WO2019208811A1 - 難燃性フェノール樹脂発泡体 - Google Patents
難燃性フェノール樹脂発泡体 Download PDFInfo
- Publication number
- WO2019208811A1 WO2019208811A1 PCT/JP2019/018079 JP2019018079W WO2019208811A1 WO 2019208811 A1 WO2019208811 A1 WO 2019208811A1 JP 2019018079 W JP2019018079 W JP 2019018079W WO 2019208811 A1 WO2019208811 A1 WO 2019208811A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- phenol resin
- mass
- resin foam
- ray diffraction
- degrees
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J9/00—Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
- C08J9/04—Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent
- C08J9/12—Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a physical blowing agent
- C08J9/14—Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a physical blowing agent organic
- C08J9/143—Halogen containing compounds
- C08J9/144—Halogen containing compounds containing carbon, halogen and hydrogen only
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J9/00—Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J9/00—Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
- C08J9/04—Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J9/00—Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
- C08J9/0014—Use of organic additives
- C08J9/0023—Use of organic additives containing oxygen
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J9/00—Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
- C08J9/0014—Use of organic additives
- C08J9/0033—Use of organic additives containing sulfur
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J9/00—Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
- C08J9/0014—Use of organic additives
- C08J9/0038—Use of organic additives containing phosphorus
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J9/00—Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
- C08J9/04—Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent
- C08J9/12—Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a physical blowing agent
- C08J9/122—Hydrogen, oxygen, CO2, nitrogen or noble gases
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J9/00—Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
- C08J9/04—Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent
- C08J9/12—Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a physical blowing agent
- C08J9/14—Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a physical blowing agent organic
- C08J9/149—Mixtures of blowing agents covered by more than one of the groups C08J9/141 - C08J9/143
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L61/00—Compositions of condensation polymers of aldehydes or ketones; Compositions of derivatives of such polymers
- C08L61/34—Condensation polymers of aldehydes or ketones with monomers covered by at least two of the groups C08L61/04, C08L61/18 and C08L61/20
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2203/00—Foams characterized by the expanding agent
- C08J2203/06—CO2, N2 or noble gases
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2203/00—Foams characterized by the expanding agent
- C08J2203/14—Saturated hydrocarbons, e.g. butane; Unspecified hydrocarbons
- C08J2203/142—Halogenated saturated hydrocarbons, e.g. H3C-CF3
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2203/00—Foams characterized by the expanding agent
- C08J2203/16—Unsaturated hydrocarbons
- C08J2203/162—Halogenated unsaturated hydrocarbons, e.g. H2C=CF2
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2203/00—Foams characterized by the expanding agent
- C08J2203/18—Binary blends of expanding agents
- C08J2203/182—Binary blends of expanding agents of physical blowing agents, e.g. acetone and butane
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2205/00—Foams characterised by their properties
- C08J2205/04—Foams characterised by their properties characterised by the foam pores
- C08J2205/052—Closed cells, i.e. more than 50% of the pores are closed
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2361/00—Characterised by the use of condensation polymers of aldehydes or ketones; Derivatives of such polymers
- C08J2361/04—Condensation polymers of aldehydes or ketones with phenols only
- C08J2361/06—Condensation polymers of aldehydes or ketones with phenols only of aldehydes with phenols
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2361/00—Characterised by the use of condensation polymers of aldehydes or ketones; Derivatives of such polymers
- C08J2361/04—Condensation polymers of aldehydes or ketones with phenols only
- C08J2361/06—Condensation polymers of aldehydes or ketones with phenols only of aldehydes with phenols
- C08J2361/08—Condensation polymers of aldehydes or ketones with phenols only of aldehydes with phenols with monohydric phenols
- C08J2361/10—Phenol-formaldehyde condensates
Definitions
- the present invention relates to a flame retardant phenolic resin foam.
- heat insulating materials have been widely used from the viewpoint of energy saving.
- synthetic resin foams are widely used because of their high thermal insulation performance and economic efficiency, but synthetic resin foams spread rapidly in the event of a fire, and there is a risk of deflagration and the generation of toxic gases. Insulating materials that have achieved high insulation performance and non-combustibility certification from the Minister of Land, Infrastructure, Transport and Tourism have been desired.
- phenol resin foam with high thermal insulation performance is the most flame retardant among existing resin foams, and is known to have higher fire safety than any other resin foam. ing.
- the phenolic resin foam does not have flame resistance comparable to the incombustible material certified by the Minister of Land, Infrastructure, Transport and Tourism, and although attempts have been made to further improve flame resistance, it has not been realized so far. It was.
- Patent Documents 1 to 3 disclose that the flame retardant performance of a phenol resin foam is improved by using a flame retardant.
- Patent Document 1 discloses a phenolic resin foam that has improved flame retardancy by using a specific surfactant or phosphorus-based flame retardant while maintaining high heat insulation performance.
- the oxygen index is used as an index of flame retardancy. This test measures the minimum oxygen concentration (volume%) required for the material to sustain combustion, and is based on the premise that the combustion lasts. Therefore, the flame retardancy performance of the materials shown in these examples is In any case, it can be said that it is incomparably lower than the flame retardant performance required for the incombustible material certified by the Minister of Land, Infrastructure, Transport and Tourism that assumes that it does not burn.
- the combustion test of the obtained phenol resin foam is carried out by the surface heating test based on the Ministry of Construction Notification No. 1828 in December 1969, or the test based on JIS A 1321, respectively.
- these can be said to be material tests comparable to the exothermic test (ISO 5660 Part-1 corn calorimeter), which is a test standard for obtaining approval from the current Minister of Land, Infrastructure, Transport and Tourism, but the phenolic resins described in Patent Documents 2 and 3
- the foams were densified to a level far exceeding 100 kg / m 3 , and none of them had low heat insulation performance, and it was impossible to realize both incombustibility.
- the present invention provides a phenolic resin foam that exhibits high flame retardancy that can be an incombustible material certified by the Minister of Land, Infrastructure, Transport and Tourism while having high heat insulation performance while having a low density of less than 100 kg / m 3. is there.
- the present invention is as follows.
- a phenol resin foam having a density of 30 to 80 kg / m 3 , a closed cell ratio of 85% or more, and a time to reach a total calorific value of 8 MJ / m 2 in a heat generation test with a cone calorimeter for 20 minutes or more. body.
- the diffraction angle 2 ⁇ of the peak with the highest intensity is at least one of 14.9 to 15.9 degrees and 16.2 to 17.2 degrees.
- the phenolic resin foam has high heat insulation performance and a low density of less than 100 kg / m 3 , without using nonflammable face materials on the top and bottom surfaces in the thickness direction of the foam,
- the entire foam exhibits high flame retardant performance that can be a non-combustible material.
- a high-performance phenol resin foam can be used even in applications that could not be applied due to shape restrictions so far.
- the present invention appropriately selects a flame retardant required for the development of non-flammability, further determines the amount of additive required for the development of non-flammability, and optimizes the density and production conditions of the phenolic resin
- the present inventors have found a phenolic resin foam that has been able to achieve both high heat insulation performance and incombustibility, which could not be realized so far.
- the present embodiment a mode for carrying out the present invention (hereinafter referred to as “the present embodiment”) will be described in detail.
- the phenol resin foam of this embodiment can achieve a total calorific value of 8 MJ / m 2 or less in 20 minutes after the start of heating in the exothermic test conducted under the conditions shown in the examples using a corn calorimeter. it can.
- the phenolic resin foam of this embodiment is further added to a “phenolic resin composition” obtained by adding a surfactant and a flame retardant to “phenolic resin”, and further adding a foaming agent and an acidic curing agent containing an organic acid, Produced by adding foamable phenolic resin composition with foamability and curability to a blender, mixing and then discharging the foamable phenolic resin composition from the blender and foaming and curing under heating.
- phenol resin foam when a face material, siding, etc. are attached, the part comprised from the phenol resin except this is defined as "phenol resin foam.”
- phenol resin a resol type phenol resin obtained by heating and synthesizing phenols and aldehydes in the temperature range of 40 to 100 ° C. in the presence of alkali metal hydroxide or alkaline earth metal hydroxide is used.
- the molar ratio of phenols to aldehydes used is preferably in the range of 1: 1 to 1: 4.5, more preferably in the range of 1: 1.5 to 1: 2.5.
- phenols preferably used in the synthesis of the phenol resin include resorcinol, catechol, o-, m- and p-cresol, xylenols, ethylphenols, p-tertbutylphenol and the like in addition to phenol. Dinuclear phenols can also be used.
- aldehydes preferably used in the synthesis of phenol resin include glyoxal, acetaldehyde, chloral, furfural, benzaldehyde and the like, and these derivatives can also be used.
- additives such as urea, dicyandiamide and melamine may be added as necessary.
- urea it is preferable to mix urea methylolated with an alkali catalyst in advance into the resol type phenol resin.
- the resol type phenolic resin after synthesis usually contains excessive moisture, it is preferable to perform dehydration in order to obtain a viscosity suitable for foaming.
- Phenolic resins include aliphatic hydrocarbons or high-boiling alicyclic hydrocarbons, or mixtures thereof, diluents for viscosity adjustment such as ethylene glycol and diethylene glycol, and other phthalic acid compounds as necessary. Various additives can also be added.
- the viscosity of the phenol resin and the phenol resin composition at 40 ° C. is preferably 5,000 mPa ⁇ s or more and 25,000 mPa ⁇ s or less.
- the water content of the phenol resin used for the step of mixing using a mixer is 2.0% by mass or more and 8.0% by mass or less, preferably 2.5% by mass or more and 6.5% by mass or less. More preferably, it is 3.0 mass% or more and 5.0 mass% or less. If a flame retardant is added and the amount of water in the phenolic resin is large, the cell membrane is liable to break, causing a decrease in closed cell rate, that is, a decrease in heat insulation performance. On the other hand, if the water content of the phenolic resin is 8.0% by mass or less when the flame retardant is added, the bubble film can be prevented from being broken and the heat insulating performance can be maintained regardless of the amount of the acid catalyst. Moreover, if it is 2.0 mass% or more, a viscosity raise can be suppressed and the liquid feeding in an installation can be implement
- a nonionic surfactant is effective.
- alkylene oxide which is a copolymer of ethylene oxide and propylene oxide, a condensate of alkylene oxide and castor oil, alkylene Condensation products of oxides with alkylphenols such as nonylphenol and dodecylphenol, polyoxyethylene alkyl ethers having 14 to 22 carbon atoms in the alkyl ether portion, and fatty acid esters such as polyoxyethylene fatty acid esters, polydimethylsiloxane
- the silicone-based compounds such as polyalcohols and the like are preferable.
- These surfactants may be used alone or in combination of two or more.
- the amount of the surfactant used is preferably in the range of 0.3 to 10 parts by mass with respect to 100 parts by mass of the phenol resin.
- ammonium polyphosphate As the flame retardant added to the phenolic resin, ammonium polyphosphate is preferable.
- the amount of the flame retardant added to the phenol resin composition is preferably 10 parts by mass or more and 35 parts by mass or less, more preferably 13 parts by mass or more and 30 parts by mass or less, and still more preferably 15 parts by mass or more and 25 parts by mass, per 100 parts by mass of the phenol resin. Or less.
- the addition mass part in the case of using a plurality of flame retardants is the sum of the addition mass parts of all flame retardants.
- the foaming agent added to the phenol resin it is preferable to use hydrocarbons, hydrofluorocarbons, chlorinated hydrofluoroolefins, non-chlorinated hydrofluoroolefins, chlorinated hydrocarbons, and the like.
- the hydrocarbon is preferably a cyclic or chain alkane, alkene or alkyne having 3 to 7 carbon atoms, specifically, normal butane, isobutane, cyclobutane, normal pentane, isopentane, cyclopentane, neopentane, normal hexane, Examples include isohexane, 2,2-dimethylbutane, 2,3-dimethylbutane, and cyclohexane. Among them, normal pentane, isopentane, cyclopentane, neopentane pentane and normal butane, isobutane, cyclobutane butane are preferably used.
- hydrofluorocarbons examples include hydrofluoropropene, hydrochlorofluoropropene, hydrobromofluoropropene, hydrofluorobutene, hydrochlorofluorobutene, hydrobromofluorobutene, hydrofluoroethane, hydrochlorofluoroethane, hydrobromofluoroethane, etc. Can do.
- chlorinated hydrofluoroolefin examples include 1-chloro-3,3,3-trifluoropropene (for example, Honeywell Japan Co., Ltd., product name: Solstice (registered trademark) LBA).
- non-chlorinated hydrofluoroolefin 1,3,3,3-tetrafluoro-1-propene (for example, manufactured by Honeywell Japan, product name: Solstice (registered trademark) 1234ze), 2,3,3,3 -Tetrafluoro-1-propene, 1,1,1,4,4,4-hexafluoro-2-butene and the like.
- the content of these foaming agents in all foaming agents is preferably 30% by mass or more.
- chlorinated hydrocarbon a linear or branched chlorinated aliphatic hydrocarbon having 2 to 5 carbon atoms can be preferably used.
- the number of bonded chlorine atoms is preferably 1 to 4, and examples thereof include dichloroethane, propyl chloride, isopropyl chloride, butyl chloride, isobutyl chloride, pentyl chloride, isopentyl chloride and the like.
- propyl chloride and isopropyl chloride which are chloropropanes, are more preferably used.
- foaming agent may be used independently, may combine 2 or more types, and can be selected arbitrarily.
- the amount of the preferred foaming agent in the foamable phenolic resin composition may vary depending on the type of foaming agent, compatibility with the phenolic resin, and foaming / curing conditions such as temperature and residence time. It is 10.0 parts by mass or less, more preferably 4.5 parts by mass or more and 10.0 parts by mass or less, and 5.0 parts by mass or more and 9.0 parts by mass or less with respect to 100 parts by mass in total. More preferably.
- a foam nucleating agent may be further used for the production of the phenol resin foam.
- a gas foaming nucleating agent such as nitrogen, helium, argon, air, or the like, which has a boiling point lower by 50 ° C. or more than the foaming agent, can be added.
- foam nucleating agents such as gypsum powder, borax, slag powder, inorganic powder such as alumina cement and Portland cement, and organic powder such as pulverized powder of phenol resin foam. These may be used singly or in combination of two or more without distinguishing between gas and solid.
- the timing for adding the foam nucleating agent may be determined arbitrarily as long as it is supplied into the mixer for mixing the foamable phenol resin composition.
- the addition amount of the gas foam nucleating agent to the foaming agent is preferably 0.2% by mass or more and 1.0% by mass or less, and 0.3% by mass or more and 0.5% by mass, with the amount of the foaming agent being 100% by mass. % Or less is more preferable.
- the addition amount of a solid foaming nucleating agent is 3.0 to 10.0 mass parts with respect to a total of 100 mass parts with a phenol resin and surfactant, More preferably, it is 4. 0 parts by mass or more and 8.0 parts by mass or less.
- an organic acid As the acidic curing agent to be added to the phenol resin composition, it is necessary to use one containing an organic acid as an acid component.
- an organic acid arylsulfonic acid or an anhydride thereof is preferable.
- arylsulfonic acid and its anhydride toluenesulfonic acid, xylenesulfonic acid, phenolsulfonic acid, substituted phenolsulfonic acid, xylenolsulfonic acid, substituted xylenolsulfonic acid, dodecylbenzenesulfonic acid, benzenesulfonic acid, naphthalenesulfonic acid, etc. And their anhydrides.
- resorcinol, cresol, saligenin (o-methylolphenol), p-methylolphenol, or the like may be added as a curing aid.
- These curing agents may be diluted with a solvent such as ethylene glycol or diethylene glycol.
- the amount of the acidic curing agent used varies depending on the type, but in order to make the phenol resin incombustible and to increase the closed cell ratio, it is necessary to add an organic acid as an acid component so as to satisfy the following relational expression. is there. That is, assuming that the density of the obtained foam is x (kg / m 3 ) and the amount of organic acid with respect to 100 parts by mass of the total of the phenol resin and the surfactant is y (parts by mass), 13.0 ⁇ 0.1x ⁇ It is necessary to satisfy y ⁇ 17.0 ⁇ 0.1x.
- 14.0 ⁇ 0.1x ⁇ y is preferable, 15.0 ⁇ 0.1x ⁇ y is more preferable, and 15.5 ⁇ 0.1x ⁇ y is still more preferable.
- the organic acid as the acid component paratoluenesulfonic acid monohydrate or the like can be used.
- a diluent such as diethylene glycol may be used in combination.
- the surfactant, flame retardant, and foaming agent contained in the foamable phenol resin composition may be added to the phenol resin in advance, or may be added to the phenol resin simultaneously with the acidic curing agent.
- the density of the phenol resin foam of this embodiment is 30 kg / m 3 or more and 80 kg / m 3 or less, preferably 35 kg / m 3 or more and 70 kg / m 3 or less, more preferably 45 kg / m 3 or more and 65 kg / m 3. It is as follows. When the density is 30 kg / m 3 or more, the flame retardancy is increased, and when the density is 80 kg / m 3 or less, the phenol resin foam is easy to handle, which is preferable.
- the density is adjusted by the amount of the organic acid, the ratio of the foaming agent, the temperature of the foamable phenol resin composition, the timing of pre-molding in the step of discharging the mixed foamable phenol resin composition onto the lower surface material, It can be adjusted to a desired value by changing the ratio of the foaming agent to the addition amount, the curing conditions such as temperature and residence time, and the like.
- the time to reach a total calorific value of 8 MJ / m 2 is 20 minutes or more. If the above conditions are satisfied even in the acceleration condition of leaving at 70 ° C. for 30 weeks, the flame retardancy can be stably maintained over a long period of 30 years at room temperature as described above. Can also be said to be excellent.
- the density of the foam is less than 30 kg / m 3
- the resin becomes slightly brittle after 30 weeks at 70 ° C., and in the exothermic test with a cone calorimeter, the sample is likely to crack, and the total heat generation The time to reach the quantity 8 MJ / m 2 is shortened.
- the closed cell ratio of the phenol resin foam of the present embodiment is 85% or more, preferably 90% or more. Since the closed cell ratio is a measure of the heat insulation performance, it is preferably 85% or more because the heat insulation performance is good.
- the closed cell ratio can be adjusted to a desired value mainly by adjusting the reactivity and temperature of the phenol resin, and further changing the curing temperature conditions.
- the average cell diameter of the phenol resin foam of the present embodiment is preferably 70 ⁇ m or more and 180 ⁇ m or less, more preferably 70 ⁇ m or more and 150 ⁇ m or less, and further preferably 70 ⁇ m or more and 130 ⁇ m or less.
- the average cell diameter is 70 ⁇ m or more, the density of the foam is easily within the range of the present invention.
- the average bubble diameter is within 180 ⁇ m, heat conduction due to radiation can be easily suppressed.
- the average cell diameter is, for example, the reactivity and temperature adjustment of the phenol resin, the addition amount of the foam nucleating agent, the ratio of the addition amount of the foaming agent and the addition amount of the organic acid used as the acidic curing agent, and further the curing temperature condition It can be adjusted to a desired value by changing such as
- the phenol resin foam in this embodiment preferably has a thermal conductivity of 0.030 W / m ⁇ K or less. More preferably, it is 0.028 W / m * K or less, More preferably, it is 0.026 W / m * K or less.
- the thermal conductivity can be adjusted by, for example, the composition and viscosity of the phenol resin, the type and ratio of the foaming agent, the ratio of the cell nucleating agent, the curing conditions, and the foaming conditions.
- the thermal conductivity after 30 weeks at 70 ° C. is also preferably 0.045 W / m ⁇ K or less, more preferably 0.043 W / m ⁇ K or less, still more preferably 0.041 W / m. -K or less.
- European standard “EN13166 ANNEX.C” related to “Aging Evaluation of Thermal Resistance and Thermal Conductivity of Thermal Insulating Materials”
- a specimen after 25 weeks of treatment at 70 ° C. is equivalent to 25 years later”. is there. According to this, since one week corresponds to one year, after 30 weeks at 70 ° C., it corresponds to 30 years at room temperature.
- the thermal conductivity after the above does not satisfy the above range and is a good heat insulating material. That's not true. Even in the acceleration condition of leaving at 70 ° C. for 30 weeks, if the above condition is satisfied, it can be said that the heat insulation can be stably maintained stably in the long term, that is, the long term durability is also excellent.
- the phenol resin foam of this embodiment preferably has a diffraction angle 2 ⁇ of 14.9 to 15.9 degrees and 16.2 to 17.2 in an X-ray diffraction pattern obtained by analysis by an X-ray diffraction method. There is a peak in at least one of the degrees. It is more preferable that the diffraction angle 2 ⁇ of the peak with the highest intensity in the X-ray diffraction pattern exists in at least one of 14.9 to 15.9 degrees and 16.2 to 17.2 degrees. More preferably, there are peaks at angles 2 ⁇ of 14.9 to 15.9 degrees and 16.2 to 17.2 degrees.
- peaks exist at diffraction angles 2 ⁇ of 14.9 to 15.9 degrees and 16.2 to 17.2 degrees, and 14.9. It is particularly preferable that 0.5 ⁇ A / B ⁇ 4.5, where A is the maximum intensity of the peak at ⁇ 15.9 degrees and B is the maximum intensity of the peak at 16.2 to 17.2 degrees. 1.0 ⁇ A / B ⁇ 4.5 is most preferable.
- the angle position of the peak at the diffraction angle 2 ⁇ and the maximum intensity can be adjusted by the combination and addition amount of the flame retardant described later.
- the phenol resin foam of this embodiment can be used alone, or can be used for various purposes by being joined to an external member.
- the external member include a board-like material and a sheet-like / film-like material 1 and combinations thereof.
- Board-like materials include ordinary plywood, structural plywood, particle board, OSB, and other wood-based boards, and wood wool cement board, wood chip cement board, gypsum board, flexible board, medium density fiber board, calcium silicate board A magnesium silicate plate, a volcanic glassy multilayer plate and the like are preferable.
- Sheet and film materials include polyester nonwoven fabric, polypropylene nonwoven fabric, inorganic filled glass fiber nonwoven fabric, glass fiber nonwoven fabric, paper, calcium carbonate paper, polyethylene processed paper, polyethylene film, plastic moisture-proof film, asphalt waterproof paper, aluminum A foil (with or without holes) is preferred.
- a foamable phenol resin composition containing a phenol resin, a surfactant, a flame retardant, a foaming agent, and an acidic curing agent containing an organic acid is mixed using a mixer.
- Adopting a continuous manufacturing method that includes a step of molding, a step of performing main molding, which is the main step of performing foaming and curing reactions, and a step of performing post-curing to dissipate moisture in the phenol resin composition. Is possible.
- the methods for performing the pre-forming and the main forming respectively include a method using a slat type double conveyor, a method using a metal roll or a steel plate, and further, Various methods according to the manufacturing purpose, such as a method of using a plurality of combinations, are exemplified.
- the foamable phenol resin composition coated with the upper and lower face materials is continuously guided into the slat type double conveyor, and then heated. It can be foamed and cured by applying pressure from above and below to adjust to a predetermined thickness, and formed into a plate shape.
- a flexible face material As the face material disposed on at least the upper and lower surfaces of the phenol resin foam, a flexible face material (flexible face material) is used.
- the flexible face materials used include non-woven fabrics and woven fabrics mainly composed of polyester, polypropylene, nylon, etc., kraft paper, glass fiber mixed paper, calcium hydroxide paper, aluminum hydroxide paper, magnesium silicate paper, etc. Paper, inorganic fiber nonwoven fabrics such as glass fiber nonwoven fabrics, and the like, and these may be mixed or laminated.
- an inexpensive material that can be discarded after peeling is preferable.
- These face materials are usually provided in a roll form.
- the temperature of the foamable phenol resin composition when preformed for the first time is preferably 35 ° C. or more and 70 ° C. or less.
- the heating temperature control condition of the main molding process following the pre-molding process is 65 ° C or higher and 100 ° C or lower.
- the main molding can be performed using an endless steel belt type double conveyor, a slat type double conveyor, or a roll.
- the post-curing process is performed after the pre-molding process and the main molding process.
- the temperature in the post-curing step is preferably 90 ° C. or higher and 120 ° C. or lower.
- the reaction solution is cooled and 570 kg of urea (corresponding to 15 mol% of the charged formaldehyde) is added. did. Thereafter, the reaction solution was cooled to 30 ° C., and a 50% by mass aqueous solution of paratoluenesulfonic acid monohydrate was added until the pH reached 6.4.
- the obtained reaction liquid was concentrated by a thin film evaporator to obtain a phenol resin C having a viscosity at 40 ° C. of 6,900 mPa ⁇ s and a water content of 10.1% by mass.
- ⁇ Measurement of water content of phenolic resin Dissolve the phenol resin in dehydrated methanol (manufactured by Kanto Chemical Co., Inc.) in a range of 3% to 7% by mass, and remove the water in the dehydrated methanol from the water content of the solution. The water content was determined, and the difference in water content from the phenol resin was taken as the resin content of the phenol resin. A Karl Fischer moisture meter (manufactured by Kyoto Electronics Industry Co., Ltd., MKC-510) was used for the measurement.
- the mixer disclosed in JP-A-10-225993 was used. That is, a mixer having an inlet for a foaming agent containing a phenolic resin and a foam nucleating agent on the upper side surface of the mixer, and having an inlet for an acidic curing agent on the side surface near the center of the agitating unit where the rotor stirs It was used.
- the part after the stirring part is connected to a nozzle for discharging the foamable phenol resin composition.
- the mixing machine is composed of the mixing part (front stage) up to the acidic curing agent introduction port, the mixing part (rear stage) from the acidic curing agent introduction port to the stirring end part, and the distribution part from the stirring end part to the nozzle.
- the distribution unit has a plurality of nozzles at the tip, and is designed so that the mixed foamable phenolic resin composition is uniformly distributed.
- the temperature of the mixer and the nozzle can be adjusted by temperature-controlled water, respectively, and the temperature-controlled water temperature is 23 ° C.
- the thermocouple was installed in the discharge port of multiport distribution piping so that the temperature of a foamable phenol resin composition could be detected, and the rotation speed of the mixing head was set to 650 rpm.
- the temperature of the foamable phenol resin composition discharged onto the face material was 44 ° C.
- the foamable phenolic resin composition supplied onto the face material is introduced into the preforming process, and the equipment temperature in the preforming process at this time was set to 60 ° C.
- the pre-forming was performed with a metal roll from above the coated surface material from above.
- the foamable phenol resin composition was introduced into a slat type double conveyor heated to 83 ° C. so as to be sandwiched between two face materials, cured for a residence time of 15 minutes, and further heated in an oven at 110 ° C. For 2 hours to obtain a phenolic resin foam laminate.
- a polyester nonwoven fabric (Asahi Kasei Elutus E05030) having a basis weight of 30 g / m 2 was used for both the upper and lower face materials.
- the face material was carefully peeled from both sides of the phenolic resin foam laminate to obtain a phenolic resin foam having a thickness of 30 mm.
- the density and average cell diameter of the phenol resin foam were measured by the method described later, the density was 60.0 kg / m 3 and the average cell diameter was 105 ⁇ m. Furthermore, the obtained phenol resin foam was subjected to measurement of thermal conductivity, X-ray diffraction analysis, and evaluation of flame retardancy by the methods described later. The results are shown in Table 2.
- ⁇ Average cell diameter of phenol resin foam> Take a photograph of the cut surface of the test piece obtained by cutting almost the center in the thickness direction of the phenol resin foam in parallel with the front and back surfaces, and enlarge the length of 9 cm by avoiding voids on the resulting photograph. 4 lines are drawn (corresponding to 1,800 ⁇ m in the actual foam cross section), the number of cells measured according to the number of bubbles crossed by each straight line is obtained by each straight line, and the average value thereof is 1, A value obtained by dividing 800 ⁇ m was defined as an average cell diameter. This method refers to the method described in JIS K6402.
- ⁇ Closed cell ratio of phenol resin foam Measured according to ASTM-D-2856. Specifically, after removing the face material from the phenolic resin foam laminate, a columnar sample having a diameter of 30 mm to 32 mm is pierced with a cork borer, and the height of the phenolic resin foam is centered in the thickness direction. After trimming to 9 mm to 13 mm, the sample volume was measured by a standard usage method of an air-comparing hydrometer (manufactured by Tokyo Science Co., Ltd., model 1000).
- the value obtained by subtracting the volume of the wall (parts other than air bubbles) calculated from the sample mass and the density of the phenol resin from the sample volume is divided by the apparent volume calculated from the external dimensions of the sample, and the value multiplied by 100 is independent. It calculated
- the density of the phenol resin was 1.3 kg / L.
- a phenol resin foam is cut into a 600 mm square, and a specimen obtained by cutting is placed in an atmosphere of 23 ⁇ 1 ° C. and a humidity of 50 ⁇ 2%, and a change with time is measured every 24 hours. This state was maintained until the rate of change of 0.2 mass% or less.
- An apparatus for measuring thermal conductivity placed in the same environment after peeling off the face material so as not to damage the 600 mm square phenolic resin foam whose rate of change from the most recent mass was 0.2% by mass or less. Introduced.
- thermal conductivity was performed using one specimen and a symmetrical configuration type measuring device (Hideki Seiki Co., Ltd., trade name “HC-074 / 600”).
- the thermal conductivity in an environment of 23 ° C. was measured under the conditions of a low temperature plate of 13 ° C. and a high temperature plate of 33 ° C.
- a SmartLab manufactured by Rigaku was used as the X-ray diffraction analyzer for the phenol resin foam.
- the vicinity of the center of the sample was cut out, used as a measurement sample, and filled in a sample cell (made by AL).
- the measurement conditions are as follows.
- the X-ray tube is Cu K ⁇
- the optical system is a parallel beam
- the tube voltage / tube current is 45 kV-200 mA
- the scan range is 5 to 80 degrees
- the scan step is 0.02 degrees
- the scan speed is 10 degrees / minute.
- the detector was a one-dimensional semiconductor detector.
- a sample for evaluation of flame retardancy has a face material, siding, etc., it is removed to obtain a phenol resin foam.
- A if the time until the total calorific value reaches 8 MJ / m 2 is 21.0 minutes or more, “B” if it is 20.5 minutes or more and less than 21.0 minutes, 20.0 minutes or more 20. If it was less than 5 minutes, it was evaluated as “C”, and if it was less than 20 minutes, it was evaluated as “D”.
- the test time was after the surface of the specimen was irradiated with radiant heat and the electric spark was activated at the same time.
- the concentrations of oxygen, carbon monoxide and carbon dioxide were measured at intervals within 5 seconds.
- Example 2 As shown in Table 1, a phenol resin foam with a density of 60.0 kg / m 3 was produced in the same manner as in Example 1 except that 22.0 parts by mass of Taien K (made by Taihei Chemical Industry) was added as a flame retardant. did. Thereafter, measurement of thermal conductivity, X-ray diffraction analysis, and flame retardancy evaluation were performed. The results are shown in Table 2. In addition, in the X-ray diffraction pattern obtained by the analysis by the X-ray diffraction method of the obtained phenol resin foam, the intensity of the peak existing at 16.4 ° was the largest.
- Example 7 As shown in Table 1, the density was 60.0 kg in the same manner as in Example 1 except that 17.0 parts by mass of Exolit AP 423 (Client Chemicals Co., Ltd.) and 5.0 parts by mass of Tienen K were added as flame retardants. A phenolic resin foam of / m 3 was produced. Thereafter, measurement of thermal conductivity, X-ray diffraction analysis, and flame retardancy evaluation were performed. The results are shown in Table 2. In addition, in the X-ray diffraction pattern obtained by the analysis by the X-ray diffraction method of the obtained phenol resin foam, the intensity of the peak existing at 15.4 ° was the largest.
- Example 8 As shown in Table 1, a phenol resin foam having a density of 60.0 kg / m 3 was produced in the same manner as in Example 1 except that the phenol resin B was used. Thereafter, measurement of thermal conductivity, X-ray diffraction analysis, and flame retardancy evaluation were performed. The results are shown in Table 2. In addition, in the X-ray diffraction pattern obtained by the analysis by the X-ray diffraction method of the obtained phenol resin foam, the intensity of the peak existing at 15.4 ° was the largest.
- Example 9 As shown in Table 1, 8.8 parts by mass of a composition composed of a mixture of 80% by mass of xylene sulfonic acid and 20% by mass of diethylene glycol with respect to a total of 100 parts by mass of the phenol resin and the surfactant (phenol of organic acid) A phenol resin foam with a density of 60.0 kg / m 3 was produced in the same manner as in Example 1 except that the addition amount of the resin and the surfactant to 100 parts by mass in total was 7.0 parts by mass). Thereafter, measurement of thermal conductivity, X-ray diffraction analysis, and flame retardancy evaluation were performed. The results are shown in Table 2. In addition, in the X-ray diffraction pattern obtained by the analysis by the X-ray diffraction method of the obtained phenol resin foam, the intensity of the peak existing at 15.3 ° was the highest.
- Example 10 As shown in Table 1, 13.7 parts by mass of a composition composed of a mixture of 80% by mass of xylene sulfonic acid and 20% by mass of diethylene glycol with respect to a total of 100 parts by mass of the phenol resin and the surfactant (phenol of organic acid) A phenol resin foam with a density of 60.0 kg / m 3 was produced in the same manner as in Example 1 except that the addition amount of resin and surfactant was 11.0 parts by mass with respect to 100 parts by mass in total. Thereafter, measurement of thermal conductivity, X-ray diffraction analysis, and flame retardancy evaluation were performed. The results are shown in Table 2. In addition, in the X-ray diffraction pattern obtained by the analysis by the X-ray diffraction method of the obtained phenol resin foam, the intensity of the peak existing at 15.4 ° was the largest.
- Example 11 As shown in Table 1, a mixture of 40% by mass of isopropyl chloride and 60% by mass of 1-chloro-3,3,3-trifluoropropene as a foaming agent with respect to 100 parts by mass of the phenol resin composition containing a flame retardant 10.
- Example 12 As shown in Table 1, Example 1 and Example 1 except that a mixture of 75% by mass of cyclopentane and 25% by mass of isopentane was used as a foaming agent with respect to 100 parts by mass of the phenol resin composition containing a flame retardant. Similarly, a phenol resin foam was produced. Thereafter, measurement of thermal conductivity, X-ray diffraction analysis, and flame retardancy evaluation were performed. The results are shown in Table 2. In addition, in the X-ray diffraction pattern obtained by the analysis by the X-ray diffraction method of the obtained phenol resin foam, the intensity of the peak existing at 15.4 ° was the largest.
- Comparative Example 2 As shown in Table 1, with respect to 100 parts by mass of the phenol resin composition, 4 parts of a composition composed of a mixture of 80 parts by mass of xylene sulfonic acid and 20% by mass of diethylene glycol, with 6.3 parts by mass of the blowing agent added. .4 parts by mass (addition amount of organic acid to 3.5 parts by mass with respect to 100 parts by mass of the phenolic resin and the surfactant is the same as in Comparative Example 1) A density of 60.0 kg / m 3 A phenolic resin foam was prepared. Thereafter, measurement of thermal conductivity, X-ray diffraction analysis, and flame retardancy evaluation were performed. The results are shown in Table 2.
Landscapes
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Emergency Medicine (AREA)
- Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
Abstract
Description
[2]X線回折法による分析で得られるX線回折パターンにおいて、回折角度2θが14.9~15.9度、及び16.2~17.2度の少なくともいずれかにピークが存在する、[1]のフェノール樹脂発泡体。
[3]X線回折法による分析で得られるX線回折パターンにおいて、最も強度の大きいピークの回折角度2θが、14.9~15.9度、及び16.2~17.2度の少なくともいずれかに存在する、[1]又は[2]のフェノール樹脂発泡体。
[4]X線回折法による分析で得られるX線回折パターンにおいて、回折角度2θが14.9~15.9度、及び16.2~17.2度にピークが存在する、[1]~[3]のいずれかのフェノール樹脂発泡体。
[5]X線回折法による分析で得られるX線回折パターンにおいて、回折角度2θが14.9~15.9度、及び16.2~17.2度にピークが存在し、かつ、14.9~15.9度におけるピークの最大強度をA、16.2~17.2度におけるピークの最大強度をBとしたとき、0.5≦A/B≦4.5である、[1]~[4]のいずれかのフェノール樹脂発泡体。
[6]X線回折法による分析で得られるX線回折パターンにおいて、回折角度2θが14.9~15.9度、及び16.2~17.2度にピークが存在し、かつ、14.9~15.9度におけるピークの最大強度をA、16.2~17.2度におけるピークの最大強度をBとしたとき、1.0≦A/B≦4.5である、[1]~[4]のいずれかのフェノール樹脂発泡体。
反応器に52質量%ホルムアルデヒド水溶液(52質量%ホルマリン)3,500kgと99質量%フェノール2,510kg(不純物として水を含む)を仕込み、プロペラ回転式の攪拌機により攪拌し、温調機により反応器内部液温度を40℃に調整した。次いで48質量%水酸化ナトリウム水溶液をpHが8.7になるまで加えた後85℃まで昇温して、反応を行わせた。反応液のオストワルド粘度が160平方ミリメートル毎秒(=160mm2/s、25℃における測定値)に到達した段階で、反応液を冷却し、フェノール樹脂中の尿素含有量が4.6質量%となるように尿素を添加した。その後、反応液を30℃まで冷却し、パラトルエンスルホン酸一水和物の50質量%水溶液を、pHが6.3になるまで添加した。得られた反応液を薄膜蒸発機によって濃縮処理し、40℃における粘度が13,200mPa・s、水分量が4.1質量%のフェノール樹脂Aを得た。
反応器に52質量%ホルムアルデヒド水溶液(52質量%ホルマリン)3,500kgと99質量%フェノール2,510kg(不純物として水を含む)を仕込み、プロペラ回転式の攪拌機により攪拌し、温調機により反応器内部液温度を40℃に調整した。次いで48質量%水酸化ナトリウム水溶液をpHが8.7になるまで加えた後85℃まで昇温して、反応を行わせた。反応液のオストワルド粘度が160平方ミリメートル毎秒(=160mm2/s、25℃における測定値)に到達した段階で、反応液を冷却し、フェノール樹脂中の尿素含有量が4.6質量%となるように尿素を添加した。その後、反応液を30℃まで冷却し、パラトルエンスルホン酸一水和物の50質量%水溶液を、pHが6.3になるまで添加した。得られた反応液を薄膜蒸発機によって濃縮処理し、40℃における粘度が7,800mPa・s、水分量が7.9質量%のフェノール樹脂Bを得た。
反応器に52質量%ホルムアルデヒド水溶液(52質量%ホルマリン)3,500kgと99質量%フェノール2,510kg(不純物として水を含む)を仕込み、プロペラ回転式の攪拌機により攪拌し、温調機により反応器内部液温度を40℃に調整した。次いで50質量%水酸化ナトリウム水溶液をpHが8.7になるまで加えた後85℃まで昇温して、反応を行わせた。反応液のオストワルド粘度が60平方ミリメートル毎秒(=60mm2/s、25℃における測定値)に到達した段階で、反応液を冷却し、尿素を570kg(ホルムアルデヒド仕込み量の15モル%に相当)添加した。その後、反応液を30℃まで冷却し、パラトルエンスルホン酸一水和物の50質量%水溶液を、pHが6.4になるまで添加した。得られた反応液を薄膜蒸発機によって濃縮処理し、40℃における粘度が6,900mPa・s、水分量が10.1質量%のフェノール樹脂Cを得た。
回転粘度計(東機産業(株)製、R-100型、ローター部は3°×R-14)を用い、40℃で3分間安定させた後の測定値をフェノール樹脂の粘度とした。
水分量を測定した脱水メタノール(関東化学製)に、フェノール樹脂を3質量%から7質量%の範囲で溶解して、その溶液の水分量から脱水メタノール中の水分を除して、フェノール樹脂の水分量を求め、フェノール樹脂から水分量の差分をフェノール樹脂の樹脂量とした。測定にはカールフィッシャー水分計(京都電子工業(株)製、MKC-510)を用いた。
<フェノール樹脂発泡体の製造>
表1に示すように、合成したフェノール樹脂Aの100質量部に対して、界面活性剤としてエチレンオキサイド-プロピレンオキサイドのブロック共重合体とポリオキシエチレンドデシルフェニルエーテルを質量比率でそれぞれ50%ずつ含有する組成物を3.5質量部の割合で混合し、更に、難燃剤としてタイエンC=II(太平化学産業製)を22.0質量部添加して、二軸押出機((株)テクノベル製) によって混練することで難燃剤入りフェノール樹脂組成物を得た。
200mm角のフェノール樹脂発泡体を試料とし、JIS K7222に従い質量と見かけ容積を測定して求めた。なお、発泡体の密度xに基づいて定められる、有機酸の添加部数yの範囲(13.0-0.1x≦y≦17.0-0.1x)を満たす場合を「Y」、満たさない場合を「N」と評価した。
フェノール樹脂発泡体の厚み方向のほぼ中央を表裏面に平行に切削して得た試験片の切断面を50倍に拡大した写真を撮影し、得られた写真上にボイドを避けて9cmの長さ(実際の発泡体断面における1,800μmに相当する)の直線を4本引き、各直線が横切った気泡の数に準じて測定したセル数を各直線で求め、それらの平均値で1,800μmを割った値を平均気泡径とした。なお、本方法はJIS K6402に記載の方法を参考にしている。
ASTM-D-2856に従い測定した。具体的には、フェノール樹脂発泡体積層板より面材を取り除いた後、直径30mm~32mmの円柱形試料をコルクボーラーで刳り貫き、フェノール樹脂発泡体の厚み方向中心が中心となるように高さ9mm~13mmに切り揃えた後、空気比較式比重計(東京サイエンス社製、1,000型)の標準使用方法により試料容積を測定した。その試料容積から、試料質量とフェノール樹脂の密度から計算した壁(気泡以外の部分)の容積を差し引いた値を、試料の外寸から計算した見かけの容積で割り、100をかけた値を独立気泡率として求めた。なお、フェノール樹脂の密度は1.3kg/Lとした。なお、フェノール樹脂発泡体の厚みが30mm以下の場合には、直径30mm~32mmの円柱形試料をコルクボーラーで刳り貫き、フェノール樹脂発泡体の厚み方向中心が中心となるように高さ4mm~6mmに切り揃えた後同様の評価を行った。
JIS A 1412-2:1999に準拠し、以下の方法で23℃の環境下におけるフェノール樹脂発泡体の熱伝導率を測定した。
フェノール樹脂発泡体のX線回折分析装置としては、Rigaku製のSmartLabを使用した。試料については、試料中心部付近を切り出し、測定試料とし、試料セル(AL製)に充填した。測定条件は、以下の通りである。X線管球は、Cu Kα、光学系は、平行ビームとし、管電圧・管電流を45kV-200mA、スキャン範囲は5~80度、スキャンステップを0.02度、スキャンスピードを10度/分、検出器を一次元半導体検出器とした。
厚みが50mm以内のフェノール樹脂発泡体の評価においては、フェノール樹脂発泡体から、(99±1)mm×(99±1)mmのサンプルを切り出し、ISO-5660に準拠し、輻射強度50kW/m2にて加熱したときの総発熱量が8MJ/m2に到達する時間を測定した。なお、フェノール樹脂発泡体の厚みが50mmを超える場合には、厚み方向の上下面のうち、どちらか片面を一面として厚み方向に垂直にスライス切断することで試料の厚みが50mmとなるようにした上で、非切断面を加熱面側として評価する。また、難燃性能評価用試料に面材、サイディング等が付いている場合にはこれを取り除いて、フェノール樹脂発泡体とする。上記総発熱量が8MJ/m2に到達する時間が21.0分以上であれば「A」、20.5分以上21.0分未満であれば「B」、20.0分以上20.5分未満であれば「C」、20分未満であれば「D」と評価した。
表1に示すように、難燃剤としてタイエンK(太平化学産業製)を22.0質量部添加した以外は実施例1と同様にして、密度60.0kg/m3のフェノール樹脂発泡体を作製した。その後、熱伝導率の測定、X線回折法分析、及び難燃性評価を行った。結果を表2に示す。なお、得られたフェノール樹脂発泡体の、X線回折法による分析で得られたX線回折パターンにおいて、16.4°に存在するピークの強度が最も大きかった。
表1に示すように、難燃剤としてタイエンC=IIを17.0質量部及びタイエンKを5.0質量部添加した以外は実施例1と同様にして、密度60.0kg/m3のフェノール樹脂発泡体を作製した。その後、熱伝導率の測定、X線回折法分析、及び難燃性評価を行った。結果を表2に示す。なお、得られたフェノール樹脂発泡体の、X線回折法による分析で得られたX線回折パターンにおいて、15.5°に存在するピークの強度が最も大きかった。
表1に示すように、難燃剤としてタイエンC=IIを20.0質量部及びタイエンKを2.0質量部添加した以外は実施例1と同様にして、密度60.0kg/m3のフェノール樹脂発泡体を作製した。その後、熱伝導率の測定、X線回折法分析、及び難燃性評価を行った。結果を表2に示す。なお、得られたフェノール樹脂発泡体の、X線回折法による分析で得られたX線回折パターンにおいて、15.5°に存在するピークの強度が最も大きかった。
表1に示すように、難燃剤としてタイエンC=IIを12.0質量部及びタイエンKを10.0質量部添加した以外は実施例1と同様にして、密度60.0kg/m3のフェノール樹脂発泡体を作製した。その後、熱伝導率の測定、X線回折法分析、及び難燃性評価を行った。結果を表2に示す。なお、得られたフェノール樹脂発泡体の、X線回折法による分析で得られたX線回折パターンにおいて、16.6°に存在するピークの強度が最も大きかった。
表1に示すように、難燃剤としてタイエンC=IIを15.5質量部及びタイエンKを6.5質量部添加した以外は実施例1と同様にして、密度60.0kg/m3のフェノール樹脂発泡体を作製した。その後、熱伝導率の測定、X線回折法分析、及び難燃性評価を行った。結果を表2に示す。なお、得られたフェノール樹脂発泡体の、X線回折法による分析で得られたX線回折パターンにおいて、15.4°に存在するピークの強度が最も大きかった。
表1に示すように、難燃剤としてExolit AP 423(クライアントケミカルズ株式会社)を17.0質量部及びタイエンKを5.0質量部添加した以外は実施例1と同様にして、密度60.0kg/m3のフェノール樹脂発泡体を作製した。その後、熱伝導率の測定、X線回折法分析、及び難燃性評価を行った。結果を表2に示す。なお、得られたフェノール樹脂発泡体の、X線回折法による分析で得られたX線回折パターンにおいて、15.4°に存在するピークの強度が最も大きかった。
表1に示すように、フェノール樹脂Bを用いる以外は実施例1と同様にして、密度60.0kg/m3のフェノール樹脂発泡体を作製した。その後、熱伝導率の測定、X線回折法分析、及び難燃性評価を行った。結果を表2に示す。なお、得られたフェノール樹脂発泡体の、X線回折法による分析で得られたX線回折パターンにおいて、15.4°に存在するピークの強度が最も大きかった。
表1に示すように、フェノール樹脂と界面活性剤との合計100質量部に対する、キシレンスルホン酸80質量%とジエチレングリコール20質量%の混合物からなる組成物を8.8質量部(有機酸の、フェノール樹脂および界面活性剤の合計100質量部に対する添加量は7.0質量部)添加した以外は、実施例1と同様にして、密度60.0kg/m3のフェノール樹脂発泡体を作製した。その後、熱伝導率の測定、X線回折法分析、及び難燃性評価を行った。結果を表2に示す。なお、得られたフェノール樹脂発泡体の、X線回折法による分析で得られたX線回折パターンにおいて、15.3°に存在するピークの強度が最も大きかった。
表1に示すように、フェノール樹脂と界面活性剤との合計100質量部に対する、キシレンスルホン酸80質量%とジエチレングリコール20質量%の混合物からなる組成物を13.7質量部(有機酸の、フェノール樹脂および界面活性剤の合計100質量部に対する添加量は11.0質量部)添加した以外は、実施例1と同様にして、密度60.0kg/m3のフェノール樹脂発泡体を作製した。その後、熱伝導率の測定、X線回折法分析、及び難燃性評価を行った。結果を表2に示す。なお、得られたフェノール樹脂発泡体の、X線回折法による分析で得られたX線回折パターンにおいて、15.4°に存在するピークの強度が最も大きかった。
表1に示すように、難燃剤入りフェノール樹脂組成物100質量部に対して、発泡剤としてイソプロピルクロリド40質量%と1-クロロ-3,3,3-トリフルオロプロペン60質量%の混合物10.0質量部、発泡核剤として窒素を発泡剤に対して0.40質量%、更に、酸性硬化剤としてキシレンスルホン酸80質量%とジエチレングリコール20質量%の混合物からなる組成物を13.7質量部(有機酸の、フェノール樹脂および界面活性剤の合計100質量部に対する添加量は11.1質量部)添加し、30℃に温調した回転数可変式のミキシングヘッドに供給する際の樹脂組成物の供給量を調整することで、フェノール樹脂発泡体の密度を35kg/m3とした以外は、実施例1と同様にしてフェノール樹脂発泡体を作製した。その後、熱伝導率の測定、X線回折法分析、及び難燃性評価を行った。結果を表2に示す。なお、得られたフェノール樹脂発泡体の、X線回折法による分析で得られたX線回折パターンにおいて、15.4°に存在するピークの強度が最も大きかった。
表1に示すように、難燃剤入りフェノール樹脂組成物100質量部に対して、発泡剤としてシクロペンタン75質量%とイソペンタン25質量%の混合物2.7質量部とした以外は、実施例1と同様にしてフェノール樹脂発泡体を作製した。その後、熱伝導率の測定、X線回折法分析、及び難燃性評価を行った。結果を表2に示す。なお、得られたフェノール樹脂発泡体の、X線回折法による分析で得られたX線回折パターンにおいて、15.4°に存在するピークの強度が最も大きかった。
表1に示すように、フェノール樹脂組成物100質量部に対して、発泡剤の添加部数を4.2質量部とし、キシレンスルホン酸80質量%とジエチレングリコール20質量%の混合物からなる組成物を7.0質量部(有機酸の、フェノール樹脂および界面活性剤の合計100質量部に対する添加量は5.6質量部)添加し、難燃剤を無添加とする以外は、実施例1と同様にして、密度38.7kg/m3のフェノール樹脂発泡体を作製した。その後、熱伝導率の測定、X線回折法分析、及び難燃性評価を行った。結果を表2に示す。
表1に示すように、フェノール樹脂組成物100質量部に対して、発泡剤の添加部数を6.3質量部とし、キシレンスルホン酸80質量%とジエチレングリコール20質量%の混合物からなる組成物を4.4質量部(有機酸の、フェノール樹脂および界面活性剤の合計100質量部に対する添加量は3.5質量部)添加する以外は、比較例1と同様にして、密度60.0kg/m3のフェノール樹脂発泡体を作製した。その後、熱伝導率の測定、X線回折法分析、及び難燃性評価を行った。結果を表2に示す。
表1に示すように、フェノール樹脂と界面活性剤との合計100質量部に対する、キシレンスルホン酸80質量%とジエチレングリコール20質量%の混合物からなる組成物を8.5質量部(有機酸の、フェノール樹脂および界面活性剤の合計100質量部に対する添加量は6.8質量部)添加した以外は、実施例1と同様にして、密度60.0kg/m3のフェノール樹脂発泡体を作製した。その後、熱伝導率の測定、X線回折法分析、及び難燃性評価を行った。結果を表2に示す。
表1に示すように、フェノール樹脂と界面活性剤との合計100質量部に対する、キシレンスルホン酸80質量%とジエチレングリコール20質量%の混合物からなる組成物を14.0質量部(有機酸の、フェノール樹脂および界面活性剤の合計100質量部に対する添加量は11.2質量部)添加した以外は、実施例1と同様にして、密度60.0kg/m3のフェノール樹脂発泡体を作製した。その後、熱伝導率の測定、X線回折法分析、及び難燃性評価を行った。結果を表2に示す。
表1に示すように、特許文献1に相当するフェノール樹脂Cを用い、発泡剤として1-クロロ-3,3,3-トリフルオロプロペンのみを用い、更に、フェノール樹脂と界面活性剤との合計100質量部に対する、キシレンスルホン酸80質量%とジエチレングリコール20質量%の混合物からなる組成物を11.0質量部(有機酸の、フェノール樹脂および界面活性剤の合計100質量部に対する添加量は8.8質量部)添加した以外は、実施例1と同様にして、密度60.0kg/m3のフェノール樹脂発泡体を作製した。その後、熱伝導率の測定、X線回折法分析、及び難燃性評価を行った。結果を表2に示す。
Claims (6)
- 密度が30~80kg/m3、独立気泡率が85%以上であり、コーンカロリーメーターによる発熱性試験において総発熱量8MJ/m2に達する時間が20分以上である、フェノール樹脂発泡体。
- X線回折法による分析で得られるX線回折パターンにおいて、回折角度2θが14.9~15.9度、及び16.2~17.2度の少なくともいずれかにピークが存在する、請求項1に記載のフェノール樹脂発泡体。
- X線回折法による分析で得られるX線回折パターンにおいて、最も強度の大きいピークの回折角度2θが、14.9~15.9度、及び16.2~17.2度の少なくともいずれかに存在する、請求項1又は2のフェノール樹脂発泡体。
- X線回折法による分析で得られるX線回折パターンにおいて、回折角度2θが14.9~15.9度、及び16.2~17.2度にピークが存在する、請求項1乃至3に記載のフェノール樹脂発泡体。
- X線回折法による分析で得られるX線回折パターンにおいて、回折角度2θが14.9~15.9度、及び16.2~17.2度にピークが存在し、かつ、14.9~15.9度におけるピークの最大強度をA、16.2~17.2度におけるピークの最大強度をBとしたとき、0.5≦A/B≦4.5である、請求項1乃至4に記載のフェノール樹脂発泡体。
- X線回折法による分析で得られるX線回折パターンにおいて、回折角度2θが14.9~15.9度、及び16.2~17.2度にピークが存在し、かつ、14.9~15.9度におけるピークの最大強度をA、16.2~17.2度におけるピークの最大強度をBとしたとき、1.0≦A/B≦4.5である、請求項1乃至4に記載のフェノール樹脂発泡体。
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020207025209A KR102708815B1 (ko) | 2018-04-27 | 2019-04-26 | 난연성 페놀 수지 발포체 |
US17/050,838 US11326036B2 (en) | 2018-04-27 | 2019-04-26 | Flame-retardant phenolic resin foam |
KR1020237019643A KR20230095122A (ko) | 2018-04-27 | 2019-04-26 | 난연성 페놀 수지 발포체 |
EP19791585.3A EP3786221A4 (en) | 2018-04-27 | 2019-04-26 | FIRE-RETARDANT PHENOLIC RESIN FOAM |
JP2020515627A JP6961075B2 (ja) | 2018-04-27 | 2019-04-26 | 難燃性フェノール樹脂発泡体 |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018-086916 | 2018-04-27 | ||
JP2018086916 | 2018-04-27 | ||
JP2018225588 | 2018-11-30 | ||
JP2018-225588 | 2018-11-30 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2019208811A1 true WO2019208811A1 (ja) | 2019-10-31 |
Family
ID=68295590
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2019/018079 WO2019208811A1 (ja) | 2018-04-27 | 2019-04-26 | 難燃性フェノール樹脂発泡体 |
Country Status (5)
Country | Link |
---|---|
US (1) | US11326036B2 (ja) |
EP (1) | EP3786221A4 (ja) |
JP (1) | JP6961075B2 (ja) |
KR (2) | KR20230095122A (ja) |
WO (1) | WO2019208811A1 (ja) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2022098196A1 (ko) * | 2020-11-09 | 2022-05-12 | (주)엘엑스하우시스 | 페놀 발포체 및 이의 제조방법 |
Citations (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6035032A (ja) * | 1983-08-08 | 1985-02-22 | Showa Highpolymer Co Ltd | 難燃性フエノ−ル樹脂発泡体の製造方法 |
JPS6035033A (ja) * | 1983-08-08 | 1985-02-22 | Showa Highpolymer Co Ltd | フェノ−ル樹脂発泡体の製造方法 |
JPS61243A (ja) * | 1984-06-13 | 1986-01-06 | Nichias Corp | フエノ−ル樹脂発泡体の製造方法 |
JPS6195038A (ja) * | 1984-10-13 | 1986-05-13 | Asahi Organic Chem Ind Co Ltd | 発泡用フェノ−ル樹脂組成物 |
JPS61238833A (ja) * | 1985-04-16 | 1986-10-24 | Asahi Organic Chem Ind Co Ltd | フエノ−ル樹脂発泡体 |
JPH01126349A (ja) * | 1987-11-11 | 1989-05-18 | Nitto Boseki Co Ltd | 吸放湿性フェノール樹脂発泡体 |
JPH0249037A (ja) * | 1988-08-11 | 1990-02-19 | Toyo Tire & Rubber Co Ltd | 難燃性フエノール樹脂発泡体の製造方法 |
JPH03160038A (ja) * | 1989-11-17 | 1991-07-10 | Kubota Corp | 不燃性樹脂発泡建材 |
JPH03179041A (ja) * | 1990-11-02 | 1991-08-05 | Asahi Organic Chem Ind Co Ltd | フェノール樹脂発泡体 |
JPH0532814A (ja) * | 1991-07-31 | 1993-02-09 | Les-Ben Yuuteiritei Kk | 二次加工可能なフエノール樹脂発泡体 |
JPH0680814A (ja) | 1992-08-28 | 1994-03-22 | Nitto Boseki Co Ltd | フエノール樹脂発泡体の製造方法 |
JPH10225993A (ja) | 1997-02-17 | 1998-08-25 | Asahi Chem Ind Co Ltd | フェノール樹脂発泡体の製造方法 |
JPH10259266A (ja) | 1997-03-18 | 1998-09-29 | Riboole:Kk | 不燃性フェノール樹脂発泡体 |
JP2005015725A (ja) * | 2003-06-30 | 2005-01-20 | Asahi Organic Chem Ind Co Ltd | フェノールフォーム用原料組成物並びにそれを用いたフェノールフォーム及びその製造方法 |
JP2017210618A (ja) | 2016-05-24 | 2017-11-30 | 積水化学工業株式会社 | フェノール樹脂発泡板およびその製造方法、フェノール樹脂混合物 |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6035033B2 (ja) * | 1978-08-02 | 1985-08-12 | 日本ニユクリア・フユエル株式会社 | 核燃料ペレツトの製造法 |
JPH073063A (ja) | 1993-06-18 | 1995-01-06 | Ig Tech Res Inc | 軽量耐火発泡板 |
CN1128836C (zh) | 1998-07-03 | 2003-11-26 | 旭化成株式会社 | 酚醛泡沫体 |
EP3660084A1 (en) | 2014-01-24 | 2020-06-03 | Asahi Kasei Construction Materials Corporation | Phenol resin foam body and method for producing same |
JP2015151524A (ja) | 2014-02-19 | 2015-08-24 | 東ソー株式会社 | 難燃性ポリウレタンフォーム |
JP6215467B2 (ja) | 2014-06-18 | 2017-10-18 | 旭化成建材株式会社 | フェノール樹脂発泡体及びその製造方法 |
EP3640288A1 (en) * | 2015-03-24 | 2020-04-22 | Asahi Kasei Construction Materials Corporation | Phenolic resin foam and method of producing same |
JP6600231B2 (ja) | 2015-11-02 | 2019-10-30 | 積水化学工業株式会社 | フェノール樹脂発泡体及びその製造方法 |
-
2019
- 2019-04-26 US US17/050,838 patent/US11326036B2/en active Active
- 2019-04-26 KR KR1020237019643A patent/KR20230095122A/ko not_active Application Discontinuation
- 2019-04-26 WO PCT/JP2019/018079 patent/WO2019208811A1/ja active Application Filing
- 2019-04-26 KR KR1020207025209A patent/KR102708815B1/ko active IP Right Grant
- 2019-04-26 JP JP2020515627A patent/JP6961075B2/ja active Active
- 2019-04-26 EP EP19791585.3A patent/EP3786221A4/en not_active Withdrawn
Patent Citations (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6035032A (ja) * | 1983-08-08 | 1985-02-22 | Showa Highpolymer Co Ltd | 難燃性フエノ−ル樹脂発泡体の製造方法 |
JPS6035033A (ja) * | 1983-08-08 | 1985-02-22 | Showa Highpolymer Co Ltd | フェノ−ル樹脂発泡体の製造方法 |
JPS61243A (ja) * | 1984-06-13 | 1986-01-06 | Nichias Corp | フエノ−ル樹脂発泡体の製造方法 |
JPS6195038A (ja) * | 1984-10-13 | 1986-05-13 | Asahi Organic Chem Ind Co Ltd | 発泡用フェノ−ル樹脂組成物 |
JPS61238833A (ja) * | 1985-04-16 | 1986-10-24 | Asahi Organic Chem Ind Co Ltd | フエノ−ル樹脂発泡体 |
JPH01126349A (ja) * | 1987-11-11 | 1989-05-18 | Nitto Boseki Co Ltd | 吸放湿性フェノール樹脂発泡体 |
JPH0249037A (ja) * | 1988-08-11 | 1990-02-19 | Toyo Tire & Rubber Co Ltd | 難燃性フエノール樹脂発泡体の製造方法 |
JPH03160038A (ja) * | 1989-11-17 | 1991-07-10 | Kubota Corp | 不燃性樹脂発泡建材 |
JPH03179041A (ja) * | 1990-11-02 | 1991-08-05 | Asahi Organic Chem Ind Co Ltd | フェノール樹脂発泡体 |
JPH0532814A (ja) * | 1991-07-31 | 1993-02-09 | Les-Ben Yuuteiritei Kk | 二次加工可能なフエノール樹脂発泡体 |
JPH0680814A (ja) | 1992-08-28 | 1994-03-22 | Nitto Boseki Co Ltd | フエノール樹脂発泡体の製造方法 |
JPH10225993A (ja) | 1997-02-17 | 1998-08-25 | Asahi Chem Ind Co Ltd | フェノール樹脂発泡体の製造方法 |
JPH10259266A (ja) | 1997-03-18 | 1998-09-29 | Riboole:Kk | 不燃性フェノール樹脂発泡体 |
JP2005015725A (ja) * | 2003-06-30 | 2005-01-20 | Asahi Organic Chem Ind Co Ltd | フェノールフォーム用原料組成物並びにそれを用いたフェノールフォーム及びその製造方法 |
JP2017210618A (ja) | 2016-05-24 | 2017-11-30 | 積水化学工業株式会社 | フェノール樹脂発泡板およびその製造方法、フェノール樹脂混合物 |
Non-Patent Citations (1)
Title |
---|
See also references of EP3786221A4 |
Also Published As
Publication number | Publication date |
---|---|
US11326036B2 (en) | 2022-05-10 |
JPWO2019208811A1 (ja) | 2021-01-07 |
EP3786221A4 (en) | 2021-04-21 |
KR20230095122A (ko) | 2023-06-28 |
US20210230389A1 (en) | 2021-07-29 |
EP3786221A1 (en) | 2021-03-03 |
KR20200118101A (ko) | 2020-10-14 |
JP6961075B2 (ja) | 2021-11-05 |
KR102708815B1 (ko) | 2024-09-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2015111670A1 (ja) | フェノール樹脂発泡体及びその製造方法 | |
WO2011118793A1 (ja) | フェノール樹脂発泡体積層板及びその製造方法 | |
JP7223200B1 (ja) | フェノール樹脂発泡体積層板および複合板 | |
JP7011048B2 (ja) | フェノール樹脂発泡体積層板およびその製造方法 | |
JP6961075B2 (ja) | 難燃性フェノール樹脂発泡体 | |
JP7223201B1 (ja) | フェノール樹脂発泡体積層板 | |
JP5809738B1 (ja) | フェノール樹脂発泡体積層板及びその製造方法 | |
JP6946038B2 (ja) | フェノール樹脂発泡体積層板及びその製造方法 | |
JP7027078B2 (ja) | フェノール樹脂発泡体積層板及びその製造方法 | |
RU2792103C1 (ru) | Ламинированная плита и композитная плита из вспененной фенольной смолы | |
RU2791537C1 (ru) | Ламинатная плита из вспененной фенольной смолы | |
JP7014566B2 (ja) | フェノール樹脂発泡板およびその製造方法 | |
JP7026468B2 (ja) | フェノール樹脂発泡体積層板及びその製造方法 | |
WO2023204283A1 (ja) | フェノール樹脂発泡体およびその積層板 | |
WO2024225405A1 (ja) | フェノール樹脂発泡体及びその製造方法 | |
JP7045169B2 (ja) | フェノール樹脂発泡体積層板及びその製造方法 | |
JP7010643B2 (ja) | フェノール樹脂発泡体積層板 | |
JP5795410B1 (ja) | フェノール樹脂発泡体積層板及びその製造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19791585 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2020515627 Country of ref document: JP Kind code of ref document: A |
|
ENP | Entry into the national phase |
Ref document number: 20207025209 Country of ref document: KR Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2019791585 Country of ref document: EP |