WO2019239984A1 - 半導体装置 - Google Patents

半導体装置 Download PDF

Info

Publication number
WO2019239984A1
WO2019239984A1 PCT/JP2019/022356 JP2019022356W WO2019239984A1 WO 2019239984 A1 WO2019239984 A1 WO 2019239984A1 JP 2019022356 W JP2019022356 W JP 2019022356W WO 2019239984 A1 WO2019239984 A1 WO 2019239984A1
Authority
WO
WIPO (PCT)
Prior art keywords
clock signal
filter
circuit
delay
majority
Prior art date
Application number
PCT/JP2019/022356
Other languages
English (en)
French (fr)
Inventor
貴則 成田
大介 松浦
石井 茂
大輔 小林
和之 廣瀬
治 川崎
Original Assignee
三菱重工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱重工業株式会社 filed Critical 三菱重工業株式会社
Priority to US16/970,750 priority Critical patent/US11115035B2/en
Priority to EP19818654.6A priority patent/EP3748855A4/en
Publication of WO2019239984A1 publication Critical patent/WO2019239984A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K3/00Circuits for generating electric pulses; Monostable, bistable or multistable circuits
    • H03K3/02Generators characterised by the type of circuit or by the means used for producing pulses
    • H03K3/023Generators characterised by the type of circuit or by the means used for producing pulses by the use of differential amplifiers or comparators, with internal or external positive feedback
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03LAUTOMATIC CONTROL, STARTING, SYNCHRONISATION, OR STABILISATION OF GENERATORS OF ELECTRONIC OSCILLATIONS OR PULSES
    • H03L7/00Automatic control of frequency or phase; Synchronisation
    • H03L7/06Automatic control of frequency or phase; Synchronisation using a reference signal applied to a frequency- or phase-locked loop
    • H03L7/08Details of the phase-locked loop
    • H03L7/085Details of the phase-locked loop concerning mainly the frequency- or phase-detection arrangement including the filtering or amplification of its output signal
    • H03L7/093Details of the phase-locked loop concerning mainly the frequency- or phase-detection arrangement including the filtering or amplification of its output signal using special filtering or amplification characteristics in the loop
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/04Generating or distributing clock signals or signals derived directly therefrom
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H11/00Networks using active elements
    • H03H11/02Multiple-port networks
    • H03H11/26Time-delay networks
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K19/00Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits
    • H03K19/003Modifications for increasing the reliability for protection
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K5/00Manipulating of pulses not covered by one of the other main groups of this subclass
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K5/00Manipulating of pulses not covered by one of the other main groups of this subclass
    • H03K5/125Discriminating pulses
    • H03K5/1252Suppression or limitation of noise or interference
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K5/00Manipulating of pulses not covered by one of the other main groups of this subclass
    • H03K5/13Arrangements having a single output and transforming input signals into pulses delivered at desired time intervals
    • H03K5/131Digitally controlled
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03LAUTOMATIC CONTROL, STARTING, SYNCHRONISATION, OR STABILISATION OF GENERATORS OF ELECTRONIC OSCILLATIONS OR PULSES
    • H03L7/00Automatic control of frequency or phase; Synchronisation
    • H03L7/06Automatic control of frequency or phase; Synchronisation using a reference signal applied to a frequency- or phase-locked loop
    • H03L7/16Indirect frequency synthesis, i.e. generating a desired one of a number of predetermined frequencies using a frequency- or phase-locked loop
    • H03L7/22Indirect frequency synthesis, i.e. generating a desired one of a number of predetermined frequencies using a frequency- or phase-locked loop using more than one loop
    • H03L7/23Indirect frequency synthesis, i.e. generating a desired one of a number of predetermined frequencies using a frequency- or phase-locked loop using more than one loop with pulse counters or frequency dividers

Definitions

  • the present invention relates to a semiconductor device, and more particularly, to a semiconductor device suitably used for generating a clock signal.
  • Clock signals are widely used to establish circuit synchronization in integrated circuits.
  • the clock signal is most typically generated using a PLL (phase locked loop) circuit and distributed to the circuits to be operated synchronously.
  • PLL phase locked loop
  • Improvement of the reliability of the circuit that generates the clock signal is useful for improving the reliability of the operation of the entire semiconductor integrated circuit. This problem is particularly important in an environment where radiation is strong, for example, in an integrated circuit used in outer space. In an environment where radiation is strong, the PLL circuit may malfunction. If the PLL circuit that generates the clock signal malfunctions, the semiconductor integrated circuit may malfunction.
  • Japanese Unexamined Patent Application Publication No. 2003-163583 discloses an asynchronous noise filter circuit that can remove noise even when the noise level exceeds the threshold value of the input logic circuit.
  • an object of the present invention is to provide a technique for improving the reliability of a circuit that generates a clock signal.
  • the semiconductor device is configured to operate in synchronization with a common reference clock signal and output first to Nth clock signals (N is an odd number of 3 or more), respectively.
  • N is an odd number of 3 or more
  • a first to NPLL circuit a majority circuit that performs a majority operation on the first to Nth clock signals to generate a majority clock signal; and the majority clock signal is input and operates as a low-pass filter to generate an output clock signal And a filter circuit for outputting.
  • the filter circuit includes a first RS flip-flop to which a majority clock signal or an inverted signal thereof is input to a reset terminal, and a first delay signal generated by delaying the majority clock signal to a set terminal of the first RS flip-flop. And a first delay circuit that supplies the first delay circuit.
  • An output clock signal is generated according to a signal output from the data output of the first RS flip-flop.
  • the filter circuit may further include a first inverter to which a majority clock signal is input.
  • the output signal of the first inverter is input to the reset terminal of the first RS flip-flop.
  • the first delay circuit is preferably configured such that the delay time is variable.
  • a delay setting circuit that sets the delay time of the first delay circuit based on PLL setting data that specifies the oscillation frequency of the first to NPLL circuits may be further provided.
  • the filter circuit includes a first filter to which a majority clock signal is input, a second inverter to which an output signal of the first filter is input, and a second filter to which an output signal of the second inverter is input. It has.
  • the first filter is configured to output a clock signal having a duty ratio different from that of the majority clock signal.
  • the first filter and the second filter have the same configuration.
  • the filter circuit includes a first filter to which a majority clock signal is input, a second inverter to which an output signal of the first filter is input, and a second filter to which an output signal of the second inverter is input.
  • the first filter includes a third inverter to which a majority clock signal is input, a first RS flip-flop, and a first delay signal generated by delaying the majority clock signal to a set terminal of the first RS flip-flop.
  • the second filter includes a fourth inverter to which the output signal of the second inverter is input, a second RS flip-flop, and a second delay signal generated by delaying the output signal of the second inverter. And a second delay circuit for supplying to the first delay circuit.
  • the first delay circuit and the second delay circuit have the same delay time and are configured to be variable in delay time.
  • a delay setting circuit for setting the delay times of the first delay circuit and the second delay circuit based on PLL setting data for specifying the oscillation frequency of the first to NPLL circuits may be provided.
  • the reliability of the circuit that generates the clock signal can be improved.
  • FIG. 1 is a block diagram illustrating a configuration of a semiconductor device 100 according to an embodiment.
  • the semiconductor device 100 is configured to generate the output clock signal CK OUT with high reliability even in an environment where radiation is strong by multiplexing the PLL circuit.
  • the PLL circuit 1 1 to 1 3 A majority circuit 2 and a filter circuit 3 are provided.
  • the PLL circuit 1 1 to 1 3 and the reference clock signal CK REF is commonly input, the PLL circuit 1 1 to 1 3, a clock signal CK1 ⁇ CK3 synchronized with the reference clock signal CK REF is generated.
  • PLL circuits 1 1 to 1 3 are connected to the PLL setting register 4, and generates a clock signal CK1 ⁇ CK3 at the frequency specified by the PLL setting data set in the PLL setting register 4.
  • the setting data may include a frequency division ratio of the frequency divider included in the PLL circuits 1 1 to 1 3 .
  • FIG. 2 is a block diagram showing an example of the configuration of the PLL circuits 1 1 to 1 3 .
  • the PLL circuits 1 1 to 1 3 have the same configuration, and each of them includes a frequency divider 11, 12, a phase comparator 13, a charge pump 14, a loop filter 15, And a voltage controlled oscillator (VCO) 16.
  • the output signal of the PLL circuit 1 1 to 1 3 of the voltage controlled oscillator 16, respectively, are input to the majority circuit 2 as the clock signal CK1 ⁇ CK3.
  • the frequency divider 11 divides the reference clock signal CK REF
  • the frequency divider 12 divides the output signal of the voltage controlled oscillator 16.
  • Dividing ratio of the frequency divider 11 is R
  • the frequency of the output signal of the frequency divider 11 is 1 / R of the frequency of the reference clock signal CK REF.
  • the frequency division ratio of the frequency divider 12 is N
  • the frequency of the output signal of the frequency divider 12 is 1 / N of the output signal of the voltage controlled oscillator 16.
  • the phase comparator 13 compares the phases of the output signals of the frequency dividers 11 and 12, and outputs an output signal corresponding to the phase difference between these output signals.
  • the charge pump 14 supplies a voltage signal having a signal level corresponding to the phase difference between the output signals of the frequency dividers 11 and 12 via the loop filter 15 to the voltage controlled oscillator 16.
  • the loop filter 15 is configured as a low pass filter.
  • the frequency division ratios R and N of the frequency dividers 11 and 12 are specified by PLL setting data stored in the PLL setting register 4. Oscillation frequency of the PLL circuit 1 1 to 1 3, the division ratio of the frequency divider 11, 12 R, by setting appropriately the N by the PLL setting data is set to a desired frequency.
  • the majority circuit 2 generates the majority clock signal CK MJR by performing majority operation with respect to the clock signal CK1 ⁇ CK3 received from the PLL circuit 1 1 to 1 3.
  • a majority operation is an operation that obtains an output having a state that occupies a majority of all inputs.
  • the majority circuit 2 includes NAND gates 21 to 24.
  • NAND gate 21 has a first input clock signal CK1 from the PLL circuit 1 1 is input, a second input clock signal CK2 from the PLL circuit 1 2 is input, the clock signal CK1, An output signal having a negative logical product value of CK2 is output.
  • NAND gate 22 has a first input clock signal CK2 from the PLL circuit 1 2 is input and a second input clock signal CK3 from the PLL circuit 1 3 is input, a clock signal CK2, An output signal having a negative logical product value of CK3 is output.
  • NAND gate 23 has a first input for receiving a clock signal CK3 from the PLL circuit 1 3 and a second input for receiving a clock signal CK1 from the PLL circuit 1 1, the clock signal CK3, CK1 negative logic of An output signal having a product value is output.
  • the NAND gate 24 has first to third inputs to which the output signals of the NAND gates 21 to 23 are input, respectively, and outputs an output signal having a negative logical product value of the output signals of the NAND gates 21 to 23. Output.
  • the output signal of the NAND gate 24 is the majority clock signal CK MJR .
  • Majority clock signal CK MJR output from the majority circuit 2, since the obtained by performing a majority operation with respect to the clock signal CK1 ⁇ CK3, one is for example radiation effects of one of the PLL circuits 1 1 to 1 3 Even if a malfunction occurs, an appropriate majority clock signal CK MJR can be generated.
  • the PLL circuit 1 1 to 1 since each has a separate feedback loop, a phase difference may occur between the clock signals CK1 ⁇ CK3 output from the PLL circuit 1 1 to 1 3.
  • the phase difference between the clock signals CK1 to CK3 can cause noise in the majority clock signal CK MJR .
  • FIG. 3 shows an example of the phase difference between the clock signals CK1 to CK3 that generates noise in the majority clock signal CK MJR .
  • the clock signals CK1 to CK3 have the same period T.
  • the clock signal CK2 is delayed from the clock signal CK1 by a delay time d2.
  • the clock signal CK3 is inverted from the clock signal CK1 (that is, delayed by T / 2) and further delayed by the delay time d3.
  • FIG. 4 shows the waveform of the majority clock signal CK MJR when the frequency of the clock signals CK1 to CK3 is 200 MHz, the delay time d2 of the clock signal CK2 is 300 ps, and the delay time d3 of the clock signal CK3 is 60 to 240 ps.
  • the simulation results are shown.
  • significant noise is generated in the vicinity of the rising and falling edges of the pulses of the majority clock signal CK MJR when the delay time d3 is 80 ⁇ 200 ps, the majority clock signal CK MJR Waveform is distorted. Such waveform disturbance is not preferable.
  • the majority clock signal CK MJR is input to the filter circuit 3 that operates as a low-pass filter, and the output clock signal CK OUT is output from the filter circuit 3.
  • the filter circuit 3 includes a front-stage filter 31, an inverter 32, a rear-stage filter 33, and an inverter 34.
  • the pre-stage filter 31 includes an inverter 35, a variable delay circuit 36, and an RS flip-flop 37.
  • the inverter 35 receives the majority clock signal CK MJR at its input, and supplies an inverted signal obtained by inverting the majority clock signal CK MJR to the reset terminal of the RS flip-flop 37.
  • the variable delay circuit 36 supplies a delay signal obtained by delaying the majority clock signal CK MJR to the set terminal of the RS flip-flop 37.
  • the variable delay circuit 36 is configured such that the delay time is variable. Delay time d1 of the variable delay circuit 36 is set in accordance with the oscillation frequency of the PLL circuit 1 1 to 1 3. In the present embodiment, the delay time d 1 of the variable delay circuit 36 is specified by the delay setting data stored in the delay setting register 5.
  • the inverter 32 inverts the output signal of the front-stage filter 31 and supplies it to the rear-stage filter 33.
  • the post-stage filter 33 has the same configuration as the pre-stage filter 31, and includes an inverter 38, a variable delay circuit 39, and an RS flip-flop 40.
  • the inverter 38 receives the output signal of the inverter 32 at its input, and supplies an inverted signal obtained by inverting the output signal of the inverter 32 to the reset terminal of the RS flip-flop 40.
  • the variable delay circuit 39 supplies a delay signal obtained by delaying the output signal of the inverter 32 to the set terminal of the RS flip-flop 37.
  • the variable delay circuit 39 is configured such that the delay time is variable.
  • the variable delay circuit 39 is set by the delay setting data stored in the delay setting register 5 so as to have the same delay time d1 as the variable delay circuit 36 of the pre-stage filter 31.
  • the inverter 34 generates an inverted signal of the output signal of the post-stage filter 33 and outputs it as the output clock signal CK OUT .
  • Front filter 31 a delay time d1 of the variable delay circuits 36 and 39 in the subsequent stage filter 33, by setting in accordance with the oscillation frequency of the PLL circuit 1 1 to 1 3, front filter 31, the subsequent stage filter 33, as a low-pass filter Function.
  • the pre-stage filter 31 alone operates as a low-pass filter and has a function of removing noise. However, since the pre-stage filter 31 performs an operation of widening the pulse width ( longening the time that is maintained at the high level) by the delay time d1 of the variable delay circuit 36, the duty ratio of the majority clock signal CK MJR is 50%. Even if it exists, the duty ratio of the output signal of the pre-stage filter 31 does not become 50%.
  • the inverter 32 and the post-stage filter 33 are used to obtain an output clock signal CK OUT having a duty ratio of 50%.
  • the post-stage filter 33 has the same configuration as that of the pre-stage filter 31 and performs an operation of expanding the pulse width by the delay time d1 of the variable delay circuit 39 with respect to the inverted signal of the output signal of the pre-stage filter 31.
  • the duty ratio of the output signal output from the post-stage filter 33 is 50%.
  • FIG. 5 is a timing chart showing an example of the operation of the pre-stage filter 31 and the post-stage filter 33. Symbols “A” to “H” indicate signal waveforms at nodes A to H of the filter circuit 3, respectively.
  • the pre-filter 31 operates as follows.
  • the majority clock signal CK MJR is input to the node A, and the duty ratio of the signal waveform of the node A is 50%.
  • an inverted signal of the majority clock signal CK MJR is generated in the node B.
  • a delayed signal obtained by delaying the majority clock signal CK MJR by the delay time d1 is generated at the node C.
  • the majority clock signal is supplied to the node D connected to the data output of the RS flip-flop 37.
  • a signal in which the pulse width of CK MJR is expanded by the delay time d1 is generated.
  • the post-stage filter 33 performs the same operation as the pre-stage filter 31 on the inverted signal of the output signal output from the pre-stage filter 31.
  • node E an inverted signal of the output signal of inverter 32 is generated.
  • a delayed signal obtained by delaying the output signal of the inverter 32 by the delay time d1 is generated at the node C. Since the node E is connected to the reset terminal of the RS flip-flop 40 and the node F is connected to the set terminal of the RS flip-flop 40, the node G connected to the data output of the RS flip-flop 40 is connected to the inverter 32.
  • a signal in which the pulse width of the output signal (that is, the inverted signal of the output signal of the pre-filter 31) is expanded by the delay time d1 is generated.
  • the duty ratio of the output signal of the post-stage filter 33 and the output clock signal CK OUT is 50%.
  • the inverter 35 and the variable delay circuit 36 of the pre-filter 31 have a function of supplying the majority clock signal CK MJR with an appropriate phase difference to the reset terminal and the set terminal of the RS flip-flop 37, as a whole. If the delay time d1 of the variable delay circuit 36 is appropriately set, the inverter 35 is not always necessary. For the same reason, the inverter 38 of the post-filter 33 is not always necessary.
  • FIG. 6 shows the filter circuit 3 having a configuration in which the inverters 35 and 38 are not provided.
  • the majority clock signal CK MJR is input to the reset terminal of the RS flip-flop 37, and the output signal of the inverter 32 is input to the reset terminal of the RS flip-flop 40.
  • the configuration of the filter circuit 3 can be variously changed.
  • another filter that operates as a low-pass filter for example, an RC filter may be used.
  • variable delay circuits 36 and 39 to facilitate the setting in accordance with the oscillation frequency of the PLL circuit 1 1 to 1 3, as illustrated in Figure 7, the PLL setting register 4
  • a delay setting circuit 6 for calculating the delay time d1 from the stored PLL setting data and generating delay setting data for designating the delay time d1.
  • the variable delay circuits 36 and 39 are set so as to have the delay time d1 specified in the delay setting data generated by the delay setting circuit 6.
  • the majority circuit 2 and the filter circuit 3 are not multiplexed, the incidence of radiation on the circuit elements constituting the majority circuit 2 and the filter circuit 3 may cause a malfunction.
  • the circuit scales of the majority circuit 2 and the filter circuit 3 can be reduced, malfunctions are unlikely to occur even in an environment where radiation is strong.
  • a plurality of MOS transistors to which the same signal is supplied to the gate are connected in series May be.
  • the inverter 50 may include PMOS transistors MP1 and MP2 and NMOS transistors MN1 and MN2.
  • the gates of the PMOS transistors MP1 and MP2 are commonly connected to the input terminal 51, and are connected in series between the output terminal 52 and the power supply line 53 where the power supply voltage VDD is generated.
  • the gates of the NMOS transistors MN1 and MN2 are commonly connected to the input terminal 51, and are connected in series between the output terminal and the ground line 54 having the ground potential VSS.

Abstract

半導体装置が、共通の基準クロック信号に同期して動作し、それぞれ、第1~第Nクロック信号を出力するように構成された第1~第NPLL回路と、前記第1~第Nクロック信号に対して多数決演算を行って多数決クロック信号を生成する多数決回路と、多数決クロック信号が入力され、ローパスフィルタとして動作して出力クロック信号を出力するフィルタ回路とを備えている。Nは、3以上の奇数である。

Description

半導体装置
 本発明は、半導体装置に関し、特に、クロック信号を生成するために好適に用いられる半導体装置に関する。
 クロック信号は、集積回路において回路の同期を確立するために広く用いられる。クロック信号は、最も典型的には、PLL(phase locked loop)回路を用いて生成され、同期して動作すべき回路に分配される。
 クロック信号を生成する回路の信頼性の向上は、半導体集積回路全体の動作の信頼性の向上のために有用である。放射線が強い環境、例えば、宇宙空間で用いられる集積回路においては、この問題は特に重要である。放射線が強い環境では、PLL回路は誤動作し得る。クロック信号を生成するPLL回路が誤動作すると、半導体集積回路の誤動作を招き得る。
 このような背景から、クロック信号を生成する回路の信頼性を向上するための技術の提供が求められている。
 なお、特開2003-163583号公報は、ノイズレベルが入力論理回路の閾値を超える場合でもノイズを除去することができる、非同期型ノイズフィルタ回路が開示されている。
特開2003-163583号公報
 したがって、本発明の目的は、クロック信号を生成する回路の信頼性を向上するための技術を提供することにある。本発明の他の目的及び新規な特徴は、以下の開示から当業者には理解されよう。
 本発明の一の観点では、半導体装置が、共通の基準クロック信号に同期して動作し、それぞれ、第1~第Nクロック信号(Nは、3以上の奇数)を出力するように構成された第1~第NPLL回路と、第1~第Nクロック信号に対して多数決演算を行って多数決クロック信号を生成する多数決回路と、多数決クロック信号が入力され、ローパスフィルタとして動作して出力クロック信号を出力するフィルタ回路とを備えている。
 一実施形態では、フィルタ回路は、多数決クロック信号又はその反転信号がリセット端子に入力される第1RSフリップフロップと、多数決クロック信号を遅延して生成した第1遅延信号を第1RSフリップフロップのセット端子に供給する第1遅延回路とを備えている。出力クロック信号が、第1RSフリップフロップのデータ出力から出力される信号に応じて生成される。
 フィルタ回路が、更に、多数決クロック信号が入力される第1インバータを備えていてもよく、この場合、第1RSフリップフロップのリセット端子には第1インバータの出力信号が入力される。
 第1遅延回路は、遅延時間が可変であるように構成されることが好ましい。この場合、第1遅延回路の遅延時間を指定する遅延設定データを格納する遅延設定レジスタを備えることが好ましい。
 他の実施形態では、更に、第1~第NPLL回路の発振周波数を指定するPLL設定データに基づいて第1遅延回路の遅延時間を設定する遅延設定回路を備えてもよい。
 一実施形態では、フィルタ回路は、多数決クロック信号が入力される第1フィルタと、第1フィルタの出力信号が入力される第2インバータと、第2インバータの出力信号が入力される第2フィルタとを備えている。第1フィルタは、多数決クロック信号と異なるデューティ比のクロック信号を出力するように構成されている。第1フィルタと第2フィルタとは、同一構成を有している。
 一実施形態では、フィルタ回路は、多数決クロック信号が入力される第1フィルタと、第1フィルタの出力信号が入力される第2インバータと、第2インバータの出力信号が入力される第2フィルタとを備えていてもよい。一実施形態では、第1フィルタは、多数決クロック信号が入力される第3インバータと、第1RSフリップフロップと、多数決クロック信号を遅延して生成した第1遅延信号を第1RSフリップフロップのセット端子に供給する第1遅延回路とを備えている。第2フィルタは、第2インバータの出力信号が入力される第4インバータと、第2RSフリップフロップと、第2インバータの出力信号を遅延して生成した第2遅延信号を第2RSフリップフロップのセット端子に供給する第2遅延回路とを備える。
 一実施形態では、第1遅延回路及び第2遅延回路は、同一の遅延時間を有し、且つ、遅延時間が可変であるように構成されている。この場合、第1~第NPLL回路の発振周波数を指定するPLL設定データに基づいて第1遅延回路及び第2遅延回路の遅延時間を設定する遅延設定回路を備えていてもよい。
 本発明によれば、クロック信号を生成する回路の信頼性を向上することができる。
一実施形態における半導体装置の構成を示すブロック図である。 PLL回路の構成の一例を示すブロック図である。 多数決クロック信号にノイズを発生させるようなクロック信号の位相差の例を示すタイミングチャートである。 多数決クロック信号の波形のシミュレーション結果を示すタイミングチャートである。 前段フィルタ及び後段フィルタの動作を示すタイミングチャートである。 他の実施形態の半導体装置の構成を示すブロック図である。 更に他の実施形態の半導体装置の構成を示すブロック図である。 同一の信号がゲートに供給されている複数のMOSトランジスタを直列に接続したインバータの構成の一例を示す回路図である。
 以下、添付図面を参照しながら、実施形態を説明する。
 図1は、一実施形態における半導体装置100の構成を示すブロック図である。半導体装置100は、PLL回路の多重化によって放射線が強い環境においても高信頼度で出力クロック信号CKOUTを生成するように構成されており、具体的には、PLL回路1~1と、多数決回路2と、フィルタ回路3とを備えている。
 PLL回路1~1には基準クロック信号CKREFが共通に入力されており、PLL回路1~1は、基準クロック信号CKREFに同期するクロック信号CK1~CK3をそれぞれ生成する。PLL回路1~1は、PLL設定レジスタ4に接続されており、PLL設定レジスタ4に設定されたPLL設定データによって指定される周波数でクロック信号CK1~CK3を生成する。設定データは、一実施形態では、PLL回路1~1に含まれる分周器の分周比を含んでいてもよい。
 図2は、PLL回路1~1の構成の一例を示すブロック図である。本実施形態では、PLL回路1~1は、同一の構成を有しており、それぞれが、分周器11、12と、位相比較器13と、チャージポンプ14と、ループフィルタ15と、電圧制御発振器(VCO:voltage controlled oscillator)16とを備えている。PLL回路1~1の電圧制御発振器16の出力信号が、それぞれ、クロック信号CK1~CK3として多数決回路2に入力される。
 分周器11は、基準クロック信号CKREFを分周し、分周器12は、電圧制御発振器16の出力信号を分周する。分周器11の分周比はRであり、分周器11の出力信号の周波数は、基準クロック信号CKREFの周波数の1/Rである。一方、分周器12の分周比はNであり、分周器12の出力信号の周波数は、電圧制御発振器16の出力信号の1/Nである。
 位相比較器13は、分周器11、12の出力信号の位相を比較し、これらの出力信号の位相差に対応する出力信号を出力する。
 チャージポンプ14は、位相比較器13からの出力信号に応じて、分周器11、12の出力信号の位相差に対応する信号レベルを有する電圧信号を、ループフィルタ15を介して電圧制御発振器16に供給する。一実施形態では、ループフィルタ15は、ローパスフィルタとして構成される。
 分周器11、12の分周比R、Nは、PLL設定レジスタ4に格納されたPLL設定データによって指定される。PLL回路1~1の発振周波数は、分周器11、12の分周比R、NをPLL設定データによって適宜に設定することにより、所望の周波数に設定される。
 図1に戻り、多数決回路2は、PLL回路1~1から受け取ったクロック信号CK1~CK3に対して多数決演算を行うことにより多数決クロック信号CKMJRを生成する。多数決演算とは、全入力のうちの過半数を占める状態を持つ出力を得る演算のことである。本実施形態では、多数決回路2は、NANDゲート21~24を備えている。
 NANDゲート21は、PLL回路1からのクロック信号CK1が入力される第1入力と、PLL回路1からのクロック信号CK2が入力される第2入力とを有しており、クロック信号CK1、CK2の否定論理積の値を有する出力信号を出力する。NANDゲート22は、PLL回路1からのクロック信号CK2が入力される第1入力と、PLL回路1からのクロック信号CK3が入力される第2入力とを有しており、クロック信号CK2、CK3の否定論理積の値を有する出力信号を出力する。NANDゲート23は、PLL回路1からのクロック信号CK3を受け取る第1入力と、PLL回路1からのクロック信号CK1を受け取る第2入力とを有しており、クロック信号CK3、CK1の否定論理積の値を有する出力信号を出力する。NANDゲート24は、NANDゲート21~23の出力信号がそれぞれに入力される第1~第3入力を有しており、NANDゲート21~23の出力信号の否定論理積の値を有する出力信号を出力する。NANDゲート24の出力信号が多数決クロック信号CKMJRである。
 多数決回路2から出力される多数決クロック信号CKMJRは、クロック信号CK1~CK3に対して多数決演算を行うことにより得られているので、PLL回路1~1のうちの一つが例えば放射線の影響によって誤動作しても、適正な多数決クロック信号CKMJRを生成することができる。
 しかしながら、PLL回路1~1は、それぞれが独立したフィードバックループを有しているので、PLL回路1~1から出力されるクロック信号CK1~CK3の間で位相差が生じ得る。クロック信号CK1~CK3の位相差は、多数決クロック信号CKMJRにノイズが発生する原因となり得る。
 図3は、多数決クロック信号CKMJRにノイズを発生させるようなクロック信号CK1~CK3の間の位相差の例を示している。図3の例では、クロック信号CK1~CK3は、同一の周期Tを有している。クロック信号CK2は、クロック信号CK1から遅延時間d2だけ遅延されている。クロック信号CK3は、クロック信号CK1から反転され(即ち、T/2だけ遅延され)、更に、遅延時間d3だけ遅延されている。
 図4は、クロック信号CK1~CK3の周波数が200MHzであり、クロック信号CK2の遅延時間d2が300psであり、クロック信号CK3の遅延時間d3が60~240psである場合の多数決クロック信号CKMJRの波形のシミュレーション結果を示している。図4から理解されるように、遅延時間d3が80~200psである場合に多数決クロック信号CKMJRのパルスの立ち上がりエッジ及び立ち下がりエッジの近傍に顕著なノイズが発生し、多数決クロック信号CKMJRの波形が乱れる。このような波形の乱れは好ましくない。
 上述されているようなノイズを除去するために、本実施形態では、多数決クロック信号CKMJRがローパスフィルタとして動作するフィルタ回路3に入力され、フィルタ回路3から出力クロック信号CKOUTが出力される。
 図1を再度に参照して、本実施形態では、フィルタ回路3が、前段フィルタ31と、インバータ32と、後段フィルタ33と、インバータ34とを備えている。
 前段フィルタ31は、インバータ35と、可変遅延回路36と、RSフリップフロップ37とを備えている。インバータ35は、その入力に多数決クロック信号CKMJRが入力されており、多数決クロック信号CKMJRを反転して得られる反転信号をRSフリップフロップ37のリセット端子に供給する。可変遅延回路36は、多数決クロック信号CKMJRを遅延して得られる遅延信号をRSフリップフロップ37のセット端子に供給する。可変遅延回路36は、その遅延時間が可変であるように構成されている。可変遅延回路36の遅延時間d1は、PLL回路1~1の発振周波数に合わせて設定される。本実施形態では、可変遅延回路36の遅延時間d1は、遅延設定レジスタ5に格納された遅延設定データによって指定される。
 インバータ32は、前段フィルタ31の出力信号を反転して後段フィルタ33に供給する。
 後段フィルタ33は、前段フィルタ31と同一の構成を有しており、インバータ38と、可変遅延回路39と、RSフリップフロップ40とを備えている。インバータ38は、その入力にインバータ32の出力信号が入力されており、インバータ32の出力信号を反転して得られる反転信号をRSフリップフロップ40のリセット端子に供給する。可変遅延回路39は、インバータ32の出力信号を遅延して得られる遅延信号をRSフリップフロップ37のセット端子に供給する。可変遅延回路39は、その遅延時間が可変であるように構成されている。可変遅延回路39は、遅延設定レジスタ5に格納された遅延設定データにより、前段フィルタ31の可変遅延回路36と同一の遅延時間d1を有するように設定される。
 インバータ34は、後段フィルタ33の出力信号の反転信号を生成し、出力クロック信号CKOUTとして出力する。
 前段フィルタ31、後段フィルタ33の可変遅延回路36、39の遅延時間d1を、PLL回路1~1の発振周波数に応じて設定することで、前段フィルタ31、後段フィルタ33は、ローパスフィルタとして機能する。
 前段フィルタ31は、それ単独でも、ローパスフィルタとして動作し、ノイズを除去する機能を有している。しかしながら、前段フィルタ31は、可変遅延回路36の遅延時間d1だけ、パルス幅を広げる(ハイレベルに維持される時間を長くする)動作を行うので、多数決クロック信号CKMJRのデューティ比が50%であっても、前段フィルタ31の出力信号のデューティ比は50%にはならない。
 インバータ32と後段フィルタ33は、デューティ比が50%の出力クロック信号CKOUTを得るために用いられる。後段フィルタ33は、前段フィルタ31と同一の構成を有しており、前段フィルタ31の出力信号の反転信号について、可変遅延回路39の遅延時間d1だけパルス幅を広げる動作を行うので、結果として、後段フィルタ33から出力される出力信号のデューティ比は50%になる。
 図5は、前段フィルタ31と後段フィルタ33の動作の例を示すタイミングチャートである。記号“A”~“H”は、それぞれ、フィルタ回路3のノードA~Hにおける信号波形を示している。
 前段フィルタ31は、下記のように動作する。ノードAには、多数決クロック信号CKMJRが入力されており、ノードAの信号波形のデューティ比は50%である。ノードBには、多数決クロック信号CKMJRの反転信号が生成される。ノードCには、多数決クロック信号CKMJRを遅延時間d1だけ遅延した遅延信号が生成される。
 ノードBがRSフリップフロップ37のリセット端子に接続され、ノードCがRSフリップフロップ37のセット端子に接続されているので、RSフリップフロップ37のデータ出力に接続されたノードDには、多数決クロック信号CKMJRのパルス幅が遅延時間d1だけ広げられた信号が生成される。
 一方で、後段フィルタ33は、前段フィルタ31から出力された出力信号の反転信号に対して前段フィルタ31と同様の動作を行う。ノードEには、インバータ32の出力信号の反転信号が生成される。ノードCには、インバータ32の出力信号を遅延時間d1だけ遅延した遅延信号が生成される。ノードEがRSフリップフロップ40のリセット端子に接続され、ノードFがRSフリップフロップ40のセット端子に接続されているので、RSフリップフロップ40のデータ出力に接続されたノードGには、インバータ32の出力信号(即ち、前段フィルタ31の出力信号の反転信号)のパルス幅が遅延時間d1だけ広げられた信号が生成される。結果として、後段フィルタ33の出力信号、及び、出力クロック信号CKOUTのデューティ比は、50%になる。
 なお、前段フィルタ31のインバータ35及び可変遅延回路36は、総合すると、RSフリップフロップ37のリセット端子とセット端子に適切な位相差で多数決クロック信号CKMJRを供給する機能を有しているので、可変遅延回路36の遅延時間d1を適切に設定すれば、インバータ35は、必ずしも必要ではない。同様の理由により、後段フィルタ33のインバータ38も、必ずしも必要ではない。
 図6は、インバータ35、38を設けない構成のフィルタ回路3を示している。図6の構成では、RSフリップフロップ37のリセット端子に多数決クロック信号CKMJRが入力され、RSフリップフロップ40のリセット端子にインバータ32の出力信号が入力される。ただし、図6の構成では、可変遅延回路36、39の遅延時間d1を長く設定する必要があるので、図1に図示されるように、インバータ35、38が設けられることが好ましい。
 フィルタ回路3の構成は、他にも様々に変更され得る。例えば、フィルタ回路3として、ローパスフィルタとして動作する他のフィルタ、例えば、RCフィルタが用いられてもよい。
 可変遅延回路36、39の遅延時間d1をPLL回路1~1の発振周波数に応じて設定することを容易にするためには、図7に図示されているように、PLL設定レジスタ4に格納されたPLL設定データから、遅延時間d1を算出して遅延時間d1を指定する遅延設定データを生成する遅延設定回路6が設けられてもよい。この場合、可変遅延回路36、39は、遅延設定回路6によって生成された遅延設定データに指定された遅延時間d1を有するように設定される。
 本実施形態では、多数決回路2及びフィルタ回路3の多重化は行われていないので、多数決回路2及びフィルタ回路3を構成する回路素子への放射線の入射は、誤動作の原因になり得る。しかしながら、多数決回路2及びフィルタ回路3の回路規模は小さくできるので、放射線が強い環境でも誤動作は生じにくい。多数決回路2及びフィルタ回路3の動作の信頼性を高めるためには、多数決回路2及びフィルタ回路3に含まれる論理ゲートにおいて、同一の信号がゲートに供給されている複数のMOSトランジスタを直列に接続してもよい。
 例えば、図8に示すように、インバータ50が、PMOSトランジスタMP1、MP2と、NMOSトランジスタMN1、MN2とを備えていてもよい。PMOSトランジスタMP1、MP2は、そのゲートが入力端子51に共通に接続されており、出力端子52と電源電圧VDDが生成された電源ライン53との間に直列に接続されている。NMOSトランジスタMN1、MN2は、そのゲートが入力端子51に共通に接続されており、出力端子と接地電位VSSを有する接地ライン54との間に直列に接続されている。
 以上には、本発明の実施形態が具体的に記述されているが、本発明は、上記の実施形態に限定されない。本発明が種々の変更と共に実施され得ることは、当業者には理解されよう。
 尚、この出願は、2018年6月15日に出願された日本特許出願2018-114846号を基礎とする優先権を主張し、その開示の全てを引用によりここに組み込む。

Claims (10)

  1.  共通の基準クロック信号に同期して動作し、それぞれ、第1~第Nクロック信号(Nは、3以上の奇数)を出力するように構成された第1~第NPLL回路と、
     前記第1~第Nクロック信号に対して多数決演算を行って多数決クロック信号を生成する多数決回路と、
     前記多数決クロック信号が入力され、ローパスフィルタとして動作して出力クロック信号を出力するフィルタ回路
    とを備える
     半導体装置。
  2.  請求項1に記載の半導体装置であって、
     前記フィルタ回路は、
      前記多数決クロック信号又は前記多数決クロック信号を反転した反転信号がリセット端子に入力される第1RSフリップフロップと、
      前記多数決クロック信号を遅延して生成した第1遅延信号を前記第1RSフリップフロップのセット端子に供給する第1遅延回路
    とを備え、
     前記出力クロック信号が、前記第1RSフリップフロップのデータ出力から出力される信号に応じて生成される
     半導体装置。
  3.  請求項2に記載の半導体装置であって、
     前記フィルタ回路が、更に、前記多数決クロック信号が入力される第1インバータを備え、
     前記第1RSフリップフロップの前記リセット端子には前記第1インバータの出力信号が入力される
     半導体装置。
  4.  請求項2又は3に記載の半導体装置であって、
     前記第1遅延回路は、遅延時間が可変であるように構成された
     半導体装置。
  5.  請求項4に記載の半導体装置であって、
     更に、前記遅延時間を指定する遅延設定データを格納する遅延設定レジスタを備える
     半導体装置。
  6.  請求項4に記載の半導体装置であって、
     更に、前記第1~第NPLL回路の発振周波数を指定するPLL設定データに基づいて前記第1遅延回路の前記遅延時間を設定する遅延設定回路を備える
     半導体装置。
  7.  請求項1に記載の半導体装置であって、
     前記フィルタ回路は、
      前記多数決クロック信号が入力される第1フィルタと、
      前記第1フィルタの出力信号が入力される第2インバータと、
      前記第2インバータの出力信号が入力される第2フィルタ
    とを備え、
     前記第1フィルタは、前記多数決クロック信号と異なるデューティ比のクロック信号を出力するように構成され、
     前記第1フィルタと前記第2フィルタとが同一構成を有している
     半導体装置。
  8.  請求項1に記載の半導体装置であって、
     前記フィルタ回路は、
      前記多数決クロック信号が入力される第1フィルタと、
      前記第1フィルタの出力信号が入力される第2インバータと、
      前記第2インバータの出力信号が入力される第2フィルタ
    とを備え、
     前記第1フィルタは、
      前記多数決クロック信号が入力される第3インバータと、
      第1RSフリップフロップと、
      前記多数決クロック信号を遅延して生成した第1遅延信号を前記第1RSフリップフロップのセット端子に供給する第1遅延回路
    とを備え、
     前記第2フィルタは、
      前記第2インバータの出力信号が入力される第4インバータと、
      第2RSフリップフロップと、
      前記第2インバータの前記出力信号を遅延して生成した第2遅延信号を前記第2RSフリップフロップのセット端子に供給する第2遅延回路
    とを備える
     半導体装置。
  9.  請求項8に記載の半導体装置であって、
     前記第1遅延回路及び前記第2遅延回路は、同一の遅延時間を有し、且つ、前記遅延時間が可変であるように構成された
     半導体装置。
  10.  請求項9に記載の半導体装置であって、
     前記第1~第NPLL回路の発振周波数を指定するPLL設定データに基づいて前記第1遅延回路及び前記第2遅延回路の前記遅延時間を設定する遅延設定回路を備える
     半導体装置。
     
PCT/JP2019/022356 2018-06-15 2019-06-05 半導体装置 WO2019239984A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US16/970,750 US11115035B2 (en) 2018-06-15 2019-06-05 Semiconductor devices
EP19818654.6A EP3748855A4 (en) 2018-06-15 2019-06-05 SEMICONDUCTOR DEVICE

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018114846A JP7255790B2 (ja) 2018-06-15 2018-06-15 半導体装置
JP2018-114846 2018-06-15

Publications (1)

Publication Number Publication Date
WO2019239984A1 true WO2019239984A1 (ja) 2019-12-19

Family

ID=68842215

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/022356 WO2019239984A1 (ja) 2018-06-15 2019-06-05 半導体装置

Country Status (4)

Country Link
US (1) US11115035B2 (ja)
EP (1) EP3748855A4 (ja)
JP (1) JP7255790B2 (ja)
WO (1) WO2019239984A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI750021B (zh) * 2021-02-01 2021-12-11 瑞昱半導體股份有限公司 可靠度偵測裝置與可靠度偵測方法
WO2023161758A1 (ja) * 2022-02-25 2023-08-31 株式会社半導体エネルギー研究所 半導体装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5934013B2 (ja) * 1979-04-06 1984-08-20 株式会社京三製作所 多数決判定方式
JPH06303135A (ja) * 1993-04-13 1994-10-28 Hitachi Ltd クロック発生回路
JPH07193495A (ja) * 1993-12-27 1995-07-28 Mitsubishi Electric Corp 冗長クロック回路
JP2003163583A (ja) 2001-11-22 2003-06-06 Toshiba Corp 非同期型ノイズフィルタ回路
US6728327B1 (en) * 2000-01-05 2004-04-27 Lsi Logic Corporation Lower-jitter phase-locked loop
JP2018114846A (ja) 2017-01-18 2018-07-26 住友ゴム工業株式会社 タイヤ

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5934013A (ja) 1982-08-19 1984-02-24 Matsushita Electric Ind Co Ltd 流れ方向制御装置
EP0570158B1 (en) * 1992-05-08 2000-01-19 National Semiconductor Corporation Frequency multiplication circuit and method for generating a stable clock signal
JP3724398B2 (ja) * 2001-02-20 2005-12-07 ティアック株式会社 信号処理回路及び信号処理方法
DE60201030T2 (de) 2001-03-27 2005-08-18 Acuid Corp. (Guernsey) Ltd., St. Peter Port Empfänger mit einer rückgewinnungsschaltung mittels überabtastung und mehrheitsentscheidung
JP5793460B2 (ja) 2012-03-30 2015-10-14 富士通株式会社 可変遅延回路
JP5934013B2 (ja) 2012-04-05 2016-06-15 ヒロセ株式会社 補強土壁の足場構造及びその設置治具
WO2014203468A1 (ja) 2013-06-18 2014-12-24 パナソニックIpマネジメント株式会社 誘導加熱調理器
US9372752B2 (en) 2013-12-27 2016-06-21 Intel Corporation Assisted coherent shared memory
JP7193495B2 (ja) 2020-03-31 2022-12-20 トヨタ自動車株式会社 車両用の熱管理システム

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5934013B2 (ja) * 1979-04-06 1984-08-20 株式会社京三製作所 多数決判定方式
JPH06303135A (ja) * 1993-04-13 1994-10-28 Hitachi Ltd クロック発生回路
JPH07193495A (ja) * 1993-12-27 1995-07-28 Mitsubishi Electric Corp 冗長クロック回路
US6728327B1 (en) * 2000-01-05 2004-04-27 Lsi Logic Corporation Lower-jitter phase-locked loop
JP2003163583A (ja) 2001-11-22 2003-06-06 Toshiba Corp 非同期型ノイズフィルタ回路
JP2018114846A (ja) 2017-01-18 2018-07-26 住友ゴム工業株式会社 タイヤ

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3748855A4

Also Published As

Publication number Publication date
JP7255790B2 (ja) 2023-04-11
US11115035B2 (en) 2021-09-07
US20210099180A1 (en) 2021-04-01
EP3748855A4 (en) 2021-01-20
JP2019220763A (ja) 2019-12-26
EP3748855A1 (en) 2020-12-09

Similar Documents

Publication Publication Date Title
KR100861919B1 (ko) 다 위상 신호 발생기 및 그 방법
EP2867898B1 (en) A low-noise and low-reference spur frequency multiplying delay lock-loop
US8358160B2 (en) Clock signal generation circuit
KR100631166B1 (ko) 지연고정 시간을 줄인 레지스터 제어 지연고정루프
US8803575B2 (en) Charge pump circuit
JP2006319966A (ja) 位相補間回路及び位相補間信号の発生方法
WO2019239984A1 (ja) 半導体装置
US8872553B1 (en) Frequency multiplier
KR20070071141A (ko) 지연 고정 루프 기반의 주파수 체배 기능을 갖는 클럭발생기
TWI392992B (zh) 時脈產生電路及其時脈產生方法
US10700669B2 (en) Avoiding very low duty cycles in a divided clock generated by a frequency divider
CN110198162B (zh) 包括时钟发生电路的半导体器件
KR100853862B1 (ko) 지연 고정 루프 기반의 주파수 체배기
US6900684B2 (en) Pulse processing circuit and frequency multiplier circuit
JP4818173B2 (ja) アナログdll回路
US10367494B2 (en) Fast-response references-less frequency detector
US9543962B1 (en) Apparatus and methods for single phase spot circuits
EP4150760B1 (en) Frequency doubler based on phase frequency detectors using rising edge delay
TWI462483B (zh) 用來產生輸出時脈訊號的時脈產生電路及相關方法
JP2010074562A (ja) Pll回路
KR20100079123A (ko) 아날로그 지연 동기 루프 회로
JP2008244546A (ja) アナログdll回路

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19818654

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019818654

Country of ref document: EP

Effective date: 20200831

NENP Non-entry into the national phase

Ref country code: DE