WO2021012801A1 - 烯烃芳构化催化剂及其制备方法和应用以及低碳烯烃芳构化方法 - Google Patents

烯烃芳构化催化剂及其制备方法和应用以及低碳烯烃芳构化方法 Download PDF

Info

Publication number
WO2021012801A1
WO2021012801A1 PCT/CN2020/093983 CN2020093983W WO2021012801A1 WO 2021012801 A1 WO2021012801 A1 WO 2021012801A1 CN 2020093983 W CN2020093983 W CN 2020093983W WO 2021012801 A1 WO2021012801 A1 WO 2021012801A1
Authority
WO
WIPO (PCT)
Prior art keywords
catalyst
aromatization
phosphorus
binder
microporous material
Prior art date
Application number
PCT/CN2020/093983
Other languages
English (en)
French (fr)
Inventor
王辉
阮·丽萨
单军军
迈尔斯·乔舒亚
程继红
刘华
Original Assignee
国家能源投资集团有限责任公司
北京低碳清洁能源研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国家能源投资集团有限责任公司, 北京低碳清洁能源研究院 filed Critical 国家能源投资集团有限责任公司
Publication of WO2021012801A1 publication Critical patent/WO2021012801A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/02Boron or aluminium; Oxides or hydroxides thereof
    • B01J21/04Alumina
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/14Phosphorus; Compounds thereof
    • B01J27/16Phosphorus; Compounds thereof containing oxygen, i.e. acids, anhydrides and their derivates with N, S, B or halogens without carriers or on carriers based on C, Si, Al or Zr; also salts of Si, Al and Zr
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/041Mesoporous materials having base exchange properties, e.g. Si/Al-MCM-41
    • B01J29/042Mesoporous materials having base exchange properties, e.g. Si/Al-MCM-41 containing iron group metals, noble metals or copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/041Mesoporous materials having base exchange properties, e.g. Si/Al-MCM-41
    • B01J29/042Mesoporous materials having base exchange properties, e.g. Si/Al-MCM-41 containing iron group metals, noble metals or copper
    • B01J29/044Iron group metals or copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/041Mesoporous materials having base exchange properties, e.g. Si/Al-MCM-41
    • B01J29/045Mesoporous materials having base exchange properties, e.g. Si/Al-MCM-41 containing arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/40Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11, as exemplified by patent documents US3702886, GB1334243 and US3709979, respectively
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/40Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11, as exemplified by patent documents US3702886, GB1334243 and US3709979, respectively
    • B01J29/405Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11, as exemplified by patent documents US3702886, GB1334243 and US3709979, respectively containing rare earth elements, titanium, zirconium, hafnium, zinc, cadmium, mercury, gallium, indium, thallium, tin or lead
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/40Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11, as exemplified by patent documents US3702886, GB1334243 and US3709979, respectively
    • B01J29/42Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11, as exemplified by patent documents US3702886, GB1334243 and US3709979, respectively containing iron group metals, noble metals or copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/40Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11, as exemplified by patent documents US3702886, GB1334243 and US3709979, respectively
    • B01J29/42Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11, as exemplified by patent documents US3702886, GB1334243 and US3709979, respectively containing iron group metals, noble metals or copper
    • B01J29/44Noble metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/40Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11, as exemplified by patent documents US3702886, GB1334243 and US3709979, respectively
    • B01J29/42Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11, as exemplified by patent documents US3702886, GB1334243 and US3709979, respectively containing iron group metals, noble metals or copper
    • B01J29/46Iron group metals or copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/40Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11, as exemplified by patent documents US3702886, GB1334243 and US3709979, respectively
    • B01J29/48Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11, as exemplified by patent documents US3702886, GB1334243 and US3709979, respectively containing arsenic, antimony, bismuth, vanadium, niobium tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/82Phosphates
    • B01J29/83Aluminophosphates [APO compounds]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/90Regeneration or reactivation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/0009Use of binding agents; Moulding; Pressing; Powdering; Granulating; Addition of materials ameliorating the mechanical properties of the product catalyst
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/0009Use of binding agents; Moulding; Pressing; Powdering; Granulating; Addition of materials ameliorating the mechanical properties of the product catalyst
    • B01J37/0018Addition of a binding agent or of material, later completely removed among others as result of heat treatment, leaching or washing,(e.g. forming of pores; protective layer, desintegrating by heat)
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0201Impregnation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/04Mixing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • B01J37/082Decomposition and pyrolysis
    • B01J37/088Decomposition of a metal salt
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • B01J37/10Heat treatment in the presence of water, e.g. steam
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/28Phosphorising
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J38/00Regeneration or reactivation of catalysts, in general
    • B01J38/02Heat treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J38/00Regeneration or reactivation of catalysts, in general
    • B01J38/04Gas or vapour treating; Treating by using liquids vaporisable upon contacting spent catalyst
    • B01J38/12Treating with free oxygen-containing gas
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C15/00Cyclic hydrocarbons containing only six-membered aromatic rings as cyclic parts
    • C07C15/02Monocyclic hydrocarbons
    • C07C15/04Benzene
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C15/00Cyclic hydrocarbons containing only six-membered aromatic rings as cyclic parts
    • C07C15/02Monocyclic hydrocarbons
    • C07C15/06Toluene
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C15/00Cyclic hydrocarbons containing only six-membered aromatic rings as cyclic parts
    • C07C15/02Monocyclic hydrocarbons
    • C07C15/067C8H10 hydrocarbons
    • C07C15/08Xylenes
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2/00Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms
    • C07C2/02Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms by addition between unsaturated hydrocarbons
    • C07C2/42Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms by addition between unsaturated hydrocarbons homo- or co-oligomerisation with ring formation, not being a Diels-Alder conversion
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2/00Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms
    • C07C2/02Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms by addition between unsaturated hydrocarbons
    • C07C2/42Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms by addition between unsaturated hydrocarbons homo- or co-oligomerisation with ring formation, not being a Diels-Alder conversion
    • C07C2/44Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms by addition between unsaturated hydrocarbons homo- or co-oligomerisation with ring formation, not being a Diels-Alder conversion of conjugated dienes only
    • C07C2/46Catalytic processes
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2/00Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms
    • C07C2/76Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms by condensation of hydrocarbons with partial elimination of hydrogen
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G50/00Production of liquid hydrocarbon mixtures from lower carbon number hydrocarbons, e.g. by oligomerisation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2229/00Aspects of molecular sieve catalysts not covered by B01J29/00
    • B01J2229/10After treatment, characterised by the effect to be obtained
    • B01J2229/18After treatment, characterised by the effect to be obtained to introduce other elements into or onto the molecular sieve itself
    • B01J2229/186After treatment, characterised by the effect to be obtained to introduce other elements into or onto the molecular sieve itself not in framework positions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2229/00Aspects of molecular sieve catalysts not covered by B01J29/00
    • B01J2229/10After treatment, characterised by the effect to be obtained
    • B01J2229/20After treatment, characterised by the effect to be obtained to introduce other elements in the catalyst composition comprising the molecular sieve, but not specially in or on the molecular sieve itself
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2229/00Aspects of molecular sieve catalysts not covered by B01J29/00
    • B01J2229/30After treatment, characterised by the means used
    • B01J2229/37Acid treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2229/00Aspects of molecular sieve catalysts not covered by B01J29/00
    • B01J2229/30After treatment, characterised by the means used
    • B01J2229/42Addition of matrix or binder particles
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2521/00Catalysts comprising the elements, oxides or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium or hafnium
    • C07C2521/02Boron or aluminium; Oxides or hydroxides thereof
    • C07C2521/04Alumina
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2527/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • C07C2527/14Phosphorus; Compounds thereof
    • C07C2527/16Phosphorus; Compounds thereof containing oxygen
    • C07C2527/18Phosphorus; Compounds thereof containing oxygen with metals
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2529/00Catalysts comprising molecular sieves
    • C07C2529/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites, pillared clays
    • C07C2529/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2529/00Catalysts comprising molecular sieves
    • C07C2529/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites, pillared clays
    • C07C2529/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • C07C2529/064Crystalline aluminosilicate zeolites; Isomorphous compounds thereof containing iron group metals, noble metals or copper
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2529/00Catalysts comprising molecular sieves
    • C07C2529/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites, pillared clays
    • C07C2529/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • C07C2529/064Crystalline aluminosilicate zeolites; Isomorphous compounds thereof containing iron group metals, noble metals or copper
    • C07C2529/068Noble metals
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2529/00Catalysts comprising molecular sieves
    • C07C2529/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites, pillared clays
    • C07C2529/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • C07C2529/064Crystalline aluminosilicate zeolites; Isomorphous compounds thereof containing iron group metals, noble metals or copper
    • C07C2529/072Iron group metals or copper
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2529/00Catalysts comprising molecular sieves
    • C07C2529/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites, pillared clays
    • C07C2529/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • C07C2529/076Crystalline aluminosilicate zeolites; Isomorphous compounds thereof containing arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2529/00Catalysts comprising molecular sieves
    • C07C2529/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites, pillared clays
    • C07C2529/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • C07C2529/40Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2529/00Catalysts comprising molecular sieves
    • C07C2529/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites, pillared clays
    • C07C2529/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • C07C2529/40Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11
    • C07C2529/42Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11 containing iron group metals, noble metals or copper
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2529/00Catalysts comprising molecular sieves
    • C07C2529/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites, pillared clays
    • C07C2529/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • C07C2529/40Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11
    • C07C2529/42Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11 containing iron group metals, noble metals or copper
    • C07C2529/44Noble metals
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2529/00Catalysts comprising molecular sieves
    • C07C2529/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites, pillared clays
    • C07C2529/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • C07C2529/40Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11
    • C07C2529/42Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11 containing iron group metals, noble metals or copper
    • C07C2529/46Iron group metals or copper
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2529/00Catalysts comprising molecular sieves
    • C07C2529/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites, pillared clays
    • C07C2529/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • C07C2529/40Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11
    • C07C2529/48Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11 containing arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2400/00Products obtained by processes covered by groups C10G9/00 - C10G69/14
    • C10G2400/30Aromatics
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/584Recycling of catalysts

Definitions

  • the invention relates to the field of aromatization of low-carbon olefins into aromatics, in particular to an aromatization catalyst, a preparation method and application thereof, and a low-carbon olefin aromatization method using the catalyst.
  • step (a) contacting ethane with a dehydrogenation aromatization catalyst, the catalyst containing 0.005 to 0.1% by weight of platinum, with no content Gallium less than the amount of platinum, 10-99.9% by weight aluminosilicate and binder; and step (b), separating methane, hydrogen and C 2 to C 5 hydrocarbons from the reaction product of step (a) to obtain Aromatic reaction product of benzene.
  • the catalyst in this method must use precious metals (platinum, metal), by combining precious metals with ZSM-5 molecular sieve, it becomes a bifunctional catalyst;
  • the reaction temperature of this method is high, which needs to be at 630°C
  • the conversion rate of ethane is low, and the conversion rate is not more than 70%.
  • the catalyst is rapidly deactivated and the activity is less than 40%.
  • the BTX yield is usually only 30% to 40% ; Again, most of the ethane in this method is converted to low-value methane, and the unconverted ethane and methane also increase the difficulty of light ends separation and recycling.
  • EP0785178B1 discloses a method for producing aromatic hydrocarbons, which comprises contacting a low-carbon hydrocarbon feedstock containing olefins and/or paraffins with a zeolite catalyst in a fixed-bed adiabatic reactor to carry out a catalytic reaction.
  • the cyclization reaction of low-carbon raw materials needs to meet the following conditions: (1) The initial catalytic activity of the zeolite catalyst is expressed as 0.2 (sec -1 ) or higher by the catalytic cracking of n-hexane under normal pressure at 500°C; (2) catalyst bed The temperature of the layer is 450°C to 650°C; (3) the temperature distribution of the catalyst bed relative to the distance from the inlet to the outlet of the catalyst bed, wherein the temperature distribution has at least one maximum temperature value; (4) the temperature of the catalyst bed outlet relative to the catalyst bed The temperature at the inlet is +/-40°C.
  • This method is suitable for aromatization of olefins above C4, and the aromatic selectivity is relatively low.
  • the prior art also uses olefins as raw materials for aromatization reactions.
  • Li Yu, Zhang Yingqiang and others introduced ZSM-5 molecular sieve and its modified catalyst for light olefin C 2 ⁇ C 5 in "Low-carbon olefin aromatization catalyst and process progress" (Journal of Fushun Petroleum Institute, 2002-01)
  • the results show that the modified catalyst obtained by adding some metals such as Zn, Ga, Pt, Ni, Cd, etc. to the ZSM-5 molecular sieve can directly convert olefins and their mixtures into aromatics, and the yield and selection of aromatics Sex is greatly improved.
  • the catalyst mainly introduces metals to improve yield and selectivity, and still has the problem of high coke content and frequent regeneration treatment.
  • the purpose of the present invention is to overcome the problems of easy deactivation of catalysts, frequent regeneration, low catalyst stability, low conversion rate of reactants, and metal must be used in the catalyst in the prior art.
  • an aromatization catalyst can be used to aromatize low-carbon olefins to generate aromatics; the catalyst has high stability, and the selectivity of aromatic products is good, which can effectively reduce the generation of methane and coke, and the aromatization catalyst can be No metal is used.
  • the first aspect of the present invention provides an olefin aromatization catalyst, wherein the aromatization catalyst contains a microporous material, a binder and a modifier; the microporous material is a zeolite molecular sieve, The binder is alumina, the modifier is phosphorus element, and the molar ratio of aluminum element to phosphorus element in the binder is greater than or equal to 1 and less than 5; the strong acidity of the olefin aromatization catalyst The ratio of the acidity of the site to the acidity of the weakly acidic site is less than 1.
  • the ratio of the acidity of the strong acid site to the acidity of the weak acid site is not more than 0.85, preferably not more than 0.75.
  • the microporous material is a zeolite molecular sieve with an MFI structure, preferably ZSM-5, and more preferably, the silicon to aluminum ratio of ZSM-5 is not more than 50.
  • the weight ratio of the microporous material and the adhesive is 1:0.05 to 1, wherein the adhesive is calculated as the aluminum element in the adhesive.
  • At least part of the binder and modifier in the catalyst is in the form of aluminum phosphate.
  • the aromatization catalyst further contains 0 wt% to 1 wt% of metal active components based on the total amount of the aromatization catalyst, and the metal active components are Pt, Ni, Co, Cu One or more of Zn, Fe, Pd, Rh, Ru, Re, Mo, W, Au and Ga.
  • the second aspect of the present invention provides a method for preparing an olefin aromatization catalyst, the method comprising
  • microporous material, the alumina precursor and the phosphorus source are mixed, formed and fired; or
  • microporous material is mixed with the alumina precursor, shaped and calcined, and then contacted with the phosphorus source to load the phosphorus element, and then the second baking is performed.
  • the microporous material is a zeolite molecular sieve
  • the molar ratio of the aluminum element in the alumina precursor to the phosphorus element in the phosphorus source is greater than 1 and less than 5
  • the temperature of the calcination and the secondary calcination is 300°C to 700°C. °C, preferably 450 °C to 600 °C; each time is 0.5h-24h, preferably 2h-8h.
  • the weight ratio of the microporous material and the alumina precursor in terms of aluminum element is 1:0.05-1.
  • the microporous material is a zeolite molecular sieve with an MFI structure, more preferably ZSM-5, and further preferably, the silicon-to-aluminum molar ratio of ZSM-5 is not greater than 50.
  • the phosphorus source is a phosphorus-containing solution
  • the loading method is an impregnation method such as a saturated impregnation method.
  • the solute in the phosphorus-containing solution is selected from one or more of phosphoric acid, ammonium phosphate, phosphine and derivatives thereof.
  • the content of the phosphorus element in the phosphorus-containing solution is 0.5% by weight to 30% by weight, more preferably 5% by weight to 15% by weight.
  • the method further includes performing a hydrothermal treatment on the calcined product or the second calcined product.
  • the hydrothermal treatment conditions include: a temperature of 250°C to 650°C, and a time of 0.5h to 24h.
  • the method further includes loading 0 to 1% by weight of the metal active component based on the total amount of the catalyst on the calcined product or the second calcined product.
  • the metal active component is one or more of Pt, Ni, Co, Cu, Zn, Fe, Pd, Rh, Ru, Re, Mo, W, Au and Ga.
  • a third aspect of the present invention provides a method for aromatization of low-carbon olefins, which comprises: contacting low-carbon olefins and hydrogen in the presence of a catalyst under aromatization conditions, wherein the catalyst is the above-mentioned aromatization of olefins. catalyst;
  • the low-carbon olefin is a C 2 to C 6 olefin, preferably ethylene;
  • the aromatization conditions include: in gauge pressure, the pressure is 0.01 MPa to 2 MPa; the temperature is 300°C to 700°C, preferably 500°C to 650°C; the volume ratio of hydrogen to olefin is 0.1 to 5, Preferably it is 0.5-2; the volumetric space velocity of lower olefins is 500h -1 to 50000h -1 , preferably 1000h -1 to 10000h -1 .
  • the invention also provides the application of the olefin aromatization catalyst and the preparation method thereof in the aromatization of low-carbon olefins.
  • the aromatization catalyst includes a zeolite molecular sieve, a binder and a modifier, and optional metal active components;
  • the binder is a compound containing aluminum element and phosphorus element, a combination of aluminum element and phosphorus element
  • the molar ratio is greater than or equal to 1 and less than 5; the ratio of the acidity of the strong acid site to the acidity of the weak acid site of the aromatization catalyst is less than 1.
  • the binder is aluminum phosphate and optionally aluminum oxide.
  • the method for preparing the above aromatization catalyst includes the following steps:
  • the metal active component is supported on the surface of the molded article.
  • the method for preparing the above aromatization catalyst includes the following steps:
  • the metal active component is supported on the surface of the catalyst.
  • the ratio of the acidity of the strong acid site to the acidity of the weak acid site of the aromatization catalyst of the present invention is less than 1, preferably not more than 0.75, and the binder in the aromatization catalyst includes aluminum and phosphorus, and aluminum and The molar ratio of phosphorus element is greater than 1 and less than 5.
  • the aromatization catalyst of the present invention can be used to aromatize low-carbon olefins to generate aromatic hydrocarbons in a wide temperature range, and at the same time achieve comparison with the smallest coke and methane production. High yield of aromatics and prolonged catalyst life.
  • the raw materials of the present invention can directly come from the ethane cracking unit without purification and separation operations, thereby further reducing the production cost.
  • the catalyst of the present invention may not use metal, which not only reduces the cost of the catalyst, but also reduces the increase in equipment cost due to the halogen-containing regeneration process.
  • Figure 1 A comparison diagram of the ethylene conversion rate of the catalyst A of the present invention and the comparative catalyst D1;
  • Figure 2 is a comparison diagram of the BTX selectivity of the catalyst A of the present invention and the comparative catalyst D1;
  • Figure 3 is a comparison diagram of the ethylene conversion rates of the catalyst A, the catalyst RA and the catalyst D of the present invention
  • FIG. 4 is a comparison diagram of the BTX selectivity of the catalyst A, the catalyst RA and the catalyst D of the present invention.
  • the olefin aromatization catalyst provided by the present invention contains a zeolite molecular sieve microporous material, an alumina binder, a phosphorus modifier and optional metal active components; the molar ratio of aluminum element to phosphorus element in the binder is greater than Equal to 1 and less than 5; the ratio of the acidity of the strong acid site to the acidity of the weak acid site of the aromatization catalyst is less than 1.
  • the weakly acidic site refers to the NH 3 -TPD peak whose maximum desorption temperature is lower than 300°C, such as 180-230°C; the strong acidic site refers to the maximum desorption temperature of not less than 300°C, such as 300-400°C.
  • the test method is a temperature programmed desorption (TPD) method for characterizing acid sites, which is conventional in the art.
  • TCD thermal conductivity detector
  • TCD thermal conductivity detector
  • the method and steps for characterizing the acid site of the catalyst can be as follows: weigh 0.2g of the catalyst into a quartz sample tube, program the temperature to 450°C under helium conditions, and then cool to 150°C after activation for 1 hour. Adsorb ammonia for 30 minutes, then switch to helium purge, remove excess ammonia until the detector baseline is stable, then program the temperature to 600°C at a heating rate of 10°C/min, and pass the built-in thermal conductivity detector of the NH 3 -TPD instrument Detect the amount of ammonia desorption of the sample, and the ratio of the amount of desorption is the acidity ratio.
  • the ratio of the acidity of the strong acid site of the aromatization catalyst to the acidity of the weak acid site is less than 1, that is, the acidity of the strong acid site is less than the acidity of the weak acid site.
  • the ratio of the acidity of the acidic site to the acidity of the weakly acidic site is not more than 0.85, more preferably not more than 0.75.
  • the microporous material is preferably a zeolite molecular sieve with an MFI structure, preferably ZSM-5, further preferably, the silicon to aluminum ratio of ZSM-5 is not more than 50, for example, the silicon to aluminum ratio of ZSM-5 is 10 , 15, 20, 25, 30, 35, 40, 45, 50, and any value in the range formed by any two of these values.
  • the silicon-to-aluminum ratio in the present invention refers to the molar ratio of SiO 2 /Al 2 O 3 .
  • the binder contains aluminum phosphate and optionally alumina. That is, the binder is aluminum phosphate, or the binder is aluminum phosphate and alumina.
  • the metal active component is one or more of Pt, Ni, Co, Cu, Zn, Fe, Pd, Rh, Ru, Re, Mo, W, Au and Ga.
  • the weight ratio of the microporous material and the binder is 1:0.05 to 1, wherein the binder is calculated as the aluminum element in the binder.
  • the weight ratio of the microporous material and the adhesive is 1:0.05, 1:0.1, 1:0.15, 1:0.2, 1:0.25, 1:0.3, 1:0.35, 1:0.4, 1:0.45 , 1:0.5, 1:0.55, 1:0.6, 1:0.65, 1:0.7, 1:0.75, 1:0.8, 1:0.85, 1:0.9, 1:0.95, 1:1, and any of these values Any value in the range formed by any two.
  • the content of the metal active component is 0 wt% to 1 wt%, preferably 0 wt% to 0.5 wt%.
  • the content of the metal active component is 0 wt%, 0.001 wt%, 0.01 wt%, 0.05 wt%, 0.1 wt%, 0.5 wt%, and among these values Any value in the range formed by any two of.
  • the aromatization catalyst may not contain metal active components, thereby not only reducing the cost of the catalyst, but also reducing the increased equipment cost due to the halogen-containing regeneration process.
  • the content of the microporous material, the binder and the metal active component can be measured by ICP or XRF, and can also be calculated by the amount of feed. In the embodiment of the present invention, it is measured by Shimadzu's EDX-7000.
  • the second aspect of the present invention provides a preparation method of the above-mentioned olefin aromatization catalyst, which includes the steps of mixing, forming and roasting.
  • the microporous material, the binder precursor and the modifier precursor phosphorus source can be mixed, molded and fired together, or the microporous material and the binder precursor can be mixed and molded, and then the modifier can be loaded Precursor phosphorus source.
  • a calcination step is required.
  • the loading method of the phosphorus source can also be an impregnation method such as a saturated impregnation method or an equal volume impregnation method.
  • the precursor of the binder alumina can be various forms of aluminum hydroxide or its hydrates such as pseudo-boehmite
  • the precursor of the modifier phosphorus can be various substances that leave phosphorus after calcination, such as Phosphoric acid, ammonium phosphate, etc., phosphorus precursors are also called phosphorus sources.
  • the precursor of the active metal component can be soluble salts of various metal components, such as one or more of chloride, nitrate, sulfate, and phosphate.
  • the catalyst When the catalyst also contains active metal components, it can be obtained through an impregnation step.
  • the metal active component can be loaded together with phosphorus, or it can be loaded sequentially, for example, phosphorus is loaded first, and then the active metal component is loaded.
  • the roasting can be carried out after all the required components are loaded, or after all the components are loaded, the roasting can be carried out once or several times.
  • the conditions for each firing can be the same or different.
  • the method of the present invention may further include a hydrothermal treatment step.
  • the hydrothermal treatment step is performed after firing. It can be carried out after one or more calcinations, or after the last calcination.
  • the preparation method of the above catalyst includes the following steps:
  • the metal active component is supported on the surface of the catalyst.
  • the preparation method of the above catalyst includes the following steps:
  • the metal active component is supported on the surface of the catalyst.
  • microporous material, binder precursor, and modifier precursor phosphorus source such as phosphorus-containing solution can be mixed, extruded and calcined first to obtain the desired catalyst.
  • microporous material, the binder precursor and the modifier precursor phosphorus source such as phosphorus-containing solution can be mixed, extruded and calcined first, then the calcined product is subjected to hydrothermal treatment, and then the active metal component is used
  • the solution is impregnated with the product obtained by hydrothermal treatment, and then calcined again (roasting + hydrothermal treatment + loading + roasting) to obtain the desired catalyst.
  • microporous material and the binder precursor can be uniformly mixed, extruded, and then calcined, the calcined product is loaded with modifier phosphorus, and then calcined for a second time to obtain the desired catalyst.
  • microporous material and the binder precursor can also be uniformly mixed, extruded, and then calcined for hydrothermal treatment, and the hydrothermal treatment product can be loaded with modifier phosphorus and metal active components at the same time or successively , And then perform secondary calcination (calcination + hydrothermal treatment + load + calcination) to obtain the desired catalyst.
  • the microporous material and the binder precursor can also be uniformly mixed, extruded, and then calcined, the calcined product is loaded with the modifier phosphorus, and then the second roast is performed, and then the active metal component is loaded. Carry out three calcinations (calcination+support+calcination+support+calcination) to obtain the desired catalyst.
  • microporous material and the binder precursor can also be uniformly mixed, extruded, and then calcined for hydrothermal treatment.
  • the product after hydrothermal treatment is loaded with modifier phosphorus, and then the second roasting is performed.
  • the active metal components are loaded, and then roasted three times (calcination + hydrothermal treatment + load + roast + load + roast) to obtain the desired catalyst.
  • the microporous material and the binder precursor can also be uniformly mixed, extruded, and then calcined, the calcined product is loaded with the modifier phosphorus, and then the second roast is performed, and then the active metal component is loaded. Carry out three times of roasting, and then carry out hydrothermal treatment (calcination + load + roast + load + roast + hydrothermal treatment) to obtain the desired catalyst.
  • microporous material and the binder precursor can also be uniformly mixed, extruded, and then calcined, and then subjected to hydrothermal treatment, and then the hydrothermal treatment product is loaded with modifier phosphorus, and then subjected to secondary roasting , And then load the active metal components, perform three times of roasting, and then carry out the second hydrothermal treatment (roasting + hydrothermal treatment + load + roasting + load + roasting + hydrothermal treatment) to obtain the required catalyst.
  • the catalysts obtained from the above methods 1 to 5 have higher activity and aromatic selectivity, and are more suitable for raw materials with lower olefin content; the catalysts obtained from the above methods 6 to 12 have better carbon deposition resistance and are more suitable For applications in fixed bed reactors.
  • the weight ratio of the microporous material and the aluminum oxide as aluminum element is 1:0.05 to 1.
  • the weight ratio of the microporous material and aluminum oxide calculated as aluminum element is 1:0.05, 1:0.1, 1:0.15, 1:0.2, 1:0.25, 1:0.3, 1:0.35, 1:0.4 , 1: 0.45, 1: 0.5, 1: 0.55, 1: 0.6, 1: 0.65, 1: 0.7, 1: 0.75, 1: 0.8, 1: 0.85, 1: 0.9, 1: 0.95, 1: 1, and Any value in the range formed by any two of these values.
  • the aromatization catalyst by adding a specific amount of phosphorus-containing solution, while limiting the microporous material and alumina, and the concentration of the phosphorus-containing solution, the acidity of the strong acid site of the aromatization catalyst prepared by the present invention Less than the acidity of the weakly acidic site, the aromatization catalyst can not only generate aromatic hydrocarbons with high selectivity, but also generate coke in a smaller amount, further improve catalyst regeneration performance and prolong service life.
  • the phosphorus precursor is preferably a phosphorus-containing solution, so that phosphorus can be loaded by an impregnation method or directly mixed with the microporous material and the binder precursor.
  • the solvent in the phosphorus-containing solution may be water.
  • the solute in the phosphorus-containing solution is selected from one or more of phosphoric acid, ammonium phosphate, phosphine and derivatives thereof.
  • the content of the phosphorus element in the phosphorus-containing solution is 0.5% to 30% by weight, preferably 5% to 15% by weight.
  • the content of the phosphorus element in the phosphorus-containing solution is 0.5% to 30% by weight, preferably 5% to 15% by weight.
  • the prepared aromatization catalyst has better performance.
  • the microporous material may be various molecular sieves having an MFI structure, preferably ZSM-5, and further particularly preferably, the silicon-to-aluminum molar ratio of ZSM-5 is not greater than 50.
  • the present invention limits the silicon-to-aluminum molar ratio to not greater than 50, so that the catalyst prepared by the present invention has a higher ethylene conversion rate and aromatic selectivity, and less coke production.
  • the method of the hydrothermal treatment is to contact the material to be treated with steam.
  • the conditions of the hydrothermal treatment include: a temperature of 250°C to 650°C, and a time of 0.5h to 24h.
  • the conditions of each hydrothermal treatment may be the same or different within the above range.
  • the metal active component is one or more of Pt, Ni, Co, Cu, Zn, Fe, Pd, Rh, Ru, Re, Mo, W, Au and Ga.
  • the loading method may be a conventional method in the art, for example, a dipping method.
  • the method of introducing the above-mentioned metal active component can be obtained by adding a compound containing the metal active component.
  • the compound containing the metal active component is preferably selected from chlorides, nitrates, sulfates, vinegars of active metal elements.
  • One or more of acid salt and oxalate may be adding a Pt(NO 3 ) 2 solution.
  • the firing conditions include: a temperature of 300°C to 700°C, preferably 450°C to 600°C; and a time of 0.5h to 24h, preferably 2h to 8h.
  • the conditions of each firing may be the same or different within the above range.
  • the present invention also provides a method for aromatizing low-carbon olefins using the above-mentioned catalyst, which comprises: contacting low-carbon olefins, hydrogen and the above-mentioned olefin aromatization catalyst under aromatization conditions.
  • low-carbon olefins may contain hydrogen and other hydrocarbons (such as unconverted ethane), etc. Therefore, the low-carbon olefin feedstock of the present invention can be directly derived from an ethane cracking unit without purification and separation operations.
  • the low-carbon olefin of the present invention may be a C 2 to C 6 olefin, for example, the low-carbon olefin may be ethylene, propylene, 1-butene, 2-butene, normal One or more of pentene, 2-pentene, 1-hexene, 2-hexene, 3-hexene, and 2-methyl-1-pentene.
  • the content of total hydrocarbons in the low-carbon olefin is not less than 60% by volume, of which ethylene is not less than 30% by volume. More preferably, the lower olefin is ethylene.
  • the conditions for the aromatization reaction of low-carbon olefins may include: in gauge pressure, the pressure is 0.01 MPa to 2 MPa; the temperature is 300°C to 700°C, preferably 500°C to 650°C
  • the volume ratio of hydrogen to olefin is 0.1-5, preferably 0.5-2; the volumetric space velocity of olefin is 500h -1 ⁇ 50,000h -1 , preferably 1000h -1 ⁇ 10000h -1 .
  • the method further comprises preheating.
  • the preheating operation can be as follows: at atmospheric pressure, 66.7 sccm of H 2 is introduced into the reactor and the reactor is heated to 630° C. at a temperature increase rate of 15° C./min, and then maintained at this temperature for 30 minutes.
  • N 2 is also introduced , wherein N 2 is used as an internal standard for chromatographic analysis.
  • a fixed bed reactor is used for the aromatization reaction of light olefins.
  • the molecular sieve ZSM-5 with a silicon to aluminum ratio of 30 was purchased from Sigma-Aldrich;
  • Alumina precursor is Catapal B purchased from Sasol Company or aluminum hydroxide purchased from Sigma-Aldrich, and the weight is calculated as alumina;
  • the gas chromatograph was purchased from Agilent, the model is 7890;
  • the conversion rate of ethylene is calculated according to formula 1:
  • Ethylene conversion rate % (total moles of ethylene-remaining moles of ethylene)/total moles of ethylene ⁇ 100% (formula 1)
  • Substance X selectivity% total carbon moles of substance X in the product/converted ethylene carbon moles ⁇ 100% (Equation 2)
  • the contents of the microporous material, the binder and the metal active component are measured by Shimadzu’s EDX-7000.
  • the aromatization catalyst includes a microporous material and a binder.
  • the molar ratio of aluminum to phosphorus in the binder is 2; the weight ratio of the microporous material to the binder is 1:0.13.
  • the agent is based on the aluminum element in the adhesive.
  • the aromatization catalyst includes a microporous material and a binder.
  • the molar ratio of aluminum to phosphorus in the binder is 1; the weight ratio of the microporous material to the binder is 1:0.09.
  • the agent is based on the aluminum element in the adhesive.
  • the aromatization catalyst includes a microporous material and a binder.
  • the molar ratio of aluminum to phosphorus in the binder is 3.2; the weight ratio of the microporous material to the binder is 1:0.15.
  • the agent is based on the aluminum element in the adhesive.
  • the aromatization catalyst includes a microporous material and a binder.
  • the molar ratio of aluminum to phosphorus in the binder is 2; the weight ratio of the microporous material to the binder is 1:0.13.
  • the agent is based on the aluminum element in the adhesive.
  • the aromatization catalyst includes a microporous material and a binder.
  • the molar ratio of aluminum to phosphorus in the binder is 2; the weight ratio of the microporous material to the binder is 1:0.13.
  • the agent is based on the aluminum element in the adhesive.
  • the aromatization catalyst includes a microporous material and a binder.
  • the molar ratio of aluminum to phosphorus in the binder is 2; the weight ratio of the microporous material to the binder is 1:0.13.
  • the agent is based on the aluminum element in the adhesive.
  • the aromatization catalyst includes a microporous material, a binder, and a metal active component.
  • the molar ratio of aluminum to phosphorus in the binder is 2; the weight ratio of the microporous material to the binder is 1:0.13 , wherein the binder is calculated based on the aluminum element in the binder; based on the total amount of the aromatization catalyst, the content of the metal active component is 0.05% by weight.
  • the product was pulverized and sieved to obtain 30 mesh particles, and then hydrothermally treated at 600°C, 150 mL/min containing 20% by weight of water vapor in air for 4 hours to obtain the product, and then 0.25% by weight of Pt(NO 3 ) 2 5g of the product was immersed in the aqueous solution of 25°C for 2 hours, and then the resulting mixture was heated to 80°C in a rotary evaporator and rotary evaporated for 60 minutes to obtain a dry product. Then the product was calcined at 550°C for 2 hours to obtain Pt
  • the aromatization catalyst with a content of 500 ppm, the prepared aromatization catalyst is labeled as catalyst H.
  • the aromatization catalyst includes a microporous material, a binder, and a metal active component.
  • the molar ratio of aluminum to phosphorus in the binder is 2; the weight ratio of the microporous material to the binder is 1:0.13 , wherein the binder is calculated based on the aluminum element in the binder; based on the total amount of the aromatization catalyst, the content of the metal active component is 0.05% by weight.
  • the aromatization catalyst includes a microporous material, a binder, and a metal active component.
  • the molar ratio of aluminum to phosphorus in the binder is 2; the weight ratio of the microporous material to the binder is 1:0.13 , wherein the binder is calculated based on the aluminum element in the binder; based on the total amount of the aromatization catalyst, the content of the metal active component is 0.05% by weight.
  • the catalyst includes a microporous material and a binder, and the molar ratio of aluminum element to phosphorus element in the binder is 20.
  • the catalyst includes a microporous material and a binder, and the molar ratio of aluminum element to phosphorus element in the binder is 0.9.
  • the prepared catalyst is labeled as catalyst D5.
  • the catalyst includes a microporous material and a binder, and the molar ratio of aluminum element to phosphorus element in the binder is 7.
  • the catalyst A prepared in Example 1 was used to carry out the aromatization reaction of light olefins, and the specific operations were as follows:
  • the catalyst A of Example 10 reacted for 12 hours was subjected to regeneration treatment.
  • the specific operation was: heating to 550°C at a heating rate of 2°C/min in an air atmosphere, and keeping it for 4 hours.
  • the resulting aromatization catalyst is labeled as catalyst RA.
  • the aromatization catalyst includes a microporous material and a binder.
  • the molar ratio of aluminum to phosphorus in the binder is 2; the weight ratio of the microporous material to the binder is 1:0.07.
  • the agent is based on the aluminum element in the adhesive.
  • the RA was tested according to the acid site characterization method of the above test example, and the results are shown in Table 1.
  • the catalyst A of the present invention performs the aromatization reaction of light olefins at different temperatures:
  • step (2) gauge pressure, a pressure of 0.02MPa, a space velocity of 0.75h -1, H 2 66.7sccm replacement of step (2) is 10sccm ethylene, 10sccm and 10sccm of the H 2 N 2 (N 2 with Used as an internal standard substance for chromatographic analysis), after reacting at 400°C for 60 minutes, then heating to 450°C, 500°C, 550°C, 600°C, and 630°C in turn, and at 450°C, 500°C, 550°C, and 600°C respectively. React at 630°C for one hour. Switch the gas to 66.7sccm of H 2 for 30 minutes before each temperature rise. After reaching the required temperature, switch the hydrogen to the reaction gas (10sccm of ethylene, 10sccm of H 2 and 10 sccm of N 2 , where N 2 is used as an internal standard for chromatographic analysis).
  • the method of the present invention can effectively adjust the acidity of the strong/weak acidic site of the catalyst, and the ratio of the acidity of the strong acidic site to the acidity of the weak acidic site of the prepared aromatization catalyst It can be less than 1, preferably the ratio is not more than 0.75.
  • the aromatization catalyst of the present invention can reduce the aromatization reaction of carbon olefins to generate aromatic hydrocarbons, and the reaction temperature is low.
  • Comparative Example 4 is only hydrothermal treatment after molding
  • Comparative Example 5 is that ZSM-5 is first reacted with phosphoric acid aqueous solution, and then alumina is added). It still has a high ethylene conversion rate, BTX selectivity and BTX yield at 400°C, as well as low methane and coke production.
  • the catalyst A of the present invention and the catalyst D1 of the comparative example were compared with the ethylene conversion rate and BTX selectivity.
  • the results are shown in Table 2, Figure 1 and Figure 2.
  • the catalyst A showed better With good stability, only 1.86% by weight of coke was formed in 12 hours, while the coke of catalyst D1 exceeded 20% by weight.
  • Catalyst A also maintains a better BTX selectivity.
  • the aromatization catalyst of the present invention exhibits excellent stability and good selectivity of aromatic products in the aromatization reaction of low-carbon olefins to generate aromatics, and can effectively reduce the generation of methane and coke.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Thermal Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Dispersion Chemistry (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • General Chemical & Material Sciences (AREA)
  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

本发明涉及将低碳烯烃芳构化为芳烃领域,公开了一种芳构化催化剂及其制备方法和应用以及低碳烯烃芳构化方法。该芳构化催化剂包括微孔材料、粘合剂和改性剂;所述微孔材料为沸石分子筛,所述粘合剂为氧化铝,所述改性剂为磷元素,且所述粘合剂中的铝元素与磷元素的摩尔比大于等于1且小于5;所述烯烃芳构化催化剂的强酸性位点的酸度与弱酸性位点的酸度的比值小于1。该芳构化催化剂可以将低碳烯烃进行芳构化反应生成芳烃,催化剂稳定性高,且芳烃产物的选择性好,还可以有效减少甲烷和焦炭的生成。

Description

烯烃芳构化催化剂及其制备方法和应用以及低碳烯烃芳构化方法 技术领域
本发明涉及将低碳烯烃芳构化为芳烃领域,具体涉及芳构化催化剂及其制备方法和应用以及使用该催化剂的低碳烯烃芳构化方法。
背景技术
由于乙烷和乙烯的价格相对便宜且原料容易获得,越来越多的工艺转向烷烃或烯烃芳构化制备轻质芳烃(如BTX)。例如US20090209794A1公开了用于乙烷转化成芳烃的方法,该方法包括:步骤(a)、使乙烷与脱氢芳构化催化剂进行接触,所述催化剂含有0.005~0.1重量%的铂,含量不小于铂量的镓,10~99.9重量%的硅铝酸盐和粘合剂;以及步骤(b)、从步骤(a)的反应产物中分离甲烷、氢和C 2~C 5烃,得到含有苯的芳族反应产物。首先,该方法中的催化剂必须使用贵金属(铂、嫁),通过将贵金属与ZSM-5分子筛结合使用,成为双功能催化剂;其次,为了活化乙烷,该方法的反应温度高,需要在630℃下进行,然而乙烷的转化率却较低,转化率不大于70%,此外催化剂迅速失活,活性低于40%,即便在优化条件下,BTX收率通常也仅为30%至40%;再次,该方法中大部分乙烷转化为低价值的甲烷,未转化的乙烷和甲烷也增加了轻馏分分离和循环回收的难度。此外,较高的反应温度和频繁的再生处理导致贵金属从纳米颗粒状态变为烧结状态,为了将贵金属再次分散在催化剂载体上,必须在脱焦后注入含氯物质,在高温和潮湿环境中加入卤素从而对设备提出更高的要求。催化剂快速地失活还迫使采用更为复杂的反应器,例如移动床等反应器,从而增加了操作成本。
EP0785178B1公开了一种生产芳烃的方法,该方法包括使含有烯烃和/或链烷烃的低碳烃原料与沸石催化剂在固定床绝热反应器中进行接触,进行催化反应。低碳烃原料的环化反应需要满足如下条件:(1)沸石催化剂的初始催化活性以500℃常压下正己烷催化裂解来表示为0.2(sec -1)或更高;(2)催化剂床层的温度为450℃至650℃;(3)催化剂床相对于催化剂床入口到出口的距离的温度分布,其中温度分布具有至少一个最高温度值;(4)催化剂床出口的温度相对于催化剂床入口的温度为+/-40℃。此方法适用于C4以上的烯烃的芳构化,且芳 烃选择性相对较低。
此外,现有技术也有以烯烃为原料进行芳构化反应。李昱,张英强等在《低碳烯烃芳构化催化剂与工艺进展》(抚顺石油学院学报,2002-01)中介绍了ZSM-5分子筛及其改性催化剂用于低碳烯烃C 2~C 5的芳构化性能,结果表明在ZSM-5分子筛中加入一些金属如Zn、Ga、Pt、Ni、Cd等得到的改性催化剂可直接将烯烃及其混合物转化为芳烃,且芳烃收率、选择性都大有改善。但是该催化剂主要通过引入金属来改善收率和选择性,依然存在焦炭含量大,需要频繁进行再生处理的问题。
综上,在现有技术中存在大量生成甲烷,易形成焦炭,催化剂寿命短,需要频繁进行再生处理等问题,而且催化剂中必须需要使用金属,甚至是价格较高的贵金属。
发明内容
本发明的目的是为了克服现有技术存在的催化剂易失活,频繁再生,催化剂稳定性不高,反应物转化率低,催化剂中必须使用金属等问题。提供一种芳构化催化剂及其制备方法和低碳烯烃芳构化方法。采用该芳构化催化剂可以将低碳烯烃进行芳构化反应生成芳烃;催化剂稳定性高,且芳烃产物的选择性好,可以有效减少甲烷和焦炭的生成,而且所述芳构化催化剂中可以不使用金属。
为了实现上述目的,本发明第一方面提供了一种烯烃芳构化催化剂,其中,该芳构化催化剂含有微孔材料、粘合剂和改性剂;所述微孔材料为沸石分子筛,所述粘合剂为氧化铝,所述改性剂为磷元素,且所述粘合剂中的铝元素与磷元素的摩尔比大于等于1且小于5;所述烯烃芳构化催化剂的强酸性位点的酸度与弱酸性位点的酸度的比值小于1。
优选地,所述强酸性位点的酸度与弱酸性位点的酸度的比值不大于0.85,优选不大于0.75。
优选地,所述微孔材料为具有MFI结构的沸石分子筛,优选为ZSM-5,进一步优选地,ZSM-5的硅铝比不大于50。
优选地,所述微孔材料和粘合剂的重量比为1:0.05~1,其中,粘合剂以粘合剂中的铝元素计。
优选地,该催化剂中至少部分粘合剂和改性剂以磷酸铝形式存在。
优选地,该芳构化催化剂还含有以所述芳构化催化剂的总量为基准,0重量%~1重量%的金属活性组分,所述金属活性组分为Pt、Ni、Co、Cu、Zn、Fe、Pd、Rh、Ru、Re、Mo、W、Au和Ga中的一种或多种。
本发明第二方面提供了一种烯烃芳构化催化剂的制备方法,该方法包括
将微孔材料、氧化铝前驱体和磷源进行混合、成型和焙烧;或者
将微孔材料与氧化铝前驱体混合、成型和焙烧后与磷源接触以负载磷元素,再进行二次焙烧,
其中,所述微孔材料为沸石分子筛,氧化铝前驱体中的铝元素与磷源中的磷元素的摩尔比大于1且小于5,所述焙烧和二次焙烧的温度各自为300℃~700℃,优选为450℃~600℃;时间各自为0.5h~24h,优选为2h~8h。
优选地,所述微孔材料和以铝元素计的氧化铝前驱体的重量比为1:0.05~1。
优选地,所述微孔材料为具有MFI结构的沸石分子筛,更优选为ZSM-5,进一步优选地,ZSM-5的硅铝摩尔比不大于50。
优选地,所述磷源为含磷溶液,所述负载的方式为浸渍法例如饱和浸渍法。
优选地,所述含磷溶液中的溶质选自磷酸、磷酸铵、膦及其衍生物中的一种或多种。
优选地,所述含磷溶液中的磷元素的含量为0.5重量%~30重量%,更优选为5重量%~15重量%。
优选地,该方法还包括对焙烧所得产物或者二次焙烧所得产物进行水热处理,优选地,所述水热处理的条件包括:温度为250℃~650℃,时间为0.5h~24h。
优选地,该方法还包括将以催化剂总量为基准,0~1重量%的金属活性组分负载到焙烧所得产物或者二次焙烧所得产物上。
优选地,所述金属活性组分为Pt、Ni、Co、Cu、Zn、Fe、Pd、Rh、Ru、Re、Mo、W、Au和Ga中的一种或多种。
本发明第三方面提供一种低碳烯烃芳构化方法,该方法包括:在芳构化条件下,将低碳烯烃和氢气在催化剂存在下接触,其中,所述催化剂为上述烯烃芳构化催化剂;
优选地,所述低碳烯烃为C 2~C 6的烯烃,优选为乙烯;
优选地,所述芳构化条件包括:以表压计,压力为0.01MPa~2MPa;温度为300℃~700℃,优选为500℃~650℃;氢气与烯烃的体积比为0.1~5,优选为0.5~2; 低碳烯烃的体积空速为500h -1~50000h -1,优选为1000h -1~10000h -1
本发明还提供了上述烯烃芳构化催化剂及其制备方法在低碳烯烃芳构化中的应用。
优选地,该芳构化催化剂包括沸石分子筛、粘合剂和改性剂,以及可选的金属活性组分;所述粘合剂为含有铝元素和磷元素的化合物,铝元素与磷元素的摩尔比大于等于1且小于5;所述芳构化催化剂的强酸性位点的酸度与弱酸性位点的酸度的比值小于1。
优选地,所述粘合剂为磷酸铝和可选的氧化铝。
优选地,上述芳构化催化剂的制备方法,该方法包括以下步骤:
(a)将微孔材料、氧化铝和含磷溶液进行混合、挤出和焙烧,得到成型物,其中,氧化铝中的铝元素与含磷溶液中的磷元素的摩尔比大于1且小于5;
(b1)可选地,将所述成型物进行水热处理;和/或,
(b2)可选地,将金属活性组分负载在所述成型物表面。
优选地,上述芳构化催化剂的制备方法,该方法包括以下步骤:
(A)将微孔材料和氧化铝进行混合和挤出,以及可选地进行水热处理,得到挤出物;
(B)将所述挤出物与含磷溶液进行混合、挤出和焙烧,得到催化剂,其中,氧化铝中的铝元素与含磷溶液中的磷元素的摩尔比大于1且小于5;
(C)可选地,将金属活性组分负载在所述催化剂表面。
本发明的芳构化催化剂的强酸性位点的酸度与弱酸性位点的酸度的比值小于1,优选不大于0.75,而且芳构化催化剂中的粘合剂包括铝和磷元素,铝元素与磷元素的摩尔比大于1且小于5,采用本发明的芳构化催化剂可以在较宽的温度区间内将低碳烯烃进行芳构化反应生成芳烃,同时以最小的焦炭、甲烷生成量实现较高的芳烃收率,并延长了催化剂的寿命。而且,本发明的原料可以直接来自乙烷裂解装置而无需进行净化和分离操作,从而进一步降低了生产成本。
此外,本发明的催化剂可以不使用金属,这不仅降低了催化剂成本,而且还降低了因含有卤素的再生过程从而增加的设备成本。
附图说明
图1本发明催化剂A和对比例催化剂D1的乙烯转化率的对比图;
图2是本发明催化剂A和对比例催化剂D1的BTX选择性的对比图;
图3是本发明的催化剂A、催化剂RA和催化剂D的乙烯转化率对比图;
图4是本发明的催化剂A、催化剂RA和催化剂D的BTX选择性的对比图。
具体实施方式
在本文中所披露的范围的端点和任何值都不限于该精确的范围或值,这些范围或值应当理解为包含接近这些范围或值的值。对于数值范围来说,各个范围的端点值之间、各个范围的端点值和单独的点值之间,以及单独的点值之间可以彼此组合而得到一个或多个新的数值范围,这些数值范围应被视为在本文中具体公开。
本发明提供的烯烃芳构化催化剂,含有沸石分子筛微孔材料、氧化铝粘合剂和磷改性剂以及可选的金属活性组分;粘合剂中的铝元素与磷元素的摩尔比大于等于1且小于5;所述芳构化催化剂的强酸性位点的酸度与弱酸性位点的酸度的比值小于1。
在本发明中,弱酸性位点是指最大解吸温度低于300℃例如180-230℃的NH 3-TPD峰;强酸性位点是指最大解吸温度不低于300℃例如在300-400℃的NH 3-TPD峰。具体地,测试方法为本领域常规的程序升温脱附(TPD)表征酸性位方法。通过NH 3-TPD仪器内置的热导检测器(TCD)可以检测不同温度下脱附的氨气量来得到不同位点的酸度。
在本发明中,对催化剂进行酸性位表征的方法和步骤可以为:称取0.2g催化剂装入石英样品管中,在氦气条件下程序升温至450℃,活化1h后,冷却至150℃,吸附氨气30min,然后切换为氦气吹扫,脱除过剩氨气至检测器基线稳定,然后以10℃/min升温速率程序升温至600℃,通过NH 3-TPD仪器内置的热导检测器检测样品的氨气脱附量,脱附量之比即为酸度比。
在本发明中,芳构化催化剂的强酸性位点的酸度与弱酸性位点的酸度的比值小于1,也即强酸性位点的酸度小于弱酸性位点的酸度,优选地,所述强酸性位点的酸度与弱酸性位点的酸度的比值不大于0.85,进一步优选不大于0.75。
在本发明中,所述微孔材料优选为具有MFI结构的沸石分子筛,优选为ZSM-5,进一步优选地,ZSM-5的硅铝比不大于50,例如ZSM-5的硅铝比为10、15、20、25、30、35、40、45、50,以及这些数值中的任意两个所构成的范围中 的任意值。其中,本发明的硅铝比是指SiO 2/Al 2O 3的摩尔比值。
在本发明中,可以预期的,部分粘合剂氧化铝与改性剂磷形成磷酸铝的形式,因此所述粘合剂含有磷酸铝和可选的氧化铝。也即,所述粘合剂为磷酸铝,或者所述粘合剂为磷酸铝和氧化铝。
在本发明中,优选地,所述金属活性组分为Pt、Ni、Co、Cu、Zn、Fe、Pd、Rh、Ru、Re、Mo、W、Au和Ga中的一种或多种。
在本发明中,优选地,所述微孔材料和粘合剂的重量比为1:0.05~1,其中,粘合剂以粘合剂中的铝元素计。例如,所述微孔材料和粘合剂的重量比为1:0.05、1:0.1、1:0.15、1:0.2、1:0.25、1:0.3、1:0.35、1:0.4、1:0.45、1:0.5、1:0.55、1:0.6、1:0.65、1:0.7、1:0.75、1:0.8、1:0.85、1:0.9、1:0.95、1:1,以及这些数值中的任意两个所构成的范围中的任意值。
在本发明中,优选地,以所述芳构化催化剂的总量为基准,金属活性组分的含量为0重量%~1重量%,优选为0重量%~0.5重量%。例如,以所述芳构化催化剂的总量为基准,金属活性组分的含量为0重量%、0.001重量%、0.01重量%、0.05重量%、0.1重量%、0.5重量%,以及这些数值中的任意两个所构成的范围中的任意值。在本发明中,芳构化催化剂可以不含有金属活性组分,从而不仅降低了催化剂成本,而且还降低了因含有卤素的再生过程从而增加的设备成本。
在本发明中,微孔材料、粘合剂和金属活性组分的含量可以通过ICP或XRF测得,也可以通过投料量进行计算得到。本发明实施例中通过岛津公司的EDX-7000测得。
本发明第二方面提供了一种上述烯烃芳构化催化剂的制备方法,包括混合、成型和焙烧等步骤。可以将微孔材料、粘合剂前驱体和改性剂前驱体磷源一起进行混合、成型和焙烧,也可以先将微孔材料与粘合剂前驱体进行混合成型,然后再负载改性剂前驱体磷源。为了使粘合剂前驱体和改性剂前驱体转变成催化剂所需的粘合剂和改性剂,需经过焙烧步骤。磷源的负载方法也可以采用浸渍法如饱和浸渍法或等体积浸渍法。
本发明中,将需经过焙烧才能得到催化剂所需组分的对应物质称为前驱体。比如粘结剂氧化铝的前驱体可以为各种形式的氢氧化铝或其水合物如拟薄水铝石,改性剂磷的前驱体可以是各种经焙烧后剩下磷元素的物质如磷酸、磷酸铵等,磷的前驱体也称为磷源。同理,活性金属组分的前驱体可以是各种金属组分的可 溶性盐,如氯化物、硝酸盐、硫酸盐、磷酸盐中的一种或多种。
在催化剂还含有活性金属组分时,可以通过浸渍步骤来获得。金属活性组分可以与磷一起负载,也可以先后负载,例如先负载磷,再负载活性金属组分。
本发明中,所述焙烧可以在所需组分全部负载完毕后再焙烧,也可以在负载各个组分后均进行焙烧,焙烧可以进行一次也可以进行多次。每次焙烧的条件可以相同,也可以不同。
根据本发明的一种具体实施方式,本发明的方法还可以进一步包括水热处理步骤。水热处理步骤在焙烧之后进行。可以在其中一次或多次焙烧后进行,也可以在最后一次焙烧后进行。
根据本发明的一种实施方式,上述催化剂的制备方法包括以下步骤:
(a)将微孔材料、氧化铝和含磷溶液进行混合、挤出和焙烧,得到催化剂,其中,氧化铝中的铝元素与含磷溶液中的磷元素的摩尔比大于1且小于5;
(b1)可选地,将所述催化剂进行水热处理;和/或,
(b2)可选地,将金属活性组分负载在所述催化剂表面。
根据本发明的另一种实施方式,上述催化剂的制备方法包括以下步骤:
(A)将微孔材料和氧化铝进行混合和挤出,以及可选地进行水热处理,得到挤出物;
(B)将所述挤出物与含磷溶液进行混合、挤出和焙烧,得到催化剂,其中,氧化铝中的铝元素与含磷溶液中的磷元素的摩尔比大于1且小于5;
(C)可选地,将金属活性组分负载在所述催化剂表面。
具体的,可以采用下述方式实施:
(一)可以先将微孔材料、粘结剂前驱体和改性剂前驱体磷源如含磷溶液进行混合、挤出和焙烧,得到所需催化剂。
(二)也可以先将微孔材料、粘结剂前驱体和改性剂前驱体磷源如含磷溶液进行混合、挤出和焙烧,然后焙烧产物进行水热处理(焙烧+水热处理),得到所需催化剂。
(三)还可以先将微孔材料、粘结剂前驱体和改性剂前驱体磷源如含磷溶液进行混合、挤出和焙烧,然后对焙烧产物进行水热处理,再用活性金属组分的溶液浸渍水热处理得到的产物,然后再次焙烧(焙烧+水热处理+负载+焙烧),得到所需催化剂。
(四)还可以先将微孔材料、粘结剂前驱体和改性剂前驱体磷源如含磷溶液进行混合、挤出和焙烧,然后用活性金属组分的溶液浸渍焙烧产物,然后再次焙烧,之后将再次焙烧产物进行水热处理(焙烧+负载+焙烧+水热处理),得到所需催化剂。
(五)还可以先将微孔材料、粘结剂前驱体和改性剂前驱体磷源如含磷溶液进行混合、挤出和焙烧,然后对焙烧产物进行水热处理,再用活性金属组分的溶液浸渍水热处理得到的产物,然后再次焙烧,之后将再次焙烧产物进行水热处理(焙烧+水热处理+浸渍+焙烧+水热处理),得到所需催化剂。
(六)可以将微孔材料和粘结剂前驱体进行混合均匀后、挤出成型,然后焙烧,将焙烧后的产物负载改性剂磷,再进行二次焙烧,得到所需催化剂。
(七)也可以将微孔材料和粘结剂前驱体进行混合均匀后、挤出成型,然后焙烧,进行水热处理,将水热处理后的产物负载改性剂磷,再进行二次焙烧(焙烧+水热处理+负载+焙烧),得到所需催化剂。
(八)还可以将微孔材料和粘结剂前驱体进行混合均匀后、挤出成型,然后焙烧,进行水热处理,将水热处理后的产物同时或先后负载改性剂磷和金属活性组分,再进行二次焙烧(焙烧+水热处理+负载+焙烧),得到所需催化剂。
(九)还可以将微孔材料和粘结剂前驱体进行混合均匀后、挤出成型,然后焙烧,将焙烧产物负载改性剂磷,再进行二次焙烧,再负载活性金属组分,再进行三次焙烧(焙烧+负载+焙烧+负载+焙烧),得到所需催化剂。
(十)还可以将微孔材料和粘结剂前驱体进行混合均匀后、挤出成型,然后焙烧,进行水热处理,将水热处理后的产物负载改性剂磷,再进行二次焙烧,再负载活性金属组分,再进行三次焙烧(焙烧+水热处理+负载+焙烧+负载+焙烧),得到所需催化剂。
(十一)还可以将微孔材料和粘结剂前驱体进行混合均匀后、挤出成型,然后焙烧,将焙烧产物负载改性剂磷,再进行二次焙烧,再负载活性金属组分,再进行三次焙烧,再进行水热处理(焙烧+负载+焙烧+负载+焙烧+水热处理),得到所需催化剂。
(十二)还可以将微孔材料和粘结剂前驱体进行混合均匀后、挤出成型,然后焙烧,然后进行水热处理,再将水热处理的产物负载改性剂磷,再进行二次焙烧,再负载活性金属组分,再进行三次焙烧,再进行二次水热处理(焙烧+水热 处理+负载+焙烧+负载+焙烧+水热处理),得到所需催化剂。
由上述方式一至五得到的催化剂具有较高的活性和芳烃选择性,更适合用于烯烃含量较低的原料;由上述方式六至十二得到的催化剂具有较好的抗积碳性能,更适合用于固定床反应器的应用。
根据本发明的方法,优选地,所述微孔材料和以铝元素计的氧化铝的重量比为1:0.05~1。例如,所述微孔材料和以铝元素计的氧化铝的重量比为1:0.05、1:0.1、1:0.15、1:0.2、1:0.25、1:0.3、1:0.35、1:0.4、1:0.45、1:0.5、1:0.55、1:0.6、1:0.65、1:0.7、1:0.75、1:0.8、1:0.85、1:0.9、1:0.95、1:1,以及这些数值中的任意两个所构成的范围中的任意值。在本发明优选的实施方式中,通过加入特定量的含磷溶液,同时通过限定微孔材料和氧化铝,以及含磷溶液浓度,使得本发明制备的芳构化催化剂的强酸性位点的酸度小于弱酸性位点的酸度,采用该芳构化催化剂不仅可以高选择性地生成芳烃,且较少量地生成焦炭,进一步提高催化剂再生性能并延长使用寿命。
根据本发明的方法,所述磷的前驱体优选为含磷溶液,从而可以通过浸渍法实现磷的负载或者直接进行与微孔材料和粘合剂前驱体的混合。所述含磷溶液中的溶剂可以为水。优选地,所述含磷溶液中的溶质选自磷酸、磷酸铵、膦及其衍生物中的一种或多种。
根据本发明的方法,优选地,所述含磷溶液中的磷元素的含量为0.5重量%~30重量%,优选为5重量%~15重量%。例如5重量%、6重量%、7重量%、8重量%、9重量%、10重量%、11重量%、12重量%、13重量%、14重量%、15重量%,以及这些数值中的任意两个所构成的范围中的任意值。磷含量在优选的范围内时,制备得到的芳构化催化剂性能更优。
根据本发明的方法,优选地,所述微孔材料可以为各种具有MFI结构的分子筛,优选为ZSM-5,进一步特别优选地,ZSM-5的硅铝摩尔比不大于50。在优选的情况下,本发明通过限定硅铝摩尔比不大于50,从而使得本发明制备的催化剂具有较高的乙烯转化率和芳烃选择性,较少的焦炭产生量。
根据本发明的方法,所述水热处理的方式为使待处理物料与水蒸汽接触,优选地,所述水热处理的条件包括:温度为250℃~650℃,时间为0.5h~24h。各次水热处理的条件可以在上述范围内相同或不同。
根据本发明的方法,所述金属活性组分为Pt、Ni、Co、Cu、Zn、Fe、Pd、 Rh、Ru、Re、Mo、W、Au和Ga中的一种或多种。负载的方法可以为本领域常规方法,例如浸渍法。引入上述金属活性组分的方式可以通过加入含有述金属活性组分的化合物而得到,所述含有述金属活性组分的化合物优选地选自活性金属元素的氯化物、硝酸盐、硫酸盐、醋酸盐和草酸盐中的一种或多种。例如,引入Pt的方式可以为加入Pt(NO 3) 2溶液。
根据本发明的方法,优选地,所述焙烧的条件包括:温度为300℃~700℃,优选为450℃~600℃;时间为0.5h~24h,优选为2h~8h。各次焙烧的条件可以在上述范围内相同或不同。
本发明还提供了使用上述催化剂进行低碳烯烃芳构化方法,包括:在芳构化条件下,将低碳烯烃、氢气和上述烯烃芳构化催化剂接触。
根据本发明的方法,低碳烯烃可以含有氢气和其他烃(如未转化的乙烷)等,因此,本发明的低碳烯烃原料可以直接来自乙烷裂解装置而无需进行净化和分离操作。
根据本发明的方法,优选地,本发明所述低碳烯烃可以为C 2~C 6的烯烃,例如,所述低碳烯烃可以为乙烯、丙烯、1-丁烯、2-丁烯、正戊烯、2-戊烯、1-己烯、2-己烯、3-己烯和2-甲基-1-戊烯中的一种或多种。进一步优选地,所述低碳烯烃中的总碳氢化合物的含量不低于60体积%,其中,乙烯不少于30体积%。更进一步优选所述低碳烯烃为乙烯。
根据本发明的方法,优选地,所述低碳烯烃芳构化反应的条件可以包括:以表压计,压力为0.01MPa~2MPa;温度为300℃~700℃,优选为500℃~650℃;氢气与烯烃的体积比为0.1~5,优选为0.5~2;烯烃的体积空速为500h -1~50000h -1,优选为1000h -1~10000h -1
根据本发明的方法,优选地,在低碳烯烃、氢气和催化剂接触之前,该方法还包括进行预热。预热的操作可以为:在大气压下,向反应器中通入66.7sccm的H 2并以15℃/min的升温速率将反应器加热至630℃,然后在该温度下保持30分钟。
根据本发明的方法,优选地,在通入低碳烯烃和氢气时,还通入N 2,其中,N 2用作色谱分析的内标物。
根据本发明的方法,优选地,采用固定床反应器进行低碳烯烃芳构化反应。
以下将通过实施例对本发明进行详细描述。
以下实施例和对比例中,硅铝比为30的分子筛ZSM-5购自Sigma-Aldrich公司;
氧化铝前驱体为购自Sasol公司牌号为Catapal B或购自Sigma-Aldrich的氢氧化铝,重量以氧化铝计;
气相色谱购自Agilent公司,型号为7890;
乙烯的转化率按照式1计算:
乙烯转化率%=(乙烯总摩尔数-乙烯剩余摩尔数)/乙烯总摩尔数×100%(式1)
某物质X的选择性按照式2计算:
物质X选择性%=产物中物质X总碳摩尔数/转化的乙烯碳摩尔数×100%(式2)
物质X的收率按照式3计算:
物质X收率%=乙烯转化率×物质X选择性             (式3)
以下实施例中,微孔材料、粘合剂和金属活性组分的含量通过岛津公司的EDX-7000测得。
实施例1
将7g的ZSM-5(硅铝比为30)、1.77g的SASOL氧化铝前驱体和2g的磷酸水溶液(磷酸浓度为85重量%)进行混合和挤出,于550℃焙烧2小时,将焙烧产物粉碎、筛分,得到30目的颗粒,制备的芳构化催化剂标记为催化剂A。
其中,该芳构化催化剂包括微孔材料和粘合剂,粘合剂中铝元素与磷元素的摩尔比为2;微孔材料和粘合剂的重量比为1:0.13,其中,粘合剂以粘合剂中的铝元素计。
实施例2
将7g的ZSM-5(硅铝比为30)、1.25g的Sigma-Aldrich氧化铝前驱体和2.84g的磷酸水溶液(磷酸浓度为85重量%)进行混合和挤出,于550℃焙烧2小时,将焙烧产物粉碎、筛分,得到20目的颗粒,制备的芳构化催化剂标记为催化剂B。
其中,该芳构化催化剂包括微孔材料和粘合剂,粘合剂中铝元素与磷元素的摩尔比为1;微孔材料和粘合剂的重量比为1:0.09,其中,粘合剂以粘合剂中 的铝元素计。
实施例3
将7g的ZSM-5(硅铝比为30)、2g的SASOL氧化铝前驱体和18.5g的磷酸铵水溶液(磷酸铵的含量为10重量%)进行混合和挤出,于550℃焙烧2小时,将焙烧产物粉碎、筛分,得到40目的颗粒,制备的芳构化催化剂标记为催化剂C。
其中,该芳构化催化剂包括微孔材料和粘合剂,粘合剂中铝元素与磷元素的摩尔比为3.2;微孔材料和粘合剂的重量比为1:0.15,其中,粘合剂以粘合剂中的铝元素计。
实施例4
将7g的ZSM-5(硅铝比为30)、1.77g的SASOL氧化铝和2g的磷酸水溶液(磷酸浓度为85重量%)进行混合和挤出,于550℃焙烧2小时,将焙烧产物粉碎、筛分,得到30目的颗粒,然后在600℃下,150mL/min的含20重量%水蒸气的空气中水热处理4小时,制备的芳构化催化剂标记为催化剂D。
其中,该芳构化催化剂包括微孔材料和粘合剂,粘合剂中铝元素与磷元素的摩尔比为2;微孔材料和粘合剂的重量比为1:0.13,其中,粘合剂以粘合剂中的铝元素计。
实施例5
将7g的ZSM-5(硅铝比为30)与1.77g的SASOL氧化铝前驱体进行混合和挤出,得到挤出物,于550℃焙烧2小时,将焙烧产物粉碎、筛分,得到30目的颗粒,然后用2g的磷酸水溶液(磷酸浓度为85重量%)浸渍,于550℃焙烧2小时,制备的芳构化催化剂标记为催化剂E。
其中,该芳构化催化剂包括微孔材料和粘合剂,粘合剂中铝元素与磷元素的摩尔比为2;微孔材料和粘合剂的重量比为1:0.13,其中,粘合剂以粘合剂中的铝元素计。
实施例6
将7g的ZSM-5(硅铝比为30)与1.77g的SASOL氧化铝前驱体进行混合和挤出,得到挤出物,于550℃焙烧2小时,将焙烧产物粉碎、筛分,得到30目的颗粒,然后用2g的磷酸水溶液(磷酸浓度为85重量%)浸渍,于550℃焙烧2小时,然后在600℃下,150mL/min的含20重量%水蒸气的空气中水热处理4小时,制备的芳构化催化剂标记为催化剂F。
其中,该芳构化催化剂包括微孔材料和粘合剂,粘合剂中铝元素与磷元素的摩尔比为2;微孔材料和粘合剂的重量比为1:0.13,其中,粘合剂以粘合剂中的铝元素计。
实施例7
将7g的ZSM-5(硅铝比为30)、1.77g的SASOL氧化铝前驱体和2g的磷酸水溶液(磷酸浓度为85重量%)进行混合和挤出,于550℃焙烧2小时,将焙烧产物粉碎、筛分,得到30目的颗粒;
然后将0.25重量%的Pt(NO 3) 2水溶液浸渍5g颗粒,25℃下浸渍时间为2小时,得到混合物,然后将所得混合物在旋转蒸发器中加热至80℃,旋转蒸发60分钟,获得干燥产物,接着将产物在550℃焙烧2小时,得到Pt含量为500ppm的芳构化催化剂,制备的芳构化催化剂标记为催化剂G。
其中,该芳构化催化剂包括微孔材料、粘合剂和金属活性组分,粘合剂中铝元素与磷元素的摩尔比为2;微孔材料和粘合剂的重量比为1:0.13,其中,粘合剂以粘合剂中的铝元素计;以芳构化催化剂的总量为基准,金属活性组分的含量为0.05重量%。
实施例8
将7g的ZSM-5(硅铝比为30)、1.77g的SASOL氧化铝前驱体和2g的磷酸水溶液(磷酸浓度为85重量%)进行混合和挤出,于550℃焙烧2小时,将焙烧产物粉碎、筛分,得到30目的颗粒,然后在600℃下,150mL/min的含20重量%水蒸气的空气中水热处理4小时,得到产物,再将0.25重量%的Pt(NO 3) 2的水溶液浸渍5g产物,25℃下浸渍时间为2小时,然后将所得混合物在旋转蒸发器中加热至80℃,旋转蒸发60分钟,获得干燥产物,接着将产物在550℃焙烧2小时,得到Pt含量为500ppm的芳构化催化剂,制备的芳构化催化剂标记 为催化剂H。
其中,该芳构化催化剂包括微孔材料、粘合剂和金属活性组分,粘合剂中铝元素与磷元素的摩尔比为2;微孔材料和粘合剂的重量比为1:0.13,其中,粘合剂以粘合剂中的铝元素计;以芳构化催化剂的总量为基准,金属活性组分的含量为0.05重量%。
实施例9
将7g的ZSM-5(硅铝比为30)与1.77g的SASOL氧化铝前驱体进行混合和挤出,得到挤出物,于550℃焙烧2小时,将焙烧产物粉碎、筛分,得到30目的颗粒,然后用含2g的磷酸水溶液(磷酸浓度为85重量%)进行浸渍,于550℃焙烧2小时后,在600℃下,150mL/min的含20重量%水蒸气的空气中水热处理4小时,得到产物,再将0.25重量%的Pt(NO 3) 2的水溶液浸渍5g产物,25℃下浸渍时间为2小时,然后将所得混合物在旋转蒸发器中加热至80℃,旋转蒸发60分钟,获得干燥产物,接着将产物在550℃焙烧2小时,得到Pt含量为500ppm的芳构化催化剂,制备的芳构化催化剂标记为催化剂I。
其中,该芳构化催化剂包括微孔材料、粘合剂和金属活性组分,粘合剂中铝元素与磷元素的摩尔比为2;微孔材料和粘合剂的重量比为1:0.13,其中,粘合剂以粘合剂中的铝元素计;以芳构化催化剂的总量为基准,金属活性组分的含量为0.05重量%。
对比例1
将7g的ZSM-5(硅铝比为30)、3g的SASOL氧化铝前驱体进行混合和挤出,于550℃焙烧2小时,将焙烧产物粉碎、筛分,得到30目的颗粒,制备的催化剂标记为催化剂D1。
对比例2
将7g的ZSM-5(硅铝比为30)、2.8g的SASOL氧化铝前驱体和0.32g的磷酸水溶液(磷酸浓度为85重量%)进行混合和挤出,于550℃焙烧2小时,将焙烧产物粉碎、筛分,得到30目的颗粒,制备的催化剂标记为催化剂D2。其中,该催化剂包括微孔材料和粘合剂,粘合剂中铝元素与磷元素的摩尔比为20。
对比例3
将7g的ZSM-5(硅铝比为30)、2.0g的SASOL氧化铝前驱体和5g的磷酸水溶液(磷酸浓度为85重量%)进行混合和挤出,于550℃焙烧2小时,将焙烧产物粉碎、筛分,得到30目的颗粒,制备的催化剂标记为催化剂D3。其中,其中,该催化剂包括微孔材料和粘合剂,粘合剂中铝元素与磷元素的摩尔比为0.9。
对比例4
将7g的ZSM-5(硅铝比为30)与3g的SASOL氧化铝前驱体进行混合和挤出,于550℃焙烧2小时,将焙烧产物粉碎、筛分,得到30目的颗粒,然后在600℃下水热处理4小时,制备的催化剂标记为催化剂D4。
对比例5
将7g的ZSM-5(硅铝比为30)和0.81g的磷酸水溶液(磷酸浓度为85重量%)进行混合和干燥,然后与2.5g的SASOL氧化铝前驱体进行混合和挤出,于550℃焙烧2小时,将焙烧产物粉碎、筛分,得到30目的颗粒,制备的催化剂标记为催化剂D5。其中,该催化剂包括微孔材料和粘合剂,粘合剂中铝元素与磷元素的摩尔比为7。
测试例:
酸性位表征
分别称取0.2g催化剂A-I和D1-D5装入石英样品管中,在氦气条件下程序升温至450℃,活化1h后,冷却至150℃,吸附氨气30min,然后切换为氦气吹扫,脱除过剩氨气至检测器基线稳定,然后以10℃/min升温速率程序升温至600℃,通过NH 3-TPD仪器(Micromeritics的AutoChem 2920)内置的热导检测器(TCD)检测样品的氨气脱附量。表征结果见表1。
表1
Figure PCTCN2020093983-appb-000001
Figure PCTCN2020093983-appb-000002
实施例10
采用实施例1制备的催化剂A进行低碳烯烃芳构化反应,具体操作为:
(1)采用固定床反应器,将1克催化剂A装入石英反应器(内径为9毫米)中;
(2)在大气压下,向反应器中通入66.7sccm的H 2并以15℃/min的升温速率将反应器加热至630℃,然后在该温度下保持30分钟,进行预热;
(3)以表压计,压力为0.02MPa,烯烃体积空速为0.75h -1,将步骤(2)的66.7sccm的H 2替换为体积比为1:1:1的乙烯/H 2/N 2(N 2用作色谱分析的内标物)的三种气体,反应10分钟后,每隔35分钟通过在线气相色谱分析产物,取12小时的平均值,然后通过上述测试方法(式1-式3)计算得到乙烯转化率、BTX的选择性、BTX收率、甲烷选择性和乙烷选择性,结果见表2。
运行12小时后,停止反应,所得待生催化剂上的焦炭含量通过以下方法测定:秤取10毫克待生催化剂置于氧化铝样品盘中,置于岛津DTG-60H热重分析仪中,在空气气氛下以5℃/min的升温速度升至800℃。取400℃~650℃之间的失重来定量焦炭含量,结果如表2所示。
实施例11
将实施例10的反应12小时的催化剂A进行再生处理,具体操作为:空气 气氛下以2℃/min的升温速度加热至550℃,保持4个小时。得到的芳构化催化剂标记为催化剂RA。其中,该芳构化催化剂包括微孔材料和粘合剂,粘合剂中铝元素与磷元素的摩尔比为2;微孔材料和粘合剂的重量比为1:0.07,其中,粘合剂以粘合剂中的铝元素计。
并按照上述测试例的酸性位表征方法测试RA,结果见表1。
实施例12至20
按照实施例10的方法,不同的是,将催化剂A替换为催化剂B-I和RA,结果见表2。
对比例11至15
按照实施例10的方法,不同的是,将催化剂A替换为催化剂D1-D5,结果见表2。
表2
Figure PCTCN2020093983-appb-000003
实施例21
本发明催化剂A在不同温度下进行低碳烯烃芳构化反应:
(1)采用固定床反应器,将1克催化剂A样品装入石英反应器(内径为9 毫米)中;
(2)在大气压下,向反应器中通入66.7sccm的H 2并以15℃/min的升温速率将反应器分别加热至630℃,保持30分钟后,将温度降至400℃保持30分钟;
(3)以表压计,压力为0.02MPa,空速为0.75h -1,将步骤(2)的66.7sccm的H 2替换为10sccm乙烯、10sccm的H 2和10sccm的N 2(N 2用作色谱分析的内标物),在400℃下反应60分钟后,然后依次升温至450℃、500℃、550℃、600℃、630℃,并分别在450℃、500℃、550℃、600℃、630℃下反应一个小时,每次升温前将气体切换至66.7sccm的H 2吹扫30分钟,升至所需温度后,再将氢气切换至反应气体(10sccm乙烯、10sccm的H 2和10sccm的N 2,其中,N 2用作色谱分析的内标物)。
分别在400℃、450℃、500℃、550℃、600℃、630℃下,每隔30分钟通过在线气相色谱分析产物,取60分钟的平均值,然后通过上述测试方法计算得到乙烯转化率、BTX的选择性、BTX收率、甲烷选择性和乙烷选择性。结果见表3。
表3
Figure PCTCN2020093983-appb-000004
通过表1的结果可以看出,采用本发明的方法可以有效调节催化剂的强/弱酸性位点的酸度,制备的芳构化催化剂的强酸性位点的酸度与弱酸性位点的酸度的比值可以小于1,优选比值不大于0.75。
通过表2的结果可以看出,采用本发明的芳构化催化剂可以降低碳烯烃进行芳构化反应生成芳烃,且反应温度低,相比于对比例(对比例1不加入含磷溶液、对比例2和3的粘合剂中铝磷摩尔比不在本发明范围内、对比例4为成型后仅水热处理、对比例5为先将ZSM-5与磷酸水溶液反应,再加入氧化铝),在400℃ 下依然具有较高的乙烯转化率、BTX选择性和BTX收率,以及较低的甲烷和焦炭的生成量。
此外,将本发明的催化剂A与对比例的催化剂D1进行乙烯转化率和BTX选择性比较,结果如表2、图1和图2所示,从表2中可以看出,催化剂A显示出更好的稳定性,12小时仅形成1.86重量%的焦炭,而催化剂D1的焦炭超过20重量%。而且催化剂A也保持更好的BTX选择性。
此外,将催化剂A(催化剂为新剂),催化剂RA(催化剂A再生后)和催化剂D(催化剂A水热处理后)的乙烯转化率和BTX选择性进行比较,结果如图3和图4所示,可以看出,本发明的催化剂再生后的活性和选择性可恢复,说明本发明的芳构化催化剂具有优异的水热稳定性,可以多次循环再生使用。
通过表3的结果可以看出,在温度低至400℃时也可以实现超过95%的乙烯转化率。较低温度下的BTX选择性相对较低,大部分产品是C 3~C 6,甲烷生成量低。
综上所述,本发明的芳构化催化剂在将低碳烯烃进行芳构化反应生成芳烃中,表现出优异的稳定性且芳烃产物的选择性好,同时可以有效减少甲烷和焦炭的生成。
以上详细描述了本发明的优选实施方式,但是,本发明并不限于此。在本发明的技术构思范围内,可以对本发明的技术方案进行多种简单变型,包括各个技术特征以任何其它的合适方式进行组合,这些简单变型和组合同样应当视为本发明所公开的内容,均属于本发明的保护范围。

Claims (14)

  1. 一种烯烃芳构化催化剂,其特征在于,该芳构化催化剂含有微孔材料、粘合剂和改性剂;所述微孔材料为沸石分子筛,所述粘合剂为氧化铝,所述改性剂为磷元素,且所述粘合剂中的铝元素与磷元素的摩尔比大于等于1且小于5;所述烯烃芳构化催化剂的强酸性位点的酸度与弱酸性位点的酸度的比值小于1。
  2. 根据权利要求1所述的烯烃芳构化催化剂,其中,所述强酸性位点的酸度与弱酸性位点的酸度的比值不大于0.85,优选不大于0.75。
  3. 根据权利要求1或2所述的烯烃芳构化催化剂,其中,所述微孔材料为具有MFI结构的沸石分子筛,优选为ZSM-5,进一步优选地,ZSM-5的硅铝比不大于50;
    优选地,所述微孔材料和粘合剂的重量比为1:0.05~1,其中,粘合剂以粘合剂中的铝元素计。
  4. 根据权利要求1-3中任意一项所述的烯烃芳构化催化剂,其中,该催化剂中至少部分粘合剂和改性剂以磷酸铝形式存在。
  5. 根据权利要求1-4中任意一项所述的烯烃芳构化催化剂,其中,该芳构化催化剂还含有以所述芳构化催化剂的总量为基准,0重量%~1重量%的金属活性组分,所述金属活性组分为Pt、Ni、Co、Cu、Zn、Fe、Pd、Rh、Ru、Re、Mo、W、Au和Ga中的一种或多种。
  6. 一种烯烃芳构化催化剂的制备方法,该方法包括
    将微孔材料、氧化铝前驱体和磷源进行混合、成型和焙烧;或者
    将微孔材料与氧化铝前驱体混合、成型和焙烧后与磷源接触以负载磷元素,再进行二次焙烧,
    其中,所述微孔材料为沸石分子筛,氧化铝前驱体中的铝元素与磷源中的磷元素的摩尔比大于1且小于5,所述焙烧和二次焙烧的温度各自为300℃~700℃,优选为450℃~600℃;时间各自为0.5h~24h,优选为2h~8h。
  7. 根据权利要求6所述的方法,其中,所述微孔材料和以铝元素计的氧化铝前驱体的重量比为1:0.05~1;
    优选地,所述微孔材料为具有MFI结构的沸石分子筛,更优选为ZSM-5,进一步优选地,ZSM-5的硅铝摩尔比不大于50。
  8. 根据权利要求6或7所述的方法,其中,所述磷源为含磷溶液,所述负载的方式为浸渍法;
    优选地,所述含磷溶液中的溶质选自磷酸、磷酸铵、膦及其衍生物中的一种或多种;
    优选地,所述含磷溶液中的磷元素的含量为0.5重量%~30重量%,更优选为5重量%~15重量%。
  9. 根据权利要求6-8中任意一项所述的方法,其中,该方法还包括对焙烧所得产物或者二次焙烧所得产物进行水热处理,优选地,所述水热处理的条件包括:温度为250℃~650℃,时间为0.5h~24h。
  10. 根据权利要求6-9中任意一项所述的方法,其中,该方法还包括将以催化剂总量为基准,0~1重量%的金属活性组分负载到焙烧所得产物或者二次焙烧所得产物上,
    优选地,所述金属活性组分为Pt、Ni、Co、Cu、Zn、Fe、Pd、Rh、Ru、Re、Mo、W、Au和Ga中的一种或多种。
  11. 一种低碳烯烃芳构化方法,该方法包括:在芳构化条件下,将低碳烯烃和氢气在催化剂存在下接触,其中,所述催化剂为权利要求1-5中任意一项所述的芳构化催化剂。
  12. 根据权利要求11所述的方法,其中,所述低碳烯烃为C 2~C 6的烯烃,优选为乙烯。
  13. 根据权利要求11或12所述的方法,其中,所述芳构化条件包括:以表 压计,压力为0.01MPa~2MPa;温度为300℃~700℃,优选为500℃~650℃;氢气与烯烃的体积比为0.1~5,优选为0.5~2;低碳烯烃的体积空速为500h -1~50000h -1,优选为1000h -1~10000h -1
  14. 权利要求1-5中任意一项所述的芳构化催化剂和权利要求6-10中任意一项所述的制备方法在低碳烯烃芳构化中的应用。
PCT/CN2020/093983 2019-07-19 2020-06-02 烯烃芳构化催化剂及其制备方法和应用以及低碳烯烃芳构化方法 WO2021012801A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910654576.2 2019-07-19
CN201910654576.2A CN112237941A (zh) 2019-07-19 2019-07-19 芳构化催化剂及其制备方法和低碳烯烃芳构化方法

Publications (1)

Publication Number Publication Date
WO2021012801A1 true WO2021012801A1 (zh) 2021-01-28

Family

ID=74167794

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/093983 WO2021012801A1 (zh) 2019-07-19 2020-06-02 烯烃芳构化催化剂及其制备方法和应用以及低碳烯烃芳构化方法

Country Status (3)

Country Link
US (1) US11273430B2 (zh)
CN (1) CN112237941A (zh)
WO (1) WO2021012801A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113527026A (zh) 2020-04-21 2021-10-22 国家能源投资集团有限责任公司 用于将轻质烷烃转化成芳香族化合物的系统和方法
US11648540B2 (en) * 2021-01-25 2023-05-16 China Energy Investment Corporation Limited Modified catalyst, method for preparing the same, and method for producing aromatic hydrocarbons by aromatization of olefins
CN115518679B (zh) * 2021-06-24 2024-03-26 中国石油化工股份有限公司 一种芳构化催化剂及其制备方法和应用和丁烷芳构化方法
CN113578328B (zh) * 2021-09-02 2022-11-22 中国科学院兰州化学物理研究所 一种多孔镍基芳构化催化剂及其制备方法与应用
CN114570417B (zh) * 2022-03-23 2023-06-27 清华大学 用于正丁醇制丁烯的催化剂及其制备方法和制备丁烯的方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103282119A (zh) * 2010-12-28 2013-09-04 吉坤日矿日石能源株式会社 单环芳香族烃制造用催化剂及单环芳香族烃的制造方法
CN104368377A (zh) * 2013-08-13 2015-02-25 中国科学院大连化学物理研究所 一种含磷酸铝粘结剂的zsm11分子筛催化剂的制备和应用
CN106457231A (zh) * 2014-04-04 2017-02-22 捷客斯能源株式会社 铝硅酸盐催化剂的制造方法、铝硅酸盐催化剂及单环芳香族烃的制造方法

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4638106A (en) * 1984-07-13 1987-01-20 Exxon Research & Engineering Co. Two stage process for improving the catalyst life of zeolites in the synthesis of lower olefins from alcohols and their ether derivatives
US5026937A (en) * 1989-12-29 1991-06-25 Uop Aromatization of methane using zeolite incorporated in a phosphorus-containing alumina
DE69508601T2 (de) 1994-10-03 1999-12-09 Sanyo Petrochemical Co Ltd Verfahren zur herstellung von aromatischen kohlenwasserstoffen
US6355591B1 (en) * 2000-01-03 2002-03-12 Indian Oil Corporation Limited Process for the preparation of fluid catalytic cracking catalyst additive composition
US7510644B2 (en) * 2000-10-20 2009-03-31 Lummus Technology Inc. Zeolites and molecular sieves and the use thereof
ITMI20061548A1 (it) * 2006-08-03 2008-02-04 Polimeri Europa Spa Composizioni catalitiche per idrodealchilazioni altamente selettive di idrocarburi alchilaromatici
US8772563B2 (en) 2008-02-18 2014-07-08 Shell Oil Company Process for the conversion of ethane to aromatic hydrocarbons
CN101596461B (zh) * 2008-06-02 2011-07-20 中国石油化工股份有限公司 一种轻烃芳构化催化剂及其制备方法
US8846559B2 (en) * 2008-11-03 2014-09-30 Saudi Basic Industries Corporation Stable shape-selective catalyst for aromatic alkylation and methods of using and preparing
US9314779B2 (en) * 2012-08-09 2016-04-19 Saudi Basic Industries Corporation Method of making a catalyst and catalyst made thereby
JP5911446B2 (ja) * 2013-03-22 2016-04-27 コスモ石油株式会社 炭化水素油の接触分解触媒の製造方法
BR112018001368B1 (pt) * 2015-07-23 2021-10-05 Albemarle Corporation Aditivo para catalisador de fcc e ligante

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103282119A (zh) * 2010-12-28 2013-09-04 吉坤日矿日石能源株式会社 单环芳香族烃制造用催化剂及单环芳香族烃的制造方法
CN104368377A (zh) * 2013-08-13 2015-02-25 中国科学院大连化学物理研究所 一种含磷酸铝粘结剂的zsm11分子筛催化剂的制备和应用
CN106457231A (zh) * 2014-04-04 2017-02-22 捷客斯能源株式会社 铝硅酸盐催化剂的制造方法、铝硅酸盐催化剂及单环芳香族烃的制造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
LI, YU ET AL.: "Development of Process and Catalyst of Low Olefin Aromatization", JOURNAL OF FUSHUN PETROLEUM INSTITUTE, vol. 22, no. 1, 31 March 2002 (2002-03-31), pages 23 - 28, XP055775353 *

Also Published As

Publication number Publication date
US11273430B2 (en) 2022-03-15
CN112237941A (zh) 2021-01-19
US20210016261A1 (en) 2021-01-21

Similar Documents

Publication Publication Date Title
WO2021012801A1 (zh) 烯烃芳构化催化剂及其制备方法和应用以及低碳烯烃芳构化方法
JP4432019B2 (ja) 炭化水素原料から芳香族炭化水素化合物及び液化石油ガスを製造する方法
JP5873570B2 (ja) メタノール及び/又はジメチルエーテルとc4液化ガスの混合転換によりパラキシレンを製造するための触媒及びその製造方法と使用
CA2620480C (en) Process for production of aromatic compound
JP2000300987A (ja) 低炭素数の脂肪族炭化水素をより高い炭素数の炭化水素へ転化する方法及び触媒
KR101646295B1 (ko) 방향족 알킬화를 위한 안정한 형태-선택적 촉매 및 이를 사용 및 제조하는 방법
US11286218B2 (en) Hydrocarbon conversion process
TW200844076A (en) Alkylation process using a catalyst comprising rare earth containing zeolites and a hydrogenation metal
TWI729287B (zh) 觸媒再生之方法
Ren et al. Methane aromatization in the absence of oxygen over extruded and molded MoO3/ZSM-5 catalysts: Influences of binder and molding method
WO2019011239A1 (zh) 乙苯脱烷基催化剂及其制备方法
CN106715654B (zh) 使用包括含有沸石和加氢金属的富铈稀土的催化剂的烷基化工艺
EP3277421B1 (en) Dehydrogenation catalyst and process utilizing the catalyst
CN111377792B (zh) 低碳烷烃芳构化的方法
CN109569703B (zh) 由石脑油和甲醇生产汽油组分的催化剂及制备方法与应用
WO2015152159A1 (ja) 不飽和炭化水素の製造方法
KR102464447B1 (ko) 촉매 시스템 및 상기 촉매 시스템을 이용한 탄화수소 공급물의 전환 공정
JP2020500711A (ja) 炭化水素変換触媒系
Komasi et al. Hierarchical SAPO-34 catalytic support for superior selectivity toward propylene in propane dehydrogenation process
RU2301108C1 (ru) Катализатор для дегидрирования углеводородов и способ его получения
JP3966429B2 (ja) 芳香族炭化水素製造用触媒
Kim et al. Influence of catalyst pelletization on propane dehydrogenation over hierarchical MFI zeolite supported with platinum-yttrium nanoparticles
JP7090470B2 (ja) p-キシレンの製造方法
KR101631146B1 (ko) 메틸사이클로펜탄으로부터 고순도의 벤젠 제조용 촉매 및 이를 이용한 벤젠 제조방법
JP2023055080A (ja) Mfi型ゼオライト及びそれを含む炭化水素製造用触媒

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20844749

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205 DATED 06/05/2022)

122 Ep: pct application non-entry in european phase

Ref document number: 20844749

Country of ref document: EP

Kind code of ref document: A1