WO2013127044A1 - 一种碳八芳烃中乙苯脱烷基催化剂 - Google Patents

一种碳八芳烃中乙苯脱烷基催化剂 Download PDF

Info

Publication number
WO2013127044A1
WO2013127044A1 PCT/CN2012/001308 CN2012001308W WO2013127044A1 WO 2013127044 A1 WO2013127044 A1 WO 2013127044A1 CN 2012001308 W CN2012001308 W CN 2012001308W WO 2013127044 A1 WO2013127044 A1 WO 2013127044A1
Authority
WO
WIPO (PCT)
Prior art keywords
catalyst
ethylbenzene
weight
carbon
parts
Prior art date
Application number
PCT/CN2012/001308
Other languages
English (en)
French (fr)
Inventor
朱景利
史君
程光剑
琼伟格
Original Assignee
中国石油天然气股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国石油天然气股份有限公司 filed Critical 中国石油天然气股份有限公司
Publication of WO2013127044A1 publication Critical patent/WO2013127044A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/08Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the faujasite type, e.g. type X or Y
    • B01J29/10Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the faujasite type, e.g. type X or Y containing iron group metals, noble metals or copper
    • B01J29/14Iron group metals or copper
    • B01J29/146Y-type faujasite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/08Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the faujasite type, e.g. type X or Y
    • B01J29/10Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the faujasite type, e.g. type X or Y containing iron group metals, noble metals or copper
    • B01J29/12Noble metals
    • B01J29/126Y-type faujasite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/08Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the faujasite type, e.g. type X or Y
    • B01J29/16Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the faujasite type, e.g. type X or Y containing arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J29/166Y-type faujasite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/18Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the mordenite type
    • B01J29/20Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the mordenite type containing iron group metals, noble metals or copper
    • B01J29/22Noble metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/18Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the mordenite type
    • B01J29/20Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the mordenite type containing iron group metals, noble metals or copper
    • B01J29/24Iron group metals or copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/18Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the mordenite type
    • B01J29/26Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the mordenite type containing arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/40Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11, as exemplified by patent documents US3702886, GB1334243 and US3709979, respectively
    • B01J29/42Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11, as exemplified by patent documents US3702886, GB1334243 and US3709979, respectively containing iron group metals, noble metals or copper
    • B01J29/44Noble metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/40Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11, as exemplified by patent documents US3702886, GB1334243 and US3709979, respectively
    • B01J29/42Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11, as exemplified by patent documents US3702886, GB1334243 and US3709979, respectively containing iron group metals, noble metals or copper
    • B01J29/46Iron group metals or copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/40Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11, as exemplified by patent documents US3702886, GB1334243 and US3709979, respectively
    • B01J29/48Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11, as exemplified by patent documents US3702886, GB1334243 and US3709979, respectively containing arsenic, antimony, bismuth, vanadium, niobium tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C4/00Preparation of hydrocarbons from hydrocarbons containing a larger number of carbon atoms
    • C07C4/08Preparation of hydrocarbons from hydrocarbons containing a larger number of carbon atoms by splitting-off an aliphatic or cycloaliphatic part from the molecule
    • C07C4/12Preparation of hydrocarbons from hydrocarbons containing a larger number of carbon atoms by splitting-off an aliphatic or cycloaliphatic part from the molecule from hydrocarbons containing a six-membered aromatic ring, e.g. propyltoluene to vinyltoluene
    • C07C4/14Preparation of hydrocarbons from hydrocarbons containing a larger number of carbon atoms by splitting-off an aliphatic or cycloaliphatic part from the molecule from hydrocarbons containing a six-membered aromatic ring, e.g. propyltoluene to vinyltoluene splitting taking place at an aromatic-aliphatic bond
    • C07C4/18Catalytic processes
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C5/00Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms
    • C07C5/22Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms by isomerisation
    • C07C5/27Rearrangement of carbon atoms in the hydrocarbon skeleton
    • C07C5/2702Catalytic processes not covered by C07C5/2732 - C07C5/31; Catalytic processes covered by both C07C5/2732 and C07C5/277 simultaneously
    • C07C5/2708Catalytic processes not covered by C07C5/2732 - C07C5/31; Catalytic processes covered by both C07C5/2732 and C07C5/277 simultaneously with crystalline alumino-silicates, e.g. molecular sieves
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2229/00Aspects of molecular sieve catalysts not covered by B01J29/00
    • B01J2229/10After treatment, characterised by the effect to be obtained
    • B01J2229/18After treatment, characterised by the effect to be obtained to introduce other elements into or onto the molecular sieve itself
    • B01J2229/186After treatment, characterised by the effect to be obtained to introduce other elements into or onto the molecular sieve itself not in framework positions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2229/00Aspects of molecular sieve catalysts not covered by B01J29/00
    • B01J2229/30After treatment, characterised by the means used
    • B01J2229/32Reaction with silicon compounds, e.g. TEOS, siliconfluoride
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2229/00Aspects of molecular sieve catalysts not covered by B01J29/00
    • B01J2229/30After treatment, characterised by the means used
    • B01J2229/42Addition of matrix or binder particles
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2521/00Catalysts comprising the elements, oxides or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium or hafnium
    • C07C2521/02Boron or aluminium; Oxides or hydroxides thereof
    • C07C2521/04Alumina
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2529/00Catalysts comprising molecular sieves
    • C07C2529/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites, pillared clays
    • C07C2529/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • C07C2529/40Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Definitions

  • the present invention relates to an ethylbenzene deoximation catalyst in a carbon octahydrocarbon, and more particularly to an ethylbenzene dealkylation catalyst in a carbon octahydrocarbon in the preparation of paraxylene.
  • C8 aromatics are products of naphtha reforming and cracking, including meta-xylene, o-xylene and ethylbenzene, and ethylbenzene content can account for 10% - 30%.
  • the main component of the reforming oil is a group of commonly known as benzene, toluene, xylene aromatic hydrocarbons (benzene, toluene, xylene or BTX for short) and contains ethylbenzene.
  • BTX the most important components are benzene and xylene
  • xylene includes p-xylene, m-xylene, and o-xylene.
  • p-xylene is an important raw material for producing polyester, resin, pharmaceuticals, detergents, etc., it is one of the important products in the petrochemical industry.
  • the general manufacturer will separate benzene, toluene and xylene from the reformate and leave the C8 aromatics.
  • the C8 aromatics are then fed to a xylene isomerization process to convert the meta-xylene and o-xylene to a thermodynamically balanced xylene mixture by catalytic reaction to form the para-xylene product.
  • the xylene isomerization process requires the conversion of ethylbenzene to xylene or benzene in order to prevent the accumulation of ethylbenzene in the production process while the xylene isomerization process produces as much p-xylene as possible.
  • the existing dual-function catalyst uses a zeolite-added metal method to directly convert ethylbenzene to xylene, and at the same time obtains a thermodynamically balanced xylene mixture, which is better adapted to the requirements of industrialization, but the conversion rate of ethylbenzene is thermodynamically balanced.
  • the limit can only be up to 30%, which increases the load of subsequent adsorption separation and isomerization process; and the ethylbenzene dealkylation process can convert ethylbenzene to benzene before xylene isomerization, which is very high.
  • the conversion rate of ethylbenzene due to the large difference in boiling points of benzene and xylene, can be directly separated by fractional distillation. Therefore, the ethylbenzene desulfurization process can adapt to the requirements of large-scale, energy-saving and consumption-reducing devices.
  • European patent EP2027917A1 after surface modification with ammonium hexafluorosilicate (AHS) 5% ⁇ 0. 5%. 5% ⁇ 0. 5% ⁇ 0. 5% ⁇ 0. 5% ⁇ 0. 5% ⁇ 0. 5% ⁇ 0. 5% ⁇ 0. 5% ⁇ 0. 5% ⁇ 0. 5% ⁇ 0. 5% ⁇ 0. 5% ⁇ 0. 5% ⁇ 0. 5% ⁇ 0. 5% ⁇ 0. 5% ⁇
  • the reaction conditions are: temperature 360 ° C ⁇ 410 ° C, space velocity 4. 6 h - ', hydrogen oil ratio of 2. 5, total pressure 1. 3MPa; in the case of ethylbenzene conversion rate of 75% obtained greater than 90
  • the depurination selectivity of % the loss rate of xylene is within 5%.
  • AHS ammonium hexafluorosilicate
  • the reaction conditions are as follows: a temperature of 360 ° C to 410 ° C, a space velocity of 3 to 6 h - a hydrogen to oil ratio of 2 to 5, a total pressure of 0. 6 ⁇ : L 2MPa;
  • the catalyst preferably inhibits the thiol transfer reaction activity, while maintaining the selectivity of the devolatilization group, and the purity of benzene after the reaction. Improved.
  • Chinese patent 200410067617. 1 adopts the method of surface modification of zeolite, that is, the surface of the zeolite is impregnated and modified by using silicone, mainly phenylmethylpolysiloxane and dimethyl silicone oil, and a better catalytic toluene is obtained.
  • the effect of shape-disproportionation on the production of p-xylene shows that the method of organosilicon modification has good selectivity for adjusting the opening size of the zeolite and the acidity of the passivated surface, and the selectivity of the zeolite obtained thereby.
  • the shape selective catalytic reaction effect of p-xylene is 111
  • the above-mentioned ⁇ patent 200410067617 adopts the method of surface modification of zeolite, that is, the surface of the zeolite is impregnated and modified by using silicone, mainly phenylmethylpolysiloxane and dimethyl silicone oil, and a better catalytic tolu
  • the catalyst If the catalyst is used in the debenzylation reaction of ethylbenzene in the carbon octahydrocarbon, the catalyst will soon be deactivated by carbonation in a short time, resulting in the catalyst being unusable; and if the catalyst is used in the debenzylation reaction of ethylbenzene, The side reactions such as aromatic hydrocarbon disproportionation are severe and the selectivity is poor. Therefore, the catalyst cannot be used for the catalysis of the ethylbenzene deoximation reaction in the carbon octarene.
  • An object of the present invention is to provide an ethylbenzene defluorination catalyst in a carbon octahydrocarbon which can significantly improve the removal rate of ethylbenzene in a C8 aromatic hydrocarbon and at the same time greatly suppress the occurrence of side reactions such as sulfhydryl transfer and disproportionation.
  • the catalyst is used as a raw material for mixing a C8 aromatic hydrocarbon of xylene and ethylbenzene, and a reaction process for dealkylation to form benzene has high conversion rate of ethylbenzene, high reaction space velocity, high selectivity of benzene, and low side reaction. , good catalyst stability and so on.
  • the ethylbenzene desulfonium-based catalyst in the carbon octacarbonate according to the present invention comprises, in parts by weight, 40 to 90 parts of a hydrogen type zeolite having a Si0 2 /Al 2 0 3 molar ratio of 20 to 140, which is selected from the group consisting of molybdenum, 0.01 to 10 parts of one or more oxides of cobalt, nickel and platinum, and 10 to 60 parts of ⁇ - ⁇ 1 2 0 3 binder; wherein the hydrogen type zeolite is heat-treated silicon impregnated with hydrogen methyl active silicone oil
  • the deposition is such that the loading of silica is 3% to 20% by weight.
  • the above-mentioned ethylbenzene dealkylation catalyst in the carbon octahydrocarbon is characterized in that the hydrogen type zeolite is selected from one or more of a cerium type zeolite, a mordenite zeolite and a ZSM-5 zeolite; preferably, the hydrogen type zeolite is a ZSM-5 zeolite; Preferably, the hydrogen type zeolite has a Si0 2 /Al 2 0 3 molar ratio of 30 to 50.
  • the above-mentioned ethylbenzene dehydrogenation catalyst in the carbon octahydrocarbon is characterized in that the polysiloxane is preferably a hydrogen methyl active silicone oil having a weight average molecular weight of 1500 to 2000, and is 20% by weight.
  • the solution of Dendrobium Ether or "K ci alkane" was dried at 150 Torr for 1 hour and calcined at 510 Torr for 2 hours.
  • the hydrogen type zeolite is deposited by heat-treated silicon impregnated with hydroquinone-based active silicon germanium, and the silica loading is preferably 4% to 6% by weight.
  • the above-mentioned ethylene octadecyl catalyst in the carbon octarene is further characterized in that the catalyst preferably contains 2 to 7 parts by weight of molybdenum oxide, 0.01 to 0.5 part by weight of platinum oxide and 1 to 5 parts by weight of the catalyst. 5 ⁇ 5 ⁇ The cobalt oxide; further preferably the catalyst containing 0. 5 ⁇ 5 parts by weight of molybdenum oxide.
  • the catalyst of the present invention can be obtained by the following preparation method:
  • step (b) immersing the composition obtained in the step (a) in a solution of polysiloxane in n-hexane, drying at 150 ° C for 1 hour, and then calcining at 510 ° C for 2 hours;
  • the obtained catalyst of the present invention contains one or more of molybdenum, nickel, platinum and cobalt (based on the weight of the oxide) in an amount of 0.01 to 10 parts by weight.
  • the formed ZSM-5 zeolite was obtained by the method described in Example 1, and the obtained zeolite was pre-vacuated, and then an equal volume of 1:1 was digested with a 20% silicone oil-containing hexamethylene solution. Stains, standing after dipping, the solvent is thoroughly exuded. After drying, the catalyst is prepared at 510 ⁇ ⁇ ⁇ . [Example 3]
  • the formed ZSM-5 zeolite was obtained by the method described in Example 1, and the obtained zeolite was subjected to an equal volume of 1:1 impregnation in an aqueous solution of 1.0% by weight of ammonium molybdate. After immersion, the remaining was filtered off. Impregnation solution. It was dried at 12 CTC for 3 hours, then calcined at 54 CTC for 4 hours, and was heated by a program at a temperature rising rate of 3 ° C/min, which was designated as catalyst III.
  • the surface-modified ZSM-5 zeolite was prepared by the method described in Example 2, and after the impregnation of an equal volume of 1:1 with an aqueous solution of 0. 0% ammonium molybdate obtained, the remaining impregnation was filtered off. liquid. After drying at 120 ° C for 3 hours, the temperature was increased by a temperature of 3 ° C / min, and then calcined at 540 ° C for 4 hours, which was designated as catalyst IV.
  • the surface-modified ZSM-5 zeolite was prepared by the method described in Example 2, and the obtained zeolite was subjected to an equal volume of 1:1 impregnation in a 1.0 wt% aqueous solution of chloroplatinic acid, and after immersion, it was filtered. The remaining impregnating solution. After drying at 120 ° C for 3 hours, the temperature was raised by a program temperature, C / min, and then calcined at 540 ° C for 4 hours, which was designated as catalyst V.
  • mordenite MOR was used instead of ZSM-5 to prepare a surface-modified MOR zeolite, and the obtained zeolite was subjected to an equal volume of 1:1 impregnation in a 6.00% aqueous solution of nickel nitrate. After immersion, the remaining immersion liquid is filtered off. After drying at 120 ° C for 3 hours, the temperature was raised by a procedure, the temperature was raised at 3 ° C / min, and then calcined at 540 ° C for 4 hours, which was designated as catalyst VI.
  • Y zeolite was used instead of ZSM-5 to obtain a Y-boiling after surface modification.
  • the zeolite prepared by the stone, J is poured into a 1. 1% concentrated aqueous solution of cobalt nitrate, and the remaining impregnation liquid is filtered off after immersion in a 1:1 immersion. After drying at 120 ° C for 3 hours, the temperature was increased by 3 ° C / min, and then calcined at 540 Torr for 4 hours, which was designated as catalyst VII.
  • the surface-modified Y/ZSM-5 zeolite was prepared by the method described in Example 2, using Y and ZSM-5 mixed zeolite instead of ZSM-5, and the obtained zeolite was used in an aqueous solution of 0.5% by weight of molybdenum nitrate. After immersion in an equal volume of 1:1, the remaining immersion liquid was filtered off. After drying at 120 ° C for 3 hours, the temperature was ramped up, the heating rate was TC / min, and then calcined at 54 CTC for 4 hours, which was recorded as catalyst VIII.
  • the surface-modified ZSM-5 zeolite was prepared by the method described in Example 2, and an equal volume of 1:1 was impregnated with an aqueous solution of arsenic ammonium octaphosphate having a concentration of 8%, and the remaining impregnation liquid was filtered off. . Drying at 120 ° C for 3 hours, using a programmed temperature, heating rate of 3 ° C / min, and then calcined at 540 ° C for 4 hours; and in the 3.0% concentration of nickel nitrate aqueous solution, using the same impregnation procedure Further, the impregnation of NiO was carried out, and the obtained catalyst was designated as IX.
  • Catalyst III and Catalyst IV were used to examine the activity and selectivity of the desulfonation group on a fixed bed reactor, and the degree of side reactions were mainly thiol transfer and disproportionation reactions (expressed by the loss rate of xylene).
  • the reaction conditions were as follows: temperature 420 ° C; pressure 1. 8 MPa; hydrogen/hydrocarbon ratio 2. 0; space velocity 10 h" 1 ;
  • the surface-modified ZSM-5 zeolite almost completely blocks the acidity of the outer surface due to the adjustment of the opening size compared to the non-surface-modified catalyst.
  • the contact of xylene with the active center provides conditions for high selectivity of ethylbenzene and inhibition of thiol transfer reaction.
  • the modified catalyst has high selectivity for ethylbenzene deoximation and low loss rate of xylene.
  • the molybdenum oxide supported acts as a cocatalyst, further improving the reaction conversion rate of the ethylbenzene of the catalyst, the selectivity of the benzene generation from the deuterium group, and reducing the loss rate of xylene.
  • Example 11 In a fixed bed reactor, under similar reaction conditions: temperature 416 ° C; pressure 1.8 MPa;
  • the hydrogen/hydrocarbon ratio was 2.5; the space velocity was 8 h- 1 , and the reactivity of the catalysts V, VI, VII, VIII, and IX was examined.
  • the evaluation results are shown in Table 2.
  • Catalyst catalyst composition zeolite Si0 2 /Al 2 0 3 ethylbenzene conversion benzene selective xylene
  • V ZSM-5/Y-AI 2 O 3 /Si02/Pt0 28 92.3 90.8 2.3
  • the present invention is selected from at least one zeolite selected from the group consisting of Y-type zeolite, MOR mordenite, and ZSM-5 zeolite, and has been subjected to surface silicon modification treatment, which is selected from the group consisting of molybdenum, nickel, platinum, and cobalt.
  • the catalyst prepared by at least one metal oxide can remove benzene to form benzene at a high conversion rate when decarburization-based catalytic reaction is carried out by using mixed carbon octarene as a raw material, and can greatly inhibit thiol transfer, etc. Side reactions, and avoid the loss of xylene, improve the selectivity of the reaction. It can be used as a pretreatment process for the xylene isomerization process, which can reduce the operation difficulty and energy consumption of the separation unit after the isomerization unit.
  • the catalyst obtained by the present invention was investigated for catalytic reaction performance using a fixed bed reactor.
  • the inner diameter of the reactor is 20 mm and the length is 600 cuvettes. With electric heating, the temperature is automatically controlled.
  • the bottom of the reactor was filled with a glass bead having a diameter of 5 liters as a support.
  • the reactor was filled with 7 g of a catalyst, and the upper 5 mm glass beads were used to preheat and vaporize the raw materials.
  • xylene containing meta-xylene and o-xylene
  • ethylbenzene and hydrogen passing through the catalyst bed from top to bottom, deamination reaction, and dealkylation hydrogenation reaction to form benzene And acetamidine, and a very small amount of thiol transfer products are mainly methyl ethylbenzene, trimethylbenzene, propylbenzene and the like.
  • reaction conditions are as follows: temperature 350 ⁇ 420 °C; pressure 1.3MPa ⁇ 2.0MPa; hydrogen/hydrocarbon ratio 2.0; space velocity l ⁇ 12h—
  • the proportion of benzene is 26%, and the experimental data is calculated by the following formula.
  • the catalyst obtained by the invention adopts one or more kinds of Y-type zeolite, mordenite and ZSM-5 zeolite which have the shape-selecting function in the catalyst as the active component, and simultaneously uses the surface modification method, further The selectivity of the zeolite carrier is improved, and the surface acidity of the non-selective function is inactivated, and the acidity and distribution of the internal pores are not affected; at the same time, at least one selected from the group consisting of molybdenum, nickel, platinum and cobalt is added.
  • the metal acts as a catalytic coagent.
  • the above characteristics make the catalyst used in the alkyl removal process part of the xylene isomerization process, the concentration of ethylbenzene in the raw material is high, and the high conversion rate of dealkylation can be satisfied under the operation conditions of higher space velocity. High selectivity, and low loss of xylene and good stability have achieved good technical results.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

本发明涉及一种碳八芳烃中乙苯脱烷基催化剂,催化剂以重量份计包括:SiO2/Al2O3摩尔比为20~140的氢型沸石40~90份,选自钼、钴、镍、铂中的一种或多种氧化物0.01~10份,γ-Al2O3粘接剂10~60份;氢型沸石经过氢甲基活性硅油浸渍的热处理硅沉积,使二氧化硅的负载量以重量计为3~20%;氢甲基活性硅油为含重均分子量1500~2000,以20%重量的石油醚或正己烷溶液形式用于浸渍,在150℃干燥1小时并在510℃焙烧2小时;本催化剂应用于二甲苯异构化的乙苯脱烷基,能高转化率的脱除乙苯生成苯,极大抑制烷基转移等副反应,避免二甲苯的损失,提高了反应的选择性。

Description

-种碳八芳烃屮乙苯脱^基催化剂
技术领域
本发明涉及一种碳八芳烃中乙苯脱垸基催化剂, 尤其涉及一种制备 对二甲苯过程中碳八芳烃中乙苯脱烷基催化剂。
背景技术
C8芳烃是石脑油重整、 裂解的产物, 包括间二甲苯, 邻二甲苯和乙 苯, 乙苯含量可占到 10% - 30%。 重整油的主要成分是一组通常称为苯, 甲苯, 二甲苯芳香烃 (苯, 甲苯, 二甲苯也简称 BTX), 并含有乙苯。 在 BTX中, 最重要的成分是苯和二甲苯, 二甲苯包括对二甲苯, 间二甲苯, 邻二甲苯。 由于对二甲苯是生产聚酯, 树脂, 医药品, 清洁剂等的重要 原料, 需求量大, 是石化产业中重要的产品之一。 一般的生产商会将苯、 甲苯和二甲苯从重整油中分离出来, 剩余下 C8芳烃。 然后将 C8芳烃进 入二甲苯异构化工艺, 使间二甲苯, 邻二甲苯通过催化反应转化为热力 学平衡的二甲苯混合物, 以形成对二甲苯的产物。 二甲苯异构化工艺在 二甲苯异构化工艺尽可能多生产出对二甲苯的同时, 为了防止乙苯的在 生产工艺中积累, 需要将乙苯转化为二甲苯或苯。 现有的双功能催化剂 采用沸石添加金属的方法直接将乙苯转化为二甲苯, 同时得到热力学平 衡的二甲苯混合物, 较好的适应了工业化的要求, 但乙苯的转化率由于 受到热力学平衡的限制最高只能达到 30%左右, 增加了后续的吸附分离 和异构化工艺的负荷; 而乙苯脱烷基工艺可以在二甲苯异构化之前, 将 乙苯转化为苯, 具有很高的乙苯转化率, 由于苯和二甲苯的沸点相差较 大, 可直接用分馏的方法实现分离。 故乙苯脱垸基工艺能适应芳径装置 大型化, 节能降耗的要求。
欧洲专利 EP2027917A1 用经过六氟硅酸铵 (AHS ) 表面改性后 Si/Al=25〜150的 HZS卜 5沸石, 使川^ i化^等作为粘结剂挤 成型制成 载体, 浸渍负载 0. 001〜0. l%Pt,0. 01〜0. 5%Sn后经干燥、 焙烧制成催化 剂, 催化转化重整油可将乙苯裂解转化为苯。 反应条件为: 温度 360°C〜 410°C,空速 4. 6 h— ',氢油比 2. 5, 总压 1. 3MPa; 在乙苯转化率为 75%的情 况下取得了大于 90%的脱垸基选择性, 二甲苯的损失率在 5%以内。
欧洲专利 EP2022564A1同样用经过六氟硅酸铵(AHS )表面改性后的 Si/Al=25〜150的 HZSM-5沸石, 使用氧化硅, 氧化锆, 氧化钛等作为粘 结剂,积压成型经焙烧后,同时浸渍负载 0. 001〜0. l%Pt, 0. 001〜0. l%Ni 或 Cu或 Ag,优选 Ag,经干燥、 焙烧制成催化剂, 可催化转化重整油或裂 解油中乙苯脱垸基。 反应条件为: 温度 360°C〜410°C, 空速 3〜6 h— 氢油比 2〜5, 总压 0. 6〜: L 2MPa; 结果表明, 与单独附载 0. 02%Pt相比, 在同时负载 0. 02%Pt, 0. 01%Ag的情况下, 催化剂较好的抑制了垸基转移 反应活性, 在保持了相当脱垸基选择性的同时, 对反应后生成苯的纯度 有所提升。
以上文献都较好的提升了乙苯脱垸基的选择性和苯的纯度, 但是都 只是在较低的小于 75%转化率条件下,且在小于 Sh—1较低空速的条件下取 得的效果, 且存在二甲苯总收率低的问题。 并不能满足实际生产的需求, 限制了其工业化应用。
中国专利 200410067617. 1采用对沸石进行的表面改性的方法, 即使 用有机硅主要是苯基甲基聚硅氧垸和二甲基硅油对沸石表面进行浸渍改 性, 取得了较好的催化甲苯择形歧化产对二甲苯的效果, 结果表明采用 有机硅改性的方法对于调节沸石的开孔尺寸和钝化表面酸性, 以及由此 而取得的沸石选择性的提高, 具有良好的选择性生成对二甲苯的择形催 化反应效果。 111然上述屮 专利 200410067617. 1 ¾川对沸石进行的 而改性的 j 法获得催化剂川于屮苯择形歧化产对―屮苯具有较好的择形催化效果, 但该催化剂是针对甲苯择形歧化合成对二甲苯的催化反应; 另一方面, 该催化剂属于单纯的酸性活性催化剂, 而没有加氢助催化活性。 如该催 化剂用于碳八芳烃中乙苯脱垸基反应中, 催化剂将很快在短时间内发生 结碳而失活,导致催化剂无法使用;且如催化剂用在乙苯脱垸基反应中, 其芳烃歧化等副反应严重, 选择性差。 故该催化剂不能用于碳八芳烃中 乙苯脱垸基反应的催化。
发明内容
本发明的目的是提供一种碳八芳烃中乙苯脱垸基催化剂, 该催化剂 能明显提高 C8芳烃中乙苯的去除率, 同时能极大地抑制垸基转移, 歧化 等副反应的发生。 将该催化剂用于混合二甲苯和乙苯的 C8芳烃为原料, 进行脱烷基反应生成苯的反应工艺中, 具有乙苯转化率高, 反应空速高, 苯的选择性高, 副反应少, 催化剂稳定性好等特点。
本发明所述的一种碳八芳烃中乙苯脱垸基催化剂, 以重量份计包括: Si02/Al203摩尔比为 20〜140的氢型沸石 40~90份, 选自钼、 钴、 镍和铂 中的一种或多种氧化物 0.01〜10份, γ-Α1203粘接剂 10~60份; 其中所述 的氢型沸石经过氢甲基活性硅油浸渍的热处理硅沉积, 使二氧化硅的负 载量以重量计为 3%〜20%。
上述的碳八芳烃中乙苯脱烷基催化剂其特征在于氢型沸石选自 Υ型 沸石、 丝光沸石和 ZSM-5沸石中的一种或多种; 优选氢型沸石为 ZSM-5 沸石; 且优选氢型沸石的 Si02/Al203摩尔比为 30〜50。
同时上述的碳八芳烃中乙苯脱垸基催化剂其特征在于聚硅氧垸更好 的选用重均分子量 1500〜2000的氢甲基活性硅油, 并以 20% (重量计) 的石汕醚或」 K ci烷溶液形式川于 ^ , 在 150Γ十燥 1小时并在 510Γ焙 烧 2 小时。 且氢型沸石经过氢屮基活性硅汕浸渍的热处理硅沉积, 优选 的二氧化硅负载量以重量计为 4%〜6 %。
且上述的碳八芳烃中乙苯脱垸基催化剂其特征还在于催化剂中优选 含 2〜7份重量份的钼氧化物、0.01〜0.5份重量份的铂氧化物和 1〜5份重量 份的钴氧化物; 进一步优选催化剂中含 0. 5〜5重量份的钼氧化物。
本发明的催化剂能用下述制备方法得到:
( a) 将 Si02/Al203摩尔比为 20〜140 的氢型沸石 40〜90 重量份与 10-60重量份 γ- A1203混合挤压成型后,在 120°C下干燥 3小时后,在 400〜 600°C下焙烧 4小时;
( b ) 将步骤 (a) 得到的组合物浸渍于聚硅氧垸的正己烷溶液中, 经 150°C干燥 1小时后, 在 510°C下焙烧 2小时;
( c ) 将步骤 (b) 得到的组合物浸渍于选自钼、 镍、 铂和钴中的一 种或多种盐水溶液中,经过滤后在 120°C下干燥 3小时,然后在 450〜600 °C下焙烧 4小时后, 使其得到的本发明的催化剂含钼、 镍、 铂和钴中的 一种或多种 (是以氧化物重量计) 0.01〜10重量份。
具体实施方式
【实施例 1】
采用 Si02/A1203摩尔比为 25的氢型 ZSM-5沸石 48克与 12克 γ-Α1203 混合, 再加入田箐粉 1. 8克混合均匀, 然后加入 3%的稀硝酸作为粘合剂 充分捏合均匀, 进行挤条成型, 12CTC干燥后, 540°C焙烧制成催化剂 I 。 【实施例 2】
采用例 1所述方法制得成型后的 ZSM-5沸石, 对制得的沸石进行预 抽真空, 然后用配置好的含 20%硅油的正己垸溶液进行等体积 1 : 1的浸 渍,浸浈后静置, 溶剂抨发彻底,千燥后在 510Γ 卜-焓烧制成催化剂 II。 【实施例 3】
采用例 1所述方法制得成型后的 ZSM-5沸石,用制得的沸石在 1. 0 wt% 浓度的钼酸铵水溶液中进行等体积 1 : 1的浸渍, 浸渍后, 滤去剩余的浸 渍液。 在 12CTC下干燥 3小时, 然后在 54CTC下焙烧 4小时, 采用程序升 温, 升温速率 3°C/min, 记为催化剂 III。
【实施例 4】
采用例 2所述方法制得经过表面改性后的 ZSM- 5沸石, 用制得的沸 石 8. 0%浓度的钼酸铵水溶液中进行等体积 1 : 1的浸渍后, 滤去剩余的浸 渍液。 在 120°C下干燥 3小时, 采用程序升温, 升温速率 3°C/min, 然后 在 540°C下焙烧 4小时, 记为催化剂 IV。
【实施例 5】
采用例 2所述方法制得经过表面改性后的 ZSM- 5沸石, 用制得的沸石 在 1. 0 wt%的氯铂酸水溶液中进行等体积 1 : 1的浸渍, 浸渍后, 滤去剩 余的浸渍液。在 120°C下干燥 3小时,采用程序升温,升温速率; C/min, 然后在 540°C下焙烧 4小时, 记为催化剂 V。
【实施例 6】
采用例 2所述方法用丝光沸石 M0R代替 ZSM-5,制得经过表面改性后 的 M0R沸石, 用制得的沸石在 6. 0 ^%的硝酸镍水溶液中进行等体积 1 : 1的浸渍, 浸渍后, 滤去剩余的浸渍液。 在 120°C下干燥 3小时, 采用程 序升温,升温速率 3°C/min,然后在 540°C下焙烧 4小时,记为催化剂 VI。
【实施例 7】
采用例 2所述方法用 Y沸石代替 ZSM-5,制得经过表面改性后的 Y沸 石, J制得的沸石在 2. 1%浓 的硝酸钴水溶液屮进 ί丁等体枳 1: 1的 ^, 浸渍后, 滤去剩余的浸渍液。 在 120°C 十燥 3小时, 采用程序升温, 升 温速率 3°C /min, 然后在 540Γ下焙烧 4小吋, 记为催化剂 VII。
【实施例 8】 _
采用例 2所述方法用 Y和 ZSM-5混合沸石代替 ZSM- 5,制得经过表面 改性后的 Y/ZSM-5沸石, 用制得的沸石在 5. 0%浓度的硝酸钼水溶液中进 行等体积 1 : 1的浸渍后, 滤去剩余的浸渍液。 在 120°C下干燥 3小时, 采用程序升温, 升温速率: TC/min, 然后在 54CTC下焙烧 4小时, 记为催 化剂 VIII。
【实施例 9】
采用例 2所述方法制得经过表面改性后的 ZSM-5沸石, 用制得的沸 石 7. 8%浓度的钼酸铵水溶液中进行等体积 1 : 1的浸渍,滤去剩余的浸渍 液。 在 120°C下干燥 3小时, 采用程序升温, 升温速率 3°C/min, 然后在 540°C下焙烧 4小时;再在 3. 0%浓度的硝酸镍水溶液中,采用相同的浸渍操 作程序, 再进行 NiO的浸渍, 获得催化剂记为 IX。
【实施例 10】
用催化剂 III和催化剂 IV在固定床反应器上考察其脱垸基活性和选择 性, 以及副反应主要是垸基转移和歧化反应的程度 (用二甲苯的损失率 来表示)。 反应条件采用: 温度 420°C ; 压力 1. 8MPa; 氢 /烃比 2. 0; 空速 10h"1; 评价结果如表 1所示。
Figure imgf000007_0001
90 10
II ZSM-5 γ-Α1:0;„ Si() = 79 82.3 ST.9 2.9
56.9 -10 '3. 1
III ZSM- 5/γ - Al2O-v"'Mo03 = 140 91.7 55.6 33.8
40/59.95/0.05
IV ZS -5/Y-AI203/S i02/Mo03 = 35 90.8 90.3 2.4
65/15/19.9/5.1 可以看出经表面改性后的 ZSM-5沸石与未经表面改性的催化剂相比, 由于调节了开孔尺寸,覆盖了外表面的酸性位, 几乎完全阻隔了二甲苯与 活性中心的接触, 为乙苯的高选择性, 和抑制垸基转移反应活性提供了 条件, 该改性后的催化剂具有乙苯脱垸基高选择性, 二甲苯的损失率低 的特点。 同时负载钼氧化物起到助催化剂作用, 进一步提高了催化剂的 乙苯的反应转化率、 脱垸基生成苯的选择性, 并降低了二甲苯的损失率。
【实施例 11】 在固定床反应器上,在相似反应条件下即:温度 416°C;压力 1.8MPa;
氢 /烃比 2.5; 空速 8 h—1,考察催化剂 V, VI, VII, VIII, IX的反应活性, 评价结果如表 2所示。
催化剂 催化剂组成 沸石 Si02/Al203 乙苯转化率 苯的选择 二甲苯的
/% /摩尔比 /% 性 损失率
/% /%
V ZSM-5/Y-AI2O3/Si02/Pt0 = 28 92.3 90.8 2.3
75.2/14.8/9.85/0.15
VI M0R/y-Al2O3/Si02/Ni0 = 48 90.2 90.1 2.7
62.7/26.6/7.3/3.4
νπ Υ/γ- Al2O3/Si02/Co0 = 81 91.8 90.0 2.6
62.7/24.0/11.1/1.5 V 1 [ I Y ZSM- γ-ΑΙ;0;, Sio^ Vlo()3 = 20 ( Y ) 1. <S 90.5 2.
22.8 15 1 [ lti 3.2 52 ( ZSM-o )
IX ZSM-5/Y-A1:0 , Si()2 M()0 NiO 12 90.3 91.6 1.9
= 65/22/8.5/5.0/1.5 由表可知, 在一定的反应条件范围内, 该四种催化剂都表现出较好 的脱烷基活性和高选择性, 活性和选择性均达到 90%以上, 且保持了较低 的小于 3%二甲苯损率, 是一种较优的脱垸基催化剂。
以上评价结果表明, 本发明选自 Y型沸石, M0R丝光沸石, ZSM-5沸 石中的至少一种沸石, 经过公开报道的表面硅改性处理, 添加了选自钼, 镍, 铂, 钴中的至少一种金属氧化物后制得的催化剂, 在以混合碳八芳 烃作为原料进行脱垸基催化反应时, 能高转化率的脱除乙苯生成苯, 同 时能极大抑制垸基转移等副反应, 并避免二甲苯的损失, 提高了反应的 选择性。 可作为二甲苯异构化工艺的前处理工艺, 能降低异构化单元之 后的分离单元的操作难度和能耗。
工业实用性
本发明得到的催化剂使用固定床反应器进行催化反应性能考察。 反 应器内径 20毫米,长度 600皿,不锈钢材质。采用电加热,温度自动控制。 反应器底部填充一段直径为 5皿的玻璃珠作为支撑, 反应器内填充催化 剂 7g, 上部填充 5mm的玻璃珠起到预热和汽化原料的作用。 原料中的混 合二甲苯 (含间二甲苯和邻二甲苯) 和乙苯与氢气混合, 自上而下通过 催化剂床层, 发生脱垸基反应, 和脱除烷基的加氢反应, 生成苯和乙垸, 还有极少量的垸基转移产物主要是甲基乙基苯, 三甲基苯, 丙基苯等。
反应条件采用: 温度 350〜420°C; 压力 1.3MPa〜2.0MPa; 氢 /烃比 2.0; 空速 l〜12h— 苯 26%的比例配置制得, 实验数据采川以下公式计算。
乙苯的转化率 原料中乙^ ^^ ^苯的《 X 1 QQ%
原料中乙苯的重 产物中苯的重
苯的选择性 = X— X 100% 原料中乙苯的重量 -产物中乙苯的重] 78 二甲苯的损失率( ) =騰二 麗 - 二 議 X IQQQ/o 、 原料中二甲苯的重量
本发明得到的催化剂, 在催化剂中采用了本身具有择形功能的 Y型 沸石, 丝光沸石, ZSM- 5沸石中的一种或多种作为活性组分, 同时使用了 表面改性的方法, 进一步提高了沸石载体的选择性, 并钝化了其不具有 择形功能的表面酸性, 而且并没有影响其内部孔道的酸性和分布; 同时 添加了选自钼, 镍, 铂, 钴中的至少一种金属作为催化活性助剂。 上述 特征使得该催化剂用于二甲苯异构化工艺中烷基去除工艺部分时, 在原 料中乙苯的浓度较高, 较高空速的操作要求条件下, 能满足脱烷基的高 转化率和高选择性, 并保持较低的二甲苯的损失率和良好的稳定性, 取 得了较好的技术效果。

Claims

权 利 耍 求 书
1. 种碳八芳烃中乙苯脱炕基催化剂, J L:特在于: 所述催化剂以重量 份计包括: Si02/Al203摩尔比为 20〜140的氢型沸石 40〜90份, 选自钼、 钴、 镍、 铂中的一种或多种氧化物 0.01〜10份, γ-Α1203粘接剂 10〜60份。
2.根据权利要求 1所述的碳八芳烃中乙苯脱烷基催化剂, 其特在于; 所述的氢型沸石经过氢甲基活性硅油浸渍的热处理硅沉积, 使二氧化硅 的负载量以重量计为 3〜20%。
3. 根据权利要求 2所述的碳八芳烃中乙苯脱垸基催化剂, 其特在于; 氢甲基活性硅油含重均分子量 1500〜2000。
4. 根据权利要求 2所述的碳八芳烃中乙苯脱垸基催化剂, 其特在于; 氢甲基活性硅油以 20%重量的石油醚或正己垸溶液形式用于浸渍氢型沸 石, 在 150°C干燥 1小时并在 510°C焙烧 2小时。
5. 根据权利要求 1所述的碳八芳烃中乙苯脱垸基催化剂, 其特在于; 氢型沸石选自 Y型沸石、 丝光沸石、 ZSM-5沸石中的一种或多种。
6.根据权利要求 1所述的碳八芳烃中乙苯脱垸基催化剂,其特征在于: 氢型沸石的 Si02/Al203摩尔比为 30〜50。
7.根据权利要求 1所述的碳八芳烃中乙苯脱垸基催化剂, 其特征在于: 所述的氢型沸石经过氢甲基活性硅油浸渍的热处理硅沉积, 使二氧化硅 的负载量以重量计为 4〜6%。
8.根据权利要求 1所述的碳八芳经中乙苯脱垸基催化剂, 其特征在于: 所述的催化剂中含 2~7份重量份的钼氧化物、0.01~0.5份重量份的铂氧化 物和 1~5份重量份的钴氧化物。
9.根据权利要求 1所述的碳八芳烃中乙苯脱垸基催化剂,其特征在于: 所述的催化剂中含 0. 5〜5重量份的钼氧化物。
PCT/CN2012/001308 2012-03-01 2012-09-26 一种碳八芳烃中乙苯脱烷基催化剂 WO2013127044A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201210051645.9 2012-03-01
CN201210051645.9A CN103285910B (zh) 2012-03-01 2012-03-01 一种碳八芳烃中乙苯脱烷基催化剂

Publications (1)

Publication Number Publication Date
WO2013127044A1 true WO2013127044A1 (zh) 2013-09-06

Family

ID=49081517

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/001308 WO2013127044A1 (zh) 2012-03-01 2012-09-26 一种碳八芳烃中乙苯脱烷基催化剂

Country Status (2)

Country Link
CN (1) CN103285910B (zh)
WO (1) WO2013127044A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10981845B2 (en) 2016-10-10 2021-04-20 Exxonmobil Chemical Patents Inc. Heavy aromatics conversion processes and catalyst compositions used therein

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105772058B (zh) * 2014-12-23 2019-02-15 中国石油天然气股份有限公司 用于碳八芳烃异构化反应催化剂中zsm-5分子筛的活化方法
TWI697360B (zh) * 2016-10-10 2020-07-01 美商艾克頌美孚化學專利股份有限公司 重芳烴轉化法及其中所用之觸媒組成物
CN107297221A (zh) * 2017-07-11 2017-10-27 太原大成环能化工技术有限公司 一种乙苯脱烷基催化剂及其制备方法
CN110961143B (zh) * 2018-09-29 2023-05-26 中国石油天然气股份有限公司 分子筛催化剂、其制备方法及其在乙苯脱烷基反应和二甲苯异构化反应中的应用
CN110240534A (zh) * 2019-07-02 2019-09-17 太原大成环能化工技术有限公司 一种用于c8芳烃异构化生产对二甲苯的方法
CN113663718A (zh) * 2020-05-15 2021-11-19 中国石油天然气股份有限公司 乙苯脱烷基型的二甲苯异构化反应催化剂及其制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1443737A (zh) * 2002-03-13 2003-09-24 中国石油化工股份有限公司 用于苯与碳九及其以上芳烃烷基转移的催化剂
CN1329121C (zh) * 2004-07-12 2007-08-01 中国石油化工股份有限公司 甲苯不均化催化剂
CN100506378C (zh) * 2006-08-11 2009-07-01 中国石油化工股份有限公司 低乙苯副产物的芳烃烷基转移和脱烷基反应催化剂
CN100553775C (zh) * 2006-08-11 2009-10-28 中国石油化工股份有限公司 选择性脱烷基和芳烃烷基转移反应催化剂
CN101045668B (zh) * 2006-03-27 2010-12-01 中国石油化工股份有限公司 碳九及其以上重质芳烃高选择性生产碳八芳烃的方法
CN101954294A (zh) * 2010-09-26 2011-01-26 同济大学 甲苯和丙烯合成对甲基异丙苯的烷基化催化剂及其制备方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101966467B (zh) * 2010-09-27 2012-05-23 同济大学 用于碳八芳烃异构化反应工艺的催化剂及其制备方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1443737A (zh) * 2002-03-13 2003-09-24 中国石油化工股份有限公司 用于苯与碳九及其以上芳烃烷基转移的催化剂
CN1329121C (zh) * 2004-07-12 2007-08-01 中国石油化工股份有限公司 甲苯不均化催化剂
CN101045668B (zh) * 2006-03-27 2010-12-01 中国石油化工股份有限公司 碳九及其以上重质芳烃高选择性生产碳八芳烃的方法
CN100506378C (zh) * 2006-08-11 2009-07-01 中国石油化工股份有限公司 低乙苯副产物的芳烃烷基转移和脱烷基反应催化剂
CN100553775C (zh) * 2006-08-11 2009-10-28 中国石油化工股份有限公司 选择性脱烷基和芳烃烷基转移反应催化剂
CN101954294A (zh) * 2010-09-26 2011-01-26 同济大学 甲苯和丙烯合成对甲基异丙苯的烷基化催化剂及其制备方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10981845B2 (en) 2016-10-10 2021-04-20 Exxonmobil Chemical Patents Inc. Heavy aromatics conversion processes and catalyst compositions used therein
US11236027B2 (en) 2016-10-10 2022-02-01 Exxonmobil Chemical Patents Inc. Heavy aromatics conversion processes and catalyst compositions used therein

Also Published As

Publication number Publication date
CN103285910B (zh) 2016-02-10
CN103285910A (zh) 2013-09-11

Similar Documents

Publication Publication Date Title
WO2013127044A1 (zh) 一种碳八芳烃中乙苯脱烷基催化剂
JP4351393B2 (ja) 芳香族炭化水素の不均化/トランスアルキル化のための触媒及びその製造方法
JP4432019B2 (ja) 炭化水素原料から芳香族炭化水素化合物及び液化石油ガスを製造する方法
CN101811063B (zh) 碳九及其以上重质芳烃轻质化及烷基转移催化剂
US5804059A (en) Process of preparing a C6 to C8 hydrocarbon with a steamed, acid-leached, molybdenum containing mordenite catalyst
JPH11501286A (ja) ゼオライト結合ゼオライト触媒を用いる炭化水素転化プロセス
CN111229299A (zh) 一种直链烷烃高效异构化和芳构化催化剂及其制备方法
WO2019011239A1 (zh) 乙苯脱烷基催化剂及其制备方法
CN101768039A (zh) 碳九及其以上重质芳烃轻质化及烷基转移方法
KR20020010143A (ko) 3종 이상의 상이한 제올라이트를 함유한 제올라이트결합된 촉매 및 탄화수소 전환에서의 이들의 용도
CN103285912B (zh) 一种碳八芳烃中乙苯脱烷基催化剂的制备方法
CN110961143B (zh) 分子筛催化剂、其制备方法及其在乙苯脱烷基反应和二甲苯异构化反应中的应用
CN101209947B (zh) 一种低碳烷烃芳构化方法
CN106925339B (zh) 用于碳八芳烃中二甲苯异构化反应的多级孔分子筛催化剂的制备方法
RU2765750C2 (ru) Композиция катализатора
CN102199066A (zh) 一种烷基芳烃异构化方法
CN103120952B (zh) 歧化与烷基转移催化剂及其制备方法
TW408033B (en) A catalyst for the conversion of heavy aromatics to light aromatics and a process for the same conversion
WO2012066012A1 (en) Isomerisation catalyst preparation process
CN101357876B (zh) 一种c9+重质芳烃轻质化的方法
CN100425343C (zh) 一种烷基芳烃异构化催化剂及使用方法
JP3302553B2 (ja) 重質芳香族を軽質芳香族へ転化する触媒及びその転化方法
WO2022083526A1 (zh) 化工型加氢裂化催化剂及其制法和应用
CN103121915B (zh) 甲苯与重芳烃歧化和烷基转移的方法
WO2003076372A1 (fr) Transalkylation du benzene et d&#39;hydrocarbures aromatiques c9+

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12869774

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205 DATED 07/11/2014)

122 Ep: pct application non-entry in european phase

Ref document number: 12869774

Country of ref document: EP

Kind code of ref document: A1