WO2019222865A1 - 一种改善了对位选择性的分子筛烷基化催化剂及其制备方法和应用 - Google Patents

一种改善了对位选择性的分子筛烷基化催化剂及其制备方法和应用 Download PDF

Info

Publication number
WO2019222865A1
WO2019222865A1 PCT/CN2018/000284 CN2018000284W WO2019222865A1 WO 2019222865 A1 WO2019222865 A1 WO 2019222865A1 CN 2018000284 W CN2018000284 W CN 2018000284W WO 2019222865 A1 WO2019222865 A1 WO 2019222865A1
Authority
WO
WIPO (PCT)
Prior art keywords
molecular sieve
zsm
solution
catalyst
hours
Prior art date
Application number
PCT/CN2018/000284
Other languages
English (en)
French (fr)
Inventor
谢素娟
陈福存
徐龙伢
张爽
李洪星
高扬
王玉忠
刘盛林
朱向学
李秀杰
崔倩
Original Assignee
中国科学院大连化学物理研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国科学院大连化学物理研究所 filed Critical 中国科学院大连化学物理研究所
Publication of WO2019222865A1 publication Critical patent/WO2019222865A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/80Mixtures of different zeolites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/40Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11, as exemplified by patent documents US3702886, GB1334243 and US3709979, respectively
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2/00Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms
    • C07C2/54Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms by addition of unsaturated hydrocarbons to saturated hydrocarbons or to hydrocarbons containing a six-membered aromatic ring with no unsaturation outside the aromatic ring
    • C07C2/64Addition to a carbon atom of a six-membered aromatic ring
    • C07C2/66Catalytic processes
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2/00Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms
    • C07C2/54Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms by addition of unsaturated hydrocarbons to saturated hydrocarbons or to hydrocarbons containing a six-membered aromatic ring with no unsaturation outside the aromatic ring
    • C07C2/64Addition to a carbon atom of a six-membered aromatic ring
    • C07C2/66Catalytic processes
    • C07C2/70Catalytic processes with acids
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2529/00Catalysts comprising molecular sieves
    • C07C2529/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites, pillared clays
    • C07C2529/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • C07C2529/80Mixtures of different zeolites
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Definitions

  • the invention belongs to the field of heterogeneous catalysis, and particularly relates to a molecular sieve alkylation catalyst with improved para-selectivity, and a preparation method and application thereof.
  • Methyl ethylbenzene is a key raw material for the production of methyl styrene, and then for chemicals such as resins, plastics, rubber and coatings.
  • PET p-methyl ethyl benzene
  • MET m-methyl ethyl benzene
  • OFET o-methyl ethyl benzene
  • p-methyl styrene obtained by PET dehydrogenation (PMS) can be used to produce high-end specialty chemicals such as high-end resins, high-performance rubbers, new plastics, and special coatings.
  • the alkylation reaction of toluene and ethylene can be used to prepare methyl ethylbenzene, but the methyl ethyl benzene obtained by the conventional Friedel-Crafts catalyst is composed of three isomers with thermodynamic equilibrium, of which MET ⁇ 50% and PET ⁇ 30% , OET ⁇ 20%. Therefore, in order to improve the selectivity of PET (selectivity of PET in methyl ethylbenzene, the same applies hereinafter), and to suppress the formation of OET, the development of a catalyst having a shape-selective effect is very important.
  • PET-based follow-up products have significant advantages over MET-based follow-up products, and many studies have focused on developing catalysts with high PET selectivity (typically> 95%).
  • USP5698756 discloses that a silicon polymer is used to perform multiple silicon deposition modification on ZSM-5 molecular sieve, and then the alkali metal ion exchange is performed, and the obtained catalyst has high PET selectivity under the condition of hydrogen.
  • CN201110217577.4 discloses the modification of the mordenite with alkaline earth metal compounds and copper-containing compounds, followed by IVA group element compounds and binder extrusion molding.
  • the catalyst obtained by drying and calcination is PET selected under the condition of hydrogen. Sex can reach more than 95%.
  • the purpose of the present invention is to address the lack of the above-mentioned prior art.
  • the ZSM-5 / ZSM-11 co-crystal molecular sieve is used as the main body, and the acidity and molecular sieves of the molecular sieve are adjusted by various methods such as high temperature roasting, ion exchange, hydrothermal treatment and element modification. Pore structure.
  • a molecular sieve alkylation catalyst with improved para-selectivity and its preparation method have been developed.
  • the catalyst of the present invention is used in the alkylation process of toluene and ethylene, and can inhibit o-methylethylbenzene Formation (OET selectivity ⁇ 0.5%), and the selectivity to methyl ethylbenzene is significantly higher than the thermodynamic equilibrium value (PET selectivity ⁇ 37%).
  • the invention relates to a molecular sieve alkylation catalyst with improved paraselectivity.
  • the composition of the catalyst in mass percentage is: ZSM-5 / ZSM-11 co-crystal molecular sieve 60% to 88%, and a binder 9 to 34. %, II-A, IIIA or VA group element oxide 2 to 7%.
  • the ZSM-5 / ZSM-11 co-crystal molecular sieve contains 10 to 40% by mass of ZSM-5 molecular sieve; the binder is alumina or silica; and the group II element A oxide is magnesium oxide or oxide Calcium, the group IIIA element oxide is boron oxide, and the group VA element oxide is phosphorus oxide.
  • a method for preparing a molecular sieve alkylation catalyst with improved para-selectivity including the following steps: (1) ZSM-5 / ZSM-11 co-crystal molecular sieve and binder are 65-90% on a dry basis mass percentage : 10 ⁇ 35% mixed, and then add 2 ⁇ 4% of the total dry mass of the co-crystal molecular sieve and the binder, and mix it uniformly.
  • the total dry mass ratio of the co-crystal molecular sieve and the binder is 0.3-
  • the mass concentration of 0.6: 1 is 7-12% dilute nitric acid solution, which is kneaded, extruded, and then dried at 100-120 ° C for 4-15 hours, and then raised to 530-560 at a heating rate of 1-3 ° C / min. Roasting at °C for 3 ⁇ 6h to obtain the molded product a;
  • the molded product a is ion-exchanged 1 to 3 times with a molar concentration of 0.6 to 1.0M ammonium chloride solution or a dilute hydrochloric acid solution of 0.1 to 0.2M.
  • Solid-liquid ratio 1 2.5 ⁇ 4.5g / ml
  • each ion exchange condition is: temperature 60 ⁇ 90 °C, time 1 ⁇ 3h
  • washing three times solid-liquid ratio 1: 4 ⁇ 8g / ml
  • each washing condition is : A temperature of 60 to 90 ° C. for a period of 2 hours, followed by drying at 100 to 120 ° C. for 8 to 20 hours and baking at 500 to 520 ° C. for 3 hours to obtain a molded product b;
  • the conditions of the hydrothermal treatment are: temperature 500 to 570 ° C., time 2 to 6 h, and solid-water ratio 1: 2 to 4 g / ml;
  • the solution of the group II element A magnesium compound is a magnesium nitrate solution or a magnesium acetate solution
  • the solution of the calcium compound is a calcium nitrate solution
  • the solution of the group IIIA element boron compound is a boric acid solution
  • the group A element phosphorus compound The solution is any one of dilute phosphoric acid, ammonium hydrogen phosphate solution, or ammonium dihydrogen phosphate solution.
  • An application of a molecular sieve alkylation catalyst with improved para-selectivity is provided.
  • the catalyst is applied to the process of alkylation of toluene and ethylene to prepare p-methylethylbenzene and m-methylethylbenzene.
  • the main body of the catalyst in the above technical solution of the present invention uses ZSM-5 / ZSM-11 co-crystal molecular sieves, which can take advantage of the advantages of ZSM-5 and ZSM-11 molecular sieves and produce synergistic effects; reasonable use of high-temperature roasting, ion exchange, Hydrothermal treatment and the introduction of modifying elements can effectively modify the acidity and pore texture properties of molecular sieve catalysts.
  • the prepared catalyst can improve the selectivity to methyl ethylbenzene during the alkylation of toluene and ethylene, and effectively inhibit the formation of o-methyl ethylbenzene. At the same time, it exhibits better reaction stability and overcomes the shortcomings of the prior art. , Has important application value.
  • the strip is formed, and then dried at 100 ° C for 15h, and then heated to 530 ° C for 6h at a heating rate of 3 ° C / min to obtain a molded product a1.
  • the molded product a1 is ionized 3 times with a molar concentration of 0.6M ammonium chloride solution.
  • Exchange, solid-liquid ratio 1: 4.5g / ml, each ion exchange condition is: temperature 90 °C, time 1h; washed three times, solid-liquid ratio 1: 4g / ml, each water-wash condition is: temperature 60 °C, time 2h Then, it is dried at 120 ° C for 8 hours, and baked at 500 ° C for 3 hours to obtain a molded article b1.
  • the molded article b1 is subjected to steam treatment to obtain a molded article c1.
  • the conditions of hydrothermal treatment are: temperature 500 ° C, time 6h, and solid-water ratio 1: 2g. / ml; impregnating c1 with a boric acid solution, drying at 110 ° C for 8 hours, and baking at 500 ° C for 6 hours to obtain a finished catalyst Agent Cat-1, which is shown in Table 1.
  • the strip is formed, and then dried at 110 ° C for 10h, and then heated to 550 ° C at a heating rate of 1.5 ° C / min for 4h to obtain a molded product a2.
  • the molded product a2 is ionized once with a 1.0M molar ammonium chloride solution.
  • the strips are shaped, then dried at 120 ° C for 4h, and then heated to 560 ° C for 3h at a heating rate of 1 ° C / min to obtain a molded product a3.
  • the molded product a3 is ion-exchanged twice with a dilute hydrochloric acid solution having a molar concentration of 0.1M.
  • Solid-liquid ratio 1 4.5g / ml
  • each ion exchange condition is: temperature 80 °C, time 2h; washing three times, solid-liquid ratio 1: 6g / ml, each water-washing condition: temperature 80 °C, time 2h, Then, it is dried at 110 ° C for 15h and calcined at 520 ° C for 3h to obtain a molded product b3.
  • the molded product b3 is subjected to steam treatment to obtain a molded product c3.
  • the conditions of hydrothermal treatment are: temperature 540 ° C, time 4h, solid-water ratio 1: 3g / ml; impregnating c3 with a calcium nitrate solution, drying at 120 ° C for 6 hours, and baking at 520 ° C for 4 hours to obtain a finished product
  • the catalyst Cat-3 is shown in Table 1.
  • the molded product a4 was ion-exchanged once with a dilute hydrochloric acid solution having a molar concentration of 0.2M.
  • Solid-liquid ratio 1: 2.5g / ml, ion exchange conditions are: temperature 60 °C, time 3h; washing three times, solid-liquid ratio 1: 8g / ml, each water washing conditions: temperature 90 °C, time 2h, then in Drying at 120 ° C for 8h and baking at 520 ° C for 3h to obtain the molded product b4.
  • the molded product b4 was subjected to steam treatment to obtain the molded product c4.
  • the conditions of hydrothermal treatment were: temperature 560 ° C, time 2.5h, solid-water ratio 1: 2g / ml ; Dipping c4 with magnesium nitrate solution, drying at 110 ° C for 8h, and baking at 520 ° C for 4h to obtain finished catalyst Agent Cat-4, which is shown in Table 1.
  • the molded product b5 is subjected to steam treatment to obtain a molded product c5.
  • the conditions of hydrothermal treatment are: temperature 520 ° C, time 5h, solid-water ratio 1: 4g c5 was impregnated with a magnesium nitrate solution, dried at 110 ° C for 8 hours, and baked at 500 ° C for 6 hours to obtain a product
  • the catalyst Cat-5 which is shown in Table 1.
  • the molded object b 8 was subjected to steam treatment to obtain a molded object c 8.
  • the hydrothermal treatment conditions were: temperature 530 ° C., time 4.5 h, and solid-water ratio 1: 3g / ml; impregnating c8 with dilute phosphoric acid, drying at 110 ° C for 8 hours, and baking at 520 ° C for 4 hours to obtain a finished product
  • the catalyst Cat-8 is shown in Table 1.
  • the catalysts obtained in Examples 1 to 8 were used in the alkylation process of toluene and ethylene.
  • the evaluation of the reaction performance of the catalyst was performed on a conventional fixed-bed reaction device, and the amount of the catalyst was 3 g.
  • the catalyst was pretreated at 450 ° C for 1 hour in a nitrogen atmosphere, and then cooled down to the reaction temperature. The material was moved in and out, and toluene was quickly injected into the reaction system using a plunger pump. After the toluene was discharged from the outlet of the reaction device, ethylene was introduced (controlled by a mass flow meter) The required amount) is subjected to an alkylation reaction.
  • Ethylbenzene is selective and can significantly inhibit the formation of o-methylethylbenzene.
  • the results of 500h stability evaluation of the catalyst Cat-5 of Example 5 showed that the average ethylene conversion of the catalyst was 99.24%, the average PET selectivity was 49.10%, and the average OET selectivity was 0.05%, indicating that Its excellent reaction stability and good product selectivity further illustrate the advantages of the present invention.
  • Ethylene conversion rate 100% ⁇ (feed ethylene / methane-output ethylene / methane) / (feed ethylene / methane)
  • PET (or MET or OET) selectivity 100% ⁇ (PET production (or MET or OET) / methyl ethylbenzene production)

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Catalysts (AREA)

Abstract

一种改善了对位选择性的分子筛烷基化催化剂及其制备方法和应用,属于多相催化领域。该催化剂按质量百分比具有以下组成:ZSM-5/ZSM-11共结晶分子筛60%~88%,粘结剂9%~34%,IIA、IIIA或VA族元素的氧化物2~7%。催化剂的制备方法主要包括:先将ZSM-5/ZSM-11共结晶分子筛与粘结剂混捏、挤条成型、干燥及焙烧,再经离子交换转换成氢型,接着采用水热处理,然后以IIA、IIIA或VA族元素化合物的溶液进行改性处理。该催化剂应用于甲苯与乙烯烷基化,可有效提高对甲基乙苯选择性、抑制邻甲基乙苯的生成,并显示出色的反应稳定性。

Description

一种改善了对位选择性的分子筛烷基化催化剂及其制备方法和应用 技术领域
本发明属于多相催化领域,具体涉及一种改善了对位选择性的分子筛烷基化催化剂及其制备方法和应用。
背景技术
甲基乙苯是生产甲基苯乙烯,进而制备树脂、塑料、橡胶和涂料等化学品的关键原料。甲基乙苯存在三个异构体:对甲基乙苯(PET)、间甲基乙苯(MET)和邻甲基乙苯(OET),其中,PET脱氢获得的对甲基苯乙烯(PMS)可用于生产高端树脂、高性能橡胶、新型塑料及特种涂料等高端专用化学品,其下游产品在汽车、能源、化工和材料等诸多行业具有广泛应用;MET脱氢产生的间甲基苯乙烯(MMS)也可广泛应用于树脂涂料、复合材料,乙烯基树脂及VPI绝缘浸渍漆中;而OET脱氢过程中会生成茚和茚满等影响最终聚合物性质的物质,且难于从甲基苯乙烯中去除,换言之,OET基本没有使用价值。因此,合成甲基乙苯时提高PET选择性、尽量避免OET的生成尤为重要。
甲苯与乙烯的烷基化反应可用于制备甲基乙苯,但常规Friedel-Crafts催化剂得到的甲基乙苯是组成为热力学平衡的三个异构体,其中MET~50%,PET~30%,OET~20%。因此,为提高PET选择性(PET在甲基乙苯中的选择性,以下同)并抑制OET的生成,具有择形效应的催化剂的开发至关重要。基于PET的后续产品比MET的后续产品具有显著优越性,诸多研究致力于开发具有高PET选择性(通常>95%)的催化剂。USP5698756披露了采用硅酮聚合物对ZSM-5分子筛进行多次硅沉积改性,再经碱金属离子交换,得到的催化剂在临氢条件下具有很高的PET选择性。CN201110217577.4披露了先对丝光沸石分别用碱土金属化合物、含铜化合物改性,再加入IVA族元素化合物及粘结剂挤条成型,经 过干燥、焙烧得到的催化剂在临氢条件下的PET选择性可达95%以上。然而,高PET选择性通常伴随着催化剂的快速失活,催化剂需频繁再生及乙烯需循环利用均对过程的操作性和经济性产生不利的影响。并且随着MET与PET分离技术的发展,从MET与PET混合物提取高浓度PET(进而获得对甲基苯乙烯)已取得突破。因此,开发生成对甲基乙苯和间甲基乙苯(其中PET选择性明显高于热力学平衡值)的活性高、稳定性好的择形烷基化催化剂具有应用价值。
发明内容
本发明的目的是针对上述现有技术的缺乏,以ZSM-5/ZSM-11共结晶分子筛为主体,利用高温焙烧、离子交换、水热处理及元素改性等多种手段调变分子筛的酸性和孔结构,通过大量的研究工作,开发出一种改善了对位选择性的分子筛烷基化催化剂及其制备方法,本发明催化剂用于甲苯与乙烯烷基化过程,可抑制邻甲基乙苯生成(OET选择性<0.5%),并且对甲基乙苯选择性明显高于热力学平衡值(PET选择性≥37%)。
本发明涉及一种改善了对位选择性的分子筛烷基化催化剂,所述催化剂按质量百分比的组成为:ZSM-5/ZSM-11共结晶分子筛60%~88%,粘结剂9~34%,II A、IIIA或VA族元素氧化物2~7%。
所述ZSM-5/ZSM-11共结晶分子筛含10~40%质量百分比的ZSM-5分子筛;所述粘结剂为氧化铝或氧化硅;所述II A族元素氧化物为氧化镁或氧化钙,所述IIIA族元素氧化物为氧化硼,所述V A族元素氧化物为氧化磷。
一种改善了对位选择性的分子筛烷基化催化剂的制备方法,包括如下步骤:(1)将ZSM-5/ZSM-11共结晶分子筛与粘结剂按照干基质量百分比为65~90%∶10~35%混合,再加入占共结晶分子筛和粘结剂的干基总质量2~4%的田菁粉混合均匀,用与共结晶分子筛和粘结剂的干基总质量比为0.3~0.6∶1的 质量浓度为7~12%稀硝酸溶液对其进行混捏、挤条成型,然后在100~120℃干燥4~15h,再以1~3℃/min的升温速率升至530~560℃焙烧3~6h,得到成型物a;(2)采用摩尔浓度为0.6~1.0M的氯化铵溶液或摩尔浓度为0.1~0.2M的稀盐酸溶液对成型物a进行1~3次离子交换,固液比1∶2.5~4.5g/ml,每次离子交换条件为:温度60~90℃,时间1~3h;水洗三次,固液比1∶4~8g/ml,每次水洗条件为:温度60~90℃,时间2h,然后在100~120℃干燥8~20h、500~520℃焙烧3h,得到成型物b;
(3)对成型物b进行水蒸气处理,得到成型物c,水热处理条件为:温度500~570℃,时间2~6h,固水比1∶2~4g/ml;
(4)以含II A、IIIA或V A族元素化合物的溶液对成型物c采用浸渍法进行改性,经过100~120℃干燥6~12h、500~530℃焙烧3~6h,得到最终催化剂。
所述步骤(4)中II A族元素镁化合物的溶液为硝酸镁溶液或醋酸镁溶液,钙化合物的溶液为硝酸钙溶液;IIIA族元素硼化合物的溶液为硼酸溶液;V A族元素磷化合物的溶液为稀磷酸、磷酸氢铵溶液或磷酸二氢铵溶液中的任意一种。
一种改善了对位选择性的分子筛烷基化催化剂的应用,所述催化剂应用于甲苯与乙烯烷基化制备对甲基乙苯和间甲基乙苯过程。
本发明所述上述技术方案中催化剂的主体采用ZSM-5/ZSM-11共结晶分子筛,可以兼顾利用ZSM-5和ZSM-11分子筛的优势,并产生协同效应;合理运用高温焙烧、离子交换、水热处理及引入改性元素,可有效调变分子筛催化剂的酸性和孔织构性质。所制备的催化剂在甲苯与乙烯烷基化过程中可提高对甲基乙苯的选择性,并有效抑制邻甲基乙苯的生成,同时表现较好反应稳定性,克服了现有技术的不足,具有重要应用价值。
具体实施方式
下面通过实施例对本发明做进一步说明,但本发明并不局限于所列出的实施例。
实施例1
取120g含10%质量百分比ZSM-5的ZSM-5/ZSM-11共结晶分子筛和77.8g氧化铝,二者的干基质量百分比为65%∶35%,加入3.2g田菁粉(占共结晶分子筛和氧化铝的干基总质量2%)混合均匀,再加入96g质量浓度为7%的稀硝酸溶液(与共结晶分子筛和氧化铝的干基总质量比为0.6∶1)进行混捏、挤条成型,然后在100℃干燥15h,再以3℃/min的升温速率升至530℃焙烧6h,得到成型物a1;采用摩尔浓度为0.6M的氯化铵溶液对成型物a1进行3次离子交换,固液比1∶4.5g/ml,每次离子交换条件为:温度90℃,时间1h;水洗三次,固液比1∶4g/ml,每次水洗条件为:温度60℃,时间2h,然后在120℃干燥8h、500℃焙烧3h,得到成型物b1;对成型物b1进行水蒸气处理,得到成型物c1,水热处理条件为:温度500℃,时间6h,固水比1∶2g/ml;以硼酸溶液对c1进行浸渍,经过110℃干燥8h、500℃焙烧6h,得到成品催化剂Cat-1,其组成示于表1。
实施例2
取150g含20%质量百分比ZSM-5的ZSM-5/ZSM-11共结晶分子筛和84.2g硅溶胶,二者的干基质量百分比为80%∶20%,加入4.8g田菁粉(占共结晶分子筛和氧化硅的干基总质量3%)混合均匀,再加入48g质量浓度为8.5%的稀硝酸溶液(与共结晶分子筛和氧化硅的干基总质量比为0.3∶1)进行混捏、挤条成型,然后在110℃干燥10h,再以1.5℃/min的升温速率升至550℃焙烧4h,得到成型物a2;采用摩尔浓度为1.0M的氯化铵溶液对成型物a2进行1次离子交换, 固液比1∶4g/ml,离子交换条件为:温度80℃,时间2h;水洗三次,固液比1∶5,每次水洗条件为:温度80℃,时间2h,然后在100℃干燥20h、520℃焙烧3h,得到成型物b2;对成型物b2进行水蒸气处理,得到成型物c2,水热处理条件为:温度530℃,时间4.5h,固水比1∶2.5g/ml;以醋酸镁溶液对c2进行浸渍,经过100℃干燥12h、530℃焙烧3h,得到成品催化剂Cat-2,其组成示于表1。
实施例3
取170g含30%质量百分比ZSM-5的ZSM-5/ZSM-11共结晶分子筛和22.2g氧化铝,二者的干基质量百分比为90%∶10%,加入6.4g田菁粉(占共结晶分子筛和氧化硅的干基总质量4%)混合均匀,再加入80g质量浓度为12%的稀硝酸溶液(与共结晶分子筛和氧化铝的干基总质量比为0.5∶1)进行混捏、挤条成型,然后在120℃干燥4h,再以1℃/min的升温速率升至560℃焙烧3h,得到成型物a3;采用摩尔浓度为0.1M的稀盐酸溶液对成型物a3进行2次离子交换,固液比1∶4.5g/ml,每次离子交换条件为:温度80℃,时间2h;水洗三次,固液比1∶6g/ml,每次水洗条件为:温度80℃,时间2h,然后在110℃干燥15h、520℃焙烧3h,得到成型物b3;对成型物b3进行水蒸气处理,得到成型物c3,水热处理条件为:温度540℃,时间4h,固水比1∶3g/ml;以硝酸钙溶液对c3进行浸渍,经过120℃干燥6h、520℃焙烧4h,得到成品催化剂Cat-3,其组成示于表1。
实施例4
取119g含40%质量百分比ZSM-5的ZSM-5/ZSM-11共结晶分子筛和77.8g氧化铝,二者的干基质量百分比为65%∶35%,加入4.8g田菁粉(占共结晶分子筛和氧化硅的干基总质量3%)混合均匀,再加入80g质量浓度为9%的稀硝酸 溶液(与共结晶分子筛和氧化铝的干基总质量比为0.5∶1)进行混捏、挤条成型,然后在114℃干燥8h,再以2℃/min的升温速率升至540℃焙烧5h,得到成型物a4;采用摩尔浓度为0.2M的稀盐酸溶液对成型物a4进行1次离子交换,固液比1∶2.5g/ml,离子交换条件为:温度60℃,时间3h;水洗三次,固液比1∶8g/ml,每次水洗条件为:温度90℃,时间2h,然后在120℃干燥8h、520℃焙烧3h,得到成型物b4;对成型物b4进行水蒸气处理,得到成型物c4,水热处理条件为:温度560℃,时间2.5h,固水比1∶2g/ml;以硝酸镁溶液对c4进行浸渍,经过110℃干燥8h、520℃焙烧4h,得到成品催化剂Cat-4,其组成示于表1。
实施例5
取160.6g含30%质量百分比ZSM-5的ZSM-5/ZSM-11共结晶分子筛和33.3g氧化铝,二者的干基质量百分比为85%∶15%,加入4.8g田菁粉(占共结晶分子筛和氧化硅的干基总质量3%)混合均匀,再加入72g质量浓度为9.3%的稀硝酸溶液(与共结晶分子筛和氧化铝的干基总质量比为0.45∶1)进行混捏、挤条成型,然后在110℃干燥10h,再以2℃/min的升温速率升至550℃焙烧4h,得到成型物a5;采用摩尔浓度为0.8M的氯化铵溶液对成型物a5进行2次离子交换,固液比1∶3g/ml,每次离子交换条件为:温度80℃,时间2h;水洗三次,固液比1∶5g/ml,每次水洗条件为:温度80℃,时间2h,然后在120℃干燥8h、520℃焙烧3h,得到成型物b5;对成型物b5进行水蒸气处理,得到成型物c5,水热处理条件为:温度520℃,时间5h,固水比1∶4g/ml;以硝酸镁溶液对c5进行浸渍,经过110℃干燥8h、500℃焙烧6h,得到成品催化剂Cat-5,其组成示于表1。
实施例6
取168.8g含20%质量百分比ZSM-5的ZSM-5/ZSM-11共结晶分子筛和22.2g氧化铝,二者的干基质量百分比为90%∶10%,加入6.4g田菁粉(占共结晶分子筛和氧化硅的干基总质量4%)混合均匀,再加入80g质量浓度为11%的稀硝酸溶液(与共结晶分子筛和氧化铝的干基总质量比为0.5∶1)进行混捏、挤条成型,然后在110℃干燥10h,再以2℃/min的升温速率升至540℃焙烧5h,得到成型物a6;采用摩尔浓度为0.8M的氯化铵溶液对成型物a6进行2次离子交换,固液比1∶3g/ml,每次离子交换条件为:温度80℃,时间2h;水洗三次,固液比1∶6g/ml,每次水洗条件为:温度80℃,时间2h,然后在110℃干燥12h、520℃焙烧3h,得到成型物b6;对成型物b6进行水蒸气处理,得到成型物c6,水热处理条件为:温度570℃,时间2h,固水比1∶3g/ml;以磷酸氢铵溶液对c6进行浸渍,经过110℃干燥8h、530℃焙烧3h,得到成品催化剂Cat-6,其组成示于表1。
实施例7
取155.6g含40%质量百分比ZSM-5的ZSM-5/ZSM-11共结晶分子筛和33.3g氧化铝,二者的干基质量百分比为85%∶15%,加入4.8g田菁粉(占共结晶分子筛和氧化硅的干基总质量3%)混合均匀,再加入88g质量浓度为8%的稀硝酸溶液(与共结晶分子筛和氧化铝的干基总质量比为0.55∶1)进行混捏、挤条成型,然后在120℃干燥4h,再以2℃/min的升温速率升至540℃焙烧5h,得到成型物a7;采用摩尔浓度为0.8M的氯化铵溶液对成型物a7进行2次离子交换,固液比1∶3g/ml,每次离子交换条件为:温度80℃,时间2h;水洗三次,固液比1∶5g/ml,每次水洗条件为:温度80℃,时间2h,然后在110℃干燥12h、520℃焙烧3h,得到成型物b7;对成型物b7进行水蒸气处理,得到成型物c7,水热处理条件为:温度550℃,时间3h,固水比1∶3.5g/ml;以磷酸二氢铵溶液对 c7进行浸渍,经过110℃干燥8h、530℃焙烧3h,得到成品催化剂Cat-7,其组成示于表1。
实施例8
取151.1g含30%质量百分比ZSM-5的ZSM-5/ZSM-11共结晶分子筛和44.4g氧化铝,二者的干基质量百分比为80%∶20%,加入4.8g田菁粉(占共结晶分子筛和氧化硅的干基总质量3%)混合均匀,再加入80g质量浓度为7.6%的稀硝酸溶液(与共结晶分子筛和氧化铝的干基总质量比为0.5∶1)进行混捏、挤条成型,然后在110℃干燥10h,再以1℃/min的升温速率升至560℃焙烧3h,得到成型物a8;采用摩尔浓度为0.1M的稀盐酸溶液对成型物a8进行2次离子交换,固液比1∶4g/ml,每次离子交换条件为:温度70℃,时间2.5h;水洗三次,固液比1∶6g/ml,每次水洗条件为:温度70℃,时间2h,然后在110℃干燥12h、520℃焙烧3h,得到成型物b8;对成型物b8进行水蒸气处理,得到成型物c8,水热处理条件为:温度530℃,时间4.5h,固水比1∶3g/ml;以稀磷酸对c8进行浸渍,经过110℃干燥8h、520℃焙烧4h,得到成品催化剂Cat-8,其组成示于表1。
实施例9
将实施例1~8所得催化剂用于甲苯与乙烯的烷基化过程。催化剂的反应性能评价在常规固定床反应装置上进行,催化剂用量3g。氮气气氛下催化剂在450℃预处理1h,然后降温至反应温度;物料上进下出,用柱塞泵向反应体系快速注入甲苯,待反应装置出口流出甲苯后,通入乙烯(用质量流量计控制所需量)进行烷基化反应。上述的乙烯原料中加入2wt.%的甲烷作为内标,气相和液相组分皆采用Agilent Technologies 7890B气相色谱仪进行分析,采用FID检测器,PONA色谱柱。反应条件为:压力0.5MPa,温度370℃,甲苯/乙烯(摩 尔比)7,乙烯重量空速0.3h -1。反应24h的结果列于表1。从表1可见,本发明实施例催化剂Cat-1、Cat-2、Cat-3、Cat-4、Cat-5、Cat-6、Cat-7和Cat-8具有高反应活性及良好的对甲基乙苯选择性,并能够显著抑制邻甲基乙苯的生成。此外,在上述反应条件下,对实施例5的催化剂Cat-5进行500h稳定性评价的结果显示,催化剂的平均乙烯转化率99.24%,平均PET选择性49.10%,平均OET选择性0.05%,表明其出色的反应稳定性及良好的产物选择性,进一步说明本发明的优越性。
本发明制备催化剂的性能按如下方法判断:
乙烯转化率=100%×(进料的乙烯/甲烷-出料的乙烯/甲烷)/(进料的乙烯/甲烷)
PET(或MET或OET)选择性=100%×(PET生成量(或MET或OET)/甲基乙苯生成量)
表1实施例1~7所得催化剂组成及其甲苯与乙烯烷基化反应结果
Figure PCTCN2018000284-appb-000001
Figure PCTCN2018000284-appb-000002

Claims (7)

  1. 一种改善了对位选择性的分子筛烷基化催化剂,其特征在于:该催化剂按质量百分比具有以下组成:ZSM-5/ZSM-11共结晶分子筛60%~88%,粘结剂9~34%,IIA、IIIA或VA族元素氧化物2~7%。
  2. 按照权利要求1所述一种改善了对位选择性的分子筛烷基化催化剂,其特征在于:所述ZSM-5/ZSM-11共结晶分子筛含10~40%质量百分比的ZSM-5分子筛。
  3. 按照权利要求1所述一种改善了对位选择性的分子筛烷基化催化剂,其特征在于:所述粘结剂为氧化铝或氧化硅。
  4. 按照权利要求1所述一种改善了对位选择性的分子筛烷基化催化剂,其特征在于:所述IIA族元素氧化物为氧化镁或氧化钙,所述IIIA族元素氧化物为氧化硼,所述VA族元素氧化物为氧化磷。
  5. 按照权利要求1~4中任意权利要求所述的一种改善了对位选择性的分子筛烷基化催化剂的制备方法,其特征在于包括以下步骤:
    (1)将ZSM-5/ZSM-11共结晶分子筛与粘结剂按照干基质量百分比为65~90%∶10~35%混合,再加入占共结晶分子筛和粘结剂的干基总质量2~4%的田菁粉混合均匀,用与共结晶分子筛和粘结剂的干基总质量比为0.3~0.6∶1的质量浓度为7~12%稀硝酸溶液对其进行混捏、挤条成型,然后在100~120℃干燥4~15h,再以1~3℃/min的升温速率升至530~560℃焙烧3~6h,得到成型物a;
    (2)采用摩尔浓度为0.6~1.0M的氯化铵溶液或摩尔浓度为0.1~0.2M的稀盐酸溶液对成型物a进行1~3次离子交换,固液比1∶2.5~4.5g/ml,每次离子交换条件为:温度60~90℃,时间1~3h;水洗三次,固液比1∶4~8g/ml,每次水洗条件为:温度60~90℃,时间2h,然后在100~120℃干燥8~20h、500~520℃焙烧3h,得到成型物b;
    (3)对成型物b进行水蒸气处理,得到成型物c,水热处理条件为:温度500~570℃,时间2~6h,固水比1∶2~4g/ml;
    (4)以含IIA、IIIA或VA族元素化合物的溶液对成型物c采用浸渍法进行改性,经过100~120℃干燥6~12h、500~530℃焙烧3~6h,得到最终催化剂。
  6. 按照权利要求5所述制备方法,其特征在于:所述步骤(4)中IIA族元素镁化合物的溶液为硝酸镁溶液或醋酸镁溶液,钙化合物的溶液为硝酸钙溶液;IIIA族元素硼化合物的溶液为硼酸溶液;VA族元素磷化合物的溶液为稀磷酸、磷酸氢铵溶液或磷酸二氢铵溶液中的任意一种。
  7. 按照权利要求1~4中任意权利要求所述的一种改善了对位选择性的分子筛烷基化催化剂的应用,其特征在于:该催化剂用于甲苯与乙烯烷基化制备对甲基乙苯和间甲基乙苯过程。
PCT/CN2018/000284 2018-05-25 2018-08-02 一种改善了对位选择性的分子筛烷基化催化剂及其制备方法和应用 WO2019222865A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810511603.6 2018-05-25
CN201810511603.6A CN108722474B (zh) 2018-05-25 2018-05-25 一种择形烷基化催化剂及其制备方法和应用

Publications (1)

Publication Number Publication Date
WO2019222865A1 true WO2019222865A1 (zh) 2019-11-28

Family

ID=63936163

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/000284 WO2019222865A1 (zh) 2018-05-25 2018-08-02 一种改善了对位选择性的分子筛烷基化催化剂及其制备方法和应用

Country Status (2)

Country Link
CN (1) CN108722474B (zh)
WO (1) WO2019222865A1 (zh)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111604057A (zh) * 2020-04-01 2020-09-01 深圳泰利能源有限公司 一种动植物油加氢直接脱氧催化剂的制备方法
CN114073976A (zh) * 2020-08-10 2022-02-22 中国科学院大连化学物理研究所 一种改性zsm-5分子筛及其制备方法和应用
CN114130421A (zh) * 2020-09-04 2022-03-04 中国石油化工股份有限公司 一种加氢烷基化催化剂及其制法和应用
CN114425412A (zh) * 2020-10-29 2022-05-03 中国石油化工股份有限公司 烷基芳烃非临氢异构化催化剂及其制备方法与应用
CN114849769A (zh) * 2022-04-25 2022-08-05 安徽海华科技集团有限公司 合成百里香酚用催化剂及其制备方法与应用
CN115608413A (zh) * 2022-10-12 2023-01-17 陕西延长石油(集团)有限责任公司 一种含分子筛类催化剂气相补铝再生方法
CN115707510A (zh) * 2021-08-18 2023-02-21 中国科学院大连化学物理研究所 一种改性mor分子筛的制备方法及其应用
CN115608413B (zh) * 2022-10-12 2024-06-04 陕西延长石油(集团)有限责任公司 一种含分子筛类催化剂气相补铝再生方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108722474B (zh) * 2018-05-25 2022-03-22 中国科学院大连化学物理研究所 一种择形烷基化催化剂及其制备方法和应用

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4289607A (en) * 1979-04-09 1981-09-15 Mobil Oil Corporation Catalytic conversion with crystalline zeolite product constituting ZSM-5/ZSM-11 intermediates
CN102372282A (zh) * 2010-08-18 2012-03-14 中国科学院大连化学物理研究所 一种zsm5/zsm11共结晶沸石的无胺合成方法
EP3153489A1 (en) * 2014-06-04 2017-04-12 Dalian Institute Of Chemical Physics, Chinese Academy of Sciences Method for preparing paraxylene and propylene by methanol and/or dimethyl ether
CN107376991A (zh) * 2017-06-20 2017-11-24 中国科学院大连化学物理研究所 一种生成对甲基乙苯的烷基化催化剂及其制备方法
CN108722474A (zh) * 2018-05-25 2018-11-02 中国科学院大连化学物理研究所 一种择形烷基化催化剂及其制备方法和应用

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1048655C (zh) * 1996-06-24 2000-01-26 中国石油化工总公司 一种烷基化催化剂及其应用
CN102950019A (zh) * 2011-08-30 2013-03-06 中国科学院大连化学物理研究所 煤基/生物基含氧化合物生产燃料/芳烃催化剂及其应用
CN107952472B (zh) * 2016-10-18 2021-05-14 中国石油化工股份有限公司 一种烷基芳烃异构化催化剂及制备与应用
CN106669818B (zh) * 2016-12-27 2019-08-30 西安元创化工科技股份有限公司 一种烷基化制备对甲基乙苯用催化剂的制备方法及其应用

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4289607A (en) * 1979-04-09 1981-09-15 Mobil Oil Corporation Catalytic conversion with crystalline zeolite product constituting ZSM-5/ZSM-11 intermediates
CN102372282A (zh) * 2010-08-18 2012-03-14 中国科学院大连化学物理研究所 一种zsm5/zsm11共结晶沸石的无胺合成方法
EP3153489A1 (en) * 2014-06-04 2017-04-12 Dalian Institute Of Chemical Physics, Chinese Academy of Sciences Method for preparing paraxylene and propylene by methanol and/or dimethyl ether
CN107376991A (zh) * 2017-06-20 2017-11-24 中国科学院大连化学物理研究所 一种生成对甲基乙苯的烷基化催化剂及其制备方法
CN108722474A (zh) * 2018-05-25 2018-11-02 中国科学院大连化学物理研究所 一种择形烷基化催化剂及其制备方法和应用

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111604057A (zh) * 2020-04-01 2020-09-01 深圳泰利能源有限公司 一种动植物油加氢直接脱氧催化剂的制备方法
CN114073976A (zh) * 2020-08-10 2022-02-22 中国科学院大连化学物理研究所 一种改性zsm-5分子筛及其制备方法和应用
CN114073976B (zh) * 2020-08-10 2023-04-07 中国科学院大连化学物理研究所 一种改性zsm-5分子筛及其制备方法和应用
CN114130421A (zh) * 2020-09-04 2022-03-04 中国石油化工股份有限公司 一种加氢烷基化催化剂及其制法和应用
CN114130421B (zh) * 2020-09-04 2024-01-09 中国石油化工股份有限公司 一种加氢烷基化催化剂及其制法和应用
CN114425412A (zh) * 2020-10-29 2022-05-03 中国石油化工股份有限公司 烷基芳烃非临氢异构化催化剂及其制备方法与应用
CN115707510A (zh) * 2021-08-18 2023-02-21 中国科学院大连化学物理研究所 一种改性mor分子筛的制备方法及其应用
CN115707510B (zh) * 2021-08-18 2024-04-16 中国科学院大连化学物理研究所 一种改性mor分子筛的制备方法及其应用
CN114849769A (zh) * 2022-04-25 2022-08-05 安徽海华科技集团有限公司 合成百里香酚用催化剂及其制备方法与应用
CN114849769B (zh) * 2022-04-25 2023-06-13 安徽海华科技集团有限公司 合成百里香酚用催化剂及其制备方法与应用
CN115608413A (zh) * 2022-10-12 2023-01-17 陕西延长石油(集团)有限责任公司 一种含分子筛类催化剂气相补铝再生方法
CN115608413B (zh) * 2022-10-12 2024-06-04 陕西延长石油(集团)有限责任公司 一种含分子筛类催化剂气相补铝再生方法

Also Published As

Publication number Publication date
CN108722474B (zh) 2022-03-22
CN108722474A (zh) 2018-11-02

Similar Documents

Publication Publication Date Title
WO2019222865A1 (zh) 一种改善了对位选择性的分子筛烷基化催化剂及其制备方法和应用
CN108722475B (zh) 一种由偏三甲苯制均四甲苯的催化剂及其制备方法
JPH0331220A (ja) 脱アルミニウムゼオライトyベース触媒と脱アルミニウムモルデナイトベース触媒を用いるアルキルベンゼン類の製造法
CN104549483B (zh) 无粘结剂sapo‑34/zsm‑5复合分子筛及其制备方法
CN103638963A (zh) 甲苯甲醇烷基化制对二甲苯流化床催化剂及其制备方法
WO2019011239A1 (zh) 乙苯脱烷基催化剂及其制备方法
CN101352690B (zh) 一种稀乙烯与苯烷基化制乙苯分子筛催化剂的制法及用途
WO2013127044A1 (zh) 一种碳八芳烃中乙苯脱烷基催化剂
CN110961143B (zh) 分子筛催化剂、其制备方法及其在乙苯脱烷基反应和二甲苯异构化反应中的应用
CN106311320B (zh) 一种含eu-1/mor共晶沸石的催化剂及其制备方法和应用
CN106311321B (zh) 一种含eu-1/zsm-5共晶沸石的催化剂及制备方法和应用
WO2018232546A1 (zh) 一种选择性生成对甲基乙苯的烷基化催化剂及其制备方法
GB1592375A (en) Hydroalkylation process and catalyst compositions for use therein
CN102909057B (zh) 一种含euo型分子筛的催化剂及其制备方法和应用
CN106866336B (zh) 一种制备汽油组分及丁二烯的方法
CN107175126B (zh) 一种Zn/无粘剂ZSM-11分子筛催化剂的制备方法
CN112657503B (zh) 铁系催化剂及其制备方法与应用
CN113385215A (zh) 一种临氢改质制丙烷的催化剂的制备方法与应用
CN106466637A (zh) 无粘结剂zsm-11/sapo-34复合分子筛催化剂及其制备方法
CN105749961A (zh) 一种制备对二甲苯的择形催化剂及其制备和应用
CN115888800B (zh) 一种对二乙苯的择形催化剂及其制备方法和应用
CN107282089B (zh) 苯与乙烷烷基化的催化剂
CN105778986B (zh) 一种由石脑油生产混合芳烃的方法
CN112657539A (zh) 一种稠环芳烃选择性加氢裂解催化剂及其制备方法应用
CN104230632B (zh) 生产乙基甲苯的方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18919831

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18919831

Country of ref document: EP

Kind code of ref document: A1