe concentration is 5 atomic% or more is referred to as an “Fe diffusion region”.
  • the thickness of the Fe diffusion region is less than 2 ⁇ m, the Fe concentration of the outermost layer of the Ni—Co—Fe alloy plating layer 13 cannot be set to 5 atomic% or more.
  • the presence of the Fe-diffused region of 2 ⁇ m or more ensures that even when the battery is slid during insertion of the active material, a flaw that reaches a wide range of the base is not likely to occur. Conceivable.
  • the thickness of the region where the Fe concentration is 5 atomic% or more may be 2.1 ⁇ m or more, 2.2 ⁇ m or more, or 2.5 ⁇ m or more.
  • the upper limit of the thickness of the region where the Fe concentration is 5 atomic% or more is not particularly limited.
  • the thickness of the Fe diffusion region as described above can be determined by analyzing the cross section of the Ni—Co—Fe alloy plating layer 13 according to the present embodiment using AES and performing a line analysis. It can be specified by measuring the distribution of the Ni, Co and Fe elements.
  • the L section (section parallel to the rolling direction and the thickness direction) is polished, and then argon ion etching in an AES apparatus is performed to convert the surface of the sample cross section to a thickness of 50 nm in terms of SiO 2.
  • the portion corresponding to the minute is subjected to argon ion etching to remove the processed layer generated by the polishing process.
  • line analysis in the thickness direction of the plating layer is performed using an AES apparatus.
  • a line analysis is performed with an AES device at any nine locations, and two locations are excluded from the upper limit of the thickness and two locations are removed from the lower limit of the thickness. It is preferable to calculate the average value of the measured thickness values for the remaining five places.
  • Ni—Co—Fe alloy plating layer 13 The details of the Ni—Co—Fe alloy plating layer 13 according to the present embodiment have been described above.
  • the surface-treated steel sheet according to the present embodiment as described above can suppress an increase in surface resistance while realizing a reduction in the Co content. Further, since the surface-treated steel sheet according to the present embodiment has the Ni—Co—Fe alloy plating layer in which Fe is diffused to the outermost layer of the plating layer, peeling of the plating layer hardly occurs, and the Ni—Co—Fe alloy plating Since the layer is a hard and thick plating layer, when the active material is inserted, scratches that reach the steel plate of the base material are less likely to occur.
  • the structure of the base steel sheet is composed of fine ferrite crystal grains, so that the Ni—Co—Fe alloy plating layer is a hard and thick layer, Cracks that reach the base steel sheet hardly occur.
  • the surface-treated steel sheet according to the present embodiment can improve the adhesion and workability of the alloy plating having a predetermined thickness while suppressing the amount of Co adhesion.
  • FIG. 2 is a flowchart showing an example of the flow of the method for manufacturing a surface-treated steel sheet according to the present embodiment.
  • the Al-killed steel-based cold-rolled steel sheet is subjected to a pre-cleaning treatment and Ni plating. It is preferable to perform Co plating and then perform continuous annealing. Thereby, in the continuous annealing step, recrystallization of the base steel sheet and alloying of Ni—Co—Fe can be performed at the same time, which is rational.
  • the method for manufacturing a surface-treated steel sheet described in detail below has steps as shown in FIG.
  • the method for manufacturing a surface-treated steel sheet for a battery container includes a step of plating Ni on a base steel sheet (Step S ⁇ b> 101); (Step S103) and a step of performing an alloying process on the base steel sheet plated with Ni and Co (step S105).
  • the steelmaking conditions for obtaining the base steel sheet to be subjected to the Ni plating process are not particularly limited, and the slab (Al-) is produced by melting a steel having the chemical composition as described above.
  • a base steel sheet can be obtained by performing a known process such as hot rolling and cold rolling on a slab (killed steel slab).
  • the Ni plating step is a step of forming a Ni plating layer on the surface of the base steel sheet by electroplating the obtained base steel sheet (cold rolled steel sheet) using a high chloride bath. .
  • the method for producing a surface-treated steel sheet in performing Ni plating on a cold-rolled steel sheet, it is preferable to employ an electroplating method using a specific chloride bath (that is, a high chloride bath). .
  • a specific chloride bath that is, a high chloride bath.
  • the Co deposition amount of the Co plating is 3.6 g / m 2 or less (approximately 0.4 ⁇ m or less in terms of plating film thickness).
  • the Fe concentration in the outermost layer of the plating layer is 5 mass% or more without causing coarsening of the crystal grains of the base steel sheet. (I.e., even if the total adhesion amount of Ni and Co is 9.0 g / m 2 or more, while maintaining the state where the crystal grains of the base steel sheet are refined, Fe can be diffused to the surface layer.)
  • the plating bath used for Ni electroplating is preferably a high chloride bath using an electrolyte having a chloride ion concentration of 35 g / L or more and a Ni ion concentration of 40 g / L or more. .
  • the plating bath used for Ni electroplating is preferably a high chloride bath using an electrolyte having a chloride ion concentration of 35 g / L or more and a Ni ion concentration of 40 g / L or more.
  • the chloride ion concentration in the Ni plating bath is preferably 35 g / L or more.
  • the chloride ion concentration in a Watts (Watts) bath widely used for Ni plating is about 8.9 to 17.9 g / L (30 to 60 g / L in terms of nickel chloride hexahydrate).
  • Ni deposited from a Ni plating bath having a chloride ion concentration of 35 g / L or more has a large internal stress, and the diffusion of Fe in the plating layer is faster.
  • the upper limit of the chloride ion concentration is not particularly limited, but from the viewpoint of the solubility of nickel chloride, the chloride ion concentration is preferably set to 150 g / L or less.
  • the chloride ion concentration in the Ni plating bath is preferably 45 g / L or more, or 50 g / L or more.
  • the chloride ion concentration in the Ni plating bath is preferably 120 g / L or less, or 110 g / L or less.
  • the Ni ion concentration in the Ni plating bath is preferably 40 g / L or more. However, if plating is performed for a long time while sacrificing productivity, it is possible to obtain a good surface-treated steel sheet even if the Ni ion concentration is less than 40 g / L.
  • the upper limit of the Ni ion concentration is not particularly limited, but from the viewpoint of the solubility of nickel chloride, the Ni ion concentration is preferably set to 125 g / L or less.
  • the Ni ion concentration in the Ni plating bath is preferably 45 g / L or more, or 60 g / L or more.
  • the Ni ion concentration in the Ni plating bath is preferably 110 g / L or less, or 100 g / L or less.
  • the sulfate ion in the Ni plating bath is not particularly limited, and may be a total chloride bath containing no sulfate ion. As in the Watts bath, the sulfate ion concentration is higher than that of the Watts bath. The bath may be higher than the substance ion concentration.
  • the boric acid contained in the Watt bath is not particularly limited, it is possible to stabilize the pH of the plating bath by containing boric acid in the range of 15 to 60 g / L as in the Watt bath. ,preferable. Further, in addition to Ni ions, Na ions which are not electrodeposited from the aqueous solution may be contained as cations such as a supporting electrolyte.
  • the pH of the Ni plating bath is not particularly limited as long as it is in a weakly acidic region. However, if the pH is too low, the steel sheet is likely to be dissolved, and if the pH is too high, plating burning is likely to occur. Is preferably 2.5 or more and 5.0 or less.
  • the primary gloss additive represented by saccharin sodium does not actively add, since it has an action of relaxing the internal stress of Ni plating.
  • a secondary gloss additive represented by 1,4-butynediol has an effect of increasing the internal stress of Ni plating, but the diffusion may be hindered by eutectoid C, so that it is positively added.
  • the diffusion may be hindered by eutectoid C, so that it is positively added.
  • the temperature (bath temperature) of the Ni plating bath is not particularly limited, and the effect of the plating bath can be obtained by setting the temperature to a known temperature range. However, if the bath temperature is too low, the current efficiency may be reduced or the stress may be relatively low. If the bath temperature is too high, a Ti basket packed with Ni chips for the anode may be used. Also, there is a possibility that the Ti plate of the base material of the insoluble anode (for example, an electrode obtained by coating a Ti base material with IrO 2 or the like) is easily dissolved. Therefore, in order to perform the operation more reliably, it is preferable that the bath temperature of the Ni plating bath is 40 ° C. or more and 60 ° C. or less.
  • the current density at the time of performing the Ni electroplating is not particularly limited, and the effect of the plating bath can be obtained by setting the current density to a known range. However, if the current density is too low, the productivity may be reduced, and if the current density is too high, the current efficiency may be reduced or plating burn may occur. Therefore, in order to perform the operation more reliably, the current density at the time of performing Ni electroplating is preferably 5 A / dm 2 or more and 50 A / dm 2 or less. It should be noted that an LCC-H (Liquid Cushion Cell Horizontal) type plating cell [horizontal fluid-supported electrolytic cell, for example, iron and steel: 71 (13), S1276, 1985-09-05. ], The Ni electroplating may be performed at a higher current density.
  • LCC-H Liquid Cushion Cell Horizontal
  • the base steel sheet on which the Ni plating layer has been formed is subjected to Co plating to form a Co plating layer on the Ni plating layer.
  • the Co plating layer can also be formed by electroplating using various plating baths usually used for Co plating.
  • Such Co plating bath for example, CoSO 4 ⁇ 7H 2 O: 240 ⁇ 330g / L, H 3 BO 3: 20 ⁇ 55g / L, HCOOH: 15 ⁇ 30g / L, H 2 SO 4: 0.5 Co plating baths having a bath composition of up to 3 g / L can be mentioned.
  • a Co plating layer can be formed by performing electroplating at a current density of 1 to 40 A / dm 2 at a plating bath pH of 2 to 3 and a bath temperature of 50 to 60 ° C. using such a plating bath. it can.
  • the various electroplating conditions as described above, including the energization time are appropriately adjusted so as to be within the range of the adhesion amount as described above, and the desired To form a Ni plating layer and a Co plating layer with the adhesion amounts of.
  • the alloying treatment step (step S105) is to perform an alloying treatment on the base steel sheet on which the Ni plating layer and the Co plating layer are formed to recrystallize the base steel sheet and to reduce the Fe content in the base steel sheet. And a step of heating and diffusing the Ni plating layer and the Co plating layer to form the Ni—Co—Fe alloy plating layer 13.
  • the alloying treatment step according to the present embodiment is a heat treatment step performed according to predetermined heat treatment conditions, but is an annealing step from the viewpoint of the base steel sheet, and is an alloying step from the viewpoint of the plating layer. It is a processing step.
  • the heat treatment for annealing and alloying is preferably performed by continuous annealing rather than box annealing.
  • box annealing variations in crystal grain size and characteristics may occur due to non-uniformity of temperature distribution in the coil.
  • box annealing the coiled steel sheet is heat-treated, so that the plating surface and the steel plate surface adhere to each other in the case of single-side plating, and the plating surfaces adhere to each other in the case of double-side plating, and defects on the surface are eliminated. Can occur.
  • the annealing atmosphere is preferably a non-oxidizing atmosphere such as N 2 + H 2 (eg, N 2 +2 to 4% H 2 ).
  • the soaking temperature is equal to or higher than the recrystallization temperature and equal to or higher than 650 ° C., preferably within the range of less than Ac1 point, and more preferably within the range of 670 to 730 ° C.
  • the soaking time is preferably in the range of 10 to 180 seconds, more preferably in the range of 20 to 120 seconds.
  • Ni—Co—Fe alloy plating layer 13 As the plating layer.
  • the above soaking temperature and soaking time are much smaller than those in a normal alloying process. Therefore, according to the common technical knowledge, a Ni—Co—Fe alloy plating layer in which the total amount of Ni and Co is 9.0 g / m 2 or more and the Fe concentration in the outermost layer is 5 atomic% or more is considered. It is said that it is difficult to obtain the alloy under the above-mentioned alloying conditions.
  • the soaking temperature exceeds the Ac1 point when the content of C is high, pearlite may precipitate in the cooling process, which is not preferable.
  • the soaking temperature is lower than 670 ° C., the Fe concentration in the outermost layer of the Ni—Co—Fe alloy plating layer 13 is set to 5 atomic% or more even if the soaking time is set to 180 seconds. becomes difficult, also the recrystallization of the base material steel plate becomes insufficient, the average plastic strain ratio r m may be reduced.
  • the soaking temperature exceeds 730 ° C., even if the soaking time is set to 10 seconds, the crystal grains become coarse, and the possibility that the target grain size number cannot be secured increases.
  • the soaking temperature is more preferably in the range of 680 to 720 ° C., and the soaking time is more preferably in the range of 20 to 120 seconds.
  • C in a solid solution state within the above soaking temperature range may remain in the steel sheet as solid solution C to cause age hardening.
  • the cooling rate after annealing it is also possible to suppress such age hardening. For example, when the content of C exceeds 0.10% by mass, if the cooling rate after annealing is set to 80 ° C./sec or less, solid solution C precipitates as Fe 3 C and is fixed.
  • the steel sheet that has been subjected to the above-described alloying treatment step may be further subjected to an overaging treatment in a temperature range of, for example, 400 to 550 ° C.
  • an overaging treatment in a temperature range of, for example, 400 to 550 ° C.
  • a temper rolling may be performed on the steel sheet that has been subjected to the above-described alloying treatment step (and further, an overaging treatment performed as necessary).
  • the rolling reduction in the temper rolling is preferably, for example, 0.5 to 10.0%.
  • the rolling reduction is less than 0.5%, the yield point elongation may occur due to aging at normal temperature.
  • the rolling reduction exceeds 10.0%, the total elongation (ELongation: EL) is reduced, and the press formability (drawing workability) may be reduced.
  • by performing the temper rolling within the range of the rolling reduction of 3.5% or less it is possible to produce a more excellent shape, and to adjust the yield strength by appropriately selecting the degree of temper. Becomes possible.
  • the thickness (final thickness) of the surface-treated steel sheet according to the present embodiment is preferably 0.08 to 1.2 mm, more preferably 0.15 to 0.80 mm, and still more preferably 0.15 to 0 mm. .50 mm. If the final plate thickness exceeds 1.2 mm, it may be difficult to obtain excellent drawability. On the other hand, if the final sheet thickness is less than 0.08 mm, the sheet thickness of the hot-rolled steel sheet must be reduced, which may make the operation of the hot-rolling process difficult.
  • the surface-treated steel sheet according to the present invention will be specifically described with reference to examples and comparative examples.
  • the Example shown below is only an example of the surface-treated steel sheet which concerns on this invention, and the surface-treated steel sheet which concerns on this invention is not limited to the example shown below.
  • Ni-plated and Co-plated by electroplating were applied to unannealed Al-killed steel (300 mm long ⁇ 200 mm wide) cold-rolled to 0.25 mm. Then, a heat treatment simulating a continuous annealing line was performed.
  • Table 1 summarizes the chemical components of the Al-killed steel used in this experimental example.
  • the steel type in which the column of B (boron) in Table 1 is blank indicates that the B content is less than 0.0001% by mass.
  • Ni plating was performed by electroplating.
  • the Ni plating baths used are summarized in Table 2 below.
  • the pH of the plating bath was adjusted using basic nickel carbonate [Ni 4 CO 3 (OH) 6 (H 2 O) 4 ], and the plating bath temperature was 60 ° C. Common.
  • Ni plates having a purity of 99.9% or more were used for the anodes, and the cathode current density was set to 20 A / dm 2 in common.
  • the expression "high Cl bath” means "high chloride bath”. When a Ni—Co bath was used, Co plating was not separately performed.
  • the plating bath temperature was common at 55 ° C.
  • a Co plate having a purity of 99.9% or more was used for each of the anodes, and a common cathode current density of 20 A / dm 2 was used.
  • the steel sheet subjected to the plating treatment as described above was subjected to a heat treatment (ie, an alloying treatment) simulating a continuous annealing line in an atmosphere consisting of H 2 : 4% by volume and the balance being N 2 .
  • a heat treatment ie, an alloying treatment
  • Temper rolling at a rolling reduction of 1.8% was performed on the plated steel sheet after the heat treatment step.
  • Ni plating bath The type of Ni plating bath, the amount of Ni plating and Co plating used, and the alloying conditions after plating (soaking temperature and soaking time) used for Ni plating in each test example are also shown in Table 3 below.
  • the surface of the obtained sample is sputtered with Ar ions by 10 nm in terms of SiO 2 to remove a contaminant layer (for example, an oxide layer or the like) which may be formed on the surface of the plating layer.
  • a contaminant layer for example, an oxide layer or the like
  • the composition of the region having a diameter of 800 ⁇ m was analyzed. The obtained results are also shown in Table 3.
  • the profile of the Fe concentration in the plating layer depth direction in the plating layer cross section was also analyzed by AES according to the above-described method.
  • a sample having a width of 10 mm in the C direction (a direction perpendicular to the rolling direction) was cut out from the center of the surface-treated steel sheet manufactured as described above.
  • the obtained sample is embedded in resin so that a cross section parallel to the C direction and perpendicular to the L direction (rolling direction) can be observed, and after polishing and nital etching, the plating layer depth is determined by the AES. Line analysis was performed in the direction.
  • the measurement was performed after 50 nm sputtering in terms of SiO 2 was performed using Ar ions.
  • the obtained results are also shown in Table 3.
  • the primary electron was 5 kV-100 nA
  • the analysis area was about 20 ⁇ m ⁇ 30 ⁇ m
  • the sputtering was Ar + 2 kV-25 mA
  • the sputtering speed was about 15 nm / min (in terms of SiO 2 ).
  • Ni adhesion amount and Co adhesion amount of plating layer are analyzed by dissolving a plated steel sheet in a mixed acid of concentrated hydrochloric acid and concentrated nitric acid (volume ratio of 1: 1), and performing ICP (Inductively Coupled Plasma: inductively coupled plasma) emission spectroscopy. Quantified. In this case, Ni and Co of the steel sheet after dissolution of the plating layer were measured using a fluorescent X-ray analyzer (scanning fluorescent X-ray analyzer ZSX PrimusII manufactured by Rigaku), and the intensity was found to change even after additional melting. Not being able to confirm the end point.
  • ICP Inductively Coupled Plasma: inductively coupled plasma
  • the electrolytic solution resistance of the surface-treated steel sheet manufactured as described above was evaluated. After press-working the obtained surface-treated steel sheet into a cylindrical can, the side surface of the can was cut out. The exposed surface of the cut sample was sealed to make the exposed area 1 cm 2, and the potential was maintained at 40 ° C. and the potential of manganese dioxide of the positive electrode (0.3 V vs. Hg / HgO) in 100 ml of a 7M-KOH aqueous solution for 20 days. Then, the amounts of Ni, Co, and Fe in the aqueous solution were evaluated by inductively coupled plasma (ICP) emission spectroscopy.
  • ICP inductively coupled plasma
  • the sum of the elution amounts of Ni, Co, and Fe is 1.1 of the sum of the elution amounts of Ni, Co, and Fe in the reference surface-treated steel sheet (the surface-treated steel sheet indicated as “reference” in Table 3 above).
  • the score was less than 5 times, the score was "A" (pass), and when the score was 1.5 times or more, the score was "B" (fail).
  • the results obtained are shown in Table 4 below.
  • ⁇ Adhesion evaluation> A sample of 20 mm ⁇ 50 mm was punched out of the center of the surface-treated steel sheet manufactured as described above to obtain a measurement sample. The obtained sample was subjected to 0T bending, then bent back, and then subjected to a tensile test so that the elongation was 2%. An adhesive tape was attached to both surfaces of the sample after the tensile test, and a tape peeling test was performed. The case where the plating layer did not peel was evaluated as "A" (pass), and the case where the plating layer peeled was evaluated as "B" (fail). The results obtained are shown in Table 4 below.
  • the surface-treated steel sheet corresponding to the examples of the present invention showed excellent evaluation results in all of conductivity, electrolyte resistance, adhesion, and scratch resistance.
  • the surface-treated steel sheet corresponding to the comparative example of the present invention was inferior in at least any of conductivity, electrolytic solution resistance, adhesion, and scratch resistance.
  • data of an example in which the amount of Ni attached is small and the amount of Co attached is large is also described. In these, a sufficient evaluation result is obtained because a large amount of Co compensates for the shortage of the Ni adhesion amount.
  • these are shown in the table as reference examples outside the scope of the present invention, because they increase the required amount of Co to be deposited and contradict the aim of the present invention to reduce the amount of Co used.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Mechanical Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Electroplating Methods And Accessories (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Abstract

本発明の表面処理鋼板は、母材鋼板の少なくとも片面上にNi-Co-Fe合金めっき層を備え、合金めっき層は、Ni付着量が7.1~18.5g/m、Co付着量が0.65~3.6g/m、Ni付着量とCo付着量の合計が9.0~20.0g/mの範囲内にある。合金めっき層の表面において、Co濃度が20~60原子%、Fe濃度が5~30原子%の範囲内である。合金めっき層において、Ni濃度とCo濃度の合計が10原子%以上であり、Fe濃度が5原子%以上の領域が2μm以上の厚みで存在する。母材鋼板は所定の化学組成を有し、フェライト粒度番号が10以上である。

Description

表面処理鋼板および表面処理鋼板の製造方法
 本発明は、表面処理鋼板および表面処理鋼板の製造方法に関する。
 本願は、2018年7月6日に、日本に出願された特願2018-128846号に基づき優先権を主張し、その内容をここに援用する。
 従来、電池容器用の表面処理鋼板として、Niめっき鋼板が使用されている。Niめっき鋼板は、Niの優れた化学的安定性から、アルカリマンガン乾電池、リチウムイオン電池、ニッケル水素電池の電池缶等といった、各種の電池容器に用いられる。この電池容器用表面処理鋼板であるNiめっき鋼板の製造に際しては、製造コストやめっきの均一性の点で、製缶前の鋼帯に予め連続的にめっきする方法が有利である。このため、Niめっき鋼板を深絞りプレス加工して、正極物質、負極物質、電解液等を内填し、かつ、自身が正極の端子を兼ねる容器である正極缶等に用いられるケースが増加している。
 Niめっき鋼板を、例えば一般的なアルカリ電池の正極缶として用いる場合、放電特性を高めるために、正極缶の内面に黒鉛を含む導電塗料を塗布することで正極合剤との接触を維持している。しかしながら、有機溶剤系の塗料を使用した場合には、環境汚染の問題があり、水系塗料を用いた場合には、乾燥のためのエネルギー消費が問題となる。また、Niめっき鋼板を正極缶として用いた場合には、経時的にNiの酸化が生じ、接触抵抗が増加して放電特性が低下すると言われている他、耐アルカリ性(耐漏液性)の点でも必ずしも満足でない場合がある。
 Niめっき層の上に更にCoめっき層を被覆した表面処理鋼板を、アルカリ電池の正極缶内面に使用することで、上記のNiめっき鋼板の問題点は、解決又は改善されると言われている(例えば、以下の非特許文献1を参照。)。
 かかる知見に基づき、例えば、以下の特許文献1では、Niめっき層上にCoめっきを施しただけのめっき鋼板では、強アルカリ性の電解液を用いる電池の容器として用いた場合には、時間の経過とともにCoが溶出して電池特性を保持しにくくなる点が指摘され、めっき層の最表層部をNi-Coの合金層とし、当該Ni-Co合金層の表面におけるAuger電子分光分析によるCo/Ni値を、0.1~1.5の範囲に制御することが適当であるとしている。同様に、以下の特許文献2では、めっき層の最表層部をNi-Coの合金層とし、当該Ni-Co合金層の表面におけるAuger電子分光分析によるCo/Ni値を、0.1~1.5の範囲に制御することが適当であるとしている。
 また、特許文献1及び特許文献2では、めっき層の最表層にNi-Coの合金層を形成する手法は特に限定されておらず、以下の(i)~(iii)に示した手法が例示されている。
 (i)Co/Niが所定範囲にある合金めっき浴を用いて、鋼板の表面にNi-Co合金めっき層を形成する方法
 (ii)Ni-Co合金めっき浴を用いて、鋼板の表面にNi-Co合金めっき層を形成し、次いで、これに熱処理を施して、加熱拡散させる方法
 (iii)鋼板の表面にNiめっき層、Coめっき層をこの順で形成し、次いで、これに熱処理を施して、加熱拡散させる方法
 また、以下の特許文献3では、基材となる鋼板の電池缶の内面となる側の面に0.5~2.0μmの厚さで、ニッケルめっき層又はニッケル・コバルト合金めっき層を形成した後、かかるニッケルめっき層又はニッケル・コバルト合金めっき層について熱拡散処理を行うことで、鉄-ニッケル拡散層又は鉄-ニッケル・コバルト合金拡散層を有し、基材となる鋼板の単位面積(0.25mm角)あたりの結晶の平均個数が12.3以上である電池缶形成用鋼板が開示されている。
 ここで、上記のような電池缶用の表面処理鋼板を含む缶用鋼板として要求される、加工性に関する主な特性は、(1)プレス成形性(加工時に割れ等の欠陥が発生することなく成形可能なこと)、(2)耐肌荒れ性(プレス加工後の表面肌荒れが小さいこと)、(3)低イヤリング率(素材の異方性が小さく深絞り加工後の耳発生が小さいこと)、(4)非時効性(絞り加工時にストレッチャーストレインが発生しないこと)、である。
 従来、缶用鋼板(特に、電池缶用鋼板)の母材鋼板として、主にAl-killed鋼板又はIF鋼系鋼板(IF:Interstitial Free)が使用されている。Al-killed鋼板は、IF系鋼板と比較すると、高いレベルの平均塑性歪比rmを確保することが幾分困難ではあるが、フェライト結晶粒の微細化がIF系鋼板に比べて容易であり、再結晶のための連続焼鈍も比較的低い温度で可能である。厚いめっき層の表面までFeが拡散した表面処理鋼板を得ようとする場合、IF鋼系に比べて再結晶温度が低い(従って、適正な連続焼鈍温度の低い)Al-killed鋼板を用いる場合は、連続焼鈍の過程でFeの拡散を十分に生起させることができない。しかしながら、Al-killed鋼板は、フェライト結晶粒の微細化が実現しやすいため、耐肌荒れ性を重視した場合には、その性能は魅力がある。
 なお、上記の平均塑性歪比rmとは、下記式(I)で定義される値を言う。
  r = (r+2×r45+r90)/4 ・・・・・(I)
 ただし、上記式(I)において、r:圧延方向r値、r90:圧延直交方向r値、r45:45°方向r値であり、r値は、塑性歪比(Lankford値)である。
 従って、上述のNiめっき層の上に更にCoめっき層を被覆した表面処理鋼板、あるいはかかる鋼板を加熱拡散処理した表面処理鋼板の製造においても、その加工性を確保する観点から、通常、母材鋼板として、Al-killed鋼板又はIF鋼系鋼板が使用される。
 このように、最近では、表層部にNi-Co合金めっき層を有する表面処理鋼板を、特に電池缶用の素材として活用しようとする動向があるが、以下(A)及び(B)に示した課題がある。
 (A)正極集電体を電池缶そのものとしたアルカリマンガン電池では、正極活物質であるMnOを電池缶に装入する際に電池缶に傷が入りやすいために、硬いめっきを密着性を保持しつつ、厚く設けることが求められる場合がある。
 (B)Ni-Co合金を形成するためのCoは、Niよりも希少な金属であるために高価であり、Coの使用量をなるべく削減することが求められる。
国際公開第2012/147843号 日本国特開2016-186950号公報 国際公開第2016/158004号 日本国特開2014-47359号公報
 本発明は、従来のNi-Co合金めっきと、めっき層の表層部のほぼ同等以上の化学的、機械的な特性を確保しながら、少なくとも、NiとCoの合計量で9.0g/m以上の付着量で有し、かつ、めっき層が硬質であり、しかも電池缶用として要求される母材特性を有する表面処理鋼板を提供することを目的とする。
 本発明者らは、上記課題を解決する方策を検討した結果、以下の(a)~(e)に示した知見を得るに至った。
 (a)Niめっきした鋼板の上層に、Coめっきを施し、かかるCoめっきを加熱拡散して(前述の(iii)に相当)、めっき層の最表層のFe濃度を5原子%以上確保すること、(すなわち、従来のNi-Coめっき(少なくともめっき層の表層部はNi-Co合金)におけるCoの一部をFeに置き換えること)で、めっき層の耐傷付き性を改善でき、正極集電体としての導電性や、耐電解液性を確保できるとの知見を得た。すなわち、Ni-Coめっき層にFeが含有されることで、アルカリ水溶液を電解液とした電池の集電体として表面処理鋼板が用いられた場合であっても、Ni-Coめっき層と同様に表面抵抗の上昇を抑制可能であるとの知見を得た。ただし、Feの濃度が高すぎる場合には、電解液にFeが溶解してしまい、特にアルカリマンガン電池では、液漏れにつながる負極のZnの溶解を引き起こす可能性が高くなることも明らかとなった。なお、本明細書において、めっき層の最表層の組成とは、特段の断りがない限り、アルゴンイオンエッチングでめっき層の表面に存在しうる汚染層や酸化物層を除去した後に、オージェ電子分光法(Auger Electron Spectroscopy:AES)により観測される表面の組成のことをいう。
 (b)硬質の厚いめっき層を設けるには、上記(a)において、付着量の大きいNiめっきの上層に、Coのめっきを施し、熱処理によって合金化させることにより、実現可能である。そして、上記(a)の考え方に基づき、めっき層の最表層までFeを拡散させれば、下層に存在した軟質のNiめっき層は、硬質のFe-Ni合金層に変化するため、硬質のめっき層を厚く設けるという目的を達成することができる。また、熱処理過程で鋼板側からFe-Ni合金層が形成される結果として、めっき層の密着性が高まる。
 (c)上記(b)に関して、NiめっきやCoめっきの付着量が増加すれば、そのめっき層の最表層までFeを拡散させるためには、必然的に、より高い加熱温度や、より長い加熱時間が必要になる。その結果、母材鋼板の結晶粒が過剰に粒成長し、所望の特性(特に、耐肌荒れ性)を確保することができなくなる。また、母材鋼板の結晶粒が粗大化すると、特にFe-Ni合金層が厚く形成された場合、加工時のめっき層の割れが鋼板内部に及ぶ場合がある。なお、特許文献4では、Niめっき鋼板に関して、加熱拡散処理を行うにあたり、拡散処理前におけるNiめっき層の厚みは、好ましくは1.0μm以下(Ni付着量としては、Ni換算で概ね8.9g/m以下に対応する。)であるとしている。Niめっき層の厚みが上記範囲を逸脱すると、めっきの表層部分に、Feと合金化していないNiが残存するとされている。すなわち、従来次術では、Niめっきの付着量が8.9g/mを超える場合、又は、Ni-Co二層めっきでは、NiとCoの合計付着量が8.9g/mを超える場合には、母材鋼板の特性を損なうことなく、Niめっき層、あるいはNi-Coめっき層の最表層までFeを拡散させることは困難である。
 (d)上記(c)のように、Niめっき層単独では、Ni付着量が8.9g/mを超える場合、従来行われていた手法では、母材の鋼板の特性を維持したまま、めっき層の表面までFeを拡散させることは困難であり、母材結晶粒の粗粒化の結果、缶用鋼鈑として、耐肌荒れ性が低下する。Niめっきを施した後、Coめっき層を形成した二層めっきの場合も、ほぼ同様に考えられ、NiとCoの合計付着量が8.9g/mを超える場合、従来行われていた手法では、母材の鋼板の粗粒化を招くことなく、めっき層の最表層までFeを拡散させることは困難と考えられる。しかしながら、鋼板上にNi電気めっきを施すに当たり、35g/L以上の塩化物イオン濃度を含有するNi電気めっき浴を採用することにより、熱拡散処理におけるNi-Co-Fe合金化が、Watts浴等を用いる場合に比較して、著しく促進される。
 (e)母材鋼板として、低炭素Al-killed鋼を用いることで、母材の結晶粒を細粒化することが容易になる。
 以上の知見に基づき、本発明者らは、Coの使用量を抑制しながら、硬質の厚いめっき層を有し、めっき層の密着性や、耐肌荒れ性に優れたNi-Co-Fe系のめっき層を有する本発明の表面処理鋼板を完成した。
 かかる知見に基づき完成された本発明の要旨は、以下の通りである。
[1]母材鋼板の少なくとも片面上に位置するNi-Co-Fe合金めっき層を備え、前記Ni-Co-Fe合金めっき層は、Ni付着量が、7.1~18.5g/mの範囲内であり、かつ、Co付着量が、0.65~3.6g/mの範囲内であり、更に、Ni付着量とCo付着量の合計が、9.0~20.0g/mの範囲内にあり、前記Ni-Co-Fe合金めっき層の最表層において、Co濃度が、20~60原子%の範囲内であり、かつ、Fe濃度が、5~30原子%の範囲内であり、前記Ni-Co-Fe合金めっき層において、Ni濃度とCo濃度の合計が10原子%以上であり、かつ、Fe濃度が5原子%以上である領域が、2μm以上の厚みで存在し、前記母材鋼板の化学組成は、質量%で、C:0.01~0.25%、Si:0.1%以下、Mn:0.05~0.90%、P:0.020%以下、S:0.015%以下、sol.Al:0.003~0.100%、N:0.007%以下、B:0~0.0050%を含み、残部がFe及び不純物からなり、前記母材鋼板のJIS G 0551(2013)で規定されるフェライト粒度番号が、10.0以上である、表面処理鋼板。
[2]前記Ni-Co-Fe合金めっき層の最表層において、前記Fe濃度と前記Co濃度の合計が65原子%以下であり、かつ、前記Co濃度は、前記Fe濃度よりも大きい、[1]に記載の表面処理鋼板。
[3]前記母材鋼板の前記フェライト粒度番号が、11以上である、[1]又は[2]に記載の表面処理鋼板。
[4]前記Ni-Co-Fe合金めっき層において、前記Ni付着量に対する前記Co付着量の比率が、0.05~0.27の範囲内である、[1]~[3]の何れか1項に記載の表面処理鋼板。
[5]電池缶に用いられる、[1]~[4]の何れか1つに記載の表面処理鋼板。
[6]アルカリ水溶液を電解液とした電池の正極集電体に用いられる、[1]~[4]の何れか1つに記載の表面処理鋼板。
[7]前記Co付着量が、0.9~3.6g/m2の範囲内である、[1]~[6]の何れか1つに記載の表面処理鋼板。
[8]請求項1に記載の母材鋼板の化学組成を有する鋼板に、塩化物イオン濃度が35g/L以上であるNiめっき浴を用いてNiめっきする工程と、前記鋼板にCoめっきする工程と、前記鋼板を合金化処理する工程と、を備える表面処理鋼板の製造方法。
 以上説明したように本発明によれば、従来のNi-Co合金めっきと、めっき層の表層部においてはほぼ同等以上の化学的、機械的な特性を確保しながら、少なくとも、NiとCoの合計量で9.0g/m以上の付着量で有し、かつ、めっき層が硬質であり、しかも電池缶用として要求される母材特性を有する表面処理鋼板を提供することが可能となる。
本発明の実施形態に係る表面処理鋼板の構成を模式的に示した説明図である。 同実施形態に係る表面処理鋼板の構成を模式的に示した説明図である。 同実施形態に係る表面処理鋼板の製造方法の流れの一例を示した流れ図である。
 以下に添付図面を参照しながら、本発明の好適な実施の形態について詳細に説明する。なお、本明細書及び図面において、実質的に同一の機能構成を有する構成要素については、同一の符号を付することにより重複説明を省略する。
(表面処理鋼板の全体構成)
 まず、図1A及び図1Bを参照しながら、本発明の実施形態に係る表面処理鋼板の全体構成について説明する。図1A及び図1Bは、本実施形態に係る表面処理鋼板の構造の一例を模式的に示した説明図である。
 本実施形態に係る表面処理鋼板1は、図1Aに模式的に示したように、母材鋼板11と、かかる母材鋼板11上に位置するNi-Co-Fe合金めっき層13と、を少なくとも備える。ここで、本実施形態に係るNi-Co-Fe合金めっき層13は、図1Aに模式的に示したように、母材鋼板11の片面上に設けられていてもよいし、図1Bに模式的に示したように、母材鋼板11の両面上に設けられていてもよい。
 本実施形態に係る表面処理鋼板1は、アルカリマンガン乾電池、リチウムイオン電池、ニッケル水素電池等といった各種電池の容器(電池容器)の素材として用いることが可能であり、各種のプレス成形により、所望の電池容器の形状へと加工される。また、本実施形態に係る表面処理鋼板1は、アルカリ水溶液を電解液とした電池の正極集電体の素材として用いることも可能であり、各種のプレス成形により、所望の正極集電体の形状へと加工される。ここで、図1Aに示したように、Ni-Co-Fe合金めっき層13を、母材鋼板11の片面上に設ける場合には、母材鋼板11においてプレス成形により電池容器の内面となる側やアルカリ水溶液と接する側に、Ni-Co-Fe合金めっき層13が設けられることが好ましい。
 ここで、本実施形態では、以下で詳述するように、母材鋼板101に対し、Niめっき、及び、Coめっきを順次施した後、加熱により合金化させることで、Ni-Co-Fe合金めっき層13を形成させる。このような処理を経ることで、Ni-Co-Fe合金めっき層13の内部では、Fe濃度は母材鋼板101側からNi-Co-Fe合金めっき層13の表面に向かって低減していき、逆に、Co濃度は、Ni-Co-Fe合金めっき層13の表面からNi-Co-Fe合金めっき層13の内部方向に向かって低減してくような濃度勾配を有するようになる。
 従って、本実施形態において、「Ni-Co-Fe系の合金めっき層13」とは、必ずしも、Ni-Co-Fe合金めっき層13の全体がNi-Co-Feの3元系の合金であることを意味するものではない。
(母材鋼板11について)
 続いて、本実施形態に係る表面処理鋼板1における母材鋼板11について、詳細に説明する。
<母材鋼板11の化学組成について>
 以下では、本実施形態に係る母材鋼板11の化学組成について、詳細に説明する。
 なお、以下の化学組成に関する説明において、「%」の表記は、断わりのない限りは、「質量%」を意味するものとする。
 本実施形態に係る表面処理鋼板1の母材鋼板11は、Al-killed鋼系の母材鋼板である。プレス成形性に優れた鋼板の中でも、以下で着目するようなAl-killed鋼系の鋼板は、加工性と微細な組織とを両立しやすい鋼板であり、本実施形態に係る表面処理鋼板1の母材鋼板として好適なものである。
 本実施形態に係る母材鋼板11は、質量%で、C:0.01~0.25%、Si:0.1%以下、Mn:0.05~0.90%、P:0.020%以下、S:0.015%以下、sol.Al:0.003~0.100%、N:0.007%以下、B:0~0.005%を含有し、残部がFe及び不純物からなる。
[C:0.01~0.25%]
 C(炭素)は、鋼板の結晶粒度及び成形性に非常に大きな影響を及ぼす元素である。Cの含有量が少ないほど成形性に有利な集合組織が形成されやすくなり、上記式(I)で規定される平均塑性歪比rを大きくすることができるが、フェライト結晶粒を微細化することが困難となり、缶加工においては肌荒れを招きやすくなる。かかる加工時の肌荒れは、Cの含有量が0.01%未満となる場合に顕著となる。従って、本実施形態に係る母材鋼板11では、Cの含有量を、0.01%以上とする。Cの含有量は、好ましくは、0.015%以上であり、より好ましくは、0.02%以上である。一方、Cの含有量が増加すると、フェライト結晶粒の微細化は容易となるが、鋼板の強度が上昇して、絞り加工性の低下を招きやすい。また、焼鈍温度が二相域になると、パーライトが析出して、加工性が低下する場合がある。かかる加工性の低下は、Cの含有量が0.25%を超えた場合に顕著となる。従って、本実施形態に係る母材鋼板11では、Cの含有量を0.25%以下とする。Cの含有量は、好ましくは、0.20%以下であり、より好ましくは、0.10%以下であり、更に好ましくは、0.05%以下である。
[Si:0.1%以下]
 本実施形態に係る母材鋼板11において、Si(ケイ素)は、鋼中に不純物として含有される。Siの含有量が0.1%を超える場合には、表面処理性を低下させる。従って、本実施形態に係る母材鋼板11において、Siの含有量は、0.1%以下とする。Siの含有量は、好ましくは0.05%以下であり、より好ましくは0.02%以下である。なお、Siの含有量の下限値は特に限定されず、0%としてもよい。一方、精錬コストの低減のために、Si含有量の下限値を0.002%、0.005%、又は0.01%としてもよい。
[Mn:0.05~0.90%]
 Mn(マンガン)は、母材鋼板11中に含まれる不純物であるS(硫黄)に起因する熱間圧延中の赤熱脆性を防止する上で有効な元素である。かかる赤熱脆性の防止効果は、Mnの含有量を0.05%以上とすることで発現させることができる。従って、本実施形態に係る母材鋼板11では、Mnの含有量を、0.05%以上とする。Mnの含有量は、好ましくは、0.10%以上であり、より好ましくは、0.15%以上である。一方、Mnの含有量が過大になると、鋼板が硬質化して、深絞り性が低下するとともに、連続鋳造中にMnSが析出して熱間脆性を引き起こしやすくなる。これらの現象は、Mnの含有量が0.90%を超える場合に顕著となる。従って、本実施形態に係る母材鋼板11では、Mnの含有量を0.90%以下とする。Mnの含有量は、好ましくは0.70%以下であり、より好ましくは、0.50%以下であり、更に好ましくは、0.35%以下である。
[P:0.020%以下]
 P(リン)は、母材鋼板11中に不純物として含有される。Pは、強度に寄与する元素であるため、母材鋼板11中に、0.020%を上限に含有させてもよい。ただし、Pは、鋼を脆化させて、加工性を損なう元素でもあるため、Pによる強度確保を意図しない場合は、Pの含有量は、0.012%以下とすることが好ましい。靭性及び加工性の観点からは、Pの含有量は、より低い値となることが好ましい。なお、Pの含有量の下限値は特に限定されず、0%としてもよい。一方、精錬コストの低減のために、P含有量の下限値を0.001%、0.002%、又は0.005%としてもよい。
[S:0.015%以下]
 S(硫黄)は、母材鋼板11中に不純物として含有される。Sの含有量が0.015%を超える場合には、熱間圧延中に赤熱脆性を引き起こしたり、連続鋳造中にMnSが析出して熱間脆性を引き起こし、鋳片割れを招いたりする。そこで、本実施形態に係る母材鋼板11では、Sの含有量を0.015%以下とする。Sの含有量は、少なければ少ないほど好ましい。ただし、脱硫コストの観点からは、Sの下限値は、0.0001%程度とすることが好ましい。精錬コストの低減のために、S含有量の下限値を0.0002%、0.0005%、0.001%、0.002%、又は0.005%としてもよい。
[sol.Al:0.003~0.100%]
 Al(アルミニウム)は、鋼の脱酸に必要な元素であり、また、AlNとして鋼中の固溶Nを固定して、時効硬化を抑制する元素でもある。これらの効果を得るためには、Alの含有量を0.003%以上とする必要がある。特に、時効硬化を厳しく抑制すべき用途の場合には、Alの含有量を、0.015%以上とすることが好ましい。また、AlのN固定効果を積極的に得ようとする場合(例えば、鋼がB(ホウ素)を含有することなく、Al以外に固溶Nを固定する合金元素が存在しない場合)には、Alの含有量を0.030%以上とすることが好ましい。一方、Alの含有量が多すぎると、アルミナクラスターなどに起因する表面欠陥の発生頻度が急増する。かかる表面欠陥の発生頻度は、Alの含有量が0.100%を超えた場合に急増するため、本実施形態に係る母材鋼板11では、Alの含有量を、0.100%以下とする。Alの含有量は、好ましくは、0.080%以下であり、より好ましくは、0.070%以下である。なお、本実施形態において、Alとは、sol.Al(酸可溶Al)を意味する。
[N:0.007%以下]
 Nは、鋼を時効硬化させる元素であり、冷延鋼板のプレス成形性を低下させ、ストレッチャーストレインを発生させる。本実施形態に係る母材鋼板11において、鋼中にBが含有される場合には、NはBと結合して窒化物を形成することにより、固溶Nによる時効硬化は抑制される。しかしながら、Nの含有量が0.007%を超える場合には、固溶Nによる時効硬化が生じやすくなる。従って、本実施形態に係る母材鋼板11では、Nの含有量を0.007%以下とする。なお、Nの含有量は、なるべく低い値であることが好ましいので、N含有量の下限値は特に限定されず、0%としてもよい。ただし、脱窒コストの観点からは、Nの含有量は、0.0005%以上であることが好ましい。なお、本実施形態において、鋼中にBが含有されない場合において、AlNを積極的に析出させて結晶粒の微細化を図る際には、Nの含有量を、0.002%以上とすることが好ましい。
[B:0~0.0050%]
 B(ホウ素)は、本実施形態においては、任意添加元素である。Bは、集合組織制御によりr値(Lankford値)を向上させる効果、以下の式(101)で定義される面内異方性Δr(r値の異方性)を0に近づける効果、AlNとして固定しきれない固溶NをBNとして固定し、時効性を低減する効果、及び、結晶粒を微細化させる効果という、各種の効果を奏する元素である。AlによるN固定の効果があまり期待できない場合(例えば、鋼中のAl濃度が0.030%未満である場合や、熱間圧延工程前の鋳片加熱温度が1120℃を超える製造条件の場合等)においては、Bの含有量を、0.0005%以上とすることが好ましく、0.0010%以上とすることがより好ましい。ただし、Bの含有量が、0.0050%を超える場合には、上記の各種効果は飽和するとともに、表面欠陥の発生等の不具合を生じる場合がある。このため、Bの含有量は、0.0050%以下とする。なお、Bの含有量は、好ましくは、0.0030%以下であり、より好ましくは、0.0020%以下である。なお、Bによって固溶Nを十分固定するためには、BとNの質量%比率B/Nを、0.4~2.5の範囲とすることが好ましい。
  Δr=(r+r90-2×r45)/2 ・・・式(101)
 ただし、上記式(101)において、
  r:圧延方向r値
  r90:圧延直交方向r値
  r45:45°方向r値
  r値:塑性歪比(Lankford値)
である。
[残部]
 本実施形態に係る母材鋼板11において、化学組成の残部は、Fe及び不純物からなる。ここで、本実施形態において、不純物とは、鉄鋼材料を工業的に製造する際に、原料としての鉱石、スクラップ、又は、製造環境などから混入するもの等が想定される。上記不純物として、例えば、Cu、Ni、Cr及びSn等を挙げることができる。これらの元素の好ましい含有量は、Cu:0.5%以下、Ni:0.5%以下、Cr:0.3%以下、及びSn:0.05%以下である。
 なお、本実施形態に係る表面処理鋼板1について、電池缶用としての用途を想定した場合、母材鋼板11は、冷延鋼板であることが好ましい。
<母材鋼板11の結晶粒度について>
 本実施形態に係る母材鋼板11において、フェライト粒の結晶粒度番号(すなわち、フェライト粒度番号)は、10.0以上である。結晶粒度番号が10.0未満である場合、缶形状に成形する際に、缶胴壁表面に肌荒れが発生しやすく、好ましくない。母材鋼板11におけるフェライト粒の結晶粒度番号は、好ましくは、11.0以上、11.5以上、又は12.0以上である。一方、母材鋼板11におけるフェライト粒の結晶粒度番号の上限は、特に規定するものではないが、結晶粒度番号14.5超とすることは困難な場合が多い。母材鋼板11におけるフェライト粒の結晶粒度番号の上限を、14.0以下、13.5以下、又は13.0以下としてもよい。
 なお、本実施形態におけるフェライト粒の結晶粒度番号は、JIS G 0551(2013)に準拠したフェライト粒の結晶粒度番号を意味する。JIS G 0551(2013)において、粒度番号は、試験片断面1mm当たりの平均結晶粒数mを用いて、以下の式(151)で計算されるGの値であると定義されており、Gの値は、正数、ゼロ、又は、負数の場合が生じうる。
  m=8×2 ・・・(式151)
 従って、フェライト粒の結晶粒度番号は、試験片断面1mm当たりのフェライトの平均結晶粒数mを用いて、上記式(151)で計算されるGの値となる。上記式(151)から明らかなように、結晶粒度番号が大きいということは、試験片断面1mm当たりの平均結晶粒数mが多いということを意味し、フェライト粒が微細化されていることを意味する。
 上記のようなフェライト粒の結晶粒度番号は、JIS G 0551(2013)に規定された方法に則して測定することが可能であり、例えば、JIS G 0551(2013)の項目7.2に記載された比較法により、測定することが可能である。より詳細には、母材鋼板11の圧延方向(L方向)に平行な断面について、上記の比較法により全厚観察を行うことで、フェライト粒の結晶粒度番号を測定することができる。
 以上、本実施形態に係る表面処理鋼板1における母材鋼板11について、詳細に説明した。
(Ni-Co-Fe合金めっき層13について)
 続いて、本実施形態に係るNi-Co-Fe合金めっき層13について、詳細に説明する。
 本実施形態に係る表面処理鋼板1が備えるNi-Co-Fe合金めっき層13は、全めっき層が、Ni-Co-Fe系の拡散合金めっき層で形成されている(換言すれば、Ni-Co-Fe合金めっき層13の表面までFeが拡散している。)。ただし、めっき層13の全体が、Ni-Co-Fe合金からなることを、必ずしも意味するものではなく、少なくともめっき層の最表層、即ちめっき層の表面とその近傍は、Ni-Co-Feの3元合金の組成を有する。めっき層の鋼板11近傍は、Co濃度が相対的に少なく、場合によっては、Ni-Feの2元合金の組成を有する。なお、母材鋼板11の表面側には、Niが拡散してNiを固溶した、Fe-Ni状態図におけるα-Feに相当する組成を有する部分が観測される場合がある(この場合、当該部分に存在するNiは、後述の酸溶解法を用いたNi付着量の測定においては、Ni付着量に含まれる。)。本実施形態に係るNi-Co-Fe拡散合金めっきは、純Niより卑なため、めっき層に母材鋼板11に到達するような割れ(欠陥部)が存在したとしても、めっき層と母材鋼板11のFeとの間で腐食電池を形成し難く、欠陥部からの腐食が進行し難いという特徴を有する。
 本実施形態に係る表面処理鋼板は、少なくとも、Ni付着量が9.0g/m以上のNi拡散めっき鋼板と、同等以上の厚いめっき層を目的とするため、めっき層におけるNi付着量とCo付着量の合計を9.0g/m以上とする。なお、Ni付着量とCo付着量の合計が9.0g/m未満である場合には、十分な耐食性を表面処理鋼板に付与することが困難となる。一方、本実施形態に係る表面処理鋼板のNi付着量とCo付着量の合計は、20.0g/m以下とする。Ni付着量とCo付着量の合計が20.0g/mを上回ると、本発明の手段によっても、母材鋼板の結晶粒の粗大化を招くことなく、めっき層の最表層まで十分にFeを拡散させることが困難になるからである。Ni付着量とCo付着量の合計は、好ましくは10.0g/m以上、12.0g/m以上、又は14.0g/m以上である。Ni付着量とCo付着量の合計は、好ましくは18.0g/m以下、17.0g/m以下、又は15.0g/m以下である。
<Ni付着量について>
 本実施形態に係るNi-Co-Fe合金めっき層13において、Ni付着量は、7.1~18.5g/mの範囲内である。Ni付着量が7.1g/m未満である場合には、必要とされるCoの付着量が増加し、Coの使用量を節減するという本発明の狙いに反するため、本発明の範囲外とする。従って、本実施形態において、Ni-Co-Fe合金めっき層13のNi付着量は、7.1g/m以上とする。一方、Ni-Co-Fe合金めっき層13におけるNi付着量が18.5g/mを超える場合には、Coの付着量が1.5g/m以下となり、合金化処理後のめっき層の最表層のCo濃度を確保することが困難になる。本実施形態において、Ni-Co-Fe合金めっき層13のNi付着量は、好ましくは、8.0g/m以上、8.5g/m以上、又は9.0g/m以上である。Ni-Co-Fe合金めっき層13のNi付着量は、好ましくは、16.5g/m以下、15.0g/m以下、又は13.0g/m以下である。
<Co付着量について>
 本実施形態に係るNi-Co-Fe合金めっき層13において、Co付着量は、0.65~3.6g/mの範囲内である。Co付着量が0.65g/m未満である場合には、合金化処理後のめっき鋼板の表面抵抗抑制効果を得ることが困難となる。一方、Co付着量が3.6g/mを超える場合には、本実施形態に係る表面処理鋼板1の製造コストが増加して本発明の狙いに反するため、本発明の範囲外とする。本実施形態において、Ni-Co-Fe合金めっき層13のCo付着量は、好ましくは、0.9g/m以上、1.0g/m以上、又は1.1g/m以上である。Ni-Co-Fe合金めっき層13のCo付着量は、好ましくは、3.0g/m以下、又は2.5g/m以下である。
<Ni付着量とCo付着量の比率>
 本実施形態に係るNi-Co-Fe合金めっき層13において、上記のNi付着量とCo付着量の比率(より詳細には、Ni付着量に対するCo付着量の比率)は、0.05以上0.27以下の範囲内であることが好ましい。Ni付着量とCo付着量の比率を上記の範囲内とすることで、目的とする合金化処理後のめっき層の最表層の組成を一層実現しやすくなり、より優れた電荷移動抵抗の低減、耐漏液性(例えば、耐アルカリ溶解性)、及び、摺動性を実現しつつ、より優れためっき密着性(すなわち、Ni-Co-Fe合金めっき層13の密着性)を実現することができる。また、Ni付着量とCo付着量の比率を上記の範囲とすることで、総めっき付着量に対するCo付着量を一層抑制し、同等程度の性能目標に対しては、より製造コストを抑制しためっき皮膜とすることができる。Ni付着量とCo付着量の比率は、より好ましくは、0.06以上、又は0.08以上である。Ni付着量とCo付着量の比率は、より好ましくは、0.22以下、又は0.20以下である。 
 ここで、Ni-Co-Fe合金めっき層13のNi付着量及びCo付着量は、Ni-Co-Fe合金めっき層13を酸(例えば濃塩酸と濃硝酸の混酸[体積比1:1])に溶解させた後、得られた溶解液をICP(Inductively Coupled Plasma:誘導結合プラズマ)発光分光分析法により分析することで、特定することが可能である。また、特定したNi付着量及びCo付着量に基づき、上記の比率を算出することができる。
<Ni-Co-Fe合金めっき層最表層のCo、Fe、Ni濃度について>
 上記のように、本実施形態に係るNi-Co-Fe合金めっき層13では、めっき層の最表層までFeが拡散している。そのため、Ni-Co-Fe合金めっき層13の最表層において、Co濃度、Fe濃度及びNi濃度を規定することができる。
 本実施形態に係るNi-Co-Fe合金めっき層13の最表層において、Co濃度は、20~60原子%の範囲内であり、かつ、Fe濃度が、5~30原子%の範囲内である。なお、かかる組成は、Ni濃度+Co濃度+Fe濃度を100原子%としたときの原子%である。
 めっき層最表層のCo濃度が20原子%未満である場合には、表面処理鋼板1の表面における電荷移動抵抗を十分に低減することができず、また、耐アルカリ性を確保することができない。Co濃度は、好ましくは25原子%以上であり、より好ましくは30原子%以上である。一方、めっき層最表層のCo濃度が60原子%を超える場合には、耐漏液性が低下する。また、本実施形態に係る表面処理鋼板1では、Ni-Co-Fe合金めっき層13の最表層までFeを拡散させることにより、Feに、電荷移動抵抗の低減、並びに、耐漏液性(例えば、耐アルカリ溶解性)及び摺動性の付与に寄与するCoの作用を代替又は補助させて、Coの付着量を低減させることができる。その結果、本実施形態に係る表面処理鋼板1では、めっき層13の最表層のCo濃度を60原子%以下とすることができ、製造コストを低減することができる。前記Co濃度は、好ましくは55原子%以下であり、より好ましくは52原子%以下である。
 めっき層最表層のFe濃度が5原子%未満となる場合には、Ni-Co-Fe合金めっき層13の摺動性が不十分であり、プレス加工時に金型との凝着等が発生しやすくなるため、好ましくない。また、Feには、Co同様に表面処理鋼板1のめっき層13の表面における電荷移動抵抗を低減する作用もあり、Feをめっき層の最表層に含むことで、高価なCoを削減できる効果がある。めっき層13の最表層のFe濃度は、好ましくは8原子%以上であり、より好ましくは12原子%以上である。一方、めっき層最表層のFe濃度が30原子%を超える場合には、Ni-Co-Fe合金めっき層13そのものから錆が発生し易くなるため、好ましくない。めっき層最表層のFe濃度は、好ましくは24原子%以下であり、より好ましくは20原子%以下である。
 また、本実施形態に係るNi-Co-Fe合金めっき層13の最表層において、Co濃度とFe濃度の合計は65原子%以下であることが好ましく、かつ、最表層のCo濃度は、最表層のFe濃度よりも大きいことが好ましい。Co濃度とFe濃度の合計が65原子%以下となることで、耐漏液性(例えば、耐アルカリ溶解性)をより確実に向上させることが可能となる。めっき最表層におけるCo濃度とFe濃度の合計は、より好ましくは、32~60原子%の範囲内である。
 なお、Ni-Co-Fe合金めっき層13のめっき層最表層における、Co濃度、Fe濃度及びNi濃度は、オージェ電子分光法(Auger Electron Spectroscopy:AES)により測定することが可能である。この場合、表面処理鋼板1の表面に形成されている可能性のある汚染層(例えば、酸化物層等)を除去するために、AES装置内でのアルゴンイオンエッチングにより、SiO換算で、表面処理鋼板1の表層から、例えば厚み10nm分に相当する部分を除去する。なお、SiO換算でのエッチング量とは、被エッチング材がSiOであった場合のエッチング深さを意味する。アルゴンイオンエッチングによるエッチング量は、エッチング条件が同一であっても被エッチング材の種類によって相違する。そのため、標準物質(SiO)でのエッチング条件とエッチング量との関係に基づき、エッチング量を推定することが通常である。
 その後、測定位置に起因する測定値のばらつきを考慮して、任意の9か所について、AES装置によるNi、Co、Fe濃度の測定を行い、測定上限値から2か所、測定下限値から2か所を除外した残り5か所について、測定値の平均値を算出する。この際得られた平均値を、表面処理鋼板1の最表層の組成とすることができる。
<Fe濃度が5原子%以上である領域の厚み>
 本実施形態に係るNi-Co-Fe合金めっき層13において、Fe濃度が5原子%以上である領域(より詳細には、Ni濃度とCo濃度の合計が10原子%以上であり、かつ、Fe濃度が5原子%以上である領域)が、2μm以上の厚みで存在する。以下、上記のようなNi濃度とCo濃度の合計が10原子%以上であり、かつ、Fe濃度が5原子%以上である領域のことを、「Fe拡散領域」と称することとする。Fe拡散領域の厚みが2μm未満である場合には、Ni-Co-Fe合金めっき層13の最表層のFe濃度を5原子%以上とすることができない。なお、本実施形態に係る表面処理鋼板1では、上記Fe拡散領域が2μm以上存在することで、電池の活物質挿入時の摺動に際しても、下地の広範囲まで到達するような疵が生じにくいと考えられる。Fe濃度が5原子%以上である領域の厚みを2.1μm以上、2.2μm以上、または2.5μm以上としてもよい。Fe濃度が5原子%以上である領域の厚みの上限は特に限定されない。
 なお、上記のようなFe拡散領域の厚みは、本実施形態に係るNi-Co-Fe合金めっき層13の断面を、AESを用いて線分析して、Ni-Co-Fe合金めっき層13におけるNi元素、Co元素及びFe元素の分布状態を測定することで、特定することができる。
 まず、着目するサンプルについて、L断面(圧延方向及び板厚方向に平行な断面)を研磨処理した後、AES装置内でのアルゴンイオンエッチングにより、SiO換算で、試料断面の表層から、厚み50nm分に相当する部分をアルゴンイオンエッチングして、研磨処理によって生じた加工層を除去する。その後、AES装置を用いためっき層の厚み方向の線分析を実施する。得られた分析結果を解析して、Ni濃度とCo濃度の合計が10原子%以上となっており、かつ、Fe濃度が5原子%以上となっている領域を抽出して、かかる領域の厚みを特定すればよい。この際、測定位置に起因する測定値のばらつきを考慮して、任意の9か所についてAES装置による線分析を行い、厚みの測定上限値から2か所、測定下限値から2か所を除外した残り5か所について、厚みの測定値の平均値を算出することが好ましい。
 以上、本実施形態に係るNi-Co-Fe合金めっき層13について、詳細に説明した。
 以上説明したような、本実施形態に係る表面処理鋼板は、Coの含有量の低減を実現しながら、表面の抵抗上昇を抑制することができる。また、本実施形態に係る表面処理鋼板は、Feがめっき層の最表層まで拡散したNi-Co-Fe合金めっき層を有することで、めっき層の剥離が生じにくく、Ni-Co-Fe合金めっき層が硬く厚いめっき層であるために、活物質挿入の際に、母材の鋼板まで到達するような傷が入りにくい。更に、本実施形態に係る表面処理鋼板は、母材鋼板の組織が微細なフェライト結晶粒で構成されているために、Ni-Co-Fe合金めっき層が硬く厚い層であるにも関わらず、母材鋼板まで到達する割れが生じにくい。このように、本実施形態に係る表面処理鋼板は、Co付着量を抑制しながら、所定の厚みを有する合金めっきの密着性と、加工性とを向上させることができる。
(表面処理鋼板の製造方法について)
 続いて、図2を参照しながら、本実施形態に係る表面処理鋼板の製造方法について、詳細に説明する。本実施形態に係る表面処理鋼板の製造方法は、上述の母材鋼板11の化学組成を有する鋼板に、塩化物イオン濃度が35g/L以上かつNiイオン濃度が40g/L以上であるNiめっき浴を用いて、Ni付着量が7.1~18.5g/mの範囲内となるようにNiをめっきする工程S101と、鋼板にCoをめっきする工程S103と、鋼板を合金化処理する工程S105と、を備える。図2は、本実施形態に係る表面処理鋼板の製造方法の流れの一例を示した流れ図である。
 本実施形態で着目するような、表面処理鋼板(特に鋼帯)の製造に当たっては、冷延鋼板の連続焼鈍工程に先立ち、Al-killed鋼系の冷延鋼板を前洗浄処理して、Niめっき及びCoめっきを行い、その後連続焼鈍を行うことが好ましい。これにより、連続焼鈍の工程において、素材鋼板の再結晶とNi-Co-Feの合金化を同時に行うことができるため、合理的だからである。かかる着想に基づき、以下で詳述する表面処理鋼板の製造方法は、図2に示したような工程を有する。
 すなわち、本実施形態に係る電池容器用表面処理鋼板の製造方法は、図2に示したように、母材鋼板に対してNiをめっきする工程(ステップS101)と、Niめっきされた母材鋼板に対してCoをめっきする工程(ステップS103)と、Ni及びCoがめっきされた母材鋼板に対して合金化処理を実施する工程(ステップS105)という3段階からなる。
 ここで、Niめっき工程に供される母材鋼板を得るための製鋼条件については、特に限定されるものではなく、先だって説明したような化学成分を有する鋼を溶製して鋳片(Al-killed鋼系の鋳片)にし、熱間圧延及び冷間圧延といった公知の工程を施すことで、母材鋼板を得ることができる。
<Niめっき工程>
 Niめっき工程(ステップS101)は、得られた母材鋼板(冷延鋼板)に対して、高塩化物浴を用いて電気めっきにより、母材鋼板の表面にNiめっき層を形成する工程である。
 本実施形態に係る表面処理鋼板の製造方法では、冷延鋼板に対してNiめっきを施すにあたり、特定の塩化物浴(すなわち、高塩化物浴)を用いた電気めっき方法を採用することが好ましい。これにより、後段の合金化工程において、Niめっきの合金化を促進させることが可能となり、CoめっきのCo付着量が3.6g/m以下(めっき膜厚換算で概ね0.4μm以下)であれば、NiとCoの合計付着量が9.0g/m以上であっても、母材鋼板の結晶粒の粗大化を招くことなく、めっき層の最表層におけるFe濃度を5質量%以上とすることができる(すなわち、NiとCoの合計付着量が9.0g/m以上であっても、母材鋼板の結晶粒が微細化されている状態を維持しながら、めっき層の最表層までFeを拡散させることができる。)。
 ここで、Ni電気めっきに用いるめっき浴は、塩化物イオン濃度が35g/L以上であり、かつ、Niイオン濃度が40g/L以上の電解液を用いた、高塩化物浴であることが好ましい。このような高塩化物浴を用いてNiめっきを行うことで、後段の合金化処理工程(ステップS105)において、Ni-Co-Feの合金化が顕著に促進される。その理由は必ずしも明確ではないが、電析皮膜に発生する内部応力が影響しているのではないかと推察される。
 電気めっきに用いる、高塩化物浴の具体的な組成であるが、Niめっき浴中における塩化物イオン濃度は、35g/L以上であることが好ましい。Niめっきで広く用いられているWatts(ワット)浴では、塩化物イオン濃度が8.9~17.9g/L(塩化ニッケル・6水和物換算で、30~60g/L)程度である。Watts浴から電析したNiと比較して、塩化物イオン濃度が35g/L以上のNiめっき浴から電析したNiは、内部応力が大きく、めっき層内のFeの拡散が早い。塩化物イオン濃度の上限は、特に限定するものではないが、塩化ニッケルの溶解度の観点から、塩化物イオン濃度は150g/L以下とすることが好ましい。Niめっき浴中における塩化物イオン濃度は、好ましくは、45g/L以上、又は50g/L以上である。Niめっき浴中における塩化物イオン濃度は、好ましくは120g/L以下、又は110g/L以下である。
 Niめっき浴中におけるNiイオン濃度は、低すぎると電流効率が低下し、十分な生産性が得られないことがあるため、40g/L以上とすることが好ましい。ただし、生産性を犠牲にして長時間のめっき形成を行えば、Niイオン濃度が40g/L未満であっても良好な表面処理鋼板を得ることは可能である。Niイオン濃度の上限については、特に限定するものではないが、塩化ニッケルの溶解度の観点から、Niイオン濃度は125g/L以下とすることが好ましい。Niめっき浴中におけるNiイオン濃度は、好ましくは、45g/L以上、又は60g/L以上である。Niめっき浴中におけるNiイオン濃度は、好ましくは、110g/L以下、又は100g/L以下である。
 ここで、Niめっき浴中の硫酸イオンについては、特に限定されるものではなく、硫酸イオンを全く含まない全塩化物浴であってもよく、Watts浴のように、硫酸イオン濃度の方が塩化物イオン濃度より高い浴であってもよい。Watt浴に含まれるホウ酸についても、特に限定するものではないが、Watt浴同様に15~60g/Lの範囲内でホウ酸を含有させることで、めっき浴のpHを安定させることが可能となり、好ましい。また、陽イオンとして、Niイオン以外にも、水溶液中からは電析しないNaイオンなどを例えば支持電解質等のカチオンとして、含んでいてもよい。
 Niめっき浴のpHについても、弱酸性領域であれば特に限定するものではないが、pHが低すぎると鋼板の溶解が生じやすく、pHが高すぎるとめっき焼けが生じやすいことから、Niめっき浴のpHは、2.5以上5.0以下であることが好ましい。
 Watts浴に添加されることが多い光沢添加剤に関し、サッカリンナトリウムに代表される一次光沢添加剤は、Niめっきの内部応力を緩和する作用があるため、積極的に添加しないことが好ましい。また、1,4-ブチンジオールに代表される二次光沢添加剤は、Niめっきの内部応力を高める効果があるが、共析するCにより拡散が阻害されることがあるため、積極的に添加しないことが好ましい。
 Niめっき浴の温度(浴温)については、特に限定されるものではなく、公知の温度範囲とすることで、上記めっき浴による効果を得ることができる。ただし、浴温が低すぎる場合には、電流効率が低下したり、応力が相対的に低くなったりする可能性があり、浴温が高すぎる場合には、陽極のNiチップを詰めたTiバスケットや、不溶性陽極(例えば、Ti基材をIrO等で被覆した電極)の基材のTi板が溶解し易くなる可能性がある。従って、より確実に操業を行うために、Niめっき浴の浴温は、40℃以上60℃以下とすることが好ましい。
 Ni電気めっきを実施する際の電流密度は、特に限定されるものではなく、公知の電流密度の範囲とすることで、上記めっき浴による効果を得ることができる。ただし、電流密度が低すぎる場合には、生産性が低下する可能性があり、電流密度が高すぎる場合には、電流効率の低下が起きたり、めっき焼けが発生したりする可能性がある。従って、より確実に操業を行うために、Ni電気めっきを実施する際の電流密度は、5A/dm以上50A/dm以下であることが好ましい。なお、高速な流れによりイオン供給をスムーズに行うことができる、LCC-H(Liquid Cushion Cell Horizontal)型のめっきセル[横型流体支持電解槽、例えば、鐵と鋼:日本鐡鋼協會々誌、71(13)、S1276、1985-09-05を参照。]を使用する場合には、より高い電流密度でNi電気めっきを実施してもよい。
 上記のようなNi電気めっきのめっき原板には、冷間圧延後、焼鈍済みの冷延鋼板を用いても、上記めっき浴による効果を得ることができる。しかしながら、Feの拡散をより促進するためには、先だって言及したように、冷間圧延後、未焼鈍の冷延鋼板を用いた方が良い。これは、冷間圧延後、未焼鈍の冷延鋼板の方が、鋼板内の歪みエネルギーが大きいために、冷間圧延後、未焼鈍の冷延鋼板の方が、Feがより拡散し易いためである。
<Coめっき工程>
 Coめっき工程(ステップS103)では、Niめっき層の形成された母材鋼板に対してCoめっきを施して、Niめっき層上にCoめっき層を形成する。Coめっき層についても、Coめっきで通常用いられている各種のめっき浴を用いて、電気めっきにより形成することができる。このようなCoめっき浴として、例えば、CoSO・7HO:240~330g/L、HBO:20~55g/L、HCOOH:15~30g/L、HSO:0.5~3g/Lの浴組成のCoめっき浴を挙げることができる。かかるめっき浴を用い、めっき浴のpH:2~3、浴温度50~60℃にて、電流密度1~40A/dmの条件で電気めっきを行うことで、Coめっき層を形成することができる。
 上記のようなNiめっき工程及びCoめっき工程において、先だって説明したような付着量の範囲内となるように、通電時間等を含む上記のような各種の電気めっき条件を適切に調整して、所望の付着量のNiめっき層及びCoめっき層を形成する。
<合金化処理工程>
 合金化処理工程(ステップS105)は、Niめっき層及びCoめっき層の形成された母材鋼板に対して合金化処理を施すことで、母材鋼板を再結晶させるとともに、母材鋼板中のFeとNiめっき層及びCoめっき層とを加熱拡散させて、Ni-Co-Fe合金めっき層13を形成させる工程である。本実施形態に係る合金化処理工程は、所定の熱処理条件に則して実施される熱処理工程であるが、母材鋼板の観点から鑑みれば焼鈍工程であり、めっき層の観点から鑑みれば合金化処理工程となっている。
 ここで、焼鈍・合金化のための熱処理は、箱焼鈍よりも連続焼鈍により実施することが好ましい。箱焼鈍の場合には、コイル内での温度分布の不均一性に起因する結晶粒度や特性のばらつきが生じる可能性がある。また、箱焼鈍では、コイル状に巻取られた鋼板が熱処理されるため、片面めっきの場合はめっき面と鋼板面が、両面めっきの場合はめっき面同士が凝着して、表面の欠陥を生じる可能性がある。
 連続焼鈍による熱処理(合金化処理)において、焼鈍雰囲気は、N+H等の非酸化性雰囲気、(例えばN+2~4%H)とすることが好ましい。また、均熱温度は、再結晶温度以上、かつ、650℃以上であり、Ac1点未満の範囲内とすることが好ましく、670~730℃の範囲内とすることがより好ましい。また、均熱時間は、10~180秒の範囲内とすることが好ましく、20~120秒の範囲内とすることがより好ましい。このような均熱温度及び均熱時間で熱処理を行うことで、母材鋼板を再結晶させて所望のフェライト粒度番号を実現させることが可能となるとともに、鋼板中のFeをめっき層の最表層まで拡散させて、めっき層をNi-Co-Fe合金めっき層13とすることが可能となる。なお、上述の均熱温度及び均熱時間は、通常の合金化処理におけるそれらよりもはるかに小さいものである。従って、技術常識によれば、Ni付着量とCo付着量の合計が9.0g/m以上であり、且つ最表層におけるFe濃度が5原子%以上となるNi-Co-Fe合金めっき層を、上述の合金化処理条件で得ることは困難であるとされる。しかし本実施形態に係る表面処理鋼板の製造方法では、Niめっき浴の成分に所定量の塩化物イオン濃度が含まれているので、上述の合金化処理条件によってもFeを十分にNi-Co-Fe合金めっき層の表面まで拡散させることができる。
 母材鋼板中のCの含有量にもよるが、Cの含有量が高い場合に均熱温度がAc1点を超えると、冷却過程でパーライトが析出する場合があり、好ましくない。また、均熱温度が670℃未満である場合には、均熱時間を180秒としたとしても、Ni-Co-Fe合金めっき層13の最表層におけるFe濃度を5原子%以上とすることが困難となり、また、母材鋼板の再結晶が不十分となって、平均塑性歪比rが低下するおそれがある。一方、均熱温度が730℃を超える場合には、均熱時間を10秒としたとしても、結晶粒が粗大化して、目標とする結晶粒度番号を確保することができないおそれが大きくなる。本実施形態に係る合金化処理工程において、均熱温度は、より好ましくは680~720℃の範囲内であり、均熱時間は、より好ましくは20~120秒の範囲内である。
 なお、上記の均熱温度の範囲内では固溶状態にあるCは、焼鈍後の冷却速度が大きい場合に、固溶Cとして鋼板中に残存して、時効硬化現象を引き起こす場合がある。焼鈍後の冷却速度の制御で、このような時効硬化現象を抑制することも可能である。例えば、Cの含有量が0.10質量%を上回る場合、焼鈍後の冷却速度を80℃/sec以下とすれば、固溶Cは、FeCとして析出し、固定される。
 以上、本実施形態に係る表面処理鋼板の製造方法について、詳細に説明した。
 なお、上記の合金化処理工程を終えた鋼板に対して、更に、例えば、400~550℃の温度範囲での過時効処理を行ってもよい。かかる過時効処理を行うことで、ストレッチャーストレインの発生をより確実に防止することができる。
 また、上記の合金化処理工程(更には、必要に応じて実施される過時効処理)を終えた鋼板に対して、調質圧延(スキンパス圧延)を実施してもよい。調質圧延での圧下率は、例えば、0.5~10.0%とすることが好ましい。圧下率が0.5%未満である場合には、常温での時効により、降伏点伸びが発生する可能性がある。一方、圧下率が10.0%を超える場合には、全伸び(ELongation:EL)が低下して、プレス成形性(絞り加工性)が低下する可能性がある。圧下率が0.5~10.0%の範囲内である調質圧延を施すことで、ストレッチャーストレインの発生がほぼ抑制でき、かつ、優れたプレス成形性が確保できるため、好ましい。また、圧下率3.5%以下の範囲内で調質圧延を実施することで、形状により優れたものを製造することができ、調質度を適宜選択することで、降伏強度を調整することが可能となる。
 以上説明したような製造工程により、本実施形態に係る表面処理鋼板が製造される。ここで、本実施形態に係る表面処理鋼板の板厚(最終板厚)は、好ましくは0.08~1.2mm、より好ましくは0.15~0.80mm、さらに好ましくは0.15~0.50mmの範囲内である。最終板厚が1.2mmを超える場合には、優れた絞り加工性が得られにくくなる場合がある。一方、最終板厚が0.08mm未満である場合には、熱延鋼板の板厚を薄くしなければならず、熱延工程の操業が困難となることがある。
 続いて、実施例及び比較例を示しながら、本発明に係る表面処理鋼板について具体的に説明する。なお、以下に示す実施例は、本発明に係る表面処理鋼板の一例にすぎず、本発明に係る表面処理鋼板が下記に示す例に限定されるものではない。
 以下に示す全ての実施例及び比較例においては、0.25mmに冷間圧延された未焼鈍のAl-killed鋼(長さ300mm×幅200mm)に対し、電気めっきによりNiめっき及びCoめっきを施し、その後、連続焼鈍ラインをシミュレートした熱処理を施した。
 本実験例で使用したAl-killed鋼の化学成分を、表1にまとめて示した。ここで、表1のB(ホウ素)の欄が空欄となっている鋼種は、Bの含有量が0.0001質量%未満であることを示す。
Figure JPOXMLDOC01-appb-T000001
 冷間圧延後、定法に従い、アルカリ脱脂、及び、酸洗により、鋼板を清浄化した。その後、電気めっきにより、Niめっきを施した。使用したNiめっき浴を、以下の表2にまとめて示した。表2に示した各めっき浴について、めっき浴のpHは、塩基性炭酸ニッケル[NiCO(OH)(HO)]を用いて調整し、めっき浴温度は、60℃で共通とした。また、陽極には、それぞれ、純度99.9%以上のNi板を使用し、陰極電流密度を20A/dmで共通とした。なお、以下の表2において、「高Cl浴」との表記は、「高塩化物浴」を意味する。また、Ni-Co浴を用いた場合には、別途Coめっきは実施しなかった。
Figure JPOXMLDOC01-appb-T000002
 Niめっき後に、CoSO・7HO:300g/L、HBO:45g/L、HCOOH:23g/L、HSO:1.3g/Lを含有し、pHが2.6であるCoめっき浴を用いて、Coめっきを実施した。めっき浴温度は、55℃で共通とした。また、陽極には、それぞれ、純度99.9%以上のCo板を使用し、陰極電流密度を20A/dmで共通とした。
 なお、本実験例における評価の基準として、Watts浴を用いたNiめっきの後にCoめっきを施さない試料を、別途準備した。
 上記のようなめっき処理を施した鋼板に対し、H:4体積%、残部Nからなる雰囲気下で、連続焼鈍ラインをシミュレートした熱処理(すなわち、合金化処理)を施した。かかる熱処理工程を経ためっき鋼板に対して、圧下率1.8%の調質圧延を行った。
 各試験例のNiめっきに際して用いたNiめっき浴の種別、Niめっき及びCoめっきの付着量、めっき後の合金化条件(均熱温度及び均熱時間)を、以下の表3に併記した。
 なお、以下の表3において、母材4及び母材5を用いた試料に関しては、連続焼鈍ラインをシミュレートした熱処理の後に、400℃×60秒のインラインでの過時効処理をシミュレートした熱処理を加えた。
 以上の方法で得られた各表面処理鋼板に対して、以下の評価を行った。
[組織観察及び結晶粒度番号測定]
 各表面処理鋼板のL断面(圧延方向及び板厚方向に平行な断面)にて、光学顕微鏡観察を行い、冷延鋼板の組織を特定した。その結果、各表面処理鋼板の組織は、いずれもフェライト単相組織であった。更に、各試験番号の表面処理鋼板のフェライト粒の結晶粒度番号を、JIS G 0551(2013)に準拠して、上述の方法で求めた。得られた結果を表3に併記した。
[めっき層最表層のCo濃度、Fe濃度、Ni濃度]、
 上記のようにして製造した表面処理鋼板の中心部から、10mm×10mmの試料を打ち抜き、測定試料とした。得られた試料のめっき層最表層におけるCo濃度、Fe濃度、Ni濃度のそれぞれを、上述の方法に則してAES(パーキンエルマー社製、PHI-610走査型オージェ電子分光装置)により分析し、Ni、Co及びFeの濃度の和を100原子%とした場合の各元素の濃度を、原子%で算定した。この際、得られた試料の表面を、ArイオンによりSiO換算で10nmスパッタして、めっき層の表層に形成されている可能性のある汚染層(例えば、酸化物層等)を除去した後、直径800μmの領域の組成を分析した。得られた結果を、表3に併記した。
[めっき層断面のFe濃度のプロファイルの測定]
 また、めっき層断面におけるめっき層深さ方向のFe濃度のプロファイルについても、上述の方法に則してAESにより分析した。この際、上記のようにして製造した表面処理鋼板の中心部から、C方向(圧延方向に対して直交する方向)10mm幅の試料を切り出した。C方向と平行であり、かつ、L方向(圧延方向)に対して垂直な断面を観察できるように、得られた試料を樹脂に埋め込み、研磨及びナイタールエッチング後、上記AESによりめっき層深さ方向にライン分析を行った。この場合、研磨による加工層の影響を除くためにArイオンによりSiO換算で50nmスパッタを行った後に測定した。得られた結果を、表3に併記した。なお、上記のAES測定に際して、一次電子:5kV-100nA、分析領域:約20μm×30μm、スパッタリング:Ar 2kV-25mA、スパッタリング速度:約15nm/min(SiO換算)とした。
[めっき層のNi付着量、Co付着量]
 めっき層のNi付着量及びCo付着量は、めっき鋼板を濃塩酸と濃硝酸の混酸(体積比1:1)に溶解し、ICP(Inductively Coupled Plasma:誘導結合プラズマ)発光分光分析法により分析することによって定量した。この場合において、めっき層溶解後の鋼板のNi、Coを蛍光X線分析装置(Rigaku製走査型蛍光X線分析装置ZSX PrimusII)を用いて測定し、追加溶解してもその強度に変化が認められないことで終点を確認した。
Figure JPOXMLDOC01-appb-T000003
<表面の電荷移動抵抗測定>
 上記のようにして製造した表面処理鋼板の導電性について、表面の電荷移動抵抗に着目して評価を行った。この際、製造した表面処理鋼板について、60℃、35%KOH水溶液中で、正極の二酸化マンガンの電位(0.3V vs.Hg/HgO)に10日間定電位保持した後、電気化学インピーダンス法により周波数0.1Hz時のインピーダンス値を評価した。この時、インピーダンスの値が50Ω未満であれば「評点A」(合格)とし、50Ω以上であれば「評点B」(不合格)とした。得られた結果を、以下の表4に示した。
<耐電解液性評価>
 上記のようにして製造した表面処理鋼板について、耐電解液性を評価した。得られた表面処理鋼板を、円筒缶にプレス加工後、缶側面部を切り出した。切り出した試料の端面をシールして露出した面積を1cmとし、40℃、100mlの7M-KOH水溶液中で正極の二酸化マンガンの電位(0.3V vs.Hg/HgO)に20日間定電位保持し、水溶液中のNi、Co、Feの量を、誘導結合プラズマ(Inductively Coupled Plasma:ICP)発光分光分析法により評価した。このとき、Ni、Co、Feの溶出量の合計が、基準となる表面処理鋼板(上記表3において「基準」と表記した表面処理鋼板)におけるNi、Co、Feの溶出量の合計の1.5倍未満である場合を「評点A」(合格)とし、1.5倍以上である場合を「評点B」(不合格)とした。得られた結果を、以下の表4に示した。
<密着性評価>
 上記のようにして製造した表面処理鋼板の中心部から、20mm×50mmの試料を打ち抜き、測定試料とした。得られた試料に対して0T曲げを施した後曲げ戻し、続いて、伸び率が2%となるように引張試験を施した。引張試験後の試料の両面に、粘着テープを張り付け、テープ剥離試験を行った。めっき層の剥離が生じなかった場合を「評点A」(合格)とし、めっき層の剥離が生じた場合を「評点B」(不合格)とした。得られた結果を、以下の表4に示した。
<耐傷付き性評価>
 上記のようにして製造した表面処理鋼板について、耐傷付き性を評価した。得られた表面処理鋼板の表面に、MnOのペーストを、乾燥状態での付着量が5g/mとなるように塗布し、乾燥させた。乾燥後、MnO層上に鉄球を乗せ、荷重を1kg付与しながら10往復分鉄球を摺動させた。生じた傷の最深部をAES(前述のパーキンエルマー社製、PHI-610走査型オージェ電子分光装置)により分析し、Ni濃度及びCo濃度がそれぞれ5原子%以上であった場合を「評点A」(合格)とし、Ni濃度とCo濃度の少なくとも何れか一方が5原子%未満であった場合を「評点B」(不合格)とした。得られた結果を、以下の表4に示した。
Figure JPOXMLDOC01-appb-T000004
 上記表4から明らかなように、本発明の実施例に該当する表面処理鋼板は、導電性、耐電解液性、密着性、及び、耐傷付き性の全てで、優れた評価結果を示した。一方、本発明の比較例に該当する表面処理鋼板は、導電性、耐電解液性、密着性、又は、耐傷付き性の少なくとも何れかが劣っていることが明らかとなった。なお、表には参考例として、Ni付着量が少なくCo付着量が多い例のデータも記載した。これらは、Ni付着量の不足を多量のCoによって補っているので、良好な評価結果が得られている。しかしながら、必要とされるCoの付着量が増加し、Coの使用量を節減するという本発明の狙いに反するため、これらは本発明の範囲外である参考例として表に示した。
 以上、添付図面を参照しながら本発明の好適な実施形態について詳細に説明したが、本発明はかかる例に限定されない。本発明の属する技術の分野における通常の知識を有する者であれば、特許請求の範囲に記載された技術的思想の範疇内において、各種の変更例または修正例に想到し得ることは明らかであり、これらについても、当然に本発明の技術的範囲に属するものと了解される。
  1  表面処理鋼板
 11  母材鋼板
 13  Ni-Co-Fe合金めっき層

Claims (8)

  1.  母材鋼板の少なくとも片面上に位置するNi-Co-Fe合金めっき層を備え、
     前記Ni-Co-Fe合金めっき層は、Ni付着量が、7.1~18.5g/mの範囲内であり、かつ、Co付着量が、0.65~3.6g/mの範囲内であり、更に、Ni付着量とCo付着量の合計が、9.0~20.0g/mの範囲内にあり、
     前記Ni-Co-Fe合金めっき層の最表層において、Co濃度が、20~60原子%の範囲内であり、かつ、Fe濃度が、5~30原子%の範囲内であり、
     前記Ni-Co-Fe合金めっき層において、Ni濃度とCo濃度の合計が10原子%以上であり、かつ、Fe濃度が5原子%以上である領域が、2μm以上の厚みで存在し、
     前記母材鋼板の化学組成は、質量%で、
      C:0.01~0.25%
      Si:0.1%以下
      Mn:0.05~0.90%
      P:0.020%以下
      S:0.015%以下
      sol.Al:0.003~0.100%
      N:0.007%以下
      B:0~0.0050%
    を含み、残部がFe及び不純物からなり、
     前記母材鋼板のJIS G 0551(2013)で規定されるフェライト粒度番号が、10.0以上である、表面処理鋼板。
  2.  前記Ni-Co-Fe合金めっき層の最表層において、前記Fe濃度と前記Co濃度の合計が65原子%以下であり、かつ、前記Co濃度は、前記Fe濃度よりも大きい、請求項1に記載の表面処理鋼板。
  3.  前記母材鋼板の前記フェライト粒度番号が、11以上である、請求項1又は2に記載の表面処理鋼板。
  4.  前記Ni-Co-Fe合金めっき層において、前記Ni付着量に対する前記Co付着量の比率が、0.05~0.27の範囲内である、請求項1~3の何れか1項に記載の表面処理鋼板。
  5.  電池缶に用いられる、請求項1~4の何れか1項に記載の表面処理鋼板。
  6.  アルカリ水溶液を電解液とした電池の正極集電体に用いられる、請求項1~4の何れか1項に記載の表面処理鋼板。
  7.  前記Co付着量が、0.9~3.6g/mの範囲内である、請求項1~6の何れか1項に記載の表面処理鋼板。
  8.  請求項1に記載の母材鋼板の化学組成を有する鋼板に、塩化物イオン濃度が35g/L以上であるNiめっき浴を用いてNiめっきする工程と、
     前記鋼板にCoめっきする工程と、
     前記鋼板を合金化処理する工程と、
    を備える表面処理鋼板の製造方法。
PCT/JP2019/026781 2018-07-06 2019-07-05 表面処理鋼板および表面処理鋼板の製造方法 WO2020009213A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP19830900.7A EP3819406A4 (en) 2018-07-06 2019-07-05 SURFACE-TREATED STEEL SHEET AND METHOD FOR MANUFACTURING SURFACE-TREATED STEEL SHEET
KR1020217000886A KR102395426B1 (ko) 2018-07-06 2019-07-05 표면 처리 강판 및 표면 처리 강판의 제조 방법
US17/254,714 US11352682B2 (en) 2018-07-06 2019-07-05 Surface-treated steel sheet and method for manufacturing surface-treated steel sheet
CN201980044960.9A CN112368425B (zh) 2018-07-06 2019-07-05 表面处理钢板和表面处理钢板的制造方法
JP2019568778A JP6729821B2 (ja) 2018-07-06 2019-07-05 表面処理鋼板および表面処理鋼板の製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-128846 2018-07-06
JP2018128846 2018-07-06

Publications (1)

Publication Number Publication Date
WO2020009213A1 true WO2020009213A1 (ja) 2020-01-09

Family

ID=69060407

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/026781 WO2020009213A1 (ja) 2018-07-06 2019-07-05 表面処理鋼板および表面処理鋼板の製造方法

Country Status (6)

Country Link
US (1) US11352682B2 (ja)
EP (1) EP3819406A4 (ja)
JP (1) JP6729821B2 (ja)
KR (1) KR102395426B1 (ja)
CN (1) CN112368425B (ja)
WO (1) WO2020009213A1 (ja)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021138986A (ja) * 2020-03-03 2021-09-16 日本製鉄株式会社 電池缶用Niめっき鋼板、及びその製造方法
JP7063432B1 (ja) * 2020-12-03 2022-05-09 日本製鉄株式会社 表面処理鋼板
WO2022118769A1 (ja) 2020-12-03 2022-06-09 日本製鉄株式会社 表面処理鋼板
WO2022118770A1 (ja) * 2020-12-03 2022-06-09 日本製鉄株式会社 表面処理鋼板
WO2022215642A1 (ja) * 2021-04-09 2022-10-13 日本製鉄株式会社 表面処理鋼板
KR20230113602A (ko) 2020-12-03 2023-07-31 닛폰세이테츠 가부시키가이샤 표면 처리 강판
EP4242352A4 (en) * 2020-12-03 2024-04-24 Nippon Steel Corporation SURFACE-TREATED STEEL SHEET
JP7502712B1 (ja) 2023-04-06 2024-06-19 日本製鉄株式会社 鋼板

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003098718A1 (en) * 2002-04-22 2003-11-27 Toyo Kohan Co., Ltd. Surface treated steel sheet for battery case, battery case and battery using the case
CN101954762A (zh) * 2010-02-10 2011-01-26 湘潭大学 一种镀覆有含钴纳米线复合薄膜的钢带及其制备方法
JP2012048958A (ja) * 2010-08-26 2012-03-08 Fdk Energy Co Ltd アルカリ電池
WO2012147843A1 (ja) 2011-04-28 2012-11-01 東洋鋼鈑株式会社 電池容器用表面処理鋼板、電池容器および電池
WO2013005774A1 (ja) * 2011-07-07 2013-01-10 東洋鋼鈑株式会社 電池容器用表面処理鋼板およびその製造方法、電池容器および電池
JP2014047359A (ja) 2012-08-29 2014-03-17 Toyo Kohan Co Ltd 電池容器用表面処理鋼板、電池容器および電池
JP2015076151A (ja) * 2013-10-07 2015-04-20 パナソニックIpマネジメント株式会社 アルカリ乾電池
WO2016158004A1 (ja) 2015-03-31 2016-10-06 Fdkエナジー株式会社 電池缶形成用鋼板、及びアルカリ電池
JP2018128846A (ja) 2017-02-08 2018-08-16 株式会社プロップ 作業現場用警報装置
WO2018159760A1 (ja) * 2017-03-02 2018-09-07 新日鐵住金株式会社 表面処理鋼板
WO2018181950A1 (ja) * 2017-03-31 2018-10-04 東洋鋼鈑株式会社 表面処理金属板、電池容器および電池

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3726518A1 (de) * 1987-08-10 1989-03-09 Hille & Mueller Kaltband mit elektrolytisch aufgebrachter nickelbeschichtung hoher diffusionstiefe und verfahren zur herstellung des kaltbandes
JP3172420B2 (ja) * 1995-12-28 2001-06-04 川崎製鉄株式会社 耐衝撃性に優れる極薄熱延鋼板およびその製造方法
US6270922B1 (en) * 1996-09-03 2001-08-07 Toyo Kohan Co., Ltd. Surface-treated steel plate for battery case, battery case and battery using the case
JP3840430B2 (ja) * 2002-05-16 2006-11-01 東洋鋼鈑株式会社 電池ケース用表面処理鋼板及び電池ケース
JP2006093097A (ja) * 2004-08-26 2006-04-06 Toyo Kohan Co Ltd 電池容器用めっき鋼板、その電池容器用めっき鋼板を用いた電池容器およびその電池容器を用いた電池
JP5102945B2 (ja) * 2005-06-17 2012-12-19 東洋鋼鈑株式会社 電池容器用めっき鋼板、その電池容器用めっき鋼板を用いた電池容器およびその電池容器を用いたアルカリ電池
JP5570078B2 (ja) * 2009-06-09 2014-08-13 東洋鋼鈑株式会社 Niめっき鋼板及びそのNiめっき鋼板を用いた電池缶の製造方法
JP6168101B2 (ja) * 2010-03-25 2017-07-26 Jfeスチール株式会社 表面処理鋼板、その製造方法およびそれを用いた樹脂被覆鋼板
CN102021618A (zh) * 2010-12-03 2011-04-20 上海大学 在冷轧钢板上脉冲电镀钴镍合金镀层并热处理的方法
JP6033304B2 (ja) * 2012-07-03 2016-11-30 東洋鋼鈑株式会社 電池容器用表面処理鋼板、電池容器および電池
CN104818508B (zh) * 2015-03-31 2017-05-03 江苏九天光电科技有限公司 一种精密镍复合钢带制备方法
WO2017010406A1 (ja) * 2015-07-10 2017-01-19 新日鐵住金株式会社 表面処理鋼板

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003098718A1 (en) * 2002-04-22 2003-11-27 Toyo Kohan Co., Ltd. Surface treated steel sheet for battery case, battery case and battery using the case
CN101954762A (zh) * 2010-02-10 2011-01-26 湘潭大学 一种镀覆有含钴纳米线复合薄膜的钢带及其制备方法
JP2012048958A (ja) * 2010-08-26 2012-03-08 Fdk Energy Co Ltd アルカリ電池
WO2012147843A1 (ja) 2011-04-28 2012-11-01 東洋鋼鈑株式会社 電池容器用表面処理鋼板、電池容器および電池
JP2016186950A (ja) 2011-04-28 2016-10-27 東洋鋼鈑株式会社 電池容器用表面処理鋼板、電池容器および電池
WO2013005774A1 (ja) * 2011-07-07 2013-01-10 東洋鋼鈑株式会社 電池容器用表面処理鋼板およびその製造方法、電池容器および電池
JP2014047359A (ja) 2012-08-29 2014-03-17 Toyo Kohan Co Ltd 電池容器用表面処理鋼板、電池容器および電池
JP2015076151A (ja) * 2013-10-07 2015-04-20 パナソニックIpマネジメント株式会社 アルカリ乾電池
WO2016158004A1 (ja) 2015-03-31 2016-10-06 Fdkエナジー株式会社 電池缶形成用鋼板、及びアルカリ電池
JP2018128846A (ja) 2017-02-08 2018-08-16 株式会社プロップ 作業現場用警報装置
WO2018159760A1 (ja) * 2017-03-02 2018-09-07 新日鐵住金株式会社 表面処理鋼板
WO2018181950A1 (ja) * 2017-03-31 2018-10-04 東洋鋼鈑株式会社 表面処理金属板、電池容器および電池

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
I. SEREBRENNIKOVA: "Can-Cathode Interface in Alkaline Zn/Mn02 Batteries: Optimization of Can Plating Composition", J. ELECTROCHEM. SOC., vol. 154, no. 9, 2007, pages C487 - C493
See also references of EP3819406A4
TETSU-TO-HAGANE, THE JOURNAL OF THE IRON AND STEEL INSTITUTE OF JAPAN, vol. 71, no. 13, 5 September 1985 (1985-09-05), pages S1276

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021138986A (ja) * 2020-03-03 2021-09-16 日本製鉄株式会社 電池缶用Niめっき鋼板、及びその製造方法
JP7425298B2 (ja) 2020-03-03 2024-01-31 日本製鉄株式会社 電池缶用Niめっき鋼板、及びその製造方法
WO2022118770A1 (ja) * 2020-12-03 2022-06-09 日本製鉄株式会社 表面処理鋼板
WO2022118769A1 (ja) 2020-12-03 2022-06-09 日本製鉄株式会社 表面処理鋼板
KR20230113602A (ko) 2020-12-03 2023-07-31 닛폰세이테츠 가부시키가이샤 표면 처리 강판
CN116568868A (zh) * 2020-12-03 2023-08-08 日本制铁株式会社 表面处理钢板
JP7063432B1 (ja) * 2020-12-03 2022-05-09 日本製鉄株式会社 表面処理鋼板
EP4242354A4 (en) * 2020-12-03 2024-04-24 Nippon Steel Corporation SURFACE-TREATED STEEL SHEET
EP4242352A4 (en) * 2020-12-03 2024-04-24 Nippon Steel Corporation SURFACE-TREATED STEEL SHEET
EP4242353A4 (en) * 2020-12-03 2024-05-01 Nippon Steel Corporation SURFACE TREATED STEEL SHEET
CN116568868B (zh) * 2020-12-03 2024-05-31 日本制铁株式会社 表面处理钢板
WO2022215642A1 (ja) * 2021-04-09 2022-10-13 日本製鉄株式会社 表面処理鋼板
CN117120674A (zh) * 2021-04-09 2023-11-24 日本制铁株式会社 表面处理钢板
JP7401840B2 (ja) 2021-04-09 2023-12-20 日本製鉄株式会社 表面処理鋼板
JP7502712B1 (ja) 2023-04-06 2024-06-19 日本製鉄株式会社 鋼板

Also Published As

Publication number Publication date
EP3819406A1 (en) 2021-05-12
JPWO2020009213A1 (ja) 2020-07-09
KR20210019524A (ko) 2021-02-22
JP6729821B2 (ja) 2020-07-22
US11352682B2 (en) 2022-06-07
EP3819406A4 (en) 2021-12-15
US20210269932A1 (en) 2021-09-02
CN112368425A (zh) 2021-02-12
CN112368425B (zh) 2024-03-05
KR102395426B1 (ko) 2022-05-09

Similar Documents

Publication Publication Date Title
WO2020009213A1 (ja) 表面処理鋼板および表面処理鋼板の製造方法
WO2020009212A1 (ja) 表面処理鋼板および表面処理鋼板の製造方法
JP3045612B2 (ja) 高耐食性ニッケルめっき鋼帯およびその製造法
JP6943335B2 (ja) Ni拡散めっき鋼板及びNi拡散めっき鋼板の製造方法
JPWO2013157600A1 (ja) 鋼箔及びその製造方法
JP2017133080A (ja) 方向性電磁鋼板およびその製造方法
CN111971419B (zh) Ni扩散镀层钢板以及Ni扩散镀层钢板的制造方法
US20240003032A1 (en) High-strength hot-dip galvanized steel sheet with excellent plating quality, steel sheet for plating, and manufacturing methods therefor
JP4031679B2 (ja) 電池缶用Niメッキ鋼板およびその製造方法
JP3940339B2 (ja) アルカリ電池正極缶用Niメッキ鋼板および製造方法
JP3664046B2 (ja) アルカリマンガン電池正極缶用Niメッキ鋼板の製造方法
US12031225B2 (en) Ni diffusion-plated steel sheet and method for manufacturing Ni diffusion-plated steel sheet
WO2022215642A1 (ja) 表面処理鋼板
JP7063432B1 (ja) 表面処理鋼板
WO2022118770A1 (ja) 表面処理鋼板
JP2005154793A (ja) ステッピングモーター用表面処理鋼板、ステッピングモーター用表面処理鋼板の製造方法及び、それを用いたステッピングモーター
JP2004091904A (ja) 電池缶用Niメッキ鋼板の製造方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2019568778

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19830900

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20217000886

Country of ref document: KR

Kind code of ref document: A